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Abstract

An emerging challenge in neurodegenerative dementia is understanding how immune-associated genes
and pathways contribute to disease. To achieve a refined view of neuroinflammatory signaling across
neurodegeneration, we took an integrative functional genomics approach to consider neurodegeneration
from the perspective of microglia and their interactions with other cells. Using large-scale gene expression
and perturbation data, regulatory motif analysis, and gene knockout studies, we identify and characterize
a microglial-centric network involving distinct gene co-expression modules associated with progressive
stages of neurodegeneration. These modules, which are conserved from mouse to human, differentially
incorporate specific immune sensors of cellular damage and pathways that are predicted to eventually
tune the immune response toward chronic inflammation and immune suppression. Notably, common
genetic risk for Alzheimer’s disease (AD), Frontotemporal dementia (FTD) and Progressive Supranuclear
Palsy (PSP) resides in specific modules that distinguish between the disorders, but also show convergence
on pathways related to anti-viral defense mechanisms. These results suggest a model wherein
combinatorial microglial-immune signaling integrate specific immune activators and disease genes that
lead to the establishment of chronic states of simultaneous inflammation and immunosuppression

involving type 1 interferon in these dementias.
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Introduction

Leveraging genetic discoveries to identify therapeutic targets requires understanding how disease genes
map onto cell-type specific molecular pathways. In this regard, a remarkable body of growing genetic
evidence supports a link between Alzheimer’s and associated dementias and neuroimmune functions
involving glial cells? Causal genetic variation in neurodegenerative dementias affects genes with neural-
immune functions affecting two major CNS resident neural immune cells, astrocytes and microglia,
including, TREM2, GRN, HLA-DRA, CR1, C9ORF72, APOE, BIN1, CXCR4, CLU, and TBK1'® . Multiple
functional studies in animal models of neurodegeneration support the contribution of microglial and
neural-immune genes to disease-associated phenotypes including age-associated cognitive decline,
pathological protein deposition and dyshomeostasis, and neurodegeneration’®. The discovery that
immune-related genes contribute to AD and associated dementias has generated great enthusiasm for
the possibility of immune-based therapies!®. From this perspective, defining the detailed molecular
relationship between disease-associated neuroimmune pathways and causal dementia genes has the

potential to inform disease mechanism and inspire novel therapeutic approaches.

Microglia and CNS-resident macrophages are the principle immune cells of the brain with critical roles in
detecting immunogens and coordinating the immune response!!. During nervous system injury, microglia

can be directly activated by myelin, lipids, or nucleotides released from injured cells to activate pro-

12,13

inflammatory signaling, such as through the NLRP3 inflammasome complex™**>. Experimental evidence

in multiple models of AD pathology suggests that “disease-associated microglia” express dementia risk
genes, including APOE and TREM2, and contribute to synaptic injury, neurotoxic astrocyte transitions, and

14-17

neuronal dysfunction Furthermore, single-cell genomic studies have begun to delineate

heterogeneity among disease-associated microglial states and their trajectories, highlighting the need to
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better understand their specific roles in neurodegeneration®?°,

This includes defining how different
microglial states relate to disease-associated immune activators and causal genes in human

neurodegenerative diseases.

We recently used a systems biology approach to integrate gene expression data from human post mortem
brain and multiple mouse models harboring human dementia causing mutations, to identify a robust
neurodegeneration-associated inflammatory module (NAI) and a closely correlated neurodegeneration-
associated synaptic module (NAS)?°. The NAI module is strongly enriched for markers of both astrocytes
and microglia, both of which are known to be significantly up-regulated in multiple neurodegenerative

9,21,22

syndromes As a result of this global up-regulation within tissue, the cell-type specific expression

patterns of glial genes in the NIA module were obscured. In silico approaches for deconvoluting cell-
specific signatures are challenged by the complex dynamics among glial genes in disease!®18192324 5o,
we reasoned that the optimal resource for resolving glial pathways involved in neurodegeneration would
be gene expression data from actual glial cell types isolated from disease and control samples.
Furthermore, given that neurodegeneration involves interactions between neurons and among glia?®; we

reasoned that integrating data from sorted cells and intact tissue would reveal disease-relevant and cell-

specific signaling networks.

Here we present an integrative analysis of microglial-specific transcriptomic changes that are latent
components of neurodegeneration pathways at the tissue-level. Our findings parse disease genes into
distinct microglial co-expression sub-networks (modules) related to progressive stages of neuropathology
in mice that are conserved in humans. Using large-scale gene perturbation data, regulatory motif analysis,
and knockout studies, we identify strong evidence for regulatory interplay that functionally connects

different modules into a microglial-centered interactome. By incorporating genetic association data, we
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find that the genetic risk factors contributing to Alzheimer’s disease (AD), Frontotemporal dementia (FTD)
and Progressive Supranuclear Palsy (PSP) involved shared and distinct microglia-associated neuroimmune
modules. However, as disease progresses, the associated shared transcriptional and PPl networks that
are up-regulated involve chronic viral response pathways to double stranded RNA, likely driven by Type-
1 interferon, supporting a model whereby early immune activation gives way to chronic

immunosuppression in these disorders.
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Results

We performed consensus weighted gene co-expression analysis (WGCNA?®; Methods) to combine gene
expression data from sorted, purified microglia from a mutant tau mouse model (rTg4510; AMP-AD

Knowledge Portal doi:10.7303/syn2580853) and whole brain tissue collected from multiple independent

transgenic mouse models of neurodegenerative tauopathy (Methods, Figure 1A) to identify conserved
modules that exist in both purified microglia and tissue. We then used the microglia-specific gene
expression data to identify up and down-regulated pathways (Figure 1A, Schema). Using this approach,
we identified 13 distinct co-expression modules varying in disease association, trajectory and time course

(Fig 1B, 1C, 1D, 2A).

Consensus microglial modules combine cell-type specificity and tissue-level neuronal-glial relationships

We first focused on the 7 modules significantly enriched for genes expressed in microglia compared to
other cell types®” (Fig. 1B, 1D; Supplementary Fig. 1A). As independent validation of cell-type trends, we
assessed module enrichment for single cell microglial signatures, previously identified from high
resolution single cell sequencing studies in mouse?® and human?® brain, and observed significantly greater
marker enrichment among these 7 candidate microglia-gene enriched modules compared to the
remaining modules (Fig. 1D, Supplementary Fig. 1A). At the same time, these modules were distinct in
that different modules overlapped with different sets of microglial signatures identified in previous single

2829 suggesting that they represented distinct microglia pools (Fig. 1D, 2E, Supplementary Fig.

cell analyses
1A, 1G). For example, M_UP1 enriched for profiles of microglia proliferative states (clusters 2a, 2b, 2c)*®

and age-associated states identified previously in single cell transcriptome analyses (C8, aging C1,

aging_C2, aging_C3)? (Fig. 1D).
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We next tested whether our consensus modules recapitulate biological relationships present in tissue-

level neurodegeneration modules identified in prior studies (NAI and NAS)®. As expected, the seven
microglia-enriched modules were highly positively correlated with the NAI inflammatory module and
negatively correlated with the NAS synaptic module; both of which have been previously demonstrated

to be conserved across humans with tauopathies and mice harboring mutations causing dominant forms

of FTD in humans® (Fig. 1C).

