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Abstract 
 
An emerging challenge in neurodegenerative dementia is understanding how immune-associated genes 

and pathways contribute to disease.  To achieve a refined view of neuroinflammatory signaling across 

neurodegeneration, we took an integrative functional genomics approach to consider neurodegeneration 

from the perspective of microglia and their interactions with other cells.  Using large-scale gene expression 

and perturbation data, regulatory motif analysis, and gene knockout studies, we identify and characterize 

a microglial-centric network involving distinct gene co-expression modules associated with progressive 

stages of neurodegeneration.  These modules, which are conserved from mouse to human, differentially 

incorporate specific immune sensors of cellular damage and pathways that are predicted to eventually 

tune the immune response toward chronic inflammation and immune suppression. Notably, common 

genetic risk for Alzheimer’s disease (AD), Frontotemporal dementia (FTD) and Progressive Supranuclear 

Palsy (PSP) resides in specific modules that distinguish between the disorders, but also show convergence 

on pathways related to anti-viral defense mechanisms.  These results suggest a model wherein 

combinatorial microglial-immune signaling integrate specific immune activators and disease genes that 

lead to the establishment of chronic states of simultaneous inflammation and immunosuppression 

involving type 1 interferon in these dementias. 
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Introduction 

 

Leveraging genetic discoveries to identify therapeutic targets requires understanding how disease genes 

map onto cell-type specific molecular pathways. In this regard, a remarkable body of growing genetic 

evidence supports a link between Alzheimer’s and associated dementias and neuroimmune functions 

involving glial cells1,2 Causal genetic variation in neurodegenerative dementias affects genes with neural-

immune functions affecting two major CNS resident neural immune cells, astrocytes and microglia, 

including, TREM2, GRN, HLA-DRA, CR1, C9ORF72, APOE, BIN1, CXCR4, CLU, and TBK11-6 . Multiple 

functional studies in animal models of neurodegeneration support the contribution of microglial and 

neural-immune genes to disease-associated phenotypes including age-associated cognitive decline, 

pathological protein deposition and dyshomeostasis, and neurodegeneration7-9. The discovery that 

immune-related genes contribute to AD and associated dementias has generated great enthusiasm for 

the possibility of immune-based therapies10. From this perspective, defining the detailed molecular 

relationship between disease-associated neuroimmune pathways and causal dementia genes has the 

potential to inform disease mechanism and inspire novel therapeutic approaches. 

 

Microglia and CNS-resident macrophages are the principle immune cells of the brain with critical roles in 

detecting immunogens and coordinating the immune response11.  During nervous system injury, microglia 

can be directly activated by myelin, lipids, or nucleotides released from injured cells to activate pro-

inflammatory signaling, such as through the NLRP3 inflammasome complex12,13.  Experimental evidence 

in multiple models of AD pathology suggests that “disease-associated microglia” express dementia risk 

genes, including APOE and TREM2, and contribute to synaptic injury, neurotoxic astrocyte transitions, and 

neuronal dysfunction14-17.  Furthermore, single-cell genomic studies have begun to delineate 

heterogeneity among disease-associated microglial states and their trajectories, highlighting the need to 
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better understand their specific roles in neurodegeneration18,19.  This includes defining how different 

microglial states relate to disease-associated immune activators and causal genes in human 

neurodegenerative diseases.  

 

We recently used a systems biology approach to integrate gene expression data from human post mortem 

brain and multiple mouse models harboring human dementia causing mutations, to identify a robust 

neurodegeneration-associated inflammatory module (NAI) and a closely correlated neurodegeneration-

associated synaptic module (NAS)20.  The NAI module is strongly enriched for markers of both astrocytes 

and microglia, both of which are known to be significantly up-regulated in multiple neurodegenerative 

syndromes9,21,22.  As a result of this global up-regulation within tissue, the cell-type specific expression 

patterns of glial genes in the NIA module were obscured.  In silico approaches for deconvoluting cell-

specific signatures are challenged by the complex dynamics among glial genes in disease16,18,19,23,24.  So, 

we reasoned that the optimal resource for resolving glial pathways involved in neurodegeneration would 

be gene expression data from actual glial cell types isolated from disease and control samples.  

Furthermore, given that neurodegeneration involves interactions between neurons and among glia25; we 

reasoned that integrating data from sorted cells and intact tissue would reveal disease-relevant and cell-

specific signaling networks.  

 

Here we present an integrative analysis of microglial-specific transcriptomic changes that are latent 

components of neurodegeneration pathways at the tissue-level. Our findings parse disease genes into 

distinct microglial co-expression sub-networks (modules) related to progressive stages of neuropathology 

in mice that are conserved in humans. Using large-scale gene perturbation data, regulatory motif analysis, 

and knockout studies, we identify strong evidence for regulatory interplay that functionally connects 

different modules into a microglial-centered interactome. By incorporating genetic association data, we 
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find that the genetic risk factors contributing to Alzheimer’s disease (AD), Frontotemporal dementia (FTD) 

and Progressive Supranuclear Palsy (PSP) involved shared and distinct microglia-associated neuroimmune 

modules.  However, as disease progresses, the associated shared transcriptional and PPI networks that 

are up-regulated involve chronic viral response pathways to double stranded RNA, likely driven by Type-

1 interferon, supporting a model whereby early immune activation gives way to chronic 

immunosuppression in these disorders.  
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Results 
 

We performed consensus weighted gene co-expression analysis (WGCNA26; Methods) to combine gene 

expression data from sorted, purified microglia from a mutant tau mouse model (rTg4510; AMP-AD 

Knowledge Portal doi:10.7303/syn2580853) and whole brain tissue collected from multiple independent 

transgenic mouse models of neurodegenerative tauopathy (Methods, Figure 1A) to identify conserved 

modules that exist in both purified microglia and tissue.  We then used the microglia-specific gene 

expression data to identify up and down-regulated pathways (Figure 1A, Schema).  Using this approach, 

we identified 13 distinct co-expression modules varying in disease association, trajectory and time course 

(Fig 1B, 1C, 1D, 2A). 

 

Consensus microglial modules combine cell-type specificity and tissue-level neuronal-glial relationships 

 

We first focused on the 7 modules significantly enriched for genes expressed in microglia compared to 

other cell types27 (Fig. 1B, 1D; Supplementary Fig. 1A).  As independent validation of cell-type trends, we 

assessed module enrichment for single cell microglial signatures, previously identified from high 

resolution single cell sequencing studies in mouse28 and human29 brain, and observed significantly greater 

marker enrichment among these 7 candidate microglia-gene enriched modules compared to the 

remaining modules (Fig. 1D, Supplementary Fig. 1A). At the same time, these modules were distinct in 

that different modules overlapped with different sets of microglial signatures identified in previous single 

cell analyses28,29 suggesting that they represented distinct microglia pools (Fig. 1D, 2E, Supplementary Fig. 

1A, 1G). For example, M_UP1 enriched for profiles of microglia proliferative states (clusters 2a, 2b, 2c)28 

and age-associated states identified previously in single cell transcriptome analyses (C8, aging_C1, 

aging_C2, aging_C3)28 (Fig. 1D). 
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We next tested whether our consensus modules recapitulate biological relationships present in tissue-

level neurodegeneration modules identified in prior studies (NAI and NAS)20.  As expected, the seven 

microglia-enriched modules were highly positively correlated with the NAI inflammatory module and 

negatively correlated with the NAS synaptic module; both of which have been previously demonstrated 

to be conserved across humans with tauopathies and mice harboring mutations causing dominant forms 

of FTD in humans20 (Fig. 1C).   

