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Abstract 

Feedforward networks (FFN) are ubiquitous structures in neural systems and have been studied to 

understand mechanisms of reliable signal and information transmission. In many FFNs, neurons in 

one layer have intrinsic properties that are distinct from those in their pre-/postsynaptic layers, but 

how this affects network-level information processing remains unexplored. Here we show that layer-

to-layer heterogeneity arising from lamina-specific cellular properties facilitates signal and 

information transmission in FFNs. Specifically, we found that signal transformations, made by 

neighboring layers of neurons on an input-driven spike signal, are complementary to each other. This 

mechanism boosts information transfer carried by a propagating spike signal, and thereby supports 

reliable spike signal and information transmission in a deep FFN. Our study suggests that distinct cell 

types in neural circuits have complementary computational functions and facilitate information 

processing on the whole. 

Significance Statement 

Neural systems have many cell types that differ in properties such as size, shape, cellular mechanisms, 

etc. Furthermore, neurons often propagate signals to other neurons that have properties very different 

from their own. We investigated what this phenomenon implies in neural information processing by 

using computational network models, inspired by a recent experimental study on the olfactory neural 

pathway of fruit flies. We found that different types of neurons can perform complementary functions 

in a network, which boosts information transfer on the whole and supports robust, stable signal 

propagation in a “deep” network with many layers. Our study demonstrates that diverse cell types 

with different intrinsic properties are crucial for optimal signal and information transfer in neural 

networks. 

Introduction 

How different cell types in a neural system contribute to signal processing by a whole circuit is a 

prime question in neuroscience. Experimental investigations of this question are increasingly 

common, especially due to advances in observing and manipulating neurons with particular genetic 

signatures. Feedforward circuits are notable targets of those studies, since, in many systems, they have 

been observed to comprise cell groups or “layers” with properties distinct from those of other layers, 

in size, morphology, expression of membrane/intracellular mechanisms, etc. For example, in the 

Drosophila antennal lobe (AL), projection neurons (PN) tend to show noisy firing, slow responses to 

the onset of olfactory receptor neuron (ORN) firing, and static voltage thresholds for spike generation, 

whereas postsynaptic neurons of PNs in lateral horns (LHN) are less noisy, fire early, and have 
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dynamic firing thresholds (1). Also, in the cerebellum, the granule cells are tiny neurons with a simple 

morphology, but their postsynaptic targets, Purkinje cells, are large, with complex dendritic trees. In 

primary sensory cortices, the spiny stellate neurons in layer IV express NMDA receptors with the 

NR2C subunit whereas their feedforward targets, pyramidal cells in layer II/III, do not (2). These 

phenomena raise questions about the role of intrinsic properties and their laminar specificity. 

However, most theoretical and computational studies rarely take into account neuronal heterogeneity. 

We addressed this question by studying the classical problem of how a spike signal, defined by 

evoked firing of multiple neurons in one layer, can stably propagate through multiple downstream 

layers in an FFN (3-11). Stable propagation plays a key role in models of conscious perception (11, 

12), short-term memory (13), learning in deep artificial networks(14), etc. Most of those studies 

assumed that FFNs have identical types of neurons, and thus each layer makes similar input/output 

transformations. In this case, an input-driven spike signal either gets stronger or weaker as it passes 

through layers, depending on the efficacy of output spike generation, given input spikes, and also 

given the characteristics of the network input (Fig. 1A, Left). Then, the signal eventually reaches a 

fixed point of layer-to-layer transformation or dissipates (3, 5, 10) (Fig. 1A, Right). In this scenario, 

stable signal transmission is achieved by certain conditions for a non-trivial fixed point, which are 

often not robust for a wide range of initial signals. Also, irreversible signal distortion during 

propagation can cause inevitable loss of information. 

