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Abstract  13 

 

The new diazabicyclooctane-based β-lactamase inhibitors avibactam and relebactam improve 14 

the in vitro activity of β-lactam antibiotics against Mycobacterium abscessus complex (MABC). 15 

Here, we evaluated the in vitro activity of two newer diazabicyclooctane-based β-lactamase 16 

inhibitors in clinical development, nacubactam and zidebactam, with β-lactams against clinical 17 

isolates of MABC. Both inhibitors lowered the MICs of their partner β-lactams, meropenem 18 

(eight-fold) and cefepime (two-fold), and those of other β-lactams, similar to prior results with 19 

avibactam and relebactam. 20 
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Introduction 21 

 22 

Mycobacterium abscessus complex (MABC) is comprised of rapidly growing, nontuberculous 23 

mycobacteria responsible for chronic, difficult-to-treat lung, skin, and wound infections that are 24 

increasing in prevalence (1-4). Both intrinsic and acquired drug resistance contribute to the 25 

recalcitrance of MABC lung infections (5). Despite the outstanding contribution of β-lactam 26 

antibiotics to treatment of infectious diseases, their utility against MABC organisms is limited by 27 

a chromosomally encoded, broad-spectrum, Ambler class A β-lactamase, BlaMab, which is the 28 

major determinant of intrinsic β-lactam resistance in MABC (6). While older β-lactam-based β-29 

lactamase inhibitors (BLIs) such as clavulanate, tazobactam and sulbactam are ineffective 30 

against BlaMab and do not improve the in vitro activity of β-lactam antibiotics against MABC 31 

organisms (7, 8), we and others have shown that the new diazabicyclooctane-based BLIs 32 

avibactam and relebactam, developed to treat multidrug-resistant Gram-negative bacteria (9), 33 

do improve the in vitro activity of many β-lactam antibiotics against MABC organisms, 34 

particularly carbapenems and cephalosporins (8, 10-12).  Avibactam and relebactam have been 35 

developed with ceftazidime and imipenem, respectively. However, ceftazidime has poor intrinsic 36 

activity against MABC organisms, as evidenced by high MICs despite combination with 37 

avibactam or relebactam (10, 12), while imipenem has relatively high intrinsic activity and MICs 38 

are only modestly lower in the presence of these BLIs (8, 10). Newer diazabicyclooctane-based 39 

BLIs being developed for treatment of challenging Gram-negative infections, including 40 

nacubactam and zidebactam (13, 14), may offer advantages over avibactam and relebactam. 41 

Both nacubactam (OP0595, RG6080) co-formulated with meropenem and zidebactam (WCK 42 

5107) co-formulated with cefepime (co-formulation is WCK 5222) have completed clinical 43 

safety, tolerability, pharmacokinetics and lung penetration studies (ClinicalTrials.gov identifiers: 44 

NCT02972255, NCT03182504, NCT02674347, NCT03630094) and received Fast Track and 45 
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Qualified Infectious Disease Product (QIDP) designations from the U.S. Food and Drug 46 

Administration (15, 16). The aim of our study was to evaluate the activity of nacubactam or 47 

zidebactam in combination with β-lactams against drug-resistant clinical isolates of MABC.  48 

 49 

Materials and Methods 50 

Nacubactam and zidebactam were procured from MedKoo Biosciences, Inc., NC, USA (purity 51 

>98%). A total of twenty-six β-lactam antibiotics (Table 1), including penicillins, cephalosporins 52 

and carbapenems, were purchased from commercial sources as previously described (10). The 53 

purity of all β-lactams was >95%. All drugs were stored and dissolved either in DMSO or water 54 

prior to drug susceptibility testing (DST) according to manufacturers’ recommendation.  55 

Twenty-eight clinical isolates of MABC were collected at Johns Hopkins Hospital, Baltimore, 56 

