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Divergent accounts of how choices are represented by neural populations have led to conflicting explanations
of the underlying mechanisms of decision-making, ranging from persistent, attractor-based dynamics to
transient, sequence-based dynamics. To evaluate these mechanisms, we characterize the spatial and
temporal structure of choice representations in large neural populations in prefrontal cortex. We find that
the pronounced diversity of choice responses across neurons reflects only a few, mostly persistent population
patterns recruited at progressively later times before and after a choice. Brief sequential activity occurs
during a saccadic choice, but is entirely absent in a delay preceding it. The diversity of choice responses,
which could result from almost-random connectivity in the underlying circuits, instead largely reflects the
topographical arrangement of response-field properties across the cortical surface. This spatial organization
appears to form a fixed scaffold upon which the context-dependent representations of task-specific variables

often observed in prefrontal cortex can be learned.
Introduction

Studies of decision-making in humans and animals provide a window onto the neural mechanisms
underlying the interaction of sensory, cognitive, and motor processes, and have been singularly influential
in shaping our understanding of neural computations across a variety of brain areas and species (Gold &
Shadlen, 2007; Hanks & Summerfield, 2017; Schall, 2001; Shadlen & Kiani, 2013). A general framework
explaining the neural mechanisms of decision-making, however, is yet to emerge, as studies on a variety
of behavioral paradigms and animal models have led to rather different, and sometimes incompatible,

explanations of how choices are generated and represented by neural circuits.

One line of research has focused on correlating the responses of single neurons in parietal and frontal
areas to internal, decision-related variables like integration of evidence and confidence, which can be
inferred from the animal’s choice-behavior (Hanks et al., 2015; Kepecs, Uchida, Zariwala, & Mainen, 2008;
Kiani & Shadlen, 2009; Kim & Shadlen, 1999; Purcell, Schall, Logan, & Palmeri, 2012; Shadlen & Newsome,
2001; Yates, Park, Katz, Pillow, & Huk, 2017). Single-neuron responses can faithfully track these internal
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variables over durations lasting up to several seconds, suggesting that, at the level of the population, these
variables are represented by patterns of activation that are low-dimensional and largely stable over time
(Brody, Romo, & Kepecs, 2003; Ganguli et al., 2008; Machens, Romo, & Brody, 2005; Mante, Sussillo,
Shenoy, & Newsome, 2013). Such stable dynamics can be explained by mechanistic neural models
implementing attractor dynamics, i.e. patterns of population activity that persist in the absence of external
inputs (Brody et al.,, 2003; Ganguli et al., 2008; Hopfield, 1982; Machens et al,, 2005; Mante et al., 2013;
Murray et al,, 2017; Rolls, Loh, Deco, & Winterer, 2008; Seung, 1996; Wang, 2002).

A different line of research instead has emphasized the diversity and complexity of single-neuron
responses observed in high-level association areas. Most neurons in these areas appear to represent not
just one variable, but linear or non-linear mixtures of many behaviorally relevant variables (Hernandez
et al, 2010; Jun et al., 2010; Machens, Romo, & Brody, 2010; Mante et al., 2013; Meister, Hennig, & Huk,
2013; Park, Meister, Huk, & Pillow, 2014; Parthasarathy et al., 2017; Raposo, Kaufman, & Churchland,
2014; Rigotti et al., 2013; Rishel, Huang, & Freedman, 2013; Singh & Eliasmith, 2006), resulting in a
continuum of diverse single neuron responses that typically cannot be organized into distinct functional
categories. Moreover, the representation of task variables by single neurons can be markedly transient,
and become sustained only at the level of the entire population as a temporal sequence of activity patterns
(Baeg etal., 2003; Crowe, Averbeck, & Chafee, 2010; Fujisawa, Amarasingham, Harrison, & Buzsaki, 2008;
Goldman, 2009; Harvey, Coen, & Tank, 2012; Morcos & Harvey, 2016; Rajan, Harvey, & Tank, 2016; Scott
etal,, 2017). The representation of non-linear mixtures of variables, and the existence of long, apparently
non-repeating temporal sequences, both suggest neural dynamics that are high-dimensional (Barak,
Sussillo, Romo, Tsodyks, & Abbott, 2013; Goldman, 2009; Harvey et al., 2012; Rajan et al.,, 2016). Such
high-dimensional dynamics are a critical feature of neural networks implementing reservoir computing
(Jaeger & Haas, 2004; Maass, Natschlager, & Markram, 2002), which do not rely on attractor dynamics,
but rather transform low-dimensional inputs (e.g. sensory evidence) into high-dimensional and task-
dependent neural trajectories that can be easily read-out to produce the desired outputs (e.g. choice)
(Buonomano & Maass, 2009; Jaeger & Haas, 2004; Maass et al.,, 2002; Rabinovich, Huerta, & Laurent,
2008).

Here we study the representation of choice in primate prefrontal cortex (PFC) during a decision-making
taskand in a delayed-saccade task, and determine whether the neural population responses in these tasks
are more consistent with attractor dynamics, reservoir computing, or other computational schemes
intermediate between these two extremes (Barak et al, 2013; Chaisangmongkon, Swaminathan,
Freedman, & Wang, 2017; Rabinovich et al,, 2008; Rajan et al., 2016). To distinguish between these
possibilities, we focus on characterizing two properties of the population responses. First, we ask whether
the representation of choice in the decision-making task is persistent or transient, both at the level of
single neurons and of patterns of population activity. We find that single-neuron responses in both tasks
are very diverse (Bruce & Goldberg, 1985; Chafee & Goldman-Rakic, 1998), and that profiles of activity

across the population can be thought of as mixtures of only a few distinct population patterns, which have
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either mostly persistent or transient temporal dynamics (Machens et al., 2010; Mante et al., 2013; Singh
& Eliasmith, 2006). Second, we determine to what extent choice responses in PFC are input and task-
dependent, by asking if the responses in the decision-making task can be predicted based on responses in
the delayed-saccade task. Critically, we find that the dynamics of single-neuron responses is largely
preserved across tasks. Both findings are inconsistent with the high-dimensional, input-dependent
dynamics expected from reservoir computing (Buonomano & Maass, 2009; Jaeger & Haas, 2004; Maass et
al, 2002; Rabinovich et al., 2008).

Notably, much of the observed diversity of single-neuron dynamics in the decision-making task, which
could result from almost-random connectivity in the underlying recurrent networks (Barak et al., 2013;
Rajan etal., 2016; Rigotti et al., 2013; Sussillo, 2014), instead reflects the task-independent, topographical
arrangement of single-unit response-field properties across the cortical surface. Such properties are not
systematically probed by many current decision-making paradigms (Hanks & Summerfield, 2017;
Shadlen & Kiani, 2013), which typically employ highly restricted subsets of possible spatial arrangements
of sensory inputs and motor outputs, and thus by themselves seem inadequate to interpret the
increasingly large population responses revealed by modern recording approaches (Cunningham & Yu,
2014).

Results

Behavioral task and neural recordings

We studied choice related neural activity in dorsolateral PFC of two macaque monkeys engaged in a two-
alternative, forced-choice sensory discrimination task (Fig. 1; Supp. Fig. 1). The monkeys were trained to
report the prevalent direction of motion in a random-dot stimulus (Britten, Shadlen, Newsome, &
Movshon, 1992) (e.g. left vs. right) with a saccade to one of two choice targets (Fig. 1a), and were rewarded
for correct choices. While the monkeys performed this task, we recorded single- and multi-unit activity
with a multi-electrode array (96 channels) chronically implanted in the left pre-arcuate gyrus (Kiani,
Cueva, Reppas, & Newsome, 2014; Kiani et al.,, 2015; Schall, 1997) (area 8Ar, Supp. Fig. 2). In each
experimental session, we recorded the simultaneous activity from 185+43 units per session (meanzstd)
in monkey T and 241+46 in monkey V, for a total of 185 and 184 sessions distributed over 67 and 62 days,
with a median session duration of 293 and 173 trials. Below we focus on data from monkey T, whereas

the largely analogous data from monkey V is shown in the supplementary material.

Each behavioral trial consisted of a stereotyped sequence of events (Fig. 1a). The monkeys initiated each
trial by looking at a fixation point. After a short delay, the two choice targets appeared, followed by the
random-dot stimulus of fixed duration (0.8s). The offset of the random-dots initiated a delay-period of
random duration (0.3-1.1s). The delay-period ended with the disappearance of the fixation point, which
instructed the monkey to quickly indicate its choice with a saccade to one of the targets. The saccade was

followed by a hold period of random duration (0.5-1.3s), during which the monkey had to maintain
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97  fixation on the chosen target until a feedback tone was played (correct or wrong) and the reward
98  delivered.

99  The location of the two choice targets was varied across sessions to obtain extensive coverage of both
100  visual hemi-fields, while the random-dots stimulus was always shown at the center of gaze (Fig. 1b). The
101  monkeys were highly proficient at the task in all target configurations (Fig. 1c), though performance was
102 noticeably better for the configurations that were used most often during training (horizontal target

103 arrangement).

104  The activity of a large fraction of recorded units was related to the monkey’s upcoming choice at some
105  point during the trial (64+10% and 43+£10% in monkeys T and V, p=0.05 corrected for multiple
106 comparisons; null distribution based on random permutations of all trials, see Methods). For each unit,
107 here we separated trials based on the combination of choice (choice 1 vs. choice 2) and outcome (correct
108  vs. error), resulting in four condition-averages for each unit (Fig. 1d,e; Supp. Fig. 3). In most task
109  configurations, we define saccades to the target in the right visual hemi-field (contralateral to the
110  recording array) as choice 1, and saccades to the other target as choice 2. When both targets are in the
111 right hemi-field, choice 1 is defined as the saccade to the upper hemi-field (Fig. 1b). With this definition,
112 population-average responses during the delay period tend to be larger for choice 1 than choice 2 (Fig.
113 1d). Below we use such condition averages to characterize the responses of individual units and of the
114  population. Trial-by-trial variability of responses within a condition, which may further constrain the
115 nature of the underlying neural processes (Bollimunta, Totten, & Ditterich, 2012; A. K. Churchland et al,,
116 2011; M. M. Churchland et al.,, 2010; Latimer, Yates, Meister, Huk, & Pillow, 2015; Morcos & Harvey, 2016;

117 Seidemann, Meilijson, Abeles, Bergman, & Vaadia, 1996) is mostly not considered here.

118  The recordings reveal a considerable diversity of responses across individual units. Choice-related
119  responses do not occur simultaneously across all units, but rather can occur at different times in different
120  units (Fig. 1e). Indeed, the average response over a large number of units (Fig. 1d) resembles the activity
121 of some individual units but not that of others (Fig. 1e). The extent of heterogeneity across the population,
122 however, is difficult to assess based on such anecdotal examples, which may represent outliers of a rather
123 homogeneous population. To obtain a more complete picture of the diversity of choice responses, below

124  we characterize the responses of all units in the population.
125  Hypothesized choice representations

126 ~ We start by considering four simulated neural populations that represent choice in fundamentally
127  different ways (Fig. 2). We will use these simulated responses as four hypotheses that can be compared
128  to the responses measured in PFC, and to illustrate several complementary analysis approaches that
129  together can distinguish between these hypotheses. The simulations are not meant to faithfully reproduce
130  thediversity of responses observed in the recorded units, but rather represent idealized implementations

131  of different possible choice representations.
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132 The four simulated populations are shown in the four rows in Fig. 2. In the first population, choice is
133  represented by a single, stable pattern of activation, meaning that the response of all single neurons in the
134  population are essentially scaled versions of each other (Fig. 2a, stable). In the second population, each
135  neuron responds only transiently, at a consistent time during the trial, with different neurons
136  representing choice at different times during the trial (Fig. 2a, unit sequence). In the third population, the
137  representation of choice is passed sequentially along a chain of activation patterns, with single neurons
138  showing diverse, multi-peaked responses (Fig. 2a, pattern sequence). Finally, the fourth population
139  contains patterns of activation that are persistent, but are recruited at progressively later times during
140  the trial, again resulting in diverse single neuron responses (Fig. 2a, recruitment). Experimental evidence
141 for most of these representations has been previously reported (e.g. stable (Ganguli et al., 2008; Machens
142 et al,, 2005; Mazurek, Roitman, Ditterich, & Shadlen, 2003; Wang, 2002), sequence of units (Baeg et al.,
143 2003; Fujisawa et al., 2008; Harvey et al,, 2012; Morcos & Harvey, 2016; Rajan et al., 2016), sequence of
144 patterns (Bollimunta et al., 2012; Goldman, 2009; Wehr & Laurent, 1996), and combinations thereof (M.
145 M. Churchland et al.,, 2012; Kaufman, Churchland, Ryu, & Shenoy, 2014)).

146 A first approach to distinguishing some of these representations relies on visualizing the activity of all
147  units after sorting them by the time of peak-activation (Fujisawa et al., 2008; Harvey et al., 2012; Morcos
148 & Harvey, 2016) (Fig. 2b). When the population response is organized as a sequence of units, these plots
149  reveal a prominent diagonal band (Fig. 2b, unit sequence), which corresponds to the “wave” of activity
150  traveling across the population. This diagonal band is absent for a stable representation (Fig. 2b, stable)
151 and for recruitment (Fig. 2b, recruitment). A similar band can be observed for a sequence of patterns—
152 the band however is less prominent, as individual units that are active more than once over the course of

153  the trial contribute to “off-diagonal” responses (Fig. 2b, pattern sequence).