Introducing lamina-specific intrinsic properties in neurons can change this fundamentally (Fig. 1B). If 

each layer transforms a propagating signal in a different direction than the previous one, a fixed point 

will not exist in general. Instead, this prevents repeated transformation of the signal in one direction 

and the overall signal distortion over multiple layers can actually become smaller, compared to 

networks with identical layers. In particular, if transformations are “complementary,” i.e., the 

transformation by one layer is in the opposite or nearly opposite direction to those by its presynaptic 

layer, stable propagation is possible with bounded signal distortion across multiple layers (Fig. 1B 

Right). This mechanism can also improve information transfer. Signal distortion at each layer will 

accumulate if neurons in each layer repeatedly encode similar preferred features of a network input 

and this will cause irrevocable loss of information. Contrarily, in the case of complementary 

transformations, postsynaptic neurons have preferred features distinct from those of presynaptic 

neurons. Postsynaptic neurons filter presynaptic output spikes more selectively, resulting in 

demodulation of distortions introduced by presynaptic signal transformation (Fig. 1B Left). In this 

manner, FFNs with heterogeneous, lamina-specific neuronal properties can show enhanced 

information transmission compared to homogeneous FFNs. 

Here we demonstrate how complementarity and robust, stable signal transmission arise from laminar 

specificity of cell intrinsic properties by computational FFN models. We first introduce a model of the 
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Drosophila AL network with three layers of ORNs, PNs and LHNs. We show that this model 

replicates a recent experimental finding that differences in spiking dynamics between PNs and LHNs 

can balance accuracy and speed in processing olfactory information (1), and furthermore demonstrate 

that PN-to-LHN information transfer is nearly optimal. Then, we extend the model to a deep FFN and 

demonstrate robust and stable spike signal propagation, contrary to models with no laminar specificity 

in neuronal properties. 

 

Results 

Voltage-sensitive K+ channels control dynamical input/output properties of neurons 

We constructed a computational model of the Drosophila AL network with lamina-specific neuronal 

properties with conductance-based neuron models, containing voltage-dependent Na+ and K+ channels 

(15). An important parameter of the model is βw, the half-activation voltage of the K+ channel (see 

Equation 1 in Materials and Methods). With lower βw, the channel is more active at subthreshold 

voltages, shifting the balance between inward and outward currents around the firing threshold. This 

fundamentally changes the neuronal signal transformation property by strengthening differentiator-

like traits, whereas higher βw promotes integrator-like behavior (15, 16). For example, typical 

repetitive firing with a sustained current input, seen in neurons with high βw (=5 mV in our model), 

was suppressed in those with low βw (=-19 mV in our model), whereas the low βw case showed robust 

sensitivity to the dynamic fluctuation in inputs, demonstrated by evoked firing (Fig. 2A). Therefore, 

we will call our model neurons with low βw and high βw differentiators and integrators, respectively. 

Differentiator neurons are also known to have a dynamic spiking threshold, which was also observed 

in LHNs (1). With the dynamic threshold, their firing depends not only on the membrane potential, 

but also on its temporal change, which is crucial to their sensitivity to input fluctuations (15, 17, 18). 

To demonstrate this, we estimated a minimal rate of membrane potential change, [dV/dt]min, that 

preceded spikes, but not subthreshold fluctuations from our simulation data, which corresponds to the 

minimal inward current required for spiking (Fig. 2B). Then, the threshold voltage, Vθ, at 

dV/dt≈[dV/dt]min, was significantly more distributed in differentiators (Integrator: STD[Vθ]=2.76±0.08 

mV, Differentiator: 3.33±0.11 mV; P=2.58×10-5, F-test; Fig. 2C). This  shows that differentiators can 

generate enough inward current to generate a spike across a broader range of membrane voltages than 

integrators, which is an indication of a more dynamic spiking threshold. Therefore, we used 

differentiator neurons, with the low-threshold K+ channel, for modeling LHNs, and integrators with 

the high-threshold channel for PNs in the AL network. 
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Lamina-specific neuronal properties are crucial for the Drosophila AL network  

Our network model of integrator PNs and differentiator LHNs (see Materials and Methods and 

Table S1-S2 for full description) reproduced the key features of experimental results in ref. (1). When 

ORNs were given a common current input that simulates optogenetic stimulation in experiments (Fig. 

3A), PNs showed a slower amplified response to transient inputs from ORNs, and LHN firing was 

more temporally refined, with the peak of their firing rate preceding that of presynaptic PNs, just as in 

experimental data (Fig. 3B Left). This rapid response of LHNs caused detection accuracy (d’) (see ref. 

(1)  and Materials and Methods) for the ORN input to grow much faster to a larger maximum in 

LHNs than in PNs (Fig. 3B Right). In contrast, homogeneous networks, in which PNs and LHNs are 

of the same type, showed suboptimal behaviors, such as delayed firing of LHNs; therefore, d’ of LHN 

rose more slowly and reached a lower maximum than that of PNs (Fig. 3C). 

