

1 **New β -Lactamase Inhibitors Nacubactam and Zidebactam Improve the In Vitro Activity of**
2 **β -Lactam Antibiotics Against *Mycobacterium abscessus* Complex Clinical Isolates**

3 **Authors and affiliations.**

4 Amit Kaushik,^a Nicole C. Ammerman,^a Nicole M. Parrish,^b Eric L. Nuermberger^{a*}

5 ^aCenter for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore,
6 Maryland, USA

7 ^bDepartment of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,
8 USA

9 **Key words.** β -lactamase inhibitors, nacubactam, zidebactam, *Mycobacterium abscessus*, drug
10 susceptibility assay, diazabicyclooctane, β -Lactams, meropenem, cefepime.

11 **Running title:** Nacubactam-zidebactam with β -Lactams for *M. abscessus*

12 *Address correspondence to Eric L. Nuermberger: enuermb@jhmi.edu

13 **Abstract**

14 The new diazabicyclooctane-based β -lactamase inhibitors avibactam and relebactam improve
15 the in vitro activity of β -lactam antibiotics against *Mycobacterium abscessus* complex (MABC).
16 Here, we evaluated the in vitro activity of two newer diazabicyclooctane-based β -lactamase
17 inhibitors in clinical development, nacubactam and zidebactam, with β -lactams against clinical
18 isolates of MABC. Both inhibitors lowered the MICs of their partner β -lactams, meropenem
19 (eight-fold) and cefepime (two-fold), and those of other β -lactams, similar to prior results with
20 avibactam and relebactam.

21 **Introduction**

22

23 *Mycobacterium abscessus* complex (MABC) is comprised of rapidly growing, nontuberculous
24 mycobacteria responsible for chronic, difficult-to-treat lung, skin, and wound infections that are
25 increasing in prevalence (1-4). Both intrinsic and acquired drug resistance contribute to the
26 recalcitrance of MABC lung infections (5). Despite the outstanding contribution of β -lactam
27 antibiotics to treatment of infectious diseases, their utility against MABC organisms is limited by
28 a chromosomally encoded, broad-spectrum, Ambler class A β -lactamase, Bla_{Mab} , which is the
29 major determinant of intrinsic β -lactam resistance in MABC (6). While older β -lactam-based β -
30 lactamase inhibitors (BLIs) such as clavulanate, tazobactam and sulbactam are ineffective
31 against Bla_{Mab} and do not improve the in vitro activity of β -lactam antibiotics against MABC
32 organisms (7, 8), we and others have shown that the new diazabicyclooctane-based BLIs
33 avibactam and relebactam, developed to treat multidrug-resistant Gram-negative bacteria (9),
34 do improve the in vitro activity of many β -lactam antibiotics against MABC organisms,
35 particularly carbapenems and cephalosporins (8, 10-12). Avibactam and relebactam have been
36 developed with ceftazidime and imipenem, respectively. However, ceftazidime has poor intrinsic
37 activity against MABC organisms, as evidenced by high MICs despite combination with
38 avibactam or relebactam (10, 12), while imipenem has relatively high intrinsic activity and MICs
39 are only modestly lower in the presence of these BLIs (8, 10). Newer diazabicyclooctane-based
40 BLIs being developed for treatment of challenging Gram-negative infections, including
41 nacubactam and zidebactam (13, 14), may offer advantages over avibactam and relebactam.
42 Both nacubactam (OP0595, RG6080) co-formulated with meropenem and zidebactam (WCK
43 5107) co-formulated with cefepime (co-formulation is WCK 5222) have completed clinical
44 safety, tolerability, pharmacokinetics and lung penetration studies (ClinicalTrials.gov identifiers:
45 NCT02972255, NCT03182504, NCT02674347, NCT03630094) and received Fast Track and

46 Qualified Infectious Disease Product (QIDP) designations from the U.S. Food and Drug
47 Administration (15, 16). The aim of our study was to evaluate the activity of nacubactam or
48 zidebactam in combination with β -lactams against drug-resistant clinical isolates of MABC.

49

50 **Materials and Methods**

51 Nacubactam and zidebactam were procured from MedKoo Biosciences, Inc., NC, USA (purity
52 >98%). A total of twenty-six β -lactam antibiotics (Table 1), including penicillins, cephalosporins
53 and carbapenems, were purchased from commercial sources as previously described (10). The
54 purity of all β -lactams was >95%. All drugs were stored and dissolved either in DMSO or water
55 prior to drug susceptibility testing (DST) according to manufacturers' recommendation.

