

1 **Oligotyping and Genome-Resolved Metagenomics Reveal Distinct *Candidatus***
2 **Accumulibacter Communities in Full-Scale Side-Stream versus Conventional Enhanced**
3 **Biological Phosphorus Removal (EBPR) Configurations**

4 **Running Title:** Oligotyping reveals clade differences of Accumulibacter
5 Varun N. Srinivasan¹, Guangyu Li¹, Dongqi Wang^{1,2}, Nicholas B. Tooker^{1,3}, Zihan Dai⁴,
6 Annalisa Onnis-Hayden¹, Ameet Pinto¹, April Z. Gu^{1,5*}
7 ¹Department of Civil and Environmental Engineering, Northeastern University, Boston MA-
8 02115, USA

9 ²State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of
10 Technology, Xi'an, Shaanxi 710048, China

11 ³Department of Civil and Environmental Engineering, University of Massachusetts-Amherst,
12 Amherst MA-01002, USA

13 ⁴Infrastructure and Environment Division, University of Glasgow, Glasgow G12 8LT, United
14 Kingdom

15 ⁵Civil and Environmental Engineering, Cornell University, Ithaca NY – 14853, USA

16 ***Corresponding Authors**

17 April Gu, Civil and Environmental Engineering, Cornell University (aprilgu@cornell.edu)

18 20

21 **Abstract**

22 *Candidatus Accumulibacter phosphatis* (CAP) and its sub-clades-level diversity has been
23 associated and implicated in successful phosphorus removal performance in enhanced biological
24 phosphorus removal (EBPR). Development of high-throughput untargeted methods to
25 characterize clades of CAP in EBPR communities can enable a better understanding of
26 Accumulibacter ecology at a higher-resolution beyond OTU-level in wastewater resource
27 recovery facilities (WRRFs). In this study, for the first time, using integrated 16S rRNA gene
28 sequencing, oligotyping and genome-resolved metagenomics, we were able to reveal clade-level
29 differences in Accumulibacter communities and associate the differences with two different full-
30 scale EBPR configurations. The results led to the identification and characterization of a distinct
31 and dominant Accumulibacter oligotype - Oligotype 2 (belonging to Clade IIC) and its matching
32 MAG (RC14) associated with side-stream EBPR configuration. We are also able to extract
33 MAGs belonging to CAP clades IIB (RCAB4-2) and II (RC18) which did not have
34 representative genomes before. This study demonstrates and validates the use of a high-
35 throughput approach of oligotyping analysis of 16S rRNA gene sequences to elucidate CAP
36 clade-level diversity. We also show the existence of a previously uncharacterized diversity of
37 CAP clades in full-scale EBPR communities through extraction of MAGs, for the first time from
38 full-scale facilities.

39 **Introduction**

40 Enhanced biological phosphorus removal (EBPR) has been a promising technology for
41 phosphorus removal from municipal wastewater, due to its sustainable nature and P recovery
42 potential in comparison to chemical precipitation and adsorption-based approaches [1]. However,
43 conventional EBPR processes face challenges related to system stability and susceptibility to

44 variations and fluctuations in influent loading conditions such as unfavorable carbon to P (C/P)
45 ratios [2]. A new emerging process, namely, side-stream EBPR (S2EBPR) features an anaerobic
46 side-stream reactor that allows a portion of the return activated sludge (RAS) to undergo
47 hydrolysis and fermentation thus enabling influent carbon-independent enrichment and selection
48 of polyphosphate accumulation organisms (PAO). Facilities that have operated or piloted
49 S2EBPR showed improved and more stable performance [3–6]. However, several key
50 knowledge gaps still exist for this process including lack of understanding of the fundamental
51 mechanisms governing the process and differences in microbial ecology, particularly
52 functionally relevant key populations such as PAOs between the conventional and the S2EBPR
53 processes. Several studies that have characterized the microbial ecology of different process
54 configurations using 16S rRNA gene amplicon sequencing, fluorescence in-situ hybridization
55 (FISH) and quantitative polymerase chain reaction (qPCR) have failed to associate differences in
56 PAO microbial ecology with process configurations [7–10]. This is, at least partially due to the
57 challenges in identification and association of specific PAO populations with various full-scale
58 EBPR configurations. The complex and overwhelming “masking” effect of facility-specific
59 selection forces exerted on the microbial community structure makes it difficult to isolate the
60 effect of process configuration alone.

61 *Candidatus (Ca.) Accumulibacter phosphatis* (hereafter referred to as Accumulibacter or CAP) is
62 considered to be a key PAO in both lab-scale and full-scale EBPR systems [11–16]. Our current
63 understanding of the physiology, metabolic potential, transcriptional, and proteomic dynamics
64 are based on lab-scale Accumulibacter-enriched reactors from which 19 metagenome-assembled
65 genomes (MAGs) of Accumulibacter have been obtained [12, 16–20] and amongst them, only
66 one complete draft genome sequence for Clade IIA, namely Accumulibacter UW1 has been

67 reported. These MAGs have highlighted the enormous genomic diversity in *Accumulibacter*
68 clades (>700 unique genes in each clade) especially in terms of the capacity to perform the
69 different steps of the denitrification pathway and ability to metabolize complex carbon sources
70 [16]. However, besides the MAGs from lab-scale reactors, *Accumulibacter* genome assemblies
71 from full-scale systems have not been reported, possibly due to their low relative abundance (< 5
72 % based on 16S rRNA gene sequencing) [10, 14] and insufficient depth of sequencing, which
73 makes MAG extraction from metagenome assemblies difficult. Metagenomic studies have
74 indicated high-level of diversity within *Accumulibacter* populations in full-scale EBPR
75 communities [10, 14], however this diversity was not fully characterized due to the inability to
76 extract high-quality MAGs. This phylogenetic diversity within *Accumulibacter* populations
77 along with the genomic functional diversity across clades points towards ecological niche-
78 partitioning due to determinants such as type of carbon source, phosphorus levels, length of
79 anaerobic period, and presence of alternate electron acceptors such as nitrate and nitrite etc.
80 Characterization of the microdiversity along with generation of corresponding MAGs could lead
81 to a better understanding of the niche determinants of *Accumulibacter* ecology which would help
82 better inform treatment process optimization and operation.

83 Current methods to characterize clade-level differences in *Accumulibacter* populations include
84 qPCR, FISH, *ppk1* gene sequencing and metagenomic sequencing. qPCR and FISH have been
85 extensively used to characterize the clade-level differences in lab-scale and full-scale systems
86 [21–24]. However, they target only those currently known clades for which primers or probes are
87 available. Metagenomic and *ppk1* gene sequencing are untargeted analyses and are capable of
88 providing phylogenetic information, however they are cost-prohibitive and/or time-consuming
89 for routine analysis at full-scale practice. Although, 16S rRNA gene amplicon sequencing has

90 emerged to be a high-throughput and widely-used method to characterize and capture broad
91 shifts in microbial communities, it is recognized that it fails to capture the phylogenetic diversity
92 within OTUs (also called microdiversity) [25, 26]. Recent studies have highlighted the
93 importance of capturing this diversity and that genetic variation in 16S rRNA gene amplicon
94 sequences can capture meaningful ecologically distinct units [27, 28]. Recent work has argued
95 for the use of a higher similarity threshold [25, 26] or for the use of exact sequence variants
96 (ESVs) or amplicon sequence variants (ASVs) [29, 30] to more accurately characterize the
97 microdiversity in a community. Oligotyping has been proposed as a method that can distinguish
98 meaningful sequence variation from sequencing errors and can partition sequence types that
99 differ in as little as one nucleotide with the assumption that the variation in small regions of the
100 16S rRNA gene translate to phylogenetic differences [27, 28, 30].