MD, USA from 2005 to 2015 and described previously (8, 10). M. abscessus ATCC 19977 was 57 

purchased from the American Type Culture Collection (Manassas, VA, USA) and used as a 58 

reference strain. Middlebrook 7H9 broth supplemented with 10% Middlebrook OADC 59 

enrichment, 0.5% glycerol, and 0.05% Tween 80, was used as the growth medium. Middlebrook 60 

7H9 broth supplemented with 10% OADC and 0.5% glycerol was used primarily for minimum 61 

inhibitory concentration (MIC) determination instead of cation-adjusted Mueller-Hinton broth 62 

(CAMHB) because growth of clinical isolates is faster in Middlebrook 7H9 broth compared to 63 

CAMHB, thus limiting the potential for over-estimation of MICs due to β-lactam instability in the 64 

medium, as discussed previously (10).  65 

MIC was determined using the microbroth dilution method in round bottom wells in 96-well 66 

plates, as previously described (8, 10). In brief, 100 µL of media was dispensed in wells. Drugs 67 

were dissolved and two-fold dilutions were prepared ranging from 2 to 256 µg/mL. Wells were 68 

prepared with β-lactams alone or in combination with a fixed concentration of 4 or 8 µg/mL of 69 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/597765doi: bioRxiv preprint 

https://doi.org/10.1101/597765
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

either nacubactam or zidebactam, or either BLI alone. A total of 100 µL of a log phase culture 70 

containing 1 × 104 to 5 × 104 CFU was added to each well except the negative control well 71 

(media only). Plates were incubated at 30°C for 3 days for Middlebrook 7H9 broth. The MIC was 72 

defined as the lowest concentration of β-lactam that prevented growth as observed by the 73 

naked eye. MIC50 and MIC90 were defined as the MIC at which at least 50% and at least 90%, 74 

respectively, of the clinical MABC isolates were inhibited. DST was repeated to confirm the MIC 75 

against M. abscessus ATCC 19977.  76 

 77 

Results 78 

Initially, we studied the effect of β-lactams in presence and absence of nacubactam and 79 

zidebactam against M. abscessus ATCC 19977. Both BLIs improved the activity of 80 

carbapenems and some cephalosporins (Table 1). The potentiating effects were greatest with 81 

tebipenem, ertapenem, cefuroxime, ceftaroline and, to a lesser extent, meropenem. However, 82 

nacubactam was generally slightly more effective than zidebactam and it uniquely potentiated 83 

the effects of amoxicillin. Nacubactam at 8 µg/mL resulted in two-fold lower MICs compared to 4 84 

µg/mL for some β-lactams, while zidebactam results were similar irrespective of the 85 

concentration tested. Specifically, nacubactam at 8 µg/mL and zidebactam at 4-8 µg/mL 86 

improved the activity of their partner β-lactams, meropenem and cefepime by eight-fold and two-87 

fold, respectively. As previously observed with avibactam and relebactam, MICs of cefoxitin 88 

remained unchanged in the presence of nacubactam and zidebactam, reflecting the stability of 89 

cefoxitin to MABC β-lactamase activity (17). The MICs of nacubactam and zidebactam against 90 

M. abscessus 19977 was >256 µg/mL, suggesting that their potentiation of β-lactam activity 91 

were due to β-lactamase inhibition rather than any intrinsic anti-bacterial effects. 92 
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We chose 8 µg/mL for nacubactam and 4 µg/mL for zidebactam as fixed concentrations to 93 

screen against the clinical isolates. On average, the clinical isolates were more resistant than M. 94 

abscessus 19977. However, both BLIs improved the activity of selected β-lactams (Table 2, 95 

