

Type: Article

Title: Synthetic hybrids of six yeast species

Authors: David Peris^{1,2,3,*}, William G. Alexander^{1,2,4}, Kaitlin J. Fisher¹, Ryan V. Moriarty^{1,2}, Mira G. Basuino⁴, Emily J. Ubbelohde⁴, Russell L. Wrobel^{1,2}, Chris Todd Hittinger^{1,2*}

Keywords: *Saccharomyces*, synthetic hybrids, interspecific hybridization, biotechnology, genome instability

¹Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America;

²DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America;

³Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980 Paterna, Valencia, Spain;

⁴Department of Biology, Truman State University, Kirksville, MO, 63501

*Correspondence to: cthittinger@wisc.edu (CTH), david.perisnavarro@gmail.com (DP)

1 **Abstract**

2 Allopolyploidy generates diversity by increasing the number of copies and sources of
3 chromosomes. Many of the best-known evolutionary radiations, crops, and industrial
4 organisms are ancient or recent allopolyploids. Allopolyploidy promotes differentiation
5 and facilitates adaptation to new environments, but the tools to test its limits are lacking.
6 Here we develop an iterative method to combine the genomes of multiple budding yeast
7 species, generating *Saccharomyces* allopolyploids of an unprecedented scale.
8 Chromosomal instability and cell size increased dramatically as additional copies of the
9 genome were added, but we were able to construct synthetic hybrids of up to six
10 species. The six-species hybrids initially grew slowly, but they rapidly adapted when
11 selection to a novel environment was applied, even as they retained traits from multiple
12 species. These new synthetic yeast hybrids have potential applications for the study of
13 polyploidy, genome stability, chromosome segregation, cancer, and bioenergy.

14 **One sentence summary:** We constructed six-species synthetic hybrids and showed
15 that they were chromosomally unstable but able to adapt rapidly.

16 **Keywords:** *Saccharomyces*, synthetic hybrids, interspecific hybridization,
17 biotechnology, genome instability

18

19 **Introduction**

20 Polyploidy generates diversity by increasing the number of copies of each
21 chromosome ¹. Allopolyploidy instantly adds chromosomal variation from multiple
22 species through hybridization, while autoploidy leads to variation as gene copies
23 from a single species diverge during evolution. Allopolyploidy facilitates differentiation
24 and adaptation to new environments ². Many plants, animals, fungi, and other
25 eukaryotes are ancient or recent allopolyploids, including some of the best-known
26 industrial organisms, crops, and evolutionary radiations ^{3,4}.

27 Phylogenomic analyses support an allopolyploid origin for the baker's yeast
28 *Saccharomyces cerevisiae* ⁵. *S. cerevisiae* has been one of the most important model
29 organisms to study polyploidy in the context of evolution ⁶, its effects on mutation rate ⁷,
30 and as a model of how cancer progresses as clonal populations adapt through driver
31 mutations ⁸. Despite the decreased fitness of newly generated polyploids ⁹,
32 experimental evolution assays in *S. cerevisiae* and comparisons of the genomes of
33 industrial *Saccharomyces* interspecies hybrids have shown that they return to high
34 fitness through many of the same genetic mechanisms that occur during the clonal
35 expansion of tumorigenic cells, such as aneuploidy, chromosomal rearrangements, and
36 loss-of-heterozygosity ^{10,11}.

37 Genome rearrangements are common in *Saccharomyces* allopolyploids used to
38 make fermented beverages ^{12,13}, but experimental tools to test the limits of polyploidy
39 and genome rearrangements are lacking. Random chromosomal aberrations can be
40 easily generated by using molecular techniques, such as SCRaMbLE ¹⁴. However,

41 SCRaMbLE is currently only available in single, partly synthetic *S. cerevisiae* strain,
42 limiting the genomic diversity that can be explored.

43 *Saccharomyces* species have similar genome content, identical numbers of
44 chromosomes ($n = 16$), and genomes that are mostly syntetic¹⁵. Since they have
45 limited pre-zygotic barriers, interspecies hybrids can be generated easily when haploid
46 strains of opposite mating types encounter each other. Much more rarely, diploid yeast
47 cells can become competent to mate by inactivating or losing one *MAT* idiomorph or
48 undergoing gene conversion at the *MAT* locus¹⁶. To facilitate the generation of
49 allohexadecaploid (base ploidy of 12n) hybrids of six species, we developed an iterative
50 Hybrid Production (iHyPr) method. iHyPr combines traits from multiple species, such as
51 temperature tolerance, and through adaptive laboratory evolution, facilitates rapid
52 adaptation to new environments. This new method will enable basic research on
53 polyploidy, cancer, and chromosome biology. iHyPr can further be applied to research
54 on bioenergy and synthetic biology, as genomic diversity can be harnessed to generate
55 more efficient strains that produce new bioproducts¹⁷ or to combine industrially useful
56 traits from multiple species^{18,19}.

57 **Results**

58 Synthetic hybrids of six yeast species can be generated with iHyPr

59 iHyPr allowed us to experimentally test the limits of chromosome biology and
60 allohexadecaploidy by constructing a series of higher-order interspecies hybrids
61 (**Supplementary Fig. 1**). First, we used two differentially marked HyPr plasmids, which
62 each encode a drug-inducible *HO* gene (homothallic switching endonuclease) that
63 promotes mating-type switching, to efficiently generate and select for two-species

64 hybrids as done previously ²⁰. Next, using two newly created, differentially marked HyPr
65 plasmids, we crossed these two-species hybrids to construct three-species and four-
66 species hybrids. The construction of higher-order synthetic hybrids has not been
67 reported previously. Finally, we constructed six-species hybrids using three different
68 crossing schemes (Figure 1, Supplementary Fig. 2).

69 In all three schemes, diploid genomes were successfully introduced from each of the
70 six parent species (Figure 2B, Supplementary Fig. 3). During hybrid construction, as
71 more and more genomes were introduced, the frequency of successful matings
72 decreased (Spearman rank sum test $R = -0.89$, $p\text{-value} = 1.1 \times 10^{-5}$, Figure 3A,
73 Supplementary Table 3), and the fitness of synthetic hybrids declined (Spearman rank
74 sum test $= -0.77$, $p\text{-value} = 7.6 \times 10^{-4}$, Figure 3C). The fitness decrease may be due to
75 the increased cell area, which is correlated with the increased genome size (Spearman
76 rank sum test $R = 0.97$, $p\text{-value} = 1.4 \times 10^{-5}$, Figure 3B), as well as interspecies genetic
77 incompatibilities.

78 Genome size and stability limits

79 The largest synthetic hybrid expanded its genome size 3.3 times (from 24 Mb to \sim 80
80 Mbp) (Supplementary Fig. 5A, Supplementary Table 2), and its cell area was 2.3 times
81 larger than a diploid cell (Figure 3B). Some species contributed many fewer
82 chromosomes than others to the synthetic hybrids of six species (defined as the
83 ancestor hybrids) (Figure 2B). During construction, chromosome losses were
84 widespread and outnumbered gains (two-sided t-test $t = -3.4408$, d.f. = 6, $p\text{-value} <$
85 1.37×10^{-2} , Supplementary Table 2). These aneuploidies rose dramatically as the
86 number of species donating genomes increased (linear regression $r^2 = 0.79$, $p\text{-value} =$

87 3.01×10^{-6}) (Figure 2A). Complete chromosomal aneuploidies were much more common
88 than aneuploidies caused by unbalanced translocations or deletions (97.31% versus
89 2.69% of total detected chromosomal aberrations). Aneuploidies involving chromosome
90 III, where 88.9% of translocations or deletions in this chromosome were unbalanced
91 (Figure 2B, Supplementary Fig. 3), were especially common because it contains the
92 *MAT* locus being cut by the Ho endonuclease during iHyPr. These results suggest that,
93 in addition to the expected gene conversion events, iHyPr generated mating-competent
94 cells via partial chromosome losses.

95 Even though the base ploidy of the final six-hybrids was allohexadecaploidy (12n), a
96 ploidy level acquired by only a few organisms^{21,22}, none were euploid (Figure 2B). Due
97 to massive chromosome loss, we inferred the six-species hybrid with the largest
98 genome had an average of ~7 copies of each chromosome (i.e. 12n – 88) when
99 estimated using bioinformatic tools (visual inspection of sppIDer plots) or an average
100 of ~8 copies of each chromosome (i.e. 12n – 64) when total DNA content was estimated
101 using flow cytometry (Figure 2B, Supplementary Fig. 3, 5C, Supplementary Table 2).

102 Mitochondrial inheritance affects genotype and phenotype

103 During interspecific hybridization, hybrids can inherit one of the two parent mitotypes
104 or a recombinant version depending on the budding location²³. In general, one of the
105 parent mitotypes was quickly fixed during the generation of our hybrids, except for three
106 cases: the allotetraploid *Saccharomyces kudriavzevii* x *Saccharomyces mikatae*
107 yHRWh4, the allotetraploid *S. cerevisiae* x *Saccharomyces uvarum* yHRWh10, and the
108 six-species hybrid yHRWh36, which were all heteroplasmic (Supplementary Fig. 4). In
109 rich medium at 20 °C, for strains with similar numbers of hybridized species, hybrids

110 with a *S. cerevisiae* mitochondrial genome (mtDNA) grew 7-15 % faster than the hybrids
111 with the mtDNA of another species (Figure 3C,D). mtDNA inheritance was also
112 significantly correlated with nuclear genome retention (ANOVA multifactor *F*-value =
113 19.9, d.f. = 1, *p*-value = 7.77×10^{-4}), with the mtDNA donor tending to contribute more
114 nuclear chromosomes (Figure 4, Supplementary Fig. 4). These results are consistent
115 with recent observations in hybrids used in the fermented beverage industry¹².

116 Trait combination, adaptive laboratory evolution, and genome stabilization

117 Higher-order synthetic hybrids allow investigators to rapidly combine traits from
118 many different parents, such as differences in sugar consumption and temperature
119 preferences. To determine if the inherent chromosomal instability of these six-species
120 hybrids could be harnessed as a diversity generator, we tested how these new six-
121 species hybrids altered their kinetic parameters during adaptive laboratory evolution
122 (ALE). ALE was performed for an estimated 80 generations in a medium containing
123 glucose or xylose, a sugar poorly metabolized by most *Saccharomyces* species²⁴. To
124 provide baseline xylose metabolic capability upon which to improve, we chose a *S.*
125 *cerevisiae* parent strain that had been engineered by inserting xylose utilization genes
126 into Chromosome IV^{25,26}. Ancestor six-species hybrids grew slowly, and despite
127 differing from each other in chromosomal composition (Figure 2B, 4A), single-colony
128 isolates of all 12 ALE replicates (3 replicates for the two ancestor hybrids retaining the
129 chromosome IV in two ALE conditions) outperformed their ancestors in culturing
130 conditions identical to the ALE (one-sided Wilcoxon rank sum test, *p*-value = 3.51×10^{-4}).
131 Many evolved strains even outperformed the *S. cerevisiae* reference strain (Figure 5A).
132 In microtiter plate culturing conditions where more replicates could be achieved, evolved

133 hybrid populations grew as much as 71% faster on xylose than the reference *S.*
134 *cerevisiae* strain, and populations evolved on xylose outperformed those evolved on
135 glucose (one-sided Wilcoxon rank sum test, *p*-value = 1.29×10^{-2}) (Supplementary Fig. 6,
136 Supplementary Table 6). Importantly, all our evolved hybrids grew well at low
137 temperature conditions (4 °C) where the *S. cerevisiae* parent could not grow (Figure
138 5B), demonstrating that the cold tolerance of the other parents^{27,28} had been retained
139 through hybridization and ALE.

140 Since maximum growth rate on xylose improved considerably regardless of whether
141 hybrids were evolved on xylose or glucose, we hypothesized several factors that could
142 be responsible, such as xylose cassette amplification or genome stabilization. Neither
143 chromosome IV nor the xylose utilization genes themselves were selectively amplified in
144 either condition (Figure 2B, Supplementary Fig. 7, Supplementary Table 7). Evolved
145 hybrids with more reduced genome sizes tended to have slightly higher fitness among
146 ALE replicates, but the correlation was not significant (*p*-value 0.054) (Supplementary
147 Fig. 8). These results suggest that which regions of the genome are lost or amplified as
148 an allopolyploid genome stabilizes matters more for adaptation than total size, which
149 may indicate an important role for the removal of genetic incompatibilities.

150 Although genome instability increased after each step during the construction of the
151 six-species hybrids (Figure 2A), genome instability decreased after 80 generations of
152 ALE (Figure 6A). Nonetheless, genome sequencing of a random selection of colonies
153 from one of the evolved six-species hybrids demonstrated that genomic diversity was
154 still being generated at a prodigious rate (Figure 6B, C). Thus, genome stabilization was
155 ongoing.