101 In this study, we employed 16S rRNA gene sequencing, oligotyping and metagenomic analysis
102 to elucidate and compare the microbial ecology and potential functional traits of *Accumulibacter*
103 between conventional and S2EBPR process configurations in full-scale systems. The unique
104 opportunity to operate two different EBPR configurations, in parallel and separate treatment
105 trains with the same influent feed, made it possible to eliminate other influent characteristics-
106 related selection factors and, therefore enabled association of specific CAP clades with S2EBPR
107 versus conventional A2O configuration. To overcome the limitation of 16S rRNA gene
108 sequencing and OTU-based approaches in revealing microdiversity, we demonstrated and
109 validated the use of oligotyping in revealing the microdiversity within *Accumulibacter*
110 populations. The results of the oligotyping analysis were further compared and confirmed with
111 phylogenetic analysis of both full-length 16S rRNA and *ppk1* gene sequences retrieved from
112 metagenomic sequencing. In addition, using differential coverage binning, we successfully

113 assembled and binned 2 high-quality and 1 medium-quality [31] *Accumulibacter* MAGs from
114 full-scale EBPR sludge for the first time, including a distinct *Ca. Accumulibacter* clade that is
115 dominant and associated with the S2EBPR configuration. Lastly, comparative genomic analysis
116 was performed with the extracted MAGs and with previously published MAGs, to determine
117 differences in key metabolic pathways and functions including unique functions that could
118 contribute to niche-partitioning in the dynamic and complex environments in full-scale EBPR
119 facilities.

120 **Materials and Methods**

121 ***Rock Creek Pilot***

122 Full-scale testing was conducted from June 22nd to August 30th 2016 at the Rock Creek Facility
123 (Hillsboro, Oregon). Two parallel trains with separated secondary clarifiers were operated with
124 the same influent wastewater side-by-side, with one operated as conventional EBPR and another
125 one as S2EBPR configuration for comparison. The S2EBPR configuration implemented was
126 side-stream RAS fermentation with supplemental carbon addition (SSRC). In this configuration,
127 100% of the RAS was diverted to the side-stream reactor (Figure S1) for a total anaerobic HRT
128 of 1.5 hours with primary sludge fermentate addition. The side-stream reactor was mixed
129 intermittently once every week for 10 minutes during the sampling period for this study. The
130 conventional EBPR configuration was an A2O process with an anaerobic HRT of 0.7 hours.
131 Average influent flow to each treatment trains during the testing period was 5.35 MGD.
132 Throughout the testing period, process performance parameters were routinely monitored.
133 Detailed information on operation and performance is available in supplementary methods and
134 published literature [4, 6, 32].

135 ***Sampling, DNA Extraction, Amplicon Sequencing and Analysis***

136 Sampling was performed before pilot testing was started as a baseline (April 7th and April 26th,
137 2016) and during pilot testing (June 22nd, July 20th, August 2nd, August 17th, and August 30th,
138 2016). MLSS samples were collected at the end of the aerobic zone, shipped to Northeastern
139 University, Boston MA overnight on dry ice. DNA was extracted according to the MiDAS
140 protocol [33]. The extracted DNA was sent to University of Connecticut-MARS facility for PCR
141 amplification and sequencing targeting the V4 region using the primers 515F (5'-
142 GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3') [34]
143 and the amplicons were sequenced on the Illumina MiSeq using V2 chemistry using paired-end
144 (2 X 250) sequencing [35]. Raw reads have been submitted to NCBI under the BioProject
145 accession number PRJNA530271.

146 The sequences were trimmed to remove primers and barcodes, quality filtered using sickle v1.33
147 [36] with a minimum quality score of 20 and analyzed as described in Kozich et al., [35].
148 Consensus taxonomy of OTUs was determined using the 80% cugtoff using the MiDAS (v123)
149 database [33] (details of the analysis are provided in the supplementary methods). Amplicon data
150 was rarefied to the minimum total sequence count (12090 sequences) across all samples. All data
151 and statistical analysis were performed in R (for more details see supplementary methods) using
152 the following packages: vegan (Oksanen et al. 2007), ggplot2 [37], dplyr [38] and ampvis [39].

153 ***Oligotyping Analysis***

154 To generate the input sequences required for oligotyping analysis, the Kozich et al., [35]
155 pipeline, described above, was executed without the preclustering step as recommended by Eren
156 et al. [30]. After chimera removal and denoising sequences, the 16S rRNA gene amplicon (V4
157 region) sequences classified as *Ca. Accumulibacter* were extracted and formatted as required by

158 the oligotyping pipeline using the mothur2oligo.sh script
159 (<https://github.com/michberr/MicrobeMiseq/tree/master/mothur2oligo>). A total of 38855
160 sequences that were classified as *Ca. Accumulibacter* were extracted and used as input for
161 oligotyping analysis. The oligotyping pipeline (v2.1) was used according to Eren et al. [30] with
162 recommended best practices. Quality filtering in the oligotyping pipeline resulted in 37934 reads
163 (97.6 %). The Shannon entropy at each nucleotide position was calculated using the entropy-
164 analysis command. Starting with the highest entropy positions, 9 nucleotide positions (56, 57, 63,
165 75, 112, 113, 114, 115, 123) were selected for entropy decomposition (Figure S2). Noise filtering
166 was performed by limiting our analysis to oligotypes that occurred in at least 3 samples (-s) and
167 those that had a minimum count (-M) of 30 (~0.1 %). A total of 195 raw oligotypes were initially
168 identified based on the 9 nucleotide positions. Denoising and elimination based on the -s and -M
169 parameters resulted in 9 oligotypes.

170 ***Metagenomic Sequencing, Assembly and Genome Binning***

171 Samples from June 26th, August 2nd and August 30th, 2016 from both treatment trains were sent
172 to the TUCF Genomics center for 2 x 250 paired end sequencing on the Illumina HiSeq 2500.
173 Library preparation for metagenomic sequencing was performed using the TruSeq PCR-free
174 DNA kit. A total of 83.2 million paired-end reads were obtained. Sequences were quality filtered
175 using sickle v1.33 [36] with a quality threshold of 20 and a length threshold of 50. In order to
176 remove contamination sequences, the quality filtered sequences were then mapped to the UniVec
177 database [40] and mapped reads were removed. Paired-end reads for all 6 samples were then co-
178 assembled together using MEGAHIT [41] using a minimum contig length of 1000 to enable
179 recovery of MAGs and eliminate erroneous contigs. Samples (n=3) from each treatment train
180 were also co-assembled separately. Quality for the assemblies (total 3 assemblies) was assessed

181 using QUAST [42]. The paired-end reads obtained after Univec-filtering were mapped to the
182 assemblies using Bowtie 2.0 [43]. The resulting sam files were converted to bam, sorted and
183 indexed using samtools [44]. Duplicate reads were removed using Picard [45]. Assembled
184 contigs were then classified using Kaiju [46] with the default database. Genome binning was
185 performed using the CONCOCT [47] implementation in Anvi'o [48] with a cluster size of 350.
186 Resulting bins with >70 % completion were then manually refined in Anvi'o based on coverage
187 patterns, GC content and taxonomic affiliation. The quality of all refined bins was then assessed
188 with CheckM v1.0.11 and taxonomic classification was also obtained. Genome bins from the
189 different assemblies were dereplicated using dRep [49] and the dereplicated bins were then used
190 for downstream analysis. Bins, classified as *Rhodocyclaceae*, were extracted and paired-end
191 reads from each sample were mapped against the MAGs using bbmap (v37.78) with 90%
192 minimum identity while choosing only the best hit and matching paired-end reads. Contig-wise
193 coverage was calculated using the pileup.sh script
194 (<https://github.com/BioInfoTools/BBMap/blob/master/sh/pileup.sh>). Relative abundance of
195 genome bins was calculated using the following equation (assuming an average genome length
196 of 6 Mbp):

$$\text{Relative abundance} = \frac{\frac{\text{No. of Reads Mapped}_{\text{Bin}}}{\text{Length Mapped}_{\text{Bin}}}}{\frac{\text{No. of Reads Mapped}_{\text{Assembly}}}{\text{Average Genome Length}}}$$

197 Raw reads and identified *Accumulibacter* MAG assemblies have been submitted to NCBI and
198 are accessible under the BioProject accession number PRJNA530189.

199 ***Reconstruction of full-length 16S rRNA Gene Sequences***

200 EMIRGE [50] was used to reconstruct 16S rRNA gene sequences from the paired-end
201 metagenomic data. Exact sequence matches to oligotypes were extracted, aligned with the
202 reference sequences from He et al., [21] and a phylogenetic analysis was performed using
203 MrBayes 3.2 [51] (see supplementary methods for details).