Figures 1 and 2). Nacubactam and zidebactam lowered the MIC50 values of their partner β-96 

lactams, meropenem and cefepime by 8-fold and 2-fold, respectively, as well as those of the 97 

carbapenems, several cephalosporins (ceftaroline, cefuroxime and cefdinir) and, in the case of 98 

nacubactam, amoxicillin, consistent with their effects against ATCC 19977.  99 

Against the clinical isolates, the addition of 8 µg/mL nacubactam reduced the meropenem MIC50 100 

from 32 µg/mL to 4 µg/mL, thus changing the interpretation from resistant to susceptible, 101 

according to CLSI breakpoints for M. abscessus (albeit using 7H9 broth rather than the CAMHB 102 

media recommended by CLSI, for reasons we explained previously) (10). Indeed, all 28 clinical 103 

isolates had MICs within the susceptible-to-intermediate range when meropenem was combined 104 

with nacubactam. These results are somewhat better than those observed in our previous study 105 

when meropenem was combined with vaborbactam 4 µg/mL (10).  106 

 107 

Discussion 108 

For β-lactams, the percentage of the dosing interval for which free drug concentrations exceed 109 

the MIC µg/mL (%fT>MIC) is the pharmacokinetic/pharmacodynamic parameter best correlated 110 

with antibacterial effect (18). Target values for %fT>MIC vary among sub-classes of β-lactams 111 

and by organism. Although such targets are not established for β-lactams against MABC 112 

organisms, target %fT>MIC values against other bacteria are ≈40% for carbapenems and ≈40-113 

60% for cephalosporins (19, 20). Monogue et al showed that nacubactam plasma 114 

concentrations exceed 8 µg/mL for about 60% of the dosing interval when dosed intravenously 115 

at 1.5 grams every 8 hours (0.5 hr infusion) (13), suggesting that β-lactam MICs in the presence 116 
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of nacubactam 8 µg/mL may predict clinical efficacy if the β-lactam dosing regimen meets the 117 

%fT>MIC target for MIC in the presence of the BLI. Likewise, susceptibility breakpoints based on 118 

such targets should be predictive of clinical efficacy. Although no breakpoint has been 119 

established for cefepime against MABC organisms, the addition of zidebactam 4 µg/mL (or 120 

nacubactam 8 µg/mL) reduced the cefepime MIC50 from the resistant to the intermediate 121 

susceptibility range when considering the CLSI breakpoints for cefepime against Pseudomonas 122 

aeruginosa (21, 22). Zidebactam plasma and alveolar epithelial lining fluid concentrations 123 

exceed 4 µg/mL for at least 75% and at least 50%, respectively, of the dosing interval when 124 

cepepime/zidebactam are dosed intravenously at 2g/1gevery 8 hours (1 hr infusion) in healthy 125 

subjects (16).  126 

In conclusion, this study demonstrates that nacubactam and zidebactam improve the anti-127 

MABC activity of carbapenems, several cephalosporins, and, in the case of nacubactam, 128 

amoxicillin. Specifically, addition of nacubactam lowered meropenem MICs eight-fold, resulting 129 

in all isolates being susceptible or intermediately susceptible by CLSI interpretive criteria for 130 

meropenem.  In our previous study (10), the meropenem/vaborbactam combination was not 131 

quite as potent as the meropenem/nacubactam combination studied here against the same 132 

isolates, suggesting that meropenem/nacubactam, if approved, could have an advantage for the 133 

treatment of MABC infections. However, further head-to-head comparisons with larger numbers 134 

of clinical isolates are required before drawing a more confident conclusion. Zidebactam had a 135 

more modest effect on cefepime MICs and cefepime has lower intrinsic activity against MABC 136 

than meropenem. However, emerging evidence suggests that combinations of two β-lactams 137 

with an effective BLI could be synergistic against M. abscessus (12, 23, 24). Our study identified 138 

β-lactams belonging to several sub-classes that are potentiated by new BLIs and could be 139 

combined with a fixed β-lactam/BLI combination to pursue such synergistic effects.  140 

 141 
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 267 

TABLE 1 MIC values of β-lactams with and those without β-lactamase inhibitors against 268 