56 Twenty-eight clinical isolates of MABC were collected at Johns Hopkins Hospital, Baltimore,
57 MD, USA from 2005 to 2015 and described previously (8, 10). *M. abscessus* ATCC 19977 was
58 purchased from the American Type Culture Collection (Manassas, VA, USA) and used as a
59 reference strain. Middlebrook 7H9 broth supplemented with 10% Middlebrook OADC
60 enrichment, 0.5% glycerol, and 0.05% Tween 80, was used as the growth medium. Middlebrook
61 7H9 broth supplemented with 10% OADC and 0.5% glycerol was used primarily for minimum
62 inhibitory concentration (MIC) determination instead of cation-adjusted Mueller-Hinton broth
63 (CAMHB) because growth of clinical isolates is faster in Middlebrook 7H9 broth compared to
64 CAMHB, thus limiting the potential for over-estimation of MICs due to β -lactam instability in the
65 medium, as discussed previously (10).

66 MIC was determined using the microbroth dilution method in round bottom wells in 96-well
67 plates, as previously described (8, 10). In brief, 100 μ L of media was dispensed in wells. Drugs
68 were dissolved and two-fold dilutions were prepared ranging from 2 to 256 μ g/mL. Wells were
69 prepared with β -lactams alone or in combination with a fixed concentration of 4 or 8 μ g/mL of

70 either nacubactam or zidebactam, or either BLI alone. A total of 100 μ L of a log phase culture
71 containing 1×10^4 to 5×10^4 CFU was added to each well except the negative control well
72 (media only). Plates were incubated at 30°C for 3 days for Middlebrook 7H9 broth. The MIC was
73 defined as the lowest concentration of β -lactam that prevented growth as observed by the
74 naked eye. MIC₅₀ and MIC₉₀ were defined as the MIC at which at least 50% and at least 90%,
75 respectively, of the clinical MABC isolates were inhibited. DST was repeated to confirm the MIC
76 against *M. abscessus* ATCC 19977.

77

78 **Results**

79 Initially, we studied the effect of β -lactams in presence and absence of nacubactam and
80 zidebactam against *M. abscessus* ATCC 19977. Both BLIs improved the activity of
81 carbapenems and some cephalosporins (Table 1). The potentiating effects were greatest with
82 tebipenem, ertapenem, cefuroxime, ceftaroline and, to a lesser extent, meropenem. However,
83 nacubactam was generally slightly more effective than zidebactam and it uniquely potentiated
84 the effects of amoxicillin. Nacubactam at 8 μ g/mL resulted in two-fold lower MICs compared to 4
85 μ g/mL for some β -lactams, while zidebactam results were similar irrespective of the
86 concentration tested. Specifically, nacubactam at 8 μ g/mL and zidebactam at 4-8 μ g/mL
87 improved the activity of their partner β -lactams, meropenem and cefepime by eight-fold and two-
88 fold, respectively. As previously observed with avibactam and relebactam, MICs of cefoxitin
89 remained unchanged in the presence of nacubactam and zidebactam, reflecting the stability of
90 cefoxitin to MABC β -lactamase activity (17). The MICs of nacubactam and zidebactam against
91 *M. abscessus* 19977 was >256 μ g/mL, suggesting that their potentiation of β -lactam activity
92 were due to β -lactamase inhibition rather than any intrinsic anti-bacterial effects.

93 We chose 8 $\mu\text{g}/\text{mL}$ for nacubactam and 4 $\mu\text{g}/\text{mL}$ for zidebactam as fixed concentrations to
94 screen against the clinical isolates. On average, the clinical isolates were more resistant than *M.*
95 *abscessus* 19977. However, both BLIs improved the activity of selected β -lactams (Table 2,
96 Figures 1 and 2). Nacubactam and zidebactam lowered the MIC_{50} values of their partner β -
97 lactams, meropenem and cefepime by 8-fold and 2-fold, respectively, as well as those of the
98 carbapenems, several cephalosporins (ceftaroline, cefuroxime and cefdinir) and, in the case of
99 nacubactam, amoxicillin, consistent with their effects against ATCC 19977.