Next, we assessed each module’s relationship to pathological neuronal Tau hyperphosphorylation, a
measure of neuropathology associated with disease progression®. We found a strong positive correlation
between pathological Tau phosphorylation levels and microglia-enriched consensus module gene
connectivity (Fig. 1E, Supplementary 1B). In contrast, when we analyzed WGCNA modules generated
using only sorted microglial cell gene expression data from the rTg4510 model, rather than consensus
modules based on network edges shared between whole tissue and the sorted cell data, the correlation
with pTau was substantially reduced (Fig. 1E). This demonstrates the utility of using both cell specific and

whole tissue data to advance our understanding of cell specific contributions to disease pathology.

Finally, we observed that the NAl and combined microglial consensus modules are conserved at the level
of protein-protein interactions (PPI), which themselves coalesce into distinct molecular pathways (Fig. 1G,
Supplementary Fig. 1C). Thus, these seven co-expression modules represent a substantial refinement of
a previously identified neural immune module observed in both model systems and post mortem human

brai n18—20,31,32

We label the seven new modules “microglia-associated neurodegeneration-associated
modules” (MNMs, 1-7), and further characterized them as a means to explore associated microglial

functional pathways and regulators related to neurodegeneration.
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MNMs are conserved in human disease brain and mouse models

To assess the robustness of the microglia-enriched modules and further validate their relevance to human
disease, we tested their preservation using multiple independent mouse and human disease datasets (see
Methods). Consistent with the observation of PPl conservation for all modules, all seven MNMs are
preserved in post mortem human brain tissue from AD*3, FTD?3* and PSP*3 patients (Fig. 1F). Additionally,
all MNMs are preserved in three different transgenic mouse models expressing human MAPT
mutations?>* (Supplementary Fig. 1D) and in microglial-specific datasets from mouse models expressing
PSEN*® and APP3” mutations, except M_UP3, which is only weakly preserved in one of two datasets
(Supplementary Fig. 1E). However, we do note that the differential expression patterns of three modules
(M_UP2, M_UP3, M_DOWNS3) differ between microglia isolated from P301L MAPT (rTg4510) and
PSEN/APP mutant mouse models (Supplementary Fig. 1F). Together, the preservation of these modules
across multiple independent disease datasets including human disease brain from Alzheimer’s and
associated dementias and mouse models of Alzheimer’s or FTD, as well as PPI, indicates that they
represent robust biological processes. However, some modules display variability in their differential
expression in different disease models, suggesting they may be conditional on disease-stage or disease-

specific pathology.

Microglial molecular transitions along progressive epochs of neuronal pathology

In contrast to the composite whole tissue NAI module expression vector which shows a singular increasing
trajectory over time (shown in?®), we were able to deconvolute the MNM modules into highly distinct
temporal trajectories with respect to progressive disease stages modeled in the rTgd510 mouse between

2 and 8 months of age3>*¥%, We identified three temporal patterns of module-disease association: (1)
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changing at the earliest disease stage, prior to neuronal loss, and persistent through later stages (M_UP1,
M_DOWN1, M_DOWN?2), (2) changing during early periods of neuronal loss, and more transient (M_UP2,
M_DOWNS3), and (3) most significant changes during late stages of continued neuronal loss and
cumulative pathology (M_UP3) (Fig. 2A). Therefore, combined tissue-microglial cell consensus WGCNA
resulted in microglial neurodegeneration-associated modules with distinct temporal transitions across
disease progression, which were present in latent forms, but not detected in the analysis of whole tissue

alone.

To validate our MNM-disease stage trends using complementary published datasets, we compared them
to time-course, single-cell microglial differential gene expression data collected from two different mouse
models with Alzheimer’s related pathology (5xFAD, CK-p25%°), including one model with frank
neurodegeneration (CK-p25'°). As expected, the early up-regulated MNM, M_UP1, is enriched for genes
that are increased in early microglial disease states relative to homeostatic microglia (Fig. 2E,
Supplementary Fig. 1G), and the later up-regulated MNMs are enriched for genes up-regulated in later
relative to early microglial disease states (Fig. 2E, Supplementary Fig. 1G). The four down-regulated MNM
are all enriched for microglial genes down-regulated in early microglia disease states (Fig. 2E,

Supplementary Fig. 1G).

We next leveraged published data on the type 2 interferon response to ask whether MNMs reproduce
the late interferon-gamma signature reported to distinguish microglia during periods of neuronal cell
death?. We were able to show that the last up-regulated MNM in disease, M_UP3, is also the only module
induced by interferon-gamma treatment of cultured microglia** (Fig. 2F), consistent with the published
trend’®. Altogether, these findings support that MNMs recapitulate stage-associated, microglia-specific

biological trends identified from recent single-cell studies using mouse models of Alzheimer’s
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pathology!®!°. Moreover, MNMs further refine prior findings, separating disease-associated microglia
changes across multiple distinct modules. Therefore, we next explored these MNMs in detail to delineate
stage-associated transitions in microglia signaling including changes prior to and subsequent to cell death,

and their relationship to dementia disease genes.

Pathway analysis to expand biological insights into microglial transitions across disease

Annotation of modules for enriched biological regulators and pathways aligned specific disease genes,
signaling and functional pathways, immune receptors, transcription factors and microglia-enriched gene
co-expression modules with progressive stages of neuronal dysfunction and degeneration that are
summarized in Figure 2 (Fig. 2A, 2B, 2C, 2D, 2F, 2G, Supplementary Fig. 2A, 2B). These annotations
indicate that each of these modules represents different aspects of the microglia function that vary across
disease stage, with different microglial modules poised to sense and respond to specific damage-

associated immune activators'>*? that change over time (Fig. 2A, 2C, 2G).

For example, the earliest up-regulated module, M_UP_1, incudes sensors of peptide and lipopeptide
immune activators (TLR1, TLR2), whereas the subsequently up-regulated module, M_UP2, includes
sensors of lipid immune activators (TREM2, SCARB2) together with receptors for viral nucleotides (TLR7,
TLR9, Ifih1) that can also be activated by damaged or dysregulated endogenous DNA!24%4¢ Therefore,
our microglial time-course analysis shows a prominence of DNA and RNA detecting immune receptors
within the second phase of up-regulated MNMs, suggesting that nucleic acids activate inflammatory
pathways as neuronal injury and disease progress (Fig. 2G). Additionally, we find that these sensors are
co-expressed with genes associated with specific signaling pathways as disease progresses (Fig. 2C, 2D,

Supplementary Fig. 2A, 2B). For example, M_UP1 is enriched for genes related to the IL1 signaling
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pathway and complement cascades, whereas M_UP2 is enriched for genes of the IL6 signaling pathway

and phagocytosis (Fig. 2C, 2D, Supplementary Fig. 2B).

MNMs also provide refinement of previously reported microglial changes during disease!®*°. For example,

1847 is split between

down-regulation of homeostatic microglial markers previously reported in disease
two modules, M_DOWN1 and M_DOWN2, that represent distinct biological pathways (e.g. M_DOWN1
for prostaglandin synthesis and phagocytosis; M_DOWN2 for natural killer cell activation and positive cell
cycle regulation; Fig. 2C, 2G, Supplementary Fig. 2A, 2B) and respond differently to microglial stimulation
by Abetad2 and IL-4 in cell culture (Supplementary Fig. 2C ). Lastly, we note that known common and
rare disease genes occupy several different modules: M_UP1 contains APOE, CXCR4, GRN, CSF1, PRNP,
5QSTM1, TYROBP, GBA; M_DOWN1 contains BIN1, PVRL2, PLCG; M_UP2 contains TREM2, INPP5D;
M_DOWN2 contains PICALM; and M_UP3 contains PSEN1 and CD33 (Fig. 2C, upper panel). This
annotation provides a bridge between casual disease factors and microglial stage-specific disease biology
that can potentially inform our understanding of the factors that drive disease mechanisms.

