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ABSTRACT

For appropriate treatments of infectious diseases, rapid identification of the pathogens is crucial. Here, we
developed a rapid and label-free method for identifying common bacterial pathogens as individual bacteria by
using three-dimensional quantitative phase imaging and deep learning. We achieved 95% accuracy in classifying
19 bacterial species by exploiting the rich information in three-dimensional refractive index tomograms with a
convolutional neural network classifier. Extensive analysis of the features extracted by the trained classifier was
carried out, which supported that our classifier is capable of learning species-dependent characteristics. We also
confirmed that utilizing three-dimensional refractive index tomograms was crucial for identification ability
compared to two-dimensional imaging. This method, which does not require time-consuming culture, shows high
feasibility for diagnosing patients with infectious diseases who would benefit from immediate and adequate

antibiotic treatment.
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MAIN

In recent years, the global society has been frequently exposed to the threat of infectious diseases, i.e., disorders
caused by the invasion of microbes’ 2. Climate change and the expansion of human activities around the globe
have allowed the spread of parasites from different sources. Despite the recent advances in biomedical techniques,
the global society has paid significant tolls including public fear® and economic impact*, following the outbreaks
of infectious diseases.

Among different groups of infectious microbes, bacteria have played a notable part in jeopardizing the public
health"-3. Tuberculosis, cholera, meningitis and numerous diseases have repeatedly emerged, giving striking blows
to the international community. Furthermore, bacterial infections are the most common cause of sepsis, which has
been indicated as a major cause of deaths world-wide® 7.

Identification of the pathogens can be instrumental in providing appropriate antibiotic treatments against
bacterial infections. While bacterial infection can be effectively treated by prescribing appropriate antibiotic
agents, the efficacy of antibiotics varies for different types of bacteria due to their different mechanisms®!!. The
risks accompanying inappropriate antibiotic treatments further highlight the demand for identification of the
pathogens'>!5. Accordingly, multiple methods have been proposed to rapidly identify the microbial pathogens in
bloodstream!6-2!,

Typical methods for identifying the microbial pathogens in bloodstream involve blood culture and matrix-
assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)?> 23, While MALDI-TOF
MS offers the chemical composition of the specimen, it requires amplification of the microbial cells to 103 or
more cells. This prerequisite restricts the speed of identification using MALDI-TOF MS. In addition, MALDI-
TOF MS alone may fail to identify mixtures of pathogens that fall under multiple species®*.

To overcome the problems related to routine microbiological identification methods, we developed a rapid and
accurate method for identifying bacterial species based on 3D (three-dimensional) quantitative phase imaging
(QPI) and a convolutional neural network (CNN). After establishing a 3D refractive index (RI) tomogram database
of 19 bacterial species, we trained a CNN classifier to predict species based on 3D RI tomograms of individual
bacteria and provide interpretability. After training, the performance of the classifier was assessed using an unseen
dataset. The trained classifier accurately predicted the species as well as gram-stainability or aerobicity. We
confirmed that the classifier extracts species-dependent features in 3D RI tomograms according to the distribution

of abstract features and saliency maps. Furthermore, the 3D context and robust contrast of 3D RI tomograms were
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crucial to the performance of the classifier.

The proposed approach was based on previous methods of identifying microscopic biospecimens based on QPI
and machine learning?-33. QPI is a label-free holographic imaging technique used for measuring the optical phase
delay of a specimen, which reveals the intrinsic biological properties of the specimen®. Based on its ability to
rapidly and consistently characterize individual live cells, QPI provides suitable data for machine learning analysis.

Because of the challenges of detection and close relationship with pathology, bacteria have been used as subjects
of identification based on QPI and machine learning. Previous studies achieved genus-level identification of
individual bacteria based on 2D light scattering profiles®> and conventional machine learning®, followed by the
species-level screening of anthrax spores based on 2D phase images and a CNN3!,