100 Against the clinical isolates, the addition of 8 $\mu\text{g}/\text{mL}$ nacubactam reduced the meropenem MIC_{50}
101 from 32 $\mu\text{g}/\text{mL}$ to 4 $\mu\text{g}/\text{mL}$, thus changing the interpretation from resistant to susceptible,
102 according to CLSI breakpoints for *M. abscessus* (albeit using 7H9 broth rather than the CAMHB
103 media recommended by CLSI, for reasons we explained previously) (10). Indeed, all 28 clinical
104 isolates had MICs within the susceptible-to-intermediate range when meropenem was combined
105 with nacubactam. These results are somewhat better than those observed in our previous study
106 when meropenem was combined with vaborbactam 4 $\mu\text{g}/\text{mL}$ (10).

107

108 **Discussion**

109 For β -lactams, the percentage of the dosing interval for which free drug concentrations exceed
110 the MIC $\mu\text{g}/\text{mL}$ (% $\text{fT}_{>\text{MIC}}$) is the pharmacokinetic/pharmacodynamic parameter best correlated
111 with antibacterial effect (18). Target values for % $\text{fT}_{>\text{MIC}}$ vary among sub-classes of β -lactams
112 and by organism. Although such targets are not established for β -lactams against MABC
113 organisms, target % $\text{fT}_{>\text{MIC}}$ values against other bacteria are $\approx 40\%$ for carbapenems and $\approx 40-$
114 60% for cephalosporins (19, 20). Monogue et al showed that nacubactam plasma
115 concentrations exceed 8 $\mu\text{g}/\text{mL}$ for about 60% of the dosing interval when dosed intravenously
116 at 1.5 grams every 8 hours (0.5 hr infusion) (13), suggesting that β -lactam MICs in the presence

117 of nacubactam 8 $\mu\text{g}/\text{mL}$ may predict clinical efficacy if the β -lactam dosing regimen meets the
118 $\%fT_{>\text{MIC}}$ target for MIC in the presence of the BLI. Likewise, susceptibility breakpoints based on
119 such targets should be predictive of clinical efficacy. Although no breakpoint has been
120 established for cefepime against MABC organisms, the addition of zidebactam 4 $\mu\text{g}/\text{mL}$ (or
121 nacubactam 8 $\mu\text{g}/\text{mL}$) reduced the cefepime MIC_{50} from the resistant to the intermediate
122 susceptibility range when considering the CLSI breakpoints for cefepime against *Pseudomonas*
123 *aeruginosa* (21, 22). Zidebactam plasma and alveolar epithelial lining fluid concentrations
124 exceed 4 $\mu\text{g}/\text{mL}$ for at least 75% and at least 50%, respectively, of the dosing interval when
125 cefepime/zidebactam are dosed intravenously at 2g/1g every 8 hours (1 hr infusion) in healthy
126 subjects (16).

127 In conclusion, this study demonstrates that nacubactam and zidebactam improve the anti-
128 MABC activity of carbapenems, several cephalosporins, and, in the case of nacubactam,
129 amoxicillin. Specifically, addition of nacubactam lowered meropenem MICs eight-fold, resulting
130 in all isolates being susceptible or intermediately susceptible by CLSI interpretive criteria for
131 meropenem. In our previous study (10), the meropenem/vaborbactam combination was not
132 quite as potent as the meropenem/nacubactam combination studied here against the same
133 isolates, suggesting that meropenem/nacubactam, if approved, could have an advantage for the
134 treatment of MABC infections. However, further head-to-head comparisons with larger numbers
135 of clinical isolates are required before drawing a more confident conclusion. Zidebactam had a
136 more modest effect on cefepime MICs and cefepime has lower intrinsic activity against MABC
137 than meropenem. However, emerging evidence suggests that combinations of two β -lactams
138 with an effective BLI could be synergistic against *M. abscessus* (12, 23, 24). Our study identified
139 β -lactams belonging to several sub-classes that are potentiated by new BLIs and could be
140 combined with a fixed β -lactam/BLI combination to pursue such synergistic effects.

141

142 **Acknowledgements**

143 The authors gratefully acknowledge Dr. Gyanu Lamichhane for providing partial characterization
144 of the MABC clinical isolates. Funding was provided by the National Institutes of Health,
145 R21AI137814 (ELN).