These varied observations support that MNMs delineate distinct microglial transitions or states
that accompany neuropathological disease progression from early neuronal dysfunction through

1820 to implicate

progressive injury and neuronal cell death, building upon prior observations
accompanying microglial functions and candidate driver genes. These modules thus provide a detailed

framework for understanding phases of microglia transition related to early and later disease stages in

neurodegenerative tauopathies.

Overlap of module driver genes and transcription factors indicate substantial cross talk
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Having assessed the relationship of each module to disease stage, we next moved to query the
relationship of MNMs to each other. We reasoned that understanding the regulatory relationships that
bridge different neuroimmune states is critical to predicting the effects of targeting these pathways for
therapeutics. Using experimental gene perturbation data available through the Broad Institute’s
Connectivity Map*® (see Methods), we observed that the effects of disease-related changes in MNM gene
expression are not confined to the genes occupying the same MNM, but rather can effect disease-related
changes of other MNMs (Supplementary Fig 3A). For example, perturbation of genes in the earliest up-
regulated module, M_UP1, significantly upregulates genes within the subsequently up-regulated modules
(M_UP2 and M_UP3) and downregulates genes within the down-regulated modules (M_DOWN]1,
M_DOWN2, M_DOWN3, M_DOWN4) (Supplementary Fig 3A; Methods). These observations that genes
within the early up-regulated MNMs can drive later MNMs suggests that MNMs capture transitions from

early microglial states that drive subsequent states as disease progresses.

To further delineate microglial transitions captured by MNMs, we assessed their gene promoters for
shared experimentally validated transcription factor binding sites (TFBS). Nearly all MNMs showed high
TFBS overlap, consistent with shared transcriptional drivers. However, two modules, M_UP1 and M_UP2
had genes with very distinct TFBS enrichments from each other (Supplementary Fig. 3B). This was despite
substantial direct PPl connections between the modules (Supplementary Fig. 3C) and evidence of positive
driver effects of M_UP1 genes on M_UP2 expression (Supplementary Fig. 3A). Therefore, while early
MNMs are poised to be highly integrated at the level of regulatory drivers with later or concurrent, MNMs,

M_UP1 and M_UP2 appeared to be driven by distinct candidate regulators.

Identification of the inflammasome and anti-inflammasome related modules
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To assess potential regulatory cross-talk among M_UP1 and M_UP2 genes in more detail, we re-clustered
their genes to highlight any co-expression relationships that may exist between them (Fig. 3A; Module A
and Module B). This resulted in two modules that are both up-regulated early in disease with nearly
identical trajectories (Fig. 3B, 3D), but with strongly anti-correlated gene-module connectivity (anti-
correlating kME, Fig. 3C), suggestive of opposing or competing pathways®. This is not an artifact of our
transcriptional analysis, as independent CMAP gene perturbation experiments validate that gene
overexpression has opposing effects on the genes clustered within these two modules (Fig. 3F; Methods).
Other independent data confirm these relationships, in single cell RNA sequencing studies of mouse?® and
human brain?® (Fig. 3E, Supplementary Fig. 4C), and at the level of PPl (Supplementary Fig. 4A).
Furthermore, both modules are reproducible in independent transcriptomic datasets from mutant MAPT

20,35

transgenic mice?®3®, microglia isolated from mutant APP*’/PS%* transgenic mice, and human dementia

brain?®33

, verify their robustness across mouse models of dementia and their relevance to human disease
(Supplementary Fig. 4B, 4D). These findings support the identification of two highly conserved microglial-

enriched modules that are up-regulated in disease, but that include polarized signaling pathways, which

we hypothesized were poised for regulatory cross-talk.

Module annotation and pathway analysis (Methods) identified the NLRP3 inflammasome and type 1-
interferon response pathways as defining core components of these two modules (Fig. 3G, 3H), which we
accordingly named the “inflammasome” and “anti-inflammasome” modules. The NLRP3 inflammasome
is assembled downstream of cellular stressors and activated by the detection of various stimuli'?, including
pathological Abeta*>*°, to promote pro-inflammatory states. Similarly, pathological Abeta rapidly and
specifically stimulates the expression of the inflammasome module eigengene in microglia, both in vivo
and in vitro (Fig. 3l, Supplementary Fig. 4F). In contrast, the prominent pathway within the anti-

inflammasome module is the type-1 interferon response. Microglial isolated from mice overexpressing
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beta-interferon show both up-regulation of the anti-inflammasome module and down-regulation of the
inflammasome module, in a manner dependent on the type 1 interferon receptor, IFNAR1 (Fig. 3J).
Consistent with this finding, type 1 interferon is a known suppressor of the NLPR3 inflammasome®?, and
NLPR3 inflammasome activation has recently been shown to inhibit type 1-interferon signaling®2.
Furthermore, at the center of the anti-inflammasome module PPl map is MDAGS (Ifihl), a receptor of
dsRNA that can activate type 1 interferon response downstream of viral detection or chromatin
destabilization***>°3 (Fig. 4B). These data provide multiple lines of evidence supporting that these two
early up-regulated microglial modules represent opposing states, likely orchestrated, at least in part, by

type 1 interferon signaling as a key polarizing driver.

Type 1 interferon is not only a classic activator of acute anti-viral immunity, but more recently it has been
demonstrated to be a critical driver of immunosuppression in the context of chronic viral infections>**°.
Several features of the anti-inflammasome module suggest it too may represent aspects of interferon-
mediated immunosuppression, including its anti-correlation with the inflammasome module, and its

)>#56-58 and inhibitors

inclusion of genes that function as immune checkpoints (Cd274 (PDL1), I110rb, Lag3
of immune activity (Usp18°°%%, Nfkbiz, Nfkbia, Nfkbie, Tgfbr253%%). Among these genes is Usp18, an
established negative feedback suppressor of type 1 interferon anti-viral immune activity>>%%5% that is
also highly connected with the anti-inflammasome module in microglia treated with interferon-beta
(Supplementary Fig. 4G). Consistent with Usp18 being a critical driver of the anti-inflammasome module,
we found that gene co-expression relationships in the anti-inflammasome module are completely
disrupted by Usp18 knockout, without any effect on the inflammasome module (Fig 4C). Furthermore,
the inflammasome module is highly up-regulated in the Usp18 knockout mouse in an IFNAR1 dependent

fashion, suggestive of “hyperimmune” activation of the inflammasome module in the absence of Usp18

and the anti-inflammasome module (Fig. 4D). These data strongly support a mechanistic model, wherein
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interferon beta drives the anti-inflammasome and inhibits the inflammasome module through activation
of immune suppressors, including Usp18, implicating interferon beta as a potential suppressor of immune
activity in the chronic phase of neurodegenerative tauopathies (Fig. 4E), similar to what has been reported

in chronic viral infections®%%>¢,

Viral response mechanisms link genetic risk factors across different Tau-associated dementias

Since gene expression changes on their own may represent causal, reactive or compensatory changes, we
integrated genome-wide common genetic risk using MAGMA?® to identify whether any of the identified
MNMs enrich for causal genetic factors associated with tau-related dementias. First, we identified the
earliest interconnected MNM genes present in pre-symptomatic disease tissue and named them early
MNM submodules, reasoning that casual disease pathways would enrich among the earliest MNM
components to appear in disease (Supplementary Figure 5A, 5B, 5E; see Methods). We verified that