154 A second approach relies on characterizing the temporal dynamics of population patterns, rather than
155  single neurons (Fig. 2c,d). The population activity pattern at a given time during the trial is given by the
156  responses along the corresponding vertical line in Fig. 2b. Differences between the representations are
157  revealed by asking how long the pattern observed at any given time persists in the population response.
158  To answer this question, we first define three average patterns by averaging responses over time within
159  three distinct temporal windows (Fig. 2c, left; ti-tz; windows: gray rectangles in Fig. 2a, b, and d). We then
160  obtain three component patterns by orthogonalizing the three average patterns (Fig. 2c, right). The
161  orthogonalization ensures that each component pattern describes features of the population response
162  that are not already captured by the previous component patterns. Finally, we compute component
163 activations (Fig. 2d) by taking the dot product of each component pattern (Fig. 2c, right) with the
164  population patterns at each point in time (Fig. 2b). These steps amount to a dimensionality reduction
165 approach (Briggman, Abarbanel, & Kristan, 2005; M. M. Churchland et al., 2012; Cunningham & Yu, 2014;
166 Kobak et al.,, 2016; Laurent, 2002; Mante et al., 2013; Yu et al.,, 2009), as each component pattern
167  corresponds to a dimension in state-space, and the activations capture the contribution of the

168  corresponding dimension to the population response.
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169  The component activations reveal many defining features of the underlying representations. For the
170  stable representation, the first component pattern (Fig. 2c, stable; right, t1) is persistently active (Fig. 2d,
171  stable; component 1) beyond the time window used to define that component (Fig. 2d, stable; gray bin at
172 t1). The second and third component patterns (Fig. 2c, stable; right, t; and t3) essentially reflect noise, and
173 show very small activations (Fig. 2d, stable; components 2 and 3). For a sequence of units or patterns, the
174  component activations are transient (Fig. 2d, unit sequence and pattern sequence), and large only during
175  the time window used to define the corresponding component pattern, indicating that the population
176 ~ continuously undergoes smooth transitions from one activity pattern to another. In the case of
177  recruitment, several components can show persistent activation, each starting from the time used to

178  define the corresponding pattern (Fig. 2d, recruitment).

179 A third approach to comparing representations relies on computing the similarity between activity
180  patterns measured at different times in the trial (i.e. activity along any possible vertical line in Fig. 2b).
181  This approach does not provide all the insights revealed by the component activations, but has the
182  advantage of not depending on a particular choice of average patterns as in Fig. 2c. For any pair of times
183  in Fig 2b, we define similarity as the correlation between the corresponding activity patterns. We plot the
184  full set of similarities as the matrices in Fig. 2e, with each point in the matrix corresponding to a pair of
185  time bins in Fig 2b. Since patterns extracted at nearby times are similar, similarity is largest close to the
186  positive diagonal (Fig. 2e; from bottom-left to top-right). The different persistence of responses in the
187  stable, sequential, and serial recruitment representations is reflected by how far these large similarity

188  values extend away from the diagonal, i.e. to more dissimilar times (Fig. 2e).
189  Dynamics of single unit responses

190  Below we use these three approaches to characterize the dots-task responses in PFC. As for the simulated
191  responses (Fig. 2b), we first sort units by the time of peak-activation (Fig. 3; Supp. Fig. 4). Since for some
192  units the response for a given choice, or the difference in the response to the two choices, shows peaks at
193  multiple times (e.g. Fig. 1e, units 2, 5, or 6) we sort the units repeatedly based on the responses in three
194  distinct task epochs, namely the dots-period (Fig. 3a,d; left panel), the delay period (middle), and the
195  saccade/hold periods (right). To exclude contributions from trial-by-trial variability to these plots, we
196  applied a cross-validation procedure. For each unit, we randomly assigned trials into a sorting or a
197  validation set—we used responses from the sorting set to order units based on their peak activation-time
198  (Fig. 3a,d) and responses from the validation set to evaluate the existence of a sequence (Fig. 3b,e). The
199  ordering of units along the vertical axis across the resulting two plots is preserved, but is entirely

200  determined by responses in the sorting set.

201 The resulting cross-validated plots show little evidence of sequences throughout much of the trial (Fig.
202  3b,e). Here, we generated these plots directly for the choice-related activity, measured as the difference
203  between choice 1 and choice 2 responses. A clear, but brief sequence of units can be observed starting
204  from about 100ms before saccade onset to about 400ms after (Fig. 3b,e, right). During the dots period,
205  responses also peak at different times in different units (Fig. 3b, left), although peak-times might not be

6
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206  distributed evenly across the population in all task configurations, but rather may fall into two largely
207  separate time windows, early and late after dots onset (Fig. 3e, left). During the delay period, we find no
208  evidence of a sequence irrespective of task configuration (Fig. 3b,e; middle panels). Interestingly, a more
209 prominent sequence can be observed during the dots period if choice 1 and choice 2 responses are
210  considered separately (Fig. 3c,f). These sequences appear to reflect activity that is common to both
211 choices, and is thus less prominent when considering the difference between choice 1 and choice 2 activity
212 (Fig. 3b,e).

213  Dynamics of population activity patterns

214  To characterize the dynamics of population activity patterns (Fig. 4; Supp. Fig. 5), we restrict the analysis
215  to choice-related activity in the population, by considering only activity patterns that are modulated by
216  choice. We use linear regression to extract the pattern of population activity that best predicts the
217  upcoming choice at any given time during the trial (Mante et al.,, 2013), define component patterns (as in
218  Fig. 2c) by averaging the extracted choice predictive patterns within different time-windows in the trial
219  (gray stripes in Fig. 4a,c, t1 to ts), and then compute the corresponding component activations as the dot
220  product between the component patterns and the population activity (Fig. 4a,c). As for single unit
221 responses (Fig. 1d), we computed condition-averaged component activations based on choice and trial

222 outcome (Fig. 4a,c).

223 This approach reveals both persistent and transient choice components (Fig. 4a,c), which are predictive
224 of choice at different times during the trial (as quantified by the area under the ROC curve, Fig. 4b,d). A
225  first choice-related pattern (component 1) emerges shortly after dots-onset, is largely persistent across
226  the dots and delay periods, peaks around the time of saccade initiation, and shows inverted selectivity for
227  choice after the saccade. A second persistent pattern (component 2) emerges later during the dots
228  presentation, becomes increasingly choice-predictive during the delay period, and also shows inverted
229  selectivity after the saccade. A third pattern (component 3), defined at the time of saccadic initiation, is
230  instead mostly transient. Two additional patterns defined after saccade initiation (components 4 & 5)
231  peakatincreasingly later times during the hold period prior to reward (Fig. 1a), as expected by sequential

232 activation, but are also largely persistent throughout the hold period.

233 The component activations overall mirror the characterization of the dynamics at the level of individual
234 units (Figs. 1e and 3) and suggest a representation with prominent serial recruitment of components
235  before the saccade (e.g. compare components 1-3 in Fig. 4a,c to Fig. 2d, recruitment), fast sequential
236  encoding around the time of the saccade (e.g., choice 1 responses peak at increasingly later times for
237  components 1-5 in Fig. 4a, as for components 1-3 in Fig. 2d, second and third rows), and a slow sequence
238  and possibly recruitment after the saccade (e.g. choice 1 responses for components 4,5 in Fig. 4c & Supp.
239  Fig. 5a,c). This conclusion is further supported by the similarity matrices for PFC responses (Fig. 4e,g—
240  same format as Fig. 2e), which show periods of persistent, or slow, dynamics during the delay and hold
241  periods (i.e. large similarities away far from the diagonal), and transient dynamics around the time of the

242 saccade (large similarities only along the diagonal). The time-course of similarity, however, is not a fixed

7
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243  property of the neural population, but rather depends on task-configuration—in some configurations
244  (Fig. 4e) the early choice signals appear to be more persistent than in others (Fig. 4g), again in qualitative

245  agreement with the other analyses (compare Figs. 3b and e; and Figs. 4a and ¢, component 1).

246  Notably, these five component activations provide a largely complete description of choice responses in
247  single sessions of the dots-task. To illustrate this point, we reconstructed the response of every recorded
248  unit as a weighted sum of the component activations (Kobak et al., 2016), with weights varying across
249  components and units (the weights are discussed in more detail below, see Fig. 5g). The observed
250  diversity of single-unit responses (e.g. Fig. 3) reflects differences in the relative weights of the five
251  components across units. We then computed similarities on the reconstructed population responses (Fig.
252 4fh) as we did for the recorded responses (Fig. 4e,g). When each unit’s response is reconstructed based
253  on only the first component, the match between predicted (Fig. 4fh; left-most panel) and measured (Fig.
254  4e,g) similarities is poor. However, as more and more components are added (Fig. 4f,h; additional panels)
255  the match progressively improves, and becomes very good when all five components are used to
256  reconstruct the responses (Fig. 4fh; right-most panel; correlation between measured similarity in Fig.
257  4e,gand predicted similarity in the right-most panels of Fig. 4fh is R=0.993 and R=0.991, for the two task
258  configurations). Additional component patterns that can be defined from the responses account only for

259  asmall fraction of the variance in the choice-predictive activity (Fig. 4i,j; Supp. Fig. 4i,j).
260  Measuring response-fields with a delayed-saccade task

261  Having characterized the temporal dynamics of responses in a decision-making task (Figs. 3,4) we aim to
262  relate these responses to those in a visually-guided, delayed-saccade task (Fig. 5; Supp. Fig. 6). If PFC were
263  implementing strongly input-dependent dynamics akin to reservoir computing, single unit responses in
264  the two tasks can be expected to be substantially different (Buonomano & Maass, 2009; Jaeger & Haas,
265 2004; Maass et al., 2002; Morcos & Harvey, 2016; Rabinovich et al., 2008).

266  In the delayed-saccade task, the monkeys were rewarded for making a saccade to a single target, whose
267  location was varied across trials to obtain extensive coverage of the visual field (Fig. 5a). Only one target
268 was presented on each trial, and no random-dots were shown, but the timing of task events was otherwise
269  analogous to the dots-task (Fig. 1), in particular with respect to the durations of the delay and hold
270  periods.

271 For any given unit, the condition-averaged responses for each target location (Fig. 5b) are best visualized
272 as atime-dependent response-field, representing the spatial tuning of visual, delay, movement, and hold
273 period activity (Fig. 5c¢). At each time in the trial, we obtain smooth response-fields from the condition-
274  averaged responses (Fig. 5c, top) either through linear interpolation (Fig. 5c, middle) or by fits of a simple
275  descriptive model that assumes separable tuning for eccentricity and angular location (Bruce & Goldberg,
276  1985) (Fig. 5¢, bottom). We use the fits to estimate the response-field center at each time, i.e. the spatial
277  location of the peak response at that time (Fig. 5¢c, red dots; Fig. 5e-h).
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278  The response-fields can be widely different across different units, both in terms of spatial organization
279  and temporal dynamics (Fig. 5c¢,d). A complete characterization of all observed response-fields is beyond
280  the scope of this study, but one can easily show that the response-field properties are not randomly
281  distributed across cortical locations. To visualize the underlying topography, we relate the cortical
282  location of each unit to the visual location of its response-field center after target onset (Fig. 5e,g) and
283  after saccade onset (Fig. 5f,h). We show each response-field center twice, either colored based on the
284  anterior-posterior (Fig. 5e,f) or the medio-lateral location (Fig. 5g,h) of the array electrode where it was
285  recorded. The majority of units responding to the target onset are most active when the target appears in
286  the right (contralateral), upper visual quadrant (Fig. 5e,g). These units are mostly recorded in posterior
287  locations on the array (Fig. 5e, red colors), and their angular preference varies based on medio-lateral
288  location—units from lateral array locations prefer targets in the upper-right quadrant and units from
289  medial locations prefer the lower-right quadrant (Fig. 5g, blue vs. red colors). Post-saccadic responses are
290  morebroadly distributed across the array, but again the target preferences map regularly onto the cortical
291  surface (Fig. 5fh). Post-saccadic responses to targets in the left (ipsilateral) and right (contralateral)
292  hemifield mostly occur at posterior and anterior locations, respectively (Fig. 5f, red vs. blue colors) while

293  angular preference depends on medio-lateral location (Fig. 5h).

294  Relating these response-fields to the unit responses in the dots-task (Figs. 3,4) is challenging, because we
295  could not without a doubt identify units that were recorded in both tasks (see Methods, Neural
296  recordings). A direct comparison of responses in the two tasks is further complicated because on any
297  given trial of the delayed-saccade task, only one response target, and no random-dots, appear on the
298  screen. Theresponses in the two tasks thus can be expected to be different even if fixed, task-independent

299  response-fields were to explain the responses in both settings.

300 To overcome this challenge, instead of comparing responses in the two tasks unit-by-unit, we compare
301  them atthe level of the population, focusing on “global” properties of the population that are robust to the
302  expected differences in the underlying unit responses. Specifically, we ask whether the response-fields
303  estimated in the delayed-saccade task can be used to predict: (1) the overall diversity of unit responses
304 measured in the dots-task, and (2) the resemblance (or difference) of unit responses measured in any two
305  task-configurations and cortical locations. We first develop a description of the population response that
306  is well suited to study these global properties in the measured dots-task responses (Fig. 6), and then use
307  this description to evaluate the response-field based predictions both qualitatively (Fig. 7) and
308  quantitatively (Fig. 8).