 

Next, we assessed each module’s relationship to pathological neuronal Tau hyperphosphorylation, a 

measure of neuropathology associated with disease progression30. We found a strong positive correlation 

between pathological Tau phosphorylation levels and microglia-enriched consensus module gene 

connectivity (Fig. 1E, Supplementary 1B). In contrast, when we analyzed WGCNA modules generated 

using only sorted microglial cell gene expression data from the rTg4510 model, rather than consensus 

modules based on network edges shared between whole tissue and the sorted cell data, the correlation 

with pTau was substantially reduced (Fig. 1E).  This demonstrates the utility of using both cell specific and 

whole tissue data to advance our understanding of cell specific contributions to disease pathology.  

 

Finally, we observed that the NAI and combined microglial consensus modules are conserved at the level 

of protein-protein interactions (PPI), which themselves coalesce into distinct molecular pathways (Fig. 1G, 

Supplementary Fig. 1C).  Thus, these seven co-expression modules represent a substantial refinement of 

a previously identified neural immune module observed in both model systems and post mortem human 

brain18-20,31,32.  We label the seven new modules “microglia-associated neurodegeneration-associated 

modules” (MNMs, 1-7), and further characterized them as a means to explore associated microglial 

functional pathways and regulators related to neurodegeneration. 
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MNMs are conserved in human disease brain and mouse models 

 

To assess the robustness of the microglia-enriched modules and further validate their relevance to human 

disease, we tested their preservation using multiple independent mouse and human disease datasets (see 

Methods).  Consistent with the observation of PPI conservation for all modules, all seven MNMs are 

preserved in post mortem human brain tissue from AD33, FTD20,34 and PSP33 patients (Fig. 1F).  Additionally, 

all MNMs are preserved in three different transgenic mouse models expressing human MAPT 

mutations20,35 (Supplementary Fig. 1D) and in microglial-specific datasets from mouse models expressing 

PSEN36 and APP37 mutations, except M_UP3, which is only weakly preserved in one of two datasets 

(Supplementary Fig. 1E).  However, we do note that the differential expression patterns of three modules 

(M_UP2, M_UP3, M_DOWN3) differ between microglia isolated from P301L MAPT (rTg4510) and 

PSEN/APP mutant mouse models (Supplementary Fig. 1F).  Together, the preservation of these modules 

across multiple independent disease datasets including human disease brain from Alzheimer’s and 

associated dementias and mouse models of Alzheimer’s or FTD, as well as PPI, indicates that they 

represent robust biological processes. However, some modules display variability in their differential 

expression in different disease models, suggesting they may be conditional on disease-stage or disease-

specific pathology.   

 

Microglial molecular transitions along progressive epochs of neuronal pathology 

 

In contrast to the composite whole tissue NAI module expression vector which shows a singular increasing 

trajectory over time (shown in20), we were able to deconvolute the MNM modules into highly distinct 

temporal trajectories with respect to progressive disease stages modeled in the rTg4510 mouse between 

2 and 8 months of age35,38-40.  We identified three temporal patterns of module-disease association: (1) 
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changing at the earliest disease stage, prior to neuronal loss, and persistent through later stages (M_UP1, 

M_DOWN1, M_DOWN2), (2) changing during early periods of neuronal loss, and more transient (M_UP2, 

M_DOWN3), and (3) most significant changes during late stages of continued neuronal loss and 

cumulative pathology (M_UP3) (Fig. 2A). Therefore, combined tissue-microglial cell consensus WGCNA 

resulted in microglial neurodegeneration-associated modules with distinct temporal transitions across 

disease progression, which were present in latent forms, but not detected in the analysis of whole tissue 

alone. 

 

To validate our MNM-disease stage trends using complementary published datasets, we compared them 

to time-course, single-cell microglial differential gene expression data collected from two different mouse 

models with Alzheimer’s related pathology (5xFAD18, CK-p2519), including one model with frank 

neurodegeneration (CK-p2519).  As expected, the early up-regulated MNM, M_UP1, is enriched for genes 

that are increased in early microglial disease states relative to homeostatic microglia (Fig. 2E, 

Supplementary Fig. 1G), and the later up-regulated MNMs are enriched for genes up-regulated in later 

relative to early microglial disease states (Fig. 2E, Supplementary Fig. 1G).  The four down-regulated MNM 

are all enriched for microglial genes down-regulated in early microglia disease states (Fig. 2E, 

Supplementary Fig. 1G).   

 

We next leveraged published data on the type 2 interferon response to ask whether MNMs reproduce 

the late interferon-gamma signature reported to distinguish microglia during periods of neuronal cell 

death19.  We were able to show that the last up-regulated MNM in disease, M_UP3, is also the only module 

induced by interferon-gamma treatment of cultured microglia41 (Fig. 2F), consistent with the published 

trend19.   Altogether, these findings support that MNMs recapitulate stage-associated, microglia-specific 

biological trends identified from recent single-cell studies using mouse models of Alzheimer’s 
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pathology18,19.  Moreover, MNMs further refine prior findings, separating disease-associated microglia 

changes across multiple distinct modules.  Therefore, we next explored these MNMs in detail to delineate 

stage-associated transitions in microglia signaling including changes prior to and subsequent to cell death, 

and their relationship to dementia disease genes.    

 

Pathway analysis to expand biological insights into microglial transitions across disease 

 

Annotation of modules for enriched biological regulators and pathways aligned specific disease genes, 

signaling and functional pathways, immune receptors, transcription factors and microglia-enriched gene 

co-expression modules with progressive stages of neuronal dysfunction and degeneration that are 

summarized in Figure 2 (Fig. 2A, 2B, 2C, 2D, 2F, 2G, Supplementary Fig. 2A, 2B).  These annotations 

indicate that each of these modules represents different aspects of the microglia function that vary across 

disease stage, with different microglial modules poised to sense and respond to specific damage-

associated immune activators12,42 that change over time (Fig. 2A, 2C, 2G).   

 

For example, the earliest up-regulated module, M_UP_1, incudes sensors of peptide and lipopeptide 

immune activators (TLR1, TLR2), whereas the subsequently up-regulated module, M_UP2, includes 

sensors of lipid immune activators (TREM2, SCARB2) together with receptors for viral nucleotides (TLR7, 

TLR9, Ifih1) that can also be activated by damaged or dysregulated endogenous DNA12,42-46.  Therefore, 

our microglial time-course analysis shows a prominence of DNA and RNA detecting immune receptors 

within the second phase of up-regulated MNMs, suggesting that nucleic acids activate inflammatory 

pathways as neuronal injury and disease progress (Fig. 2G).  Additionally, we find that these sensors are 

co-expressed with genes associated with specific signaling pathways as disease progresses (Fig. 2C, 2D, 

Supplementary Fig. 2A, 2B).  For example, M_UP1 is enriched for genes related to the IL1 signaling 
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pathway and complement cascades, whereas M_UP2 is enriched for genes of the IL6 signaling pathway 

and phagocytosis (Fig. 2C, 2D, Supplementary Fig. 2B).   

 

MNMs also provide refinement of previously reported microglial changes during disease18,19.  For example, 

down-regulation of homeostatic microglial markers previously reported in disease18,47, is split between 

two modules, M_DOWN1 and M_DOWN2, that represent distinct biological pathways (e.g. M_DOWN1 

for prostaglandin synthesis and phagocytosis; M_DOWN2 for natural killer cell activation and positive cell 

cycle regulation; Fig. 2C, 2G, Supplementary Fig. 2A, 2B) and respond differently to microglial stimulation 

by Abeta42 and IL-4 in cell culture (Supplementary Fig. 2C ).  Lastly, we note that known common and 

rare disease genes occupy several different modules: M_UP1 contains APOE, CXCR4, GRN, CSF1, PRNP, 

SQSTM1, TYROBP, GBA; M_DOWN1 contains BIN1, PVRL2, PLCG; M_UP2 contains TREM2, INPP5D; 

M_DOWN2 contains PICALM; and M_UP3 contains PSEN1 and CD33 (Fig. 2C, upper panel).  This 

annotation provides a bridge between casual disease factors and microglial stage-specific disease biology 

that can potentially inform our understanding of the factors that drive disease mechanisms.   

