

1 **A novel approach to localize cortical TMS effects**

2

3 Konstantin Weise^{1,2+*}, Ole Numssen³⁺, Axel Thielscher^{4,5}, Gesa Hartwigsen^{3#}, Thomas R.

4 Knösche^{1,6#}

5

6 ¹*Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig,*
7 *Germany.*

8 ²*Technische Universität Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693*
9 *Ilmenau, Germany.*

10 ³*Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human*
11 *Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.*

12 ⁴*Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic*
13 *Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark.*

14 ⁵*Technical University of Denmark, Center for Magnetic Resonance, Department of Health*
15 *Technology, Kongens Lyngby, Denmark.*

16 ⁶*Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-*
17 *Kirchhoff-Straße 2, 98693 Ilmenau, Germany.*

18

19 ^{+,#} *contributed equally*

20 * CORRESPONDING AUTHOR

21 Konstantin Weise; *Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr.*
22 *1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics*
23 *Group, Helmholtzplatz 2, 98693 Ilmenau, Germany; e-mail: kweise@cbs.mpg.de, phone: +49*
24 *341 9940-2580*

25

26 **ABSTRACT**

27 Despite the widespread use of transcranial magnetic stimulation (TMS), the precise cortical
28 location underlying the physiological and behavioral stimulation effects are still only coarsely
29 known. So far, mapping strategies rely on center of gravity approaches and therefore localize
30 the stimulated cortical site only approximately and indirectly. Focusing on the motor cortex, we
31 present a novel method to reliably determine the effectively stimulated cortical site at the
32 individual subject level. The approach combines measurements of motor evoked potentials
33 (MEPs) at different coil positions and orientations with numerical modeling of induced electric
34 fields. We identify sharply bounded cortical areas around the gyral crowns and rims of the
35 motor hand area as the origin of MEPs and show that the tangential component and the
36 magnitude of the electric field is most relevant for the observed effect. To validate our
37 approach, we determined motor thresholds for coil positions and orientations for the predicted
38 cortical target. Our methods allows for the identification of optimal coil positions and
39 orientations. Moreover, we used extensive uncertainty and sensitivity analyses to verify the
40 robustness of the method and identify the most critical model parameters. Our generic
41 approach improves the localization of the cortex area stimulated by TMS and may be
42 transferred to other modalities such as language mapping.

43

44

45 **KEYWORDS**

46 Brain mapping; Finite element analysis; Motor cortex; Transcranial magnetic stimulation;
47 Uncertainty and sensitivity analysis; Motor threshold

48

49 **1 INTRODUCTION**

50 Transcranial magnetic stimulation (TMS) is capable of modulating motor and cognitive
51 functions in the human brain. An important application of this technique is mapping structure-
52 function relationships (see Bestmann and Feredoes, 2013; Sandrini et al., 2011; Siebner et al.,
53 2009 for review). Answering the question of "*which part of the brain gets stimulated, and how*
54 *do we know where it is?*" on the individual subject level is essential to understand brain
55 physiology and structure function relationships. Such mappings are not only of fundamental
56 neuroscientific interest, but also have practical clinical relevance, for example in the context of
57 pre-surgical mapping for counseling and planning tumor resections or epilepsy surgeries. In a
58 classical mapping study, the TMS coil is systematically moved over different positions and/or
59 orientations while certain behavioral or physiological variables (e.g., the degree of speech
60 impairment or the magnitude of motor evoked potentials) are measured (Picht, 2014). The coil
61 position/orientation producing the strongest effect is then used as a proxy for the brain
62 structures underlying the targeted effects, either in a simple way by direct projection onto the
63 cortical surface (Krieg et al., 2014) or in a more sophisticated way by calculating the induced
64 electric fields (Tarapore et al, 2013). However, this approach has some principal shortcomings.
65 First, its capability to unambiguously determine the location and orientation of stimulated
66 neural structures is limited: even if the coil configuration associated with the optimal effect can
67 be found accurately, this coil configuration generates electric fields in a wide range of neural
68 structures, such as radial cells in several parallel sulcal walls and tangential structures (e.g.,
69 axons) in gyral crowns. The field maximum does not reliably indicate which of these
70 components is actually driving the effect. Second, as the search space has at least three
71 dimensions (two for the position on the head surface, one for coil orientation), accurate
72 mapping may require a very large number of stimulations to avoid undersampling.
73 Consequently, previous studies remain controversial on fundamental aspects of the
74 physiological TMS effects and their localization on the cortical surface. For instance, it is still
75 unclear which part of the primary motor cortex is effectively stimulated by the TMS pulse (see
76 Bungert et al., 2017; Laakso et al., 2018; Fox et al., 2004; Krieg et al., 2013), precluding
77 strong conclusions on the cortical origin of the TMS effect. In particular, previous studies
78 remain controversial with respect to the contribution of the gyral crowns and sulcal walls in the

79 primary motor cortex (see Fox et al., 2004; Bungert et al., 2017; Opitz et al., 2013; Laakso et
80 al., 2018; Krieg et al., 2013).

81 Resolving these limitations and establishing a link between coil position and location and size
82 of affected cortical area in three dimensions (i.e., also in depth) is not trivial. It requires
83 detailed knowledge of the electric field pattern at the individual level, biophysically motivated
84 hypotheses on the mechanism of action by which the electric field causes neural excitation,
85 and formal statistical testing to demonstrate the validity of the obtained results.

86 The induced electric field distribution strongly depends on several stimulation parameters such
87 as intensity, location, and orientation of the TMS coil as well as the complex geometry of the
88 individual brain (Thielscher et al., 2011), and several biophysical parameters, such as tissue
89 conductivities and fractional anisotropy. Numerical modeling of the induced electric field is
90 increasingly being increasingly used to address these issues (Bestmann, 2015; Thielscher et
91 al., 2011; Thielscher et al., 2015), but has not become a standard procedure in medical and
92 scientific applications so far. In particular, calculations based on subject-specific head meshes
93 have improved our understanding of the impact of individual head anatomy on field
94 distributions (Datta et al., 2010; De Lucia et al., 2007; Opitz et al., 2013; Opitz et al., 2011;
95 Opitz et al., 2014; Thielscher et al., 2011). As such, numerical field calculations using
96 anatomically detailed head models may assist the neurobiological interpretation of TMS effects,
97 and aid the localization of the stimulated cortical area that underlies the observed physiological
98 or behavioral effect (see Hartwigsen et al., 2015; Bungert et al., 2017). However, since a TMS
99 pulse induces a distributed electric field over an extended part of the cortex, it is difficult to
100 determine the location of neural activation, even if the field is computed in a reliable way.

101 Moreover, any approach that aims to make beneficial use of field models has to account for the
102 uncertainties of the numerical simulations to yield accurate and robust conclusions.
103 Uncertainties are particularly caused by the assumed ohmic tissue conductivities, which are
104 only coarsely known. Such an approach also has to be further able to deal with uncertainties
105 caused by the limited knowledge on how the induced field acts on different neuron types.
106 Recently, field calculations have been combined with microscopic neural models based on
107 accurate reconstructions from histology (Seo et al., 2017; Aberra et al. 2018). However, for

108 now, validation of these models is still largely missing to a large extent and the conclusions
109 strongly depend on model details such as the types of the included neural elements.
110 Consequently, the results of previous studies strongly differ and do not provide reliable
111 conclusions yet.

112 In this study, we introduce a novel TMS mapping approach that links biophysical modeling of
113 the induced electric field with physiological measurements within a principled statistical testing
114 framework to determine the stimulated cortical area on the individual subject level. Our
115 approach is based on the assumption of a unique functional relationship between the observed
116 physiological TMS effect and the electric field induced at the cortical location underlying this
117 effect. Given an experimental effect that linearly or non-linearly scales with stimulation
118 intensity, one can assume that this effect also scales with the degree of excitation of the
119 specific neuronal population, which is functionally linked to it. Hence, the functional
120 relationship between the electric field component that coincides spatially and orientation-wise
121 with this population and the observed effect should be invariant across experimental
122 conditions, that is, different orientations and positions of the TMS coil. Consequently, the
123 stimulated cortical area can be localized by determining the brain area in which the induced
124 field shows a clear functional relationship between the measured effects across conditions.
125 Note that this area does not have to coincide with the field maximum. Similar, but more
126 restricted, localization approaches were used in previous studies. For instance, targeting the
127 hand area of the primary motor cortex, Bungert et al. (2017) employed a statistical approach
128 based on the experimentally determined motor thresholds at different coil orientations. Laakso
129 et al. (2018) used a similar strategy, but investigated the influence of different coil positions
130 while keeping the orientation constant. These studies demonstrate the principal validity of the
131 rationale to localize the stimulated cortical area using the functional relationship between
132 calculated fields and the observed effects. However, they remain restricted in several
133 important aspects. First, the ability for a precise functional localization at the single-subject
134 level was not demonstrated. Second, it remains unknown how many experimental conditions
135 are needed to achieve a satisfying localization result and how these coil positions and
136 orientations should be chosen. Third, the robustness of the approaches to uncertainties of
137 tissue conductivities was not examined. Finally, all of the aforementioned publications lack

138 experimental validation.

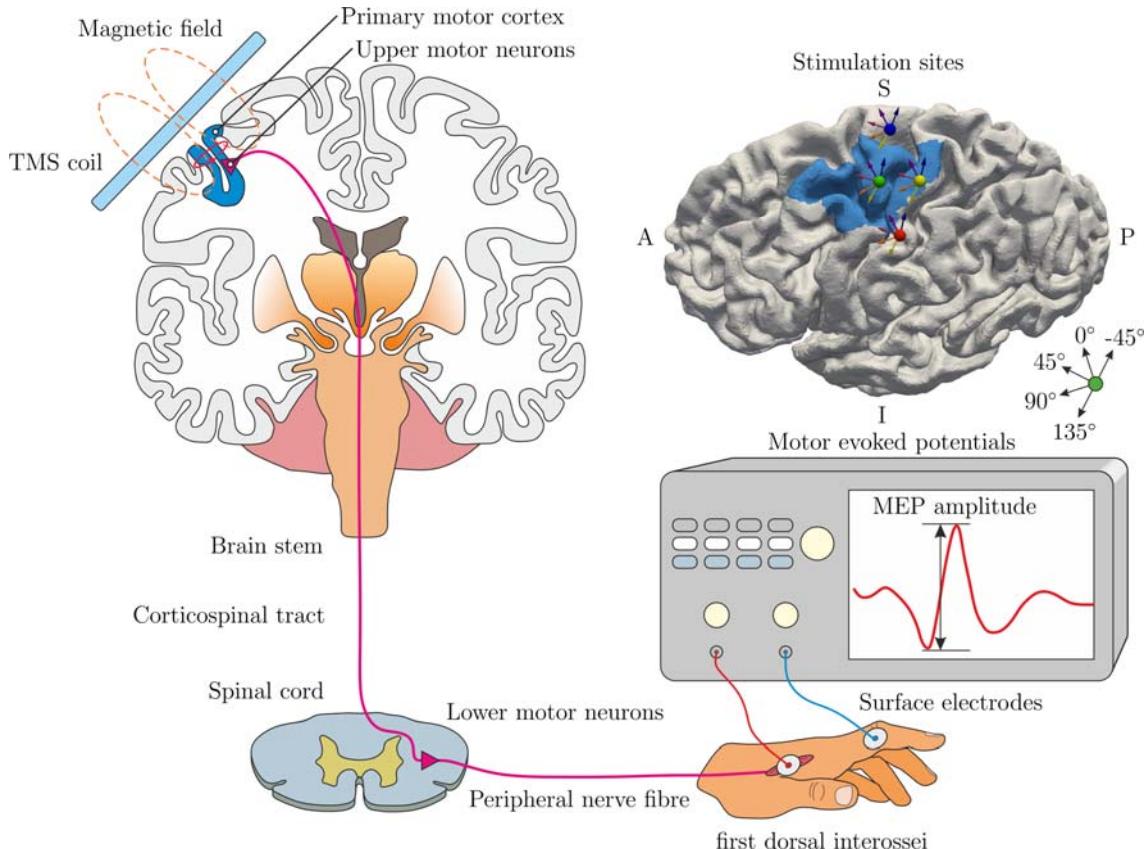
139 Our novel approach differs from these prior studies in two important aspects to advance
140 localization at the single-subject level: 1) it combines multiple stimulations with different coil
141 positions and orientations. 2) Instead of relying on motor threshold, it exploits entire input-
142 output curves (I/O curves; relationship between stimulation intensity and MEP amplitude; see
143 Fig. 1). We show that our method provides a means of precisely localizing the individual
144 cortical area that is responsible for the observed motor output. We prove its stability and
145 robustness using comprehensive permutation tests and a rigorous uncertainty and sensitivity
146 analysis based on the generalized polynomial chaos (gPC) approach (Le Maitre et al., 2010).
147 To account for the limited knowledge on the neural target structures of TMS, we tested several
148 components of the induced field, and consistently found the tangential field component and the
149 field magnitude to be the relevant quantities for modulating the observed effect. Importantly,
150 we demonstrate that unique results can be obtained with relatively few measurements and
151 indicate how the respective coil positions and orientations should be chosen. We validated our
152 method by numerically optimizing the individual TMS coil position and orientation to effectively
153 stimulate the identified cortical targets. These coil positions and orientations were shown to
154 produce lower MTs than any other tested coil configuration. Our approach improves the
155 localization of effectively stimulated areas during TMS. While demonstrated for the motor
156 cortex, our approach is generic and can be applied to mapping procedures in other domains
157 such as language.

158 **2 MATERIALS AND METHODS**

159 We developed a novel framework to localize the neuronal populations that are responsible for
160 effects of TMS by combining behavioral responses with numerical modeling. We applied this to
161 primary motor cortex stimulation and electrophysiological measurements of muscle activation.
162 First, we describe the experimental design to elicit and measure MEPs (2.1). Second, we show
163 how to calculate the TMS induced electric field distribution in the subjects' heads (2.2). This
164 covers models for the head, the TMS coils, as well as the differential equations numerically
165 solved to determine the electric field inside the brain. Third, we present a new measure to
166 quantify the correlation between the induced electric field and the behavioral or physiological

167 stimulation effect, the *congruence factor*. Locations with high congruence are likely to house
168 neural populations that are causally linked to the observed MEP (2.3). We then show how the
169 results are analyzed in terms of their sensitivity towards uncertain model parameters such as
170 the electrical conductivities of the brain tissues and the measured MEPs using a generalized
171 polynomial chaos (gPC) approach (2.4). Finally, the validation procedure for our results is
172 outlined (2.5).