309  Global structure of unit responses in the dots-task

310  We exploit the inferred component activations (Fig. 4) to generate a description of the neural population
311  that exploits nearest-neighbor relations between unit responses (Fig. 6; Supp. Fig. 7). As a first step, we
312  reconstruct each unit’s response as a mixture of the 5 component activations (as for generating Fig. 4fh,
313  rightmost plots). This reconstruction step mainly amounts to aggressively “de-noising” the unit responses

314  (Supp. Fig. 3). Second, we characterize each unit by the resulting average responses for eight distinct
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315  conditions (Fig. 6a), differing in choice (choice 1 vs. 2), outcome (correct vs. error), and motion strength
316  (high vs. low). Third, we concatenate these condition-averages to obtain a single vector, which can be
317  interpreted as a single point in a high dimensional space. The dimensionality of this space is given by the
318  product between the number of conditions and the number of time-points per condition. Finally, we use
319  a non-linear dimensionality reduction technique (t-SNE (Van Der Maaten, 2013), see Methods) to find a
320 two-dimensional representation of all points that optimally preserves nearest-neighbor relations (Fig.
321  6b), meaning that units with similar condition-averaged responses (as assessed by the Euclidian distance
322  between the corresponding points in the high-dimensional space; Fig. 6a) are placed close-by in the two-
323  dimensional representation. We refer to this representation as an embedding of the responses, and to the

324  two axes spanning the two-dimensional space as the embedding dimensions.

325  The embedding reveals the overall diversity of unit responses measured in the dots-task. To show all
326  kinds of dynamics observed in individual units, we averaged the responses of units located nearby in the
327  embedding space (i.e., at the same grid-location in Fig. 6¢c) and plotted the resulting averages at the
328  corresponding locations (Fig. 6d). Differentlocations along the embedding dimensions map onto different
329  kinds of responses, including units with persistent predictive activity (top-right locations, choice 1
330  preferring; left, choice 2 preferring), transient saccade related activity (right and top-left), persistent post-
331  choice activity (top and bottom), and combinations thereof. Notably, our definition of the high-
332  dimensional space in Fig. 6a implies that here unit responses are considered in their entirety, rather than
333  separately in the three task epochs as in Fig. 3. As described above, each unit’s response (Fig. 6a) is
334  reconstructed as a weighted sum of the component activations (Fig. 4a,c). We refer to these weights as
335  the component contributions, shown in Fig. 6e. The relative contributions of the five components vary

336  strongly across units, resulting in the diversity of unit responses shown in Fig. 6d.

337  The embedding also reveals how the unit responses depend on task-configuration (Fig. 6f) and cortical
338  location (Fig. 6g). Some kinds of responses are not observed in some configurations—for instance,
339  responses with large contributions from component 1 (Fig. 6e, left; red points) are rare when the choice
340 1 target is located in the bottom-right quadrant (Fig. 6f, left), and responses with large negative
341  contributions from component 4 (Fig. 6e, fourth panel; blue points) are rare when both targets are in the
342  right hemi-field (Fig. 6f, right). These observations mimic the properties of the average unit responses for
343  these configurations (Fig. 1d). The responses also vary across cortical locations, i.e. array electrodes (Fig.
344  6g). Units with large positive or negative contributions from one or more of the choice components (Fig.
345  6e; red and blue points) mostly occur at posterior locations on the array, close to the arcuate sulcus (Fig.
346  6g, left). For these posterior locations, the responses also vary based on the medio-lateral position on the
347  array, as units from different medio-lateral locations tend to map onto different locations along the top

348  and right edge of the embedding space (Fig. 6g, right).
349  Predicting dots-task responses from delayed-saccade responses

350 To assess if the response fields estimated in the delayed-saccade task (Fig. 5) can explain the global

351  structure of unit responses in the dots-task (Fig. 6), we generated predicted dots-task responses based on
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352  the estimated response fields. For any unit recorded in the dots task, we randomly picked a unit recorded
353 in the delayed-saccade task on the same array electrode, and generated predicted responses by
354  interpolating the responses from the delayed-saccade task at the two target locations used in the dots-
355  task. This resulted in a predicted population that matched the one recorded in the dots-task both with

356  respect to total number of units, and to the combinations of recording locations and target configurations.

357  We evaluate the accuracy of these predictions qualitatively by computing a non-linear embedding of the
358  predicted responses (Fig. 7, Supp. Fig. 8), as we did for the measured responses (Fig. 6). The embedding
359  shows that the response-field based predictions (Fig. 7a) reproduce the overall diversity of measured unit
360  responses in the dots-task (Fig. 6d). In the predictions, the time-course of choice-related activity varies
361  substantially across units (Fig. 7a), and reproduces the different combinations of predictive, saccadic, and
362  post-choice activity observed in the measured responses (compare Fig. 7a with Fig. 6d). As expected, not
363  all features of the dots-task responses are well predicted. Because in the delayed-saccade task only one
364  targetis presented on a given trial, and the resulting visual transient differs across choices, for many units
365  the predicted responses separate by choice right after the onset of the target (i.e. at the onset of the
366 ~ response in Fig. 7a; units on the left and right of the embedding space), while in the measured responses

367  the separation emerges gradually during the dots presentation.

368  Despite these differences, the predictions also qualitatively reproduce how the unit responses depend on
369  task-configuration and cortical location. To illustrate how these two factors interact, we computed the
370  average location in the embedding space of all units recorded from a given array electrode (Fig. 7b;
371  colored circles) and task configuration (7b; different rows). We assigned a unique color to each average
372  location based on the same scheme as in Fig. 6¢,d, and then projected that color onto the corresponding
373  electrode location in the array (Kiani et al., 2015) (Fig. 7c; each square corresponds to a dot in Fig. 7b).
374  The resulting images show that the topographical arrangement of the different unit responses (colors in
375  Fig. 7c) is not fixed, but rather depends on task-configuration (Fig. 7c, rows). Critically, this dependency
376  between neural dynamics and task-inputs is well reproduced by the predictions (Fig. 7c, compare

377  measured and predicted).

378  In addition to the comparisons in Fig. 7c, which rely on two-dimensional embeddings of the data, we also
379  compared the measured and predicted responses directly (Fig. 8; Supp. Fig. 9) based on their original,
380  high-dimensional representations (Fig. 6a). Such a direct comparison is important, because a two-
381  dimensional embedding (Fig. 6b) is necessarily an approximate representation of data that (locally) spans
382  more than two dimensions, as appears to be the case for the measured unit responses. For instance, for
383  any given unit (Fig. 8a, green dot) the 90 closest neighbors in the high-dimensional space (red and black
384  units, defining the “neighborhood” of the green dot) typically do not correspond to the 90 closest units in
385  the embedding space (gray dots closest to the green dot).

386  To measure the similarity between unit responses recorded on any two electrodes directly in the high-
387  dimensional space, we introduce the concept of “neighborhood-mixing” (Fig. 8a,b). In essence, if unit

388  responses from two electrodes are similar, their corresponding neighborhoods will tend to be
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389  overlapping, i.e. mixed. By characterizing the degree of mixing between neighborhoods for any pair of
390 electrodes, we define a “mixing-matrix” (e.g. Fig. 8c) where large counts (relative to the null hypothesis,
391  i.e. no topographical organization of responses) indicate that unit responses on the corresponding
392  electrodes are similar, and vice versa. Comparing mixing-matrices between task-configurations (Fig. 8c,e)
393  and between measured and predicted responses (Fig. 8c,d) is analogous to comparing the rows and
394  columns of Fig. 7c. As in Fig. 7c, the comparisons are robust to the expected differences between measured
395 and predicted responses, but here can be more easily quantified (e.g. in terms of correlations between

396  mixing-matrices, Fig. 8g-j) and do not require a low-dimensional embedding of the data.

397  The measured mixing-matrices for electrode location vary with task-configuration, as demonstrated by
398  the correlation coefficients in Fig. 8g, in agreement with the structure of the embedded responses (Fig.
399  7c), and the effects of task-configuration on the mixing matrix are well reproduced by the predictions (Fig.
400  8h,i). Notably, different predictions generated by reconstructing unit responses with only one of the five
401  choice-components (Fig. 8j) cannot account for the measured mixing-matrices nearly as well, indicating
402  that the mixing-matrices are sensitive to contributions from several choice components (Fig. 4a,b). The
403  accuracy of the predictions thus suggests that global structure of unit responses in the dots-task is largely

404  determined by the properties of the underlying, task-independent response-fields.
405  Discussion

406  Our large-scale recordings reveal a rich and diverse representation of choice at the level of individual
407 units. The recorded units did not fall into distinct functional classes, but rather covered a continuum of
408  response types (e.g., no obvious clusters are apparent in Fig. 6b), with choice-related activity occurring in
409  relation to different task-events in different units, including combinations of early and late choice-
410  predictive activity, saccade-related activity, and post-saccadic activity (Bruce & Goldberg, 1985; Chafee &
411 Goldman-Rakic, 1998; Markowitz, Curtis, & Pesaran, 2015). This diversity of unit responses reflects the
412 combined effect of only a few choice-related components contributing to the population dynamics (Fig.
413 4).Two predictive components are recruited at consecutive times in the time-window preceding a choice
414 and persist until the initiation of a saccade (Markowitz et al.,, 2015; Yates et al., 2017). The saccade-related
415  activity is transient, and comprises a fast temporal sequence across units. After the saccade, one or two
416  additional components are recruited and persist until reward delivery. The low-dimensional, persistent
417  dynamics of choice responses before and after the saccade appear more consistent with attractor
418 dynamics (Brody et al., 2003; Ganguli et al., 2008; Machens et al., 2005; Mante et al., 2013; Murray et al,,
419  2017) than with the high-dimensional dynamics predicted by reservoir computing (Buonomano & Maass,
420 2009; Jaeger & Haas, 2004; Maass et al.,, 2002; Morcos & Harvey, 2016; Rabinovich et al.,, 2008).

421 Even though we do not attempt to assign a functional significance to these choice components, past
422 studies provide pointers in this respect. In particular, the first and second components most likely relate
423  to processes of evidence accumulation or motor preparation (Gold & Shadlen, 2007; Hanks &
424 Summerfield, 2017; Kiani et al., 2014; Schall, 2001; Shadlen & Kiani, 2013). The two components could
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425  either reflect two distinct processes (Yates et al., 2017) or, alternatively, both components could reflect a
426  single variable (e.g. integrated evidence) that is represented in a dynamic, time-varying fashion at the
427 level of the population (Goldman, 2009; Harvey et al., 2012; Morcos & Harvey, 2016; Parthasarathy et al,,
428 2017; Spaak, Watanabe, Funahashi, & Stokes, 2017). In either case, it is notable that these choice-
429  predictive components tend to be most active at the time of saccade initiation (Fig. 4a,b), resulting in a
430  peak of activity that precedes the purely movement related, third component. Population responses
431 during saccade initiation thus involve strong modulation of the very same components that are active
432 during saccade preparation (i.e. during the dots and delay periods). This observation seems at odds with
433  findings in premotor and motor cortex during reaches, where movement related activity is strictly
434  orthogonal to preparatory activity (Kaufman et al., 2014). The prominent components observed during
435  the hold period, after the monkey’s choice, seem to represent a form of “postdictive” persistent activity
436  (as opposed to visual activity, see Supplementary Material), which is distinct from the predictive activity
437  encoded by the first two components. Similar postdictive persistent activity has previously been linked
438  to cognitive processes required for decision-making, like updating and maintaining the value of available
439  choice options (Curtis & Lee, 2010).

440  We find that the interplay between these choice components at the level of individual units is largely
441  preserved between a decision-making task and a visually-guided, delayed-saccade task (Fig. 7,8). This
442  finding is not a forgone conclusion—context-dependence is a hallmark of prefrontal responses, and is
443 thought to be critical for generating learned, cognitively demanding behaviors (Fuster, 2008; Miller &
444  Cohen, 2001; Tanji & Hoshi, 2008). One may thus have expected more prominent differences in the
445  structure of the responses between a decision-making-task, which monkeys learn to master over the
446  course of months, and a much simpler saccade task that is learned over the course of days. A relation
447  between choice-predictive activity in the dots-task and preparatory saccade activity has often been
448 assumed (Kim & Shadlen, 1999; Shadlen & Newsome, 2001). Systematic comparisons of the two, however,
449  have typically not been reported, or suggested little or no relation between these measures (Meister et
450  al.,, 2013). The observation that the organization of choice responses in the population is preserved across
451  two tasks with different inputs provides a second line of evidence against reservoir computing
452 (Buonomano & Maass, 2009; Jaeger & Haas, 2004; Maass et al., 2002; Morcos & Harvey, 2016; Rabinovich
453  etal, 2008), which predicts strongly input-dependent neural dynamics.

454  These results seem at odds with the findings of some studies of decision-making in rodents, which have
455  revealed response dynamics that are high-dimensional, organized in temporal sequences spanning the
456 entire trial, and strongly context-dependent (Baeg et al., 2003; Fujisawa et al,, 2008; Harvey et al.,, 2012;
457 Morcos & Harvey, 2016; Rajan et al., 2016; Scott et al.,, 2017). It is possible that some of these studies may
458  have over-emphasized the prominence of temporal sequences in the population, as they often relied on
459  sorting units based on the time of peak-activation, but did not include a cross-validation step (Fig. 3a,d vs.
460  b,e). Alternatively, the reported dynamics could reflect computational principles that are genuinely

461  different from those implemented by the PFC circuits analyzed here, or could reflect differences in the

13


https://doi.org/10.1101/595520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/595520; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

462  employed behavioral tasks. For one, we find the strongest evidence for persistent activity during epochs
463  leadingto behavioral events of unpredictable timing (the saccade go-cue and the feedback), when it might
464  be advantageous to maintain the neural activity in a stable configuration that is optimal for processing
465  the event information. This constraint does not apply when the timing of relevant task events, and in
466  particular of the choice, is under control of the animal, as is the case for rodents navigating in a real (Baeg
467 et al,, 2003; Fujisawa et al., 2008) or virtual environment (Harvey et al., 2012; Morcos & Harvey, 2016;
468 Rajan etal., 2016; Scott etal,, 2017). For another, the differences in dynamics could also reflect differences
469 in the dimensionality of the observed tasks (Cowley, Smith, Kohn, & Yu, 2016; Gao & Ganguli, 2015). It
470  seems plausible that tasks involving extended spatial navigation through locomotion (Baeg et al., 2003;
471 Fujisawa et al., 2008; Harvey et al., 2012; Morcos & Harvey, 2016; Rajan et al., 2016; Scott et al., 2017) are
472 higher dimensional than one requiring ballistic saccades to only two locations, and would thus result in

473 dynamics that are much more high-dimensional.