181928 and human?® single cell

early MNM submodules enrich for microglial signatures defined from mouse
studies (Supplementary Fig. 5C, 5D). We next tested all MNMs, including the early submodules, for
module-wide enrichment of disease risk genes associated with FTD, AD and PSP compared to controls,
based on published GWAS studies®7° (see Methods, Figure 5A). We found that the common genetic risk
associated with AD, FTD and PSP is not randomly distributed, but shows distinct patterns of enrichment:
AD risk with M_UP3, FTD risk with early_UP1, FTD risk with early DOWN1, PSP risk with early DOWN1
(Fig. 5A). Each of these modules links distinct glial immune-related genes and associated pathways to
disease causality, including increased exogenous antigen presentation and viral defense with AD,

increased microglial immune activation and phagocytosis with FTD, and suppressed anti-viral response

with both FTD and PSP (Fig. 5B, 5C).
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To independently validate these disease-module relationships, we performed confirmatory testing using
a cross-disorder exome array dataset that included AD, FTD, PSP and control cases’*. The exome array
data confirmed significant associations between AD and M_UP3 (beta = 0.19 p<0.001; Supplementary Fig.
5F), FTD and early UP1 (beta = 0.25, p<0.001) and FTD and early DOWN2 (beta = 0.15 p<0.001)
(Supplementary Fig. 5F), but not PSP, perhaps because the exome array data set is too small and therefore
underpowered for PSP’* (Methods). Providing additional validation is the presence of transcription
factors within these modules that are capable of inducing the disease-associated microglia gene
expression patterns, including Spi1(PU.1)’? within the AD associated module (M_UP3) and Zeb2 within

the FTD and PSP associated module (early_ DOWNZ1) (Fig. 5B, Supplementary Figure 5G).

We note that viral response is a commonality among the modules enriched for common genetic variants
contributing to susceptibility for these three dementias that involve tau pathology, albeit to different
extents (M_UP3, and early_DOWN1) (Fig. 5B, 5C). This suggested a potential causal relationship between
tauopathy and viral response. In the case of AD, the causal association is with late up-regulated viral
response pathways, whereas for FTD and PSP the causal association is with early down-regulated anti-
viral response pathways (Fig. 5B, 5C, Supplementary Figure 5E). To test whether viral response pathways
were also engaged by pathological Tau, we identified the biological pathways most correlated with Tau
hyperphosphorylation in the TPR50 mouse brain (Methods), and indeed observed that genes involved
with virus detection and anti-viral response were enriched (Supplementary Figure 5H,1,J), consistent with

the activation of viral response pathways in concert with tau pathology in disease tissue.
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Discussion

Through an integrative systems biology approach, we have identified microglia immune networks related
to specific stages of neurodegeneration modeled in mice harboring mutant Tau protein. Combining whole
tissue and cell type specific data from multiple divergent mouse transgenic lines and strains, we identified
seven conserved microglia modules that were also represented in post mortem tissue from patients and
controls. By integrating data from brain tissue with sorted cell data, we achieved a unique perspective on
neuroinflammatory signaling in neurodegeneration that we show neither can achieve on its own. Our
results delineate a detailed time-course of microglial transitions across stages of progressive disease
pathology that highlight specific immune receptors, biological pathways and regulatory factors at each
stage. Furthermore, although each of the modules captures distinct pathways, our analysis of regulatory
overlap suggest they are not entirely isolated, but rather are highly linked pathways, whose central
components and core hubs transition as disease progresses through different stages. Within this robust
framework, MNNs differentially implicate human disease genes with specific neuroimmune pathways that
both recapitulate prior known biological relationships and identify new relationships between specific

neuroimmune pathways and different disorders for further study.

Our refined analyses of microglia-associated changes across tauopathy suggest that early immune
activation gives way to chronic immunosuppression, potentially driven by activation of interferon beta
downstream of cytosolic dsRNA detection. In support of this is the observation that interferon beta acting
through IFNAR1 is a known driver of chronic inflammatory states in cancer and chronic viral infection®.
Furthermore, dsRNA detection can trigger interferon beta downstream of chromatin destabilization®.
Here we find that interferon beta activates genes in the anti-inflammasome pathway capable of blocking

hyperimmune activation, including Usp18%, and suppresses genes of the inflammasome module that
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participate in innate immunity. Furthermore, we find the cytosolic dsRNA receptor Ifih1 (MDA5) and
associated RIG1 pathway at the core of the anti-inflammasome module PPI, and both dsRNA detection
and interferon pathways to be highly correlated with pathological Tau burden (Supplementary Fig. 5H,
51, 5J). These observations suggest that factors related to the accumulation of pathological Tau might
trigger the interferon pathway through dsRNA detection. This is particularly salient based upon the recent

73,74

observation that pathological Tau drives chromatin destabilization’>’%, a known source of endogenous

4453 Combined, our results

dsRNA that can activate Ifihl (MDA5) and trigger an interferon response
present a parsimonious model wherein dsRNA, released following chromatin destabilization in injured
neurons in response to Tau pathology, may active chronic immune activation pathways to suppress
specificimmune signaling (the inflammasome module) and activate anti-inflammasome pathways to alter
cellular functions including protein ubiquitination, autophagy, exosome formation, and translation’” (Fig.
4E). These observations predict that inhibition of the anti-inflammasome module, either through blockade
of dsRNA, IFNAR1, or immune checkpoints within the module (PD-L1) would reduce progressive immune
dysregulation triggered by pathological Tau and, at least in part, restore homeostatic microglia damage
response mechanisms. These observations suggest an important causal connection between pathological
Tau, viral control and the interferon response that has not previously described. Interestingly, interferon
has also been implicated as a driver of microglial dysfunction in aging, suggesting interferon-driven
immunosuppression in aging may also contribute to age related susceptibility to neurodegeneration’.

Future functional and mechanistic studies will be needed to experimentally test and extend these

observations, but they have potential therapeutic implications.

Genetic risk factors for AD, FTD and PSP further implicate roles for viral defense mechanisms in causal
disease biology. Interestingly, the specific genes and pathways implicated differ between AD and

FTD/PSP. AD genetic risk factors causally implicate antigen presentation pathways that increase in late
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stages in tauopathy models, whereas FTD and PSP risk factors converge upon anti-viral genes that are
down-regulated in microglia very early in the mouse tauopathy models. Our findings suggest for the first
time that early loss of specific anti-viral and microglial maintenance factors may be causal contributors to

disease progression early in primary tauopathies.

Our findings predict that microglia may contribute to disease in a stage-specific manner by linking
progressively changing disease-associated stimuli into an integrated, multi-cellular signaling network that
sets the chronic course of dementia. More specifically, our observations suggest that early in tauopathy
there is loss of microglial homeostasis including specific viral defense functions that promote disease
progression. Further, as disease progresses and pathological Tau accumulates, it drives activation of
dsRNA detection pathways, possibly through chromatin destabilization®, to further suppress healthy
immune functions and contribute to cellular dysfunction and disease propagation. From this perspective,
different stages of dementia are associated with different levels of immune activation, and as disease
progresses into its clinical phase, these analyses suggest that it is likely a state of chronic immune
suppression that may promote disease progression and contribute to chronic cellular dysfunction, rather

than immune activation.
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Methods
Data Set Acquisition and Filtering
Both RNAseq datasets used as input for consensus WGCNA were previously generated. The TPR50

dataset?°

includes gene expression data from frontal cortex dissected from male mice expressing P301S
MAPT or WT controls (TPR50 transgenic model’®) in three different genetic backgrounds (C57BL6/J, F1
C57BL6/J x DAB, F1 C57BL6/J x FVB), and includes samples collected at 3 months of age (n=6 per group)
and 6 months of age (n=5-6 per group). The Tg4510 microglia dataset includes gene expression data
obtained from microglia purified using C11b FACS collected from mice expressing P301L MAPT and WT
controls (rTg4510 transgenic model®®), pooled to include microglia from 8-10 forebrains per sample, with

n = 4 replicate samples per time points (2, 4, 6, and 8 months of age) (AMP-AD Knowledge Portal

(d0i:10.7303/syn2580853). Data were filtered for low read counts (>80% of the sample with > 10 reads

with HTSeq quantification) and normalized using log2-transformation and linear regression prior to use

for consensus WGCNA and module expression trajectory analysis, as previously described?°.