These varied observations support that MNMs delineate distinct microglial transitions or states 

that accompany neuropathological disease progression from early neuronal dysfunction through 

progressive injury and neuronal cell death, building upon prior observations18-20 to implicate 

accompanying microglial functions and candidate driver genes. These modules thus provide a detailed 

framework for understanding phases of microglia transition related to early and later disease stages in 

neurodegenerative tauopathies.  

 

Overlap of module driver genes and transcription factors indicate substantial cross talk   
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Having assessed the relationship of each module to disease stage, we next moved to query the 

relationship of MNMs to each other. We reasoned that understanding the regulatory relationships that 

bridge different neuroimmune states is critical to predicting the effects of targeting these pathways for 

therapeutics. Using experimental gene perturbation data available through the Broad Institute’s 

Connectivity Map48 (see Methods), we observed that the effects of disease-related changes in MNM gene 

expression are not confined to the genes occupying the same MNM, but rather can effect disease-related 

changes of other MNMs (Supplementary Fig 3A).  For example, perturbation of genes in the earliest up-

regulated module, M_UP1, significantly upregulates genes within the subsequently up-regulated modules 

(M_UP2 and M_UP3) and downregulates genes within the down-regulated modules (M_DOWN1, 

M_DOWN2, M_DOWN3, M_DOWN4) (Supplementary Fig 3A; Methods).  These observations that genes 

within the early up-regulated MNMs can drive later MNMs suggests that MNMs capture transitions from 

early microglial states that drive subsequent states as disease progresses.     

 

To further delineate microglial transitions captured by MNMs, we assessed their gene promoters for 

shared experimentally validated transcription factor binding sites (TFBS).  Nearly all MNMs showed high 

TFBS overlap, consistent with shared transcriptional drivers. However, two modules, M_UP1 and M_UP2 

had genes with very distinct TFBS enrichments from each other (Supplementary Fig. 3B). This was despite 

substantial direct PPI connections between the modules (Supplementary Fig. 3C) and evidence of positive 

driver effects of M_UP1 genes on M_UP2 expression (Supplementary Fig. 3A).  Therefore, while early 

MNMs are poised to be highly integrated at the level of regulatory drivers with later or concurrent, MNMs, 

M_UP1 and M_UP2 appeared to be driven by distinct candidate regulators.   

 

Identification of the inflammasome and anti-inflammasome related modules 
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To assess potential regulatory cross-talk among M_UP1 and M_UP2 genes in more detail, we re-clustered 

their genes to highlight any co-expression relationships that may exist between them (Fig. 3A; Module A 

and Module B).  This resulted in two modules that are both up-regulated early in disease with nearly 

identical trajectories (Fig. 3B, 3D), but with strongly anti-correlated gene-module connectivity (anti-

correlating kME, Fig. 3C), suggestive of opposing or competing pathways26.  This is not an artifact of our 

transcriptional analysis, as independent CMAP gene perturbation experiments validate that gene 

overexpression has opposing effects on the genes clustered within these two modules (Fig. 3F; Methods).  

Other independent data confirm these relationships, in single cell RNA sequencing studies of mouse28 and 

human brain29 (Fig. 3E, Supplementary Fig. 4C), and at the level of PPI (Supplementary Fig. 4A).  

Furthermore, both modules are reproducible in independent transcriptomic datasets from mutant MAPT 

transgenic mice20,35, microglia isolated from mutant APP37/PS36 transgenic mice, and human dementia 

brain20,33, verify their robustness across mouse models of dementia and their relevance to human disease 

(Supplementary Fig. 4B, 4D).  These findings support the identification of two highly conserved microglial-

enriched modules that are up-regulated in disease, but that include polarized signaling pathways, which 

we hypothesized were poised for regulatory cross-talk. 

 

Module annotation and pathway analysis (Methods) identified the NLRP3 inflammasome and type 1-

interferon response pathways as defining core components of these two modules (Fig. 3G, 3H), which we 

accordingly named the “inflammasome” and “anti-inflammasome” modules.  The NLRP3 inflammasome 

is assembled downstream of cellular stressors and activated by the detection of various stimuli13, including 

pathological Abeta49,50, to promote pro-inflammatory states.  Similarly, pathological Abeta rapidly and 

specifically stimulates the expression of the inflammasome module eigengene in microglia, both in vivo 

and in vitro (Fig. 3I, Supplementary Fig. 4F). In contrast, the prominent pathway within the anti-

inflammasome module is the type-1 interferon response. Microglial isolated from mice overexpressing 
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beta-interferon show both up-regulation of the anti-inflammasome module and down-regulation of the 

inflammasome module, in a manner dependent on the type 1 interferon receptor, IFNAR1 (Fig. 3J).  

Consistent with this finding, type 1 interferon is a known suppressor of the NLPR3 inflammasome51, and 

NLPR3 inflammasome activation has recently been shown to inhibit type 1-interferon signaling52.  

Furthermore, at the center of the anti-inflammasome module PPI map is MDA5 (Ifih1), a receptor of 

dsRNA that can activate type 1 interferon response downstream of viral detection or chromatin 

destabilization44,45,53 (Fig. 4B).  These data provide multiple lines of evidence supporting that these two 

early up-regulated microglial modules represent opposing states, likely orchestrated, at least in part, by 

type 1 interferon signaling as a key polarizing driver. 

 

Type 1 interferon is not only a classic activator of acute anti-viral immunity, but more recently it has been 

demonstrated to be a critical driver of immunosuppression in the context of chronic viral infections54,55.   

Several features of the anti-inflammasome module suggest it too may represent aspects of interferon-

mediated immunosuppression, including its anti-correlation with the inflammasome module, and its 

inclusion of genes that function as immune checkpoints (Cd274 (PDL1), Il10rb, Lag3)54,56-58 and inhibitors 

of immune activity  (Usp1859-62, Nfkbiz, Nfkbia, Nfkbie, Tgfbr263,64). Among these genes is Usp18, an 

established negative feedback suppressor of type 1 interferon anti-viral immune activity59-62,65,66 that is 

also highly connected with the anti-inflammasome module in microglia treated with interferon-beta 

(Supplementary Fig. 4G).  Consistent with Usp18 being a critical driver of the anti-inflammasome module, 

we found that gene co-expression relationships in the anti-inflammasome module are completely 

disrupted by Usp18 knockout, without any effect on the inflammasome module (Fig 4C). Furthermore, 

the inflammasome module is highly up-regulated in the Usp18 knockout mouse in an IFNAR1 dependent 

fashion, suggestive of “hyperimmune” activation of the inflammasome module in the absence of Usp18 

and the anti-inflammasome module (Fig. 4D).  These data strongly support a mechanistic model, wherein 
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interferon beta drives the anti-inflammasome and inhibits the inflammasome module through activation 

of immune suppressors, including Usp18, implicating interferon beta as a potential suppressor of immune 

activity in the chronic phase of neurodegenerative tauopathies (Fig. 4E), similar to what has been reported 

in chronic viral infections62,65,66.   