474  In our recordings, much of the diversity in the responses of individual units in the decision-making task,
475  as well as differences in population dynamics across task-configurations, reflect the topographical
476  arrangement of response-field properties across the cortical surface (Markowitz et al., 2015; Robinson &
477 Fuchs, 1969; Schall, 1997; Suzuki & Azuma, 1983). Thus, even in a prefrontal area like pre-arcuate cortex,
478  whose computations are thought to emerge from the collective activity of large populations of neurons
479 (Mante et al,, 2013; Rolls et al.,, 2008; Wang, 2002), accounts of the dynamics that rely entirely on
480  population-level descriptions may miss relevant structure at the level of individual units. This structure
481  reflects regularities in the underlying anatomical connectivity that are likely to be critical to the functions
482 of the corresponding PFC areas. However, such regularities remain largely hidden in recordings obtained
483  during the dots-task because of the impoverished motor outputs employed (frequently only two saccade
484  targets),a common feature of many tasks currently used in cognitive neuroscience (Hanks & Summerfield,
485  2017; Shadlen & Kiani, 2013). While these designs have proven extremely valuable in the context of
486  single-unit recordings, the low-dimensionality of the task parameters may lead one to severely
487  underestimate the natural, intrinsic dimensionality of a neural system, even when neural responses are

488  studied with modern, large-scale recording approaches (Cunningham & Yu, 2014).

489  Current analysis approaches, at the single-unit or population level, can provide insights into different,
490  complementary aspects of such high-dimensional data, but obtaining a complete characterization of
491  neural population responses spanning these levels remains challenging. The non-linear embeddings used
492 here offer a promising approach to study the structure of neural populations in their entirety, while still
493  maintaining an explicit representation of each units’ response. In addition, our nearest-neighbor statistics
494  (Fig. 8a,b) provide a novel and very general approach to building similarity or distance matrices (Kiani et
495  al, 2015; Kriegeskorte et al,, 2008) (Fig. 8a-d), which makes essentially no assumptions about the nature
496  of the underlying high-dimensional data. Ultimately, the insights provided even by these novel
497  approaches will be limited by the richness of the employed behavioral tasks, which in many current

498  experimental designs may be insufficient to reveal all the relevant structure in the responses.

14


https://doi.org/10.1101/595520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/595520; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

499 Methods

500  Experimental procedures

501  We collected behavioral and neural data from two adult male rhesus monkeys: monkeys T (14 kg) and V
502 (11 kg). All surgical, behavioral, and animal-care procedures complied with National Institutes of Health
503  guidelines and were approved by the Stanford University Institutional Animal Care and Use Committee.
504  Prior to training on the direction discrimination task, the monkeys were implanted with a stainless-steel
505  head holder (Evarts, 1968) and a scleral search coil for monitoring monocular eye position (Judge,
506  Richmond, & Chu, 1980). We used operant conditioning with liquid rewards to train the monkeys to
507 perform a two-alternative, forced-choice, motion discrimination task, and a visually guided, delayed-
508 saccade task, both described below.

509  During training and experimental sessions, monkeys sat in a primate chair with their head restrained.
510  Visual stimuli were presented on a cathode ray tube monitor controlled by a VSG graphics card
511  (Cambridge Graphics, UK), at a frame rate of 120Hz, and viewed from a distance of 57 cm. Eye movements
512  were monitored through the scleral eye coils (C-N-C Engineering, Seattle, WA). Behavioral control and
513  data acquisition were managed by a computer running the REX software environment and QNX Software

514  System’s (Ottawa, Canada) real-time operating system.
515  Behavioral tasks

516  Monkeys performed a motion-direction discrimination task in which perceptual judgments were
517  reported by saccadic eye movements to one of two targets (Britten et al., 1992) (Fig. 1a). The eccentricity
518  (6-18 deg of visual angle) and angular location of the targets varied across sessions (Fig. 1b) Animals
519  discriminated the direction of motion in a fixed-duration random-dot kinematogram contained within a
520  circular aperture of 7° (monkey T) or 6° (Monkey V) in diameter and centered on the fixation point. The
521  difficulty of the discrimination was varied parametrically from trial to trial by adjusting the percentage of
522  dots in coherent motion (Britten et al,, 1992) (Fig. 1c). The animals were rewarded for indicating the
523  correct direction of motion with a saccadic eye movement to the target corresponding to the prevalent
524  direction of motion (choice 1 or 2). At 0% coherence the animals were rewarded randomly (50%
525  probability).

526  Each trial (Fig. 1a) began with the appearance of a small spot that the monkey was required to fixate for
527 500 ms (fixation period; +1.5 deg fixation window) before the two saccade targets were displayed (target
528  period). After 400 msec the random-dot stimulus was presented for a fixed duration of 800 msec (dots
529  period). The viewing of the dots was followed by a variable-interval delay period, during which only the
530 fixation point and the two peripheral targets were visible (300-1100ms, mean 700ms) (Kim & Shadlen,
531  1999). At the end of the delay period, the fixation point disappeared, cuing the monkey to quickly initiate
532 the choice saccade. The saccade was followed by an additional randomized interval, the hold period,
533  during which the monkey was required to fixate the target before the trial outcome (500-1200ms, mean

534  900ms; +2-4 deg fixation window, depending on eccentricity). At the end of the hold time, both targets
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535  disappeared, a liquid reward was delivered for correct trials, and the monkey was released from
536  behavioral control. At this point, the monkey could initiate the next trial by re-directing his gaze to the

537  central fixation spot, although he did not always do so.

538 In separate sessions, monkeys also performed a visually-guided, delayed-saccade task (Fig. 5a). The
539 sequence of events in this task was similar to that in the dots task, but no random-dots were shown, and
540  only one target was presented on any given trial. The fixation period (500ms) was followed by the target
541  period (500-1100ms, mean 800ms), the go-cue (fixation point disappearance) and instructed saccade,
542  and the hold period (700-1300ms, mean 1000ms). Within a session, target location on each trial was
543  pseudo-randomly chosen from a set of locations distributed across the visual field. The number of target
544  locations, (24-33), eccentricities (3 values, 4-12 deg) and angular locations (8-11 angles) varied across

545 sessions.
546  Neural recordings

547  We recorded single and multi-unit neural signals with a chronically-implanted 10 by 10 array of
548  electrodes (Cyberkinetics Neurotechnology Systems, Foxborough, MA; now Blackrock Microsystems).
549  The inter-electrode spacing was 0.4 mm; electrodes were 1.5 mm long. Arrays were surgically implanted
550 into the pre-arcuate gyrus (Supp. Fig. 2) according to a previously-published surgical protocol
551 (Santhanam, Ryu, Yu, Afshar, & Shenoy, 2006; Suner, Fellows, Vargas-Irwin, Nakata, & Donoghue, 2005).
552  We targeted the array to a region of prefrontal cortex between the posterior end of the principal sulcus,
553  and the anterior bank of the arcuate sulcus, near the rostral zone of Brodmann’s area 8 (area 8Ar). The
554  arrays were implanted in the left hemisphere in both monkeys. The exact location of the array varied
555  slightly across monkeys (Supp. Fig. 2), due to inter-animal variations in cortical vasculature and sulcal

556  geometry that constrained the location of the array insertion site in each monkey.

557  Array signals were amplified with respect to a common subdural ground, filtered and digitized using
558  hardware and software from Cyberkinetics. For each of the 96 recording channels, ‘spikes’ from the entire
559  duration ofa recording session were sorted and clustered offline, based on a principal component analysis
560  of voltage waveforms, using Plexon Offline Sorter (Plexon Inc., Dallas, Texas). This automated process
561 returned a set of candidate action-potential classifications for each electrode that were subject to
562  additional quality controls, including considerations of waveform shape, waveform reproducibility, inter-
563  spike interval statistics, and the overall firing rate. For clusters returned by this post-processing, both
564  spike-waveform and spike-timing metrics fell within previously-reported ranges for array recordings
565  (Suner etal,, 2005).

566  Daily recordings yielded ~100-200 single and multi-unit clusters distributed across the array. We do not
567  differentiate between single-unit and multi-unit recordings, referring to both collectively as “units” in a
568  way that is agnostic to their biological origin. No conclusions we draw in this study appear to depend on
569  a distinction between single and multi-unit responses; indeed, we replicated several main findings

570  reported here in a much smaller population of well-discriminated single-units from single-electrode
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571  recordings in two additional animals (pre-arcuate and arcuate cortex; data from (Mante et al., 2013), not
572 shown).

573  Neural responses in the dots-task were recorded over a total of 67 and 62 experiments in monkeys T and
574  V,foratotal of 59727 and 37985 trials. Each daily recording was subdivided into several short “sessions”
575  with identical behavioral parameters. The behavioral paradigm was interrupted for a few seconds
576  between the sessions to close and open data files. In many recordings, these interruptions introduced
577  discontinuities in the overall firing rate of units across sessions. To ensure maximal stationarity in the
578  recordings, we thus analyzed each session separately. Overall, we analyzed responses from 185 and 184
579  sessions in monkeys T and V, yielding a total of 34233 and 44386 units. Since many of these units were
580 likely recorded repeatedly across sessions and days (Chestek et al., 2007; Santhanam et al., 2009), these
581  totalsshould be interpreted as the number of samples drawn from a smaller underlying neural population
582  of unknown size. The responses during the delayed-saccade task were recorded over a total of 26 and 11
583 experiments in monkeys T and V, for a total of 23865 and 4768 trials, distributed across 61 and 13
584  sessions, and yielding 11468 and 3069 units. In both monkeys, recordings from the two tasks were

585 interleaved over the same time-period (9 and 18 months, monkeys V and T).

586  Two studies reporting analyses on a subset of these recordings were published previously (Kiani et al.,
587 2014; Kiani et al,, 2015).

588  Analysis of choice behavior

589  To quantify the effect of target configuration on the monkey’s performance, we computed for each session
590  the percentage of correct responses as a function of motion coherence (Fig. 1c, left) and fitted a sigmoidal
591  curve to all the resulting points from the same target configuration (Fig. 1¢, middle; one curve per target
592  configuration). The estimates of percentage correct at zero coherence are more variable than those
593  obtained for non-zero coherences, as the latter are based on twice as many trials per session (average
594  over two directions of motion). We summarized the performance of the monkey in each target
595  configuration by using the fitted curves. Specifically, we defined an average performance for each target
596  configuration (Fig. 1c, right) as the average fitted performance over 100 coherence values spaced
597  logarithmically between 1% and 100% (Fig. 1b).

598  Analysis of eye movement data

599  We estimated the saccade initiation and end times in each trial by applying a Gaussian fit to the eye
600  velocity profile of the choice saccade. Saccade initiation and end times were defined, respectively, as the
601  times when the derivative of the fit first exceeded a velocity threshold of 15°/sec and decreased below
602  10°/sec.

603  Analysis of neurophysiology data

604  Throughout the paper, we consider neural responses occurring during two distinct, largely non-

605  overlapping time epochs. The first epoch starts 100ms before onset of the random-dots, and ends 200ms
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606  after their offset. The second epoch starts 600ms before and ends 600ms after the initiation of the choice
607  saccade. For each trial, we computed time-varying firing rates by counting spikes in non-overlapping,

608  square time-windows of width 50ms.

609  We defined condition-average responses for each unit by averaging the time-varying firing rates across
610  all trials belonging to a given condition. We define each condition based on a combination of task
611  variables, specifically the monkey’s choice (choice 1 or 2), trial outcome (correct or error), motion
612  coherency (values differ across experiments), and overall difficulty (high vs. low coherence, defined by
613  splitting coherences into two sets). Some of these conditions are shown only in a subset of the figures. In
614  sessions with one target per hemifield, choice 1 was defined as the target in the right visual hemifield, i.e.
615  contralateral to the left hemisphere containing the recording array (see above, Neural recordings); when
616  both targets appeared in the same hemifield, choice 1 and choice 2 corresponded to the targets in the

617  upper and lower visual fields, respectively.

618  The condition-average responses are defined at the level of individual experimental sessions, each
619  containing only a fraction of the trials recorded on a given day (see Neural recordings above). As a result,
620  the condition-averages can be rather noisy (Supp. Fig. 3, Measured). We thus use a dimensionality
621  reduction approach to de-noise the responses of individual units. For each session, we identify patterns
622  of population activity that are robustly modulated by the choice on a given trial and reconstruct each
623  unit's response based only on these choice-related patterns—the contribution of all other patterns is
624  removed from each unit. The resulting, reconstructed responses differ from the raw condition-averages
625  mainly in two respects (Supp. Fig. 3; 15 PC dimensions or 10 choice components). First, they are
626  substantially less noisy. Second, they typically display smaller modulations over time that are common to
627  all conditions. This second observation implies that a substantial fraction of the condition-independent
628  variance occurs in a subspace of the population dynamics that is orthogonal to the inferred task-related
629  patterns, in agreement with previous reports (Kobak et al.,, 2016). As the focus of this report lies on the
630  choice-related components of the response, these condition-independent signals are not considered
631  further.