Additional publicly available datasets were used throughout the study for validation or comparison.
Mouse datasets consist of microarray or RNAseq transcriptomics data from a variety of transgenic mice
models — Tg4510%°, PS2APP3%, GRN®, USP18%, IFNAR1®, 5xFAD3!, CK-p25%°, Zeb2’” and in vitro and in
vivo treatments — Abetad2’®7°, [FN-beta-expressing AAV7, IL4%, IFN-gamma®*'. Human postmortem data

2034 and PSP temporal cortex®. IRB exemption was

consist of AD temporal cortex®, FTD frontal cortex
obtained from the UCLA IRB to authorize use of de-identified human postmortem brain RNAseq data in

this study.

Microarray or RNAseq datasets downloaded from the Gene Expression Omnibus (GEO) were read into R
and processed as follows. Microarray data were log2-transformed and normalized by quantile

normalization. Gene counts were filtered to remove low read counts (>80% of the sample with > 10 reads
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wth HTSeq quantification), corrected for guanine-cytosine content, gene length and library size, and log2-
transformed using the CQN package in R®. The resulting data was used as an input to test module

preservation, average gene expression and/or eigengene expression.

mRNA Weighted Co-expression Network Analysis

In order to identify gene co-expression networks present both in purified microglia and frontal cortical
brain tissue, and across multiple transgenic mouse strains and genetic backgrounds, we utilized consensus
WGCNA as previously described?® using the WGCNA R package?®, applied to the TPR50 dataset of forebrain
RNAseq from mice aged 6 months, and the Tg4510 dataset of purified microglia (2,4,6 and 8 months),
described above. The input data were generated from (1) microglia purified from P301L MAPT and WT

|39

mice from the Tg4510 model* at ages 2, 4, 6 and 8 months (n=4 mice per condition) (AMP-AD Knowledge

Portal (doi:10.7303/syn2580853), and (2) frontal cortex from P301S MAPT and WT mice from the TPR50

model with three different genetic backgrounds (C57BL6/J, F1 C57BL6/J x DAB, F1 C57BL6/) x FVB) at 6

months of age (n=5-6 per group)?, a period with extensive gliosis and neuronal Tau pathology but prior

to frank atrophy®.

Biweighted mid-correlations were calculated for all pairs of genes, and then assigned similarity matrices
were created using the Consensus WGCNA method as previously described®. In the signed network, the
similarity between genes reflects the sign of the correlation of their expression profiles. The signed
similarity matrix was then raised to power B to emphasize strong correlations and reduce the emphasis
of weak correlations on an exponential scale. A thresholding power of 14 was chosen (as it was the
smallest threshold that resulted in a scale-free R2 fit of 0.8) and the consensus network was created using
the function blockwiseConsensusModules() to calculate the component-wise minimum values for
topologic overlap (TOM), with parameters set as networkType = “signed”, deepSplit = 2, detectcutHeight

=0.995, consensusQuantile = 0.0, minModulesize = 100, mergeCutHeight = 0.2. Using 1 - TOM (dissTOM)
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as the distance measure, genes were hierarchically clustered. The resulting modules or groups of co-
expressed genes were used to calculate module eigengenes (MEs; or the 1st principal component of the
module). Modules were annotated using the GOElite package®®. We performed module preservation
analysis using consensus module definitions®. MEs were correlated with transgenic condition to find
disease-associated modules. Module hubs were defined by calculating module membership (kME) values
which are the Pearson correlations between each gene and each ME. Gene expression was correlated
with pT231 Tau levels measured by ELISA to calculate the “gene significance” relationship with pT231 Tau,
as defined by the WGCNA method?®, using gene expression data from the TPR50 model (6 months, n=36),
and this was further correlated (Pearson’s) with kME to assess the relationship between pT231 Tau and
gene-module connectivity. All network plots were constructed using the Cytoscape software®. Module
definitions from the network analysis were used to create synthetic eigengenes from which to calculate

the expression trajectory of various modules in different gene expression datasets.

Clustering of gene subsets

To apply gene co-expression methods to understand co-expression relationships among subsets of
module genes in either the original consensus dataset, or in the TPR50 dataset of pre-symptomatic mice
at 3 month of age, we again used the WGCNA package?®. Biweighted mid-correlations were calculated
for a subset of genes from selected consensus modules to create an adjacency matrix that was further
transformed into a topological overlap matrix (with TOMType = “unsigned”). Using 1 - TOM (dissTOM) as
the distance measure, genes were hierarchically clustered using the following parameters (deepSplit = 2,
detectcutHeight = 0.999, minModulesize = 40, dthresh=0.1, softPower =7). The resulting modules, or
groups of co-expressed genes, were used to calculate module eigengenes (MEs; or the 1st principal
component of the module). The significance of intramodular connectivity was assessed for each module

using a permutation test (10,000 permutations), and all modules were confirmed to have permuted p-
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value <0.001. “Early submodules”, described in Figure 5 and Supplementary Figure 5, were derived by re-
clustering M_UP1 and M_UP2 genes to generate “earlyUP” modules, or M_DOWN1, M_DOWN2 and
M_DOWNS3 genes to generate “earlyDOWN” modules, in the 3 month of age frontal cortex TPR50 dataset
previously described®. “Inflammasome and anti-inflammasome modules”, described in Figure 3-4, were
derived from re-clustering M_UP1 and M_UP2 genes in the consensus WGCNA input datasets (purified

microglia from the Tg4510 model and frontal cortex TPR50 dataset (6 months of age)).

Module Preservation Analysis

We used module preservation analysis to validate co-expression in independent mouse and human
datasets. Module definitions from consensus network analysis were used as reference and the analysis
was used to calculate the Zsummary statistic for each module. This measure combines module density
and intramodular connectivity metrics to give a composite statistic where Z > 2 suggests moderate

preservation and Z > 10 suggests high preservation®.

Module Gene Set Enrichment Analysis

Gene set enrichment analysis was performed using a two-sided Fisher exact test with 95% confidence
intervals calculated according to the R function fisher.test(). We used p values from this two-sided
approach for the one-sided test (which is equivalent to the hypergeometric p- value) as we do not a priori
assume enrichment®. To reduce false positives, we used FDR adjusted p-values®” for multiple
hypergeometric test comparisons. For cell-type enrichment analysis we used already published mouse

brain dataset?’

. The background for over-representation analyses was chosen as total genes input into the
consensus analysis (overlap of genes expressed in Tg4510 microglia and TPR50 frontal cortex RNAseq

datasets).
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To test module enrichment for single cell microglial gene expression signatures, we used signatures
defined from published single-cell studies pertaining to microglia and/or neurodegenerative

disease!®19282977 Spacifically, for disease-associated microgliat®*®

, we set cluster signatures to be the top
100 differentially expressed genes between two microglia clusters, as defined in their corresponding
publications. For microglial and macrophage clusters defined from young and aged mouse brain in?é, we
defined clusters signatures as published except duplicated genes were removed among the young cluster
group (C1, C2a, C2b, C3, C4, C5, C6, C7a, C7b, C7c, C8, C9, mono_macA, mono_macB), and aged cluster
group (aging_Cla, aging_Clb, aging C2, aging_C3, aging_C4) to increase the distinctiveness of each
cluster’s geneset. To define genesets from the single-cell microglial trends from injured mouse brain
published in®®, we used the genes with fold change >1.5 in control vs injured, and injured vs control mice,
respectively, to define the injury_C1 and injury_C2 genesets. For human microglial gene clusters defined
in?°, we defined cluster signatures as genes with expression fold >1.8 compared to any other clusters. For
Zeb2 knockout compared to control microglia, we used the published set of differentially expressed
genes’’. The background applied for over- representation analyses was set as the genes input into the

consensus analysis (overlap of genes expressed in Tg4510 microglia and TPR50 frontal cortex RNAseq

datasets).