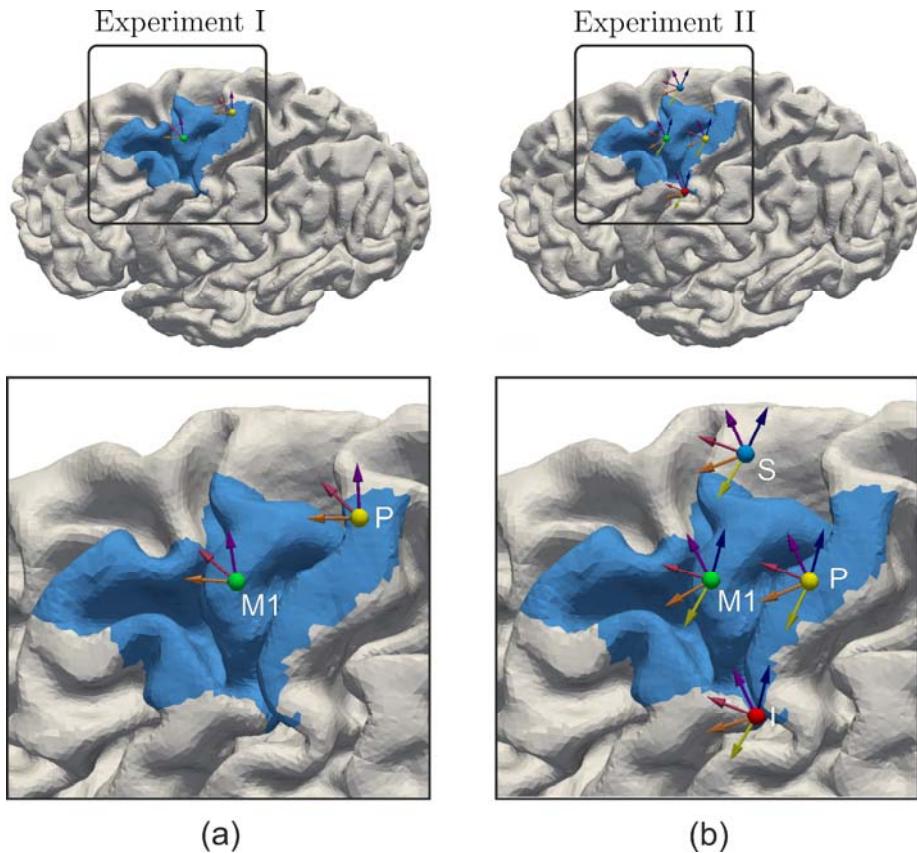
173 **2.1 TMS Experiments**


174 The experimental setup is shown in Fig. 1. Fifteen healthy, right-handed participants (seven
175 female, age 22-34 years) with a mean laterality index of 92.93 (SD = 10.66) according to the
176 Edinburgh Handedness Inventory were recruited. Subject inclusion was in accordance with the
177 published safety guidelines on patient selection for TMS studies (Rossi et al., 2009; Rossini et
178 al., 2015). Written informed consent was obtained from all participants prior to the
179 examination. The study was performed according to the guidelines of the Declaration of
180 Helsinki and approved by the local Ethics committee of the Medical Faculty of the University of
181 Leipzig.

182 Stimulation was applied with a MagPro X100 stimulator (MagVenture, firmware Version 7.1.1)
183 and CB-60 figure-of-eight coils, guided by a neuronavigation system (software: Localite,
184 Germany, Sankt Augustin; camera: Polaris Spectra, NDI, Canada, Waterloo).

185 MEPs were recorded from the subjects' right hand index finger with one surface electrode
186 positioned over the muscle belly of the FDI and one at the proximal interphalangeal joint (PIP).
187 The electrodes were connected to a patient amplifier system (D-360, DigitimerLtd., UK,
188 Welwyn Garden City; bandpass filtered from 10 Hz to 2 kHz), which in turn was connected to a
189 data acquisition interface (Power1401 MK-II, CED Ltd., UK, Cambridge, 2 kHz sampling rate).
190 Stimulation control and recording was performed with Signal (CED Ltd., version 4.11).

191 Localization of the MEP stimulation hotspot was guided by individually transformed M1
192 coordinates based on the standardized group coordinates from a meta-analysis (Mayka et al.
193 2006). These coordinates were transformed to the individual subject's space by using the
194 inverse of the normalization transformation in SPM (Penny et al., 2007;
195 <https://www.fil.ion.ucl.ac.uk/spm/>). The individual MEP producing hotspot M1_{45°} and its

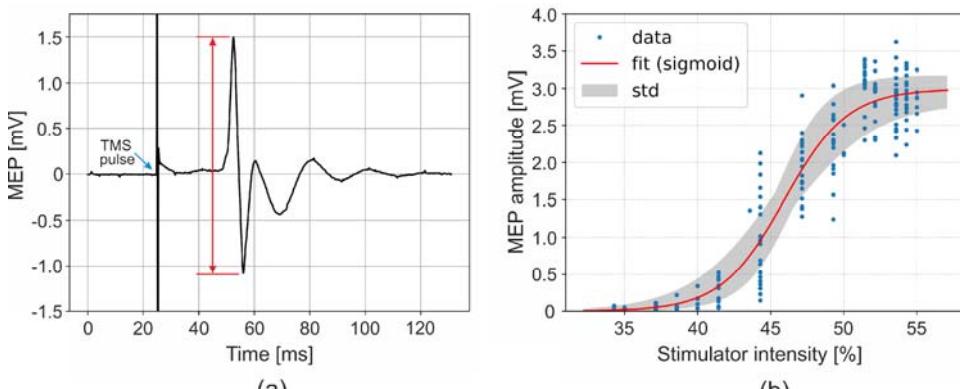

196 corresponding resting motor threshold ($MT_{M1_{45^\circ}}$) were determined. $MT_{M1_{45^\circ}}$ was defined as the
197 minimum stimulation intensity, which evokes MEPs with an amplitude of at least 50 μ V in at
198 least 5 out of 10 consecutive stimulations (Pascual-Leone and Torres, 1993; Rothwell et al.,
199 1999; Conforto et al. 2004).

200
201 **Figure 1:** Schematic representation of the experimental procedure of the TMS experiments. Top left: The
202 TMS coil is located tangentially to the skull over the primary motor cortex (M1). A time changing current
203 in the coil generates a time changing magnetic field, which induces an electric field in the brain. This
204 depolarizes the upper motor neurons with corticospinal efferents. Bottom: Action potentials from the
205 upper motor neurons excite the lower motor neurons in the spinal cord, evoked action potentials travel
206 through the peripheral nerves to the first dorsal interossei (FDI) of the hand. Sum potentials (motor-
207 evoked potentials, MEP) are recorded from hand muscles using a classical belly tendon montage, i.e.
208 between the dorsal interosseus and proximal interphalangeal joint of the index finger. Top right: example
209 cortical surface with region of interest (blue), showing positions of the coil centers (colored spheres) and
210 the coil orientations (arrows) for the 20 experimental conditions.

211 In relation to $M1_{45^\circ}$, five additional conditions, shown in Fig. 2(a), with different stimulation
212 sites and coil orientations (see Fig. 2a) were defined in the following way: in Experiment I, the
213 TMS coil was located over M1 and 2 cm posterior (P). At both sites, three coil orientations with
214 respect to $M1_{45^\circ}$ were investigated, namely $M1_{0^\circ}/P_{0^\circ}$ (-45° from $M1_{45^\circ}$), $M1_{45^\circ}/P_{45^\circ}$, and
215 $M1_{90^\circ}/P_{90^\circ}$ (+45° from $M1_{45^\circ}$), resulting in six experimental conditions.

216 Experiment II included three of the subjects from Experiment I and the number of conditions
217 was increased to further investigate the influence of different coil positions and orientations on
218 the determination of the effective stimulation site. In addition to M1 and P, two more coil
219 positions were included, shown in Fig. 2(b), 2 cm inferior and 2 cm superior to M1,
220 respectively (Fig. 2b). For each position, the number of coil orientations was increased to 5 (-
221 90°, -45°, 0°, 45°, 90°) with respect to M1_{45°}, resulting in 20 experimental conditions.

222


223 **Figure 2:** Coil positions and orientations used in (a) Experiment I and (b) Experiment II. The locations
224 are exemplarily shown for subject S8. The number of experimental conditions increases from six to 20.
225 The blue area is the region of interest, comprised of the somatosensory cortex S (BA 1, BA 3), M1 (BA 4),
226 and the dorsal part of the premotor cortex (BA 6).

227 In both experiments, single biphasic pulses with an inter stimulus interval of 5 s (Experiment
228 I) or 4 s (Experiment II) were applied for each condition. The coil positions/orientations were
229 recorded by the neuronavigation system. The MEPs were lowpass filtered with a 6th order
230 Butterworth filter with a cutoff frequency of 500 Hz. Afterwards, the peak-to-peak amplitudes
231 of the MEPs were calculated in a time window of 18 to 35 ms after the TMS pulse (see Fig 3a
232 for an example MEP). Stimulation intensities were chosen to sample the complete I/O curve for

233 each experimental condition, unless maximal stimulator output was reached before (Fig. 3(b)).
234 Intensity was increased in steps of 2% stimulator output (MSO), or 1% respectively for
235 intensity ranges of high I/O gradients (cf. Bungert et al., 2017). For each intensity, 3-5
236 stimulations were performed to determine an average MEP amplitude. Trials with deviations in
237 coil position of ± 3 mm and orientation of $\pm 5^\circ$ with respect to each axes were removed. A
238 typical set of data points is shown in Fig. 3(b) (blue dots). Thereafter, a sigmoidal function was
239 fitted in a least-square sense:

$$s_i(x) = \frac{a_i}{1+e^{-b_i(x-x_{0,i})}}, \quad (1)$$

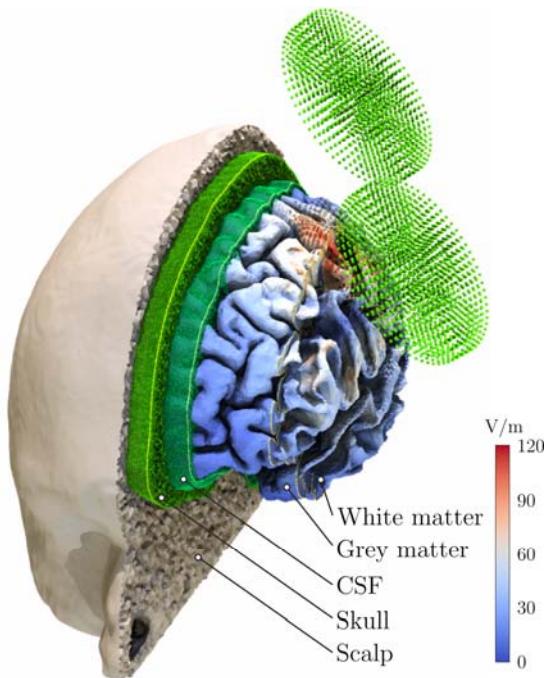
240 where a_i is the saturation amplitude, b_i the slope, and $x_{0,i}$ is the location of the turning point on
241 the abscissa. If only a part of the I/O curve could be determined experimentally, a sigmoidal
242 function could not be reliably fitted and an exponential or linear function was used instead. The
243 selection of the optimal model was performed using the Akaike information criterion (AIC,
244 Akaike, 1974). The procedure was repeated for all experimental conditions (i.e., for different
245 coil positions and orientations) in a pseudo-randomized order.

246 (a) (b)

247 **Figure 3:** (a) Measured motor evoked potential (MEP) showing the stimulation artifact (blue arrow)
248 and highlighting the peak-to-peak amplitude (red arrow). (b) I/O curve characterizing the MEP amplitudes as
249 function of the stimulator intensity for one experimental condition. Blue dots: MEP amplitudes for the
250 different stimulator intensities. Red curve: fitted analytical function. Depending on the best Akaike
251 information criterion (AIC), MEP amplitudes were fitted to sigmoidal, exponential or linear functions
252 (presented example: sigmoid function). Black lines: possible I/O curves resulting from uncertainty in the
253 experimental data.

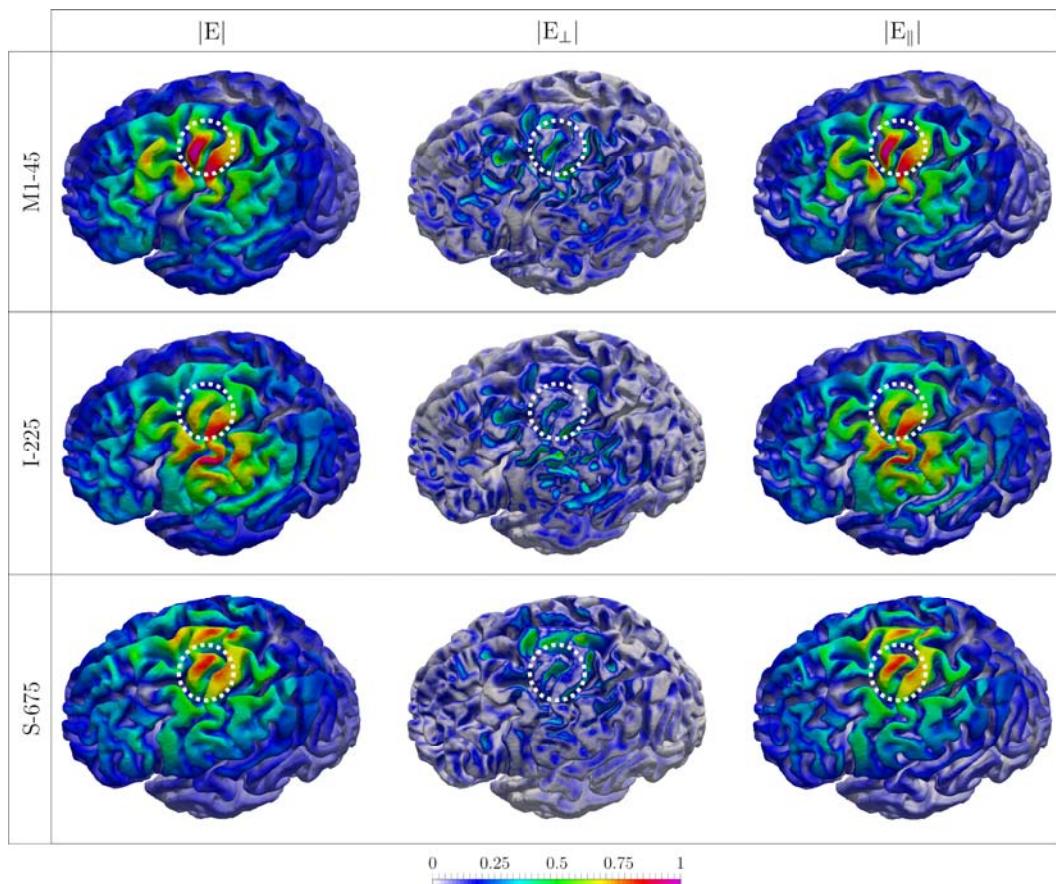
254 **2.2 Numerical simulations of the induced electric field**