632  Reconstructed unit responses based on varying degrees of de-noising are shown in Fig. 1 and Fig. 3 (10
633  choice components), Fig. 6 (5 choice components), and the corresponding supplementary figures.
634 Including additional dimensions to the unit responses does not significantly affect the results of the
635  sorting procedure used to identify sequences at the level of individual units (Fig. 3 and Supp. Fig. 4).
636  Including additional dimensions to the unit responses does also not affect the conclusions about the
637  structure and origin of diversity in unit responses across the population (Figs. 6-8). However, the non-
638 linear embeddings are sensitive to noise, and for large number of components (e.g. 10) result in a high
639  number of artefactual, small clusters that do not reflect bona fide neural activity (not shown). The details

640  of the dimensionality reduction approach are described in the next sections.

641  Targeted dimensionality reduction
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642  We analyzed the population response in each session with Targeted Dimensionality Reduction, a
643  dimensionality reduction approach based on linear regression (Mante et al,, 2013). We first applied a
644  “soft” z-scoring (referred to simply as “z-scoring” below) to the responses of a given unit by subtracting
645  the mean response from the firing rate at each time and in each trial and by dividing the result by the

646  standard deviation of the responses (plus a constant):

fi,e (k) = {fi,e ()i
std (fie(0) +6

t,

647 re(k) =

648  where f; (k) and 1; (k) are the firing rate and z-scored responses of unit i at time t and on trial k, ()
649  and std (‘). indicate the mean and standard deviation across times and trials,and & is a constant defined
650  as the median of the standard deviation across all units in a session. The z-scoring de-emphasizes the
651  contribution to the population response of units with very high firing rates (typically multi-unit activity),
652  while the constant term ensures that units with very small firing rates are not over-emphasized. We do

653  not apply any temporal smoothing to the responses.

654  We used a permutation test to determine the fraction of units with significant choice responses. For each

655  unit, we measure the largest absolute difference between average choice 1 and 2 responses over all times:

656 m; = maxt|(fi,t(k)>kechoice1 - (fi,t(k))kechoice2|

657  We assessed the significance of m; by comparing it to the null distribution for m; obtained with 10,000
658  random permutations of trials k. This test makes no assumptions about the distribution of f; . (k) and

659  incorporates the correction for multiple comparisons across times t.

660  We describe the z-scored responses of unit i at time t as a linear combination of several task variables:
661 11¢(k) = B;+(1) choice(k) + B;(2) motion(k) + B;(3) dif ficulty(k) + B; (4)

662  where choice(k) is the monkey’s choice on trial k (+1: to choice 1; -1: to choice 2), motion(k) is the
663  “signed” motion coherence of the dots on trial k (positive values for motion towards the choice 1 target,
664  and negative values towards choice 2), and dif ficulty(k) is the “unsigned” motion coherence, i.e. the
665  absolute value of motion(k). The regression coefficients f3; . (v), for v=1to 3, describe how much the trial-
666  by-trial firing rate of unit j, at a given time ¢ during the trial, depends on the corresponding task variable
667  v.The last regression coefficient (v=4) captures variance that is independent of the three task variables,
668  and instead results from differences in the responses across time. The signed and unsigned coherence are
669  added to the regression for consistency with a previous study (Mante et al., 2013) but explain only little

670  variance in the responses compared to choice (not shown).

671  To estimate the regression coefficients f3; , (v) we first define, for each unit and time #, a matrix F; of size
672 Ncoer X Niriqr, Wwhere Ni,.r is the number of regression coefficients to be estimated (4), and Niyq; is the

673  number of trials recorded for unit i. The first three rows of F; each contain the trial-by-trial values of one
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674  of the three task variables. The last row consists only of ones, and is needed to estimate f;,(4). The

675  regression coefficients can then be estimated as:
-1
676 Bic = (FiF]) Firy,

677  where B;, is a vector of length N, with elements f; . (v), v=1-4. We denote vectors and matrices with
678  bold letters, and use the same letter (not bold) to refer to the corresponding entries of the vector or matrix,

679  which in this case are indexed by v.

680  The regression coefficients B; ; can be re-arranged to produce a set of coefficient vectors 8, ; (v=1-4) of
681  length N,; whose entries f3,,; (i) correspond to the regression coefficient for task variable v for unit i at
682  time t. Each vector B, ; then corresponds to the direction in state space that accounts for variance in the
683  population response due to the corresponding task variable at time t. Targeted dimensionality reduction

684  involves projecting the population response into subspaces derived from these regression vectors.

685  Single-trial population responses are constructed by re-arranging the z-scored responses into vectors
686 Sy Where sy (i) = r; (k). The dimensionality of the state space corresponds to Ny,;;, the number of
687  units in the population. Condition-averaged responses x.. are obtained by averaging single-trial
688  responses over all trials belonging to condition c. We defined conditions based on the choice of the
689  monkey (choice 1 or choice 2), the motion coherence, the outcome of the trial (correct or incorrect), and

690  pairwise combinations thereof.

691  We used PCA to identify the dimensions in state space that captured the most variance in the condition-
692  averaged population responses. We first build a data matrix X of size Ny,ir X (Nconaition * T), Whose
693  columns correspond to the z-scored population response vectors x. +. Neonaition COrresponds to the total
694 number of conditions, and T to the number of time samples. The PCs of this data matrix are vectors v, of
695  length N,,,;;, indexed by a from the PC explaining the most variance to the one explaining the least. We
696  use the first Ny, PCs to define a first de-noising matrix D of size Nypi; X Nypis:

N.
— pca T
697 D =),,_ VqVq.

698  We use this matrix to de-noise the regression vectors defined above by projecting them into the subspace

699  spanned by the first N, = 15 principal components:

700 P =D By,

vt

pca
v,t

701 with the set of vectors B also of length Ny,;;. We make use of the 5% to build the two distinct

702  subspaces of the dynamics that are considered in the main text.

703  We build a first subspace by focusing on the 10 state-space dimensions that account for most variance in
704  the choice regression vectors. We first define a matrix Y of size N,,;; X 2T whose first T columns

705  correspond to the de-noised regression vectors of choice B%7" and second T columns correspond to
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706  —BY%", compute principal components w,, of this matrix, and define a projection matrix D'° based on the

707 first 10 PCs:
708 D1 =Y10 w,wl.

709 We build a second subspace based on de-noised ‘regression vectors’ obtained by averaging %" over all

710  times t falling within time windows S; for j=1-5:
n ca
711 Bj = I1),t )tES]-

712 where each 8 ; is of dimension Ny;¢, and the time windows S; cover times t within the intervals [0.20,
713 0.60] relative to dots onset, and [-0.55, -0,30], [-0.10,-0.05], [0, 0.05],[0.10, 0.15] relative to saccade onset

714  (all times in seconds). We orthogonalize the regression vectors with the QR-decomposition:
715 B =QR,

716  where B = [31 B2Bs B 35] is a matrix whose columns correspond to the regression vectors, Q is an
717  orthogonal matrix, and R is an upper triangular matrix. The first five columns of Q correspond to the

718  orthogonalized regression vectors ﬁ]*. The entries ,le(i) for j=1-5 correspond to the “component

719  contributions” in Fig. 6e, and together are analogous to the “component patterns” shown schematically in
720  Fig. 2c. Because of the orthogonalization step, each component pattern explains distinct portions of
721 choice-related variance in the responses. Note that we did not apply any temporal smoothing to the
722 responses, and thus the component activations faithfully reflect the temporal dynamics of the underlying
723  population responses. We define the projection matrix D® based on the orthogonalized regression

724  vectors:
5 _ V5 1LT

726  We use the projection matrices D'° and D> to de-noise the responses of individual units, and to focus our
727  analyses to the contributions of choice to the responses (see below, Reconstructed unit responses). The
728 first projection matrix, D0 resultsin a “milder” de-noising, and is based on a conservative estimate of the
729  number of choice components in the population response from any single session (Figs. 1,3). This
730  conservative estimate ensures that no “meaningful” diversity of unit responses is lost because of the de-
731  noising, which is important in particular for the identification of sequences across units (Fig. 3). The
732 second projection matrix, D®, is based on a definition of choice-components that is tailored to identify
733  sequences or recruitment of patterns in the population (Fig. 4), and results in a more aggressive de-
734  noising suitable for generating the non-linear embeddings (Fig. 6). The bulk of the variance in the de-
735 noised regression coefficients 77" is contained in the subspace defined by D* (Fig. 4ij; see below, Quality
736  of reconstructions), and the overall diversity of unit responses across the population is similar when
737  responses are de-noised with either projection matrix (Supp. Fig. 4), suggesting that choice related

738  responses within a session can be captured by less than 10 components.
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739  Component activations

740  To extract component activations (Fig. 4a,c; schematically in Fig. 2d) we first define a matrix X, of
741  dimensions Ny,; X T, whose columns correspond to the single-trial population responses sy, . (i) (see
742  above, Targeted dimensionality reduction). Component activations are obtained by projecting the single

743  trial responses into subspace defined by the orthogonalized regression vectors:
J_T
744 pj,k = B] in

745  where pj is a set of time-series vectors over all components and trials, each with length T. To avoid the
746  extraction of spurious choice activations, for each experimental session we computed the activations p;

747  with a 10-fold validation procedure. We first randomly assigned each trial k to 1 of 10 sets. We then

748  computed the component activations p; for all trials in a given set based on orthogonalized regression
749  vectors B]l- that were estimated from responses on the remaining 9 sets of trials. We repeated this

750  procedure 10 times to compute p; , for all trials in the session.

751  We quantified the strength of choice related activity along component j and at time t as the area under
752 the ROC curve between the two distributions of p;; corresponding to choice 1 and choice 2 trials (Fig.
753  4b,d; Supp. Fig. 5b,d). We computed condition-averaged component activations p; . by averaging p;
754  over all trials k belonging to a given condition ¢ (Fig. 4a,c; Supp. Fig. 5a,c).

755  Reconstructed unit responses

756  We obtain reconstructed, de-noised population responses by projecting the population responses into the
757  corresponding subspaces (Supp. Fig. 3). Specifically, the reconstructions based on the mild de-noising
758  (Figs. 1,3) are obtained from:

750  X10 = Do),

760  where X is obtained by averaging X, over all trials k belonging to a given condition c. The more
761  aggressively de-noised reconstructions X? are obtained as a weighted sum of the component patterns,

762  weighed by the corresponding component activations:
5 _v5 pl
763 Xy = 2Lj-1BiPjk

764  and by again averaging over all trials belonging to a given conditions. The resulting reconstructions are
765  approximately equivalent to those that one would obtain by projecting the condition averaged population

766  responses directly into the subspace spanned by the orthogonalized regression vectors:
767 X2 =~ D°X,,

768  as forthe mild de-noising. The equality, however, is only approximate because the p  are cross-validated

769  (see above, Component activations), while X, is not.

770  Quality of reconstructions
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771  To validate the quality of the aggressively de-noised reconstructions, we used the reconstructed
772 responses to predict the observed similarity ¢, ; between choice related population activity at times ¢t and

773t (Fig. 4e,g), defined as:

T
 _ | ppcal ppca
774 @t = |Bl.t 1

)

775  where || indicates the absolute value. We applied a cross-validation procedure to compute these

pca

T
776  similarities, by estimating BY%"" and g¥%"

1t from two separate sets of trials, each containing a randomly
777  chosen half of the trials in a session. We repeated this procedure with 10 different random assignments
778  oftrials into two halves, and averaged the resulting similarities to obtain the matrices in Fig. 4e,g. Because
779 of this cross-validation, typically ¢, ; < 1 even for t = . In general, ¢, ; approaches a value of 1 when
780  choice strongly modulates the population response both at times t and £, and the resulting choice-related
781  patterns are similar (up to a sign-change). On the other hand, ¢, ; approaches a value of 0 if the patterns

782  attort are dissimilar, and/or choice does not strongly modulate the population response at either t or £.

783  Predicted similarities can be computed in the same way, by re-applying all the above steps (starting from
784  Targeted dimensionality reduction) to the reconstructed responses. However, this approach results in
785  similarities that are much larger than those in Fig. 4e,g (not shown). These larger values are a

786  consequence of the de-noising procedure, as the estimates of B7" obtained from the reconstructed

787  responses X; have substantially smaller trial-by-trial variability than those obtained from the original
788  responses X;. We thus added Gaussian noise to the reconstructions:

789 Xp(i,t) = X2 (i,t) + N(0,0y),

790 where N(0, 0,) are draws from a normal distribution of mean 0 and standard deviation o, = 1, and
791  computed predicted similarities from the resulting X}, rather than directly from the de-noised
792 reconstructions X;. With this choice of o, the predicted similarities qualitatively match the observed
793  ones (Fig. 4fh; rightmost panel). Predicted similarities based on m < 5 choice components (Fig. 4f,h; left

794  panels) were obtained in the same way, but with reconstructions based on:
— L

796  We also directly quantified the fraction of choice related variance in the population responses captured

797 by the individual choice components (colored points, Fig. 4i,j; Supp. Fig. 5i,j), defined as:
798  v; = var (B*TY)/ 10 var(wly)
] b a=1 a )

799  and compared it to the variance explained by individual PCs of the de-noised regression vectors (gray
800  points, Fig. 4i,j; Supp. Fig. 5i,j):
pca

801 vl = var(wiY) /2L, var(why),

802  with the relevant quantities defined above (Targeted dimensionality reduction).
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803  Sequences across units

804 To demonstrate temporal sequences of activation across individual units, we visualized the population
805  response by plotting all units’ responses after sorting them by the time of peak-activation (Fig. 3; Supp.
806  Fig. 4). For each unit, we first computed the time of peak activation within one of three task epochs,
807 extending from -0.1 to 1s relative to dots-onset, from -0.6 to -0.2s relative to saccade onset, and from -
808  0.15 to 0.6s relative to saccade onset. We pooled all units from sessions with the same task configuration,
809  and then sorted units based on the computed peak-times, resulting in three different orderings of units
810  (e.g. corresponding to the three panels in Fig. 3a). We applied this analysis to the condition-averaged
811  responses X1° obtained with mild de-noising (see above, Reconstructed unit responses). Here we define
812 X1%and X1° as the average activity over all choice 1 and choice 2 trials, respectively. We computed the
813  peak times and sorted responses either on X3° — X1° (e.g. Fig. 3a,b), or directly on X1° (Fig. 3¢, top) and
814  X1° (Fig. 3¢, bottom). In all panels, after sorting we averaged the responses of the 250 neighboring rows

815  (i.e. units) with a square moving window, and down-sampled the units by keeping only every 100t row.