204 ***ppk1 Annotation and Phylogenetic Analysis***

205 *ppk1* genes were annotated in the assemblies using a HMM model [52] using HMMER 3.1b2
206 (<http://hmmer.org/>). The annotated genes were then aligned with the reference sequences
207 (n=1012) using MUSCLE v3.8.31 [53] and placed on a reference backbone tree using pplacer
208 [54]. Read counts for each of the identified *ppk1* sequences were obtained using the multicov
209 tool in BEDtools [55] and the reads per kilobase million (RPKM) value was calculated.
210 Sequences with length less than 600 bp were filtered out and relative abundance of the *ppk1* gene
211 sequences was calculated using the following equation:

$$\text{relative abundance} = \frac{RPKM_{ppk1 \text{ sequence}}}{\text{sum}(RPKM)_{sample}}$$

212 ***Pangenomic and Phylogenetic Analysis***

213 All publicly available genomes for *Ca. Accumulibacter* (n=19) were downloaded and combined
214 with the CAP MAGs obtained in this study to perform a pangenomic analysis using the Anvi'o
215 5.1 [48] pangenomic workflow. Functional annotation of the MAGs was performed using
216 GhostKOALA [56]. A set of 37 marker genes were identified using Phylosift and a concatenated
217 alignment of these were used to construct a maximum-likelihood (ML) tree in RaxML version
218 8.2.11 [57] with a 100 bootstraps and with GTRGAMMA settings. For the phylogenetic analysis,
219 published *Propionivibrio* (*Propionivibrio dixarboxylicus*, *Propionivibrio militaris*, *Ca.*

220 Propionivibrio aalborgensis) and *Dechloromonas aromaticata* RCB genomes were used as
221 outgroups. The best-scoring ML tree was used. The *ppk1* gene was also annotated in all the
222 genomes and used for a phylogenetic analysis using pplacer as outlined previously.

223 **Results and Discussion**

224 ***No observed differences in Accumulibacter diversity and relative abundance were observed at***
225 ***genus or OTU-level between conventional A2O and S2EBPR SSRC configurations***

226 In this study, Accumulibacter was found to be the most abundant PAO in both EBPR
227 configurations (Figure S2) [4, 6]. The estimated relative abundance of Accumulibacter, based on
228 16S rRNA gene sequencing, increased from the start of the pilot (June 21st, 2016) until the end
229 (August 30th, 2016) in both treatment trains from an average abundance of 0.35 ± 0.05 % (both
230 conventional and S2EBPR) to 1.98 ± 0.12 % (both conventional and S2EBPR) [4, 6]. A genus-
231 level analysis did not reveal significant differences between the two EBPR configurations in the
232 diversity and relative abundance of putative PAOs such as Accumulibacter. At the OTU-level,
233 both treatment trains showed a predominance of OTU 00015 with most of the total
234 Accumulibacter relative abundance accounted for by OTU 00015 (Figure 1). The rest of the
235 OTUs were present at very low relative abundances. The results suggested that the diversity in
236 Accumulibacter populations, if any, could not be resolved using OTU-based methods. However,
237 there is still potential for finer-resolution diversity which could be masked within the OTUs.

238 ***Oligotyping reveals differences in Accumulibacter clades between S2EBPR SSRC and***
239 ***conventional A2O configurations***

240 In order to further resolve the microdiversity within Accumulibacter OTUs, oligotyping analysis
241 was performed using the individual 16S rRNA gene sequences targeting the V4 region. The
242 oligotyping analysis enabled the identification of 9 oligotypes of Accumulibacter and therefore

243 distinct Accumulibacter community structure between the two EBPR configurations. The
244 S2EBPR Accumulibacter community became increasingly dominated by Oligotype 2, during the
245 testing period, while it remained at a very low relative abundance in the conventional A2O
246 configuration (Figure 2A, Table S1). The relative abundance of Oligotype 2 increased from 31.8
247 \pm 8.1 % at the start of testing (Jun 22) to 68.0 \pm 0.2 % on Aug 17th and 62.4 \pm 1.3 % on Aug
248 30th in S2EBPR while it remained below 20 % of the Accumulibacter sequences in the parallel
249 conventional A2O treatment trains. The continuously increasing abundance of the Oligotype 2 in
250 S2EBPR over a time-series and its consistently low abundance in A2O suggests that this
251 oligotype was most likely favored and enriched by conditions in the S2EBPR configuration. In
252 comparison, predominant oligotypes in A2O were Oligotypes 5 and 6 (Figure 2A). A
253 hierarchical clustering analysis of the samples based on the oligotyping data showed distinct
254 clusters based on operating regime (Figure S4). All samples from the S2EBPR train clustered
255 together except for the sample from June 22nd which was the date when the piloting was started.
256 Samples from A2O taken during the later stages of piloting (Aug 17th, Aug 30th) clustered
257 together while the ones during the earlier stages (Jun 22nd, Jul 20th, and Aug 2nd) clustered
258 separately.

259 ***Phylogenetic analysis of oligotype sequences shows congruency with *ppk1*-phylogeny of***

260 ***Accumulibacter***

261 In order to further correlate the oligotypes to clade/species level differences in CAP and examine
262 the congruency of the oligotype phylogeny with *ppk1* phylogeny, we performed phylogenetic
263 analysis using near full-length 16S rRNA gene and *ppk1* sequences through metagenomic
264 sequencing on the samples taken on June 22nd, August 2nd, and August 30th from both
265 treatment trains. A phylogenetic analysis of near full-length 16S rRNA gene sequences

266 (extracted from metagenomic sequencing), classified as Accumulibacter and matching 5 of 9
267 oligotypes, along with reference sequences from He et al., [21], which were previously assigned
268 to clades based on congruency with *ppk1* phylogeny, revealed that the 16S rRNA gene sequences
269 matching the oligotypes were monophyletic (Figure 2B). It is important to note that multiple full-
270 length 16S rRNA gene sequences with identical V4 regions matching each oligotype were
271 obtained and they all clustered within the same clade. The sequences matching Oligotype 2,
272 which is the dominant oligotype in S2EBPR, clustered with Clade IIC/D 16S rRNA gene
273 sequences (He et al., 2007). Oligotype 6 clustered with Clade Clade IIA 16S rRNA gene
274 sequences. Oligotype 5 did not cluster with any representative 16S rRNA reference sequence at a
275 sub-clade level, but clustered with Clade II sequences. This could be due to the lack of a
276 representative reference sequences for that particular sub-clade.

277 Sub-clades within Accumulibacter has been previously resolved using the *ppk1* gene [17, 58–
278 61]. A phylogenetic analysis of *ppk1* gene sequences, extracted from metagenomic sequencing
279 and assigned clades using pplacer (Figure S5), was performed and the cumulative relative
280 abundance of sequences belonging to each clade was calculated (Figure 2C). This further
281 confirmed that Clade IIC was predominant in S2EBPR which is congruent with oligotyping
282 results. However, according to *ppk1* phylogeny, Clade IIG was the predominant clade in the
283 conventional A2O configuration at the end of testing which was not directly congruent with the
284 results using 16S rRNA oligotyping phylogeny. This could be due to the lack of representative
285 16S rRNA gene reference sequences for Clade IIG.

286 Previous research has cautioned that exact sequence variants (ESVs) or oligotypes may not
287 represent phylogenetically or ecologically significant units [62]. However, this was based on a
288 study of *Microcystis* in freshwater systems where they observed that the oligotypes observed in

289 the study were not monophyletic and did not correlate with toxin producing capability. In this
290 study, we show that the dominant oligotypes observed are distinct between EBPR configurations
291 fed with the same influent wastewater and their full-length 16S rRNA gene sequence matches
292 from metagenomic reconstruction are monophyletic. Furthermore, we show that the oligotyping
293 results agree with the phylogenetic analysis with a more robust marker gene (*ppk1*) for
294 *Accumulibacter*. It should be noted that, until now, the only way to resolve clade-level
295 differences in *Accumulibacter* has been using the *ppk1* gene or using metagenomics. Even
296 though qPCR primers for the *ppk1* gene exist for many clades, it is unclear whether these capture
297 the diversity of *Accumulibacter* sufficiently. The potential advantages of resolving clade-level
298 differences using a high-throughput method such as 16S rRNA gene amplicon sequencing
299 combined with oligotyping is significant since it will enable more cost-effective and improved
300 characterization of EBPR communities. However, the use of this method needs to be further
301 validated by comparing with other tools that can differentiate closely-related taxa in order to
302 characterize the microdiversity in a particular taxon.