255 The calculations of the electric field were conducted with SimNIBS v2.0 (Thielscher et al.,
256 2015) using high-resolution anisotropic finite element models (FEMs), as exemplary shown for


257 one subjects in Fig. 4. The individual head models were generated from MRI data using the
258 pipeline described in Windhoff et al. (2013), employing FreeSurfer
259 (<http://surfer.nmr.mgh.harvard.edu/>, Dale et al., 1999; Fischl et al., 1999) and FSL
260 (<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL>, Woolrich et al., 2009; Smith et al., 2004; Jenkinson
261 et al., 2012). The head models were composed of $\sim 1.3 \cdot 10^6$ nodes and $\sim 7 \cdot 10^6$ tetrahedra. T1
262 and T2 images were used for segmenting the main tissues of the head: scalp, skull, grey
263 matter (GM), white matter (WM), and cerebro-spinal fluid (CSF). Diffusion weighted images
264 were used to reconstruct the conductivity tensors in the WM using the volume normalized
265 mapping approach (Güllmar et al., 2010). To this end, the following structural images were
266 acquired with a 3 Tesla MRI scanner (Siemens Verio or Skyra) and a 32 channel head coil. The
267 following images were acquired: (i) T1-weighted: MPRAGE with 176 sagittal slices, matrix size
268 = 256 x 240, voxel size = 1 x 1 x 1mm³, flip angle 9°, TR/TE/TI = 2300/2.98/900ms
269 (Repetition, Spin echo, Inversion Time), (ii) T2-weighted: 192 sagittal slices, matrix size = 256
270 x 258, voxel size = 0.488 x .488 x 1mm³, flip angle 120° TR/TE = 5000/395ms (iii) diffusion
271 MRI (67 axial slices, matrix size 128 x 128, voxel size 1.71875 x 1.71875 x 1.7mm³, TE/TR
272 80/7000ms, flip angle 90°, 67 diffusion directions, b-value 1000s/mm³. An additional b0
273 image with reversed encoding direction was recorded for distortion correction with FSL topup
274 and eddy. The T1 image was also used for neuronavigation during TMS. If adequate scans (age
275 less than 1 year) already existed for the subjects in the image database, these scans were
276 utilized.

277 All TMS coils were individually modelled by magnetic dipoles based on X-ray images. Coil
278 wiring differences (shifts of several millimeters and tiltings of about 2-5°) were observed and
279 accounted for. Each coil model consisted of ~ 4500 magnetic dipoles. These dipole models were
280 compared to a detailed current density based FEM model using Comsol Multiphysics v4.4
281 (COMSOL, Inc., Burlington, MA, USA) and yielded magnetic field errors of < 0.1% at a distance
282 of 15 mm.

283 The magnetic field produced by the coil was calculated in advance in terms of the magnetic
284 vector potential A . The primary electric field is then given by $E_p = -j\omega A$, where $\omega = 2\pi f$ is the
285 angular frequency of the biphasic TMS pulse. The electric potential ϕ in the nodes is calculated


286 by solving the Laplace equation $\nabla \cdot ([\sigma]\nabla\phi) = 0$, considering anisotropic conductivity tensors $[\sigma]$
287 inside each element together with the boundary conditions given by the law of current
288 conservation $\nabla \cdot J = 0$. After calculating the secondary electric field $E_s = -\nabla\phi$, the total induced
289 electric field is given by $E = -j\omega A - \nabla\phi$. The conductivity values for the five examined tissues
290 ($\sigma_{Scalp} = 0.465$ S/m, $\sigma_{Skull} = 0.01$ S/m, $\sigma_{GM} = 0.275$ S/m, $\sigma_{WM} = 0.126$ S/m, $\sigma_{CSF} = 1.654$ S/m) were
291 taken from Thielscher et al. (2011) and Wagner et al. (2004). A more detailed description
292 about the FEM solver is given in Windhoff et al. (2013, supplemental material).

293 Individual coil positions and orientations relative to the subject's head were saved by the
294 neuronavigation system for each stimulation. These coil configurations were used for electrical
295 field calculations in SimNIBS. A region of interest (ROI) was defined covering the
296 somatosensory cortex (BA 1, BA 3), M1 (BA 4), and the dorsal part of the premotor cortex (BA
297 6) with Freesurfer and a mask was created for the Freesurfer average template and
298 transformed to each individual subject's brain.

299
300 **Figure 4:** Example of the realistic anisotropic head model of one subject, used for the numerical
301 simulations of the induced electric field. The model consists of $1.26 \cdot 10^6$ nodes and $7.12 \cdot 10^6$ tetrahedra.
302 The TMS coil is modeled using 4440 magnetic dipoles (green spheres) with optimized dipole moments
303 located in five layers. The grey matter surface is color coded with the magnitude of the induced electric
304 field for $1 \text{ A}/\mu\text{s}$ intensity.

305 The following analyses were performed on the midlayer between the outer surfaces of the GM
306 and WM compartments in order to avoid boundary effects of the electric field due to
307 conductivity discontinuities. The electric field was interpolated in the nodes of this surface in a
308 post-processing step. Fig. 5 shows the magnitude $|E|$, the normal component $|E_{\perp}|$ and the
309 tangential component $|E_{\parallel}|$ of the electric field at the midlayer surface for three different coil
310 positions and orientations in one exemplary subject. The different electric field distributions are
311 shown in the highlighted ROI for the different experimental conditions.

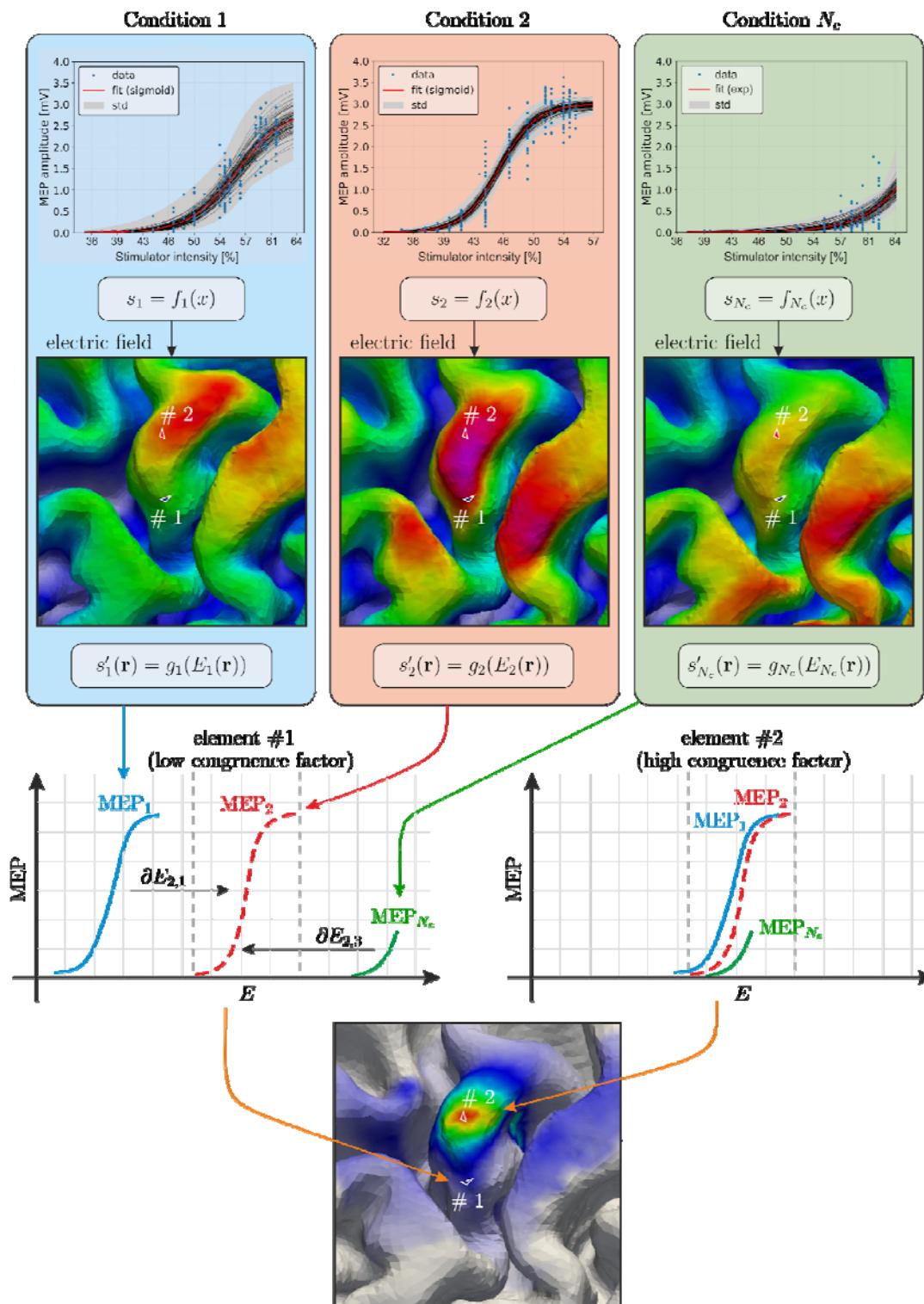
312
313 **Figure 5:** Three electric field distributions, i.e. the magnitude of the electric field $|E|$, the normal
314 component $|E_{\perp}|$, and the tangential component $|E_{\parallel}|$ for one exemplary subject. The electric field was
315 normalized to allow comparability between the different experimental conditions. The white circle shows
316 the M1 hand knob area.

317 **2.3 Determining the site of stimulation**

318 The core concept of the proposed method is illustrated in Fig. 6. We assume that at the site
319 of activation the correlate between electric field and MEP is stable, i.e. the same electric field
320 evokes the same behavioral output independent of the location or orientation of the TMS coil.

321 Exploiting this property, we can single out the site of stimulation can be singled out by
322 calculating *cortical I/O curves* that represent the relationship between the electric field in the
323 cortex and the resulting MEP, and then comparing the cortical I/O curves of the different
324 experimental conditions. At the true cortical site of stimulation, the I/O curves of all conditions
325 should be similar. Practically, this was achieved by transforming the measured I/O curve for
326 each condition (representing the relationship between stimulation intensity in percent of
327 maximal stimulator output, %MSO, and MEP amplitude) to E-MEP-curves (representing the
328 relationship between the electric field at a particular cortex location and the respective MEP
329 amplitude). The electric field distribution throughout the brain was computed as a function of
330 the stimulation intensity using the numerical techniques described above, thereby taking 100%
331 MSO as corresponding to a maximal change of the coil current of 140 A/μs for the used
332 stimulator-coil combination. Due to the linear relationship between electric field strength and
333 stimulator intensity, the E-MEP curves were shifted and horizontally scaled versions of the
334 measured I/O curve, with different shift and scale parameters in each position. Hence, the
335 function types of each I/O curve and their corresponding E-MEP curves are similar (i.e.
336 sigmoidal, exponential, or linear). E-MEP curves can be determined for all different
337 components of the electric field vector ($|E|$, $|E_{\perp}|$, $|E_{||}|$) or, in principle, any other derived
338 quantities thereof. This approach allows computing a position-wise *congruence factor* $c(r)$,
339 which quantifies the similarity between the E-MEP curves of the different experimental
340 conditions.

341 The agreement between different I/O curves was quantified by computing the inverse
342 variance of the optimal shifts τ_i with $i = 1 \dots N_c$ of the N_c I/O curves across the experimental
343 conditions.


$$c(r) = \left(\frac{1}{N_c} \sum_{i=1}^{N_c} \frac{(\tau(r) - \tau_i(r))^2}{\bar{E}^2(r)} \right)^{-1} \quad (1)$$

344 The congruence factor $c(r)$ was calculated in each element in the ROI on the cortex by
345 determining the inverted variance of the τ_i , additionally weighted by the average electric field
346 magnitude (or its normal or tangential component) squared at this location: $\bar{E}^2(r)$. Hence, the
347 congruence factor quantifies a relative similarity between the observations in the different

348 experimental conditions independent on the scale of the electric field. Higher similarity
349 between curves leads to higher inverse variance. The optimal shifts τ_i were obtained by
350 determining the individual locations where the overlap against a reference curve, e.g. the first
351 E-MEP curve, is maximized. As a result, the problem of determining the congruence factor
352 turns into many optimization problems to calculate the shifts τ_i for each condition and in each
353 element in the ROI:

$$\min_{\tau_i} \|s'_{REF}(E(r)) - s'_i(E(r) - \tau_i)\|_2 \quad (2)$$

354 Where s'_{REF} and s' denote the reference and one of the I/O curves the shift is calculated for,
355 respectively. This method is very general, as it is independent of the involved function types.

356

357 **Figure 6:** Principled approach to determine the site of stimulation by TMS. The *congruence factor* is
 358 based on the assumption that the electric field, which is causal to the observed behavioral effect,
 359 corresponds for the experimental conditions. The measured I/O curves are transformed to element wise
 360 E-MEP-curves using electromagnetic field modeling (see text). The congruence factor between the E-
 361 MEP-curves inversely depends on the amount of transformation (shift) necessary to obtain maximum
 362 overlap between the E-MEP-curves in each element.

363 Because the electric field scales the I/O curves linearly, eq. (2) can be reformulated in terms of
364 stimulator intensity, which allows a highly efficient implementation. A more detailed
365 mathematical description is given in Section 1.2 of the *Supplementary Material*.

366 This is beneficial if the experimentally determined I/O curves capture only a linear or
367 exponential part of the relationship between electric field and MEP amplitude (see above). If,
368 however, each E-MEP curve can be represented as analytical sigmoidal function, parameterized
369 by its turning point $x_{0,i}$, the shifts τ_i are directly given by $\tau_i = x_{0,i}E_i(r)$ and the computational
370 expensive optimization from eq. 2 is avoided, thus making the method computationally very
371 efficient. This approach is advantageous in terms of computational cost and is preferred in the
372 current study if all I/O curves are modelled by sigmoidal functions.

373 As the standard Freesurfer average template (FsAverage) suffers from several malformed
374 elements at the primary motor cortex with each of roughly the 20-fold size as the average
375 elements, we created a group-based average with Freesurfer. In this iterative procedure, a
376 randomly chosen subject was used as initial template and all other subjects were registered to
377 this. In the second step, the template was updated based on these registrations. The third step
378 comprised the registration of all subjects to this updated template. The second and third steps
379 were then repeated to improve the template.