Gene set annotation

Genes in network modules were characterized using GO-Elite (version 1.2.5), using as background the set
of input genes used to generated the modules being annotated®. GO-Elite uses a Z-score approximation
of the hypergeometric distribution to assess term enrichment, and removes redundant GO or KEGG terms
to give a concise output. We used 10,000 permutations and required at least 3 genes to be enriched in a
given pathway at a Z score of at least 2. We report only biological process and molecular function category

output.
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Protein-Protein Interaction Analysis

To assess and visualize protein-protein interactions among module genes, we used STRING (version 10.5;

https://string-db.org)® with the following setting (organism: Mus musculus; meaning of network edges:

confidence; active interaction sources: experiments and databases; minimal required interaction score:
medium confidence (0.400), max number of interactors to show: none). Data was exported and visualized

using the Cytoscape software®®.

Transcription Factor Binding Site Enrichment Analysis

Transcription Factor Binding Site (TFBS) enrichment analysis using an in-house package that incorporates
TFBS as previously described®. Briefly, we utilized TFBS position weight matrices (PWMs) from JASPAR
and TRANSFAC databases®®°! to examine the enrichment for TFBS within each module using the Clover
algorithm®2. To compute the enrichment analysis, we utilized three different background datasets (1000
bp sequences upstream of all mouse genes, mouse CpG islands, and mouse chromosome 20 sequence).
We plotted significant TFBS-module pairs (TFBS p-value < 0.05, compared to all mouse CpG islands), for
TFs shared between multiple modules, as a network plot in Cytoscape, with edges connecting TFs and

modules and edge weights proportional to the negative logio(p-value).

Connectivity Map (CMAP) Analysis

For a given module, the top 150 module genes (ranked by kME) were used as input for the QUERY app in
the Broad’s CMAP database, version CLUE (https://clue.io)®®. This signature was used to query 7,494 gene
overexpression or knockdown experiments carried out across 9 cell lines for similar (positive connectivity
score) or opposite (negative connectivity score) effects on gene expression signatures, incorporating
Kolmogorov-Smirnov statistics (a nonparametric, rank-based pattern-matching strategy) as described*®3,

Mean “connectivity scores” across all cell lines was ranked by increasing order of connectivity to the input
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module gene expression signature to generate a rank ordered list of signed perturbagen-module
connectivity scores. To identify module genes whose perturbation could reproduce the differential
expression patterns of module seen in disease, we identified genes from up-regulated disease modules
whose overexpression in CLUE had positivity connectivity scores with up-regulated modules or negative
connectivity scores with down-regulated modules, and genes from down-regulated disease modules
whose down-regulation in CLUE (via shRNA) had positive connectivity scores with signatures from up-
regulated modules and negative connectivity scores with signatures from down-regulated modules, using
a connectivity score cut off of |70|. Gene perturbation-module connectivity was plotted with edge length

= -log10( | connectivity score|), using Cystoscope.

MAGMA

Summary statistics for genome-wide association studies for AD’°, PSP®® and FTD®® were used as an input
for MAGMA (v1.06)%” for gene annotation to map SNPs onto genes (with annotate window = 20,20) and
the competitive gene set analysis was performed to test module associations with GWAS variants
(permutations = 100,000). All genes assigned to a given module were used as the input for each module.
Consensus modules and re-clustered modules were run as separate groups in MAGMA given that they
contain overlapping genes. Additional FDR correction was applied across all the competitive p-value

outputs from MAGMA for all modules used in the study.

Exome-based validation of MAGMA disease-module associations

Summary statistics from Alzheimer’s disease, Frontal Temporal Dementia and Progressive Supranuclear

Palsy exome array analysis were downloaded from’®. To incorporate protein-protein interaction,

summary statistics were used as input to the network burden test, NetSig®*. NetSig determines a gene’s
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network association with disease. Generalized least squares regression was used to determine if NetSig
results were enriched in gene modules. Regression covariates included gene length and mean protein
expression, including the log of these values. To account for linkage disequilibrium, error was correlated

for genes within 5 megabase pairs.

ELISA

Total tau and pT231 tau content were measured by commercial tau ELISA kits according to the
manufacturer's instructions (total tau - KHB0041; pT231 tau - KHB8051, Invitrogen). Briefly, standards,
RIPA-soluble or sarkosyl insoluble samples were applied to the ELISA plate. After washing, a biotin-
conjugated detection antibody was applied. The positive reaction was enhanced with streptavidin-HRP
and colored by TMB. The absorbance at 450 nm was then measured and the concentration of tau protein

was calculated from the standard curve.
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Figure Legends
Figure 1: Purified microglia-brain tissue consensus gene co-expression network analysis. A, Experimental
schema, showing approach for microglia-tissue consensus WGNCA and module selection to achieve
multiple microglial disease modules associated with tissue-level neurodegenerative disease inflammatory
modules. B, Cell type enrichment of modules using mRNA markers for corresponding cell types from
mouse brain (Fisher's two-tailed exact test, ***FDR<0.005, MO = myelinating oligodendrocyte?’). C,
Pearson’s product-moment correlation (n = 12413 genes) of module eigengene connectivity in consensus
)20

module compared to tissue-level neurodegeneration module (NAS or NAI)*°. D, Module enrichment for

mouse microglia single cell cluster signatures (as defined in?; Fisher’s two-tailed exact test, *FDR<0.05,
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**FDR<0.001, ***FDR<0.005). E, Scatterplot showing Pearson’s correlation of gene-module connectivity
(kME) and sample-by-sample correlation of gene expression and pT231 Tau levels (n=36) in TPR50 mouse
brain (frontal cortex, 6 months of age, n=18 per group of WT or P301L MAPT; P-values obtained from
two-sided test for Pearson correlation are shown)?. F, Module preservation in human AD and control
temporal cortex (control n=308, AD n =157)33, human PSP and control temporal cortex (control n=73, PSP
n =83), and human FTD and control frontal cortex from two independent datasets (dataset 1% control
n=14 , FTD n=16; dataset 2%°: control n=8, FTD n=10). The bottom line is at the lower cut off for
preservation (Zsummary = 2) and the upper line in at the cut off for high preservation (Zsummary = 10) as
defined in®. G, Protein-protein interaction (PPI) network plot of among all genes from tissue-level NAI
(left) and combined microglia-enriched consensus modules (MNMs; right), with nodes colored by GO and

KEGG categories, as shown.