303 ***Accumulibacter MAGs binned from the metagenomic sequences reveal previously
304 uncharacterized diversity in full-scale EBPR systems***

305 To further characterize the identity and metabolic capabilities of *Accumulibacter* present in the
306 two full-scale EBPR systems with different configurations, we used genome-resolved
307 metagenomics to recover 3 MAGs (RC14, RC18, and RCAB4-2) classified putatively as
308 *Accumulibacter*. The taxonomic affiliation of these MAGs was further delineated by performing
309 a phylogenomic analysis along with 19 published *Accumulibacter* MAGs [13, 17, 18, 20, 63]
310 using a concatenated alignment of 37 single-copy genes (SCG). Based on the SCG phylogeny
311 (Figure s3A), the three MAGs were confirmed to be affiliated with *Accumulibacter*. RC14 and

312 RC18 were high-quality MAGs with a completion of 99 % and 98.2 % respectively with low
313 redundancy values of 0.2 % and 0.0 % respectively. The other MAG (RCAB4-2) had a
314 completion of 77.2% and 3.1% redundancy.

315 To further delineate the clade-level taxonomy of the MAGs, the *ppk1* gene sequence from each
316 MAG was extracted and placed on the reference tree as described previously. Based on their
317 placement (Figure s3B), MAG RC14 can be classified as Clade IIC and RCAB4-2 as Clade IIB.
318 Based on both SCG and *ppk1* phylogeny, MAG RC18 does not cluster under any of the
319 canonical groupings at the sub-clade level, which suggests that it is a previously uncharacterized
320 sub-clade of Accumulibacter since MAGs from full-scale facilities have not been published
321 before. Both the SCG and *ppk1* phylogeny, suggest that RC18 would belong to Clade II.
322 Average nucleotide identity (ANI) was used to confirm the results of the phylogenetic analysis
323 (Figure S7). MAG RC14 had a > 90% ANI with Clade IIC MAGs over an alignment fraction of
324 57.0 % (BA91), 75.3 % (HKU2), 62 % (SK01), 70.8 % (SK02) and 72 % (UBA5574). This
325 would confirm the classification of RC14 as a Clade IIC genome [64]. MAG RC18 and RCAB4-
326 2 had an alignment fraction of < 10 % and < 20 % respectively with any of the other MAGs with
327 ANIs of < 85 % again reinforcing the results of the phylogenetic analysis that these are
328 previously uncharacterized clades [64]. We also calculated the relative abundance of these
329 MAGs in the metagenome and observed that RC14 (Clade IIC) was the predominant
330 Accumulibacter MAG in the S2EBPR metagenome (Figure 3C). Note that the clade affiliation of
331 these genome bins corresponds to the predominant clades observed using both oligotyping and
332 *ppk1* annotation (Figure 2). Clade IIC MAG (RC14) was the most abundant Accumulibacter
333 MAG in S2EBPR, thus, again, confirming the oligotyping approach for resolving the
334 microdiversity within CAP phylogeny.

335 The newly identified RC18 genome seems to belong to a previously uncharacterized clade while
336 RCAB4-2 is classified as Clade IIB for which there have not been any representative MAGs
337 published. Our results revealed and highlighted the as-yet uncharacterized diversity of
338 Accumulibacter. Particularly, draft genomes from full-scale systems have previously not been
339 published, therefore the MAGs obtained in this study could expand the current knowledge on the
340 genomic diversity in Accumulibacter in full-scale EBPR systems.

341 ***Comparative Genomics of Ca. Accumulibacter***

342 A comparative genomic analysis of 3 CAP MAGs obtained in this study along with 19 published
343 CAP MAGs was performed with a focus on pathways relevant to EBPR metabolism such as
344 polyP metabolism, phosphate transporters, carbon cycling, and denitrification (Figure 4).

345 ***Core EBPR Metabolism***

346 The characteristic metabolism of PAOs in EBPR is the concurrent cycling of carbon and
347 phosphorus through storage and use of intracellular polymers such as glycogen,
348 polyhydroxyalkanoates (PHA) and polyphosphate (polyP). The MAGs extracted in this study
349 (RC14, RC18 and RCAB4-2) were annotated with all genes (Figure 4 & Table S3) considered
350 essential for phosphate transport and polyP metabolism, including *pstSCAB*, *pitA*, *ppk1*, *ppk2* and
351 *ppx*. It has been postulated that the presence of the low-affinity Pit transporter is vital to the
352 PAO-phenotype [65]. The concerted action of these enzymes has been shown to be essential for
353 the PAO phenotype and are present in all Accumulibacter MAGs including the three identified in
354 this study [66, 67]. Genes for PHA synthesis, glycolysis and TCA cycle from both acetyl-CoA
355 and propionyl-CoA were shared among all the MAGs. One of the debated features of the carbon
356 metabolism in Accumulibacter is whether anaerobic glycolysis proceeds via the ED or the EMP
357 pathway [68]. The consistent presence of the EMP pathway and the absence of genes for the ED

358 pathway in the currently available 22 MAGs of *Accumulibacter*, including 3 MAGs from full-
359 scale facilities in this study, suggests that the EMP pathway is likely the predominant
360 metabolism for anaerobic glycolysis (Figure 4 & Table S3). Another uncertainty in the
361 anaerobic metabolism of EBPR is the source of the reducing equivalents for PHA formation
362 under anaerobic conditions. Current hypothesized pathways include glycolysis, anaerobic
363 operation of the TCA cycle, glyoxylate shunt and split TCA cycle [69–71]. Key enzymes for all
364 these proposed pathways are present in the 3 MAGs from this study (Figure 4). This along with
365 transcriptomic evidence from literature [11, 15, 18, 72, 73] suggests that *Accumulibacter* likely
366 possess phenotypic versatility and can utilize various pathways in various combinations,
367 depending on the availability of external substrate and intracellular polymers, for their anaerobic
368 metabolism [71, 74, 75].

369 *Carbon Metabolism*

370 One of the critical aspects of PAO-type metabolism is the uptake of low molecular weight
371 compounds such as VFAs (primarily acetate and propionate) under anaerobic conditions to form
372 PHA. The 3 *Accumulibacter* MAGs, obtained in this study, contain the genes necessary for
373 passive transport of acetate and propionate (*actP*) and conversion of acetate and propionate into
374 acetyl-CoA and propionyl-CoA through acetate-coA synthetase (*acsA*) and propionate-coA
375 ligase (*prpE*) respectively (Figure 4 & Table S3).

376 Full-scale facilities contain a variety of substrates in the wastewater including complex
377 substrates, therefore the ability to use complex substrates can provide a niche for a PAO in full-
378 scale facilities. Most of the MAGs of *Accumulibacter*, including the 3 MAGs from this study,
379 encode a lactate dehydrogenase gene (*dld*) (except for BA94 and SK01) which catalyzes the
380 conversion of lactate to pyruvate and the reverse reaction. The lactate permease gene (*lctP/lldP*)

381 was identified in *aalborgensis*, BA91, HKU2, UW1, RC18 and RCAB4-2. The presence of the
382 lactate permease gene, in combination with lactate dehydrogenase, could confer the ability to
383 uptake lactate and convert into pyruvate, acetyl-CoA or propionyl-CoA which can then be used
384 to form PHB/PHV or feed the TCA cycle. Conversion of lactate to pyruvate is able to generate
385 electron equivalents which can also be used for other active transport processes. A recent study
386 [76] showed that *Accumulibacter* is capable of using lactate to store PHA, however, the authors
387 noticed a deterioration in EBPR performance when feeding lactate presumably associated with a
388 metabolic shift in *Accumulibacter* from utilizing both polyP and glycogen to utilizing just
389 glycogen (similar to GAOs) since the use of lactate doesn't require the hydrolysis of polyP to
390 generate ATP.