156 **Discussion**

157 Collectively, our results show that iHyPr can generate and select for genome
158 diversity, while combining industrially relevant traits from multiple parents. Specifically,
159 we combined xylose utilization from a biofuel strain of *S. cerevisiae* with cold tolerance,
160 a trait critical for the production of many fermented beverages²⁹⁻³¹.

161 **New *Saccharomyces* ploidy heights were reached using iHyPr**

162 Previous efforts to generate higher ploidy *Saccharomyces* cells were arduous. A
163 documented autohexaploid *S. cerevisiae* strain was produced by using a complex
164 combination of auxotrophic intermediates⁹, and allotetraploids of *S. cerevisiae* x *S.*
165 *kudriavzevii* have been generated by using protoplast fusion and rare-mating³².
166 Recently, a CRISPR/Cas9 system was developed to switch mating-types and generate
167 tetraploid yeast cells in a manner similar to HyPr³³. We show here that iHyPr can be
168 used to produce higher-order hybrids iteratively without additional transformations.
169 Although six-species hybrids were unstable and quickly lost chromosomes, they
170 expanded yeast allopolyploidy to levels acquired by only a handful of plants and animals
171²¹.

172 iHyPr exploits the *Saccharomyces* mating system by heterologously expressing the
173 *HO* gene from differentially marked plasmids²⁰. We expected that Ho would cut one
174 copy of the heterozygous *MAT* locus of the diploid strain and use homology repair to
175 convert the locus from heterozygous to homozygous, presumably over a small gene
176 conversion patch using either a homologous chromosome or a silent mating cassette as
177 the template. Although both this mechanism and larger breakage-induced replication
178 events likely occur some of the time at this locus, 88.9% of the translocations or

179 deletions involving chromosome III were unbalanced, suggesting other repair
180 mechanisms are also leading to mating-type locus hemizygosity or homozygosity. For
181 example, the high number of unbalanced translocations or deletions targeting
182 chromosome III (40 %, or 6/15 hybrids) might support the occurrence of imperfect non-
183 homologous end joining (NHEJ) events, perhaps promoted by overexpression of *HO*³⁴,
184 or this chromosome might be inherently less stable³⁵. Synthetic hybrids between *S.*
185 *cerevisiae* and *S. kudriavzevii* have demonstrated how easily chromosome III of one of
186 the parents can be lost, rendering the hybrid competent to mate again³⁶. Recent
187 studies of interspecies hybrids from the genus *Zygosaccharomyces* have also shown
188 that inactivation of one of the *MAT* locus copies can also restore sexual competency³⁷.
189 Regardless of the precise mechanisms at work, the iHyPr method clearly facilitated the
190 iterative recovery of the sexual competency of higher-order hybrids by controlling and
191 exploiting these naturally occurring mechanisms to generate interspecies hybrids with
192 levels of allopolyploidy never seen in budding yeasts.

193 iHyPr as a tool to study allopolyploids

194 The levels of allopolyploidy reached in our study will facilitate the understanding of
195 the cellular fitness consequences in eukaryotes. The increase in ploidy was associated
196 with a short-term fitness defect. However, ALE rapidly improved fitness, while allowing
197 multiple parent traits, such as cold tolerance and xylose utilization, to be retained. Since
198 both ALE selection regimes improved performance on xylose, improvements were likely
199 driven partly by genome stabilization through the removal of interspecies genetic
200 incompatibilities and partly due to condition-specific effects. The capacity of this

201 approach to generate extensive karyotypic and phenotypic diversity will be of great
202 interest for many industrial applications.

203 Mitochondrial inheritance also greatly influenced the genotypes and phenotypes of
204 our synthetic hybrids. Even though a homoplasmic mtDNA state was quickly reached in
205 most cases, a heteroplasmic state was detected in three exceptions that were all part of
206 the same crossing scheme, and we offer a set of related possible explanations. The
207 presence of selfish elements, such as homing endonucleases, could explain why
208 multiple mitotypes were retained in yHRWh4. In this case, a portion of *S. mikatae*
209 COX1, a gene with a high number of introns invaded by homing endonuclease genes³⁸,
210 seems to have been introduced into the *S. kudriavzevii* mtDNA (**Supplementary Fig.**
211 **4A,C**). An even more intriguing result occurred while generating the yHRWh10 hybrid,
212 which remained in a heteroplasmic state and retained most of the mtDNAs of both
213 parents (*S. cerevisiae* and *S. uvarum*) (**Supplementary Fig. 4A**). We recently
214 demonstrated that, during the formation of *S. cerevisiae* x *S. uvarum* hybrids, the
215 frequency of strains without a functional mtDNA was higher when the hybrid inherited a
216 *S. uvarum* mtDNA, but introgression of the F-SceII homing endonuclease gene
217 restored normal mitochondrial retention³⁹. Therefore, the absence of F-SceII in
218 yHRWh10 may have influenced the loss of mtDNA in its descendants, such as the six-
219 species hybrid yHRWh36, which retained only small regions of *Saccharomyces*
220 *arboricola* and *S. uvarum* mtDNAs (**Supplementary Fig. 4C**). In another recent study,
221 mtDNA inheritance was dominated by one parent due to nuclear-mitochondrial
222 interactions, rather than occurring stochastically⁴⁰.

223 The loss of mtDNAs in particular hybrid combinations, as well as the unusually high
224 or low coverage in others (Supplementary Fig. 4), might further suggest that interactions
225 between nuclear-encoded mitochondrial proteins with the mtDNA were unbalanced. In
226 such cases, one model proposes that an oligomeric circular mtDNA form precedes
227 mtDNA loss ⁴¹. Although technical artifacts from Illumina sequencing cannot be
228 excluded, the read coverages for some regions of the mtDNAs were surprisingly varied
229 in some hybrids, such as yHRWh8, yHRWh13, and most of the hybrids in the yHRWh36
230 crossing scheme (Supplementary Fig. 4). Formation and subsequent mis-regulation of
231 mtDNA concatemers by Din7p and Mhr1p ⁴¹ provide a possible model for how specific
232 mitochondrial regions increase or decrease in copy numbers in hybrids, and this
233 phenomenon merits further study.

234 **Conclusions**

235 In summary, we generated and extensively characterized two-, three-, four-, and six-
236 species synthetic hybrids, using iHyPr. We also improved the fitness of evolved strains,
237 which mimic the genetic processes seen in tumor cells escaping antitumorigenic
238 treatments, where polyploidy drives genome instability and evolution ⁸. Our higher-order
239 allopolyploids acquired genome aberrations involving multiple species as they rapidly
240 adapted to new environmental conditions. This new technology pushes the budding
241 yeast cell toward its limits in pursuit of basic research questions in chromosome biology
242 and evolutionary genetics, as well as potential industrial applications.

243 **Methods**

244 Yeast strains and maintenance

245 The reference strain chosen for improvement was GLBRCY101, a haploid derivative
246 of the *Saccharomyces cerevisiae* GLBRCY73 strain, which had been engineered with
247 xylose utilization genes from *Scheffersomyces (Pichia) stipitis* and aerobically evolved
248 for the consumption of xylose²⁴⁻²⁶. Representative strains were selected from five
249 additional *Saccharomyces* species based on published nuclear and mtDNAs
250 (**Supplementary Table 1**). These six parent strains were used to generate the six-
251 species hybrids. Yeast strains were stored in cryotubes with YPD (1 % yeast extract, 2
252 % peptone, and 2 % glucose) and 15 % glycerol at -80 °C. Routine cultures were
253 maintained in YPD plus 2 % agar plates at 24 °C.

254 **Two new *Hybrid Production (HyPr) plasmids***

255 We previously published two HyPr plasmids with *natMX* (pHCT2) and *hphMX*
256 (pHMK34) resistance cassettes²⁰. Following our previously described methodology, we
257 amplified the *ble* (ZEOcyn resistance) and *nptII* (G418 resistance) coding regions for
258 marker swaps to generate pHRW32 and pHRW40 plasmids, respectively
259 (**Supplementary Table 8**). The new HyPr plasmids enabled complex, iterative crossing
260 schemes without adding extra steps to remove one of the two HyPr plasmids between
261 the hybridization steps (**Supplementary Fig. 1**).

262 ***Saccharomyces* transformation with HyPr plasmids**

263 Before transforming GLBRCY101 with a HyPr plasmid, we removed its nuclear
264 *kanMX* cassette by swapping the *kanMX* marker to *tkMX*⁴². Next, we transformed this
265 strain using a short DNA fragment designed to allow the *tkMX* gene to be removed via
266 homologous recombination and selecting for successful marker loss on synthetic
267 complete (SC) + FUdR medium (0.17 % yeast nitrogen base, 0.5 % ammonium sulfate,

268 0.2 % complete drop out mix, 2 % glucose, and 50 µg/ml 5-fluorodeoxyuridine). *S.*
269 *cerevisiae* yHWA85 and representative strains of *Saccharomyces paradoxus*, *S.*
270 *mikatae*, *S. kudriavzevii*, *S. arboricola*, and *S. uvarum* were transformed with one of the
271 four HyPr plasmid versions (Supplementary Table 1). The diploid parent strains contain
272 levels of heterozygosity lower than 0.037 % (Supplementary Table 1).

273 Transformation of yeast strains was done using the lithium acetate/PEG-4000/carrier
274 DNA method ⁴³ with previously described modifications for particular species ²⁰. *S.*
275 *cerevisiae* yHWA85 was first diploidized using the HyPr plasmid pHRW40, creating
276 yHRW134 for subsequent crosses. The generation of this diploid strain occurred in one
277 step, which was confirmed by polymerase chain reaction (PCR) amplification of the
278 *MAT* loci (see below). The experimental reference strain yHRW135 was derived from
279 yHRW134 by screening for spontaneous plasmid loss.

280 iHyPr (iterative HyPr) method for sequentially generating higher-order hybrids

281 Following the HyPr method to facilitate mating-type switch ²⁰, we pre-cultured strains
282 with differentially marked HyPr plasmids in the presence of doxycycline to express the
283 endonuclease encoded by *HO*, which is under a Tet-ON promoter (Supplementary Fig.
284 1); each plasmid also contains the full machinery for inducible expression of the
285 promoter. To generate the six-species hybrids yHRWh36 and yHRWh39, we first
286 hybridized three separate pairs of species, generating two-species hybrids
287 (Supplementary Fig. 2A,B). In each case, once the three two-species hybrids were
288 generated, two of those two-species hybrids were themselves hybridized to create a
289 four-species hybrid, which finally was hybridized with the last two-species hybrid to
290 generate the six-species hybrid. To generate the six-species hybrid yHRWh56, two two-

291 species hybrids were separately crossed with diploid *Saccharomyces* strains from other
292 species to create two separate three-species hybrids, which were then mated to
293 generate the six-species hybrid (Supplementary Fig. 2C). Before each cross, parent
294 strains were transformed with differentially marked HyPr plasmids (Supplementary
295 Table 1, 8, Supplementary Fig. 1, 2) and treated with doxycycline in YPD at room
296 temperature, except for *S. cerevisiae* which was incubated at 30 °C. As previously
297 described²⁰, the doxycycline triggers the expression of the Ho endonuclease, which
298 cuts one or more *MATa*/*MATα* idiomorphs and generates mating-compatible strains that
299 behave as either *MATa* or *MATα*. A sample of each culture was combined in a 1-ml
300 Eppendorf tube and patched on a YPD plate. After 2-3 days, a sample was taken with a
301 toothpick and streaked on a YPD plate supplemented with the corresponding drugs to
302 select for successful matings. In contrast to the original HyPr method, we pre-cultured
303 the new hybrid in YPD with one of the two drugs used during the selective medium step,
304 and that hybrid was then crossed with another strain containing one or two of the other
305 HyPr plasmids not used previously (Supplementary Fig. 1, 2). During these subsequent
306 steps, we expected (and phenotypically verified) the loss of the HyPr plasmid containing
307 the drug-resistance cassette not under selection. This approach and the additional HyPr
308 plasmids made for this study facilitated the iterative crosses required to make six-
309 species hybrids by avoiding the steps of plasmid removal and minimizing the number of
310 generations between crosses (Supplementary Fig. 1).

311 The frequency of successful two-, three-, four-, and six-species hybrid generation
312 were quantified in duplicates (n=2) (Supplementary Table 3). The patch of co-culture
313 was diluted in sterile H₂O, and a sample was spread onto both YPD plates and YPD

314 supplemented with the appropriate drugs. The frequency of successful matings was
315 calculated as the ratio between the number of colonies observed in YPD supplemented
316 with the corresponding drugs and the number of colonies observed in YPD.