How do the different intrinsic properties of neurons contribute to the speed and high fidelity of LHN 

output? Since PNs and LHNs have opposite traits of differentiators and integrators, respectively, their 

effects can compensate for each other in the combined feedforward transformation of the ORN 

output. To analyze how the PN and LHN layers transform ORN inputs together, we computed how 

they amplify the power spectrum of ORN firing within a physiological frequency band (≲100 Hz) 

with data from longer simulations with continuous current stimulus to ORNs (see Materials and 

Methods). This showed that homogeneous networks with differentiator and integrator PNs/LHNs 

preferentially amplified higher or lower frequency components, respectively, whereas the 

heterogeneous network showed little distortion across the entire frequency range, demonstrating that 

PNs and LHNs complemented each other (Fig. 3D).  

We found that this complementarity also facilitated information transfer. We estimated (the lower 

bound of) mutual information (MI) between the input to ORNs and spike outputs of each layer, and 

compared how much information in ORN firings pertaining to the input is transmitted to output firing 

of PNs and LHNs. Specifically, we measured the information transfer from ORNs to PNs or to LHNs 

by computing a ratio of MIs, I(ORN input; PN or LHN output)/I(ORN input; ORN output), 

respectively, where I(X; Y) denotes MI between X and Y. We found that information transfer to PNs 

closely matched that to LHNs in the heterogeneous network, whereas significant information loss was 

observed in homogeneous networks (Fig. 3E). In particular, the all-integrator PN/LHN case showed 

information loss specifically in the high frequency band (Fig. 3E Right), indicating that large signal 

distortion in this regime (Fig. 3D) impaired information transfer. This suggests that complementarity 

enabled nearly optimal information transfer from PNs to LHNs, demonstrating the importance of 

laminar specificity of intrinsic and functional properties of neurons. 
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Lamina-specific neuronal properties promote robust and stable signal propagation in deep 

FFNs 

We then investigated whether this mechanism can also enhance signal transmission in larger 

networks. For this purpose, we extended the AL network to a deep heterogeneous FFN model, by 

adding more alternating layers of integrator or differentiator neurons (see Materials and Methods 

and Table S3 for full description). Then, we simulated how a packet of spikes, injected into the input 

layer, propagates through subsequent layers (3-11). 

We found that the spike signals stably propagated in this network, whereas homogeneous networks, 

with only differentiators or integrators, showed opposing results (Fig. 4A,B): In the all-differentiator 

network, the evoked spike signal became increasingly synchronized and propagated as layer-wide 

synchronized spikes, whereas in the all-integrator network, the evoked spike signal became broader 

and less synchronized, until it was eventually lost among spontaneously firing spikes (Fig. 4A Right). 

Stable propagation in the heterogeneous network was decidedly robust over a wide range of input 

signals with diverse temporal width (σ) and total number of spikes (α) (Fig. 4C Top). Conversely, the 

all-differentiator network exhibited clear preference for sharply synchronized spikes (3), while signals 

gradually dissipated into spontaneous activity in the all-integrator network (Fig. 4C Middle-Bottom). 

Therefore, when tested with input signals with diverse (σ, α), the heterogeneous network showed the 

best performance in signal propagation (Fig. S1), and this result did not significantly change with 

additional feedforward inhibition in the deep FFN (Fig. S2). 

Furthermore, when the input layer fired with dynamically varying σ and α, due to dynamical, 

stochastic current injection, this continuous signal propagated in the heterogeneous network with 

many conserved features, whereas significant signal distortion and loss were again observed in the 

homogeneous networks (Fig. 4D). Note that propagation of dynamical input features indicates 

superior information transfer in a heterogeneous network, compared to homogeneous ones.  

