bioRxiv preprint doi: https://doi.org/10.1101/596676; this version posted May 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Lamina-specific neuronal properties promote robust, stable signal
propagation in feedforward networks

Donggi Han'?, Erik De Schutter', Sungho Hong""

'Computational Neuroscience Unit and “Cognitive Neurorobotics Research Unit, Okinawa Institute of
Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

Tuesday, May 14, 2019

Abstract: 135 words

Main text: 2824 words

Materials and methods: 1063 words
Figures: 4

References: 36

Supplementary materials: 3 tables, 2 figures

Correspondence:

Sungho Hong

Computational Neuroscience Unit

Okinawa Institute of Science and Technology
1919-1 Tancha, Onna-son

Okinawa 904-0495

Japan

Email: shhong@oist.jp

Phone: +81-80-966-1587

Competing interests: The authors declare no competing financial interests.


https://doi.org/10.1101/596676
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/596676; this version posted May 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Feedforward networks (FFN) are ubiquitous structures in neural systems and have been studied to
understand mechanisms of reliable signal and information transmission. In many FFNs, neurons in
one layer have intrinsic properties that are distinct from those in their pre-/postsynaptic layers, but
how this affects network-level information processing remains unexplored. Here we show that layer-
to-layer heterogeneity arising from lamina-specific cellular properties facilitates signal and
information transmission in FFNs. Specifically, we found that signal transformations, made by
neighboring layers of neurons on an input-driven spike signal, are complementary to each other. This
mechanism boosts information transfer carried by a propagating spike signal, and thereby supports
reliable spike signal and information transmission in a deep FFN. Our study suggests that distinct cell
types in neural circuits have complementary computational functions and facilitate information

processing on the whole.

Significance Statement

Neural systems have many cell types that differ in properties such as size, shape, cellular mechanisms,
etc. Furthermore, neurons often propagate signals to other neurons that have properties very different
from their own. We investigated what this phenomenon implies in neural information processing by
using computational network models, inspired by a recent experimental study on the olfactory neural
pathway of fruit flies. We found that different types of neurons can perform complementary functions
in a network, which boosts information transfer on the whole and supports robust, stable signal
propagation in a “deep” network with many layers. Our study demonstrates that diverse cell types
with different intrinsic properties are crucial for optimal signal and information transfer in neural

networks.

Introduction

How different cell types in a neural system contribute to signal processing by a whole circuit is a
prime question in neuroscience. Experimental investigations of this question are increasingly
common, especially due to advances in observing and manipulating neurons with particular genetic
signatures. Feedforward circuits are notable targets of those studies, since, in many systems, they have
been observed to comprise cell groups or “layers” with properties distinct from those of other layers,
in size, morphology, expression of membrane/intracellular mechanisms, etc. For example, in the
Drosophila antennal lobe (AL), projection neurons (PN) tend to show noisy firing, slow responses to
the onset of olfactory receptor neuron (ORN) firing, and static voltage thresholds for spike generation,

whereas postsynaptic neurons of PNs in lateral horns (LHN) are less noisy, fire early, and have
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dynamic firing thresholds (1). Also, in the cerebellum, the granule cells are tiny neurons with a simple
morphology, but their postsynaptic targets, Purkinje cells, are large, with complex dendritic trees. In
primary sensory cortices, the spiny stellate neurons in layer IV express NMDA receptors with the
NR2C subunit whereas their feedforward targets, pyramidal cells in layer II/III, do not (2). These
phenomena raise questions about the role of intrinsic properties and their laminar specificity.

However, most theoretical and computational studies rarely take into account neuronal heterogeneity.

We addressed this question by studying the classical problem of how a spike signal, defined by
evoked firing of multiple neurons in one layer, can stably propagate through multiple downstream
layers in an FFN (3-11). Stable propagation plays a key role in models of conscious perception (11,
12), short-term memory (13), learning in deep artificial networks(14), etc. Most of those studies
assumed that FFNs have identical types of neurons, and thus each layer makes similar input/output
transformations. In this case, an input-driven spike signal either gets stronger or weaker as it passes
through layers, depending on the efficacy of output spike generation, given input spikes, and also
given the characteristics of the network input (Fig. 1A, Left). Then, the signal eventually reaches a
fixed point of layer-to-layer transformation or dissipates (3, 5, 10) (Fig. 1A, Right). In this scenario,
stable signal transmission is achieved by certain conditions for a non-trivial fixed point, which are
often not robust for a wide range of initial signals. Also, irreversible signal distortion during

propagation can cause inevitable loss of information.