317 **Mating-type and PCR-RFLP confirmation of strains**

318 Diploidization of the *S. cerevisiae* strain was confirmed by PCR at the mating-type
319 locus. Hybrid statuses were confirmed by restriction fragment length polymorphism
320 (RFLP) analysis. We used the Standard Taq Polymerase (New England Biolabs,
321 Ipswich, MA) and the primers listed in **Supplementary Table 9**. Genomic DNA was
322 extracted using the phenol:chloroform method on a strain grown from pre-culture to
323 saturation in YPD. Aliquots of 700 μ l of saturated culture were located in 1.5 ml
324 microcentrifuge tubes that contained acid-washed beads. Each tube was centrifuged at
325 maximum speed (15000 rpm) for 5 minutes, and the supernatant was removed. 200 μ l
326 of buffer EB (10 mM Tris-Cl, pH 8.0), 200 μ l of DNA lysis buffer (10 mM Tris pH 8.0, 1
327 mM EDTA, 100 mM NaCl, 1 % SDS, 2 % Triton X-100), and 200 μ l of phenol:chloroform
328 were added to each tube. Vigorous vortexing was performed for 3-4 minutes, followed
329 by 5 minutes of centrifugation at maximum speed. The top aqueous layer was
330 transferred to 1 ml 100 % EtOH. After an inversion mixture, DNA was precipitated at -80
331 °C for at least 10-15 minutes. A second centrifugation at maximum speed was
332 performed, and the supernatant was discarded. We washed the pellet with 700 μ l of 70
333 % EtOH, and we centrifuged again to remove any residue or trace of the supernatant.
334 The pellet was dried and resuspended in 100 μ l of EB at 50-60 °C for 30 minutes. To
335 remove RNA, we incubated the solution with 0.5 μ l of 10 mg/ml RNase A for 30 minutes
336 at 37 °C. DNA was quantified with a Qubit 2.0 Fluorometer (ThermoFisher Scientific).

337 For PCR-RFLP, resulting PCR products were digested with a restriction enzyme or a
338 combination of multiple restriction enzyme assays able to discriminate among
339 *Saccharomyces* species (New England Biolabs, Ipswich, MA). An extended PCR-RFLP
340 pattern, developed in previous publications ^{20,44} and this study, are detailed in
341 **Supplementary Table 10**. Undigested PCR products were visualized on a 1.5 %
342 agarose gel, while digested PCR products were visualized on a 3 % agarose gel.

343 **Ploidy estimation by flow cytometry**

344 Both asynchronous and hydroxyurea-arrested (G1/S arrested) mid-log cultures were
345 prepared for each strain. Hydroxyurea-arrested strains were prepared to assist in the
346 identification of G1 peaks in samples with broad and undefined cell cycle peaks. Briefly,
347 cultures were grown to saturation and then diluted back 1:200. Back-diluted cultures
348 were grown to a 0.4-0.6 optical density at 600 nm (OD₆₀₀). For each strain, 1 ml mid-log
349 culture was transferred into 200 μ l 1 M hydroxyurea and incubated on a room
350 temperature culture wheel for approximately half of the time that the respective strain
351 took to grow from back-dilution to an OD₆₀₀ of 0.4-0.6. This ranged between 3 and 12
352 hours. At the same time, 1 ml of asynchronous mid-log culture was harvested for
353 fixation. All samples were fixed in 70 % ethanol overnight, treated with RNase and
354 Proteinase K, and finally stained with SYTOX Green dye (Molecular Probes) ⁴⁵. Stained
355 cell suspensions were sonicated before flow cytometry. Fluorescence was measured
356 with a BL1 laser (488 nm) on an Attune NxT (Invitrogen) flow cytometer at the lowest
357 available flow rate. To accommodate for extremes in ploidy and cell size, voltage was
358 adjusted to 250 for FITC dump channel (BL1) and FSC (Forward SCatter). All samples
359 were run at the same voltage.

360 Flow cytometry data files were processed in FlowJo v10.4.2⁴⁶. Samples were
361 first gated on SSC (Side SCatter) and FSC to remove debris. Doublets were then
362 removed by gating on BL1-A and FSC-A. A histogram of BL1-A values were then
363 generated for remaining cells. Hydroxyurea peaks were identified and gated manually.
364 Asynchronous G1 and G2 peaks were identified by applying a Watson (Pragmatic) Cell
365 Cycle model and identifying G1 and G2 means. When cell cycle models did not fit the
366 asynchronous sample data automatically, hydroxyurea samples were used to identify
367 G1 peaks and these were manually gated to constrain G1 in asynchronounous samples.
368 Ploidy estimation were performed by comparing with fluorescence values of a haploid
369 laboratory reference *S. cerevisiae* strain, S288C ([Supplementary Table 1](#)).

370 Cell size estimation

371 A subset of strains were used for microscopy analysis of cell size. Each strain was
372 spotted from frozen stock onto YPD agar plates and grown at room temperature for 4
373 days. Water-cell suspensions were prepared for each strain, which were bright-field-
374 imaged on an EVOS FL Auto 2.0 (Invitrogen) imaging system at 400x. Cell area was
375 analyzed in FIJI v2.0.0-rc-34/1.5a⁴⁷ using the Analyze Particles tool.

376 Fitness quantification of the newly generated hybrids

377 To measure the impact of genome size increases on fitness, we performed a growth
378 test in a rich medium. All parent species and the two-, three-, four-, and six-species
379 hybrids were pre-cultured in 3 ml of YPD at room temperature. After pre-culture, 10 µl of
380 saturated culture was inoculated into a 96-well plate (Nunc, Roskilde, Denmark)
381 containing 240 µl of YPD. Spaces between the wells in the plates were filled with sterile
382 H₂O to maintain the humidity of the plates and limit culture evaporation.

383 To monitor the growth of strains and populations in the different media conditions,
384 the inoculated 96-well plate was placed in a BMG FLUOstar Omega (Ortenberg,
385 Germany) at 20 °C. Absorbance at 595 nm was monitored every 15 min for 4 days.
386 Background absorbance was subtracted from the average of nine negative controls
387 containing the uninoculated medium being tested. Kinetic parameters for each condition
388 were calculated in GCAT v6.3⁴⁸. Median and standard deviations from six independent
389 biological replicates, except yHRWh36 and yHRWh56 from which we obtained three
390 replicates, were calculated in R⁴⁹ ([Supplementary Table 4](#)).

391 Genome sequencing and chromosome composition analyses

392 Genomic DNA (gDNA) samples from the diploidized *S. cerevisiae* strain and the two-
393 , three-, four-, and six-species hybrids were submitted to the DOE Joint Genome
394 Institute for paired-end Illumina sequencing. Evolved six-species hybrids and six
395 individual colonies from yHRWh88 (see ALE section) were also submitted for
396 sequencing. Libraries were constructed according to the manufacturer's instructions.
397 Sequencing of the flow cell was performed on an Illumina MiSeq using MiSeq Reagent
398 kits, following a 2x150 nucleotide, indexed run recipe. Curated raw reads were
399 submitted to the SRA database as Bioproject PRJNA476226 ([Supplementary Table 11](#)).

400 Genomic characterization was performed with sppIDer v1⁵⁰. Our combined
401 nuclear reference genome was built with the genome assemblies of *S. cerevisiae*
402 GLBRCY22-3⁵¹, which is a close relative of the biofuel reference strain used here; *S.*
403 *paradoxus* CBS432; *S. arboricola* CBS10644⁵²; *S. mikatae* IFO1815; *S. kudriavzevii*
404 ZP591; *S. uvarum* CBS7001¹⁸; and *Saccharomyces eubayanus* FM1318⁵³. Our
405 combined mitochondrial reference genome was built with the mitochondrial assemblies

406 of the aforementioned strains ⁵²⁻⁵⁴, except for CBS7001, whose mtDNA is still not
407 completely assembled ³⁹. Instead, we used the mtDNA of a close relative, *S. uvarum*
408 CBS395 ⁵⁴. Raw Illumina paired-end reads and the combined reference genomes were
409 the input data of sppIDer, which is a wrapper that runs published tools to map the
410 short reads to the combined reference genomes and creates several colorful and
411 visually intuitive outputs ⁵⁰. Here, we show depth of coverage plots from those species
412 contributing genomes.

413 For each strain, the number of chromosomes and the ploidy were estimated from the
414 sppIDer plots. This approximation gave a significant positive correlation with the ploidy
415 estimated by flow cytometry (Spearman rank test $r = 0.91$, $p\text{-value} = 3.2 \times 10^{-6}$)
416 (Supplementary Fig. 5C). The number of chromosomal aberrations was based on the
417 number of gains, losses, or unbalanced translocations detected in the sppIDer plots
418 (Supplementary Table 2). One chromosomal gain, loss, or unbalanced translocation
419 was counted as one aberration. Aberrations observed in one hybrid and maintained in
420 the offspring of subsequent crosses were not counted again; only new aberrations for
421 each cross were reported in the aberration plot (Figure 2A, 6A). Chromosomal
422 aberrations involving parts of chromosomes were conservatively counted only in cases
423 where there were clear fusions of entire chromosome arms.

424 Genome size and ploidy quantification from short-read sequences

425 Two different approaches were performed to quantify the genome size of the
426 sequenced strains. In the first approach, genome assemblies were performed using the
427 collection of assemblers included in iWGS v1.1 ⁵⁵. The assembly with the best
428 assembly stats reported by iWGS was selected, and the genome size was reported

429 (Supplementary Table 2). In the second approach, sppIDer coverage outputs
430 (StrainName_winAvgDepth-d.txt) were parsed to quantify the percentage of each
431 *Saccharomyces* nuclear genome retained in the hybrid, which was calculated as
432 follows:

433
$$Pspp = (Ct * Ws / Gs) * 100$$

434 where $Pspp$, is the percentage for one of the parent species; Ct , is the number of
435 windows with a coverage mean value above 2; Ws , is the window size; and Gs is the
436 reference genome size for that parent species. These two calculations yielded a good
437 approximation of the increased genome size, but both generated estimates that
438 assumed the highly homozygous genome donated by each parent was haploid; iWGS
439 and sppIDer plots were significantly correlated (Spearman rank test $r = 0.95$, p -value =
440 $2.2 * 10^{-16}$, Supplementary Fig. 5D).

441 To get a better approximation of the genome size of each allopolyploid, we first
442 determined the total number of copies of each chromosome contributed by each
443 species, as quantified by sppIDer. Genome size was then calculated by multiplying the
444 number of copies of each chromosome by its length and adding all these values
445 together. Genome size and flow cytometry fluorescence were correlated (Spearman
446 rank test $r = 0.93$, p -value = $1.1 * 10^{-7}$, Supplementary Fig. 5B).

447 Quantification of the number of copies of the xylose utilization cassette

448 Illumina reads were extracted using the xylose utilization cassette sequence (8.7
449 Kbp) as bait for HybPiper v1.2⁵⁶. The generated bam files were viewed and sorted
450 with samtools v1.4⁵⁷, and the coverage for each nucleotide was quantified with
451 genomeCoverageBed, which is included in bedtools v2.2.27⁵⁸. The mean

452 coverage of the coding sequence of the three engineered xylose utilization genes
453 (*XYL1*, *XYL2*, and *XYL3*) (3.9 Kbp), was calculated from the genomeCoverageBed
454 output. For the chromosome IV, mean coverage values for windows of 3.9 Kbp were
455 calculated from the genomeCoverageBed output generated by sppIDer. The cassette
456 value and chromosome distributions for each strain were compared by a one-side
457 Wilcoxon rank sum test for a significant deviation from the expected ratio 1:1 (1 copy of
458 the cassette to one copy of chromosome IV) (**Supplementary Table 7**).

459 Adaptive laboratory evolution (ALE) and colony selection

460 Two of the three six-species hybrids (during construction, the third lost *S. cerevisiae*
461 chromosome IV, where *Sch. stipitis* xylose utilization genes had been inserted) were
462 evolved in triplicate at room temperature in tubes with two independent media
463 conditions: 3.0 ml YPD or 3.0 ml YPX (1 % yeast extract, 2 % peptone, and 2 % xylose).
464 Three to five days of fermentation were performed to allow cells to consume the sugars,
465 and an aliquot of each replicate was transferred at of 0.1 OD₆₀₀ to a fresh medium until
466 it reached approximately 80 generations. A colony from each independent ALE
467 experiment, regardless of whether they were evolved in glucose or xylose, was selected
468 on YPX plates (1 % yeast extract, 2 % peptone, 2 % xylose, and 2 % agar) and
469 cryopreserved.