146

147 **References**

- 148 1. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. 2015. *Mycobacterium abscessus*
149 Complex Infections in Humans. *Emerg Infect Dis* 21(9):1638-46. doi:10.3201/2109.141634.
150 PubMed PMID: 26295364; PubMed Central PMCID: PMC4550155
- 151 2. Prevots DR, Shaw PA, Strickland D, Jackson LA, Raebel MA, Blosky MA, Montes de Oca R,
152 Shea YR, Seitz AE, Holland SM, Olivier KN. 2010. Nontuberculous mycobacterial lung
153 disease prevalence at four integrated health care delivery systems. *Am J Respir Crit Care
154 Med* 182(7):970-6. doi: 10.1164/rccm.201002-0310OC. Epub 2010 Jun 10. PubMed PMID:
155 20538958; PubMed Central PMCID: PMC2970866.
- 156 3. Adjemian J, Frankland TB, Daida YG, Honda JR, Olivier KN, Zelazny A, Honda S, Prevots
157 DR. 2017. Epidemiology of Nontuberculous Mycobacterial Lung Disease and Tuberculosis,
158 Hawaii, USA. *Emerg Infect Dis* 23(3):439-447. doi:10.3201/eid2303.161827. PubMed PMID:
159 28221128; PubMed Central PMCID: PMC5382761.
- 160 4. Ringshausen FC, Apel RM, Bange FC, de Roux A, Pletz MW, Rademacher J, Suhling H,
161 Wagner D, Welte T. 2013. Burden and trends of hospitalisations associated with pulmonary
162 non-tuberculous mycobacterial infections in Germany, 2005-2011. *BMC Infect Dis* 13:231.
163 doi: 10.1186/1471-2334-13-231. PubMed PMID:23692867; PubMed Central PMCID:
164 PMC3667050.

165 5. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. 2012. *Mycobacterium abscessus*: a
166 new antibiotic nightmare. *J Antimicrob Chemother* 67(4):810-8. doi:10.1093/jac/dkr578.
167 Epub 2012 Jan 30. Review. PubMed PMID: 22290346.

168 6. Soroka D, Dubée V, Soulier-Escrihuela O, Cuinet G, Hugonnet JE, Gutmann L, Mainardi JL,
169 Arthur M. 2014. Characterization of broad-spectrum *Mycobacterium abscessus* class A β -
170 lactamase. *J Antimicrob Chemother* 69(3):691-6. doi:10.1093/jac/dkt410. Epub 2013 Oct 16.
171 PubMed PMID: 24132992.

172 7. Kaushik A, Makkar N, Pandey P, Parrish N, Singh U, Lamichhane G. 2015. Carbapenems
173 and Rifampin Exhibit Synergy against *Mycobacterium tuberculosis* and *Mycobacterium*
174 *abscessus*. *Antimicrob Agents Chemother* 59(10):6561-7. doi:10.1128/AAC.01158-15. Epub
175 2015 Aug 10. PubMed PMID: 26259792; PubMed Central PMCID: PMC4576034.

176 8. Kaushik A, Gupta C, Fisher S, Story-Roller E, Galanis C, Parrish N, Lamichhane G. 2017.
177 Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-
178 resistant *Mycobacterium abscessus*. *Future Microbiol* 12:473-480. doi: 10.2217/fmb-2016-
179 0234. Epub 2017 Feb 16. PubMed PMID: 28326811; PubMed Central PMCID:
180 PMC5618940.

181 9. Zhanell GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanell M, Lagacé-Wiens
182 PRS, Walkty A, Denisuk A, Golden A, Gin AS, Hoban DJ, Lynch JP 3rd, Karlowsky JA.
183 2018. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem- β -
184 Lactamase Inhibitor Combinations. *Drugs* 78(1):65-98. doi: 10.1007/s40265-017-0851-9.
185 Review. Erratum in: *Drugs*. 2018 May 10; PubMed PMID: 29230684

186 10. Kaushik A, Ammerman NC, Lee J, Martins O, Kreiswirth BN, Lamichhane G, Parrish NM,
187 Nuermberger EL. 2019. In Vitro Activity of the New β -Lactamase Inhibitors Relebactam and
188 Vaborbactam in Combination with β -Lactams against *Mycobacterium abscessus* Complex
189 Clinical Isolates. *Antimicrob Agents Chemother* 63(3). pii: e02623-18. doi:
190 10.1128/AAC.02623-18. Print 2019 Mar. PubMed PMID: 30642943.