In this study, we aimed to strengthen the current countermeasure against infectious diseases by taking advantage
of recent advances in QPI and deep learning®®. 3D QPI techniques including optical diffraction tomography®’
(ODT) have expanded the understanding of live cells through 3D RI tomograms®*. The usefulness of 3D RI
tomograms in pathophysiological and immunological studies was verified by learning-based identification of
blood cells! 33. By employing a state-of-the-art CNN3® and advanced techniques for exploring abstract features

in data®®- 40

, we extracted intricate biological information from 3D RI tomograms.
RESULTS
In the proposed method, 3D RI tomograms of unknown specimens were classified into the most probable species
based on a trained CNN classifier. The overall workflow of our approach is illustrated in Fig. 1. We established a
3D RI tomogram database of bacteria using QPI and ODT (Fig. 1a). Using QPI, phase and amplitude images of
each specimen were measured in multiple illumination angles. Next, the 3D RI tomogram was reconstructed using
the multi-angular set of phase and amplitude images. After establishing the 3D RI tomogram database of bacteria,
the database was randomly separated into the training set, validation set, and test set. The CNN classifier was
trained using the training set via gradient descent-based optimization. After selecting the best classifier for the
validation set, classifier performance was tested on an unseen test set (Fig. 1b).

We acquired total 5041 3D RI tomograms of bacteria. To predict the clinical feasibility of our method, the
database was composed of 19 bacterial species which were commonly isolated from clinical specimens at
Samsung Medical Center. The 19 species include five ATCC isolates and 14 clinical isolates; Acinetobacter

baumannii, Bacillus subtilis, Enterobacter cloacae, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC
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25922, Haemophilus influenzae ATCC 49766, Klebsiella pneumoniae, Listeria monocytogenes, Micrococcus
luteus, Proteus mirabilis, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus ATCC 29213,
Staphylococcus epidermidis, Stenotrophomonas maltophilia, Streptococcus agalactiae, Streptococcus anginosus,
Streptococcus pneumoniae ATCC 49619, and Streptococcus pyogenes. The representative 3D RI tomograms are
shown in Fig. 2a and common categorizations of each species are listed in Supplementary Table 1. Each
tomogram covers a cuboid region of 7.2 x 7.2 x 4.0 um?, with one or more specimens of the labelled species
inside the cuboid. The pixel size was 0.1, 0.1, and 0.2 um in the x, y, and z directions respectively. For each species,

an identical number of tomograms was randomly assigned to each of the test set and validation set.

Identification of bacterial species from 3D RI tomograms

Our trained classifier was 94.6% accurate in the blind test of species classification (Fig. 2b). The average true
positive rate (TPR), true negative rate (TNR), positive predictive value (PPV) and negative predictive value (NPV)
for each species were 94.6%, 99.7%, 94.7%, and 99.7% respectively. The most frequent errors were
misclassification of E. coli as K. pneumoniae and misclassification of S. pneumoniae as S. pyogenes, which
occurred for 7.5% of E. coli and S. pneumoniae.

The high overall accuracy was achieved without significantly overlooking any species. The performance for
each species is quantitatively listed in Supplementary Table. 2. TPR, or sensitivity, was the highest (100%) for
H. influenzae, L. monocytogenes, P. aeruginosa, and S. anginosus, and the lowest (85%) for P. mirabilis. TNR, or
specificity, was the highest (100%) for P_mirabilis, P. aeruginosa, and S. maltophilia, and the lowest (99.2%) for
E. coli. PPV, or precision, was the highest (100%) for P. mirabilis, P. aeruginosa, and S. maltophilia, and the
lowest (85.4%) for E. coli. NPV was the highest (100%) for H. influenzae, L. monocytogenes, P. aeruginosa, and
S. agalactiae, and the lowest (99.2%) for P. mirabilis. Note that neither of TPR, TNR, PPV, nor PNV was lower
than 85% for any of the 19 species.

The classifier showed low confusion between species in the same genus. Our database consists of 19 species in
15 genera, with two species belonging to Staphylococcus and four species belonging to Streptococcus. The
classification was 95.5% accurate for these genera, which is slightly more accurate than for the species
(Supplementary Fig. 1a). Genus-related errors were not increased compared to those among all 19 species. Once
the genus was correctly predicted, the predictions within Staphylococcus and Streptococcus were 98.7% and 96.2%

accurate respectively (Supplementary Fig. 1b).
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The results of species classification were also evaluated by two additional types of categorization, gram-
stainability and aerobicity, which are closely related to the pathogenesis of infectious diseases and resistance to
antibiotics®!! (Figs. 2¢, d). The classification results were 97.5% and 98.2% accurate for gram-stainability and
aerobicity respectively. Whereas an increase in accuracy for simpler classification tasks is not unexpected, other
classification tasks related to treating the bacterial infection can be performed using the trained neural network.