470 Microtiter plate growth curves

471 We compared the growth kinetics of the *S. cerevisiae* reference strain yHRW135,
472 the ancestors of the two six-species hybrids retaining the chromosome IV (yHRWh39,
473 yHRWh56), and populations of the evolved hybrids. Growth was tested in YPD and YPX
474 at room temperature. Strains or populations were pre-cultured in 3.0 ml YPD or YPX,

475 depending of the medium tested. After pre-culture, 10 μ l of saturated culture was
476 inoculated into a 96-well plate (Nunc, Roskilde, Denmark) containing 240 μ l of identical
477 medium as the pre-culture. Spaces between the wells in the plates were filled with
478 sterile H₂O to maintain the humidity of the plates. The reference strain was cross-
479 inoculated in all conditions; for example, yHRW135 pre-cultured in YPX was tested in
480 both YPD and in YPX.

481 To monitor the growth of strains and populations in the different media, we
482 inoculated 96-well plates and placed them in a BMG FLUOstar Omega at 20 °C.
483 Absorbance at 595 nm was monitored every 15 min for 5 days. Background absorbance
484 was subtracted from the average of three negative controls containing the uninoculated
485 medium being tested. Kinetic parameters for each condition were calculated in GCAT
486 v6.3⁴⁸. Median and standard deviations from three independent biological replicates
487 were calculated in R⁴⁹ ([Supplementary Table 6](#)). For each medium, parameters were
488 normalized against the data generated by the reference strain yHRW135 when it was
489 pre-cultured and grown in the medium tested.

490 Cold tolerance spot test

491 Temperature growth profiles are well known to vary among *Saccharomyces* species
492^{27,28}. In particular, *S. uvarum* and *S. kudriavzevii* are able to grow at low temperatures
493 where *S. cerevisiae* cannot grow. To test if some phenotypic traits might be retained
494 independently of the media regime, we performed spot tests in rich medium at different
495 temperatures (22 °C, 10 °C, and 4 °C). The *S. cerevisiae* reference strain (yHRW135)
496 and the evolved six-species hybrids were compared. All strains were pre-cultured in
497 liquid YPD medium at room temperature to saturation. Cultures were subjected to a

498 series of 10-fold dilutions in YPD. 5 μ L of each dilution was spotted onto three YPD-
499 agar plates, identically. Plates were incubated in sealed plastic bags to keep them from
500 drying out at the temperatures mentioned above. Each plate was photographed when
501 most strains exhibited significant growth (4 days for 22°C, 11 days for 10°C, and 38
502 days for 4°C).

503 Culture wheel growth curves

504 Strains isolated from single colonies from evolved hybrids, ancestor hybrids, and the
505 reference strain (yHRW135) were pre-cultured in YPX and inoculated at an initial OD₆₀₀
506 of 0.1 into 3 ml glass tubes containing YPX. Growth was monitored by measuring
507 OD₆₀₀. Kinetic parameters were calculated as above. Median and standard deviations
508 from six independent biological replicates were calculated as above. These
509 experimental conditions most closely matched the conditions in which the strains were
510 evolved, and they are reported in **Figure 5A** and **Supplementary Table 5**.

511 Statistical analyses

512 Data analyses and plots were performed in R ⁴⁹. Linear models of regressions were
513 added to the plots in **Figure 3, 4A, Supplementary Fig. 5, 8** using the `geom_smooth`
514 option in the R package `ggplot2`. A LOESS regression line was added to the plot in
515 **Figure 2A** using the `geom_smooth` option in the R package `ggplot2`. For aberration
516 data (**Figure 2A**), r^2 and significance of regression were calculated with `summary(lm(y`
517 $\sim x))$, where x was the number of species, and y was the number of observed
518 aberrations. Correlations for ploidy and assembly comparisons were calculated in R
519 using the `ggpubr` package to apply a Spearman rank sum test (**Figure 3,**
520 **Supplementary Fig. 5, 8**), and plots were generated using `ggplot2`.

521 The impact of mitochondrial inheritance (**Figure 4B**) in the retention of the nuclear
522 genome of those hybrids involving *S. cerevisiae* was tested using a multifactor ANOVA
523 in R, using `summary(aov(P ~ M * C))`, where *P* is the percentage retained of the *S.*
524 *cerevisiae* nuclear genome; *M* is the mtDNA, which was encoded as a binary character
525 (either as the *S. cerevisiae* mtDNA or that of another species); and *C* is the type of
526 strain (i.e. classified as the *S. cerevisiae* parent; two-, three-, four-, or ancestor six-
527 species hybrid; and evolved six-species hybrid).

528 t-tests for significant differences between frequency of chromosome gains and
529 losses and Wilcoxon rank sum tests for significant differences in the kinetic parameters
530 shown in **Figure 3D, 5A** and **Supplementary Fig. 6**, respectively, were performed in R.

531 Flow cytometry data were analyzed and plotted in R.

532 Correlations were tested in R using a Spearman rank sum test and plotted using
533 `ggplot2`.

534

535 **References**

- 536 1 Van de Peer, Y., Mizrachi, E., and Marchal, K., "The evolutionary significance of
537 polyploidy," *Nat Rev Genet* **18**, 411-424 (2017).
- 538 2 te Beest, M., *et al.*, "The more the better? The role of polyploidy in facilitating plant
539 invasions," *109*, 19-45 (2012).
- 540 3 Otto, S. P. and Whitton, J., "Polyploid incidence and evolution," *Annu Rev Genet* **34**,
541 401-437 (2000).
- 542 4 Mable, B. K., Alexandrou, M. A., and Taylor, M., I., "Genome duplication in
543 amphibians and fish: an extended synthesis," *J Zool* **284**, 151-182 (2011).

544 5 Wolfe, K. H. and Shields, D. C., "Molecular evidence for an ancient duplication of the
545 entire yeast genome," *Nature* **387**, 708-713 (1997).

546 6 Albertin, W. and Marullo, P., "Polyploidy in fungi: evolution after whole-genome
547 duplication," *Proc R Soc Lond B Biol Sci* **279**, 2497-2509 (2012).

548 7 Selmecki, A. M., *et al.*, "Polyploidy can drive rapid adaptation in yeast," *Nature* **519**,
549 349-352 (2015).

550 8 Sprouffske, K., *et al.*, "Cancer in light of experimental evolution," *Curr Biol* **22**, R762-
551 R771 (2012).

552 9 Mortimer, R. K., "Radiobiological and genetic studies on a polyploid series (Haploid
553 to Hexaploid) of *Saccharomyces cerevisiae*," *9*, 312-326 (1958).

554 10 Dunham, M. J., *et al.*, "Characteristic genome rearrangements in experimental
555 evolution of *Saccharomyces cerevisiae*," *Proc. Natl. Acad. Sci. U. S. A.* **99**, 16144-
556 16149 (2002).

557 11 Heil, C. S. S., *et al.*, "Loss of heterozygosity drives adaptation in hybrid yeast," *Mol.*
558 *Biol. Evol.* **34**, 1596-1612 (2017).

559 12 Langdon, Q. K., *et al.*, "Fermentation innovation through complex hybridization of
560 wild and domesticated yeasts," *Nature Ecology & Evolution* (2019).

561 13 Gallone, B., *et al.*, "Interspecific hybridization facilitates niche adaptation in beer
562 yeast," *Nature Ecology & Evolution* (2019).

563 14 Dymond, J. and Boeke, J., "The *Saccharomyces cerevisiae* SCRaMbLE system and
564 genome minimization," *3*, 170-173 (2012).

565 15 Scannell, D. R., *et al.*, "The awesome power of yeast evolutionary genetics: new
566 genome sequences and strain resources for the *Saccharomyces sensu stricto*
567 genus," *G3* **1**, 11-25 (2011).

568 16 Gunge, N. and Nakatomi, Y., "Genetic mechanisms of rare matings of the yeast
569 *Saccharomyces cerevisiae* heterozygous for mating type," *Genetics* **70**, 41-58
570 (1972).

571 17 Steensels, J., *et al.*, "Improving industrial yeast strains: exploiting natural and
572 artificial diversity," *FEMS Microbiol Rev* **38**, 947-995 (2014).

573 18 Peris, D., *et al.*, "Quantifying phenotypic and genetic diversity in a genus model,"
574 (2018).

575 19 Baker, E. P., *et al.*, "Mitochondrial DNA and temperature tolerance in lager yeasts,"
576 *Sci Adv* **5**, eaav1869 (2019).

577 20 Alexander, W. G., *et al.*, "Efficient engineering of marker-free synthetic
578 allotetraploids of *Saccharomyces*," *Fungal Genet Biol* **89**, 10-17 (2016).

579 21 Janina Tymowska, "Polyploidy and Cytogenetic Variation in Frogs of the Genus
580 *Xenopus*," in *Amphibian Cytogenetics and Evolution*, edited by David M Green and
581 Stanley K Sessions (Academic Press, 1991), pp.259-297.

582 22 Ainouche, M. L., *et al.*, "Hybridization, polyploidy and speciation in *Spartina*
583 (Poaceae)," *New Phytol* **161**, 165-172 (2003).

584 23 Berger, K. H. and Yaffe, M. P., "Mitochondrial DNA inheritance in *Saccharomyces*
585 *cerevisiae*," *Trends Microbiol* **8**, 508-513 (2000).

586 24 Peris, D., *et al.*, "Hybridization and directed evolution of diverse *Saccharomyces*
587 species for cellulosic biofuel production," *Biotechnol Biofuels* **10**, 78 (2017).

588 25 Wohlbach, D. J., *et al.*, "Comparative genomics of xylose-fermenting fungi for
589 enhanced biofuel production," *Proc. Natl. Acad. Sci. U. S. A.* **108**, 13212-13217
590 (2011).

591 26 Sato, T. K., *et al.*, "Harnessing genetic diversity in *Saccharomyces cerevisiae* for
592 improved fermentation of xylose in hydrolysates of alkaline hydrogen peroxide
593 pretreated biomass," *Appl Environ Microbiol* **8**, 540-554 (2014).

594 27 Salvadó, Z., *et al.*, "Temperature adaptation markedly determines evolution within
595 the genus *Saccharomyces*," *Appl Environ Microbiol* **77**, 2292-2302 (2011).

596 28 Gonçalves, P., *et al.*, "Evidence for divergent evolution of growth temperature
597 preference in sympatric *Saccharomyces* species," *PLoS ONE* **6**, e20739 (2011).

598 29 Torija, M. J., *et al.*, "Effects of fermentation temperature and *Saccharomyces*
599 species on the cell fatty acid composition and presence of volatile compounds in
600 wine," *Int J Food Microbiol* **85**, 127-136 (2003).

601 30 Beltran, G., *et al.*, "Integration of transcriptomic and metabolic analyses for
602 understanding the global responses of low-temperature winemaking fermentations,"
603 *FEMS Yeast Res.* **6**, 1167-1183 (2006).

604 31 Beltran, G., *et al.*, "Effect of fermentation temperature and culture media on the
605 yeast lipid composition and wine volatile compounds," *Int J Food Microbiol* **121**, 169-
606 177 (2008).

607 32 Pérez-Través, L., *et al.*, "Evaluation of different genetic procedures for the
608 generation of artificial hybrids in *Saccharomyces* genus for winemaking," *Int J Food
609 Microbiol* **156**, 102-111 (2012).

610 33 Xie, Z. X., *et al.*, "Rapid and efficient CRISPR/Cas9-based mating-type switching of
611 *Saccharomyces cerevisiae*," *G3* **8**, 173 (2018).

612 34 Haber, J. E., "Mating-type genes and *MAT* switching in *Saccharomyces cerevisiae*,"
613 *Genetics* **191**, 33-64 (2012).

614 35 Kumaran, R., Yang, S. Y., and Leu, J. Y., "Characterization of chromosome stability
615 in diploid, polyploid and hybrid yeast cells," *PLoS ONE* **8**, e68094 (2013).

616 36 Karanyicz, E., *et al.*, "Non-introgressive genome chimerisation by malsegregation in
617 autodiploidised allotetraploids during meiosis of *Saccharomyces kudriavzevii* x
618 *Saccharomyces uvarum* hybrids," *Appl Microbiol Biot* **101**, 1-17 (2017).

619 37 Braun-Galleani, S., *et al.*, "Zygosaccharomyces *pseudobailii*, another yeast
620 interspecies hybrid that regained fertility by damaging one of its *MAT* loci," *FEMS
621 Yeast Res.* **18**, foy079 (2018).

622 38 Wu, B. and Hao, W., "Horizontal transfer and gene conversion as an important
623 driving force in shaping the landscape of mitochondrial introns," *G3* **4**, 605-612
624 (2014).