Again, complementary transformations by neighboring layers with distinct neuron types underlie the 

robust and stable signal propagation. To demonstrate this, we analyzed trajectories of propagating 

signals in the (σ, α) plane (3, 10) (Fig. 4E), a simple version of the signal space that we previously 

discussed (Fig. 1). In the heterogeneous network, each layer transformed an incoming signal into a 

different, sometimes nearly opposite or complementary direction in the (σ, α) plane than those 

transformed by its pre- and postsynaptic layer, which prevents formation of a uniform flow. This 

prevents a propagating signal from running away and confines it to a small region (basin), 

corresponding to stable propagation (Fig. 4E Left). In contrast, in homogeneous networks, all layers 

perform similar transformations and drive propagating signals rapidly toward a fixed point of sharp 

synchronization or dissipation (Fig. 4E Middle, Right). Notably, in most of the (σ, α) plane, 

transformations in those two networks are in nearly opposite directions: In the all-differentiator 
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network, σ and α both tend to decrease (Fig. 4E Middle), because sharply correlated spikes are the 

preferred input of the neurons, while σ and α increase in the all-integrator network (Fig. 4E Right). In 

the heterogeneous network, those two different transformations are performed by neighboring layers, 

so as to complement each other, minimizing overall signal distortion and boosting information 

transfer. In summary, complementary transformations by different neuron types can protect a 

propagating signal from undergoing a loss or distortion regime in the signal space, instead supporting 

its robust and stable transmission. 

 

Discussion 

Diversity of cell types is one of the distinctive characteristics in neural systems and its functional 

characterization is the subject of ongoing experimental investigations. Integrating information about 

cell types and their intrinsic properties with network connectivity should be an important research 

question to develop a holistic understanding of how spike signals propagate in neural circuits. 

However, diversity of cellular properties is one of the most neglected elements in theoretical neural 

network studies. Here we showed using our computational FFN models with various types of 

excitatory neurons that different cell types are beneficial in neural networks, because their different 

input/output transformation properties can complement each other, enhancing signal and information 

transmission in the whole network. 

We focused on functionally distinct cell types due to different voltage-dependencies of K+ channels, 

which can arise from diverse expression patterns of low-threshold K+ channels (19-21). However, 

other neuronal mechanisms that affect the integrative cellular property can play similar roles, such as 

morphology (22), a high conductance state (23), inactivation of Na+ channels (24, 25), h-channels 

(26), etc. Furthermore, synaptic and circuit mechanisms known to operate as integrators or 

differentiators can be organized by a similar principle, such as short-term synaptic depression and 

facilitation, which can act as high- or low-pass filters, respectively (27), and inhibition, which can 

limit an integration time window for incoming inputs and promote temporal fidelity of neuronal 

responses (28). Our complementarity hypothesis predicts that integrator neurons, such as PNs, tend to 

have synapses with short-term depression (29) whereas differentiators, such as LHNs, have 

facilitating synapses.  

Jeanne and Wilson compared spike signal transfer from thalamocortical to cortical layer IV neurons to 

that between PNs and LHNs (1), and likewise, we further propose that these theoretical mechanisms 

can be applied to the thalamocortical loop and cortico-cortical feedforward projections, where spike 

signals propagate through multiple types of principal neurons that are different in size, morphology, 

ion channel expressions, etc. for each layer. Stable signal propagation in an FFN has been extensively 
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studied in this context (3-11). However, proposed models so far were often successful only with a 

limited range of input signals given fixed model parameters, although some precisely tuned models 

can handle a diverse range of inputs (4, 6-8). In this study, we proposed a novel approach to this 

problem, based on information theoretic perspective, pointing at that an assumption of a single cell 

type in a network can result in accumulated signal distortion, whereas introducing multiple cell types 

with lamina-specific neuronal properties can circumvent this problem by their complementary 

functions. This indeed brought superior performance, exmplified by stable propagation of a dynamical 

spike signal. Given the prevalence of diverse cell types in many neural systems, our work presents a 

clear case that lamina-specific cell types are surprisingly critical to understanding network functions. 

Complementarity also explains experimental observations that information encoded by an input layer 

appears substantially lost in the postsynaptic layer. For example, olfactory bulb output neurons 

simultaneously encode multiple aspects of an odor by multiplexing spike synchrony and firing rate 

(30), but their postsynaptic targets appear to largely filter out information in spike times due to their 

integrative property (31). Such phenomena naturally arise and can be explained by complementarity. 

In this case, postsynaptic neurons do not inherit the coding strategy of presynaptic neurons but 

employ a very different one. Therefore, given inputs to a presynaptic layer, postsynaptic neurons 

appear to respond very differently from presynaptic ones. For example, in the AL network, PNs and 

LHNs have different firing time courses, marked by different peak times (earlier in LHNs), primarily 

due to LHNs sensitively responding to correlations rather than the average variability in PN firing 

rates (1). Therefore, this can be misinterpreted as LHNs seemingly filtering out a substantial fraction 

of the information carried in a mean PN firing rate. However, we have demonstrated that on the 

contrary, information transfer from PNs to LHNs is in fact nearly optimal due to their 

complementarity. This suggests that opposing coding schemes of pre-/postsynaptic neurons, seen in 

experiments, can be a signature of optimal information transfer, rather than of discarding information. 