Introducing lamina-specific intrinsic properties in neurons can change this fundamentally (Fig. 1B). If
each layer transforms a propagating signal in a different direction than the previous one, a fixed point
will not exist in general. Instead, this prevents repeated transformation of the signal in one direction
and the overall signal distortion over multiple layers can actually become smaller, compared to
networks with identical layers. In particular, if transformations are “complementary,” i.e., the
transformation by one layer is in the opposite or nearly opposite direction to those by its presynaptic
layer, stable propagation is possible with bounded signal distortion across multiple layers (Fig. 1B
Right). This mechanism can also improve information transfer. Signal distortion at each layer will
accumulate if neurons in each layer repeatedly encode similar preferred features of a network input
and this will cause irrevocable loss of information. Contrarily, in the case of complementary
transformations, postsynaptic neurons have preferred features distinct from those of presynaptic
neurons. Postsynaptic neurons filter presynaptic output spikes more selectively, resulting in
demodulation of distortions introduced by presynaptic signal transformation (Fig. 1B Left). In this
manner, FFNs with heterogeneous, lamina-specific neuronal properties can show enhanced

information transmission compared to homogeneous FFNs.

Here we demonstrate how complementarity and robust, stable signal transmission arise from laminar

specificity of cell intrinsic properties by computational FFN models. We first introduce a model of the
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Drosophila AL network with three layers of ORNs, PNs and LHNs. We show that this model
replicates a recent experimental finding that differences in spiking dynamics between PNs and LHNs
can balance accuracy and speed in processing olfactory information (1), and furthermore demonstrate
that PN-to-LHN information transfer is nearly optimal. Then, we extend the model to a deep FFN and
demonstrate robust and stable spike signal propagation, contrary to models with no laminar specificity

in neuronal properties.

Results

Voltage-sensitive K+ channels control dynamical input/output properties of neurons

We constructed a computational model of the Drosophila AL network with lamina-specific neuronal
properties with conductance-based neuron models, containing voltage-dependent Na" and K™ channels
(15). An important parameter of the model is ., the half-activation voltage of the K™ channel (see
Equation 1 in Materials and Methods). With lower S, the channel is more active at subthreshold
voltages, shifting the balance between inward and outward currents around the firing threshold. This
fundamentally changes the neuronal signal transformation property by strengthening differentiator-
like traits, whereas higher f,, promotes integrator-like behavior (15, 16). For example, typical
repetitive firing with a sustained current input, seen in neurons with high f,, (=5 mV in our model),
was suppressed in those with low f,, (=-19 mV in our model), whereas the low f,, case showed robust
sensitivity to the dynamic fluctuation in inputs, demonstrated by evoked firing (Fig. 2A). Therefore,

we will call our model neurons with low f,, and high p,, differentiators and integrators, respectively.

Differentiator neurons are also known to have a dynamic spiking threshold, which was also observed
in LHNs (1). With the dynamic threshold, their firing depends not only on the membrane potential,
but also on its temporal change, which is crucial to their sensitivity to input fluctuations (15, 17, 18).
To demonstrate this, we estimated a minimal rate of membrane potential change, [dV/df]min, that
preceded spikes, but not subthreshold fluctuations from our simulation data, which corresponds to the
minimal inward current required for spiking (Fig. 2B). Then, the threshold voltage, V, at
dV/dt=|dV/dt]min, Was significantly more distributed in differentiators (Integrator: STD[Vy]=2.76+0.08
mV, Differentiator: 3.33+£0.11 mV; P=2.58x107, F-test; Fig. 2C). This shows that differentiators can
generate enough inward current to generate a spike across a broader range of membrane voltages than
integrators, which is an indication of a more dynamic spiking threshold. Therefore, we used
differentiator neurons, with the low-threshold K" channel, for modeling LHNs, and integrators with

the high-threshold channel for PNs in the AL network.
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Lamina-specific neuronal properties are crucial for the Drosophila AL network