625 39 Li, X. C., *et al.*, "Mitochondria-encoded genes contribute to the evolution of heat and
626 cold tolerance among *Saccharomyces* species," *Sci Adv* **5**, eaav1848 (2019).

627 40 Verspohl, A., Pignedoli, S., and Giudici, P., "The inheritance of mitochondrial DNA in
628 interspecific *Saccharomyces* hybrids and their properties in winemaking," *Yeast* **35**,
629 173-187 (2018).

630 41 Ling, F., *et al.*, "Din7 and Mhr1 expression levels regulate double-strand-break-
631 induced replication and recombination of mtDNA at ori5 in yeast," *Nucl. Acids Res.*
632 **41**, 5799-5816 (2013).

633 42 Alexander, W. G., Doering, D. T., and Hittinger, C. T., "High-efficiency genome
634 editing and allele replacement in prototrophic and wild strains of *Saccharomyces*,"
635 *Genetics* **198**, 859-866 (2014).

636 43 Gietz, R. D. and Woods, R. A., "Genetic transformation of yeast," *Biotechniques* **30**,
637 816-831 (2001).

638 44 Peris, D., *et al.*, "The molecular characterization of new types of *S. cerevisiae* x *S.*
639 *kudriavzevii* hybrid yeasts unveils a high genetic diversity," *Yeast* **29**, 81-91 (2012).

640 45 Haase, S. B. and Reed, S. I., "Improved flow cytometric analysis of the budding
641 yeast cell cycle," *Cell Cycle* **1**, 117-121 (2002).

642 46 Leland Stanford Jr. University, "FlowJo," in 1996).

643 47 Schindelin, J., *et al.*, "Fiji: an open-source platform for biological-image analysis,"
644 **9**, 676-682 (2012).

645 48 Bukhman, Y., *et al.*, "Modeling Microbial Growth Curves with GCAT," **8**, 1-9 (2015).

646 49 R Development Core Team, "R: a Language and Environment for Statistical
647 Computing," in (Vienna, Austria: R Foundation for Statistical Computing, 2010).

648 50 Langdon, Q. K., *et al.*, "sppIDer: a species identification tool to investigate hybrid
649 genomes with high-throughput sequencing," *Mol Biol Evol* **35**, 2835-2849 (2018).

650 51 McIlwain, S. J., *et al.*, "Genome sequence and analysis of a stress-tolerant, wild-
651 derived strain of *Saccharomyces cerevisiae* used in biofuels research," *G3* **6**, 1757-
652 1766 (2016).

653 52 Yue, J. X., *et al.*, "Contrasting evolutionary genome dynamics between domesticated
654 and wild yeasts," *Nat Genet* **49**, 913-924 (2017).

655 53 Baker, E., *et al.*, "The genome sequence of *Saccharomyces eubayanus* and the
656 domestication of lager-brewing yeasts," *Mol. Biol. Evol.* **32**, 2818-2831 (2015).

657 54 Sulo, P., *et al.*, "The evolutionary history of *Saccharomyces* species inferred from
658 completed mitochondrial genomes and revision in the 'yeast mitochondrial genetic
659 code'," *DNA Res* **24**, 571-583 (2017).

660 55 Zhou, X., *et al.*, "in silico Whole Genome Sequencer & Analyzer (iWGS): a
661 computational pipeline to guide the design and analysis of de novo genome
662 sequencing studies," *G3 (Bethesda)* **6**, 3655-3670 (2016).

663 56 Johnson, M. G., *et al.*, "HybPiper: extracting coding sequence and introns for
664 phylogenetics from high-throughput sequencing reads using target enrichment," *4*,
665 1600016 (2016).

666 57 Li, H., *et al.*, "The Sequence Alignment/Map format and SAMtools," *25*, 2078-2079
667 (2009).

668 58 Quinlan, A. R. and Hall, I. M., "BEDTools: a flexible suite of utilities for comparing
669 genomic features," *26*, 841-842 (2010).

670

671 **Acknowledgments:** We thank Trey K. Sato for providing GLBRCY101, Srivatsan
672 Raman for flow cytometry access, Amanda B. Hulfachor for assistance with Figure 5B,
673 the Joint Genome Institute (JGI) for providing Illumina Sequencing services, and Miguel
674 Morard for feedback on preliminary figures. This material is based upon work supported
675 in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy,
676 Office of Science, Office of Biological and Environmental Research under Award
677 Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation

678 under Grant Number DEB-1253634; the USDA National Institute of Food and
679 Agriculture Hatch Project Number 1020204, and the Robert Draper Technology
680 Innovation Fund from the Wisconsin Alumni Research Foundation (WARF). DP is a
681 Marie Skłodowska-Curie fellow of the European Union's Horizon 2020 research and
682 innovation programme, grant agreement No. 747775. KJF is a Morgridge Metabolism
683 Interdisciplinary Fellow of the Morgridge Institute for Research. CTH is a Pew Scholar in
684 the Biomedical Sciences, a Vilas Early Career Investigator, and a H. I. Romnes Faculty
685 Fellow, supported by the Pew Charitable Trusts, Vilas Trust Estate, and Office of the
686 Vice Chancellor for Research and Graduate Education with funding from WARF,
687 respectively. The work conducted by the U.S. Department of Energy Joint Genome
688 Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-
689 AC02-05CH11231.

690 **Authors' contributions:** Conceived the experiments: DP, WGA, KF, RLW, and
691 CTH. DP and CTH mentored RVM, and WGA mentored MGB and EJU. Engineered
692 strains: WGA, RVM, and RLW. Data generation: WGA, KF, MGB, EJU, and RLW. Data
693 analysis: DP and KF. Supervised the study: DP and CTH. Wrote the paper with editorial
694 input from all co-authors: DP and CTH.

695 **Additional information**

696 Supplementary Information:

697 Supplementary Information

698 Supplementary Figures 1-9.

699 Supplementary Tables 1-11.

700 **Data availability:** Raw genome sequencing data has been deposited in NCBI's SRA
701 database, Bioproject PRJNA476226. HyPr plasmids are being deposited in Addgene as
702 deposit 77444.

703 **Competing interests:** The Wisconsin Alumni Research Foundation has filed a
704 patent application entitled "Synthetic yeast cells and methods of making and using
705 same" (describing the HyPr method with WGA, DP, and CTH as inventors).

706 **Materials & Correspondence:**

707 Requests for materials should be addressed to cthittinger@wisc.edu. Correspondence
708 should be addressed to cthittinger@wisc.edu and david.perisnavarro@gmail.com.

709 **Figure captions**

710

711

712 **Figure 1 | The generation of ancestor and evolved six-species hybrids.** Synthetic
713 hybrid generation scheme using the iHyPr method. The example shown is the six-
714 species hybrid yHRWh39. Chromosomes were colored according to their species
715 designation, with height representing copy number, using the sppIDer pipeline ⁵⁰. For
716 an extended explanation of iHyPr, including the other two crossing schemes, see
717 [Supplementary Fig. 1, 2](#). Arrows mark hybridization steps. For additional intermediate
718 and six-species hybrid nuclear and mitochondrial genomes with higher resolution, see
719 [Supplementary Fig. 3, 4](#). Ancestor six-species hybrids underwent ALE for 80
720 Generations.

721 **Figure 2 | Genome contributions to synthetic hybrids.** The numbers and sources of
722 chromosomes for each synthetic hybrid were inferred from sppIDer plots
723 ([Supplementary Fig. 3](#)), which were corrected based on flow cytometry ploidy
724 estimations. A) The number of chromosomal aberrations were inferred for each
725 synthetic hybrid as new translocation, gain, and loss events not seen in the preceding
726 hybrid ([Supplementary Fig. 3](#)). Chromosomal aberrations involving parts of
727 chromosomes were conservatively counted only in cases of clear fusion of entire arms,
728 whereas smaller loss-of-heterozygosity events were not counted. The synthetic hybrids
729 generated from each independent scheme are represented with different shapes. Color
730 points are colored according to the number of species genomes contributing to the
731 strain. A LOESS regression line and the 95% confidence interval of the fit are
732 represented with a discontinuous black color and gray shadow, respectively. B)
733 Chromosome content was colored according to the species donor. Mitochondrial
734 inheritance was inferred using mitosppIDer ([Supplementary Fig. 4](#)). The numbers of

735 chromosomes for each species are colored according to the left heatmap legend.
736 Incomplete and recombinant mtDNA are colored in gray. Total number of chromosomes
737 is shown in the right part of the figure, which is colored according to the right legend.
738 Ploidy estimates based on de novo genome assemblies, which correlates with flow
739 cytometry (Spearman rank sum test $R = 0.88$, p -value = 7.5×10^{-8} , **Supplementary Fig.**
740 **5C**), are indicated at the right side of the figure. Synthetic hybrids are reported in the
741 order constructed (**Supplementary Fig. 2**). Diploidized GLRBCY101 (yHRW134) and
742 yHRWh4 are shown multiple times because of their use in multiple crossing schemes.
743 Evolved hybrids are grouped based on the conditions in which they were evolved, and
744 they are colored according to their ancestor hybrid. Red squares highlight
745 chromosomes that were retained or lost in all hybrids evolved in the same condition
746 when compared to their siblings evolved in the other condition. *S. cerevisiae*
747 chromosome IV, where the xylose utilization genes were inserted, is indicated by the
748 black square. Note that considerable karyotypic diversity continued to be generated
749 during 80 generations of ALE (**Figure 6**), but each evolved strain is easily recognized as
750 more similar to its ancestor six-species hybrid.

751 **Figure 3 | Characteristics of six-species hybrids.** A) The number of species
752 contributing genomes to synthetic hybrids is inversely correlated with the frequency of
753 successful matings. B) Genome size is correlated with average cell area ($n = 36-78$
754 counted cells). C) Genome size (**Supplementary Table 2**) versus the average maximum
755 growth rate (μ ($n=6$), defined as $(\ln(\text{OD2}) - \ln(\text{OD1})) / (\text{T2} - \text{T1})$) in rich medium at 20 °C
756 (**Supplementary Table 4**). Dashed lines are the μ for the parent species indicated close
757 to the line. For *S. uvarum*, the average of two strains with different HyPr plasmids is

758 shown. D) The maximum specific growth rate (μ , defined as $(\ln(\text{OD2}) - \ln(\text{OD1})) / (\text{T2} - \text{T1})$)
759 in rich medium at 20°C is higher in interspecies hybrids inheriting *S. cerevisiae* mtDNA.
760 Colors correspond to the number of species contributing genomes to each strain.
761 Synthetic hybrids generated from independent schemes are represented by different
762 shapes in panels B), C), and D). The Spearman rank sum test R and *p*-value are
763 displayed. A linear regression and its 95% confidence interval are represented with a
764 black dashed line and gray shadow, respectively. The mtDNA donor is underlined in the
765 names in panel C). Species composition abbreviations are: *Scer*, *S. cerevisiae*; *Spar*, *S.*
766 *paradoxus*, *Smik*, *S. mikatae*, *Sarb*, *S. arboricola*; *Skud*, *S. kudriavzevii*; and *Suva*, *S.*
767 *uvarum*.

768 **Figure 4 | Genome reduction during hybrid construction and adaptive laboratory**
769 **evolution.** A) The genome contribution of each *Saccharomyces* species is stacked, and
770 the percentage of retention is indicated inside the bar plot for each synthetic hybrid.
771 Presence is reported, not copy number. Synthetic hybrids are displayed in the order
772 constructed ([Supplementary Fig. 2](#)). yHRWh4 is shown multiple times because of its
773 use in two crossing schemes. We did not expect 100% genome contribution for each
774 *Saccharomyces* species, even for recently created hybrids, because some genomic
775 regions (e.g. repeats) are not unambiguously detectable with Illumina sequencing data.
776 Genome size bars are colored according to each species' contribution. The strain
777 names are colored based on the mtDNA inheritance inferred from *mitosppIDer*
778 ([Supplementary Fig. 4](#)), with two or more mtDNAs or regions shown as a gradient. B)
779 The nuclear compositions of the *S. cerevisiae* parent, synthetic hybrids, and evolved

780 hybrids are plotted according to mtDNA inheritance. Hybrids with *S. cerevisiae* mtDNA
781 or with other mtDNA are colored in red and light blue, respectively.