Other categorization criteria including motility and morphological groups were accurately identified using the
classifier (Supplementary Figs. 1¢, d). Motile bacteria and non-motile bacteria were distinguished with 98.2%
accuracy, although the 3D RI tomogram did not directly measure their movements. The 19 bacterial species were
morphologically grouped into bacilli, cocci, and coccobacilli, reflecting rod-shaped bacteria, round bacteria, and

intermediate shapes. The prediction among the three groups showed 98.0% accuracy.

Species-dependent features in 3D RI tomograms

To verify and interpret the feature-extraction capability of the trained classifier, we utilized techniques for
interpreting CNN inferences. First, we investigated the distribution of latent features extracted by the classifier.
We mapped the high-dimensional feature space onto a 2D plane using t-distributed stochastic neighbour
embedding® (t-SNE), which is a prominent unsupervised dimensionality reduction technique for deep learning
(Fig. 3a). Features were extracted before the final fully-connected layer (See Supplementary Fig. 4).

Species-wise clustering in the feature space indicated that the convolutional filters were appropriately optimized
for extracting species-dependent features, even for previously unconsidered tomograms in the test set. The
distribution of misclassified data in the feature space was also highlighted in the visualization (marked using x
signs). The feature vector of each misclassified data point was relatively distant from the correctly classified data
of the identical species.

However, not all distant data were misclassified. Correct classifications were occasionally made even though
the extracted feature was distant from other data of the identical species. This indicates that the final fully-
connected layer was optimized to track the complex decision boundary from the incompletely clustered feature
space.

The relationship between the feature distribution and gram-stainability/aerobicity was also investigated by t-
SNE (Fig. 3b). Neither gram-stainability nor aerobicity was separable into a simple bimodal distribution in the

feature space. However, a moderate tendency for anaerobic bacteria was observed; gram-positive anaerobic
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bacteria and gram-negative anaerobic bacteria were biased in two different directions.

Additional analysis of the misclassified data was conducted in relation to the learned features. We compared
correctly classified data and misclassified data in the 3D RI tomograms and corresponding saliency maps
highlighting the voxels relevant to the prediction. The tomograms and Grad-CAM++4 saliency maps of two data
sets from B. subtilis are presented in Figs. 3¢, d. While the correctly classified specimen was slightly tilted from
the lateral plane and most B. subtilis specimens, the misclassified specimen was directed straight up unlike any of
the specimens in the training dataset. The misclassification may have occurred because of peculiarities in the data
rather than optimization of the classifier, considering the high-contrast in the saliency maps for both correctly

classified and misclassified data.

Characteristics of 3D RI tomograms for identifying bacterial species

We next examined whether a 3D RI tomogram more suitable data for classification compared to different types
of data. To further investigate the high performance of our 3D classifier, we used various types of input data to
train new classifiers for comparative analysis (Fig. 4a). A total of six types of data were compared: a 2D optical
phase delay image, set of 2D optical phase delay images from multiple illumination angles, 3D RI tomogram, and
threshold-based binary masks of the three types of images. The three types of images and the corresponding
classification approaches are referred to as 2D, multi-view, and 3D throughout this section. Thresholds in the 2D
phase and 3D RI were set to 0.057 and 1.3425, respectively, to accommodate a wide variety of phase and RI
values in bacteria (Supplementary Fig. 2).

A comparative study revealed that a 3D RI tomogram contained the most suitable data for species classification.
The accuracies were 74.2%, 92.2%, and 94.6% for 2D, multi-view, and 3D tomograms respectively, and 49.6%,
75.9%, and 92.4% for the corresponding binary masks. Classification based on the original data was more accurate
than classification based on the binary mask counterpart for all 2D, multi-view, and 3D approaches. The accuracy
gap was more significant in the 2D and multi-view approaches than in the 3D approach.

We examined the properties of 3D data which rendered it more suitable for species classification compared to
2D and multi-view data. We focused on the difference between the multi-view and 3D data because multi-view
data includes 2D data and contains identical physical information as the 3D data in principle. For the comparison,
the 3D/multi-view data and saliency maps of a specimen correctly classified only in the 3D approach were

examined (Figs. 4b—e).
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The 3D data provided the 3D context to CNN more robustly compared to multi-view data. The 3D context was
directly expressed in the 3D data as the axial coordinate, whereas it indwelled the horizontal contortion of the
image towards the illumination direction in multi-view data. The saliency maps indicated that the 3D context is
more accurately recognized in the 3D data. The 3D saliency map captured the axial location and boundary of the
specimen, while the multi-view saliency map did not display a clear sign that the indwelling 3D context was
recognized. This agrees with the observation that 3D data is more tolerant of defocusing compared to multi-view
data.