Our network model of integrator PNs and differentiator LHNs (see Materials and Methods and
Table S1-S2 for full description) reproduced the key features of experimental results in ref. (1). When
ORNs were given a common current input that simulates optogenetic stimulation in experiments (Fig.
3A), PNs showed a slower amplified response to transient inputs from ORNs, and LHN firing was
more temporally refined, with the peak of their firing rate preceding that of presynaptic PNs, just as in
experimental data (Fig. 3B Left). This rapid response of LHNs caused detection accuracy (d’) (see ref.
(1) and Materials and Methods) for the ORN input to grow much faster to a larger maximum in
LHNSs than in PNs (Fig. 3B Right). In contrast, homogeneous networks, in which PNs and LHNs are
of the same type, showed suboptimal behaviors, such as delayed firing of LHNs; therefore, d” of LHN

rose more slowly and reached a lower maximum than that of PNs (Fig. 3C).

How do the different intrinsic properties of neurons contribute to the speed and high fidelity of LHN
output? Since PNs and LHNs have opposite traits of differentiators and integrators, respectively, their
effects can compensate for each other in the combined feedforward transformation of the ORN
output. To analyze how the PN and LHN layers transform ORN inputs together, we computed how
they amplify the power spectrum of ORN firing within a physiological frequency band (<100 Hz)
with data from longer simulations with continuous current stimulus to ORNs (see Materials and
Methods). This showed that homogeneous networks with differentiator and integrator PNs/LHNs
preferentially amplified higher or lower frequency components, respectively, whereas the
heterogeneous network showed little distortion across the entire frequency range, demonstrating that

PNs and LHNs complemented each other (Fig. 3D).

We found that this complementarity also facilitated information transfer. We estimated (the lower
bound of) mutual information (MI) between the input to ORNs and spike outputs of each layer, and
compared how much information in ORN firings pertaining to the input is transmitted to output firing
of PNs and LHNs. Specifically, we measured the information transfer from ORNSs to PNs or to LHNs
by computing a ratio of Mls, /(ORN input; PN or LHN output)//(ORN input; ORN output),
respectively, where /(X; Y) denotes MI between X and Y. We found that information transfer to PNs
closely matched that to LHNs in the heterogeneous network, whereas significant information loss was
observed in homogeneous networks (Fig. 3E). In particular, the all-integrator PN/LHN case showed
information loss specifically in the high frequency band (Fig. 3E Right), indicating that large signal
distortion in this regime (Fig. 3D) impaired information transfer. This suggests that complementarity
enabled nearly optimal information transfer from PNs to LHNs, demonstrating the importance of

laminar specificity of intrinsic and functional properties of neurons.
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Lamina-specific neuronal properties promote robust and stable signal propagation in deep

FFNs

We then investigated whether this mechanism can also enhance signal transmission in larger
networks. For this purpose, we extended the AL network to a deep heterogeneous FFN model, by
adding more alternating layers of integrator or differentiator neurons (see Materials and Methods
and Table S3 for full description). Then, we simulated how a packet of spikes, injected into the input
layer, propagates through subsequent layers (3-11).

We found that the spike signals stably propagated in this network, whereas homogeneous networks,
with only differentiators or integrators, showed opposing results (Fig. 4A,B): In the all-differentiator
network, the evoked spike signal became increasingly synchronized and propagated as layer-wide
synchronized spikes, whereas in the all-integrator network, the evoked spike signal became broader
and less synchronized, until it was eventually lost among spontaneously firing spikes (Fig. 4A Right).
Stable propagation in the heterogeneous network was decidedly robust over a wide range of input
signals with diverse temporal width (o) and total number of spikes (a) (Fig. 4C Top). Conversely, the
all-differentiator network exhibited clear preference for sharply synchronized spikes (3), while signals
gradually dissipated into spontaneous activity in the all-integrator network (Fig. 4C Middle-Bottom).
Therefore, when tested with input signals with diverse (o, o), the heterogeneous network showed the
best performance in signal propagation (Fig. S1), and this result did not significantly change with

additional feedforward inhibition in the deep FFN (Fig. S2).