 

Viral response mechanisms link genetic risk factors across different Tau-associated dementias 

 

Since gene expression changes on their own may represent causal, reactive or compensatory changes, we 

integrated genome-wide common genetic risk using MAGMA67 to identify whether any of the identified 

MNMs enrich for causal genetic factors associated with tau-related dementias.   First, we identified the 

earliest interconnected MNM genes present in pre-symptomatic disease tissue and named them early 

MNM submodules, reasoning that casual disease pathways would enrich among the earliest MNM 

components to appear in disease (Supplementary Figure 5A, 5B, 5E; see Methods).   We verified that 

early MNM submodules enrich for microglial signatures defined from mouse18,19,28 and human29 single cell 

studies (Supplementary Fig. 5C, 5D).  We next tested all MNMs, including the early submodules, for 

module-wide enrichment of disease risk genes associated with FTD, AD and PSP compared to controls, 

based on published GWAS studies68-70 (see Methods, Figure 5A).  We found that the common genetic risk 

associated with AD, FTD and PSP is not randomly distributed, but shows distinct patterns of enrichment: 

AD risk with M_UP3, FTD risk with early_UP1, FTD risk with early_DOWN1, PSP risk with early_DOWN1 

(Fig. 5A).  Each of these modules links distinct glial immune-related genes and associated pathways to 

disease causality, including increased exogenous antigen presentation and viral defense with AD, 

increased microglial immune activation and phagocytosis with FTD, and suppressed anti-viral response 

with both FTD and PSP (Fig. 5B, 5C).    
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To independently validate these disease-module relationships, we performed confirmatory testing using 

a cross-disorder exome array dataset that included AD, FTD, PSP and control cases71. The exome array 

data confirmed significant associations between AD and M_UP3 (beta = 0.19 p<0.001; Supplementary Fig. 

5F), FTD and early_UP1 (beta = 0.25, p<0.001) and FTD and early_DOWN2 (beta = 0.15 p<0.001) 

(Supplementary Fig. 5F), but not PSP, perhaps because the exome array data set is too small and therefore 

underpowered for PSP71 (Methods).  Providing additional validation is the presence of transcription 

factors within these modules that are capable of inducing the disease-associated microglia gene 

expression patterns, including Spi1(PU.1)72 within the AD associated module (M_UP3) and Zeb2 within 

the FTD and PSP associated module (early_DOWN1) (Fig. 5B, Supplementary Figure 5G). 

 

We note that viral response is a commonality among the modules enriched for common genetic variants 

contributing to susceptibility for these three dementias that involve tau pathology, albeit to different 

extents (M_UP3, and early_DOWN1) (Fig. 5B, 5C). This suggested a potential causal relationship between 

tauopathy and viral response.  In the case of AD, the causal association is with late up-regulated viral 

response pathways, whereas for FTD and PSP the causal association is with early down-regulated anti-

viral response pathways (Fig. 5B, 5C, Supplementary Figure 5E).  To test whether viral response pathways 

were also engaged by pathological Tau, we identified the biological pathways most correlated with Tau 

hyperphosphorylation in the TPR50 mouse brain (Methods), and indeed observed that genes involved 

with virus detection and anti-viral response were enriched (Supplementary Figure 5H,I,J), consistent with 

the activation of viral response pathways in concert with tau pathology in disease tissue. 
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Discussion 

 

Through an integrative systems biology approach, we have identified microglia immune networks related 

to specific stages of neurodegeneration modeled in mice harboring mutant Tau protein. Combining whole 

tissue and cell type specific data from multiple divergent mouse transgenic lines and strains, we identified 

seven conserved microglia modules that were also represented in post mortem tissue from patients and 

controls. By integrating data from brain tissue with sorted cell data, we achieved a unique perspective on 

neuroinflammatory signaling in neurodegeneration that we show neither can achieve on its own. Our 

results delineate a detailed time-course of microglial transitions across stages of progressive disease 

pathology that highlight specific immune receptors, biological pathways and regulatory factors at each 

stage.  Furthermore, although each of the modules captures distinct pathways, our analysis of regulatory 

overlap suggest they are not entirely isolated, but rather are highly linked pathways, whose central 

components and core hubs transition as disease progresses through different stages.  Within this robust 

framework, MNNs differentially implicate human disease genes with specific neuroimmune pathways that 

both recapitulate prior known biological relationships and identify new relationships between specific 

neuroimmune pathways and different disorders for further study.   

 

Our refined analyses of microglia-associated changes across tauopathy suggest that early immune 

activation gives way to chronic immunosuppression, potentially driven by activation of interferon beta 

downstream of cytosolic dsRNA detection.  In support of this is the observation that interferon beta acting 

through IFNAR1 is a known driver of chronic inflammatory states in cancer and chronic viral infection54.  

Furthermore, dsRNA detection can trigger interferon beta downstream of chromatin destabilization53.  

Here we find that interferon beta activates genes in the anti-inflammasome pathway capable of blocking 

hyperimmune activation, including Usp1860, and suppresses genes of the inflammasome module that 
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participate in innate immunity.  Furthermore, we find the cytosolic dsRNA receptor Ifih1 (MDA5) and 

associated RIG1 pathway at the core of the anti-inflammasome module PPI, and both dsRNA detection 

and interferon pathways to be highly correlated with pathological Tau burden (Supplementary Fig. 5H, 

5I, 5J). These observations suggest that factors related to the accumulation of pathological Tau might 

trigger the interferon pathway through dsRNA detection.  This is particularly salient based upon the recent 

observation that pathological Tau drives chromatin destabilization73,74, a known source of endogenous 

dsRNA that can activate Ifih1 (MDA5) and trigger an interferon response44,53.  Combined, our results 

present a parsimonious model wherein dsRNA, released following chromatin destabilization in injured 

neurons in response to Tau pathology, may active chronic immune activation pathways to suppress 

specific immune signaling (the inflammasome module) and activate anti-inflammasome pathways to alter 

cellular functions including protein ubiquitination, autophagy, exosome formation, and translation75 (Fig. 

4E). These observations predict that inhibition of the anti-inflammasome module, either through blockade 

of dsRNA, IFNAR1, or immune checkpoints within the module (PD-L1) would reduce progressive immune 

dysregulation triggered by pathological Tau and, at least in part, restore homeostatic microglia damage 

response mechanisms.  These observations suggest an important causal connection between pathological 

Tau, viral control and the interferon response that has not previously described.  Interestingly, interferon 

has also been implicated as a driver of microglial dysfunction in aging, suggesting interferon-driven 

immunosuppression in aging may also contribute to age related susceptibility to neurodegeneration7.  

Future functional and mechanistic studies will be needed to experimentally test and extend these 

observations, but they have potential therapeutic implications.   

 

Genetic risk factors for AD, FTD and PSP further implicate roles for viral defense mechanisms in causal 

disease biology.  Interestingly, the specific genes and pathways implicated differ between AD and 

FTD/PSP.  AD genetic risk factors causally implicate antigen presentation pathways that increase in late 
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stages in tauopathy models, whereas FTD and PSP risk factors converge upon anti-viral genes that are 

down-regulated in microglia very early in the mouse tauopathy models.    Our findings suggest for the first 

time that early loss of specific anti-viral and microglial maintenance factors may be causal contributors to 

disease progression early in primary tauopathies. 

 

Our findings predict that microglia may contribute to disease in a stage-specific manner by linking 

progressively changing disease-associated stimuli into an integrated, multi-cellular signaling network that 

sets the chronic course of dementia.  More specifically, our observations suggest that early in tauopathy 

there is loss of microglial homeostasis including specific viral defense functions that promote disease 

progression. Further, as disease progresses and pathological Tau accumulates, it drives activation of 

dsRNA detection pathways, possibly through chromatin destabilization53, to further suppress healthy 

immune functions and contribute to cellular dysfunction and disease propagation. From this perspective, 

different stages of dementia are associated with different levels of immune activation, and as disease 

progresses into its clinical phase, these analyses suggest that it is likely a state of chronic immune 

suppression that may promote disease progression and contribute to chronic cellular dysfunction, rather 

than immune activation.  
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Methods 

Data Set Acquisition and Filtering  

Both RNAseq datasets used as input for consensus WGCNA were previously generated.  The TPR50 

dataset20 includes gene expression data from frontal cortex dissected from male mice expressing P301S 

MAPT or WT controls (TPR50 transgenic model76) in three different genetic backgrounds (C57BL6/J, F1 

C57BL6/J x DAB, F1 C57BL6/J x FVB), and includes samples collected at 3 months of age (n=6 per group) 

and 6 months of age (n=5-6 per group).  The Tg4510 microglia dataset includes gene expression data 

obtained from microglia purified using C11b FACS collected from mice expressing P301L MAPT and WT 

controls (rTg4510 transgenic model39), pooled to include microglia from 8-10 forebrains per sample, with 

n = 4 replicate samples per time points (2, 4, 6, and 8 months of age) (AMP-AD Knowledge Portal 

(doi:10.7303/syn2580853).    Data were filtered for low read counts (>80% of the sample with > 10 reads 

with HTSeq quantification) and normalized using log2-transformation and linear regression prior to use 

for consensus WGCNA and module expression trajectory analysis, as previously described20.  