Complementary transformations underlie many strategies in information theory for optimizing 

information transfer with a limited bandwidth, such as water-filling (32). In this study, we have 

demonstrated how this scheme operates in FFNs when lamina-specific neuron types have different 

intrinsic properties. Notably, a previous study showed that functionally different cell types within a 

layer can also be explained by maximization of information transmission (33). Therefore, we suggest 

that the commonly observed diversity of cell types in neural circuits is essential to achieve optimal 

information transmission. 
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Materials and Methods 

Experimental procedure. Firing rates and d’ in Fig. 3B Bottom were based on spike times collected 

as described by Jeanne and Wilson (1), who kindly shared the data set. Briefly, ORNs in glomerulus 

DA1 of Drosophila antennae, expressing light-activated cation channel channelrhodopsin-2, were 

stimulated briefly (100 ms) by blue light emitted from an LED coupled to an optical fiber. 

Simultaneously, extracellular (ORNs) and patch-clamp (PNs and LHNs) recordings were performed 

in vivo. Spike times were extracted from the recording data by the custom algorithm. Although we 

used our custom scripts for Fig. 3B, we strictly followed the procedure in (1) to compute firing rates 

and d’ and reproduce corresponding figures faithfully. 

Model neurons. We used conductance-based model neurons based on the Morris-Lecar mechanisms 

(15), which are given by 

𝐶 #$
#%

= −𝑔)(𝑉 − 𝐸)) − 𝑔.𝑤(𝑉 − 𝐸.) − 𝑔01𝑚3(𝑉)(𝑉 − 𝐸01) + 𝐼6%789 + 𝐼:;<=%,
#?
#%

= 𝜙?
?A($)B?
CD($)

, 𝑧3(𝑉) =
G
H
I1 + tanh O$BPQ

RQ
ST (𝑧 = 𝑚,𝑤),

𝜏?(𝑉) = cosh O$BPD
RD

S
BG
,

     (1) 

where V and w are membrane potential and a gating variable for a K+ channel. The first model, which 

we called the “integrator” neuron, had a high half-maximum voltage βw while the other, 

“differentiator” neuron, had low βw. The parameters are in Table S1. 

Stochastic current Istoch represented noisy membrane potential fluctuation due to the effects that are 

absent from our model, such as background network inputs, an unknown noise source1, etc., and was 

given by an Ornstein-Uhlenbeck (OU) process, dIstoch/dt = -Istoch/τV + σV ξ, where ξ is a unit Gaussian 

noise, renewed each time step. τV=1 ms, and σV was tuned to match experimental data in (1)  (see 

below). 

The input current Iinput was either synaptic inputs or a common current injection to input layer 

neurons. Each synaptic input was conductance-based and modeled as a double exponential function: 

at each presynaptic spike at ts, the synaptic current was 

𝐼:;<=%(𝑡) = 𝑔(𝑡)(𝑉 − 𝐸6Z;),
𝑔(𝑡) = 𝑔6Z;[𝑒B(%B%])/C_ − 𝑒B(%B%])/C`a𝐻(𝑡 − 𝑡6),

  (2) 

where 𝑉 is the postsynaptic membrane potential, H(t) is a Heaviside function that H(t) = 1 if t>0 and 

H(t) = 0 otherwise. We used τ1=0.5 ms and τ2=4 ms, which is comparable to experimental 

measurments (29), and tuned gsyn to match experimental data as σV. All other parameters are in Table 

S1. As for the current injection, see AL network model and Deep FFN model below. All simulations 

were constructed and run on the Brian simulator ver. 2 (34).  
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AL network model. In the Drosophila AL network model, we used βw=-23 mV for ORNs to give 

them strong differentiator traits (35), and βw=5 mV and -19 mV for PN and LHN, respectively. 40 

ORNs projected to each PN and 9 PNs projected to each LHN (1). The number of LHNs was 9. Each 

layer contained 100 replicas of these, corresponding to 100 “trials” of an experiment, which resulted 

in 4,000 ORNs, 900 PNs, and 900 LHNs in an entire network. We tuned synaptic conductances, σV for 

each layer, and peak current injection, to match experimental measurements for i) the mean 

spontaneous firing rates in all layers and higher cell-to-cell variability in PN firing rates (1), ii) mean 

peak firing rates, and iii) rate of decrease in a mean LHN firing rate. In homogeneous networks, βw 

and σV of PNs or LHNs changed accordingly and synaptic conductances were re-tuned to match peak 

firing rates to the heterogeneous case. 