Furthermore, when the input layer fired with dynamically varying ¢ and a, due to dynamical,
stochastic current injection, this continuous signal propagated in the heterogeneous network with
many conserved features, whereas significant signal distortion and loss were again observed in the
homogeneous networks (Fig. 4D). Note that propagation of dynamical input features indicates

superior information transfer in a heterogeneous network, compared to homogeneous ones.

Again, complementary transformations by neighboring layers with distinct neuron types underlie the
robust and stable signal propagation. To demonstrate this, we analyzed trajectories of propagating
signals in the (o, o) plane (3, 10) (Fig. 4E), a simple version of the signal space that we previously
discussed (Fig. 1). In the heterogeneous network, each layer transformed an incoming signal into a
different, sometimes nearly opposite or complementary direction in the (o, o) plane than those
transformed by its pre- and postsynaptic layer, which prevents formation of a uniform flow. This
prevents a propagating signal from running away and confines it to a small region (basin),
corresponding to stable propagation (Fig. 4E Left). In contrast, in homogeneous networks, all layers
perform similar transformations and drive propagating signals rapidly toward a fixed point of sharp
synchronization or dissipation (Fig. 4E Middle, Right). Notably, in most of the (o, o) plane,

transformations in those two networks are in nearly opposite directions: In the all-differentiator
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network, ¢ and a both tend to decrease (Fig. 4E Middle), because sharply correlated spikes are the
preferred input of the neurons, while ¢ and a increase in the all-integrator network (Fig. 4E Right). In
the heterogeneous network, those two different transformations are performed by neighboring layers,
so as to complement each other, minimizing overall signal distortion and boosting information
transfer. In summary, complementary transformations by different neuron types can protect a
propagating signal from undergoing a loss or distortion regime in the signal space, instead supporting

its robust and stable transmission.

Discussion

Diversity of cell types is one of the distinctive characteristics in neural systems and its functional
characterization is the subject of ongoing experimental investigations. Integrating information about
cell types and their intrinsic properties with network connectivity should be an important research
question to develop a holistic understanding of how spike signals propagate in neural circuits.
However, diversity of cellular properties is one of the most neglected elements in theoretical neural
network studies. Here we showed using our computational FFN models with various types of
excitatory neurons that different cell types are beneficial in neural networks, because their different
input/output transformation properties can complement each other, enhancing signal and information

transmission in the whole network.

We focused on functionally distinct cell types due to different voltage-dependencies of K™ channels,
which can arise from diverse expression patterns of low-threshold K™ channels (19-21). However,
other neuronal mechanisms that affect the integrative cellular property can play similar roles, such as
morphology (22), a high conductance state (23), inactivation of Na" channels (24, 25), h-channels
(26), etc. Furthermore, synaptic and circuit mechanisms known to operate as integrators or
differentiators can be organized by a similar principle, such as short-term synaptic depression and
facilitation, which can act as high- or low-pass filters, respectively (27), and inhibition, which can
limit an integration time window for incoming inputs and promote temporal fidelity of neuronal
responses (28). Our complementarity hypothesis predicts that integrator neurons, such as PNs, tend to
have synapses with short-term depression (29) whereas differentiators, such as LHNs, have

facilitating synapses.

Jeanne and Wilson compared spike signal transfer from thalamocortical to cortical layer IV neurons to
that between PNs and LHNs (1), and likewise, we further propose that these theoretical mechanisms
can be applied to the thalamocortical loop and cortico-cortical feedforward projections, where spike
signals propagate through multiple types of principal neurons that are different in size, morphology,

ion channel expressions, etc. for each layer. Stable signal propagation in an FFN has been extensively
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studied in this context (3-11). However, proposed models so far were often successful only with a
limited range of input signals given fixed model parameters, although some precisely tuned models
can handle a diverse range of inputs (4, 6-8). In this study, we proposed a novel approach to this
problem, based on information theoretic perspective, pointing at that an assumption of a single cell
type in a network can result in accumulated signal distortion, whereas introducing multiple cell types
with lamina-specific neuronal properties can circumvent this problem by their complementary
functions. This indeed brought superior performance, exmplified by stable propagation of a dynamical
spike signal. Given the prevalence of diverse cell types in many neural systems, our work presents a

clear case that lamina-specific cell types are surprisingly critical to understanding network functions.

