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Divergent	accounts	of	how	choices	are	represented	by	neural	populations	have	led	to	conflicting	explanations	1	

of	 the	underlying	mechanisms	of	 decision-making,	 ranging	 from	persistent,	 attractor-based	dynamics	 to	2	

transient,	 sequence-based	 dynamics.	 To	 evaluate	 these	 mechanisms,	 we	 characterize	 the	 spatial	 and	3	

temporal	structure	of	choice	representations	in	large	neural	populations	in	prefrontal	cortex.	We	find	that	4	

the	pronounced	diversity	of	choice	responses	across	neurons	reflects	only	a	few,	mostly	persistent	population	5	

patterns	 recruited	at	 progressively	 later	 times	 before	and	after	 a	 choice.	Brief	 sequential	 activity	 occurs	6	

during	a	saccadic	choice,	but	is	entirely	absent	in	a	delay	preceding	 it.	The	diversity	of	choice	responses,	7	

which	could	result	from	almost-random	connectivity	in	the	underlying	circuits,	instead	largely	reflects	the	8	

topographical	arrangement	of	response-field	properties	across	the	cortical	surface.	This	spatial	organization	9	

appears	to	form	a	fixed	scaffold	upon	which	the	context-dependent	representations	of	task-specific	variables	10	

often	observed	in	prefrontal	cortex	can	be	learned.	11	

Introduction	12	

Studies	 of	 decision-making	 in	 humans	 and	 animals	 provide	 a	 window	 onto	 the	 neural	 mechanisms	13	

underlying	the	interaction	of	sensory,	cognitive,	and	motor	processes,	and	have	been	singularly	influential	14	

in	shaping	our	understanding	of	neural	computations	across	a	variety	of	brain	areas	and	species	(Gold	&	15	

Shadlen,	2007;	Hanks	&	Summerfield,	2017;	Schall,	2001;	Shadlen	&	Kiani,	2013).	A	general	framework	16	

explaining	the	neural	mechanisms	of	decision-making,	however,	is	yet	to	emerge,	as	studies	on	a	variety	17	

of	behavioral	paradigms	and	animal	models	have	led	to	rather	different,	and	sometimes	incompatible,	18	

explanations	of	how	choices	are	generated	and	represented	by	neural	circuits.	19	

One	line	of	research	has	focused	on	correlating	the	responses	of	single	neurons	in	parietal	and	frontal	20	

areas	 to	 internal,	decision-related	variables	 like	 integration	of	evidence	and	confidence,	which	can	be	21	

inferred	from	the	animal’s	choice-behavior	(Hanks	et	al.,	2015;	Kepecs,	Uchida,	Zariwala,	&	Mainen,	2008;	22	

Kiani	&	Shadlen,	2009;	Kim	&	Shadlen,	1999;	Purcell,	Schall,	Logan,	&	Palmeri,	2012;	Shadlen	&	Newsome,	23	

2001;	Yates,	Park,	Katz,	Pillow,	&	Huk,	2017).	Single-neuron	responses	can	faithfully	track	these	internal	24	
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variables	over	durations	lasting	up	to	several	seconds,	suggesting	that,	at	the	level	of	the	population,	these	25	

variables	are	represented	by	patterns	of	activation	that	are	low-dimensional	and	largely	stable	over	time	26	

(Brody,	Romo,	&	Kepecs,	 2003;	Ganguli	 et	 al.,	 2008;	Machens,	Romo,	&	Brody,	 2005;	Mante,	 Sussillo,	27	

Shenoy,	 &	 Newsome,	 2013).	 Such	 stable	 dynamics	 can	 be	 explained	 by	 mechanistic	 neural	 models	28	

implementing	attractor	dynamics,	i.e.	patterns	of	population	activity	that	persist	in	the	absence	of	external	29	

inputs	(Brody	et	al.,	2003;	Ganguli	et	al.,	2008;	Hopfield,	1982;	Machens	et	al.,	2005;	Mante	et	al.,	2013;	30	

Murray	et	al.,	2017;	Rolls,	Loh,	Deco,	&	Winterer,	2008;	Seung,	1996;	Wang,	2002).		31	