Additionally, the 3D data gave a more consistent image contrast compared to multi-view data. Imaging with
coherent light sources is often accompanied by artefacts from undesired interferences caused by multiple
reflection or scattering by dust particles. Imaging of bacteria which are only hundreds of nanometres thick is
particularly vulnerable to these artefacts. During the reconstruction of the 3D data, the signal-to-noise ratio can
be improved because the noisy artefacts are angle-dependent, whereas the influence of the specimen remains
consistent. Accordingly, the 3D saliency map exhibits a higher focus on the specimen compared to the multi-view
saliency map.

Notably, more rapid identification of bacteria is feasible at the cost of accuracy. While the accuracy of the multi-
view approach is lower, a computational process in the 3D approach is unnecessary. In addition to numerically
applying the principle of ODT, 3D RI reconstruction often involves sample-dependent regularization which may

be computationally burdensome.

DISCUSSION
We used deep learning and 3D QPI to establish a rapid and accurate framework for identifying bacterial pathogens.
The CNN classifier was successfully optimized to classify the 3D RI tomograms of 19 bacterial species, achieving
94.6%, 97.5%, and 98.2% accuracy in the identification of species, gram-stainability, and aerobicity. We
confirmed the representation learning capability of our classifier by exploiting the dimensionality reduction and
saliency maps. Finally, we explored the advantages of 3D RI tomograms for classifying bacteria.

For practical diagnostic application, it is necessary to integrate the proposed method with a rapid bacteria
isolation technique. Recent advances in microfluidic engineering and antibody engineering have achieved
isolation of bacteria within 1 h from concentrations as low as that of pathogenic blood*'. By employing the

isolation techniques, an efficient diagnostic routine can be developed.
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The greatest advantage of the proposed method is its speed. One can identify a new bacterial specimen in few
minutes once the classifier has been trained. Acquiring a 3D RI tomogram of individual bacteria does not require
time-consuming processes such as culturing or staining, and the trained CNN classifier consumes only
milliseconds or less to make predictions using input data. Combining the bacteria isolation system, tomographic
imaging system, and classifier will result in rapid identification in practice.

Our proposed method has important advantages compared to other methods for identifying bacterial species.
An overall comparison to between differnt techniques is displayed in Table 1. Biochemical methods including

19,21 "and real-time PCR!7 can be utilized to

bacteriophage susceptibility test?®, antiserum test'®, DNA microarray
identify bacterial species. However, these invasive methods also involve hour-long to day-long processes and
necessiate the management of specialized biochemical agents, on account of the heavy reliance on biochemical
reactions or molecule-specific signals. In contrast, the proposed method is non-invasive and rapid due to the label-
free nature and the single-cell charcaterization capability of ODT. Also, our method is less vulnerable to human
factors during both the measurement and analysis compared to other methods. While the other methods vary in
protocol among institutes and experimenters, the proposed method exploits consistent measurements in a
computational manner. Our method also provides visual interpretations of the prediction, allowing for its
incorporation into the current diagnostic workflows.

We particularly underline specific advantages of our method compared to MALDI-TOF MS?> 23, which is the
current gold standard. First, our method does not require time-consuming amplification of the specimen whereas
MALDI-TOF MS generally requires a certain amount. This is because 3D QPI is capable of profiling bacteria at
the single-cell level. Second, our method can be used in the presence of multiple types of bacteria. MALDI-TOF
MS may fail in instances of mixed infection. On the other hand, repetitive investigation using our method can
identify multiple types of bacteria, because of the single-cell profiling capability. Finally, our method preserves
the specimen due to the non-invasive nature of 3D QPI. While MALDI-TOF MS requires ionization of the
specimen, 3D QPI simply measures the light scattered by the specimen, leaving it intact. Therefore, our rapid
method can be followed by a larger number of assays, such as MALDI-TOF MS itself, without expending the
limited specimen.

We plan to extensively investigate the capability of our method. An essential step is to confirm the performance
in clinically obtained bacteria. We achieved success in the demonstration based on laboratory-cultured bacteria of

preserved isolates, yet the grounds for clinical application can be presented by verification using clinical material.
9


https://doi.org/10.1101/596486
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/596486; this version posted April 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Furthermore, the scalability of the method to a wider and more complex database should be studied. In other
words, the performance of the method in non-bacterial microbes such as fungi and intra-specific strains are yet to
be explored.