191 11. Dubée V, Bernut A, Cortes M, Lesne T, Dorchene D, Lefebvre AL, Hugonnet JE, Gutmann
192 L, Mainardi JL, Herrmann JL, Gaillard JL, Kremer L, Arthur M. 2015. β -Lactamase inhibition
193 by avibactam in *Mycobacterium abscessus*. *J Antimicrob Chemother* 70(4):1051-8. doi:
194 10.1093/jac/dku510. Epub 2014 Dec 18. PubMed PMID:25525201.

195 12. Pandey R, Chen L, Manca C, Jenkins S, Glaser L, Vinnard C, Stone G, Lee J, Mathema B,
196 Nuermberger EL, Bonomo RA, Kreiswirth BN. 2019. Dual β -Lactam Combinations Highly
197 Active against *Mycobacterium abscessus* Complex In Vitro. *MBio* 10(1). pii: e02895-18. doi:
198 10.1128/mBio.02895-18. PubMed PMID: 30755518; PubMed Central PMCID:
199 PMC6372805.

200 13. Monogue ML, Giovagnoli S, Bissantz C, Zampaloni C, Nicolau DP. 2018. In Vivo Efficacy of
201 Meropenem with a Novel Non- β -Lactam- β -Lactamase Inhibitor, Nacubactam, against Gram-
202 Negative Organisms Exhibiting Various Resistance Mechanisms in a Murine Complicated
203 Urinary Tract Infection Model. *Antimicrob Agents Chemother* 62(9). pii: e02596-17. doi:
204 10.1128/AAC.02596-17. Print 2018 Sep. PubMed PMID: 30012751; PubMed Central
205 PMCID: PMC6125527.

206 14. Sader HS, Rhomberg PR, Flamm RK, Jones RN, Castanheira M. 2017. WCK 5222
207 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms
208 producing clinically relevant β -lactamases. *J Antimicrob Chemother* 1;72(6):1696-1703. doi:
209 10.1093/jac/dkx050. PubMed PMID: 2833332.

210 15. Nacugen Therapeutics, I. 2019. Fedora Pharmaceuticals and Meiji Seika Pharma Sign
211 Basic Agreement to Establish NacuGen Therapeutics Inc., a Joint Venture to Develop and
212 Commercialize Nacubactam for Bacterial Infections. [online] GlobeNewswire News Room.
213 Available at: <https://www.globenewswire.com/news-release/2019/01/07/1681316/0/en/Fedora-Pharmaceuticals-and-Meiji-Seika-Pharma-Sign-Basic-Agreement-to-Establish-NacuGen-Therapeutics-Inc-a-Joint-Venture-to-Develop-and-Commercialize-Nacubactam-for-Bacterial-Infec.html> [Accessed 29 Mar. 2019].

217 16. Rodvold KA, Gotfried MH, Chugh R, Gupta M, Patel A, Chavan R, Yeole R, Friedland HD,
218 Bhatia A. 2018. Plasma and Intrapulmonary Concentrations of Cefepime and Zidebactam
219 following Intravenous Administration of WCK 5222 to Healthy Adult Subjects. *Antimicrob
220 Agents Chemother* 27;62(8). pii: e00682-18. doi:10.1128/AAC.00682-18. Print 2018 Aug.
221 PubMed PMID: 29784852; PubMed Central PMCID: PMC6105785.

222 17. Dubée V, Soroka D, Cortes M, Lefebvre AL, Gutmann L, Hugonnet JE, Arthur M, Mainardi
223 JL. 2015. Impact of β -lactamase inhibition on the activity of ceftaroline against
224 *Mycobacterium tuberculosis* and *Mycobacterium abscessus*. *Antimicrob Agents Chemother*
225 59(5):2938-41. doi: 10.1128/AAC.05080-14. Epub 2015 Mar 2. PubMed PMID: 25733512;
226 PubMed Central PMCID: PMC4394810.

227 18. Mouton JW, Brown DF, Apfalter P, Cantón R, Giske CG, Ivanova M, MacGowan AP, Rodloff
228 A, Soussy CJ, Steinbakk M, Kahlmeter G. 2012. The role of
229 pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST
230 approach. *Clin Microbiol Infect.* 18(3):E37-45. doi:10.1111/j.1469-0691.2011.03752.x. Epub
231 2012 Jan 20. Review. PubMed PMID:22264314.