816  To identify contributions of trial-by-trial variability to the resulting plots, we generated each plot from
817  two separate groups of trials, the “validation” set (reflecting only contributions to the responses that are
818  conserved across trials) and the “sorting” set (reflecting also trial-by-trial variability). For each
819  experimental session, we randomly assigned half of the trials to the sorting set, and the other half to the
820  validation set. We used only responses from the sorting set to compute the peak activation times for each
821  unit, and then ordered the unit responses from both the sorting (Fig. 3a) and validation set (Fig. 3b) based
822  on these times. As a result, the ordering of units along the vertical axis across the resulting two plots is
823  preserved, butis entirely determined by responses in the sorting set. We repeated this procedure 10 times
824 for each session, with different random assignments of trials into the sorting and validation sets, and

825  obtained e.g. Fig. 3 by averaging the plots resulting from the 10 different orderings of units.
826  Simulations of choice-encoding scenarios

827  We illustrate how different representations of choice could be revealed by our dimensionality reduction
828  approach with simulated population responses corresponding to four idealized scenarios for the
829  encoding of choice-related activity (Fig. 2). Our goal was not to reproduce the full richness of unit
830  responses observed in prefrontal cortex, but rather to capture the defining features of each scenario with
831  thesimplest possible population of idealized neurons. We constructed population responses such that the
832  population average response was (approximately) the same across all encoding scenarios (Fig. 2a, red

833  curves).

834  For all scenarios, we constructed single unit responses u,, covering K =73 temporal samples, for
835  encoding scenarios e=1-4. The entries u, . (k) can be thought of as the average choice 1 response for unit

836 g, encoding scenario e, at time k for choice 1. The average response for choice 2 is set to zero at all times.
837  The various encoding scenarios differ with respect to the definition of u,. The population average

838  response U, is defined by averaging all the single units responses, i.e. i, = (Ug¢)q-
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(1) Sequence across units (Fig. 2, second row). We first define normalized responses n,(k) =
sin?(m(k — 1) /24) for k=1-25 and n; (k) = 0 otherwise. For g=2-49 we define ng(k) =ny(k —
q + 1) for k=q-(q+24), and ng(k) = 0 otherwise, which corresponds to delaying the response

ny (k) by q-1 temporal samples. We obtain single unit response asu,; = ngq, where g(q) is a

gain factor that emphasizes the responses of units around the time of saccade. We set g(q) =1
for g=1-36 and g(q) = 1+ sin?(n(q — 37)/12) for q=37-49.

(2) Stable (Fig. 2, first row). Here the response of every unit in the population is identical up to a

scaling factor, and corresponds to the population average response u; obtained from sequential
encoding. Specifically, u,, = sTu, with the scaling s(q) homogeneously covering the range 0.1 to
1.9.

(3) Recruitment (Fig. 2, fourth row). We first defined component signals ¢; for j=1-3 based on the

single-unit responses u, ; from sequential encoding. Specifically, we define an early component
¢1 = (Ug1)g=1.49 = Uy, a late component ¢; = (Uy1)g=17.49, and a saccade component ¢z =
(Ug1)g=35:.49 - We then defined single unit responses by mixing the early and late signals, u,; =
cos(¢) ¢; + sin(@)c,, for ¢ in the range 0-m, q=1-17; the early and saccade signals, ug3; =
cos() ¢; + sin(p)cs, for ¢ in the range 0-27, g=18-49; and the late and saccade signals, ug 3 =
cos(¢) ¢, + sin(¢p)c3, for ¢ in the range 0-27, g=50-81.

(4) Sequence across patterns (Fig. 2, third row). We use a different, more elaborate approach to

simulate the responses of this encoding scheme. We simulated responses from a non-linear,
recurrent neural network consisting of ¢ = 100 hidden units and a single read-out (i.e. output)
dimension. The input weights of the read-out unit were fixed to 1/100, meaning that the read-out
unit computes the average of all hidden unit activities u, 4 in the network, i.e. the population
average response U, 4. The RNN was randomly initialized (except readout weights) and trained

using Hessian free optimization (Martens & Sutskever, 2011) such that after training the activity
of its read-out unit matched u,. During training, the read-out weights were kept fixed. To
regularize and keep RNN dynamics low dimensional, we used Frobenius regularization.

Additional RNN parameters and procedures are described in (Mante et al., 2013).
In (1) to (4), we added noise drawn for a normal distribution to each u . (k). In analogy to the Targeted
Dimensionality Reduction described above, we extract population patterns 8 j for j =1-3, which capture
the representation of choice within three different time windows. Here, instead of using linear regression,
we simply average the population activity within the temporal windows S;, 8,(q) = (u, (k))kes,- (Fig. 2c¢,
left). The three temporal windows cover the ranges S; = [11,15], S, = [31,35], S5 = [51,55]. We then
obtain the component patterns B]l- by orthogonalizing these three population patterns (as above; Fig. 2c,
right). Component activation are obtained by projecting the single unit activations onto the component

. T
patterns, i.e. p, = B]l- X, where each row of X, corresponds to a vector u ..
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874  Non-linear embeddings

875  We used t-SNE (t-Stochastic Neighbor Embedding) to visualize and characterize the diversity of response
876  properties across units in the population. This approach yields a low-dimensional representation of the
877  entire neural population that maintains an explicit representation of each unit’s unit response. Units that
878  arenearby in the low dimensional representation have similar unit responses. We use this representation
879  to characterize the global structure of unit responses in the dots-task (Fig. 6; Supp. Fig. 7), and to compare
880  them to responses predicted based on the response fields estimated in the delayed-saccade task (Figs. 7,8

881  and Supp. Figs. 8,9; see below, Prediction of dots task responses).

882  Asafirststep, we described the response of each individual unit by its condition-averaged responses (Fig.
883  6a). Here we considered a total of 8 conditions for each unit. Conditions 1-4 correspond to all
884  combinations of choice (1 or 2) and outcome (correct and incorrect). Conditions 5-6 correspond to all
885  combinations of choice (1 or 2) and a reduced measure of motion strength (high and low coherence). To
886  define the latter conditions, for each session we separated trials into high and low coherence conditions
887  based on whether the corresponding unsigned coherence was larger or equal/smaller than the median
888  value across all trials. Here we use condition-averages from X2, i.e. the aggressively de-noised population

889  responses (see above, Reconstructed unit responses).

890  As asecond step, we use t-SNE to find a two-dimensional representation of the population that optimally
891  preserves nearest neighbor relations (Fig. 6b). To define a distance metric between units, we
892  concatenated each units’ condition average responses into a single vector of length 8 X T, i.e. the number
893  of conditions times the number of time samples for each condition (Fig. 6a). We then defined the distance
894  between two units as the Euclidian distance between the corresponding vectors, after the latter had been
895  transformed by a compressive non-linearity. Specifically, we define the distance d between units i; and
896 i, as:

897 d(iy,iz) = Zc,t (f (Xcs(ip t)) _f(Xcs(iz't)»z'

898 where the sum runs over the 8 conditionsc = 1to 8, overt = 1to T, and f(-) is the compressive non-

899 linearity:
900 f(x) = tanh(sign(x)log(l + le)).

901  This compressive non-linearity de-emphasizes the contribution of the transient, but large saccade-aligned
902  responses observed in many units (Fig. 1e), and in turn increases the contribution of the persistent
903  activity occurring during the dots, delay, and hold periods to the distance between units. The persistent
904  activity is arguably more likely to depend on the contingencies of the task at hand, as thus provides a more
905  stringent test of the claim that choice-related activity is task-independent. The conclusions in the main

906  text are robust to the exact definition (or the absence) of the compressive non-linearity (not shown).

26


https://doi.org/10.1101/595520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/595520; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

907  We used the Barnes-Hut-t-SNE algorithm (Van Der Maaten, 2013) to accommodate the large number of
908  data points (34233 and 44386 in monkeys T and V for the dots task). We used the algorithm with the
909  following choice of parameters (same conventions as in (Van Der Maaten, 2013): perplexity=30;
910 theta=0.5; number of iterations=2500; number of iterations until momentum switch=750). As a pre-
911  processing step, data was projected onto its first 100 principal components, and the algorithm run on the
912  resulting projections. The algorithm is iterative and converges to a local minimum dependent on the
913 initialization of the low dimensional representation. Many of those minima are equivalent as they
914  represent the same neighborhood relationships—for example, a rotation of the entire embedding does
915  not change neighborhood relationships. These invariances complicate visual comparisons of embeddings
916  obtained from different initial conditions. Rather than using random initial conditions, as is typically done,
917  we thus used custom, fixed initial conditions. For both the measured (Fig. 6, Supp. Fig. 7) and predicted
918  (Fig. 7,8, Supp. Fig. 8,9) dots-task responses, we initialized each unit’s position in the low dimensional
919  embedding space as the contributions from the first two choice components (Fig. 6¢, first two panels), i.e.
920  the orthogonalized regression vectors B (initialization for first embedding dimension) and B3 (second
921  dimension). These custom initial conditions do not decrease embedding quality compared to random

922 initial conditions (not shown).
923  Characterization of response-fields

924  We characterized the response-field of each unit with a visually-guided, delayed-saccade task (Fig. 5 and
925  Supp. Fig. 6; see above, Behavioral tasks). In this task, monkeys made delayed saccades to a single target
926  chosen from a set of locations covering the entire visual field (e.g. Fig. 5a). The targets were shown at one
927  ofthree eccentricities (4°, 8°, 12° degrees of visual angle), but their angular location, and the total number
928  of targets, differed somewhat across sessions. As a result, the average responses to each target location
929  could not be directly compared across all sessions. To obtain a representation of the response-field that
930 is independent of the exact target locations, for each session we interpolated the measured average
931  responses along the vertices of a regular grid (linear interpolation), covering 11 vertices ranging from -
932  14° to +14° along the horizontal and vertical meridians. At eccentricities larger than 14° the receptive
933 field values were set to zero. We performed the interpolation separately at each time during the trial. We
934  considered responses in two task epochs, covering the range of 0.1 to 0.4s aligned to target onset and -0.5

935  to 0.5saligned to saccade onset.

936  We estimated the peak location of the response-field at any given time by fitting a descriptive function to
937  the condition-averaged responses (Bruce & Goldberg, 1985), expressed as a function of the angular and

938 radial visual field location, ¥ and p:

(9-9¢)? (ln(p)—ln(pzo))2
939  g,p) =go + g1€ 205 o 2in(op)

940  where 9, and p, are the angular and radial locations of the peak (red points in Fig. 5c; circles in Fig. 5e-

941 h), oy and g, determine the tuning widths along the angular and radial directions, and g, and g, set the
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942  baseline response and modulation depth of the response-field. We fitted the parameters of this model
943  separately for each unit to average responses within the epochs 0.1-04s after target onset, and 0.05-0.10s
944  after saccade initiation. The model was fit by minimizing the summed square error over all target

945  locations between the model predictions and the condition-averaged responses.

946  In addition to the response-field based on saccades starting from the fixation point (Fig. 5), for each unit
947  we also estimated a second response-field based on the first saccade leaving the target after the end of
948  trial (not shown). Only the direction and amplitude of the saccade was used to estimate the second
949  response-field, while the starting point of the saccade (one of the target locations) was discarded. For the
950  overwhelming majority of units, the spatial and temporal structure of these two response-fields were very
951  similararound the time of the saccade (-0.4 to 0.3s with respect to saccade onset). In particular, the spatial
952  tuning of the postdictive activity was similar in the two response-fields, even though the retinal images
953  caused by saccades with the same amplitude and angle could be very different depending on their starting
954  point (i.e. the fixation point for the first response-field; one of the targets for the second response-field).
955  Thus, postdictive activity is most likely not driven by visual, retinal inputs, but rather seems more akin to

956  the persistent activity observed before the saccade.
957  Prediction of dots-task responses

958  To explain the diversity of single unit responses observed in the dots task, and its relation to task
959  configuration and cortical location (Fig. 6), we tested whether the global structure of dots task responses
960  can be predicted by the response-field properties measured with the delayed-saccade task. In general, we
961  could not with certainty identify units whose responses were recorded both in the dots task and in the
962  delayed-saccade task (see Neural recordings). Rather than attempting to predict responses on a unit-by-
963  unit basis, we thus tried to predict the overall structure and diversity of the population response during
964  the dots task. For every unit recorded in the dots task, we first randomly picked a unit recorded on the
965  same array electrode in the delayed saccade task. We obtained surrogate dots-task responses as the
966  condition-averaged responses recorded during the delayed-saccade responses at the two target locations
967  used in the dots task. With this approach, we obtained two “predicted” condition averaged responses in
968  the dots task—choice 1 responses from delayed-saccade responses at the corresponding target location,
969  and choice 2 responses at the second target location. In cases where one or both target locations in the
970  dots-task did not have an exact match in the delayed-saccade task, we generated the predicted dots-task
971  response by linear interpolation of the delayed-saccade responses at the corresponding target locations.
972 Theresult of this procedure is a population of surrogate responses that is exactly matched to the recorded
973  dots task response with respect to the total number of units, and their distribution across recording

974  locations and task configurations.