782 **Figure 5 | Trait combination and improvement by adaptive laboratory evolution. A)**
783 Box plots for the individual evolved colonies isolated from YPX or YPD plates after ALE
784 and their synthetic hybrid ancestors. Kinetic parameters were tested in 3 ml YPX on a
785 rotating culture wheel, identically to how they were evolved for 80 generations. The
786 average values (n=6) of maximum specific growth rates (μ , defined as $(\ln(\text{OD}_2) -$
787 $\ln(\text{OD}_1)) / (T_2 - T_1)$) for the *S. cerevisiae* reference strain (black line, yHRW135 was
788 derived from yHRW134 by plasmid loss), ancestor six-species hybrids (purple dots),
789 and evolved six-species hybrids (brown dots) are shown (Supplementary Table 5).
790 Different shapes indicate the media in which the synthetic six-species hybrids were
791 evolved. Additional kinetic parameters from microtiter plate experiments performed on
792 evolved populations are shown in Supplementary Fig. 6 and Supplementary Table 6. B)
793 Spot tests for three temperatures (22, 10, and 4 °C) are displayed for the evolved
794 strains and the *S. cerevisiae* reference strain yHRW135. Evolved six-species hybrids
795 retained the ability to grow at 4 °C, a trait not possessed by *S. cerevisiae*, despite the
796 fact that it was not selected during ALE.

797 **Figure 6 | Synthetic hybrids as a tool to study genome instability. A)** Boxplots of
798 the number of chromosomal aberrations inferred for ancestor and evolved synthetic
799 hybrids (Figure 2B, Supplementary Fig. 3). Synthetic hybrids generated from each
800 independent scheme are represented with different shapes. Purple and brown color
801 points represent whether six-species hybrids were ancestor or evolved, respectively. B)
802 For each colony isolated from the population sample of the evolved synthetic hybrid

803 yHRWh88, the genome contribution of each *Saccharomyces* species is stacked, and
804 the percentage of retention is indicated inside the bar plot. The percentage of each
805 species' contribution are colored according to the legend. C) The number of
806 chromosomes were inferred from sppIDer plots and corrected based on flow
807 cytometry. The chromosome content was colored according to the species donor. The
808 numbers of chromosomes for each species are colored according to the heatmap
809 legend. Recombinant chromosomes are colored in gray. Asterisks indicate
810 chromosomes that were retained in a particular colony but were not observed in the
811 evolved yHWRh88 population sample, highlighting the instability of these hybrids. *S.*
812 *cerevisiae* chromosome IV, where the xylose utilization genes were inserted, is
813 indicated by the black square.

814 **Supplementary Figure Legends**

815 **Supplementary Figure 1 | The iHyPr method enabled the formation of higher-order**
816 **synthetic hybrids using iterative crosses.** A simplified scheme comparing the
817 protocol to generate an allohexaploid (6n) synthetic hybrid using iHyPr is displayed, in
818 contrast with HyPr, which is not iterative. NAT, Nourseothricin; HYG, hygromycin; ZEO,
819 zeocin. *MAT* idiomorphs examples are shortened to **a** and **α**.

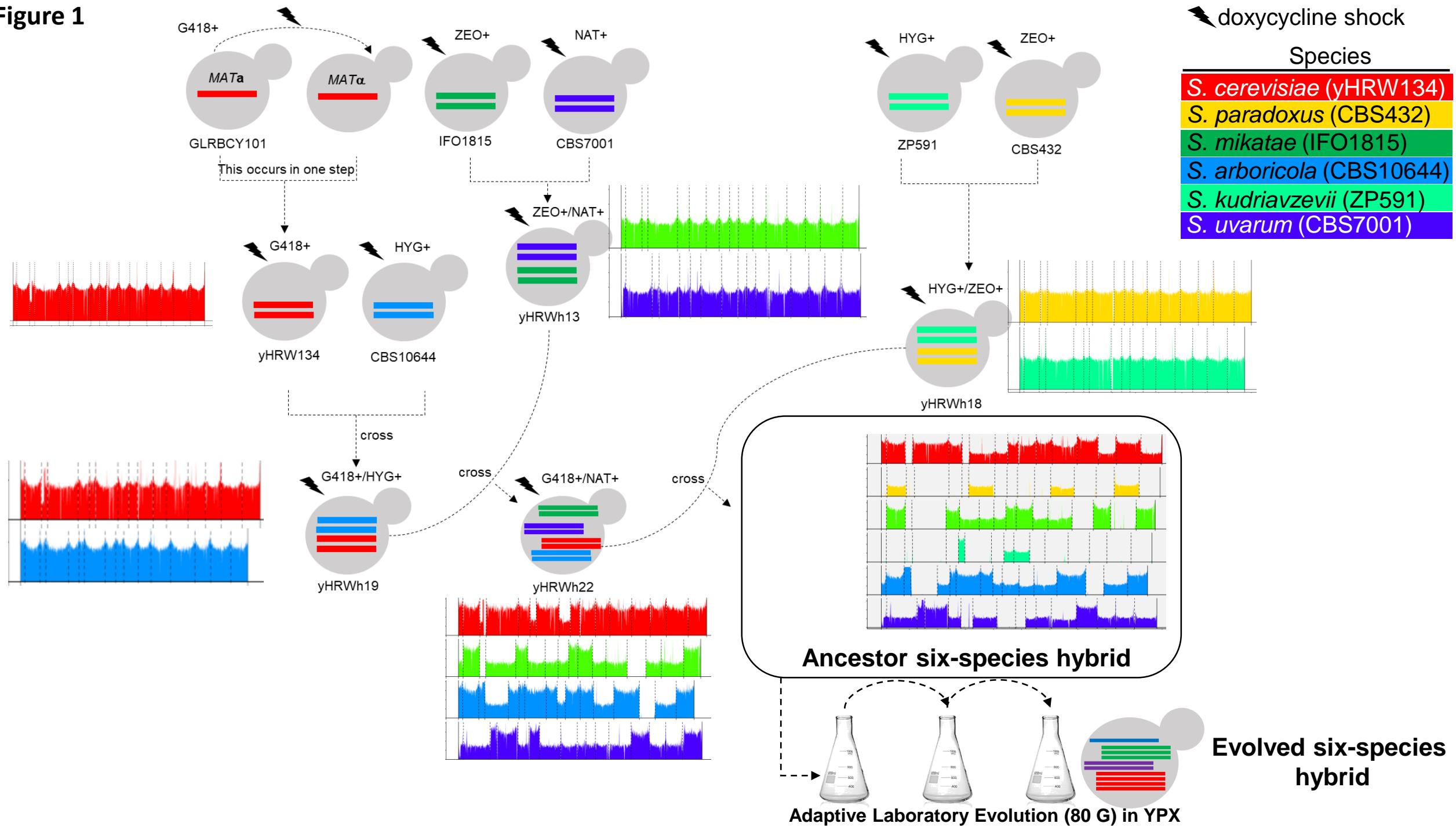
820 **Supplementary Figure 2 | Schematics for the generation of three six-species**
821 ***Saccharomyces* hybrids.** The hybridization steps necessary to generate the six-
822 species hybrids yHRWh36, yHRWh39, and yHRWh56 are represented in panels A), B)
823 and C), respectively. Yeast cells are represented in gray, and chromosomes are colored
824 according to the *Saccharomyces* species. The strain names of our lab's copy of some
825 strains (**Supplementary Table 1**) are displayed in parentheses below the original culture

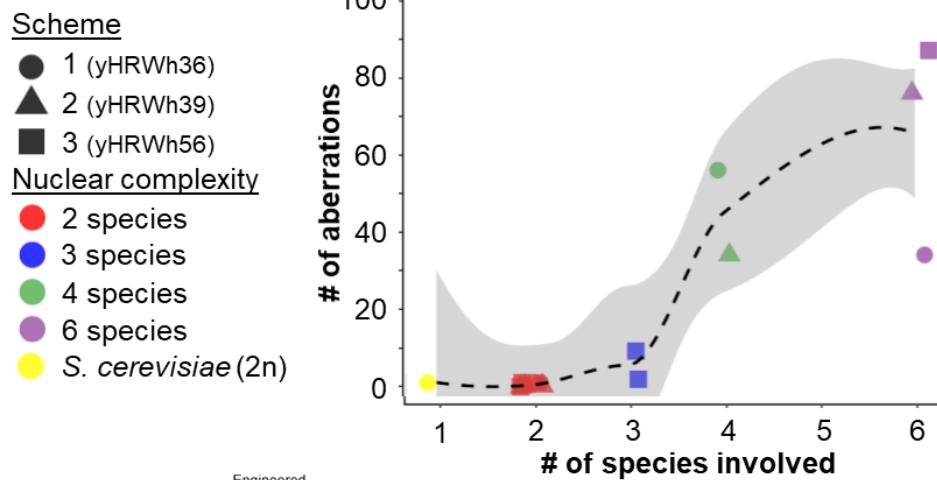
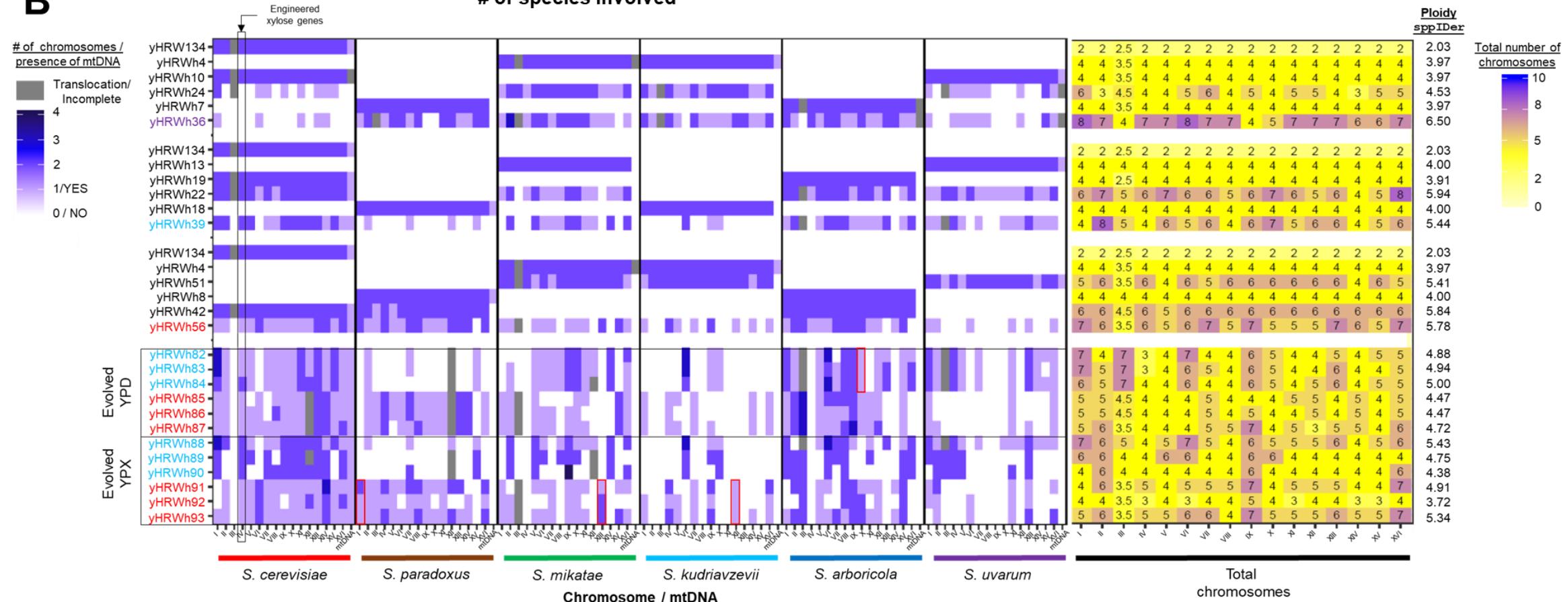
826 collection strains. Drug resistance is indicated above yeast cells according to the
827 abbreviations in **Supplementary Figure 1**. Systematic crosses are highlighted with
828 arrows to form a pedigree. The black lightning bolt symbol represents the doxycycline
829 shock to promote mating type switching or loss to facilitate hybridization.