391 *Nitrogen Metabolism*

392 Another trait of interest in *Accumulibacter* metabolism is the ability to use various oxidized
393 nitrogen species as electron acceptors. Among the available MAGs, only those in Clade IIC
394 MAGs, including MAG RC14 that was dominant in the S2EBPR configuration in this study and
395 one exception from IIA (*aalborgensis*), contain gene sets for respiratory nitrate reduction
396 (*narGHI*) and nitrite reduction (*nirS*), but did not possess genes for subsequent steps of
397 denitrification. The only MAG that contains genes for a complete denitrification pathway is UW-
398 LDO-IC (Clade IC). Recent work with metatranscriptomics [20] showed that under micro-
399 aerobic conditions and in the presence of nitrate, UW-LDO-IC is able to use both nitrate and
400 oxygen simultaneously as electron acceptors even though the ability to use nitrate as an electron
401 acceptor with exclusive and concurrent uptake of phosphate was not shown.

402 Most other clades (Clade IIA, IIB, IIF, IA, and IB) contain genes for periplasmic dissimilatory
403 nitrate reduction (*napAB*) system. The Nap system is generally considered to not be coupled with

404 PMF generation and anaerobic respiration. It has been suggested that this system might be
405 involved in aerobic denitrification for roles in adaptation to anaerobic metabolism after transition
406 from aerobic conditions such as in EBPR [78]. There is also evidence that Nap is a dissimilatory
407 enzyme used for optimizing redox balancing [79, 80]. The possession of periplasmic Nap system
408 enzymes in majority of the Accumulibacter clades seem to suggest that these Accumulibacter
409 likely do not use nitrate as an electron acceptor for respiration and denitrification. Rather, the
410 Nap system likely allows CAPs to aerobically reduce nitrate to nitrite in the periplasm, which
411 can be utilized for downstream nitrite reduction or excreted outside the cell.

412 It is possible that Accumulibacter species with truncated denitrification pathways could use
413 complementary pathways in flanking populations to perform complete denitrification on a
414 community level [77]. Presence of genes for nitric oxide reduction are restricted to a few MAGs
415 in Clade II (UW1, RCAB4-2, BA91) and most Clade I MAGs. In contrast, genes for nitrous
416 oxide reduction are present in almost all Clade IIF, Clade I MAGs and UW1 (Clade IIA).
417 Noticeably, RC18 (present in both the conventional and S2EBPR full-scale systems) did not
418 possess any of the reductases in the denitrification pathway, despite having a completion of 98.2
419 %.

420 *Unique Functions in MAGs from Full-Scale Systems*

421 In this study, we were able to obtain 3 Accumulibacter MAGs from full-scale EBPR
422 communities. It is likely that MAGs from full-scale facilities have some unique functional
423 abilities compared to MAGs from enriched lab-scale bioreactors to enable the organism to
424 survive in the highly dynamic and complex environmental conditions in wastewater treatment
425 systems. We identified genes for dimethyl sulfoxide (DMSO) reduction exclusively in RC18.
426 The pathway included the *dmsA* and *dmsB* subunits of the *dmsABC* gene cluster. The DMSO

427 respiratory pathway has been extensively studied in photo-heterotrophic organisms such as
428 *Rhodobacter* spp. and plays a role in the organism's redox homeostasis and enables the
429 organisms to utilize a diversity of carbon sources during dark anaerobic growth [80]. Its potential
430 role in Accumulibacter metabolism is unknown and warrants further investigation. We also
431 identified the gene for alkane oxidation, alkane 1-monooxygenase (*alkB*) in RCAB4-2. The
432 production of this enzyme enables the oxidation of alkanes to alcohols making it an important
433 enzyme for bioremediation of petroleum hydrocarbon contaminated environments [81, 82].
434 Whether this enzyme has a direct impact on EBPR metabolism is unknown.
435 In this study, for the first time, using integrated amplicon sequencing, oligotyping and genome-
436 resolved metagenomics, we were able to reveal clade-level differences in Accumulibacter
437 communities and associate the differences with two different full-scale EBPR configurations.
438 The results led to the identification and characterization of a distinct and dominant
439 Accumulibacter oligotype - Oligotype 2 (belonging to Clade IIC) and its matching MAG (RC14)
440 associated with S2EBPR configuration. This study demonstrates that oligotyping of the V4
441 region of the 16S rRNA gene could resolves clade-level differences, congruent with *ppk1*-
442 phylogeny, in Accumulibacter communities in full-scale EBPR systems. The potential
443 advantages of resolving clade-level differences using a high-throughput method such as 16S
444 rRNA gene amplicon sequencing combined with oligotyping is significant since it will enable
445 wider capture, higher-resolution and more cost-effective genotyping of Accumulibacter
446 communities and thus improve our ability to characterize and monitor EBPR processes.
447 Genome-resolved metagenomics also enabled us to retrieve 3 new CAP MAGs from full-scale
448 facilities including two MAGs, RCAB4-2 and RC18, belonging to Clade IIB and to a previously
449 uncharacterized sub-clade of Clade II respectively, that did not have any previous representative

450 genomes. Comparative genomics of the obtained MAGs showed unique functions that could
451 enable niche-partitioning of particular clades under different conditions.

452 **Acknowledgements**

453 Funding for this research was provided by the Water Environment & Reuse Foundation (Project
454 No: U1R13), Hampton Roads Sanitation District, and Woodard & Curran, Inc. The authors thank
455 Peter Schauer, Adrienne Menniti and Chris Maher (Clean Water Services) for their assistance in
456 this study.

457 **Conflict of Interest**

458 The authors declare no conflict of interest.

459

460 **References**

461

- 462 1. Morse GK, Brett SW, Guy JA, Lester JN. Review: Phosphorus removal and recovery
463 technologies. *Sci Total Environ* 1998; **212**: 69–81.
- 464 2. Gu AZ, Saunders A, Neethling JB, Stensel HD, Blackall LL. Functionally Relevant
465 Microorganisms to Enhanced Biological Phosphorus Removal Performance at Full-Scale
466 Wastewater Treatment Plants in the United States. *Water Environ Res* 2008; **80**: 688–698.
- 467 3. Onnis-Hayden A, Srinivasan V, Tooker NB, Li G, Wang D, Gu AZ. Survey of Full Scale
468 Side-Stream EBPR Facilities and Comparison with Conventional EBPR: Process Stability,
469 Kinetics and Microbial Ecology. *Preprints* 2018.
- 470 4. Gu AZ, Tooker NB, Onnis-Hayden A, Wang D, Srinivasan V, Li G, et al. Optimization
471 and Design of a Side-Stream EBPR Process as a Sustainable Approach for Achieving
472 Stable and Efficient Phosphorus Removal. 2019.

473 5. Barnard JL, Kobylinski E. The Case for Side-Stream RAS or Mixed Liquor Fermentation
474 To Enhance Biological Phosphorus Removal (EBPR). *Proc. Water Environ. Fed. Nutr.*
475 2018. Raleigh, NC.

476 6. Wang D, Tooker NB, Srinivasan V, Li G, Schauer P, Menniti A, et al. A Full-Scale
477 Comparative Study of Conventional and Side-Stream Enhanced Biological Phosphorus
478 Removal Processes. *Preprints* 2018.

479 7. Mielczarek AT, Nguyen HTT, Nielsen JL, Nielsen PH. Population dynamics of bacteria
480 involved in enhanced biological phosphorus removal in Danish wastewater treatment
481 plants. *Water Res* 2013; **47**: 1529–1544.

482 8. Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH.
483 A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced
484 Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. *Front
485 Microbiol* 2017; **8**: 718.

486 9. Flowers JJ, Cadkin TA, McMahon KD. Seasonal bacterial community dynamics in a full-
487 scale enhanced biological phosphorus removal plant. *Water Res* 2013; **47**: 7019–7031.

488 10. Law Y, Kirkegaard RH, Cokro AA, Liu X, Arumugam K, Xie C, et al. Integrative
489 microbial community analysis reveals full-scale enhanced biological phosphorus removal
490 under tropical conditions. *Sci Rep* 2016; **6**: 25719.