232 19. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL. 2007
233 Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it's not just for mice
234 anymore. *Clin Infect Dis.* 2007 Jan 1;44(1):79-86. Epub 2006 Nov 27. Erratum in: *Clin Infect
235 Dis* 15;44(4):624. PubMed PMID: 17143821.

236 20. Craig WA. 1998. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial
237 dosing of mice and men. *Clin Infect Dis* 26(1):1-10; quiz 11-2. Review. PubMed PMID:
238 9455502.

239 21. Nakamura T, Shimizu C, Kasahara M, Nakata C, Munakata M, Takahashi H. 2007.
240 Differences in antimicrobial susceptibility breakpoints for *Pseudomonas aeruginosa*, isolated
241 from blood cultures, set by the Clinical and Laboratory Standards Institute (CLSI) and the

242 Japanese Society of Chemotherapy. *J Infect Chemother* 13(1):24-9. Epub 2007 Feb 26.

243 PubMed PMID: 17334725.

244 22. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 2017. 27th ed. CLSI

245 supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

246 23. Story-Roller E, Maggioncalda EC, Lamichhane G. Select β -Lactam Combinations Exhibit

247 Synergy against *Mycobacterium abscessus* In Vitro. 2019. *Antimicrob Agents Chemother*

248 63(4). pii: e02613-18. doi: 10.1128/AAC.02613-18. Print 2019 Apr. PubMed PMID:

249 30745389.

250 24. Kumar P, Chauhan V, Silva JRA, Lameira J, d'Andrea FB, Li SG, Ginell SL, Freundlich JS,

251 Alves CN, Bailey S, Cohen KA, Lamichhane G. 2017. *Mycobacterium abscessus* L-d-

252 Transpeptidases Are Susceptible to Inactivation by Carbapenems and Cephalosporins but

253 Not Penicillins. *Antimicrob Agents Chemother* 61(10). pii: e00866-17. doi:

254 10.1128/AAC.00866-17. Print 2017 Oct. PubMed PMID: 28760902; PubMed Central

255 PMCID: PMC5610527.

256

257

258

259

260

261

262

263

264

265

266

267

268 **TABLE 1** MIC values of β -lactams with and those without β -lactamase inhibitors against

269 *M. abscessus* subsp. *abscessus* strain ATCC 19977 in Middlebrook 7H9 medium

β -lactam tested	Alone	MIC in μ g/mL			
		With nacubactam		With zidebactam	
		4 μ g/mL	8 μ g/mL	4 μ g/mL	8 μ g/mL
Oral carbapenems					
Faropenem	128	32	32	32	32
Tebipenem	256	8	4	16	16
Parenteral carbapenems					
Biapenem	16	4	4	4	4
Doripenem	16	4	2	4	4
Ertapenem	>256	16	16	64	64
Imipenem	8	4	2	2	2
Meropenem	16	4	2	8	8
Oral cephalosporins					
Cefdinir	32	16	16	16	16
Cefixime	>256	128	128	256	128
Cefpodoxime	>256	64	64	128	64
Cefuroxime ^a	128	8	8	16	16
Cephalexin	>256	>256	>256	>256	>256
Parenteral cephalosporins					
Cefazolin	>256	>256	256	>256	>256
Cefepime	32	32	16	16	16
Cefoperazone	>256	>256	>256	>256	>256
Cefotaxime	128	64	32	64	64
Cefoxitin	32	32	32	32	32
Ceftaroline	>256	8	8	64	32
Ceftazidime	>256	>256	>256	>256	>256
Ceftriaxone	>256	32	16	128	32
Cephalothin	>256	256	128	>256	>256
Moxalactam	128	128	128	128	128
Penicillins					
Amoxicillin	>256	16	16	256	256
Cloxacillin	>256	>256	>256	>256	>256
Dicloxacillin	>256	>256	>256	>256	>256
Oxacillin	>256	>256	>256	>256	>256

270 ^aCefuroxime is available in both oral and parenteral formulations.