Complementarity also explains experimental observations that information encoded by an input layer
appears substantially lost in the postsynaptic layer. For example, olfactory bulb output neurons
simultaneously encode multiple aspects of an odor by multiplexing spike synchrony and firing rate
(30), but their postsynaptic targets appear to largely filter out information in spike times due to their
integrative property (31). Such phenomena naturally arise and can be explained by complementarity.
In this case, postsynaptic neurons do not inherit the coding strategy of presynaptic neurons but
employ a very different one. Therefore, given inputs to a presynaptic layer, postsynaptic neurons
appear to respond very differently from presynaptic ones. For example, in the AL network, PNs and
LHNSs have different firing time courses, marked by different peak times (earlier in LHNS), primarily
due to LHNSs sensitively responding to correlations rather than the average variability in PN firing
rates (1). Therefore, this can be misinterpreted as LHNs seemingly filtering out a substantial fraction
of the information carried in a mean PN firing rate. However, we have demonstrated that on the
contrary, information transfer from PNs to LHNS is in fact nearly optimal due to their
complementarity. This suggests that opposing coding schemes of pre-/postsynaptic neurons, seen in

experiments, can be a signature of optimal information transfer, rather than of discarding information.

Complementary transformations underlie many strategies in information theory for optimizing
information transfer with a limited bandwidth, such as water-filling (32). In this study, we have
demonstrated how this scheme operates in FFNs when lamina-specific neuron types have different
intrinsic properties. Notably, a previous study showed that functionally different cell types within a
layer can also be explained by maximization of information transmission (33). Therefore, we suggest
that the commonly observed diversity of cell types in neural circuits is essential to achieve optimal

information transmission.
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Materials and Methods

Experimental procedure. Firing rates and ¢’ in Fig. 3B Bottom were based on spike times collected
as described by Jeanne and Wilson (1), who kindly shared the data set. Briefly, ORNs in glomerulus
DAI1 of Drosophila antennae, expressing light-activated cation channel channelrhodopsin-2, were
stimulated briefly (100 ms) by blue light emitted from an LED coupled to an optical fiber.
Simultaneously, extracellular (ORNs) and patch-clamp (PNs and LHNs) recordings were performed
in vivo. Spike times were extracted from the recording data by the custom algorithm. Although we
used our custom scripts for Fig. 3B, we strictly followed the procedure in (1) to compute firing rates

and d’ and reproduce corresponding figures faithfully.

Model neurons. We used conductance-based model neurons based on the Morris-Lecar mechanisms

(15), which are given by

av
c dt = _gL(V - EL) - gKW(V - EK) — YNaMeo (V)(V - ENa) + Lstocn + Iinput:
aw Woo (V)-w _1 V-8, _
- = Pw ) Zeo (V) =3 [1 + tanh( " )] (z =m,w), (1)
_p -1
Tw(V) = cosh (Vyﬂ) ,

where V and w are membrane potential and a gating variable for a K* channel. The first model, which
we called the “integrator” neuron, had a high half-maximum voltage f,, while the other,

“differentiator” neuron, had low f,. The parameters are in Table S1.

Stochastic current /s, represented noisy membrane potential fluctuation due to the effects that are
absent from our model, such as background network inputs, an unknown noise source', etc., and was
given by an Ornstein-Uhlenbeck (OU) process, dlocn/dt = -Lsocn/tv+ ov &, where & is a unit Gaussian
noise, renewed each time step. 7y=1 ms, and oy was tuned to match experimental data in (1) (see

below).

The input current /i, Was either synaptic inputs or a common current injection to input layer
neurons. Each synaptic input was conductance-based and modeled as a double exponential function:

at each presynaptic spike at #,, the synaptic current was

Iinput & =g9g@®OWw - Esyn)»