Additional publicly available datasets were used throughout the study for validation or comparison. 

Mouse datasets consist of microarray or RNAseq transcriptomics data from a variety of transgenic mice 

models – Tg451035, PS2APP36, GRN9, USP1860, IFNAR160, 5xFAD18,31, CK-p2519, Zeb277 and in vitro and in 

vivo treatments – Abeta4278,79, IFN-beta-expressing AAV7, IL480, IFN-gamma41. Human postmortem data 

consist of AD temporal cortex33, FTD frontal cortex20,34, and PSP temporal cortex33.  IRB exemption was 

obtained from the UCLA IRB to authorize use of de-identified human postmortem brain RNAseq data in 

this study.   

Microarray or RNAseq datasets downloaded from the Gene Expression Omnibus (GEO) were read into R 

and processed as follows.  Microarray data were log2-transformed and normalized by quantile 

normalization.  Gene counts were filtered to remove low read counts (>80% of the sample with > 10 reads 
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wth HTSeq quantification), corrected for guanine-cytosine content, gene length and library size, and log2-

transformed using the CQN package in R81.  The resulting data was used as an input to test module 

preservation, average gene expression and/or eigengene expression.    

mRNA Weighted Co-expression Network Analysis  

In order to identify gene co-expression networks present both in purified microglia and frontal cortical 

brain tissue, and across multiple transgenic mouse strains and genetic backgrounds, we utilized consensus 

WGCNA as previously described20 using the WGCNA R package26, applied to the TPR50 dataset of forebrain 

RNAseq from mice aged 6 months, and the Tg4510 dataset of purified microglia (2,4,6 and 8 months), 

described above.  The input data were generated from (1) microglia purified from P301L MAPT and WT 

mice from the Tg4510 model39 at ages 2, 4, 6 and 8 months (n=4 mice per condition) (AMP-AD Knowledge 

Portal (doi:10.7303/syn2580853), and (2) frontal cortex from P301S MAPT and WT mice from the TPR50 

model with three different genetic backgrounds (C57BL6/J, F1 C57BL6/J x DAB, F1 C57BL6/J x FVB) at 6 

months of age (n=5-6 per group)20, a period with extensive gliosis and neuronal Tau pathology but prior 

to frank atrophy20.     

Biweighted mid-correlations were calculated for all pairs of genes, and then assigned similarity matrices 

were created using the Consensus WGCNA method as previously described82. In the signed network, the 

similarity between genes reflects the sign of the correlation of their expression profiles. The signed 

similarity matrix was then raised to power β to emphasize strong correlations and reduce the emphasis 

of weak correlations on an exponential scale. A thresholding power of 14 was chosen (as it was the 

smallest threshold that resulted in a scale-free R2 fit of 0.8) and the consensus network was created using 

the function blockwiseConsensusModules() to calculate the component-wise minimum values for 

topologic overlap (TOM), with parameters set as networkType = “signed”, deepSplit = 2, detectcutHeight 

= 0.995, consensusQuantile = 0.0, minModulesize = 100, mergeCutHeight = 0.2. Using 1 − TOM (dissTOM) 
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as the distance measure, genes were hierarchically clustered. The resulting modules or groups of co-

expressed genes were used to calculate module eigengenes (MEs; or the 1st principal component of the 

module). Modules were annotated using the GOElite package83. We performed module preservation 

analysis using consensus module definitions84. MEs were correlated with transgenic condition to find 

disease-associated modules.  Module hubs were defined by calculating module membership (kME) values 

which are the Pearson correlations between each gene and each ME.  Gene expression was correlated 

with pT231 Tau levels measured by ELISA to calculate the “gene significance” relationship with pT231 Tau, 

as defined by the WGCNA method26, using gene expression data from the TPR50 model (6 months, n=36), 

and this was further correlated (Pearson’s) with kME to assess the relationship between pT231 Tau and 

gene-module connectivity.  All network plots were constructed using the Cytoscape software85. Module 

definitions from the network analysis were used to create synthetic eigengenes from which to calculate 

the expression trajectory of various modules in different gene expression datasets.  

Clustering of gene subsets 

To apply gene co-expression methods to understand co-expression relationships among subsets of 

module genes in either the original consensus dataset, or in the TPR50 dataset of pre-symptomatic mice 

at 3 month of age, we again used the WGCNA package26.  Biweighted mid-correlations were calculated 

for a subset of genes from selected consensus modules to create an adjacency matrix that was further 

transformed into a topological overlap matrix (with TOMType = “unsigned”). Using 1 − TOM (dissTOM) as 

the distance measure, genes were hierarchically clustered using the following parameters (deepSplit = 2, 

detectcutHeight = 0.999, minModulesize = 40, dthresh=0.1, softPower =7). The resulting modules, or 

groups of co-expressed genes, were used to calculate module eigengenes (MEs; or the 1st principal 

component of the module).  The significance of intramodular connectivity was assessed for each module 

using a permutation test (10,000 permutations), and all modules were confirmed to have permuted p-
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value <0.001. “Early submodules”, described in Figure 5 and Supplementary Figure 5, were derived by re-

clustering M_UP1 and M_UP2 genes to generate “earlyUP” modules, or M_DOWN1, M_DOWN2 and 

M_DOWN3 genes to generate “earlyDOWN” modules, in the 3 month of age frontal cortex TPR50 dataset 

previously described20.   “Inflammasome and anti-inflammasome modules”, described in Figure 3-4, were 

derived from re-clustering M_UP1 and M_UP2 genes in the consensus WGCNA input datasets (purified 

microglia from the Tg4510 model and frontal cortex TPR50 dataset (6 months of age)). 

Module Preservation Analysis  

We used module preservation analysis to validate co-expression in independent mouse and human 

datasets. Module definitions from consensus network analysis were used as reference and the analysis 

was used to calculate the Zsummary statistic for each module. This measure combines module density 

and intramodular connectivity metrics to give a composite statistic where Z > 2 suggests moderate 

preservation and Z > 10 suggests high preservation84.  

Module Gene Set Enrichment Analysis 

Gene set enrichment analysis was performed using a two-sided Fisher exact test with 95% confidence 

intervals calculated according to the R function fisher.test(). We used p values from this two-sided 

approach for the one-sided test (which is equivalent to the hypergeometric p- value) as we do not a priori 

assume enrichment86. To reduce false positives, we used FDR adjusted p-values87 for multiple 

hypergeometric test comparisons. For cell-type enrichment analysis we used already published mouse 

brain dataset27. The background for over-representation analyses was chosen as total genes input into the 

consensus analysis (overlap of genes expressed in Tg4510 microglia and TPR50 frontal cortex RNAseq 

datasets).   
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To test module enrichment for single cell microglial gene expression signatures, we used signatures 

defined from published single-cell studies pertaining to microglia and/or neurodegenerative 

disease18,19,28,29,77.  Specifically, for disease-associated microglia18,19, we set cluster signatures to be the top 

100 differentially expressed genes between two microglia clusters, as defined in their corresponding 

publications.  For microglial and macrophage clusters defined from young and aged mouse brain in28, we 

defined clusters signatures as published except duplicated genes were removed among the young cluster 

group (C1, C2a, C2b, C3, C4, C5, C6, C7a, C7b, C7c, C8, C9, mono_macA, mono_macB), and aged cluster 

group (aging_C1a, aging_C1b, aging_C2, aging_C3, aging_C4) to increase the distinctiveness of each 

cluster’s geneset.  To define genesets from the single-cell microglial trends from injured mouse brain 

published in28, we used the genes with fold change >1.5 in control vs injured, and injured vs control mice, 

respectively, to define the injury_C1 and injury_C2 genesets.  For human microglial gene clusters defined 

in29, we defined cluster signatures as genes with expression fold >1.8 compared to any other clusters.  For 

Zeb2 knockout compared to control microglia, we used the published set of differentially expressed 

genes77.  The background applied for over- representation analyses was set as the genes input into the 

consensus analysis (overlap of genes expressed in Tg4510 microglia and TPR50 frontal cortex RNAseq 

datasets). 