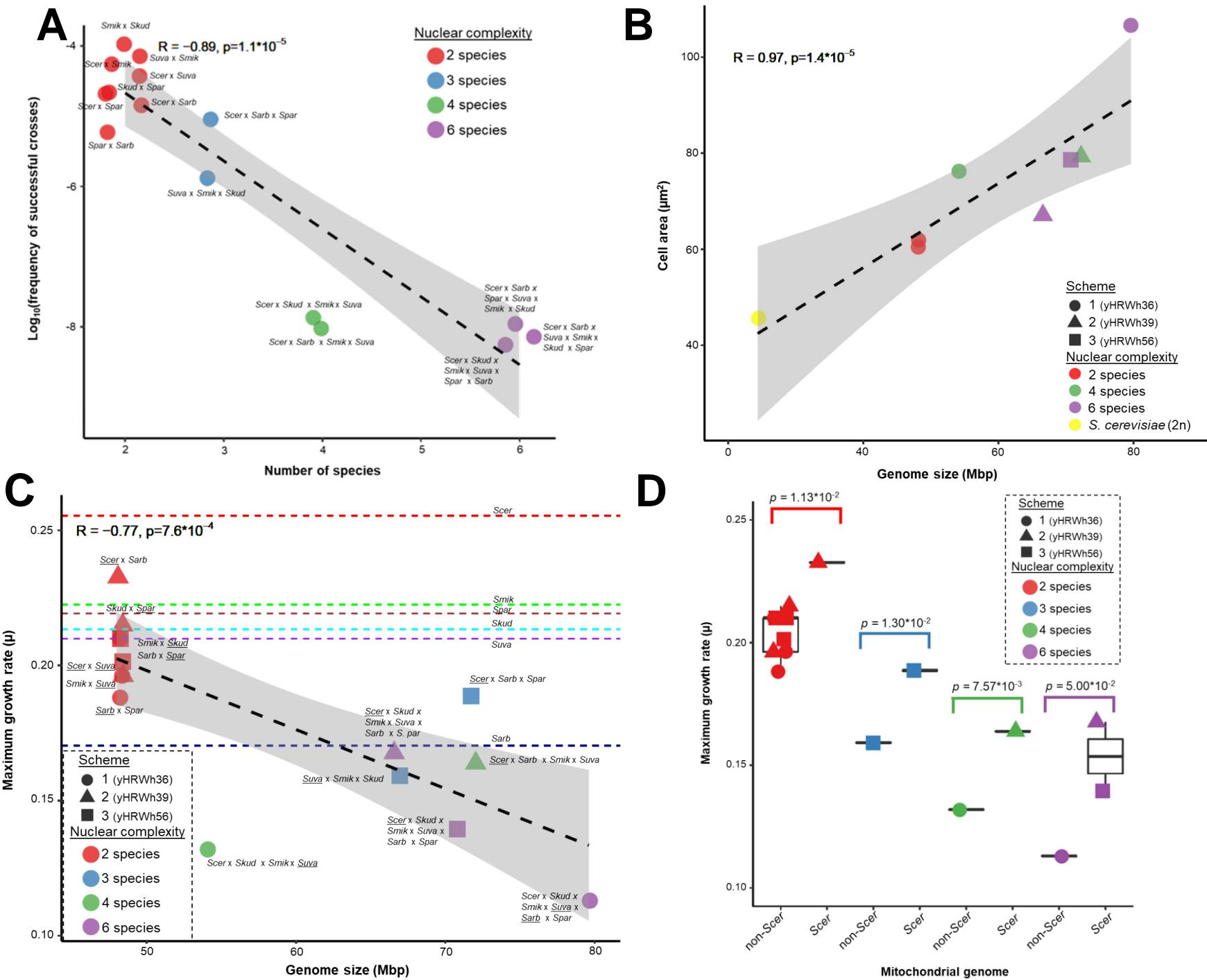
830 **Supplementary Figure 3 | Nuclear genome composition of the diploidized *S.***
831 ***cerevisiae* reference strain and the synthetic and evolved hybrids.** Panels A-Z,AB
832 are the sppIDer outputs for the diploidized reference strain of *S. cerevisiae*
833 (GLBRCY101) and the synthetic and evolved hybrids. Sequencing coverage values are
834 colored according to each *Saccharomyces* species' contribution in that portion of the
835 genome. Panels were ordered to represent synthetic hybrid data based on the order
836 they were used to generate the next hybrid (**Supplementary Fig. 2**). sppIDer produces
837 multiple plots⁵⁰, but here we show the log₂ of the average coverage of ~8 Kbp-windows
838 normalized to the genome-wide average coverage. To improve the resolution of the
839 three-, four-, and six-species hybrid plots, window coverage values were normalized to
840 the genome-wide average coverage, and values were limited to the 99% percentile and
841 below.

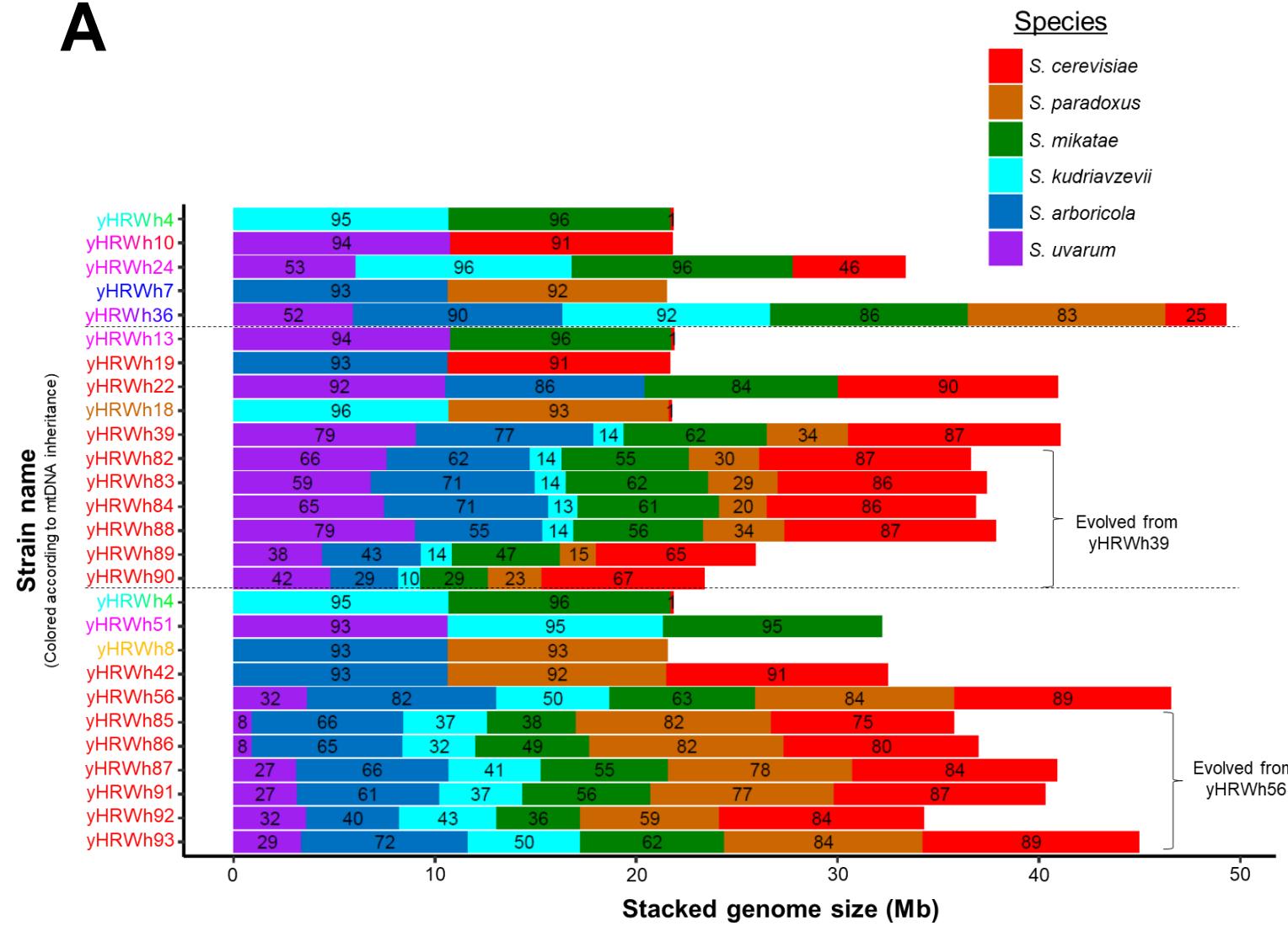
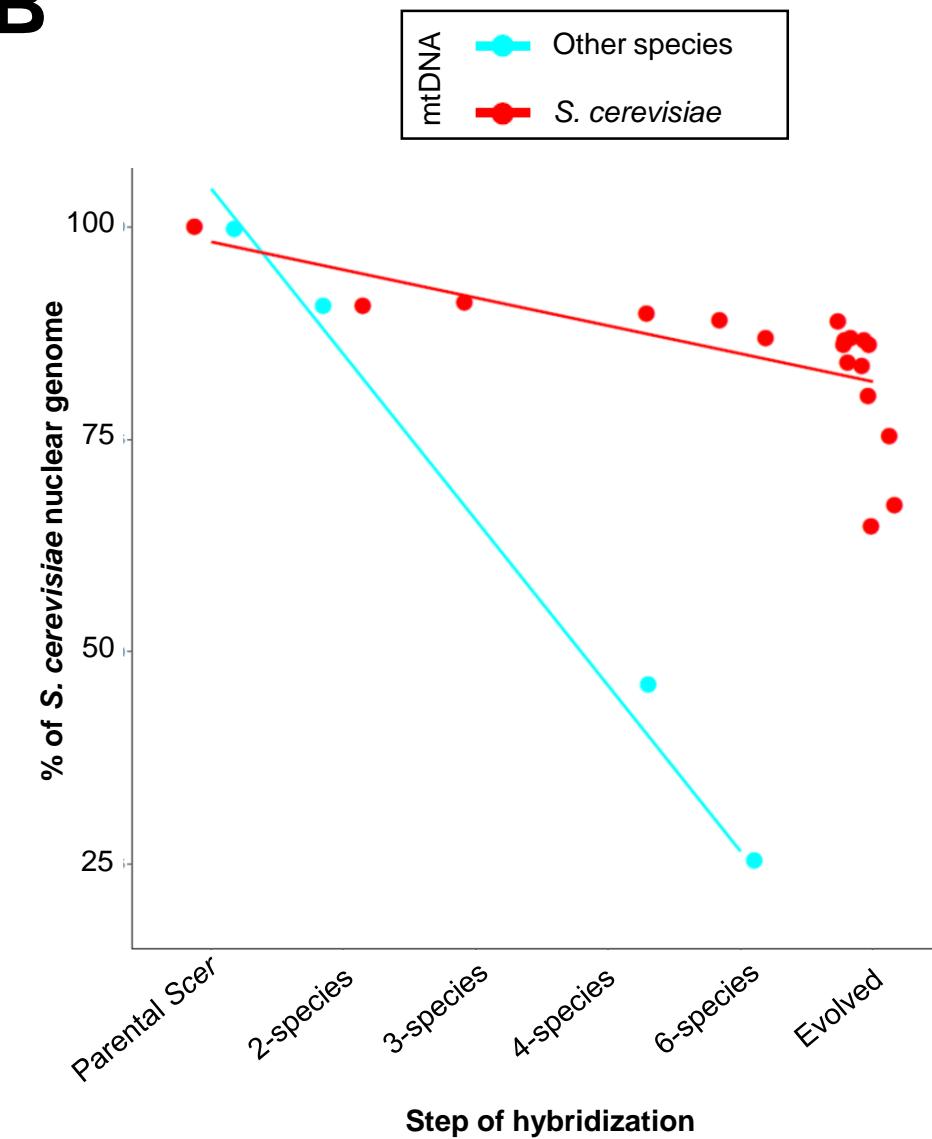
842 **Supplementary Figure 4 | Mitochondrial genome inheritance of the diploidized *S.***
843 ***cerevisiae* reference strain and the synthetic and evolved hybrids.** Panels A-C are
844 the sppIDer outputs for the diploidized reference strain of *S. cerevisiae* (GLBRCY101)
845 and the synthetic and evolved hybrids. Sequencing coverage values are colored
846 according to each *Saccharomyces* species' contribution in that portion of the mtDNA.
847 Each panel contains the mtDNA inheritance for the synthetic hybrid used to generate
848 that particular six-species hybrids (**Supplementary Fig. 2**). sppIDer produces multiple

849 plots ⁵⁰, but here we show the \log_2 of the average coverage of 44-bp windows
850 normalized to the mtDNA-wide average coverage. When a synthetic hybrid is formed
851 between parent strains that both contain mtDNA, a heteroplasmic state can be
852 maintained for several generations, but eventually, a parent or recombinant mtDNA is
853 generally fixed ²³. In some hybrids, this heteroplasmic state persisted, and the names of
854 hybrids are colored in a gradient according to the detected mtDNAs; these colors are
855 also displayed in **Figure 4A**. Due to the unusually high coverage of *ATP9* or *ATP9-*
856 *VAR1-15S rRNA* of *S. uvarum* in panel A), additional inset plots with limited y-axes are
857 shown.