2
9O = goynle-CtIm — eC-t/mg(e — 1), @)

where V' is the postsynaptic membrane potential, H(¢) is a Heaviside function that H(¢) = 1 if £~0 and
H(#) = 0 otherwise. We used 71=0.5 ms and 7;=4 ms, which is comparable to experimental
measurments (29), and tuned gi,» to match experimental data as oy. All other parameters are in Table
S1. As for the current injection, see AL network model and Deep FFN model below. All simulations

were constructed and run on the Brian simulator ver. 2 (34).
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AL network model. In the Drosophila AL network model, we used £,=-23 mV for ORNs to give
them strong differentiator traits (35), and £,=5 mV and -19 mV for PN and LHN, respectively. 40
ORNSs projected to each PN and 9 PNs projected to each LHN (1). The number of LHNs was 9. Each
layer contained 100 replicas of these, corresponding to 100 “trials” of an experiment, which resulted
in 4,000 ORNs, 900 PNs, and 900 LHNSs in an entire network. We tuned synaptic conductances, oy for
each layer, and peak current injection, to match experimental measurements for i) the mean
spontaneous firing rates in all layers and higher cell-to-cell variability in PN firing rates (1), ii) mean
peak firing rates, and iii) rate of decrease in a mean LHN firing rate. In homogeneous networks, S,
and oy of PNs or LHNs changed accordingly and synaptic conductances were re-tuned to match peak

firing rates to the heterogeneous case.
In the simulated optogenetic activation (Fig. 3A-C), the current injected to ORNs was
Iinput = Iamp [e_(t_to)/'[a::t — e_(t_to)/fdeact]]-[(t — tO) (3)

where 1,,,=45 uA/cmZ, Taer=15 ms, and 74eac=50 ms. fp = 200 ms is a stimulus onset. In simulations
with the OU process input (Fig. 3D-E, 4D), ;. was again given by dlinpud/dt = (tinpur-Linpus) Tinpurtoe &

where finpu=15 PA/em?, Ginpi=7.5 pA/em?, and 7,,,=5 ms. See Table S2 for other parameters.

Deep FFN model. All deep FFN models had 9 layers of 1,000 (5,000 in Fig. S1) differentiator or
integrator neurons in the AL network model, except for the input layer composed of differentiators.
Again, each neuron was randomly connected to 9 presynaptic neurons on average. Synaptic
conductances and other parameters were the same as the AL network. An input layer was driven
either by spikes from artificial spike generators (Fig. 4A-C, E) or by the current injection generated by
an OU process (Fig. 4D). Spike generators randomly sampled in total o spike times from a normal
distribution with variance 6* and forced the input layer neurons to fire at the spike times, in addition
to noisy spontaneous firing. The OU process case was the same as the AL network except pinpu=25

uA/cm? and ip=12.5 pA/cm?. See Table S3 for the other parameters.

An FFN model with feedforward inhibition (Fig. S2) had 9 layers of 4,000 excitatory neurons, and
1,000 inhibitory neurons. Each cell received 9 excitatory inputs on average from the previous layer,
and each excitatory neuron also received inputs from inhibitory cells in the same layer with the same
connection probability. Inhibitory cells were also based on the Morris-Lecar model (Equation 1) with
pw=-15 mV while different ,, did not cause any significant change in our conclusion. The reversal
potential of inhibitory synapses was Ej,, = -90 mV and the conductance was 200 uS/cm?. Also, we

added a synaptic delay of 2 ms for all connections.

Data analysis. In the AL network model case, d’, a measure for signal detection, was computed in the

same way as in ref. (1) :
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dl — Ustim—Ho (4)

(Usztim+ag)/2

where (Usim, Osim) and (uo, 0o) are the (mean, STD) of spike count at a given layer, computed with 80
ms-long overlapping temporal windows in the stimulated and non-stimulated condition, respectively.

For each layer, we computed d’ of all the cells and plotted their median in Fig. 3B,C.

Power spectra for Fig. 3D were evaluated by applying the MATLAB function pm#m with a 20-ms
time window on spike trains formed with 1-ms time bins. Mutual information in Fig. 3E were
computed by a Gaussian channel approximation (36): We first reduced the dimensionality of a
population spike trains at each layer, by using principal component analysis (PCA). Since the first
PCA component was always dominating, we projected the population spike trains to this component
to form a one-dimensional “population response” time series. With the Fourier transformation of the
stimulus and population response, S(w) and R(w), we estimated a kernel K(w) =
<R*(0)S(w)>/<R’(w)R(ew)>, and computed a reconstructed stimulus and noise via S(w) = R(w)K(w)

and N(w) = S(w)-S(®w). The mutual information per each frequency bin was then computed by
I(S(w); R(®)) =logz(1+ SNR(w)), SNR(w) = [IS-(@)II*/IIN(@)II*. (5)

With this, we computed the information transfer (Fig. 3E) by Tx(®w) = I(S(®)orn; R(@)x)/I(S(w)orn;
R(w)orn), where X is PN or LHN.