Figure 2: Microglia-tissue consensus module microglia disease time-course and pathway annotation. A,
Signed Pearson’s correlation of the module eigengene (ME) calculated in the rTg4510 microglia gene
expression dataset at each age (unpaired two-tailed T-test; n=7 modules, n=4 mice per genotype (P301L
MAPT or WT) per timepoint; *p-value<0.05, **p-value<0.01, ***p-value<0.005). Graphed with theoretical
zero plotted at time zero. B, Module PPl network enrichment p-value (p-value calculated as described
in%®). C. Select module genes (with disease genes in red), enriched gene ontology terms (Z-score >2),
transcription factors (TF) with binding site enrichment (labels are bold and italic if the TF is unique to one
module, blue if the TF is a hub gene in any module, and red if the TF is a hub gene in the same module; p-
value <0.05 compared to whole genome CpG islands), and module genes that are receptors of pathogen
or damage associated molecular patterns (“immune sensors”). D. Protein- protein interactions among top
150 module genes (ranked by kME) with enriched pathway genes labeled (GO-Elite®* permuted Z score
>2). E, Module enrichment heatmap for top 100 genes differentially expressed between progressive

microglia single cell states, as indicated, Hom = homeostatic, DAM1 = type 1 disease-associated microglia
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(DAM), DAM2 = type 2 DAMs, as defined in*®; n=7 modules with 4 comparisons per module, *FDR <0.05,
**FDR<0.005, ***FDR<0.001. F, Differential module expression in purified microglia following treatment
with IFN-gamma (n=8) compared to untreated controls (n=4) (two-tailed unpaired T-test, human fetal
microglia cells, IFNg at 200u/mL for 6h or 24h, GSE1432*!). G, Model showing microglia transitions across

progressive disease stages based on annotation of microglia-tissue consensus modules (MNMs).

Figure 3: Polarized immune signaling networks are up-regulated early in disease and include signaling
cross-talk among up-regulated microglia module genes. A, Experimental schema for identifying opposing
regulatory networks among up-regulated microglia module genes. B, Scatterplot of module A and module
B eigengenes calculated in Tg4510 purified microglia samples (n = 32). C, Scatterplot of gene-module
connectivity scores (kME) with module A and module B calculated across Tg4510 purified microglia
samples (n=32 samples, n = 899 genes). D, Signed Pearson’s correlation of the module eigengene (ME)
calculated in the rTg4510 microglia gene expression dataset at each age (n=7 modules, n=4 mice per
genotype (P301L MAPT or WT) per age, ages = 2, 4, 6 and 8 months, * two tailed p-value of Pearson’s
correlation < 0.005). E, Module enrichment heatmap of single-cell microglial gene expression signatures
from indicated published single-cell studies (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.01,
***FDR<0.005 corrected for 2 modules and 34 total cluster signatures as defined in Hammond et al.,
2018%, Keren-Shaul et al 20178, Mathys et al. 2018!°; Hom = homeostatic, DAM1 = type 1 disease-
associated microglia (DAM), DAM2 = type 2 DAMs, as defined in'®; from Mathys et al. 2018%°: Hom =
homeostatic (cluster 2), Earlyc3 = early response (cluster 3), Earlyc7 = early response (cluster 7), Late =
late response (cluster 6)). F, Barplots showing CMAP connectivity scores between overexpression of a
given gene (n=2161 genes) and inflammasome (pink) and ant-inflammasome (blue) modules, ordered
from left to right by difference between anti-inflammasome and inflammasome module connectivity
scores. Top 5 highest scoring module genes shown for each module with their ranked order among 2161

CMAP overexpressed genes. G, Module assignment and module connectivity scores for components of
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NLRP3 inflammasome complex and type 1 interferon response. H, Gene ontology terms significant for
each module (using all module genes, permuted Z-score > 2). I, Module preservation and trajectory of
average module gene expression of the inflammasome and anti-inflammasome modules in cultured
microglia treated with oligomeric Abeta42 or vehicle control (n=3 per group, GSE556277°). J, Trajectory of
inflammasome and anti-inflammasome module eigengenes in mouse microglia purified from IFNAR
knockout or wild-type mice infected with IFNb expressing or control AAV (unpaired two-sample Wilcoxon
rank-sum test, WT control-virus n=3, IFNAR knockout control-virus n=7, WT IFNb-virus n=5, IFNAR

knockout IFNb-virus n=7, GSE984017).

Figure 4: Inflammasome and anti-inflammasome modules bridge microglial sensors, mediators and
checkpoints. A, Module gene co-expression plot of inflammasome (pink) and anti-inflammasome (blue)
module genes with a distributed subset of genes labeled, and the list of transcription factors with module-
wide binding site enrichment adjacent to each module (p-value relative to whole genome CpG islands <
0.05). B, PPI maps with associated gene ontology pathways highlighted for the inflammasome (pink) and
anti-inflammasome modules (blue). C, Module preservation of inflammasome and anti-inflammasome
modules, and D, module eigengene trajectory of inflammasome module in Usp18 knockout, IFNAR1
knockout, double knockout and WT mouse brain (two-tailed unpaired T-test; n=3 per group, GSE61499%).
E, Summary model of immune signaling networks represented by inflammasome and anti-inflammasome

module and their interplay.

Figure 5. Module enrichment for GWAS variants for AD, FTD or PSP. A, Module enrichment for disease
variants for AD’°, FTD®’, or PSP®® (FDR corrected, two-sided competitive gene-set analysis p-value from
MAGMA?®’; horizontal line demarcates -logl0(FDR) = 1, “anti” = anti-inflammasome). B, Gene co-
expression network plots of top 25 genes, ranked by kME, from each disease variant-associated module,

with the list of transcription factors with enriched binding sites to right of each module network plot
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(“TFBS”; TFs with binding site enrichment p-value <0.05 compared to whole genome CpG islands; unique
TFs in bold). C, Gene ontology terms enrichment among corresponding module genes (permuted Z-score

>2).

Supplementary Figure 1. A, Module enrichment for human microglia single-cell cluster signatures,
clusters labeled as defined in?® with the following abbreviations: “c1” labeled = combined c1, c3, c6_1,
c11 clusters, “c13” labeled = combined c13_1 and c13_2 clusters, “c15” labeled = combined c15_1, c15 2
clusters, “c9/c14” labeled = combined ¢9_1, ¢9_2, c14 1, and C14_2 clusters (Fisher’s two-tailed exact
test, *FDR<0.05, **FDR<0.001, ***FDR<0.005). B, Scatterplot showing Pearson’s correlation of gene-
module connectivity (KME) and sample-by-sample correlation of gene expression and pT231 Tau levels
(n=36; in TPR50 mouse brain; frontal cortex, 6 months of age, n=18 per group of WT or P301L MAPT; p-
values obtained from two-sided test for Pearson correlation are shown). C, Protein-protein interaction
(PPI) networks plots of the tissue-level NAl module (left) and combined MNM modules (right) showing PPI
node that overlap between the two (in magenta: 65% of NAI PPl nodes overlap with MNM; and in
turquoise: 59% of MNM PPl nodes overlap with NAI. D, Module preservation in three independent
datasets of models expressing mutant MAPT: PS19 model (frontal cortex, n = 10 WT, n = 8 P301S MAPT)%,
JNPL3 model (spinal cord, n = 12 WT, n=12 P301L MAPT, data obtained from the AMP-AD Knowledge
Portal), and Tg4510 model (forebrain, n = 16 WT, n = 16 P301L MAPT; data obtained from the AMP-AD
Knowledge Portal). The bottom line is at the lower cut off for preservation (Zsummary = 2) and the upper
line in at the cut off for high preservation (Zsummary = 10), as defined in®. E, Module preservation
heatmap in microglia purified from mouse models of Alzheimer’s pathology (5xFAD n= 5 mice per
condition, GSE65067%7; PS2APP n=5 mice per condition, GSE754313%). * Zsummary > 2 and <10 (low
preservation) and ** Zsummary = 10 (high preservations). F, Module — disease trait correlation heatmap
in microglia purified from mouse models of Alzheimer’s pathology (Tg4510 age = 6 months n=4 mice per

genotype, 5xFAD n= 5 mice per genotype, GSE65067%7; PS2APP age = 13 months n=5 mice per genotype,
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GSE754313%¢). *FDR < 0.05. ** FDR < 0.01 (n=7 modules with 3 comparisons per module) using P values
from two-sided test for Pearson correlation. G, Module enrichment heatmap for top 100 genes
differentially expressed between progressive microglia single cell states, as defined in'®, from CK-p25
mouse model (Hom = homeostatic (cluster 2), Earlyc3 = early response (cluster 3), Earlyc7 = early response
(cluster 7), Late = late response (cluster 6); n=7 modules with 9 comparisons per module, *FDR <0.05,