975  These surrogate responses lack several potentially important properties of the dots task. First, the
976  surrogate responses are based on recordings where no dots stimulus was present on the screen, and the
977  animal therefore was not involved in deciding between two options. The appearance of the dots stimulus,

978  and the following decision process, result in a characteristic time course of choice-predictive activity in

28


https://doi.org/10.1101/595520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/595520; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

979  the recorded areas (Fig. 6d). Unsurprisingly, this time-course is not fully replicated in the surrogate
980  responses (Fig. 7a). Second, the surrogate responses are based on recordings where only one target was
981  present onthe screen, whereas two targets were simultaneously shown in the dots task. The simultaneous
982  appearance of more than one target may result in competitive interactions within the population of
983  recorded neurons, which again would not be reproduced in the surrogate responses. Third, the timing of
984  theearly surrogate response is somewhat mismatched to those recorded in the dots task. For the recorded
985 dots task data, we used responses in the interval between -0.1 and 1s around the dots-stimulus onset. For
986  the surrogate data, we instead considered responses in the interval between 0.1 and 0.4s around the
987  target onset. The early choice predictive activity in the surrogate responses thus reflects the onset of the
988  single target in the delayed saccade target, while in the dots task it reflects the earliest phases of the

989  decision process.

990  Despite these differences, the surrogate data reproduces the structure of the recorded dots task responses

991  very well (Figs. 7,8 and Supp. Figs. 8,9).
992  Mixing-matrices based on neighborhood relations

993  To quantitatively compare the predicted and measured dots-task responses at the level of the entire
994  population, we developed a novel non-parametric, statistical approach to characterize the structure of
995  high-dimensional data sets in a way that allows easy comparisons between data sets (Fig. 8). Our
996  approach is based entirely on a quantification of the nearest neighbor relations in the data (Fig. 8a-b).
997  Because high-dimensional data often lie on non-linear manifolds that can locally be approximated by
998 linear manifolds, nearest-neighbor relations are typically easier to define, and can be estimated more
999  robustly, than relations between distant (i.e. very dissimilar) points in the data. Despite being based on
1000  local relationships between data points, our approach leads to a robust characterization of the global
1001  structure of a given data set that (unlike t-SNE, e.g. Fig. 6b) does not involve a dimensionality reduction
1002 step.

1003  Our approach can be applied to any high-dimensional set of labeled data points. Here, each data point
1004  consists of the condition averaged dots-task responses (either measured or predicted) for choice 1 and
1005  choice 2. The dimensionality of each data point thus corresponds to twice the number of time-samples in
1006  each condition average. Neighborhoods in this high-D space correspond to groups of units with very
1007  similar condition-averaged responses. The labels instead correspond to additional properties that can be
1008  specified for each data point. Here, we focus on a single label, the electrode location where the unit was
1009  recorded (a number between 1 and 96). We then summarize the structure of the data in the high-D space
1010 by quantifying which labels co-occur together in local neighborhoods. We call the result of this analysis a
1011  “mixing-matrix”, quantifying to what extent units with two specific values for a given label (e.g. recording
1012 location, Fig. 8c,e) are locally mixed in the high-D space (i.e. tend to have similar condition-averaged
1013  responses). Here, we compute mixing-matrices separately for measured and predicted dots-task
1014  responses (Fig. 8c,e measured; Fig.8d,f: predicted) and for each task-configuration (Fig. 8c,d vs. Fig. 8ef,
1015  see insets on the left).
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1016  Concretely, we first define a unit’s neighborhood, consisting of its 100 nearest neighbors based on the
1017  Euclidean distance in the high-D space. For example, the red and black dots in Fig. 8a correspond to the
1018  neighborhood of an example unit from electrode 72, indicated with the green dot. Second, we count how
1019  often each label occurs in the neighborhood of a given unit. For each unit, this results in a histogram of
1020  labels over all units in its neighborhood. For example, the left panel in Fig. 8b shows the histogram of
1021  electrode locations in the neighborhood of the example unit from electrode 72. Third, we pool such
1022  histograms for all neighborhoods of units with the same label. For example, the middle panel in Fig. 8b
1023  shows the histogram of electrode locations across all neighborhoods of units from electrode 72. Fourth,
1024  werescale the resulting pooled histogram by dividing all its values by the predictions of a null hypothesis
1025  (Fig.8b, right), which assumes that the composition of any neighborhood is independent of the properties
1026  of the unit that was used to define it (permutation null hypothesis). Based on this null hypothesis, the

1027  expected histogram value for units from electrode i in the neighborhood of units from electrode j is:
1028  Hy(i,j) = NLGNpL.Np]./Nu,

1029  where Ny is the size of the neighborhood (here N,z = 100), N,,, is the total number of units in the data

1030 set recorded from electrode i, Np]. is the total number of units in the data set recorded from electrode j,

1031  and N, is the total number of units in the data set. The resulting rescaled histogram corresponds to
1032 column 72 of the mixing matrix (e.g. Fig. 8c), where 72 is the electrode location used to define the
1033  neighborhoods contributing to the pooled histogram. We then obtain additional columns of the mixing
1034  matrix by repeating this procedure for the pooled neighborhoods of units from electrode 1, 2, and so on

1035  for all other array electrodes.

1036  The values of the rescaled mixing-matrix (Fig. 8c) at (i, j) provide a quantitative measure of the overall
1037  (macroscopic) similarity of condition-averaged responses of units from electrode i and units from
1038  electrode j. These mixing matrices can easily be compared between data sets (e.g. measured vs. predicted,
1039  or between different task configurations), for example by computing the correlation coefficient between

1040  all the values in a pair of mixing matrices (e.g. Fig. 8g).

1041  To ease visual comparison between these mixing matrices for different task-configurations (e.g. Fig 8c,e),
1042  we ordered the electrodes along the vertical and horizontal axes in Fig. 8c-e such that electrode locations
1043  that recorded units with similar responses are placed nearby. We obtained such an ordering by (1)
1044  computing the rescaled mixing matrix values M (i, j) from measured responses obtained by pooling units
1045  from all task-configurations; (2) defining the dissimilarity between electrodes i and j as: 2 — log(M(i,j));
1046  and (3) applying multi-dimensional scaling to obtain a one-dimensional ordering of electrodes based on
1047  this dissimilarity. The resulting ordering is shown by the coloring of the electrodes in the inset on the
1048  right of Fig. 8f.

1049  Predictions based on a single choice component (Fig. 8j) were computed analogously to X}' (See Quality

1050  of predictions) but by including only a single component activation.
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Figure 1. Behavioral task and neural responses in PFC.

a, Behavioral task. Monkeys kept their center of gaze (red dot) on a fixation point, indicated the perceived direction of motion of a
random-dots stimulus with a saccade to one of two targets, and received a reward (on correct trials) after briefly fixating on the
chosen target (hold period).

b-e, Behavioral performance and neural responses for monkey T.

b, Target configurations. The random dots were always centered on the fixation point, while the two targets were arranged in
different configurations across sessions (insets: number of sessions, top; average number of behavioral trials per session, bottom;
target diameter is not shown to scale). We grouped the 22 different target-configurations into 4 “task-configurations” (rows).

¢, Behavioral performance, same colors as in b. Left panel: fraction correct as a function of motion strength (coherence) and
configuration. Middle: Fits of a behavioral model for each configuration, based on the data in the left panel. Right: average
performance for each configuration, as estimated from the fits (middle) over a set of coherences common to all configurations.

d, Average responses over units recorded in one of the four task-configurations in b. Normalized, de-noised responses are aligned to
dots onset and saccade onset (tick marks, top) and averaged based on the location of the chosen target (choice 1, black; choice 2,
gray, defined as in b) and outcome (correct, thick; error, thin). Responses were de-noised with Targeted Dimensionality Reduction
(Supp. Fig. 3). Here only the 10% most choice-predictive units in each task configuration are averaged.

e, Example de-noised responses from individual units, selected to illustrate the range of unit responses in the population. Units were
recorded in different target configurations (insets) and at different cortical locations (not shown). These units are shown also in
Fig. 6b (red crosses).
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Figure 2. Different hypothesized representations of choice in the population.

Each row illustrates the temporal dynamics of single unit and population activity for four idealized representations of choice: (1) a
stable representation (first row from top); (2) a sequence across units (second row); (3) a sequence across patterns (third row); (4)
the serial recruitment of distinct choice patterns (fourth row). Representations 1, 2, and 4 were constructed by hand.
Representation 3 are simulations of a recurrent neural network, trained to produce the population average response of
representation 2.

a, Responses of representative single units (blue to green; analogous to choice 1 responses in Fig. 1e) and normalized population
average (red; analogous to choice 1 response in Fig. 1d; responses to choice 2 are set to zero). In the third and fourth row, single-
unit and population average responses are shown with respect to different baselines (compare left and right vertical axes).

b, Responses of many single units, ordered along the vertical axis based on the time of their peak-response. Activity along any
vertical line in each plot describes the population activity pattern at the corresponding time. For the stable and recruitment
representations, the exact arrangement of units along the vertical axis is strongly affected by noise. For example, in the case of
recruitment the blue bands at the top and bottom of the plot correspond to units whose largest firing rate is close to zero, occurring
either at the beginning or end of the trial depending on the noise.

¢, Definition of component patterns. We first averaged population patterns over time within three non-overlapping time windows
(ty, tz, and t3; gray squares in a, b, and d). The resulting average patterns (left) are orthogonalized and normalized to obtain the
component patterns (right).

d, Definition of component activations. Each component activation is obtained by taking the “running” dot-product of the
corresponding component pattern with the population patterns in b. The component activations measure how much each
component pattern contributes to the population pattern at any given time.

e, Similarity of population patterns across time. For every pair of times, similarity is computed as the dot-product of the
(normalized) population patterns in b at the corresponding times. The center of the time windows used to define the component
patterns are indicated by gray dots.
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Figure 3. Dynamics of unit responses in PFC.

Average de-noised responses for all units recorded in two task-configurations (a-c and d-f, top insets as in Fig. 1b), sorted by peak-
time (monkey T), analogous to Fig. 2b. Responses are aligned to dots onset (left sub-panels) or saccade onset (middle and right,
showing contiguous times in the delay and saccade epochs). Peak-time is determined separately for the dots, delay, and saccade
epochs. Because of the large number of units in each configuration, after arranging the sorted responses in a two-dimensional
image as in a, we smooth (moving square filter, width 250 rows) and subsample (every 100th row) the responses along the vertical
axis. The numbers in the top-right of each panel indicate the peak response in each resulting smoothed image (colorbar, r).

a, Choice-related activity, defined as the difference between condition-averaged responses for choice 1 and choice 2 trials (correct
only). Averages are computed based on a randomly selected half of the trials (sorting set). Units are ordered along the vertical axis
based on the time of maximal choice-related activity (early, bottom; late, top).

b, Choice-related activity based on the trials not used in a (validation set). The order of units along the vertical axis is maintained
froma.

¢, Average responses to choice 1 (top) and choice 2 (bottom), sorted separately based on the respective peak-times. Only responses
from the corresponding validation sets are shown.

d-f, Analogous to a-c, for a different task configuration.
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Figure 4. Dynamics of population activity patterns in PFC.

Data from monkey T.

a, Component activations for choice 1 (colored) and choice 2 (black) on correct (thick) and incorrect (thin) trials (analogous to Fig.
2d). The five components were estimated separately for each recording session from population patterns defined at the times
indicated by the corresponding vertical gray stripes, and the resulting component activations were averaged over all sessions
belonging to a given task-configuration (inset on the left). Error bars are the standard error of the mean.

b, Separation between choice 1 and choice 2 component activations, measured as area under the ROC curve for the corresponding
distributions of trial-by-trial activations.

¢, d, Same as a,b, for a different task configuration (left inset, as in Fig. 1b).

e-h, Measured and predicted similarity of choice predictive patterns estimated at different times in the trial (analogous to Fig. 2e).
Similarity is computed separately for each session, and averaged across sessions from the same task configuration (inset, left).
Similarity is cross-validated (see methods), and thus can be smaller than 1 even for patterns extracted at the same time (points on
the diagonal from bottom-Ileft to top-right).

e, Measured similarity between choice-predictive population patterns for one task configuration.

[, Predicted similarity, based on population responses reconstructed with increasing numbers of choice-related component patterns
(from component 1 only, to all five components; left to right). Substantial random noise was added to each unit’s response in the
reconstruction. Unlike in Fig. 2e top, similarity thus varies across pairs of times even when only component 1 is used (left-most
panel) and reflects the difference in magnitude between choice 1 and choice 2 responses for component 1 (left-most panels in a,c).
g.h, Same as e f for a different task configuration (left inset; as in Fig. 1b).

i, Variance in the choice-related population patterns explained by the 5 component patterns (colored) or by 10 principal
components. Task configurations as in a (left) and b (right).

J, Cumulative variance explained, computed from the plots in i. In i and j, standard error of the mean over sessions is smaller than
the symbols.
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Figure 5. Response-field properties in a delayed-saccade task.

Data from monkey T.

a, Locations in visual space of all saccade targets used in an example session of the visually guided, delayed-saccade task.

b, Normalized average responses during the delayed-saccade task for an example unit. Same target locations as in a, varying in
radius (left to right panels) and angular location (color). Responses are aligned to target onset and saccade onset (tick marks, top).
¢, Responses of the unit in b, replotted at discrete times during the trial (relative to target and saccade onset, top numbers in
seconds) at the location of the corresponding target (white circles, radius proportional to response). We estimated the time-
varying response-field of a unit by either interpolating the responses at regular grid locations extending over the possible target
locations (middle) or by fitting a response-field model to the responses (bottom). From the model fits we extracted the response-
field center (i.e. the peak location, red points) at each time.

d, Interpolated response-fields for five example units, showing a diversity of visual, delay-period, movement, and hold-period
responses.

e, Response-field centers for all units recorded in the delayed-saccade task (circles) estimated from responses obtained 0.1-0.4s
after target onset. Each circle marks the location of a response-field center in the visual field. Circle radius is proportional to the
quality of the underlying fit (percentage of variance explained, legend) and can be interpreted as the strength of spatial tuning
(strong vs. weak; large vs. small circles). Units are colored based on their anterior-posterior location along the electrode array
(inset) and are plotted in random order.

f, same as e, for responses at the beginning of the hold period (0.05-0.1s after saccade onset).

g-h, same data as in e-f, but with units colored based on their medio-lateral location on the array (inset).