380 **2.4 Uncertainty and sensitivity analysis**

381 The congruence factor is influenced by several parameters. For example, previous studies have
382 shown that, because of their large uncertainties, the electrical ohmic conductivities of brain
383 tissues have a strong influence on the magnitude of the electric field (Weise et al., 2015;
384 Codecasa et al., 2016). Furthermore, the estimated parameters of the fitted MEP curves are
385 also uncertain due to measurement noise (Fig. 3b, grey interval). Therefore, uncertainty and
386 sensitivity analyses are important to investigate the stability of the results and identify the
387 parameters and their combinations with the largest impact on the results.

388 Since the problem is computationally complex and features a large number of parameters p ,
389 an efficient approach is necessary to conduct the analysis. Here, we applied the generalized
390 polynomial chaos (gPC) method (Ghanem et al., 2016). Its mathematical background is
391 described in detail in Section 1.3 of the *Supplemental Material*. In short, the gPC is based on

392 the construction of a polynomial surrogate of the congruence factor depending on the
 393 uncertain model parameters and their associated probability density functions.

394 **Table 1:** *Limits and shape parameters of the model parameters for subject S1*

Parameter	Description	Min	Max	p / q	Reference / source
σ_{WM}	White matter (WM)	0.1 S/m	0.4 S/m	3 / 3	Li et al. (1968) Nicholson (1965) Akhtari (2010)
σ_{GM}	Grey matter (GM)	0.1 S/m	0.6 S/m	3 / 3	Li et al. (1968) Ranck (1963) Logothetis et al. (2007) Yedlin et al. (1974)
σ_{CSF}	Cerebrospinal fluid (CSF)	1.2 S/m	1.8 S/m	3 / 3	Gabriel et al. (2009) Baumann et al. (1997)
α	Anisotropy scaling	0.4	0.6	3 / 3	Tuch et al. 2001
$x_{0,S(90^\circ)}^*$	MEP curve	145.9 [A/μs]	185.9 [A/μs]	4 / 4	experiment
$x_{0,S(135^\circ)}^*$	—“—	150.0 [A/μs]	190.0 [A/μs]	4 / 4	—“—
$x_{0,I(45^\circ)}$	—“—	80.7 [A/μs]	87.9 [A/μs]	4 / 4	—“—
$x_{0,I(135^\circ)}$	—“—	125.7 [A/μs]	145.7 [A/μs]	4 / 4	—“—
$x_{0,P(0^\circ)}$	—“—	124.2 [A/μs]	133.3 [A/μs]	4 / 4	—“—
$x_{0,M1(90^\circ)}$	—“—	86.0 [A/μs]	98.7 [A/μs]	4 / 4	—“—

395 Note: These parameters were considered in the uncertainty and sensitivity analysis to
 396 determine the site of stimulation by means of the congruence factor. The asterisk marks
 397 conditions, where only the lower tail of the I/O curve could be determined. These curves are
 398 subject to a higher measurement uncertainty.

399 Since the electric field depends on the electrical conductivities [σ] of the brain tissues, the
 400 congruence factor will be influenced by varying conductivities as well. The conductivities of GM,
 401 WM and CSF were modelled as beta distributed random variables. The impact of the other
 402 tissues, like skull and scalp on the electric field was shown to be negligible in previous studies
 403 (Weise et al., 2015; Codecasa et al., 2016; Bicalho et al., 2018). However, extending previous
 404 studies, the impact of the level of conductivity anisotropy was included in our analysis. The
 405 conductivity tensor [σ] for each voxel was derived from the diffusion tensor using the volume
 406 normalize approach (Güllmar et al., 2010). This tensor can be visualized as ellipsoid (see Fig.
 407 S2). A spherical ellipsoid represents isotropic conductivity with equal conductivity in each

408 direction, while a cigar shaped tensor indicates that the conductivity is much larger in one
409 direction. We implemented an anisotropy scaling factor α that transforms the diffusion tensor
410 from the isotropic case ($\alpha = 0$) via the original tensor obtained from DTI ($\alpha = 0.5$) to a very
411 anisotropic case ($\alpha = 1$). Although, in principle, α could be different in each voxel, this would
412 render the resulting problem intractable. Instead, we assumed that α is the same for all
413 voxels. This reflects systematic errors and uncertainties in the transformation between the
414 diffusion tensor, which depends on the mobility of water molecules, and the conductivity
415 tensor, which represents the mobility of charges. A detailed mathematical description of the
416 parametrization of the fractional anisotropy is given in *Supplemental Material: Section 1.2*.

417 In addition to the conductivity and anisotropy uncertainties, the turning points $x_{0,i}$ from the
418 sigmoidal I/O curves were included in the uncertainty analysis. Their uncertainties were
419 derived from the confidence intervals of the curve fits (cf. Fig. 3b). The stochastic properties of
420 all investigated parameters are summarized in Table 1. The model of the congruence factor
421 used in the gPC based uncertainty and sensitivity analysis is described in detail in
422 *Supplemental Material: Section 1.4*.

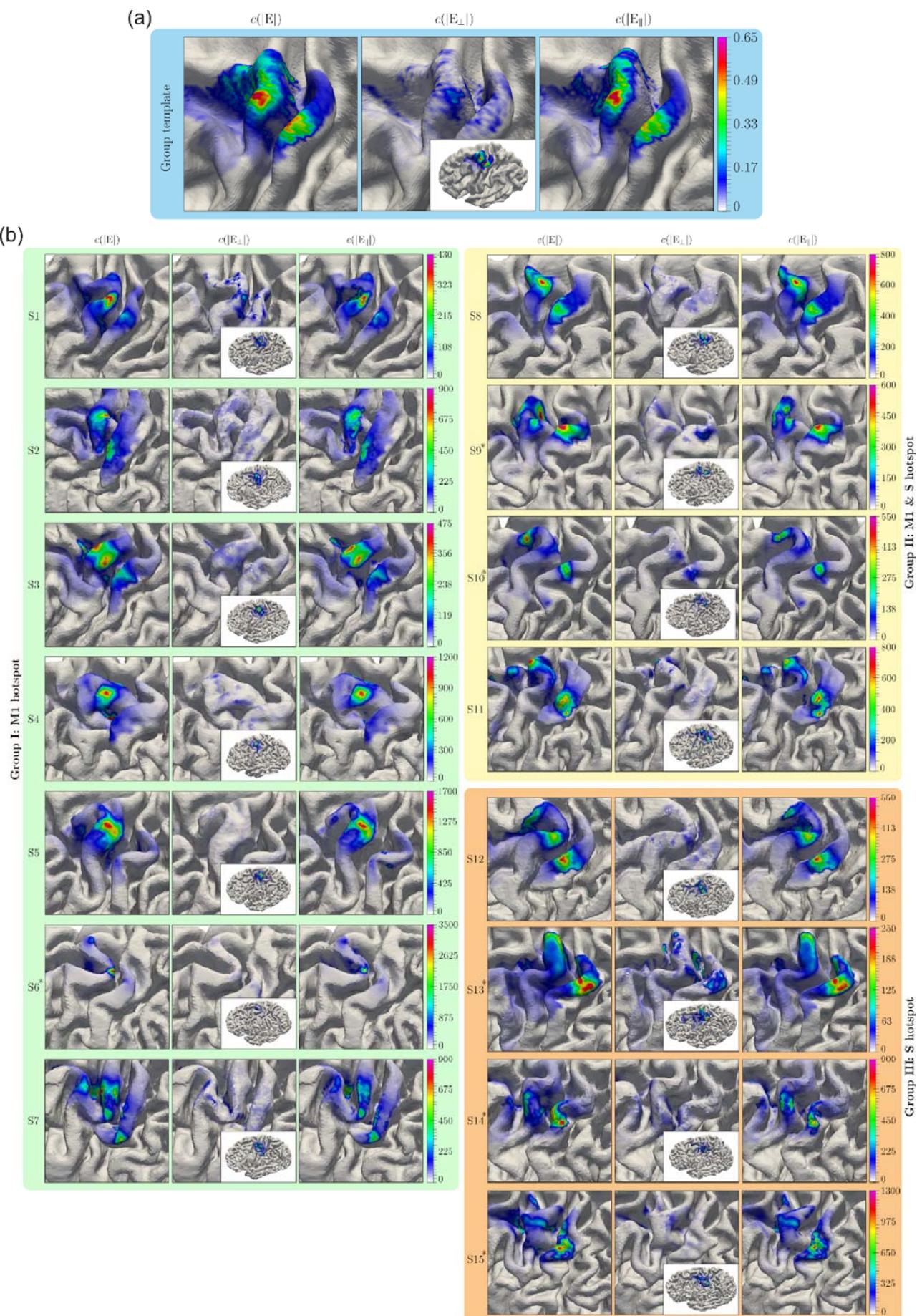
423 After deriving the polynomial surrogate using the gPC, the spatial distribution of the
424 expectation $\mu(r)$ and the variance $\nu(r)$ of the congruence factors $c(r)$ can be calculated. We
425 further analyzed the relative standard deviation $RSD = \frac{\sqrt{\nu(r)}}{\mu(r)}$ to identify possible parameter
426 ranges, where the congruence factor is primarily influenced. Finally, in the sensitivity analysis,
427 the variance was decomposed into its origins by a Sobol decomposition. The Sobol indices $S_i(r)$
428 represent portions of the total variance $\nu(r)$, which are due to individual parameters p_i or a
429 combination thereof, e.g. the conductivity of GM or the combination between different
430 measurement parameters (Sobol, 2001; Sudret, 2008).

431 **2.5 Validation**

432 To validate the estimated sites of stimulation, we first determined for each of the three
433 subjects of Experiment II the optimal coil position and orientation such that the cortex position
434 at which the electric field maximum was generated coincided with the maximum of the
435 congruence factor. This was done using an exhaustive search optimization procedure, which is

436 described in detail the Supplemental Material 1.5 and will be implemented in the next SimNIBS
437 major release. The identified optimal coil configurations were compared against other
438 neighboring coil configurations by determining the MT at each site. During MT determination,
439 single biphasic pulses with an inter stimulus interval of 5 s were applied. If the determined
440 congruence factor hotspot is indeed the optimal site for stimulation, then the MT should lowest
441 for the optimized coil position/orientation.

442 **3 RESULTS**

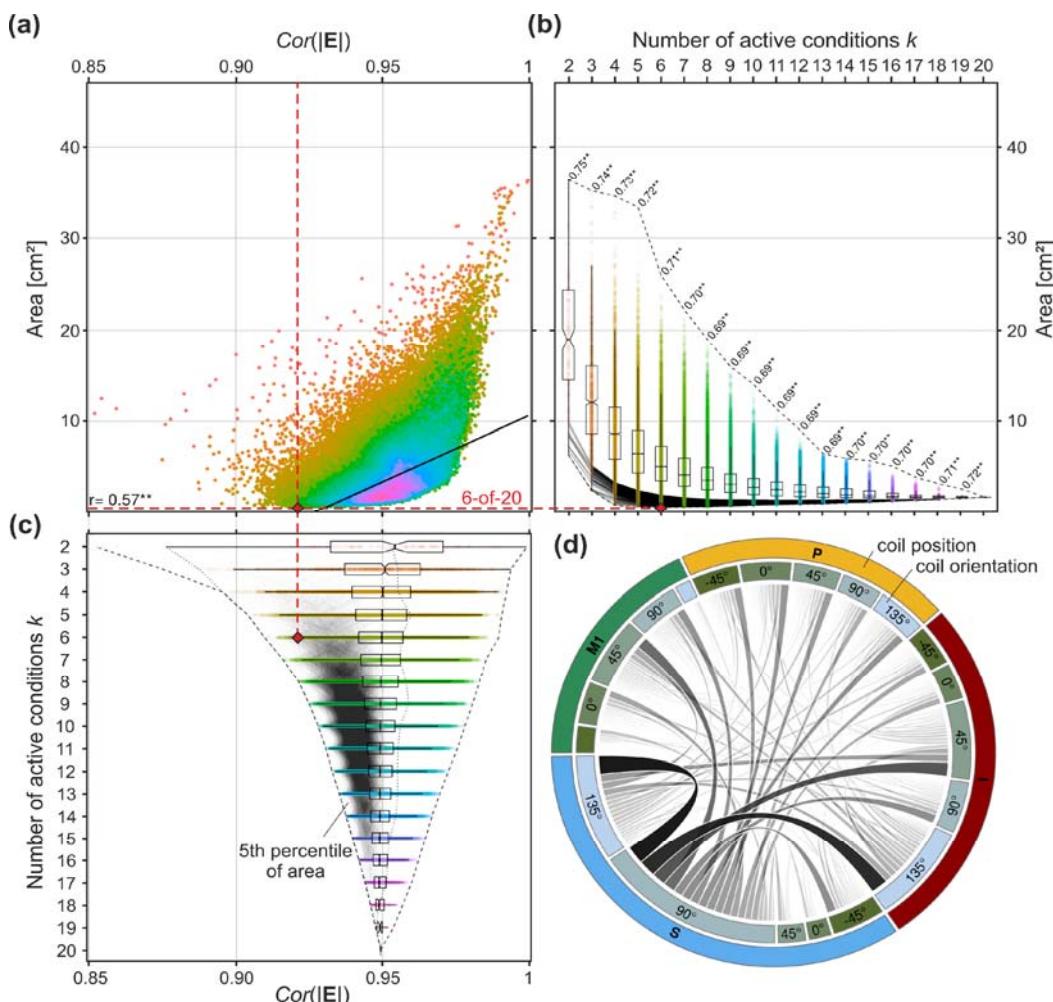

443 In the following sections, we present the results from Experiment I (15 subjects and 6
444 experimental conditions) and Experiment II (3 subjects and 20 experimental conditions). The
445 latter includes a permutation analysis to determine the number of stimulation sites and
446 corresponding coil positions required to determine the stimulation site reliably. The results
447 from both studies are then compared. Finally, the results of the uncertainty and sensitivity
448 analysis of the congruence factor are presented for one exemplary subject. The most
449 influencing parameters of the numerical model and the experimental data are identified in the
450 ensuing sensitivity analysis.