Gene set annotation 

Genes in network modules were characterized using GO-Elite (version 1.2.5), using as background the set 

of input genes used to generated the modules being annotated83. GO-Elite uses a Z-score approximation 

of the hypergeometric distribution to assess term enrichment, and removes redundant GO or KEGG terms 

to give a concise output. We used 10,000 permutations and required at least 3 genes to be enriched in a 

given pathway at a Z score of at least 2. We report only biological process and molecular function category 

output.  
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Protein-Protein Interaction Analysis  

To assess and visualize protein-protein interactions among module genes, we used STRING (version 10.5; 

https://string-db.org)88 with the following setting (organism: Mus musculus; meaning of network edges: 

confidence; active interaction sources: experiments and databases; minimal required interaction score: 

medium confidence (0.400), max number of interactors to show: none).  Data was exported and visualized 

using the Cytoscape software85.  

Transcription Factor Binding Site Enrichment Analysis  

Transcription Factor Binding Site (TFBS) enrichment analysis using an in-house package that incorporates 

TFBS as previously described89.  Briefly, we utilized TFBS position weight matrices (PWMs) from JASPAR 

and TRANSFAC databases90,91 to examine the enrichment for TFBS within each module using the Clover 

algorithm92.  To compute the enrichment analysis, we utilized three different background datasets (1000 

bp sequences upstream of all mouse genes, mouse CpG islands, and mouse chromosome 20 sequence). 

We plotted significant TFBS-module pairs (TFBS p-value < 0.05, compared to all mouse CpG islands), for 

TFs shared between multiple modules, as a network plot in Cytoscape, with edges connecting TFs and 

modules and edge weights proportional to the negative log10(p-value). 

Connectivity Map (CMAP) Analysis  

For a given module, the top 150 module genes (ranked by kME) were used as input for the QUERY app in 

the Broad’s CMAP database, version CLUE (https://clue.io)93. This signature was used to query 7,494 gene 

overexpression or knockdown experiments carried out across 9 cell lines for similar (positive connectivity 

score) or opposite (negative connectivity score) effects on gene expression signatures, incorporating 

Kolmogorov-Smirnov statistics (a nonparametric, rank-based pattern-matching strategy) as described48,93.   

Mean “connectivity scores” across all cell lines was ranked by increasing order of connectivity to the input 
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module gene expression signature to generate a rank ordered list of signed perturbagen-module 

connectivity scores.  To identify module genes whose perturbation could reproduce the differential 

expression patterns of module seen in disease, we identified genes from up-regulated disease modules 

whose overexpression in CLUE  had positivity connectivity scores with up-regulated modules or negative 

connectivity scores with down-regulated modules, and genes from down-regulated disease modules 

whose down-regulation in CLUE (via shRNA) had positive connectivity scores with signatures from up-

regulated modules and negative connectivity scores with signatures from down-regulated modules, using 

a connectivity score cut off of |70|.   Gene perturbation-module connectivity was plotted with edge length 

= -log10(|connectivity score|), using Cystoscope.   

MAGMA 

 

Summary statistics for genome-wide association studies for AD70, PSP69 and FTD68 were used as an input 

for MAGMA (v1.06)67 for gene annotation to map SNPs onto genes (with annotate window = 20,20) and 

the competitive gene set analysis was performed to test module associations with GWAS variants 

(permutations = 100,000).  All genes assigned to a given module were used as the input for each module.  

Consensus modules and re-clustered modules were run as separate groups in MAGMA given that they 

contain overlapping genes.  Additional FDR correction was applied across all the competitive p-value 

outputs from MAGMA for all modules used in the study. 

 

Exome-based validation of MAGMA disease-module associations 

 

Summary statistics from Alzheimer’s disease, Frontal Temporal Dementia and Progressive Supranuclear 

Palsy exome array analysis were downloaded from71. To incorporate protein-protein interaction, 

summary statistics were used as input to the network burden test, NetSig94. NetSig determines a gene’s 
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network association with disease. Generalized least squares regression was used to determine if NetSig 

results were enriched in gene modules. Regression covariates included gene length and mean protein 

expression, including the log of these values. To account for linkage disequilibrium, error was correlated 

for genes within 5 megabase pairs. 

 

ELISA  

Total tau and pT231 tau content were measured by commercial tau ELISA kits according to the 

manufacturer's instructions (total tau - KHB0041; pT231 tau - KHB8051, Invitrogen). Briefly, standards, 

RIPA-soluble or sarkosyl insoluble samples were applied to the ELISA plate. After washing, a biotin-

conjugated detection antibody was applied. The positive reaction was enhanced with streptavidin-HRP 

and colored by TMB. The absorbance at 450 nm was then measured and the concentration of tau protein 

was calculated from the standard curve.  
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Figure Legends 

Figure 1: Purified microglia-brain tissue consensus gene co-expression network analysis. A, Experimental 

schema, showing approach for microglia-tissue consensus WGNCA and module selection to achieve 

multiple microglial disease modules associated with tissue-level neurodegenerative disease inflammatory 

modules. B, Cell type enrichment of modules using mRNA markers for corresponding cell types from 

mouse brain (Fisher’s two-tailed exact test, ***FDR<0.005, MO = myelinating oligodendrocyte27). C, 

Pearson’s product-moment correlation (n = 12413 genes) of module eigengene connectivity in consensus 

module compared to tissue-level neurodegeneration module (NAS or NAI)20. D, Module enrichment for 

mouse microglia single cell cluster signatures (as defined in28; Fisher’s two-tailed exact test, *FDR<0.05, 
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**FDR<0.001, ***FDR<0.005). E, Scatterplot showing Pearson’s correlation of gene-module connectivity 

(kME) and sample-by-sample correlation of gene expression and pT231 Tau levels (n=36) in TPR50 mouse 

brain (frontal cortex, 6 months of age, n=18 per group of WT or P301L MAPT;  P-values obtained from 

two-sided test for Pearson correlation are shown)20. F, Module preservation in human AD and control 

temporal cortex (control n=308, AD n =157)33, human PSP and control temporal cortex (control n=73, PSP 

n =83)33, and human FTD and control frontal cortex from two independent datasets (dataset 195 control 

n=14 , FTD n=16; dataset 220: control n=8, FTD n=10). The bottom line is at the lower cut off for 

preservation (Zsummary = 2) and the upper line in at the cut off for high preservation (Zsummary = 10) as 

defined in84. G, Protein-protein interaction (PPI) network plot of among all genes from tissue-level NAI 

(left) and combined microglia-enriched consensus modules (MNMs; right), with nodes colored by GO and 

KEGG categories, as shown.  