858 **Supplementary Figure 5 | Ploidy and genome size estimations were well-**
859 **correlated among different methods.** A) Genome size (**Supplementary Table 2**) was
860 correlated with the ploidy estimates from flow cytometry. B) Genome size was
861 correlated with the mean fluorescence (n=10000, counts per strain) of SYTOX Green.
862 C) Ploidy estimated from iWGS (**Supplementary Table 2**) was correlated with the ploidy
863 estimated using flow cytometry. D) The estimates of the amount of unique DNA present
864 were correlated between iWGS and sppIDer. sppIDer values were corrected for copy
865 number to generate the genome size estimates in the other panels. Points are colored
866 according to the number of species (nuclear complexity) genomes contributing to the
867 strain. Synthetic hybrids generated from each independent scheme are represented
868 with different shapes. The Spearman rank sum test R and p-value are displayed. Linear
869 regression lines and their 95% confidence intervals of the fit are represented with a
870 black line and gray shadow, respectively.



871 **Supplementary Figure 6 | Growth kinetics for ancestor and evolved six-species**
872 **populations in a microtiter plate.** Growth measured as area under the curve (AUC)
873 for the reference *S. cerevisiae* strain and evolved six-species hybrids, following
874 normalization to the *S. cerevisiae* reference strain yHRW135 (full microtiter plate kinetic
875 parameters are reported in [Supplementary Table 4](#)). Different shapes indicate the
876 media in which the synthetic six-species hybrids were evolved. Colors differentiate the
877 reference strain (orange), and the ancestor of evolved hybrids (red for hybrids evolved
878 from yHRWh39 and purple for hybrids evolved from yHRWh56), while each data point
879 represents an evolved replicate population.


880 **Supplementary Figure 7 | The fitness improvement during adaptive laboratory**
881 **evolution was not due to an increase in the number of copies of xylose utilization**
882 **genes.** A) Schematic representation of the metabolic pathway for xylose utilization. The
883 engineered xylose utilization genes are highlighted in blue. B) Boxplots of coverage
884 levels for 3.9 Kbp windows of chromosome IV are displayed for each strain. Median
885 values for the strains are represented by a horizontal line inside the box, and the upper
886 and lower whiskers represent the highest and lowest values of the 1.5 * IQR (inter-
887 quartile range), respectively. Color dots show the coverage values for the coding
888 sequences of the engineered xylose utilization genes. Points are colored according to
889 the number of species (nuclear complexity) contributing to the strain. The coverage
890 values of the xylose utilization genes were not significantly higher than the values for
891 the chromosome IV ([Supplementary Table 7](#)).



892 **Supplementary Figure 8 | The fitness improvement during adaptive laboratory**
893 **evolution was not simply due to genome reduction.** Genome size ([Supplementary](#)

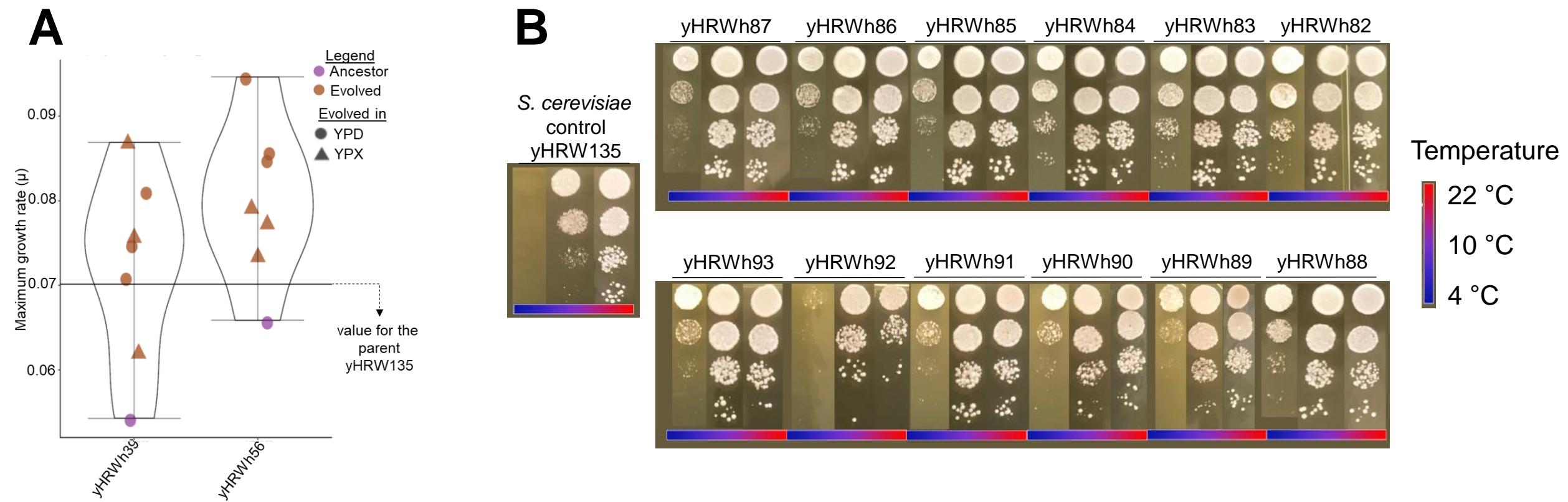

894 **Table 2**) was not significantly correlated with the maximum specific growth rate (μ ,
895 defined as $(\ln(\text{OD2}) - \ln(\text{OD1})) / (\text{T2} - \text{T1}))$ (Supplementary Table 5). Ancestor (purple dots)
896 and evolved six-species strains (brown dots) are shown. Different shapes indicate the
897 media in which the synthetic six-species hybrids were evolved. Color points differentiate
898 the ancestor from the evolved hybrids.

Figure 1

Figure 2**A****B**

Figure 3

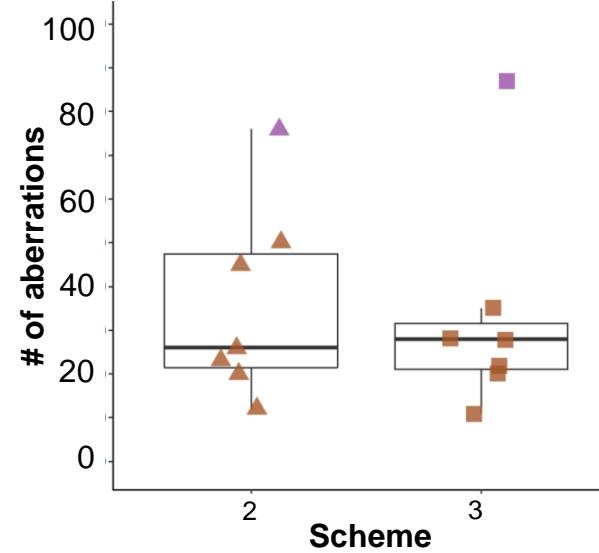
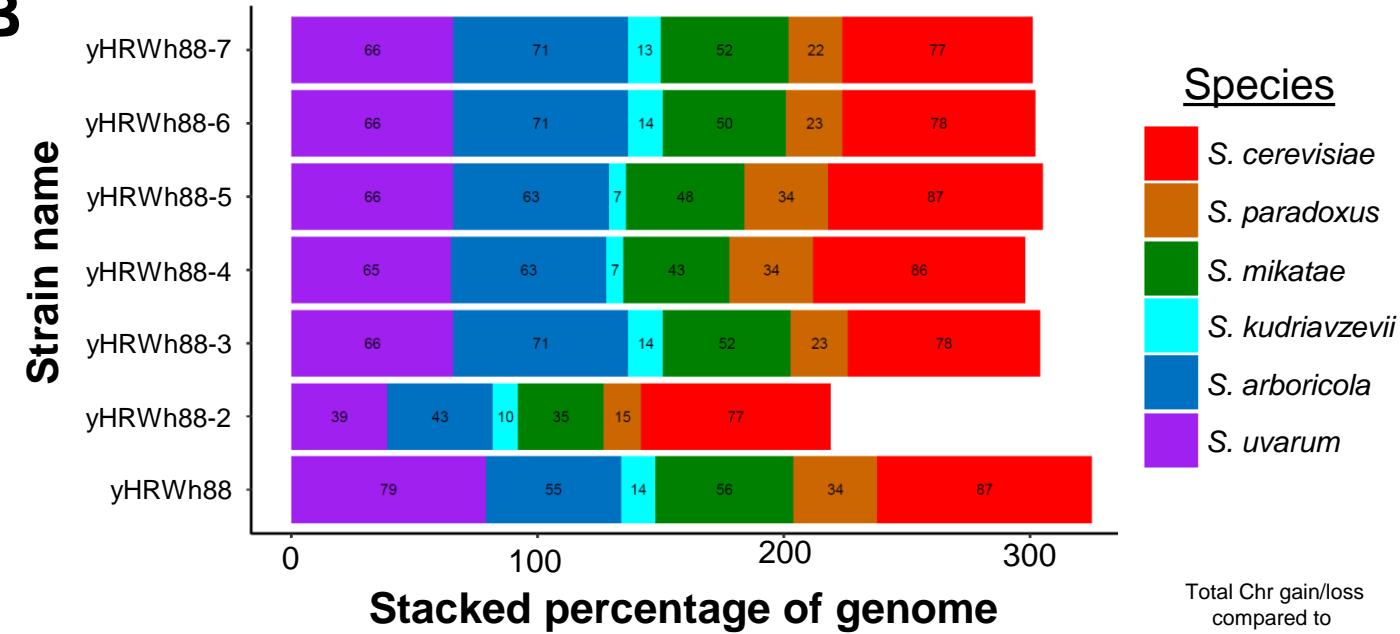
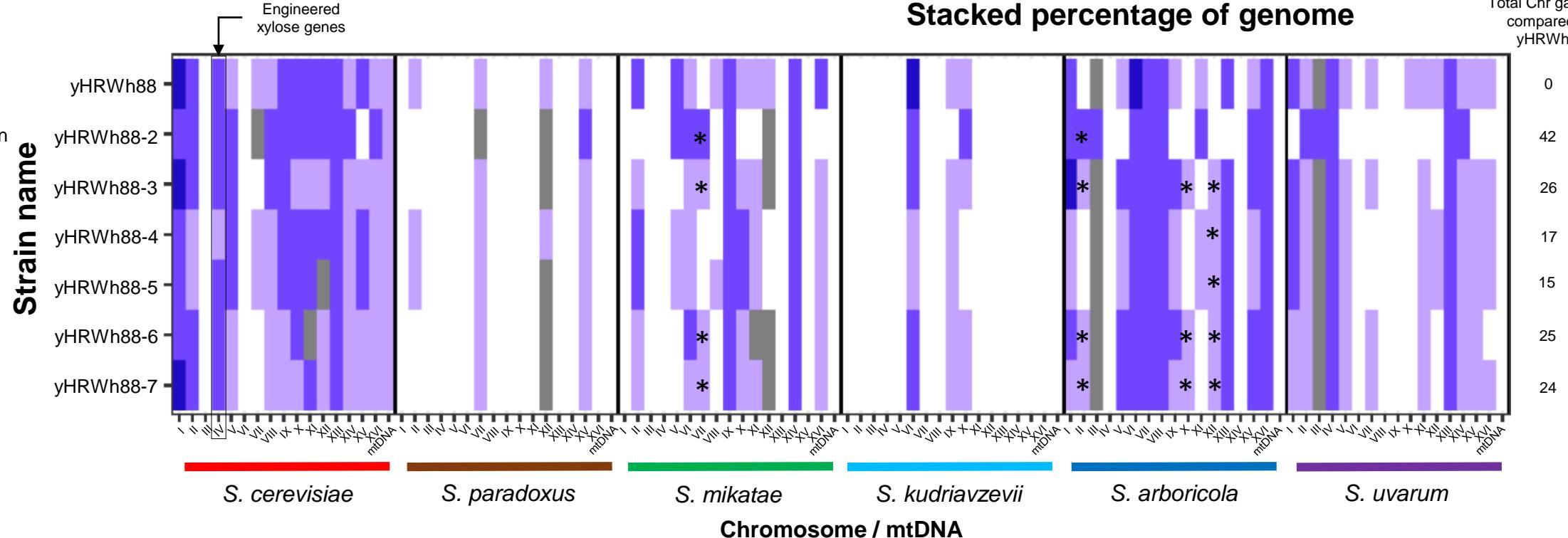


Figure 4**A****B**

Figure 5

Figure 6**A**

Scheme
 ▲ 2 (yHRWh39)
 ■ 3 (yHRWh56)


Nuclear complexity
 ● Ancestor
 ● Evolved

B**C**

of chromosomes / presence of mtDNA

Translocation

4
3
2
1/YES
0 / NO