451 **3.1 Experiment I (15 subjects, 6 experimental conditions)**

452 Figure 7 shows the congruence factors of the group average and the 15 individual subjects.
453 The electric field distributions of all conditions were determined for each subject and combined
454 with the fitted MEP curves using the *optimal curve shift approach* because not all MEP curves
455 could be fitted to sigmoidal functions. In 6/15 subjects (marked with an asterisk, *), no I/O
456 curve could be determined for the posterior coil position P_{0° . Hence, the congruence factor was
457 determined using only 5 of the 6 conditions. The congruence factor was calculated for the
458 magnitude ($|E|$), as well as the normal ($|E_\perp|$) and the tangential ($|E_\parallel|$) component of the
459 induced electric field. The magnitude and the tangential component reached substantially
460 higher congruence factors and smoother spatial distributions than the normal component
461 $c(|E_\perp|)$. In general, a clear hotspot for $c(|E|)$ and $c(|E_\parallel|)$ could be identified in the hand knob
462 area of M1 on the gyral crown of the average template. However, considering the individual
463 congruence factor maps shows that in 7/15 subjects (S1-S7, highlighted in Fig. 7 with a green
464 background) we found clear and unique hotspots only on the gyral crowns in the hand knob

465 area. In 4/15 subjects (S8-S11, Fig. 7, yellow background), we observed a second hotspot in
466 the somatosensory cortex (S1). In 4/15 subjects (S12-S15, Fig. 7, orange background), we
467 could only identify a dominant hotspot in S1. We reason that this is due to array ambiguities,
468 i.e. spurious overlaps, of the realized electric fields and the missing I/O curve of condition P_{0° ,
469 in 2/4 and 3/4 subjects of the two groups, respectively. Note that maximum values of the
470 congruence factors substantially differ across subject. This is because small differences in near
471 zero variances among I/O curves may result in large difference in their inverse, that is, the
472 associated congruence factors.

473 We expected that additional experimental conditions, i.e. more coil positions and orientations,
474 would improve the results of the congruence factor towards more plausible hotspot locations in
475 the M1 hand knob area. This hypothesis was investigated in Experiment II by increasing the
476 number of coil positions and orientations from 6 (resp. 5) to 20 (cf. Fig. 2b). We selected one
477 subject out of each of the three result groups described above (S1, S8, and S12) for this
478 experiment.

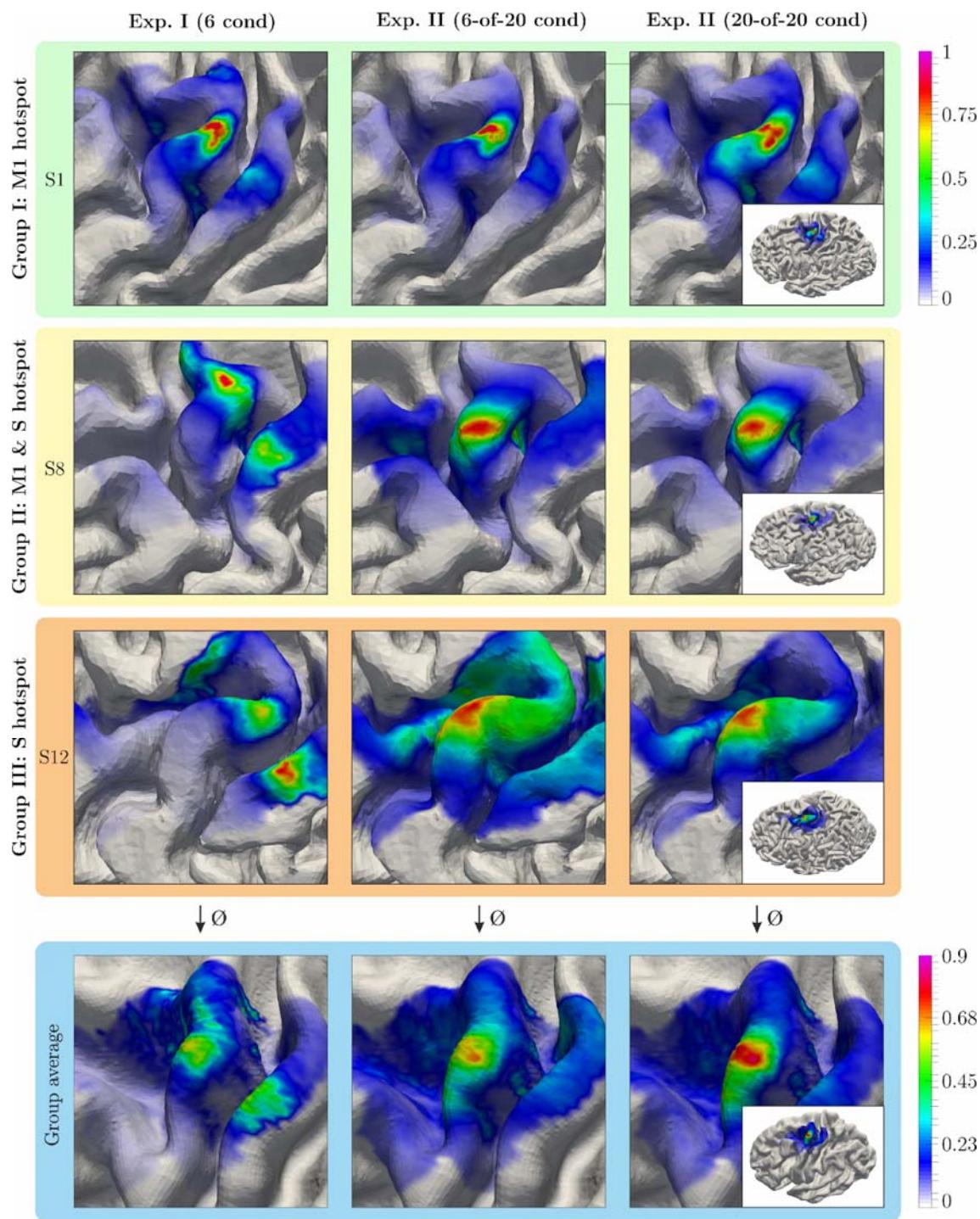

480 **Figure 7:** Congruence factor maps of all 15 subjects including six experimental conditions (Experiment
481 I). The congruence factors were calculated for the magnitude, the normal and the tangential component
482 of the electric field using the optimal curve shift approach. 7/15 subjects show unique hotspots in M1
483 (highlighted in green); 4/15 subjects show hotspots in M1 and S1 (highlighted in yellow) and 4/15
484 subjects show hotspots in S1 only (highlighted in orange); The asterisks (*) mark subjects, where no
485 evaluable MEPs could be determined for the posterior coil position P_{0° . In these cases, the congruence
486 factor was determined using only five conditions; all results were normalized, mapped and superimposed
487 on the group average template shown on the top (highlighted in blue).

488

489 **3.2 Experiment II (3 subjects, 20 experimental conditions)**

490 This experiment was conducted with an extended set of coil positions and orientations
491 (Fig. 2b). For each subject, 20 electric field distributions were calculated and combined with
492 the obtained MEP curves to determine the congruence factor maps. In this experiment, all I/O
493 curves could be fitted to sigmoidal functions, which permits to avoid the computationally
494 expensive optimizations step from (2) by directly using the variance of the turning points.

495 Because 20 experimental conditions are too time consuming to record in future mapping
496 applications based on the proposed method, we investigated how the congruence factor
497 converges depending on the number of experimental conditions. This enabled us to
498 determine an optimal number and selection of coil positions/orientations to reduce the
499 experimental effort. Consequently a permutation study was performed for each subject by
500 determining the congruence factor for all combinations of $k = 2 \dots 20$ available experimental
501 conditions. The total number of considered conditions was $\sum_{k=2}^{20} \binom{20}{k} = 1,048,555$. We quantified
502 the focality of each congruence factor map by determining the area with $c > 30$. This threshold
503 was chosen based on the permutation results data to allow comparability between the
504 combinations and subjects. The smaller this area, the more concentrated the map is. That is,
505 the more uniquely the causal relationship between electric field and MEP could be determined.

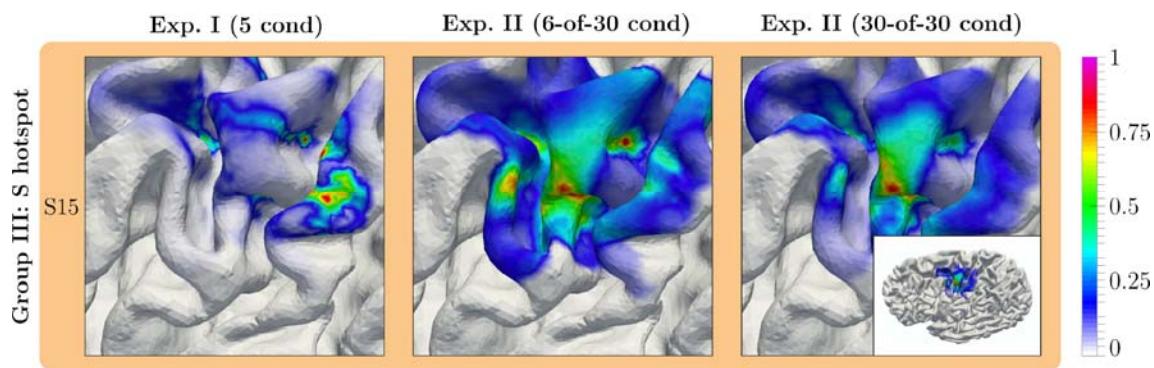

506

507 **Figure 8:** Permutation analysis interrelating the cross-correlation of the electrical fields from the different
 508 experimental conditions of Experiment II for subject S1 with the corresponding hotspot area. The hotspot area was
 509 defined as the region where $c > 30$. For each case k , the congruence factor was determined (20 k) times. (a)
 510 Relationship between the cross-correlation of the electric field magnitude and the resulting hotspot area size. Colors:
 511 active conditions k . The correlation coefficient between the hotspot size and the cross-correlation of the electric fields
 512 over all k (black line) is $r = 0.57$ ($p \ll .001$). (b) Boxplot of the hotspot area of the congruence factor depending on
 513 the number of active conditions k . Box areas indicate the 25% to 75% quantiles with notch at median. Correlation
 514 coefficients between the hotspot size and the cross-correlation of the electric fields for each k are given. ** depict
 515 $p < .01$ (after Bonferroni correction). Grey lines: 5th percentile of the best condition combinations for each k . Dashed
 516 lines: absolute range. The variation of the hotspot area size decreases with increasing k . (c) Relationship between the
 517 cross-correlation coefficient of the electric fields and the number of active conditions k . Box areas indicate the 25% to
 518 75% quantiles with notch at median. Grey lines: 5th percentile of the best condition combinations for each k . Dashed
 519 lines: absolute range. The dashed red lines highlight the case of the 6 coil positions and orientations, where the
 520 congruence factor map was most focal. Its cross-correlation coefficient is with 0.921 lower than the first quartile of
 521 possible solutions. (d) Chord graph highlighting the interaction and relative contribution between different coil
 522 positions (outer circle) and coil orientations (inner circle) from the 5th percentile of best condition combinations over
 523 all k resulting in small hotspot areas (highlighted with black lines in (b)).

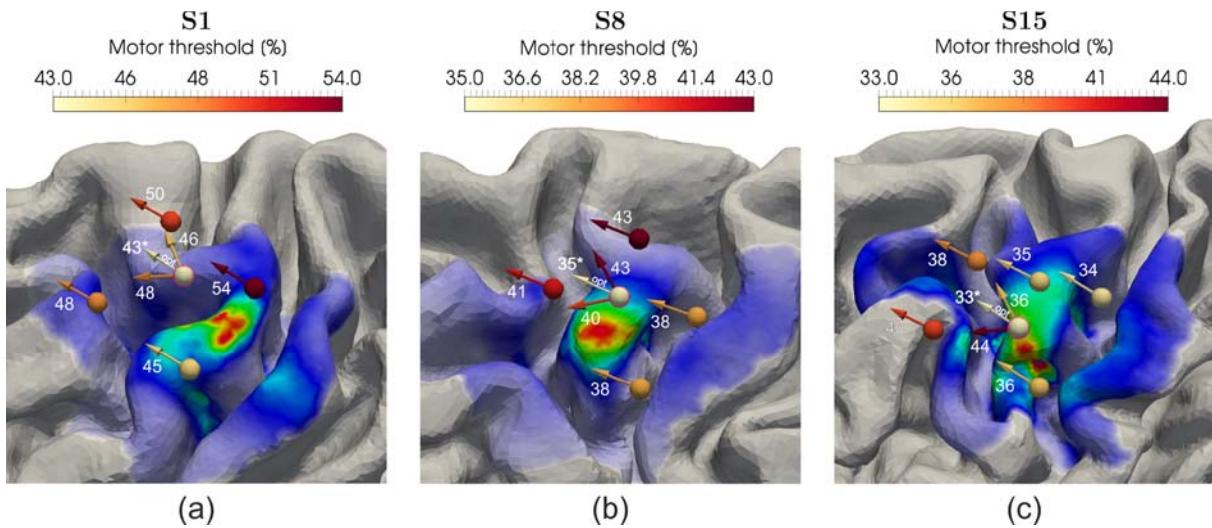
524 The results of the permutation study are shown in Fig. 8 for one exemplary subject (S1). The
525 results for the remaining subjects were similar (see Fig. S6 and Fig. S7, respectively). We
526 expected that a lower cross-correlation across the condition-wise electric fields would allow for
527 a higher discriminative power in the determination of the stimulation site. This was confirmed
528 by the analysis in Fig. 8(a), showing a correlation of $r = 0.57$ ($p \ll .001$) between the size of the
529 hotspot area and the cross-correlation of the electric fields over all k . As obvious from the
530 individual number of conditions k , the correlation between the resulting hotspot area and the
531 cross-correlation of the electric fields was stronger for low k (Fig. 8b, correlation coefficients).
532 The median of the hotspot area converges when increasing the number of active conditions.
533 Moreover, the spread of the area decreases by adding more information to the congruence
534 factor calculation. Importantly, the smallest areas (lower dashed line in Fig. 8b) indicates that
535 some condition combinations for $k \geq 5$ result in similar or even smaller areas than for $k = 20$.
536 This shows that the site of stimulation can be determined with relatively few measurements by
537 selecting optimal coil positions and orientations.
538 The relationship between the cross-correlation of the electric fields and the number of active
539 conditions k is shown in Fig. 8c. Cases resulting in the smallest 5th percentile of the hotspot
540 area are shown as thin lines in the shaded area, corresponding to the ones in Fig. 8b. As
541 expected, these cases are concentrated in regions of low cross-correlation.
542 The data were further analyzed to identify which combinations of experimental conditions were
543 especially informative and produce very focal hotspots (Fig. 8d). This analysis was performed
544 for $k = 6$. The appearance of each condition and its co-occurrence with other conditions was
545 accumulated across all condition combinations, which are part of the smallest 5th percentile of
546 the hotspot area (grey shaded area in Fig. 8b). We observed that the co-occurrence was not
547 random and combinations surrounding M1, i.e. inferior, superior, and posterior, appeared more
548 often than coil positions directly over M1. The corresponding coil orientations considerably
549 differed and connections between S_{90°}, S_{135°}, I_{45°}, and I_{135°} stand out. Moreover, it can be
550 observed that posterior conditions occurred frequently in combination with S_{90°}, which further
551 confirms the need for highly varying electric field distributions. This behavior is even stronger
552 pronounced for subjects S8 and S12 (cf. Fig. S6 and Fig. S7 in the *Supplemental Material*).