In the simulated optogenetic activation (Fig. 3A-C), the current injected to ORNs was 

𝐼:;<=% = 𝐼1c<[𝑒B(%B%d)/Cefg − 𝑒B(%B%d)/Chiefga𝐻(𝑡 − 𝑡j)  (3) 

where Iamp=45 μA/cm2, τact=15 ms, and τdeact=50 ms. t0 = 200 ms is a stimulus onset.  In simulations 

with the OU process input (Fig. 3D-E, 4D), Iinput was again given by dIinput/dt = (μinput-Iinput)/τinput+σe ξ 

where μinput=15 μA/cm2, σinput=7.5 μA/cm2, and τinput=5 ms. See Table S2 for other parameters. 

Deep FFN model. All deep FFN models had 9 layers of 1,000 (5,000 in Fig. S1) differentiator or 

integrator neurons in the AL network model, except for the input layer composed of differentiators. 

Again, each neuron was randomly connected to 9 presynaptic neurons on average. Synaptic 

conductances and other parameters were the same as the AL network. An input layer was driven 

either by spikes from artificial spike generators (Fig. 4A-C, E) or by the current injection generated by 

an OU process (Fig. 4D). Spike generators randomly sampled in total α spike times from a normal 

distribution with variance σ2 and forced the input layer neurons to fire at the spike times, in addition 

to noisy spontaneous firing. The OU process case was the same as the AL network except μinput=25 

μA/cm2 and σinput=12.5 μA/cm2. See Table S3 for the other parameters. 

An FFN model with feedforward inhibition (Fig. S2) had 9 layers of 4,000 excitatory neurons, and 

1,000 inhibitory neurons. Each cell received 9 excitatory inputs on average from the previous layer, 

and each excitatory neuron also received inputs from inhibitory cells in the same layer with the same 

connection probability. Inhibitory cells were also based on the Morris-Lecar model (Equation 1) with 

βw = -15 mV while different βw did not cause any significant change in our conclusion. The reversal 

potential of inhibitory synapses was Esyn = -90 mV and the conductance was 200 μS/cm2. Also, we 

added a synaptic delay of 2 ms for all connections. 

Data analysis. In the AL network model case, d’, a measure for signal detection, was computed in the 

same way as in ref. (1) : 
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𝑑l = m]gnoBmd

p(q]gno
` rqd`)/H

  (4) 

where (μstim, σstim) and (μ0, σ0) are the (mean, STD) of spike count at a given layer, computed with 80 

ms-long overlapping temporal windows in the stimulated and non-stimulated condition, respectively. 

For each layer, we computed d’ of all the cells and plotted their median in Fig. 3B,C. 

Power spectra for Fig. 3D were evaluated by applying the MATLAB function pmtm with a 20-ms 

time window on spike trains formed with 1-ms time bins. Mutual information in Fig. 3E were 

computed by a Gaussian channel approximation (36): We first reduced the dimensionality of a 

population spike trains at each layer, by using principal component analysis (PCA). Since the first 

PCA component was always dominating, we projected the population spike trains to this component 

to form a one-dimensional “population response” time series. With the Fourier transformation of the 

stimulus and population response, S(ω) and R(ω), we estimated a kernel K(ω) = 

<R*(ω)S(ω)>/<R*(ω)R(ω)>, and computed a reconstructed stimulus and noise via Sr(ω) = R(ω)K(ω) 

and N(ω) = S(ω)-Sr(ω). The mutual information per each frequency bin was then computed by 

𝐼(𝑆(𝜔); 𝑅(𝜔)) = logHy1 + 𝑆𝑁𝑅(𝜔){, 𝑆𝑁𝑅(𝜔) = ‖𝑆}(𝜔)‖H/‖𝑁(𝜔)‖H.  (5) 

With this, we computed the information transfer (Fig. 3E) by TX(ω) = I(S(ω)ORN; R(ω)X)/I(S(ω)ORN; 

R(ω)ORN), where X is PN or LHN.  