491 11. Oyserman BO, Noguera DR, del Rio TG, Tringe SG, McMahon KD. Metatranscriptomic
492 insights on gene expression and regulatory controls in *Candidatus Accumulibacter*
493 *phosphatis*. *ISME J* 2016; **10**: 810–822.

494 12. Martín HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, et al.
495 Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge
496 communities. *Nat Biotechnol* 2006; **24**: 1263–1269.

497 13. Flowers JJ, He S, Malfatti S, del Rio TG, Tringe SG, Hugenholtz P, et al. Comparative
498 genomics of two ‘*Candidatus Accumulibacter*’ clades performing biological phosphorus
499 removal. *ISME J* 2013; **7**: 2301–2314.

500 14. Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL. A metagenome of a
501 full-scale microbial community carrying out enhanced biological phosphorus removal.
502 *ISME J* 2012; **6**: 1094–1106.

503 15. Barr JJ, Dutilh BE, Skennerton CT, Fukushima T, Hastie ML, Gorman JJ, et al.
504 Metagenomic and metaproteomic analyses of *Accumulibacter phosphatis*-enriched
505 floccular and granular biofilm. *Environ Microbiol* 2016; **18**: 273–287.

506 16. Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW. Expanding our view of genomic
507 diversity in *Candidatus Accumulibacter* clades. *Environ Microbiol* 2015; **17**: 1574–1585.

508 17. Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH. ‘*Candidatus*
509 *Propionivibrio aalborgensis*’: A novel glycogen accumulating organism abundant in full-
510 scale enhanced biological phosphorus removal plants. *Front Microbiol* 2016; **7**.

511 18. Mao Y, Yu K, Xia Y, Chao Y, Zhang T. Genome reconstruction and gene expression of ‘*candidatus accumulibacter phosphatis*’ Clade IB performing biological phosphorus
512 removal. *Environ Sci Technol* 2014; **48**: 10363–10371.

513 19. Camejo PY, Oyserman BO, McMahon KD, Noguera DR. Integrated Omic Analyses

515 Provide Evidence that a “*Candidatus Accumulibacter phosphatis*” Strain Performs
516 Denitrification under Microaerobic Conditions. *mSystems* 2019; **4**: 1–23.

517 20. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al.
518 Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree
519 of life. *Nat Microbiol* 2017; **2**: 1533–1542.

520 21. He S, Gall DL, McMahon KD. ‘*Candidatus accumulibacter*’ population structure in
521 enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase
522 genes. *Appl Environ Microbiol* 2007; **73**: 5865–5874.

523 22. Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Santo Domingo J, et al. *Candidatus*
524 *Accumulibacter phosphatis* clades enriched under cyclic anaerobic and microaerobic
525 conditions simultaneously use different electron acceptors. *Water Res* 2016; **102**: 125–
526 137.

527 23. Welles L, Abbas B, Sorokin DY, Lopez-Vazquez CM, Hooijmans CM, van Loosdrecht
528 MCM, et al. Metabolic response of ‘*Candidatus Accumulibacter phosphatis*’ clade IIC to
529 changes in influent P/C ratio. *Front Microbiol* 2017; **7**.

530 24. Mao Y, Graham DW, Tamaki H, Zhang T. Dominant and novel clades of *Candidatus*
531 *Accumulibacter phosphatis* in 18 globally distributed full-scale wastewater treatment
532 plants. *Sci Rep* 2015; **5**: 11857.

533 25. Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs.
534 *Bioinformatics* 2018; 1–5.

535 26. Chase AB. The importance of resolving biogeographic patterns of microbial

536 microdiversity. *Microbiol Aust* 2018; 18–21.

537 27. Fisher JC, Murat Eren A, Green HC, Shanks OC, Morrison HG, Vineis JH, et al.
538 Comparison of sewage and animal fecal microbiomes by using oligotyping reveals
539 potential human fecal indicators in multiple taxonomic groups. *Appl Environ Microbiol*
540 2015; **81**: 7023–7033.

541 28. Fisher JC, Levican A, Figueras MJ, McLellan SL. Population dynamics and ecology of
542 Arcobacter in sewage. *Front Microbiol* 2014; **5**: 1–9.

543 29. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace
544 operational taxonomic units in marker gene data analysis. *bioRxiv* 2017; 113597.

545 30. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping:
546 Differentiating between closely related microbial taxa using 16S rRNA gene data.
547 *Methods Ecol Evol* 2013; **4**: 1111–1119.

548 31. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et
549 al. Minimum information about a single amplified genome (MISAG) and a metagenome-
550 assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol* 2017; **35**: 725–731.

551 32. Maher C, Schauer P, Menniti A. Testing the Limits of EBPR for Stable Operation. *Proc.*
552 *Water Environ. Fed. WEFTEC*. 2018. Chicago, IL, pp 1581–1594.

553 33. McIlroy SJ, Saunders AM, Albertsen M, Nierychlo M, McIlroy B, Hansen AA, et al.
554 MiDAS: The field guide to the microbes of activated sludge. *Database* 2015; **2015**: 1–8.

555 34. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et
556 al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

557 557 *PNAS* 2011; **108**: 4516–4522.

558 35. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-
559 index sequencing strategy and curation pipeline for analyzing amplicon sequence data on
560 the miseq illumina sequencing platform. *Appl Environ Microbiol* 2013; **79**: 5112–5120.

561 36. Joshi N, Fass J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ
562 files (Version 1.33) [Software]. Available at <https://github.com/najoshi/sickle> . 2011. ,
563 2011

564 37. Wickham H. *ggplot2: Elegant graphics for data analysis*. 2009. Springer-Verlag, New
565 York.

566 38. Wickman H, Francois R, Henry L, Müller K. *A Grammar of Data Manipulation*. R
567 package version 0.7.5. 2018.

568 39. Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to basics - The
569 influence of DNA extraction and primer choice on phylogenetic analysis of activated
570 sludge communities. *PLoS One* 2015; **10**: e0132783.

571 40. Univec database at National Center for Biotechnology Information
572 [<http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html>].

573 41. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node
574 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
575 *Bioinformatics* 2015; **31**: 1674–1676.

576 42. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: Evaluation of metagenome
577 assemblies. *Bioinformatics* 2016; **32**: 1088–1090.

578 43. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 2012;
579 **9**: 357–359.

580 44. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
581 Alignment/Map format and SAMtools. *Bioinformatics* 2009; **25**: 2078–2079.

582 45. Picard. <http://broadinstitute.github.io/picard/>.

583 46. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics
584 with Kaiju. *Nat Commun* 2016; **7**: 11257.

585 47. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning
586 metagenomic contigs by coverage and composition. *Nat Methods* 2014; **11**: 1144–1146.

587 48. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o: an
588 advanced analysis and visualization platform for 'omics data. *PeerJ* 2015; **3**: e1319.

589 49. Olm MR, Brown CT, Brooks B, Banfield JF. DRep: A tool for fast and accurate genomic
590 comparisons that enables improved genome recovery from metagenomes through de-
591 replication. *ISME J* 2017; **11**: 2864–2868.

592 50. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: Reconstruction of
593 full-length ribosomal genes from microbial community short read sequencing data.
594 *Genome Biol* 2011; **12**.

595 51. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed
596 models. *Bioinformatics* 2003; **19**: 1572–1574.

597 52. Leventhal GE, Boix C, Kuechler U, Enke TN, Sliwerska E, Holliger C, et al. Strain-level
598 diversity drives alternative community types in millimetre-scale granular biofilms. *Nat*

599 *Microbiol* 2018; **3**: 1295–1303.

600 53. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
601 throughput. *Nucleic Acids Res* 2004; **32**: 1792–1797.

602 54. Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and
603 Bayesian phylogenetic placement of sequences onto a fixed reference tree. *BMC*
604 *Bioinformatics* 2010; **11**: 538.

605 55. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
606 features. *Bioinformatics* 2010; **26**: 841–842.

607 56. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for
608 Functional Characterization of Genome and Metagenome Sequences. *J Mol Biol* 2016;
609 **428**: 726–731.

610 57. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of
611 large phylogenies. *Bioinformatics* 2014; **30**: 1312–1313.