CNN can be effectively coupled with 3D QPI, i.e., an appropriate tool involving the use of complicated 3D RI
tomograms for identifying or analysing biomedical phenomena. CNN has mainly been utilized for exploring 2D
images because of the accessibility of 2D images. However, CNN can extract the spatial context from high-
dimensional data by using 3D data. The commercialization of 3D QPI techniques such as ODT has allowed the
accumulation of 3D RI tomograms related to live biomedical phenomena. However, the current understanding of
the relationship between the RI distribution and biomedical phenomena remains limited because of data
complexity and the lack of molecular specificity. Moreover, there are some correlations between RI and molecules,
although RI does not immediately present the molecular distribution*?. The complex 3D context of RI can be
extracted by CNNss to obtain implicit biochemical information®2. Cooperative utilization of 3D QPI and CNN can

further bridge the gap between the RI distribution and complex biomedical phenomena.

ONLINE METHODS

Preparation of bacteria

The bacteria were prepared by culturing frozen glycerol stocks in liquid media. The frozen stock of each species
was stored at -80°C and thawed to room temperature (25°C) before use. The thawed stock was stabilized in the
culture medium suitable for the species in a shaking incubator at 35°C. The stabilized bacteria were streaked onto
agar plates containing a suitable culture medium. The agar plates were incubated at 35°C until single colonies
were directly observed. Subcultures of individual colonies were grown in a shaking incubator at 35°C until the
concentration of bacteria reached 108-10° colony-forming units per millilitre. The subculture was washed once
using fresh medium and twice using phosphate-buffered saline. Each washing process was preceded by
centrifugation at 8000 xg for 3 min to isolate the bacteria. The prepared solution was diluted to a concentration

suitable for imaging with phosphate-buffered saline.

Optical measurement
3D RI tomograms were acquired using a Mach-Zehnder 3D QPI setup. Specifically, a set of multidirectional 2D

QPI measurements was assembled in the spatial frequency domain to a 3D RI tomogram under the principle of
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ODT. Each 2D QPI measurement was conducted based on off-axis holography using the Mach-Zehnder
interferometer illustrated in Supplementary Fig. 3. The direction of the light illuminated onto the specimen was
controlled using a digital micro-mirror device®’. Using a continuous wave laser with a wavelength of 532 nm and
two water-immersion objective lenses with a 1.2 numerical aperture, the optical resolution was 110 nm in the
horizontal axis and 330 nm in the vertical axis according to the Nyquist theorem. We resampled the 3D RI
tomograms with 100-nm wide and 200-nm high voxels. Detailed descriptions of the computational 3D QPI and

ODT can be found elsewhere?’.

Classifier optimization

To fully exploit the volumetric information of 3D RI tomograms, we utilized a neural network with 3D
convolutional layers. The architecture design of the CNN classifier is illustrated in Supplementary Fig. 4. The
architecture was inspired by the densely connected convolutional network (DenseNet)®, which has shown good
performances in recognition tasks for images*+’. To prevent the loss of key features, we did not use the max-
pooling layer which follows the initial convolution in the original DenseNet. In total, the CNN consisted of 169
convolutional layers wrapped in 30 dense blocks, followed by a global average pooling and fully-connected layer.

The classifier was optimized by modifying the parameters to minimize the cross-entropy loss function. The
adaptive moment estimation optimizer*® was used to tune the parameters at the learning rate of 0.001, the
momentum of 0.9, and the learning rate decay of 0.9999. A batch size of 64 was selected to fully utilize graphics
processing units. The optimization of 500 epoch consumed approximately 15 hours using eight graphics
processing units of GeForce GTX 1080ti (NVIDIA, Santa Clara, CA, USA) and a central processing unit of Xeon
E5-2600 (Intel, Santa Clara, CA, USA). The training dataset was augmented by randomly translating, cropping,
and adding Gaussian noise. The operations were run using Torch 1.0.0, which is a Python package for
implementing deep learning algorithms.