In the deep FFN, we computed (o, o) for spikes from each layer using a custom algorithm that
estimates (o, o) in the presence of additional spontaneous firing. We first computed the baseline
spontaneous firing rate vq at each layer by averaging the firing rate obtained from the same model
with no input. The firing rate curve was computed by histogramming spike times in this layer with a
0.1-ms time bin and by smoothing it with a 3-step moving average. Then, we evaluated a least-square
fit of v(7) to valt) = vo + v1 exp(-(t-1.)*/26%). 0. was estimated by counting the spikes in the [#. - 30, .+
3¢] window. From the goodness of fit, R = 1 - < (w(£)- vu(£))>>/Var[w(f)], we evaluated the signal-to-
noise ratio, S/N = R/(1-R?)"? (Fig. 4E).

The datasets generated during and/or analyzed during the current study are available from the
corresponding author upon reasonable request. All the models and analysis code will be made

publicly available at ModelDB (http://senselab.med.yale.edu/modeldb).
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Figure 1. Lamina-specific intrinsic properties enable neurons to perform complementary
computations in a neural network. A. Left: FFN with a single cell type (Top), and spikes at each
layer, in two different modes of signal propagation (Bottom). One mode is amplification by
progressively evoking more and more synchronized spikes (red dots) and the other is dissipation by
gradually losing spikes (blue dots). Right: Trajectories of the two propagating signals, in a signal
space. The x- and y-axes represent independent signal characteristics, such as the number of spikes,
temporal precision, etc. A star is a fixed point of neuronal signal transformation, and a dotted line is a
separatrix separating the two modes. B. Left: FFN where neurons have lamina-specific intrinsic
properties (Top). Each layer performs a “complementary” transformation, and can selectively transfer
a subset of input spikes (circled red dots), ignoring those that cause signal distortion (Bottom). Right:
Trajectory of a propagating signal in a signal space. The dotted circle surrounds a region (basin)
where the propagating signal is confined by the complementary transformations.
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Figure 2. Intrinsic properties of conductance-based model neurons control dynamicity of
spiking thresholds. A. Membrane potential response (color) to constant or fluctuating current
injection (black). B. Example membrane potential V vs. dV/dt in two neurons, based on simulation
data in Fig. 3A,B. Data from one trial are shown (gray). Dotted lines represent [dV/df]min, the minimal
dV/dt for spiking, and colored dots are threshold-crossing points. C. Spread of membrane potentials
at crossing points, Vs, from the average. Vertical bars span from 10% to 90% quantiles, and notches
are at medians. Data are the same as B, and only 50 samples (dots) are shown for clarity.
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Figure 3. Lamina-specific neuronal properties boost information transfer in the AL network. A.
Schematic diagram of the network model (Left), and spikes from a simulation with a current input to
ORNs on top (Right). 40 trials are shown for one example neuron in each layer. B. Left: Average firing
rates from the simulation (Top) and experimental data (Bottom). Right: d’for detecting an input to
ORNSs at each layer, computed from the same data as Left. C. Same plots as B, with a model with
differentiator PNs (Top), and with integrator LHNs (Bottom). D. Spectral power amplification,