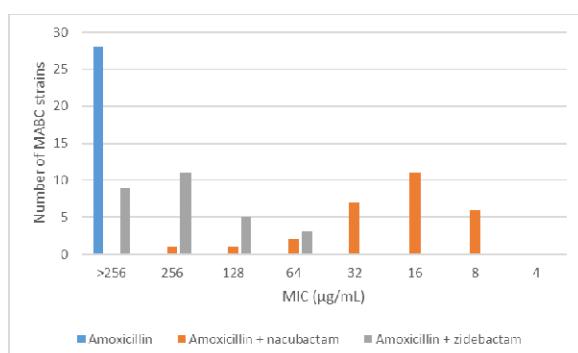
271 **Table 2** MIC values of β -lactams with and those without nacubactam or zidebactam against 28
272 drug-resistant MABC clinical isolates in Middlebrook 7H9 medium

	MICs (μ g/mL)								
	Alone			With nacubactam ^a			With zidebactam ^a		
	Range	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀
Oral carbapenem									
Tebipenem	64 - >256	256	>256	4 - 32	8	16	16 - 256	32	128
Parenteral carbapenems									
Biapenem	8 - 256	16	64	4 - 8	8	8	4 - 64	8	32
Doripenem	8 - 128	32	64	4 - 16	8	8	4 - 64	4	32
Ertapenem	128 - >256	256	>256	8 - 64	16	64	16 - >256	64	256
Imipenem	8 - 64	16	32	4 - 16	8	16	4 - 32	8	16
Meropenem	8 - 256	32	256	4 - 16	4	8	4 - 128	8	64
Oral cephalosporins									
Cefdinir	32 - 256	64	128	16 - 32	16	32	16 - 64	32	64
Cefuroxime ^b	64 - >256	256	>256	8 - 32	16	32	16 - 256	32	64
Parenteral cephalosporins									
Cefepime	16 - 128	32	64	8 - 64	16	32	8 - 64	16	32
Cefoxitin	32 - 64	32	64	32 - 64	32	64	32 - 64	32	64
Ceftaroline	64 - >256	>256	>256	4 - 32	8	16	16 - >256	64	256
Oral penicillin									
Amoxicillin	>256 - >256	>256	>256	8 - 256	16	64	64 - >256	256	>256

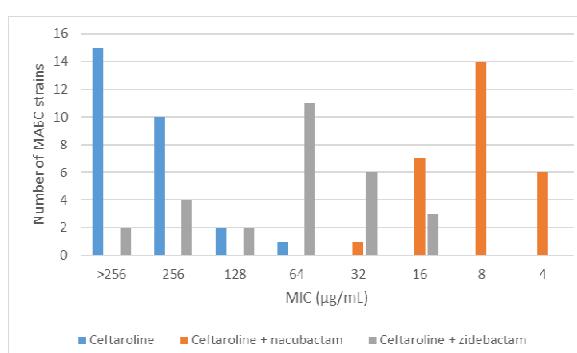
273 ^aNacubactam and zidebactam were used at fixed concentrations of 8 and 4 μ g/mL, respectively.

274 ^bCefuroxime is available in both oral and parenteral formulations.