553 In the following, the results for $k = 6$ condition combinations out of the 20 experiments (6-of-
554 20) resulting in the smallest hotspot area are described in more detail and compared to
555 Experiment I and to the full 20-of-20 result. The results are shown in Fig. 9 for each subject.
556 The congruence factor maps were normalized with respect to their individual maxima to allow
557 comparability. For subject S1, we already found a unique hotspot in the M1 hand knob area in
558 Experiment I. The results of Experiment II show that this pattern is reproducible and even
559 more focused (as the deflection on the somatosensory cortex is weaker) for the best
560 combination of 6-of-20 conditions. Hence, for this subject, the coil positions of Experiment I
561 were already sufficient to determine the site of stimulation in a plausible manner. The second
562 subject belongs to the group, which showed hotspots in both M1 and S1 (Experiment I). In
563 Experiment II, a single hotspot was limited to the M1 region as well, and the deflection in S1
564 disappeared. The M1 hotspot was also slightly shifted inferior. The third subject belongs to the
565 group which showed a hotspot only in S1 in Experiment I. In Experiment II, however, the
566 hotspot moved to M1 supporting our assumption of insufficient information content concerning
567 the combination of electric field profiles and measured MEP amplitude curves due to a limited
568 classification ability of the electric fields. As indicated by the convergence results of the
569 permutation study (Fig. 8a), adding the remaining conditions of Experiment II (20-of-20 case)
570 does not yield any improvement for any of the three subject groups.

571 For subject S1 (first row in Fig. 9), the cross-correlation of the electric field distributions in the
572 ROI was 0.951 for Experiment I, and 0.921 for Experiment II. For subject S8 (second row in
573 Fig. 9), the cross-correlation was 0.953 and 0.925 for Experiment I and II, respectively. We
574 observed that the use of less correlating electric field distributions increased the quality of the
575 reconstruction. Finally, for subject S12 (third row in Fig. 9) the cross-correlations were nearly
576 the same with 0.951 and 0.953 from Experiment I to II, respectively. However, the
577 improvement of the results indicates that the selected coil positions and orientations in
578 Experiment II were more suitable to determine the congruence factor, resulting in a higher
579 distinguishability between the cortical positions in Experiment I. We wish to emphasize that
580 this property is only partly reflected by the cross-correlation coefficient. A definition of a more
581 sophisticated ambiguity measure to determine an optimal set of coil positions and orientations
582 will be subject of a future study.


583

584 **Figure 9.** Normalized congruence factor maps of 3 subjects. The first column shows the results of
585 Experiment I with 6 experimental conditions; the middle row depicts the 6-of-20 condition combination
586 with the smallest hotspot area from Experiment II; The right column shows the congruence factor maps
587 when all 20 experimental conditions of study II are included in the analysis. The subjects were chosen to
588 include one participant from each result group in study I (M1 only, M1 and S1, S1 only, see Fig.7).


589 **3.3 Validation**

590 After determining the optimal coil positions and orientations for the subjects in Experiment II,
591 we validated the predicted cortical sites of stimulation. For health reasons not related to this
592 study, subject 12 from group III (c.f. Fig. 9) was not able to participate in the validation study.
593 We replaced that subject by subject 15 from group III and repeated Experiment II. It turned
594 out that, in this subject, using the predefined 20 conditions did not yield a single pronounced
595 congruence factor hotspot. To increase the electric field variance, we added further conditions
596 at different positions, orientations, and tilting angles of the TMS coil (see Fig. S5 of
597 *Supplemental Material*). We additionally determined the corresponding best 6-of-30 condition
598 combination yielding very similar results compared to the result to the full 30 condition
599 analysis. The results are shown in Fig. 10.

600 We measured the lowest MTs at these optimal coil positions and orientations compared to all
601 other tested coil configurations (Fig. 11). Notably, all computationally determined optimal coil
602 orientations are fairly similar to the commonly used 45° coil orientation towards the *fissura*
603 *longitudinalis* (Brasil-Neto et al., 1992; Mills et al., 1992).

604
605 **Figure 10.** Normalized congruence factor maps of subject 15, replacing subject 12 from subject group III for
606 the validation. The first column shows the results of Experiment I with 5 experimental conditions; the
607 middle row depicts the 6-of-30 condition combination with the smallest hotspot area from Experiment II;
608 the right column shows the congruence factor map when all 30 experimental conditions of study II are
609 taken into account.

610

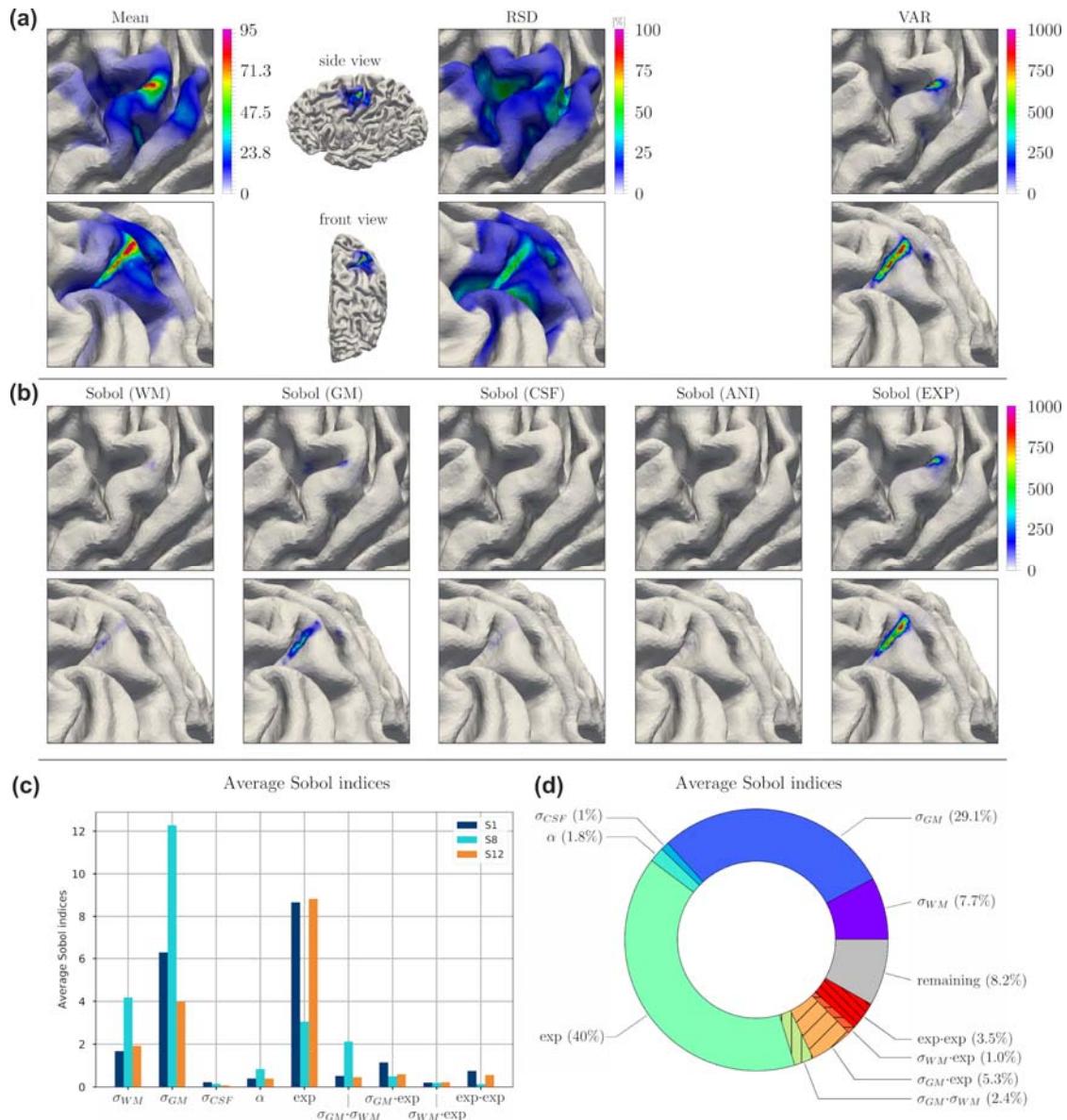
(a)

(b)

(c)

611 **Figure 11.** Coil positions and orientations used to validate the determined cortical site of stimulation. The
612 optimal coil position is marked with a dashed purple circle and its corresponding optimal orientation is
613 indicated by “opt”. Numbers represent the resting motor thresholds determined where 5 of 10 consecutive
614 MEPs reached values $> 50 \mu\text{V}$. Lowest MTs at the optimal coil positions and orientations are marked
615 with an asterisk.

616 **3.4 Uncertainty and sensitivity analysis**


617 We analyzed the congruence factor results in terms of uncertainties and sensitivities towards
618 the electrical conductivities of brain tissues, fractional anisotropy, and measurement
619 inaccuracies for all subjects of Experiment II considering the 6-of-20 case described
620 previously. The results from subject S1 are shown in Fig. 11. The results of subject S8 and S12
621 are shown in Fig. S8 and Fig. S9. The uncertainties of the model parameters are listed in
622 Table 1 and Table S1 & S2. The spatial distributions of the mean, the relative standard
623 deviation (*RSD*), and the variance (*VAR*) of the congruence factor are shown in Fig. 12a. The
624 mean distribution shows a hotspot, which is extending from the gyral crown of M1 to upper
625 parts of the anterior sulcal wall. *RSD* and *VAR* indicate that, the congruence factor could be
626 determined with a greater certainty (*RSD* $\approx 12\%$) on the gyral crown than on the anterior sulcal
627 wall (*RSD* $\approx 40\%$).

628 To identify the most influential model parameters, we decomposed *VAR* into its origins by a
629 Sobol decomposition. The spatial distributions of the absolute first order Sobol indices on the
630 cortex are shown in Fig. 12b. The Sobol coefficient maps of the MEP curve parameters are
631 accumulated to one Sobol index termed Sobol (EXP). The average first and highest second

632 order Sobol indices are depicted in Fig. 12c for all subjects of Experiment II. The average was
633 computed over the elements in the ROI. The most protrude parameters that contribute to the
634 uncertainty of the congruence factor were the electrical conductivities of GM (σ_{GM}), WM (σ_{WM})
635 as well as the uncertainty of the measured MEP curves (EXP) for all subjects. Their relative
636 contribution to the total variance, shown in Fig. 12 d (and in Fig. S8d and S9d), was subject
637 specific and depended on the accuracy of the measured MEP curves as well as the brain
638 anatomy, influencing the electric field distribution. The uncertainty of the congruence factor
639 hotspot in the anterior sulcal wall predominantly originated from the uncertainty of σ_{GM} and the
640 measurement uncertainties indicate that this hotspot is likely to be spurious.

641

642

643

644 **Figure 12:** Uncertainty and sensitivity analysis of the congruence factor determined for subject S1 in the 6-of-20
645 analysis of Experiment II. (a) Expected value (Mean), relative standard deviation (RSD), and variance (VAR) of the
646 congruence factor. (b) Spatial distributions of the absolute first order Sobol indices. The normalization with respect to
647 the total variance was avoided to strengthen the focus on regions of high variance (see eq. (12) in the *Supplementary*
648 *Material* on how the Sobol indices are computed). The Sobol index maps of the individual MEP parameters resulting
649 from uncertainties in the experimental data are summarized into one Sobol index map “Sobol (EXP)”. (c) Average first
650 order Sobol indices for subjects S1 (shown here), S8, and S12. The average was computed over the elements in the
651 ROI (d) Relative first order Sobol indices averaged over the ROI. For (a) and (b) two different perspectives are shown
652 (top and bottom rows), in order to improve visibility of the effects.

653 **4 DISCUSSION**

654 **4.1 Summary of Findings**

655 In the present study, we introduce a novel approach that links numerical modeling of the
656 induced electric field with measurements of peripheral physiological responses to considerably
657 improve the localization of effectively stimulated areas during TMS. With this approach, we
658 were able to accurately localize the cortical area that is responsible for the observed motor
659 output when single TMS pulses were applied over the motor cortex. Our main finding was that
660 sharply bounded neural structures located in the gyral crowns extending to the upper parts of
661 the sulcal wall of the motor hand area represent the most likely origin of the motor evoked
662 potentials. We identified the magnitude and the tangential component of the electric field as
663 the relevant quantities for modulating the observed effect.

664 Our results implicate that unique results can be obtained with relatively few measurements.
665 Based on our findings, we derive principles for the selection of the respective coil positions that
666 may help to improve localization of TMS effects in future applications, both at the single
667 subject and group level. Our first experiment combined two different stimulation sites with
668 three coil rotations each, yielding 6 conditions. The induced electric fields were computed with
669 FEM, allowing for the assessment of element-wise E-MEP relations. We identified three groups
670 with a hotspot at either M1, the somatosensory cortex, or both. One subject from each group
671 was included in the extended second experiment. For the subject from the M1-group, the
672 hotspot was replicated at the same spot. For the subjects from the other two groups, the
673 results could be significantly improved and single hotspots at the gyral crowns and the upper
674 parts of the sulcal walls of the motor hand area were observed in all cases. The final validation
675 study in three subjects confirmed that optimizing the TMS coil position and orientation such
676 that it maximized the electric field at the predicted cortical target indeed resulted in a
677 minimization of the MTs.

678 The congruence factor employed in our study quantifies the correlation between the measured
679 physiological variable (here, the MEP) and the induced electric field profiles. Note that the
680 proposed approach does not depend on the involved function types to describe the I/O
681 behavior. This provides a high level of flexibility and makes the method easy to adapt to other

682 applications and domains. We conclude that our approach significantly improves the
683 localization of effectively stimulated areas during TMS and may increase the power and
684 reliability of the resulting effects in future TMS studies at the individual level.