In the deep FFN, we computed (σ, α) for spikes from each layer using a custom algorithm that 

estimates (σ, α) in the presence of additional spontaneous firing. We first computed the baseline 

spontaneous firing rate 𝜈j at each layer by averaging the firing rate obtained from the same model 

with no input. The firing rate curve was computed by histogramming spike times in this layer with a 

0.1-ms time bin and by smoothing it with a 3-step moving average. Then, we evaluated a least-square 

fit of ν(t) to νfit(t) = ν0 + ν1 exp(-(t-tc)2/2σ2). α was estimated by counting the spikes in the [tc - 3σ, tc + 

3σ] window. From the goodness of fit, R2 = 1 - < (ν(t)- νfit(t))2>/Var[ν(t)], we evaluated the signal-to-

noise ratio, S/N = R/(1-R2)1/2 (Fig. 4E). 

The datasets generated during and/or analyzed during the current study are available from the 

corresponding author upon reasonable request. All the models and analysis code will be made 

publicly available at ModelDB (http://senselab.med.yale.edu/modeldb).  
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Figures 

 

 

 

 

Figure 1. Lamina-specific intrinsic properties enable neurons to perform complementary 
computations in a neural network. A. Left: FFN with a single cell type (Top), and spikes at each 
layer, in two different modes of signal propagation (Bottom). One mode is amplification by 
progressively evoking more and more synchronized spikes (red dots) and the other is dissipation by 
gradually losing spikes (blue dots). Right: Trajectories of the two propagating signals, in a signal 
space. The x- and y-axes represent independent signal characteristics, such as the number of spikes, 
temporal precision, etc. A star is a fixed point of neuronal signal transformation, and a dotted line is a 
separatrix separating the two modes. B. Left: FFN where neurons have lamina-specific intrinsic 
properties (Top). Each layer performs a “complementary” transformation, and can selectively transfer 
a subset of input spikes (circled red dots), ignoring those that cause signal distortion (Bottom). Right: 
Trajectory of a propagating signal in a signal space. The dotted circle surrounds a region (basin) 
where the propagating signal is confined by the complementary transformations. 
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Figure 2. Intrinsic properties of conductance-based model neurons control dynamicity of 
spiking thresholds. A. Membrane potential response (color) to constant or fluctuating current 
injection (black). B. Example membrane potential V vs. dV/dt in two neurons, based on simulation 
data in Fig. 3A,B. Data from one trial are shown (gray). Dotted lines represent [dV/dt]min, the minimal 
dV/dt for spiking, and colored dots are threshold-crossing points. C. Spread of membrane potentials 
at crossing points, Vθ, from the average. Vertical bars span from 10% to 90% quantiles, and notches 
are at medians. Data are the same as B, and only 50 samples (dots) are shown for clarity. 
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Figure 3. Lamina-specific neuronal properties boost information transfer in the AL network. A. 
Schematic diagram of the network model (Left), and spikes from a simulation with a current input to 
ORNs on top (Right). 40 trials are shown for one example neuron in each layer. B. Left: Average firing 
rates from the simulation (Top) and experimental data (Bottom). Right: d’ for detecting an input to 
ORNs at each layer, computed from the same data as Left. C. Same plots as B, with a model with 
differentiator PNs (Top), and with integrator LHNs (Bottom). D. Spectral power amplification, 
PLHN(ω)/PORN(ω), normalized by total power. P(ω) is a power spectral density of mean firing rate. 
Black represent the heterogeneous network, while blue and red are homogeneous ones with 
differentiator and integrator PN/LHN, respectively. E. Information transfer from ORNs to PNs (solid) 
and LHNs (dotted). Black dotted lines represent 100% information transfer. Grey regions and stars 
represent frequency bands with significant differences between PNs and LHNs (*:P<0.01, Student t-
test). Data are mean±SEM. 
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Figure 4. Lamina-specific neuronal properties robustly stabilize spike signal propagation in 
deep FFNs. A. Propagation in a heterogeneous network. Inset on top is the Gaussian distribution of 
spikes, evoked in the input layers (black). Dots (Left) and histograms (Right) are spikes and their firing 
rates, respectively. In all figures, blue and red represent differentiators and integrators, respectively. 
B. Firing in homogeneous networks with only differentiators (Top) and integrators (Bottom). C. 
Propagation of signals with different spike count (α) and width (σ). D. Network firing with continuous 
noise current in the input layer. In the middle row (blue; all differentiator), the input layer firing rate is 
multiplied by 10 for clarity. E. Analysis of signal transformations underlying stable propagation in the 
(σ, α) space. Each trajectory is formed by connecting (σ, α) of a propagating signal (dots) between 
adjacent layers, starting from the second layer output. Shade of each dot is the signal-to-noise ratio 
(S/N) and only points with S/N>1 are shown. Dotted circles mark “basins” (Fig. 1A) where any 
propagating signal stays for ≥5 layers. A dotted line in the Middle panel is an approximated separatrix 
between trajectories toward a fixed point and dissipation (Fig. 1A). All models have 9 layers and the 
first 7 layers are shown in A-D for clarity. 
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Table S1. Parameters of the single-neuron model.   
 