Figure 2: Microglia-tissue consensus module microglia disease time-course and pathway annotation. A, 

Signed Pearson’s correlation of the module eigengene (ME) calculated in the rTg4510 microglia gene 

expression dataset at each age (unpaired two-tailed T-test; n=7 modules, n=4 mice per genotype (P301L 

MAPT or WT) per timepoint; *p-value<0.05, **p-value<0.01, ***p-value<0.005). Graphed with theoretical 

zero plotted at time zero. B, Module PPI network enrichment p-value (p-value calculated as described 

in96). C. Select module genes (with disease genes in red), enriched gene ontology terms (Z-score >2), 

transcription factors (TF) with binding site enrichment (labels are bold and italic if the TF is unique to one 

module, blue if the TF is a hub gene in any module, and red if the TF is a hub gene in the same module; p-

value <0.05 compared to whole genome CpG islands), and module genes that are receptors of pathogen 

or damage associated molecular patterns (”immune sensors”). D. Protein- protein interactions among top 

150 module genes (ranked by kME) with enriched pathway genes labeled (GO-Elite83 permuted Z score 

>2). E, Module enrichment heatmap for top 100 genes differentially expressed between progressive 

microglia single cell states, as indicated, Hom = homeostatic, DAM1 = type 1 disease-associated microglia 
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(DAM), DAM2 = type 2 DAMs, as defined in18; n=7 modules with 4 comparisons per module, *FDR <0.05, 

**FDR<0.005, ***FDR<0.001. F, Differential module expression in purified microglia following treatment 

with IFN-gamma (n=8) compared to untreated controls (n=4) (two-tailed unpaired T-test, human fetal 

microglia cells, IFNg at 200u/mL for 6h or 24h, GSE143241).  G, Model showing microglia transitions across 

progressive disease stages based on annotation of microglia-tissue consensus modules (MNMs).  

Figure 3: Polarized immune signaling networks are up-regulated early in disease and include signaling 

cross-talk among up-regulated microglia module genes. A, Experimental schema for identifying opposing 

regulatory networks among up-regulated microglia module genes. B, Scatterplot of module A and module 

B eigengenes calculated in Tg4510 purified microglia samples (n = 32). C, Scatterplot of gene-module 

connectivity scores (kME) with module A and module B calculated across Tg4510 purified microglia 

samples (n=32 samples, n = 899 genes). D, Signed Pearson’s correlation of the module eigengene (ME) 

calculated in the rTg4510 microglia gene expression dataset at each age (n=7 modules, n=4 mice per 

genotype (P301L MAPT or WT) per age, ages = 2, 4, 6 and 8 months, * two tailed p-value of Pearson’s 

correlation < 0.005). E, Module enrichment heatmap of single-cell microglial gene expression signatures 

from indicated published single-cell studies (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.01, 

***FDR<0.005 corrected for 2 modules and 34 total cluster signatures as defined in Hammond et al., 

201828, Keren-Shaul et al 201718, Mathys et al. 201819; Hom = homeostatic, DAM1 = type 1 disease-

associated microglia (DAM), DAM2 = type 2 DAMs, as defined in18; from Mathys et al. 201819: Hom = 

homeostatic (cluster 2), Earlyc3 = early response (cluster 3), Earlyc7 = early response (cluster 7), Late = 

late response (cluster 6)). F, Barplots showing CMAP connectivity scores between overexpression of a 

given gene (n=2161 genes) and inflammasome (pink) and ant-inflammasome (blue) modules, ordered 

from left to right by difference between anti-inflammasome and inflammasome module connectivity 

scores. Top 5 highest scoring module genes shown for each module with their ranked order among 2161 

CMAP overexpressed genes. G, Module assignment and module connectivity scores for components of 
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NLRP3 inflammasome complex and type 1 interferon response. H, Gene ontology terms significant for 

each module (using all module genes, permuted Z-score > 2). I, Module preservation and trajectory of 

average module gene expression of the inflammasome and anti-inflammasome modules in cultured 

microglia treated with oligomeric Abeta42 or vehicle control (n=3 per group, GSE5562779). J, Trajectory of 

inflammasome and anti-inflammasome module eigengenes in mouse microglia purified from IFNAR 

knockout or wild-type mice infected with IFNb expressing or control AAV (unpaired two-sample Wilcoxon 

rank-sum test, WT control-virus n=3, IFNAR knockout control-virus n=7, WT IFNb-virus n=5, IFNAR 

knockout IFNb-virus n=7, GSE984017).  

Figure 4: Inflammasome and anti-inflammasome modules bridge microglial sensors, mediators and 

checkpoints. A, Module gene co-expression plot of inflammasome (pink) and anti-inflammasome (blue) 

module genes with a distributed subset of genes labeled, and the list of transcription factors with module-

wide binding site enrichment adjacent to each module (p-value relative to whole genome CpG islands < 

0.05). B, PPI maps with associated gene ontology pathways highlighted for the inflammasome (pink) and 

anti-inflammasome modules (blue). C, Module preservation of inflammasome and anti-inflammasome 

modules, and D, module eigengene trajectory of inflammasome module in Usp18 knockout, IFNAR1 

knockout, double knockout and WT mouse brain (two-tailed unpaired T-test; n=3 per group, GSE6149960). 

E, Summary model of immune signaling networks represented by inflammasome and anti-inflammasome 

module and their interplay.  

Figure 5. Module enrichment for GWAS variants for AD, FTD or PSP. A, Module enrichment for disease 

variants for AD70, FTD97, or PSP69 (FDR corrected, two-sided competitive gene-set analysis p-value from 

MAGMA67; horizontal line demarcates -log10(FDR) = 1, “anti” = anti-inflammasome). B, Gene co-

expression network plots of top 25 genes, ranked by kME, from each disease variant-associated module, 

with the list of transcription factors with enriched binding sites to right of each module network plot 
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(“TFBS”; TFs with binding site enrichment p-value <0.05 compared to whole genome CpG islands; unique 

TFs in bold). C, Gene ontology terms enrichment among corresponding module genes (permuted Z-score 

>2).  

Supplementary Figure 1. A, Module enrichment for human microglia single-cell cluster signatures, 

clusters labeled as defined in29 with the following abbreviations: “c1” labeled = combined c1, c3, c6_1, 

c11 clusters, “c13” labeled =  combined c13_1 and c13_2 clusters, “c15” labeled = combined c15_1, c15_2 

clusters, “c9/c14” labeled = combined c9_1, c9_2, c14_1, and C14_2 clusters (Fisher’s two-tailed exact 

test, *FDR<0.05, **FDR<0.001, ***FDR<0.005). B, Scatterplot showing Pearson’s correlation of gene-

module connectivity (kME) and sample-by-sample correlation of gene expression and pT231 Tau levels 

(n=36; in TPR50 mouse brain; frontal cortex, 6 months of age, n=18 per group of WT or P301L MAPT; p-

values obtained from two-sided test for Pearson correlation are shown). C, Protein-protein interaction 

(PPI) networks plots of the tissue-level NAI module (left) and combined MNM modules (right) showing PPI 

node that overlap between the two (in magenta: 65% of NAI PPI nodes overlap with MNM; and in 

turquoise: 59% of MNM PPI nodes overlap with NAI. D, Module preservation in three independent 

datasets of models expressing mutant MAPT: PS19 model (frontal cortex, n = 10 WT, n = 8 P301S MAPT)20, 

JNPL3 model (spinal cord, n = 12 WT, n=12 P301L MAPT, data obtained from the AMP-AD Knowledge 

Portal), and Tg4510 model (forebrain, n = 16 WT, n = 16 P301L MAPT; data obtained from the AMP-AD 