685 **4.2 Relation to prior studies relating TMS electric fields with MEPs**

686 Based on our results, we argue that areas with maximum congruence factors are good
687 candidates for effective stimulation. Importantly, in all subjects, we observed that higher
688 variability between electric fields sharpened the localization results. Sets of experimental
689 conditions that selectively varied coil position or coil orientation did not contain sufficient
690 information to uniquely determine the effective cortical stimulation site. Moreover, stimulation
691 directly over M1 with 45° orientation, though yielding the strongest effect, was by far not the
692 most informative condition in our method, which can be explained by the relative wide spread
693 of the electric field in the motor area, and hence, with low discriminative power, produced by
694 standard figure-of-eight coils. These observations might provide a potential explanation for the
695 spurious second hotspot in the somatosensory cortex observed by Bungert et al. (2017) when
696 stimulating selectively over M1 and Laakso et al. (2018), stimulating with a 45° coil orientation
697 towards the *fissura longitudinalis* (Brasil-Neto et al., 1992; Mills et al., 1992). Notably, we
698 observed similar effects in Experiment I, where only 5 or 6 non-optimal experimental
699 conditions were considered (subject group II and III, Fig. 7). Reducing the correlation of the
700 electric fields across the tested positions and orientations considerably enhanced the
701 localization capabilities of our method in all subjects (Experiment II). This observation was
702 further supported by a permutation analysis showing that higher variability between the spatial
703 patterns of the electric fields, by means of using particular combinations of coil positions and
704 orientations, considerably increased the accuracy of the localization results.

705 Interestingly, studies incorporating selectively the 45° coil orientation towards the *fissura*
706 *longitudinalis* (Laakso et al., 2018; Krieg et al., 2013; Salinas et al., 2011) appear to support
707 sulcal wall activation by the normal component of the electric field. In contrast, studies which
708 involve different coil orientations (Bungert et al., 2017) highlight $|E|$ and gyral crowns. Recent
709 results from direct electric stimulation (Aonuma et al., 2018) support the notion of gyral crown
710 activation, which contrasts with the conclusions drawn from applying imaging techniques (Fox

711 et al., 2004; Krieg et al., 2013). However, both methods have the major disadvantage that
712 their resolution in the current state of research is not sufficient to answer this question. By
713 changing both, i.e. coil position and orientation, we observed low congruence factors for the
714 normal component of the electric field at the anterior wall of the central sulcus. Since low
715 congruence factors highlight areas where the behavioral effect does *not* correlate with changes
716 in the local electric field, our results indicate that the previously proposed stimulation
717 mechanism by the normal component (Laakso et al., 2018; Fox et al., 2004; Krieg et al.,
718 2013) cannot explain the observed effect for all experimental conditions. In contrast, we found
719 that the tangential component (and therefore also the magnitude) of the field showed
720 reasonable congruence factor maps. This finding suggests that the gyral crowns and upper
721 parts of the sulcal wall are the most likely origin of the motor evoked potentials.

722 Two prior studies superimposed the calculated electric fields either in additive or multiplicative
723 fashion to localize the cortical position targeted by TMS (Opitz et al., 2013; Aonuma et al.,
724 2018). Opitz et al. (2013) weighted the computed electric fields with the strengths of the
725 observed effects and overlaid the fields in an additive fashion. In contrast, Aonuma et al.
726 (2018) superimposed the fields in a multiplicative fashion after selecting the experimental
727 conditions for which the observable effect exceeded a particular threshold. The latter may be
728 disadvantageous since it uses only a small portion of the information contained in the
729 measurement. Both methods approximate a covariance between the field strength and the
730 MEP amplitude. However, this covariance does not only depend on the correlative relationship
731 between the two, but also on the general magnitude of the field across conditions. This leads
732 to a strong bias towards voxels which generally receive higher field strengths (i.e., on gyral
733 crowns) for both approaches.

734 Our validation study confirmed the general optimality of the PA-45 coil orientation towards the
735 *fissura longitudinalis* (Brasil-Neto et al., 1992; Mills et al., 1992). The slight deviations
736 between the optima confirm the inter-individual variability in optimal coil orientation observed
737 for example by Balslev et al. (2007) and Bungert et al. (2017).

738 **4.3 Relation to simulations of neural excitation by TMS**

739 Combining electric field computations and compartment models of neurons, Seo et al. (2017)
740 propose the initial segments of pyramidal cells in layer 3 and 5 to be the sites of effective
741 stimulation, possibly due to the omnidirectional orientation of the basal dendritic trees.
742 Alternatively, also the terminals of axon collaterals might be stimulated (Aberra et al., 2018),
743 which again are equally distributed in all directions around the main axon and have low
744 thresholds. Our results, namely high congruence factors of the magnitude and the tangential
745 component of the electric field in the gyral crown and rim, indicate that the stimulation
746 mechanism of TMS may indeed occur due to synaptic or dendritic activation of neurons. This is
747 in line with predictions from previous modeling studies (Silva et al., 2008; Salvador et al.,
748 2011). Future studies may extend the congruence factor approach to more detailed neuron
749 models (Moezzi et al., 2018) and tractography-based fiber tracts (De Geeter et al., 2015; De
750 Geeter et al., 2016).

751 **4.4 Factors influencing the stability of the results**

752 The uncertainty and sensitivity analyses confirmed robust hotspots on the gyral crowns
753 extending to upper parts of the sulcal wall of M1 (cf. Fig. 10, Fig. S8, and Fig. S9). The
754 maxima of the means coincide well with the results of the deterministic case (cf. Fig. 9). The
755 relative standard deviation (RSD) in the hotspots on the gyral crowns varies between 10-25%,
756 depending on the subject. The uncertainties mainly translate into uncertainties of the
757 congruence factor on the anterior sulcal wall of the precentral gyrus and not on the gyral
758 crown, where the primary hotspot was detected.

759 The hotspots on the anterior sulcal wall are lying in line with the normal vector from the head
760 surface towards the center of the brain. We hypothesize that these spurious hotspots are
761 projections from the gyral crown hotspots. Since our approach is independent of the
762 magnitudes of the electric field, but sensitive to their spatial profiles, these spurious hotspots
763 might result from insufficient electric field variance between these locations.

764 Decomposing the variance into their origins revealed a strong contribution from GM and WM
765 conductivity as well as from the measured I/O curves. This is in line with previous studies,
766 which showed that the electrical conductivities of GM and WM are the most influencing
767 parameters considering the induced electric field in grey matter (Weise et al., 2015; Codecasa
768 et al., 2016; Saturnino et al., 2018). The impact of the measurement uncertainty was lower

769 for subject S8 compared to the other subjects, which can be explained by the fact that the MEP
770 curves could be determined with a higher certainty (cf. Table 1, S1, and S2). Nevertheless, its
771 contribution was still high and special care should be taken when recording characteristic
772 regions of the I/O curve, like the turning points of the sigmoids, to reduce its influence on the
773 congruence factor. In contrast, the conductivity of CSF and the level of anisotropy had a small
774 impact on the congruence factor and could be treated as deterministic in future analyses.

775 **4.5 Towards a clinically suitable, principled TMS mapping procedure**

776 To enable clinical applicability of the proposed method, for instance in presurgical mapping, the
777 experimental effort has to be reduced to a minimum while ensuring reliability. Regarding our
778 second research question, the permutation analysis from Experiment II (Fig. 8, Fig. S6, and
779 Fig. S7) revealed that six stimulation conditions at three different locations around M1 with
780 different orientations are sufficient to address the localization problem at hand. Notably, the
781 actual condition combinations that result in a minimum hotspot area differ strongly between
782 subjects. This is likely due to inter-individual differences in anatomy and functional brain
783 organization. Using a high number of experiments increases the stability and reliability of the
784 solution. However, at the same time, it also reduces the resolution by introducing more
785 measurement uncertainty. This became evident in the permutation study in Fig. 8b, where the
786 minimal hotspot area had a minimum for $k = 6$ conditions and slightly increased for higher
787 values of k . Increasing the field variability is a promising starting point for subject specific
788 optimization to determine the optimal number and selection of coil positions and orientations
789 before the experiment. An even more sophisticated scheme could involve maximizing the
790 distinguishability between voxels based on their sensitivity profiles, that is, the vectors of E
791 fields caused by the different coil positions and orientations with identical activation strength.
792 In order to distinguish two voxels with respect to their congruence factor, their sensitivity
793 profiles should be as different as possible. The formulation of an optimization procedure that
794 identifies the best combination of coil positions and orientations to maximize the differences of
795 the sensitivity profiles between any two voxels in the region of interest will be investigated in
796 detail in future research.

797 Beyond the localization of the origin of MEPs, our approach allows to localize functionally
798 involved cortical areas for other processes, provided that it is possible to observe a
799 quantitative response variable that depends on the stimulation intensity. Considering adapted
800 experimental paradigms, which are able to capture this, future studies may use our approach
801 for pre-surgical language or somatosensory mapping purposes.

802 **4.6 Study Limitations**

803 Our results indicate that possible carry-over effects of stimulation in Experiment II due to the
804 relatively short inter stimulus interval (ISI) of 4 s do not affect our conclusions, as the ISI was
805 kept stable during a single experiment and any carry-over effect should be stable as well.
806 Therefore, the correlative relationship between electric field and MEP amplitude should remain
807 unaffected, even if the absolute value of the MEP is changed.

808 So far, our method relies on the assumption that the experimental effects can be explained by
809 activity in a single cortical patch. This holds in the current motor experiment identifying the
810 cortical origin of FDI activation. In other experimental paradigms, however, several network
811 nodes may exist that might influence the effect. These nodes may also influence each other in
812 different ways, which would lead to partial correlations. Incorporating connections into our
813 model will tremendously increase the computational cost and efficient algorithms have to be
814 developed to combine the electric field profiles and the physiological response data. Since
815 numerous connections can be analyzed independently from each other, the problem is highly
816 parallelizable and well suited for GPU or HPC implementations. The extension of our technique
817 to identify multivariate relationships between externally observable effects and stimulation of
818 neural populations is subject of ongoing work.

819 **Acknowledgments**

820 Konstantin Weise; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr.
821 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics
822 Group, Helmholtzplatz 2, 98693 Ilmenau, Germany; e-mail: kweise@cbs.mpg.de, phone: +49
823 341 9940-2580. This work was partially supported by the German Science Foundation (DFG)
824 (grant number WE 59851/1); Lundbeckfonden (grant no. R118-A11308), the NVIDIA
825 Corporation (donation of two Titan Xp graphics cards to GH and KW) and NovoNordisk fonden
826 (grant no. NNF14OC0011413).

827

828 **References**

- 829 Aberra, AS, Peterchev AV, Grill WM. Biophysically realistic neuron models for simulation of
830 cortical stimulation. *J. Neural Eng.* 2018; 15(6):66023. (doi: 10.1088/1741-2552/aadbb1)
- 831 Akaike, H. A new look at the statistical model identification. *IEEE Trans. Automat. Contr.* 1974;
832 19(6):716-723. (doi: 10.1109/TAC.1974.1100705)
- 833 Akhtari M, Mandelkern M, Bui D, Salamon N, Vinters HV, Mathern GW. Variable anisotropic
834 brain electrical conductivities in epileptogenic foci. *Brain Topogr* 2010; 23(3):292-300. (doi:
835 10.1007/s10548-010-0144-z)
- 836 Aonuma S, Gomez-Tames J, Laakso I, Hirata A, Takakura T, Tamura M, Muragaki Y. A high-
837 resolution computational localization method for transcranial magnetic stimulation mapping.
838 *NeuroImage* 2018; 172(1):85-93. (doi: 10.1016/j.neuroimage.2018.01.039)
- 839 Askey R, Wilson JW. Some Basic Hypergeometric Orthogonal Polynomials that Generalize
840 Jacobi-Polynomials. *Mem Amer Math Soc* 1985; 54(319):1-55. (ISBN: 9780821860557)
- 841 Balslev D, Braet W, McAllister C, Miall RC. Inter-individual variability in optimal current
842 direction for transcranial magnetic stimulation of the motor cortex. *Journal of neuroscience*
843 methods 2007, 162(1-2): 309-313. (doi: 10.1016/j.jneumeth.2007.01.021)
- 844 Baumann SB, Wozny DR, Kelly SK, Meno FM. The Electrical Conductivity of Human
845 Cerebrospinal Fluid at Body Temperature. *IEEE Trans Biomed Eng* 1997; 44(3):220-223. (doi:
846 10.1109/10.554770)
- 847 Bestmann S. The physiological basis of transcranial magnetic stimulation. *Trends Cogn Sci*
848 2008; 12: 81-83. (doi: 10.1016/j.tics.2007.12.002)
- 849 Bestmann S. Computational neurostimulation in basic and translational research. *Prog Brain
850 Res* 2015; 222: xv-xx. (doi: 10.1016/S0079-6123(15)00159-4)
- 851 Bestmann S, Feredoes E. Combined neurostimulation and neuroimaging in cognitive
852 neuroscience: past, present, and future. *Ann N Y Acad Sci* 2013; 1296: 11-30. (doi:
853 10.1111/nyas.12110)
- 854 Bikson M, Truong DQ, Mourdoukoutas AP, Aboseria M, Khadka N, Adair D, Rahman A. Modeling
855 sequence and quasi-uniform assumption in computational neurostimulation. *Prog Brain Res*
856 2015; 222: 1-23. (doi: 10.1016/bs.pbr.2015.08.005)