Pran(w)/ Porn(w), normalized by total power. P(w) is a power spectral density of mean firing rate.
Black represent the heterogeneous network, while blue and red are homogeneous ones with
differentiator and integrator PN/LHN, respectively. E. Information transfer from ORNs to PNs (solid)
and LHNs (dotted). Black dotted lines represent 100% information transfer. Grey regions and stars
represent frequency bands with significant differences between PNs and LHNs (*:P<0.01, Student ¢-
test). Data are mean+SEM.
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Figure 4. Lamina-specific neuronal properties robustly stabilize spike signal propagation in
deep FFNs. A. Propagation in a heterogeneous network. Inset on top is the Gaussian distribution of
spikes, evoked in the input layers (black). Dots (Left) and histograms (Right) are spikes and their firing
rates, respectively. In all figures, blue and red represent differentiators and integrators, respectively.
B. Firing in homogeneous networks with only differentiators (Top) and integrators (Bottom). C.
Propagation of signals with different spike count (a) and width (o). D. Network firing with continuous
noise current in the input layer. In the middle row (blue; all differentiator), the input layer firing rate is
multiplied by 10 for clarity. E. Analysis of signal transformations underlying stable propagation in the
(o, a) space. Each trajectory is formed by connecting (o, a) of a propagating signal (dots) between
adjacent layers, starting from the second layer output. Shade of each dot is the signal-to-noise ratio
(S/N) and only points with S/N>1 are shown. Dotted circles mark “basins” (Fig. 1A) where any
propagating signal stays for =5 layers. A dotted line in the Middle panel is an approximated separatrix
between trajectories toward a fixed point and dissipation (Fig. 1A). All models have 9 layers and the
first 7 layers are shown in A-D for clarity.
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Table S1. Parameters of the single-neuron model.

Parameter Value

ENa 50 mV

Ex -100 mV
Er -70 mV
2Na 20 mS/cm?
gk 20 mS/cm?
gL 2 mS/cm?
Pw 0.15

C 2 mF/cm?
B 12mV
- 18 mV

P 10 mV

Egyn, excitatory 0 mV
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Table S2. Parameters of the AL network model. ) is a random number sampled from a
uniform distribution ranging from 0 to 1.

Parameter Heterogeneous Differentiator PN Integrator LHN
Pw, ORN 23 mV -23 mV -23 mV

S, PN 5mV -19 mV 5mV

Sw, LHN  -19 mV -19 mV 5mV

o, ORN 38 pA/cm? 38 pA/cm? 38 pA/cm?

or, PN 38 + 15 pA/cm? 15 pA/em? 38 + 151 pA/cm?
ov, LHN 15 pA/cm? 15 pA/ecm? 38 + 151 pA/cm?
gsm, PN 345 uS/cm? 1170 pS/cm? 345 uS/cm?

gsm, LHN 975 uS/cm? 715 uS/cm? 285 uS/cm?
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Table S3. Parameters of the deep FFN model. Even and Odd represent the 2x and (2n+1)-th
layer where n=1,2,...,5, respectively. 1 is a random number sampled from a uniform distribution
ranging from O to 1.

Parameter Heterogeneous All differentiator ~All integrator

Sw, Input  -23 mV -23 mV -23mV

pw, Even  -19 mV -19 mV 5mV

pw,0Odd  5SmV -19 mV 5mV

oy, Input 38 uA/cm? 38 pA/cm? 38 pA/cm?

ov, Even 15 pA/cm? 15 pA/ecm? 38 + 151 pA/cm?
or,0dd 38+ 15n pA/em? 15 uA/ecm? 38 + 151 pA/cm?
gsm, Even 975 uS/cm? 975 uS/cm? 345 uS/cm?

gsm, Odd 345 puS/ecm? 975 uS/cm? 345 uS/cm?
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Fig. S1. Propagation of spike signals with diverse width (c) and number of spikes (@) in the
heterogeneous (A), all-differentiator (B), and all-integrator network (C). Each network has 9
layers of 5,000 neurons (see Table S3 for parameters). Color in the middle column represents
propagation depth, computed by numbers of layers (except an input layer) into which spike
signals propagate. Propagation is considered stopped if the estimated a is lower than 0.05x or
larger than 3# for a layer and its corresponding postsynaptic layer, where #=5,000 is the group
size. Side insets are example raster plots for parameters marked by dotted squares in the middle,
showing spikes from 10% of neurons at each layer for clarity.
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Fig. S2. The same figures as Fig. S1, using FFN models with feedforward inhibition. Again,
each network has 9 layers of 4,000 PN-like or LHN-like excitatory neurons and 1,000 inhibitory
neurons that receive excitatory inputs from a previous layer and inhibit excitatory neurons in the
same layer (see Methods and Table S3 for details). In all panels, we plotted spikes from 10% of
excitatory neurons at each layer for clarity.
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