**FDR<0.005, ***FDR<0.001).

Supplementary Figure 2. A, Module gene co-expression plot among top 50 module genes ranked by
module eigengene connectivity (kME?®). B, Extended list of gene ontology terms significant for each
module (using all module genes, permuted Z-score > 2). C, Differential module expression in purified
microglia following treatment with oligomeric Abeta42 (two-tailed unpaired T-test with FDR correction
for 7 comparisons; primary mouse microglia cells, 10uM Abetad42 for 6h n=3, or vehicle for 6h n=3,
GSE556277°) or IL-4 (two-tailed unpaired T-test with FDR correction for 7 comparisons, mouse microglia

cells, IL4 at 100U/mL for 48h, n= 3, or untreated controls n=3, GSE77064%°).

Supplementary Figure 3. A, Experimental disease-associated gene perturbation-module connectivity.
Connectivity between disease-associated perturbations of module genes and all modules, based on gene
knockdown or overexpression experiments from CMAP, showing gene-module pairs with high
connectivity (edge weighted by connectivity score -absolute connectivity score ranging 70-100- and
colored by directionality of gene expression effect on module expression, as indicated). B, Transcription
factors (TF) with binding site (BS) enrichment within more than one module (line thickness is proportion
to -log10(pvalue) of TFBS enrichment within each connected module. All TFs shown have p-value < 0.05
of TFBS enrichment within module compared to genome-wide CpG islands). C, Protein-protein interaction

maps among top 100 genes ranked by module eigengene connectivity (kME) showing later modules share
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protein-protein interactions with genes from other modules, including modules with TFBS overlap. Genes

are colored by module, with colors as labeled in Supplementary Figure 3A and 3B.

Supplementary Figure 4. A, PPl network of combined inflammasome (pink) and anti-inflammasome
(blue) module genes showing interconnectivity among both modules. The height and width of each node
is scaled to the gene connectivity to the inflammasome (height) and anti-inflammasome (width) module
eigengenes (kME?®). B, Module preservation in human AD and control temporal cortex (control n=308,
AD n =157)*3, human PSP and control temporal cortex (control n=73, PSP n =83)*3, and human FTD and
control frontal cortex (control n=8, FTD n=10)?° and in three independent datasets of models expressing
mutant MAPT: PS19 model (frontal cortex, n = 10 WT, n = 8 P301S MAPT)%, JNPL3 model (P301L MAPT,
spinal cord, n = 12 WT, n=12 P301L MAPT, data from AMP-AD Knowledge Portal), and Tg4510 model
(forebrain, n = 16 WT, n = 16 P301L MAPT, data from AMP-AD Knowledge Portal). The bottom line is at
the lower cut off for preservation (Zsummary = 2) and the upper line in at the cut off for high preservation
(Zsummary = 10)®*. C, Module enrichment for human microglia single-cell cluster signatures, clusters
labeled as defined in?° with the following abbreviations: “c1” labeled = combined c1, ¢3, c6_1, c11 clusters,
“c13” labeled = combined c13 1 and c13_2 clusters, “c15” labeled = combined c15_1, c15_2 clusters,
“c9/c14” labeled = combined c9 1, ¢9 2, c14_1, and C14_2 clusters (Fisher’s two-tailed exact test,
*FDR<0.05, **FDR<0.001, ***FDR<0.005). D, Module preservation and E, trajectory of the inflammasome
and anti-inflammasome module eigengenes in microglia purified from mouse models of Alzheimer’s
pathology (unpaired two-sample Wilcoxon rank-sum test; 5XxFAD n= 5 mice per condition, GSE65067%7;
PS2APP n=5 mice per condition, GSE754313¢). F, Module preservation and module eigengene trajectory
in microglia purified from 8 month old C57BL/6 mice 48 hours following injection I.C.V. with either AB
(n=7) or vehicle (n=4) (unpaired two-sample Wilcoxon rank-sum test, GSE5718178). G, Anti-inflammasome

PPI plot highlighting genes with the highest anti-inflammasome module connectivity in microglia purified
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from IFNb or control AAV infected mice (unpaired two-sample Wilcoxon rank-sum test, WT control-virus

n=3, IFNAR knockout control-virus n=7, WT IFNb-virus n=5, IFNAR knockout IFNb-virus n=7, GSE984017).

Supplementary Figure 5. A, Experimental schema for identifying earliest submodules from up-regulated
or down-regulated microglia module genes. B, Module eigengene trajectories of up-regulated module and
submodules in early stage frontal cortex of TPR50 mouse model (unpaired two-sample Wilcoxon rank-
sum test; age = 3 months, 3 genetic backgrounds, n=18 total P301S MAPT, n=18 WT%). C, Module
enrichment heatmap of single-cell microglial gene expression signatures from indicated published single-
cell studies (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.01, ***FDR<0.005 corrected for 2
modules and 33 total cluster signatures as defined in Hammond et al., 20182, Keren-Shaul et al 20177,
Mathys et al. 2018%°; Hom = homeostatic, DAM1 = type 1 disease-associated microglia (DAM), DAM?2 =
type 2 DAMs, as defined in'®; from Mathys et al. 2018%°: Hom = homeostatic (cluster 2), Earlyc3 = early
response (cluster 3), Earlyc7 = early response (cluster 7), Late = late response (cluster 6)). D, Module
enrichment for human microglia single-cell cluster signatures, clusters labeled as defined in?® with the
following exceptions: “c1” labeled = combined c1, c3, c6_1, c11 clusters, “c13” labeled = combined c13_1
and c13_2 clusters, “c15” labeled = combined c15_1, c15_2 clusters, “c9/c14” labeled = combined c9_1,
€9_2,cl4_1, and C14_2 clusters (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.001, ***FDR<0.005).
E, Module eigengene trajectory of early _UP1 and early DOWN1 in microglia purified from Tg4510 colony
(unpaired two-sample Wilcoxon rank-sum test applied at each age, P301L MAPT and WT controls, n=4 per
condition per age, ages = 2, 4, 6 and 8 months). F, Exome-based array’* validation of disease-module
associations identified in MAGMA (beta and p-value based on NetSig® and generalized least-squares
regression, see Methods). G, Module enrichment for genes differentially up- or down- regulated in Zeb2
knockout microglia compared to controls (Fisher’s two-tailed exact test, *FDR<0.05, **FDR<0.001,
***EDR<0.005, Zeb2 microglia data source’’). H, PPI network, and I, enriched gene ontology terms (Z-

score >2) among the top 100 genes positively correlated with Tau phosphorylation (T231) (cor > 0.9 for all
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top 100 genes) and J, box and whisker plot showing distribution, median and upper and lower quartiles
of gene — pTau correlation for each gene in the GO geneset: “Interferon beta response” (G0:0035456; 74

genes), in TPR50 mouse brain (frontal cortex, 6 months of age, n=18 per group of WT or P301L MAPT).
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