Knowledge Portal). The bottom line is at the lower cut off for preservation (Zsummary = 2) and the upper 

line in at the cut off for high preservation (Zsummary = 10), as defined in84. E, Module preservation 

heatmap in microglia purified from mouse models of Alzheimer’s pathology (5xFAD n= 5 mice per 

condition, GSE6506737; PS2APP n=5 mice per condition, GSE7543136). * Zsummary > 2 and <10 (low 

preservation) and ** Zsummary = 10 (high preservations). F, Module – disease trait correlation heatmap 

in microglia purified from mouse models of Alzheimer’s pathology (Tg4510 age = 6 months n=4 mice per 

genotype, 5xFAD n= 5 mice per genotype, GSE6506737; PS2APP age = 13 months n=5 mice per genotype, 
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GSE7543136). *FDR < 0.05. ** FDR < 0.01 (n=7 modules with 3 comparisons per module) using P values 

from two-sided test for Pearson correlation. G, Module enrichment heatmap for top 100 genes 

differentially expressed between progressive microglia single cell states, as defined in19,  from CK-p25 

mouse model (Hom = homeostatic (cluster 2), Earlyc3 = early response (cluster 3), Earlyc7 = early response 

(cluster 7), Late = late response (cluster 6); n=7 modules with 9 comparisons per module, *FDR <0.05, 

**FDR<0.005, ***FDR<0.001).  

Supplementary Figure 2. A, Module gene co-expression plot among top 50 module genes ranked by 

module eigengene connectivity (kME26). B, Extended list of gene ontology terms significant for each 

module (using all module genes, permuted Z-score > 2). C, Differential module expression in purified 

microglia following treatment with oligomeric Abeta42 (two-tailed unpaired T-test with FDR correction 

for 7 comparisons; primary mouse microglia cells, 10uM Abeta42 for 6h n=3, or vehicle for 6h n=3, 

GSE5562779) or IL-4 (two-tailed unpaired T-test with FDR correction for 7 comparisons, mouse microglia 

cells, IL4 at 100U/mL for 48h, n= 3, or untreated controls n=3, GSE7706480).  

Supplementary Figure 3. A, Experimental disease-associated gene perturbation-module connectivity. 

Connectivity between disease-associated perturbations of module genes and all modules, based on gene 

knockdown or overexpression experiments from CMAP, showing gene-module pairs with high 

connectivity (edge weighted by connectivity score -absolute connectivity score ranging 70-100- and 

colored by directionality of gene expression effect on module expression, as indicated). B, Transcription 

factors (TF) with binding site (BS) enrichment within more than one module (line thickness is proportion 

to -log10(pvalue) of TFBS enrichment within each connected module. All TFs shown have p-value < 0.05 

of TFBS enrichment within module compared to genome-wide CpG islands). C, Protein-protein interaction 

maps among top 100 genes ranked by module eigengene connectivity (kME) showing later modules share 
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protein-protein interactions with genes from other modules, including modules with TFBS overlap. Genes 

are colored by module, with colors as labeled in Supplementary Figure 3A and 3B.  

Supplementary Figure 4.  A, PPI network of combined inflammasome (pink) and anti-inflammasome 

(blue) module genes showing interconnectivity among both modules. The height and width of each node 

is scaled to the gene connectivity to the inflammasome (height) and anti-inflammasome (width) module 

eigengenes (kME26).  B, Module preservation in human AD and control temporal cortex (control n=308, 

AD n =157)33, human PSP and control temporal cortex (control n=73, PSP n =83)33, and human FTD and 

control frontal cortex (control n=8, FTD n=10)20 and in three independent datasets of models expressing 

mutant MAPT: PS19 model (frontal cortex, n = 10 WT, n = 8 P301S MAPT)20, JNPL3 model (P301L MAPT, 

spinal cord, n = 12 WT, n=12 P301L MAPT, data from AMP-AD Knowledge Portal), and Tg4510 model 

(forebrain, n = 16 WT, n = 16 P301L MAPT, data from AMP-AD Knowledge Portal). The bottom line is at 

the lower cut off for preservation (Zsummary = 2) and the upper line in at the cut off for high preservation 

(Zsummary = 10)84. C, Module enrichment for human microglia single-cell cluster signatures, clusters 

labeled as defined in29 with the following abbreviations: “c1” labeled = combined c1, c3, c6_1, c11 clusters, 

“c13” labeled =  combined c13_1 and c13_2 clusters, “c15” labeled = combined c15_1, c15_2 clusters, 

“c9/c14” labeled = combined c9_1, c9_2, c14_1, and C14_2 clusters (Fisher’s two-tailed exact test, 

*FDR<0.05, **FDR<0.001, ***FDR<0.005). D, Module preservation and E, trajectory of the inflammasome 

and anti-inflammasome module eigengenes in microglia purified from mouse models of Alzheimer’s 

pathology (unpaired two-sample Wilcoxon rank-sum test; 5xFAD n= 5 mice per condition, GSE6506737; 

PS2APP n=5 mice per condition, GSE7543136).  F, Module preservation and module eigengene trajectory 

in microglia purified from 8 month old C57BL/6 mice 48 hours following injection I.C.V. with either Aβ 

(n=7) or vehicle (n=4) (unpaired two-sample Wilcoxon rank-sum test, GSE5718178). G, Anti-inflammasome 

PPI plot highlighting genes with the highest anti-inflammasome module connectivity in microglia purified 
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from IFNb or control AAV infected mice (unpaired two-sample Wilcoxon rank-sum test, WT control-virus 

n=3, IFNAR knockout control-virus n=7, WT IFNb-virus n=5, IFNAR knockout IFNb-virus n=7, GSE984017).  

Supplementary Figure 5. A, Experimental schema for identifying earliest submodules from up-regulated 

or down-regulated microglia module genes. B, Module eigengene trajectories of up-regulated module and 

submodules in early stage frontal cortex of TPR50 mouse model (unpaired two-sample Wilcoxon rank-

sum test; age = 3 months, 3 genetic backgrounds, n=18 total P301S MAPT, n=18 WT20). C, Module 

enrichment heatmap of single-cell microglial gene expression signatures from indicated published single-

cell studies (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.01, ***FDR<0.005 corrected for 2 

modules and 33 total cluster signatures as defined in Hammond et al., 201828, Keren-Shaul et al 201718, 

Mathys et al. 201819; Hom = homeostatic, DAM1 = type 1 disease-associated microglia (DAM), DAM2 = 

type 2 DAMs, as defined in18; from Mathys et al. 201819: Hom = homeostatic (cluster 2), Earlyc3 = early 

response (cluster 3), Earlyc7 = early response (cluster 7), Late = late response (cluster 6)). D, Module 

enrichment for human microglia single-cell cluster signatures, clusters labeled as defined in29 with the 

following exceptions: “c1” labeled = combined c1, c3, c6_1, c11 clusters, “c13” labeled =  combined c13_1 

and c13_2 clusters, “c15” labeled = combined c15_1, c15_2 clusters, “c9/c14” labeled = combined c9_1, 

c9_2, c14_1, and C14_2 clusters (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.001, ***FDR<0.005). 

E, Module eigengene trajectory of early_UP1 and early_DOWN1 in microglia purified from Tg4510 colony 

(unpaired two-sample Wilcoxon rank-sum test applied at each age, P301L MAPT and WT controls, n=4 per 

condition per age, ages = 2, 4, 6 and 8 months).  F, Exome-based array71 validation of disease-module 

associations identified in MAGMA (beta and p-value based on NetSig94 and generalized least-squares 

regression, see Methods).  G, Module enrichment for genes differentially up- or down- regulated in Zeb2 

knockout microglia compared to controls (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.001, 

***FDR<0.005, Zeb2 microglia data source77). H, PPI network, and I, enriched gene ontology terms (Z-

score >2) among the top 100 genes positively correlated with Tau phosphorylation (T231) (cor > 0.9 for all 
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top 100 genes) and J, box and whisker plot showing distribution, median and upper and lower quartiles 

of gene – pTau correlation for each gene in the GO geneset: “Interferon beta response” (GO:0035456; 74 

genes), in TPR50 mouse brain (frontal cortex, 6 months of age, n=18 per group of WT or P301L MAPT). 
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