 

Parameter Value 
ENa 50 mV 
EK -100 mV 
EL -70 mV 
gNa 20 mS/cm2 
gK 20 mS/cm2 
gL 2 mS/cm2 
φw 0.15 
C 2 mF/cm2 
βw -1.2 mV 
γm 18 mV 
γw 10 mV 

Esyn, excitatory 0 mV 
Esyn, inhibitory -90 mV 
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Table S2. Parameters of the AL network model. η is a random number sampled from a 
uniform distribution ranging from 0 to 1. 
 

Parameter Heterogeneous Differentiator PN Integrator LHN 
βw, ORN -23 mV -23 mV -23 mV 
βw, PN 5 mV -19 mV 5 mV 
βw, LHN -19 mV -19 mV 5 mV 
σV, ORN 38 μA/cm2 38 μA/cm2 38 μA/cm2 
σV, PN 38 + 15η μA/cm2 15 μA/cm2 38 + 15η μA/cm2 
σV, LHN 15 μA/cm2 15 μA/cm2 38 + 15η μA/cm2 
gsyn, PN 345 μS/cm2 1170 μS/cm2 345 μS/cm2 
gsyn, LHN 975 μS/cm2 715 μS/cm2 285 μS/cm2 
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Table S3. Parameters of the deep FFN model. Even and Odd represent the 2n and (2n+1)-th 
layer where n=1,2,…,5, respectively. η is a random number sampled from a uniform distribution 
ranging from 0 to 1.   
 

Parameter Heterogeneous All differentiator All integrator 
βw, Input -23 mV -23 mV -23 mV 
βw, Even -19 mV -19 mV 5 mV 
βw, Odd 5 mV -19 mV 5 mV 
σV, Input 38 μA/cm2 38 μA/cm2 38 μA/cm2 
σV, Even 15 μA/cm2 15 μA/cm2 38 + 15η μA/cm2 
σV, Odd 38 + 15η μA/cm2 15 μA/cm2 38 + 15η μA/cm2 
gsyn, Even 975 μS/cm2 975 μS/cm2 345 μS/cm2 
gsyn, Odd 345 μS/cm2 975 μS/cm2 345 μS/cm2 
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Fig. S1. Propagation of spike signals with diverse width (σ) and number of spikes (α) in the 
heterogeneous (A), all-differentiator (B), and all-integrator network (C). Each network has 9 
layers of 5,000 neurons (see Table S3 for parameters). Color in the middle column represents 
propagation depth, computed by numbers of layers (except an input layer) into which spike 
signals propagate. Propagation is considered stopped if the estimated α is lower than 0.05n or 
larger than 3n for a layer and its corresponding postsynaptic layer, where n=5,000 is the group 
size. Side insets are example raster plots for parameters marked by dotted squares in the middle, 
showing spikes from 10% of neurons at each layer for clarity. 
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Fig. S2. The same figures as Fig. S1, using FFN models with feedforward inhibition. Again, 
each network has 9 layers of 4,000 PN-like or LHN-like excitatory neurons and 1,000 inhibitory 
neurons that receive excitatory inputs from a previous layer and inhibit excitatory neurons in the 
same layer (see Methods and Table S3 for details). In all panels, we plotted spikes from 10% of 
excitatory neurons at each layer for clarity. 
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