612 58. McMahon KD, Yilmaz S, He S, Gall DL, Jenkins D, Keasling JD. Polyphosphate kinase
613 genes from full-scale activated sludge plants. *Appl Microbiol Biotechnol* 2007; **77**: 167–
614 173.

615 59. Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW. Expanding our view of genomic
616 diversity in *Candidatus Accumulibacter* clades. *Environ Microbiol* 2015; **17**: 1574–1585.

617 60. Camejo PY, Oyserman BO, McMahon KD, Noguera DR. Integrated Omic Analyses
618 Provide Evidence that a “*Candidatus Accumulibacter phosphatis*” Strain Performs
619 Denitrification under Microaerobic Conditions. *mSystems* 2019; **4**.

620 61. He S, Gu AZ, McMahon KD. Progress toward understanding the distribution of
621 Accumulibacter among full-scale enhanced biological phosphorus removal systems.
622 *Microb Ecol* 2008; **55**: 229–236.

623 62. Berry MA, White JD, Davis TW, Jain S, Johengen TH, Dick GJ, et al. Are oligotypes
624 meaningful ecological and phylogenetic units? A case study of *Microcystis* in Freshwater
625 lakes. *Front Microbiol* 2017; **8**: 1–7.

626 63. Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW. Expanding our view of genomic
627 diversity in *Candidatus*Accumulibacter clades. *Environ Microbiol* 2015; **17**: 1574–1585.

628 64. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides
629 NC, et al. Microbial species delineation using whole genome sequences. *Nucleic Acids*
630 *Res* 2015; **43**: 6761–6771.

631 65. McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-
632 Bjerregaard M, et al. ‘*Candidatus Competibacter*’-lineage genomes retrieved from
633 metagenomes reveal functional metabolic diversity. *ISME J* 2014; **8**: 613–624.

634 66. Kristiansen R, Nguyen HTT, Saunders AM, Nielsen JL, Wimmer R, Le VQ, et al. A
635 metabolic model for members of the genus *Tetrasphaera* involved in enhanced biological
636 phosphorus removal. *ISME J* 2013; **7**: 543–554.

637 67. Oyserman BO, Noguera DR, del Rio TG, Tringe SG, McMahon KD. Metatranscriptomic
638 insights on gene expression and regulatory controls in *Candidatus Accumulibacter*
639 *phosphatis*. *ISME J* 2016; **10**: 810–822.

640 68. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, et al. Advances in

641 enhanced biological phosphorus removal: From micro to macro scale. *Water Res* 2007;
642 **41**: 2271–2300.

643 69. Comeau Y, Hall KJ, Hancock REW, Oldham WK. Biochemical Model for Enhanced
644 Biological Phosphorus Removal. *Water Res* 1986; **20**: 1511–1521.

645 70. Mino T, Arun V, Tsuzuki Y, Matsuo T. Effect of phosphorus accumulation on acetate
646 metabolism in the biological phosphorus removal process. *Biol. Phosphate Remov. from
647 Wastewaters*. 1987. Pergamon, pp 27–38.

648 71. Hesselmann RPX, Von Rummell R, Resnick SM, Hany R, Zehnder AJB. Anaerobic
649 Metabolism of Bacteria Performing Enhanced Biological Phosphate Removal. *Water Res*
650 2000; **34**: 3487–3494.

651 72. He S, McMahon KD. ‘*Candidatus Accumulibacter*’ gene expression in response to
652 dynamic EBPR conditions. *ISME J* 2011; **5**: 329–340.

653 73. Burow LC, Mabbett AN, Blackall LL. Anaerobic glyoxylate cycle activity during
654 simultaneous utilization of glycogen and acetate in uncultured *Accumulibacter* enriched in
655 enhanced biological phosphorus removal communities. *ISME J* 2008; **2**: 1040–1051.

656 74. Pramanik J, Trelstad PL, Schuler AJ, Jenkins D, Keasling JD. Development and validation
657 of a flux-based stoichiometric model for enhanced biological phosphorus removal
658 metabolism. *Water Res* 1999; **33**: 462–476.

659 75. Silva LG da, Gamez KO, Gomes JC, Akkermans K, Welles L, Abbas B, et al. Revealing
660 metabolic flexibility of *Candidatus Accumulibacter phosphatis* through redox cofactor
661 analysis and metabolic network modeling. *bioRxiv* 2018; 458331.

662 76. Rubio-Rincón FJ, Welles L, Lopez-Vazquez CM, Abbas B, van Loosdrecht MCM,
663 Brdjanovic D. Effect of Lactate on the Microbial Community and Process Performance of
664 an EBPR System. *Front Microbiol* 2019; **10**: 1–11.

665 77. Gao H, Mao Y, Zhao X, Liu W-T, Zhang T, Wells G. Genome-centric metagenomics
666 resolves microbial diversity and prevalent truncated denitrification pathways in a
667 denitrifying PAO-enriched bioprocess. *Water Res* 2019; **155**: 275–287.

668 78. Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic
669 Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial
670 Nitrate Reductases. *J Bacteriol* 1999; **181**: 6573–6584.

671 79. Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B.
672 Structure and function of a periplasmic nitrate reductase in *Alcaligenes eutrophus* H16. *J*
673 *Bacteriol* 1993; **175**: 5867–5876.

674 80. Richardson DJ, King GF, Kelly DJ, McEwan AG, Ferguson SJ, Jackson JB. The role of
675 auxiliary oxidants in maintaining redox balance during phototrophic growth of
676 *Rhodobacter capsulatus* on propionate or butyrate. *Arch Microbiol* 1988; **150**: 131–137.

677 81. Smith CB, Tolar BB, Hollibaugh JT, King GM. Alkane hydroxylase gene (alkB)
678 phylotype composition and diversity in northern Gulf of Mexico bacterioplankton. *Front*
679 *Microbiol* 2013; **4**: 370.

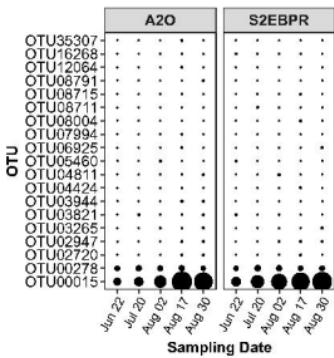
680 82. Wu B, Lan T, Lu D, Liu Z. Ecological and enzymatic responses to petroleum
681 contaminations. *Environ Sci Process Impacts* 2013; **16**: 1501–1509.

682 83. Welles L, Tian WD, Saad S, Abbas B, Lopez-Vazquez CM, Hooijmans CM, et al.

683 Accumilibacter clades Type I and II performing kinetically different glycogen-
684 accumulating organisms metabolisms for anaerobic substrate uptake. *Water Res* 2015; **83**:
685 354–366.
686

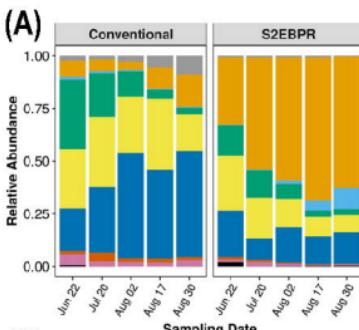
687 **Figure Legends**

688 **Figure 1:** Comparison of most abundant OTUs classified as *Ca. Accumulibacter* in
689 Conventional A2O and S2EBPR SSRC configurations.