The classifier in the 2D and multi-view approaches was optimized in a similar manner. In the 2D approach, the
architecture was the 2D counterpart of the above-mentioned architecture. In the multi-view approach, predictions
of 2D images were ensemble averaged to make the prediction for multi-view data. The batch size was 1024 and
512 in the 2D and multi-view approaches, respectively. The optimizer used in the 3D approach was the same as

that used in the 2D and multi-view approaches.
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Figures with legends
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Fig. 1: Visual overview of bacterial species classification based on three-dimensional refractive index imaging
and convolutional neural network (CNN). a, Acquisition of 3D RI tomograms from bacterial isolates. Scale bar =
2 um. (i) Measurement of holograms from multiple illumination angles. (ii) Retrieval of phase and amplitude
from a hologram. (iii) Reconstruction of the three-dimensional refractive index image from a multi-angular set of
phase and amplitude images. b, Training and blind test of a CNN classifier. (i) Training of the CNN model based
on the training data, which are labelled with the species. (ii) Blind test of the trained CNN model based on the test

data, which were newly introduced to the CNN model.
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Fig. 2: Classification of bacterial species based on three-dimensional refractive index images using the trained

convolutional neural network. a, Representative three-dimensional (3D) refractive index (RI) images of bacterial

species. The nineteen images are respectively examples of A. baumannii, B. subtilis, E. cloacae, E. faecalis, E.

coli, H. influenzae, K. pneumoniae, L. monocytogenes, M. luteus, P. mirabilis, P. aeruginosa, S. marcescens, S.

aureus, S. epidermidis, S. maltophilia, S. agalactiae, S. anginosus, S. pneumoniae, and S. pyogenes in sequential

order. Scale bar =2 um. b, Classification among 3D RI tomograms of the 19 bacterial species. The colormap is

set to the reversed grayscale with y = 3. ¢, Classification between 3D RI tomograms of Gram-positive and Gram-

negative bacteria based on (b). d, Classification between 3D RI tomograms of acrobic and anaerobic bacteria

based on (b).
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Fig. 3: Features of bacteria refractive index (RI) images learned by the convolutional neural network. a—b,
Distribution of latent features visualized using t-distributed stochastic neighbour embedding (t-SNE). a, Latent
feature space plotted using a uniquely-coloured marker for each species. The two arrows indicate representative
cases of correctly and incorrectly classified three-dimensional (3D) refractive index (RI) images which are
visualized in ¢ and d. b, Latent feature space plotted using markers reflecting whether the specimen is Gram-
stained and whether the specimen is aerobic. The x markers refer to features of images which were misclassified
in each marker criterion. ¢, Correctly classified 3D RI tomogram of Bacillus subtilis and visualization of the
pattern recognized by the trained convolutional neural network (CNN). The RI tomogram is illustrated in a 3D
rendering and multiple cross-sections. Visualization was carried out using Grad-CAM++. Scale bar = 2 um. d,
Incorrectly classified 3D RI tomogram of Bacillus subtilis and visualization of the pattern recognized by the

trained CNN.
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Fig. 4: Relevance between the characteristics of holographic images and accuracy of classification. a, Comparison
between classification performances of neural network classifiers using a single 2D phase image, multi-angular
series of 2D phase images, and three-dimensional (3D) refractive index (RI) tomogram. 2D, multi-view, and 3D
refer to the input images respectively. b—c, Representative specimen correctly classified using the 3D RI tomogram
but misclassified using the multi-view phase images. b, 3D RI tomogram of the Haemophilus influenzae specimen.
¢, Four of multi-view phase images of the identical specimen. d—e, Visualization of species-related patterns in b—
¢ using Grad-CAM++. d, Grad-CAM++ saliency map corresponding to the 3D RI tomogram. e, Grad-CAM++

saliency map corresponding to the multi-view phase images. Scale bar =2 um.
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MALDETOF l;:élé"”tigﬁft Antiserum DNA Real-time Proposed
MS tI;st Y test microarray PCR method
Time Minutes Hours to days Hours Days Hours Minutes
In vitro . . . . . .
culture Required Required Not required Not required Not required Not required
Invasiveness Invasive Invasive Invasive Invasive Invasive Non-invasive
Specialized
biochemical Not required Required Required Required Required Not required
agents
Analvsi Manual or Manual or Manual or Manual or Manual or Statistically
natysis rule-based rule-based rule-based rule-based rule-based modeled
Bacteria . . . . . .
isolation Required Required Required Required Required Required
Intraspecific
. . 1 1 1
classification Capable Capable Capable Capable Capable Unexplored
References 22,23 20 16 19,21 17 -

Table 1: Qualitative comparison between methods for identification of bacterial species.
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