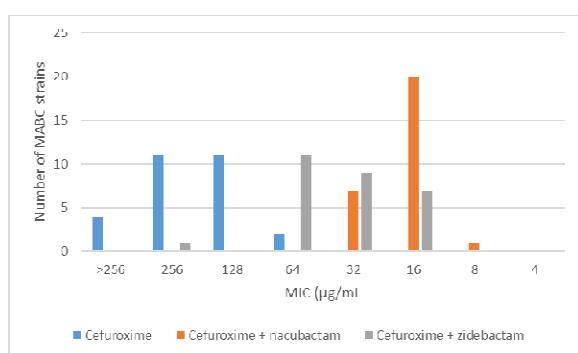
275

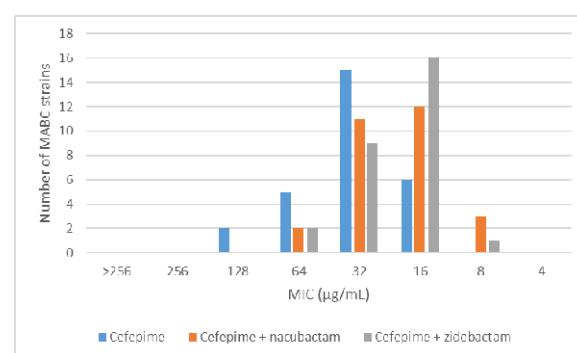

276

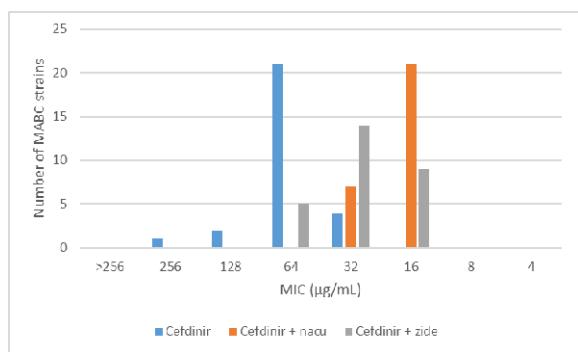
277

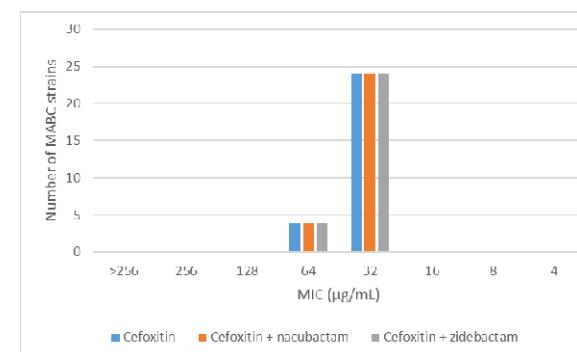

278

279


280

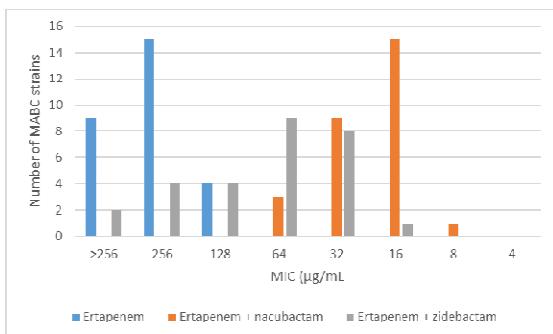

281


282

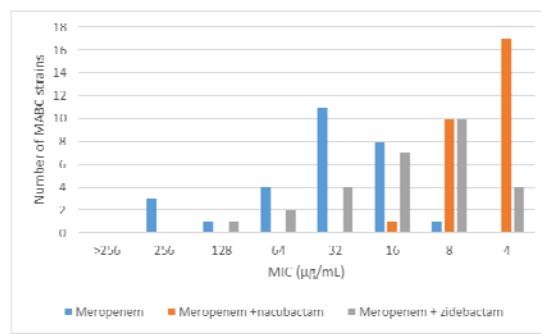

283

284

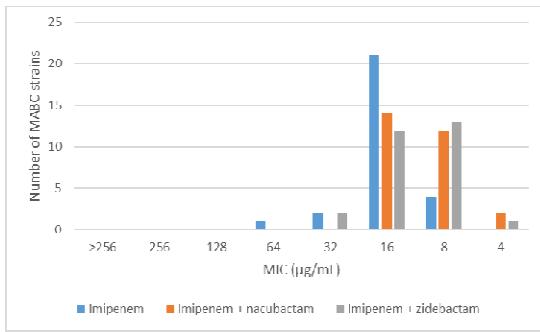
285

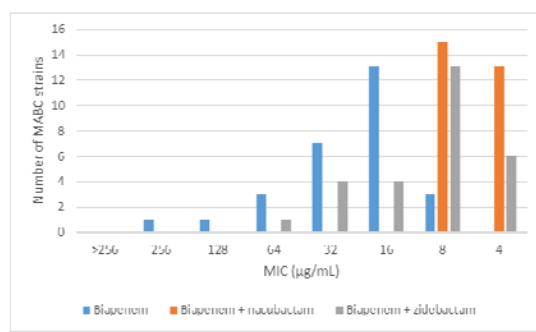

286

287 **Figure 1** MIC distributions of amoxicillin and cephalosporins, alone and in combination with 8
288 $\mu\text{g}/\text{ml}$ nacubactam or 4 $\mu\text{g}/\text{ml}$ zidebactam, against 28 MABC clinical isolates.


289

290


291


292

293

294

295

296

297 **Figure 2** MIC distributions of carbapenems, alone and in combination with 8 μg/ml nacubactam
298 or 4 μg/ml zidebactam, against 28 MABC clinical isolates.

299