M. abscessus subsp. abscessus strain ATCC 19977 in Middlebrook 7H9 medium 269 

 MIC in µg/mL 

 Alone 
With nacubactam  With zidebactam 

β-lactam tested 4 µg/mL  8 µg/mL  4 µg/mL 8 µg/mL  
Oral 

carbapenems      
Faropenem 128 32 32 32 32 

Tebipenem 256 8 4 16 16 
Parenteral 

carbapenems      
Biapenem 16 4 4 4 4 

Doripenem 16 4 2 4 4 

Ertapenem >256 16 16 64 64 

Imipenem 8 4 2 2 2 

Meropenem 16 4 2 8 8 
Oral 

cephalosporins      
Cefdinir  32 16 16 16 16 

Cefixime  >256 128 128 256 128 

Cefpodoxime >256 64 64 128 64 

Cefuroximea 128 8 8 16 16 

Cephalexin >256 >256 >256 >256 >256 
Parenteral 

cephalosporins      
Cefazolin >256 >256 256 >256 >256 

Cefepime 32 32 16 16 16 

Cefoperazone >256 >256 >256 >256 >256 

Cefotaxime 128 64 32 64 64 

Cefoxitin 32 32 32 32 32 

Ceftaroline >256 8 8 64 32 

Ceftazidime >256 >256 >256 >256 >256 

Ceftriaxone >256 32 16 128 32 

Cephalothin >256 256 128 >256 >256 

Moxalactam 128 128 128 128 128 

Penicillins      
Amoxicillin >256 16 16 256 256 

Cloxacillin >256 >256 >256 >256 >256 

Dicloxacillin >256 >256 >256 >256 >256 

Oxacillin >256 >256 >256 >256 >256 
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aCefuroxime is available in both oral and parenteral formulations.270 
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Table 2 MIC values of β-lactams with and those without nacubactam or zidebactam against 28 271 

drug-resistant MABC clinical isolates in Middlebrook 7H9 medium 272 

MICs (µg/mL)  
 Alone With nacubactama With zidebactama 
 Range MIC50 MIC90 Range MIC50 MIC90 Range MIC50 MIC90 
Oral 
carbapenem 

         

Tebipenem 64 - 
>256 

256 >256 4 – 32 8 16 16 – 
256 

32 128 

Parenteral 
carbapenems 

         

Biapenem 8 - 256 16 64 4 - 8 8 8 4 – 64 8 32 
Doripenem 8 - 128 32 64 4 – 16 8 8 4 – 64 4 32 
Ertapenem 128 - 

>256 
256 >256 8 – 64 16 64 16 – 

>256 
64 256 

Imipenem 8 – 64 16 32 4 – 16 8 16 4 – 32 8 16 
Meropenem 8 - 256 32 256 4 – 16 4 8 4 – 128 8 64 
Oral 
cephalosporins 

         

Cefdinir 32 - 
256 

64 128 16 – 32 16 32 16 – 64 32 64 

Cefuroximeb 64 - 
>256 

256 >256 8 – 32 16 32 16 – 
256 

32 64 

Parenteral 
cephalosporins 

         

Cefepime 16 – 
128 

32 64 8 – 64 16 32 8 – 64 16 32 

Cefoxitin 32 – 64 32 64 32 – 64 32 64 32 - 64 32 64 
Ceftaroline 64 - 

>256 
>256 >256 4 – 32 8 16 16 – 

>256 
64 256 

Oral penicillin          
Amoxicillin >256  - 

>256 
>256 >256 8 - 256 16 64 64 - 

>256 
256 >256 

aNacubactam and zidebactam were used at fixed concentrations of 8 and 4 µg/mL, respectively. 273 

bCefuroxime is available in both oral and parenteral formulations. 274 
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 284 

                285 

 286 

Figure 1 MIC distributions of amoxicillin and cephalosporins, alone and in combination with 8 287 

µg/ml nacubactam or 4 µg/ml zidebactam, against 28 MABC clinical isolates. 288 

 289 
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 295 

 296 

Figure 2 MIC distributions of carbapenems, alone and in combination with 8 µg/ml nacubactam 297 

or 4 µg/ml zidebactam, against 28 MABC clinical isolates. 298 
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