- 857 Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett, M (1992). Optimal focal
858 transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape
859 of the induced current pulse, and stimulus intensity. *Journal of clinical neurophysiology* 9(1),
860 132-136. (PMID: 1552001)
- 861 Bungert A, Antunes A, Espenahn S, Thielscher A. Where does TMS Stimulate the Motor
862 Cortex? Combining Electrophysiological Measurements and Realistic Field Estimates to Reveal
863 the Affected Cortex Position. *Cereb Cortex* 2017; 27: 5083-5094. (doi:
864 10.1093/cercor/bhw292)
- 865 Codecasa L, Di Rienzo L, Weise K, Gross S, Haueisen J. Fast MOR-based Approach to
866 Uncertainty Quantification in Transcranial Magnetic Stimulation. *IEEE Trans Magn* 2016;
867 52(3):7200904. (doi: 10.1109/TMAG.2015.2475120)
- 868 Conforto AB, Z'Graggen WJ, Kohl AS, Rösler KM, Kaelin-Lang A. Impact of coil position and
869 electrophysiological monitoring on determination of motor thresholds to transcranial magnetic
870 stimulation. *Clin Neurophysiol* 2004; 115(4): 812-819. (doi: 10.1016/j.clinph.2003.11.010)
- 871 Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull
872 defects and skull plates: high-resolution computational FEM study of factors altering cortical
873 current flow. *Neuroimage* 2010; 52: 1268-1278. (doi: 10.1016/j.neuroimage.2010.04.252)
- 874 Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface
875 reconstruction. *NeuroImage* 1999; 9(2): 179-194. (doi: 10.1006/nimg.1998.0395)
- 876 De Geeter N, Crevecoeur G, Leemans A, Dupré L. Effective electric fields along realistic DTI-
877 based neural trajectories for modelling the stimulation mechanisms of TMS. *Physics in
878 medicine and biology* 2015; 60(2): 453-471. (doi: 10.1088/0031-9155/60/2/453)
- 879 De Geeter N, Dupré L, Crevecoeur G. Modeling transcranial magnetic stimulation from the
880 induced electric fields to the membrane potentials along tractography-based white matter fiber
881 tracts. *J. Neural Eng.* 2016a; 13(2):26028. (doi: 10.1088/1741-2560/13/2/026028)
- 882 De Geeter N, Lioumis P, Laakso A, Crevecoeur G, Dupré L. How to include the variability of
883 TMS responses in simulations: a speech mapping case study. *Physics in medicine and biology*
884 2016b; 61(21): 7571-7585. (doi: 10.1088/0031-9155/61/21/7571)
- 885 De Lucia M, Parker GJ, Embleton K, Newton JM, Walsh V. Diffusion tensor MRI-based
886 estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic
887 stimulation. *Neuroimage* 2007; 36: 1159-1170. (doi: 10.1016/j.neuroimage.2007.03.062)
- 888 Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, Pilato F (2012). I-wave
889 origin and modulation. *Brain Stimulation* 5(4). (doi: 10.1016/j.brs.2011.07.008)
- 890 Di Lazzaro V, Rothwell JC (2014). Corticospinal activity evoked and modulated by non-invasive
891 stimulation of the intact human motor cortex. *J Physiol* 592(19). (doi:
892 10.1113/jphysiol.2014.274316)
- 893 Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a
894 surface-based coordinate system. *NeuroImage* 1999; 9(2): 195-207. (doi:
895 10.1006/nimg.1998.0396)
- 896 Fox PT, Narayana S, Tandon N, Sandoval H, Fox SP, Kochunov P, Lancaster JL. Column-based
897 model of electric field excitation of cerebral cortex. *Hum Brain Mapp* 2004; 22: 1-14. (doi:
898 10.1002/hbm.20006)
- 899 Gabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz.
900 *Phys Med Biol* 2009; 54(16):4863-4878. (doi: 10.1088/0031-9155/54/16/002)
- 901 Ghanem R, Higdon D, Owhadi H. *Handbook of Uncertainty Quantification*. Cham: Springer;
902 2016. (doi: 10.1007/978-3-319-12385-1)

- 903 Güllmar D, Haueisen, J, Reichenbach, JR. Influence of anisotropic electrical conductivity in
904 white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole
905 head simulation study. *NeuroImage* 2010; 51(1): 145-163. (doi:
906 10.1016/j.neuroimage.2010.02.014)
- 907 Hallett M. Transcranial magnetic stimulation and the human brain. *Nature* 2000; 406: 147-
908 150. (doi: 10.1038/35018000)
- 909 Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks
910 in driving human motor cortical plasticity. *Cereb Cortex* 2013; 23: 1593-1605. (doi:
911 10.1093/cercor/bhs147)
- 912 Hartwigsen G, Bergmann TO, Herz DM, Angstmann S, Karabanov A, Raffin E, Thielscher A,
913 Siebner HR (2015). Modeling the effects of noninvasive transcranial brain stimulation at the
914 biophysical, network, and cognitive Level. *Prog Brain Res*; 222: 261-287. (doi:
915 10.1016/bs.pbr.2015.06.014)
- 916 Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. *NeuroImage* 2012;
917 62(2): 782-790. (doi: 10.1016/j.neuroimage.2011.09.015)
- 918 Krieg TD, Salinas FS, Narayana S, Fox PT, Mogul DJ. PET-based confirmation of orientation
919 sensitivity of TMS-induced cortical activation in humans. *Brain Stimulation* 2013; 6(6):898-
920 904. (doi: 10.1016/j.brs.2013.05.007)
- 921 Krieg, S, Tarapore PE, Picht T, Tanigawa N, Houde J, Sollmann N, Meyer B, Vajkoczy P, Berger
922 SB, Ringel F, Nagarajan S. Optimal timing of pulse onset for language mapping with navigated
923 repetitive transcranial magnetic stimulation. *NeuroImage* 2014; 100, 219-236. (doi:
924 10.1016/j.neuroimage.2014.06.016)
- 925 Laakso I, Murakami T, Hirata A, Ugawa Y. Where and what TMS activates: Experiments and
926 modeling. *Brain Stimul* 2018; 11: 166-174. (doi: 10.1016/j.brs.2017.09.011)
- 927 Le Maitre OP, Knio OM. Spectral Methods for Uncertainty Quantification. Dordrecht: Springer,
928 2010. (doi: 10.1007/978-90-481-3520-2)
- 929 Li C, Bak AF, Parker LO. Specific resistivity of the cerebral cortex and white matter. *Exp Neurol*
930 1968; 20(4):544-557. (doi: 10.1016/0014-4886(68)90108-8)
- 931 Logothetis NK, Kayser C, Oeltermann A. In vivo measurement of cortical impedance spectrum
932 in monkeys: implications for signal propagation. *Neuron* 2007; 55(5):809-823. (doi:
933 10.1016/j.neuron.2007.07.027)
- 934 Mayka MA, Corcos DM, Leurgans SE, Vaillancourta DE. Three-dimensional locations and
935 boundaries of motor and premotor cortices as defined by functional brain imaging. A meta-
936 analysis. *Neuroimage* 2006; 31(4): 1453-1474. (doi: 10.1016/j.neuroimage.2006.02.004)
- 937 Mills KR, Boniface SJ, Schubert M. Magnetic brain stimulation with a double coil: the
938 importance of coil orientation. *Electroencephalography and Clinical Neurophysiology/Evoked*
939 *Potentials* 1992, 85(1): 17-21. (doi: 10.1016/0168-5597(92)90096-T)
- 940 Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive
941 neuroscience. *Neurosci Biobehav Rev* 2013; 37: 1702-1712. (doi:
942 10.1016/j.neubiorev.2013.06.014)
- 943 Moezzi, B Schawronkow N, Plogmacher L, Goldsworthy MR, Hordacre B, McDonnell M, Iannella
944 N, Ridding MC, Triesch, J (2018). Simulation of electromyographic recordings following
945 transcranial magnetic stimulation. *Journal of neurophysiology*. (doi: 10.1152/jn.00626.2017)
- 946 Neggers SF, Petrov PI, Mandija S, Sommer IE, van den Berg NA. Understanding the
947 biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between
948 brain stimulation and cognition. *Prog Brain Res* 2015; 222: 229-259. (doi:
949 10.1016/bs.pbr.2015.06.015)

- 950 Nicholson PW. Specific impedance of cerebral white matter. *Exp Neurol* 1965; 13(4):386-401.
951 (doi: 10.1016/0014-4886(65)90126-3)
- 952 Oldfield, R.C., 1971. The assessment and analysis of handedness: The Edinburgh inventory.
953 *Neuropsychologia* 9, 97-113. (doi:10.1016/0028-3932(71)90067-4)
- 954 Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological observations
955 validate finite element models for estimating subject-specific electric field distributions induced
956 by transcranial magnetic stimulation of the human motor cortex. *Neuroimage* 2013; 81: 253-
957 264. (doi: 10.1016/j.neuroimage.2013.04.067)
- 958 Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A. How the brain tissue shapes the
959 electric field induced by transcranial magnetic stimulation. *Neuroimage* 2011; 58: 849-859.
960 (doi: 10.1016/j.neuroimage.2011.06.069)
- 961 Opitz, A., Legon, W., Rowlands, A., Bickel, W. K., Paulus, W., & Tyler, W. J. (2013).
962 Physiological observations validate finite element models for estimating subject-specific electric
963 field distributions induced by transcranial magnetic stimulation of the human motor cortex.
964 *NeuroImage*, 81, 253-264. (doi: 10.1016/j.neuroimage.2013.04.067)
- 965 Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W. Validating computationally predicted TMS
966 stimulation areas using direct electrical stimulation in patients with brain tumors near
967 precentral regions. *NeuroImage Clinical* 2014; 4: 500-507. (doi: 10.1016/j.nicl.2014.03.004)
- 968 Pascual-Leone A, Torres F. Plasticity of the sensorimotor cortex representation of the reading
969 finger in Braille readers. *Brain* 1993; 116(1): 39-52. (PMID: 8453464)
- 970 Penny W, Friston K, Ashburner J, Kiebel S, Nichols T. Statistical Parametric Mapping: The
971 Analysis of Functional Brain Images, Academic Press, 2007, 1st Edition (ISBN
972 9780123725608)
- 973 Picht, T. (2014). Current and potential utility of transcranial magnetic stimulation in the
974 diagnostics before brain tumor surgery. *CNS oncology*, 3(4), 299-310. (doi:
975 10.2217/cns.14.25)
- 976 Ranck JB. Specific impedance of rabbit cerebral cortex. *Exp Neurol* 1963; 7:144-152. (doi:
977 10.1016/S0014-4886(63)80005-9)
- 978 Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A., 2009. Safety, ethical considerations,
979 and application guidelines for the use of transcranial magnetic stimulation in clinical practice
980 and research. *Clin. Neurophysiol.* 120, 2008-39. (doi:10.1016/j.clinph.2009.08.016)
- 981 Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999). Magnetic stimulation:
982 motor evoked potentials. *Electroencephalogr Clin Neurophysiol Suppl*, 52, 97-103. (PMID:
983 10590980)
- 984 Salinas FS, Szabó CÁ, Z W, Jones L, Leland MM, Wey HY, Duong TQ, Fox PT, Narayana S.
985 Functional neuroimaging of the baboon during concurrent image-guided transcranial magnetic
986 stimulation. *NeuroImage* 2011; 57(4):1393-1401. (doi: 10.1016/j.neuroimage.2011.05.065)
- 987 Salvador, R., Silva, S., Basser, P. J., & Miranda, P. C. (2011). Determining which mechanisms
988 lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation
989 using realistic stimulus waveforms and sulcal geometry. *Clinical neurophysiology*, 122(4), 748-
990 758. (doi 10.1016/j.clinph.2010.09.022)
- 991 Sandrini M, Umlita C, Rusconi E. The use of transcranial magnetic stimulation in cognitive
992 neuroscience: a new synthesis of methodological issues. *Neurosci Biobehav Rev* 2011; 35:
993 516-536. (doi: 10.1016/j.neubiorev.2010.06.005)
- 994 Saturnino, G., Thielscher, A., Madsen, K. H., Knösche, T. R., Weise, K. (2018). A principled
995 approach to conductivity uncertainty analysis in electric field calculations. *NeuroImage*. in
996 press. (doi: 10.1016/j.neuroimage.2018.12.053)

- 997 Seo H., Schawronkow N., Jun S. C., Triesch J. (2017). A multi-scale computational model of
998 the effects of TMS on motor cortex. *F1000Research* 2017, **5**:1945 (doi:
999 10.12688/f1000research.9277.3)
- 1000 Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC. How does transcranial magnetic
1001 stimulation modify neuronal activity in the brain? Implications for studies of cognition. *Cortex*
1002 2009; 45: 1035-1042. (doi: 10.1016/j.cortex.2009.02.007)
- 1003 Silva, S., Basser, P. J., & Miranda, P. C. (2008). Elucidating the mechanisms and loci of
1004 neuronal excitation by transcranial magnetic stimulation using a finite element model of a
1005 cortical sulcus. *Clinical neurophysiology*, 119(10), 2405-2413. (doi:
1006 10.1016/j.clinph.2008.07.248)
- 1007 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister
1008 PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N,
1009 Brady JM, Matthews PM. Advances in functional and structural MR image analysis and
1010 implementation as FSL. *NeuroImage* 2004; 23(S1): 208-219. (doi:
1011 10.1016/j.neuroimage.2008.10.055)
- 1012 Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo
1013 estimates. *Math Comput Simulat* 2001; 55(1-3):271-280. (doi: 10.1016/S0378-
1014 4754(00)00270-6)
- 1015 Sudret B. Global sensitivity analysis using polynomial chaos expansions. *Reliab Eng Syst Safe*
1016 2008; 93(7):964-979. (doi: 10.1016/j.ress.2007.04.002)
- 1017 Tarapore, PE, Findlay AM, Honma SM, Mizuiri, D, Houde JF, Berger MS, & Nagarajan, SS.
1018 Language mapping with navigated repetitive TMS: Proof of technique and validation.
1019 *NeuroImage* 2013; 82:260-272. (doi: 10.1016/j.neuroimage.2013.05.018)
- 1020 Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: A
1021 useful tool to understand the physiological effects of TMS? *Conf Proc IEEE Eng Med Biol Soc*
1022 2015; 222-225. (doi: 10.1109/EMBC.2015.7318340)
- 1023 Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced
1024 by transcranial magnetic stimulation. *Neuroimage* 2011; 54: 234-243. (doi:
1025 10.1016/j.neuroimage.2010.07.061)
- 1026 Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW. Conductivity tensor mapping of the
1027 human brain using diffusion tensor MRI. *Proceedings of the National Academy of Sciences of*
1028 *the United States of America* 2001; 98(20): 11697-11701. (doi: 10.1073/pnas.171473898)
- 1029 Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A. Three-dimensional head model
1030 simulation of transcranial magnetic stimulation. *IEEE Trans Biomed Eng* 2004; 51(9): 1586-
1031 1598. (doi: 10.1109/TBME.2004.827925)
- 1032 Weise K, Di Rienzo L, Brauer H, Haueisen J, Toepfer H. Uncertainty Analysis in Transcranial
1033 Magnetic Stimulation Using Non-intrusive Polynomial Chaos Expansion. *IEEE Trans Magn* 2015;
1034 51(7):5000408. (doi: 10.1109/TMAG.2015.2390593)
- 1035 Windhoff M, Opitz A, Thielscher A. Electric field calculations in brain stimulation based on finite
1036 elements: an optimized processing pipeline for the generation and usage of accurate individual
1037 head models. *Hum Brain Mapp* 2013; 34: 923-935. (doi: 10.1002/hbm.21479)
- 1038 Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson
1039 M, Smith SM. Bayesian analysis of neuroimaging data in FSL. *NeuroImage* 2009; 45(S1): 173-
1040 86. (doi: 10.1016/j.neuroimage.2008.10.055)
- 1041 Yedlin M, Kwan H, Murphy JT, Nguyen-Huu H, Wong YC. Electrical conductivity in cat cerebellar
1042 cortex. *Exp Neurol* 1974; 43(3):555-569. (doi: 10.1016/0014-4886(74)90195-2)