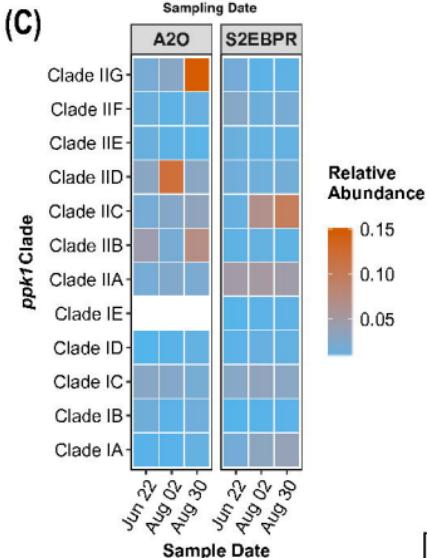
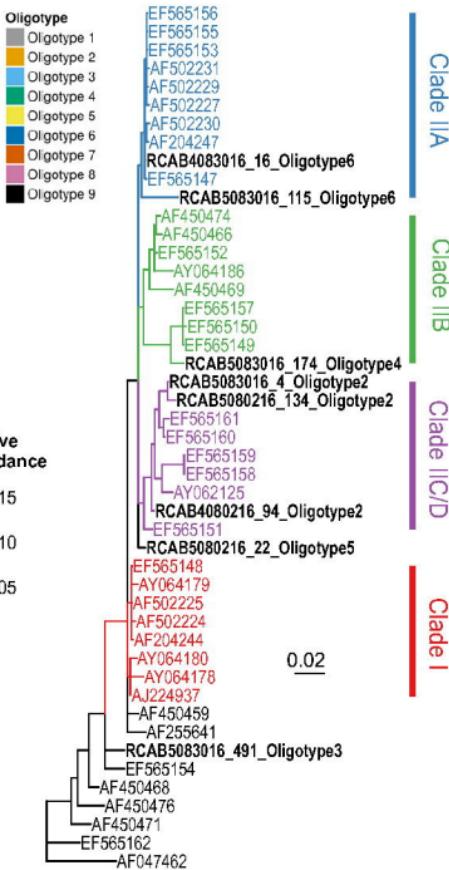

690 **Figure 2:** (A) Relative abundance of oligotypes of 16S rRNA gene amplicon sequences
691 classified as *Ca. Accumulibacter* in conventional A2O and S2EBPR SSRC configurations (B)
692 Phylogenetic tree of near full-length 16S rRNA gene sequences, that are exact matches to
693 oligotypes, derived from metagenomic sequences using EMIRGE (highlighted in bold) and
694 reference 16S rRNA gene sequences from He et al., (2007). Clade assignments for reference
695 sequences are according to He et al., (2007) which were based on congruency with *ppk1*
696 phylogeny (C) Relative Abundance of *ppk1* gene sequences extracted from the individual
697 treatment-train assemblies and assigned clade-classification using pplacer.

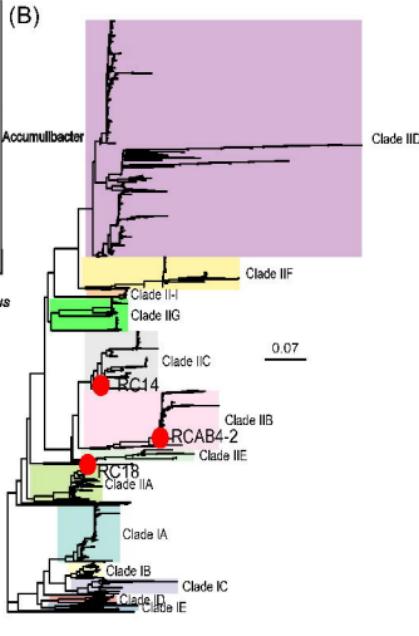
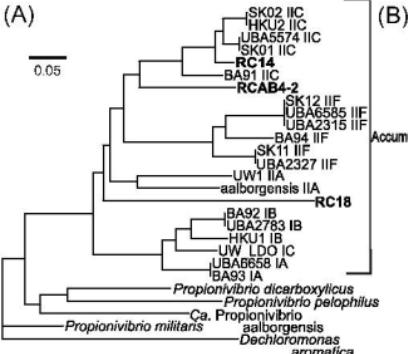
698

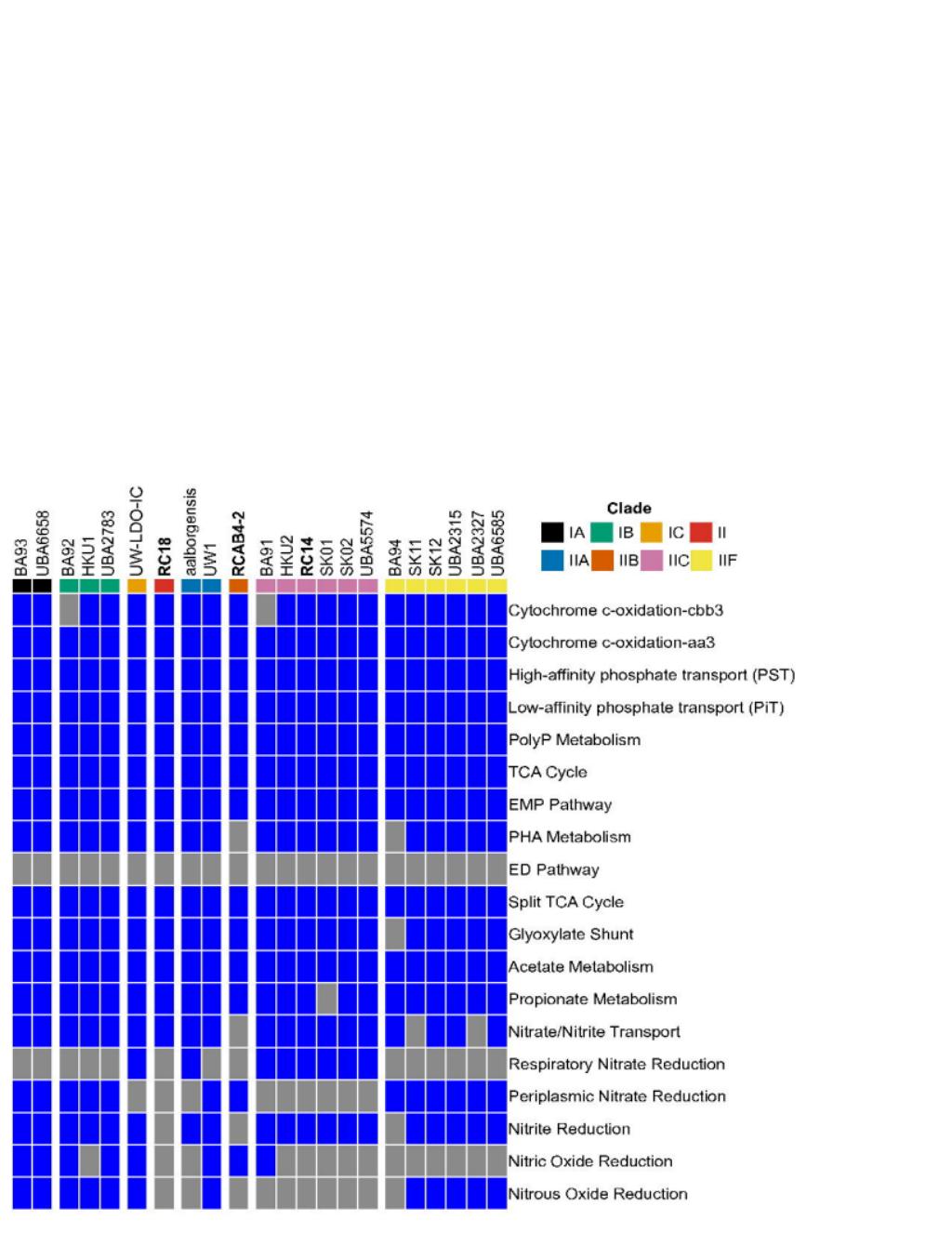
699 **Figure 3:** (A) Phylogeny of *Ca. Accumulibacter* MAGs recovered from this study along with
700 published draft genomes (n=19) of *Accumulibacter*, *Propionivibrio* and *Dechloromonas*
701 *aromatica* as an outgroup based on a concatenated alignment of 37 marker genes. Genome bins
702 recovered in this study are in bold. (B) *ppk1* genes from *Ca. Accumulibacter* genomes recovered
703 from this study placed on a backbone reference tree created with 1012 sequences and classified
704 according to He et al.,[21] (C) Relative abundance of MAGs recovered in this study.


705 **Figure 4:** Inventory of pathways in *Accumulibacter* MAGs associated with EBPR metabolism
706 and denitrification. Blue and grey rectangles represent presence and absence of pathways based
707 on annotation using KEGG.

708



Relative Abundance (%)


- 0.0
- 0.5
- 1.0
- 1.5
- 2.0

(B)