Lateral
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Figure 6. Global structure of single-unit responses in the dots-task.

Data from monkey T.

a, Three example units from Fig. 1e. Each individual unit is characterized by the averaged, de-noised responses on eight conditions
defined based on choice (1 or 2), outcome (correct, cor; error; err), and motion coherence (high and low, only for correct trials).
Here responses are aggressively de-noised by reconstructing each unit’s activity based on the five choice components estimated in
the corresponding recording session (averages across sessions shown in Fig. 4a,c). For each unit, we concatenate all condition-
averages into a single vector, and then compute Euclidian distances between vectors.

b, Two-dimensional, non-linear embedding of all units in the population obtained with t-SNE. Each point corresponds to a unit. The
arrangement of units within the two-dimensional embedding space optimally maintains nearest-neighbor relations between units
in the high-dimensional space, defined based on distances computed as in a. The red crosses indicate the twelve example units in
Fig. 1e.

c,d, Average unit responses for nearby units at different locations along the embedding dimensions. We overlaid a regular 12x12
grid over the embedding space (panel c) and averaged the responses of all units falling within a given grid-square to obtain the
responses at the corresponding locations in d. Only the first four conditions in panel a are shown. Choice 1 averages are colored
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based on the radial and angular position of the corresponding units in the embedding space (panel c). The blue cross marks the
origin of the embedding space, as in b.

e-g, Neural, task, and cortical factors contributing to the diversity of single-unit responses. The arrangement of units in each panel
is identical to b. In e and g units are plotted sequentially in a random order.

e, The contributions of the five component activations to the responses of each unit. Reconstructed unit responses as in a are
obtained as a weighted sum of the component activations (Fig. 4a,c) from the corresponding recording session, with the weights
given by the component contributions shown here. The relative weights of the five components differ across units, resulting in the
diversity of unit responses in d.

[, Units recorded in a given task configurations (black points; task-configurations as Fig. 1b) overlaid over all units in the
population (gray points). Some unit responses (i.e. embedding locations) are not observed in all task configurations.

g, Cortical location of all the units in the population. AP, anterior-posterior axis along the electrode array; ML: medio-lateral axis.
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Figure 7. Response-field based predictions of dots-task responses.

We used the response-fields estimated in monkey T (Fig. 5) to predict single-unit responses in the dots-task, and embedded the
predicted responses with the same approach used for the measured responses (Fig. 6).

a, Average predicted unit responses, obtained with a non-linear embedding as in Fig. 6d (responses cover a shorter time-range
compared to Fig. 6d, scale bars). Only two conditions are shown (choice 1 and 2).

b, Effect of cortical location and task-configuration on the unit responses observed in the dots-task. Non-linear embedding of
measured dots-task responses (gray dots, left; replotted from Fig. 6b) and of predicted dots-task responses (right). Each colored
circle corresponds to the average location in embedding space of all units recorded from the same array electrode for a given task
configuration (rows). The circles are colored based on their location in the embedding space (same mapping of embedding space to
color as in a and Fig. 6¢).

¢, Measured and predicted topography of unit responses across the cortical surface. Each square corresponds to a circle in b,
replotted with the same color at the corresponding array location. The resulting mapping of unit responses (colors) to cortical
locations depends on task-configuration (rows), and is largely reproduced by the predictions.
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Figure 8. Accuracy of response-field based predictions.

a, An example neighborhood (red and black dots) shown in the embedding space (gray dots replotted from Fig. 6b). The
neighborhood of unit 12 (green dot, from electrode 72; shown in Fig. 1e) is defined as the 90 units that are closest to unit 12 in the
high-dimensional space.

b, Neighborhood-mixing with respect to array electrodes. Left: units in the example neighborhood (a) grouped by the electrode at
which they were recorded. Middle: same as left panel, but over all neighborhoods of units from electrode 72. Right: mixing between
units from electrode 72 and all other electrodes, defined by dividing the corresponding counts (middle panel) by the null hypothesis
(no topographical arrangement of unit responses). Large relative counts indicate electrodes with responses that are similar to
those on electrode 72, and vice versa. As an example, units from electrode 84 are highlighted in red (as in a).

¢, Mixing matrix for measured dots-task responses (monkey T) in one task-configuration (inset, left), with respect to array
electrodes. Each column in c corresponds to relative counts as in b (right panel) for all neighborhoods of the corresponding
electrode. Electrodes are ordered as shown in the inset in f (see methods).

d, Same as c, for responses predicted based on the response-fields estimated in the delayed-saccade task (Fig. 7). Same task-
configuration as in c.

e, Same as ¢ for a different task-configuration.

f, Same as d, for the task-configuration in e.

g, Correlation between measured mixing matrices from different task-configurations. Correlations based on the mixing matrices in
c and e are indicated with corresponding letter pairs. By design, the correlations are symmetric with respect to the positive
diagonal

h, Correlation between measured (horizontal axis) and predicted (vertical axis) mixing matrices from different task configurations,
analogous to g. The predictions are most accurate when they are based on the same task-configuration as the measured responses
(positive diagonal).

i, Direct comparison of the correlations in g (vertical axis) and h (horizontal axis).

J, The correlations in h (horizontal axis), for predictions based on all five choice-components, compared to correlations for
predictions based on a single choice component (vertical axis). No single choice-component can account for the accuracy of the
predictions for all task-configurations.
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Supplementary Figure 1. Target configurations and behavioral performance in monkey V.

Same conventions as in Fig. 1.

a, Target configurations (insets: number of sessions, top; average number of behavioral trials per session, bottom), sorted into 4
“task-configurations” (rows).

b, Behavioral performance, same colors as in a. Left panel: fraction correct as a function of motion strength (coherence) and
configuration. Middle: Fits of a behavioral model for each configuration, based on the data in the left panel. Right: average
performance for each configuration, as estimated from the fits (middle) over a set of coherences common to all configurations.
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Supplementary Figure 2. Recording locations in prefrontal cortex.
In both monkeys, we obtained single-unit and multi-unit recordings from a 10x10 array implanted in pre-arcuate cortex. Black
circles indicate the cortical locations of the 96 electrodes used for recordings.
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Supplementary Figure 3. De-noising of single unit responses.
Same 12 units as in Fig. 1e. Each group of three adjacent panels shows the raw, measured responses of a given unit (left panel), the
responses reconstructed from 15 principle components (middle), and the responses reconstructed from 10 choice components
(right, replotted from Fig. 1e with different colors). For any given recording session, we used the raw responses of all neurons to
extract dominant components of the population response, either with principle component analysis (PC components) or with
Targeted Dimensionality Reduction (choice components). The PC components maximally account for overall variance in the
responses, while the choice components only explain variance due to choice. Unit responses are reconstructed based on either the
first 15 PC components, or the first 10 choice components. In both cases, all remaining components are assumed to be dominated by
noise, and are ignored. This procedure de-noises the single-unit responses, and in some units also removes components of the
responses that are common to all conditions (reconstruction from choice components; right panels). Responses de-noised with 10
choice components are used for the analyses in Figs. 1,3. Responses de-noised with only 5 choice components (not shown here) are
used for the analyses in Figs. 6, 7, and 8.
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Supplementary Figure 4. Dynamics of unit responses in PFC for different task-configurations and levels of de-noising.

Same conventions as in Fig. 3.

a-d, Response sequences are estimated from unit-responses that were de-noised based on the first 10 choice components in the
population of a given session (left columns in a-d; right panels in Supp. Fig. 3) or based on only the first 5 choice components (right
columns). The resulting sequences are similar in both columns, suggesting that choice-related activity in a given session is largely
captured by the first 5 choice components of the population response (see also Fig. 4 and Supp. Fig. 5).

a, Choice-related activity in monkey T, defined as the difference between average responses to choice 1 and choice 2. Averages are
obtained based on a randomly selected half of the trials (validation set), and ordered along the vertical axis based on the peak
times of choice related activity in the other half of trials (sorting set as in Fig. 3a, not shown here). Analogous to Fig. 3b.

b, Same as a, but for monkey V

¢, Average validation set responses in monkey T for choice 1 trials (top) and choice 2 trials (bottom), sorted based on the peak
times estimated on sorting set responses. Analogous to Fig. 3c. Only one task-configuration shown.

d, Same as c, but for monkey V.

47


https://doi.org/10.1101/595520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/595520; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

component 3 component 4 component 5

dots saccade
on on

dots saccade

@L
(_
3
*’%
>3
-

N

|
response

%&W

dots saccade

+component 3 +component 4 +component 5

N Wi | ] ]
gﬂ L Nl el Bl

g gwo
[ o

& £57
g S 850
<] Es

é o g 25
o 1 =)

] Lo

1 5, 10 1 5 10 5 5
component component component component

Supplementary Figure 5. Dynamics of population activity patterns in PFC of monkey V.

Same conventions as in Fig. 4, but for data from monkey V.

a, Component activations for choice 1 (colored) and choice 2 (black) on correct (thick) and incorrect (thin) trials. Error bars
indicate standard error of the mean across sessions (analogous to Fig. 2d).

b, Separation between choice 1 and choice 2 component activations, measured as area under the ROC curve for the corresponding
distributions of trial-by-trial activations.

¢, d, Same as a,b, for a different task configuration (left inset, as in Supp. Fig. 1a).

e, Measured similarity between choice-related population patterns at different times during the trial (analogous to Fig. 2e).

[, Predicted similarity, based on population responses reconstructed with increasing numbers of choice-related component patterns
(from component 1 only, to all five components; left to right).

g.h, Same as e f for different task configurations (left inset, as in Supp. Fig. 1a).

i, Variance in the choice-related population patterns explained by the 5 component patterns (colored) or by 10 principal
components. Task configurations as in a (left) and b (right).

J, Cumulative variance explained, computed from the plots in i.

In i and j, standard error of the mean over sessions is smaller than the symbols.
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Supplementary Figure 6. Response-field properties for monkey V.

Same conventions as in Fig. 5e-h, but for data from monkey V.

a, Response-field centers after target onset (0.1-0.4s) for all units recorded in the delayed-saccade task (circles). Circle radius is
proportional to the quality of the underlying fit (percentage of variance explained, legend) and can be interpreted as the strength
of spatial tuning (strong vs. weak; large vs. small circles). Units are colored based on their anterior-posterior location along the
electrode array (inset) and were plotted in random order.

b, same as a, for response during the hold period (0.05-0.1s after saccade onset).

c-d, same as a-b, but units are colored based on their medio-lateral location on the array (inset). The strongest target related
responses occur in the upper right quadrant (a), as in monkey T (Fig. 5e). After the saccade, responses also occur at ipsilateral
target locations. The location of response-field centers after the saccade (i.e. ipsilateral or contralateral) varies along the medio-
lateral axis of the array (d), as in monkey T (colors, Fig. 5h).
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Supplementary Figure 7. Global structure of unit responses in monkey V.

Same conventions as in Fig. 6, but for data from monkey V.

a, Two-dimensional, non-linear embedding of all units in the population obtained with t-SNE.

b,¢, Average unit responses for nearby units at different grid-locations (panel b) along the embedding dimensions. Choice 1
averages (panel c) are colored based on the radial and angular position of the corresponding units in the embedding space (panel
b). The blue cross marks the origin of the embedding space, as in a.

d-e, Task-related and neural factors contributing to the diversity of unit responses. The arrangement of dots (i.e. units) in each
panel corresponds is identical to the non-linear embedding in a. Units in d and f are plotted sequentially in random order.

d, The contributions of the five component activations to the responses of each unit in the population.

e, Embedding location of units recorded with a given task configurations (black points; task-configurations as in Supp. Fig. 1a)
overlaid over all units in the population (gray points).

[, Cortical location of all the units in the population. AP, anterior-posterior axis along the electrode array; ML: medio-lateral axis.
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Supplementary Figure 8. Response-field based predictions of dots-task responses in monkey V.

Same conventions as in Fig. 7.

a, Average unit responses based for the predicted responses, obtained as in Supp. Fig. 7b.

b, Effect of cortical location and task-configuration on the unit responses observed in the dots-task.

¢, Measured and predicted topography of unit responses across the cortical surface. Each square corresponds to a circle in b,

replotted with the same color at the corresponding array location.
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Supplementary Figure 9. Accuracy of response-field based predictions in monkey V.

Same conventions as in Fig. 8.

a, Mixing-matrix for measured dots-task responses (monkey V) in one task-configuration (inset, left), with respect to array
electrodes.

b, Same as a, for responses predicted based on the response-fields estimated in the delayed-saccade task (Supp. Fig. 8). Same task-
configuration as in a.

¢, Same as a, for a different task-configuration.

d, Same as b, for the task-configuration in c.

e, Correlation between measured mixing matrices from different task-configurations.

[, Correlation between measured (horizontal axis) and predicted (vertical axis) mixing matrices from different task configurations,
analogous to e. The predictions are most accurate when they are based on the same task-configuration as the measured responses
(positive diagonal).

g, Direct comparison of the correlations in e (vertical axis) and f (horizontal axis).

h, The correlations in f (horizontal axis), for predictions based on all five choice-components, compared to correlations for
predictions based on a single choice component (vertical axis). No single choice-component can account for the accuracy of the
predictions for all task-configurations.
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