A	 different	 line	 of	 research	 instead	 has	 emphasized	 the	 diversity	 and	 complexity	 of	 single-neuron	32	

responses	observed	in	high-level	association	areas.	Most	neurons	in	these	areas	appear	to	represent	not	33	

just	one	variable,	but	linear	or	non-linear	mixtures	of	many	behaviorally	relevant	variables	(Hernandez	34	

et	al.,	2010;	Jun	et	al.,	2010;	Machens,	Romo,	&	Brody,	2010;	Mante	et	al.,	2013;	Meister,	Hennig,	&	Huk,	35	

2013;	Park,	Meister,	Huk,	&	Pillow,	2014;	Parthasarathy	et	al.,	2017;	Raposo,	Kaufman,	&	Churchland,	36	

2014;	 Rigotti	 et	 al.,	 2013;	 Rishel,	 Huang,	 &	 Freedman,	 2013;	 Singh	&	 Eliasmith,	 2006),	 resulting	 in	 a	37	

continuum	of	diverse	single	neuron	responses	that	typically	cannot	be	organized	into	distinct	functional	38	

categories.	Moreover,	the	representation	of	task	variables	by	single	neurons	can	be	markedly	transient,	39	

and	become	sustained	only	at	the	level	of	the	entire	population	as	a	temporal	sequence	of	activity	patterns	40	

(Baeg	et	al.,	2003;	Crowe,	Averbeck,	&	Chafee,	2010;	Fujisawa,	Amarasingham,	Harrison,	&	Buzsaki,	2008;	41	

Goldman,	2009;	Harvey,	Coen,	&	Tank,	2012;	Morcos	&	Harvey,	2016;	Rajan,	Harvey,	&	Tank,	2016;	Scott	42	

et	al.,	2017).	The	representation	of	non-linear	mixtures	of	variables,	and	the	existence	of	long,	apparently	43	

non-repeating	 temporal	 sequences,	 both	 suggest	 neural	 dynamics	 that	 are	 high-dimensional	 (Barak,	44	

Sussillo,	Romo,	Tsodyks,	&	Abbott,	2013;	Goldman,	2009;	Harvey	et	al.,	2012;	Rajan	et	al.,	2016).	Such	45	

high-dimensional	dynamics	are	a	critical	feature	of	neural	networks	implementing	reservoir	computing	46	

(Jaeger	&	Haas,	2004;	Maass,	Natschlager,	&	Markram,	2002),	which	do	not	rely	on	attractor	dynamics,	47	

but	 rather	 transform	 low-dimensional	 inputs	 (e.g.	 sensory	 evidence)	 into	high-dimensional	 and	 task-48	

dependent	neural	 trajectories	 that	can	be	easily	read-out	 to	produce	 the	desired	outputs	(e.g.	 choice)	49	

(Buonomano	&	Maass,	 2009;	 Jaeger	&	Haas,	 2004;	Maass	 et	al.,	 2002;	Rabinovich,	Huerta,	&	Laurent,	50	

2008).	51	

Here	we	study	the	representation	of	choice	in	primate	prefrontal	cortex	(PFC)	during	a	decision-making	52	

task	and	in	a	delayed-saccade	task,	and	determine	whether	the	neural	population	responses	in	these	tasks	53	

are	 more	 consistent	 with	 attractor	 dynamics,	 reservoir	 computing,	 or	 other	 computational	 schemes	54	

intermediate	 between	 these	 two	 extremes	 (Barak	 et	 al.,	 2013;	 Chaisangmongkon,	 Swaminathan,	55	

Freedman,	 &	Wang,	 2017;	 Rabinovich	 et	 al.,	 2008;	 Rajan	 et	 al.,	 2016).	 To	 distinguish	 between	 these	56	

possibilities,	we	focus	on	characterizing	two	properties	of	the	population	responses.	First,	we	ask	whether	57	

the	representation	of	choice	in	the	decision-making	task	is	persistent	or	transient,	both	at	the	level	of	58	

single	neurons	and	of	patterns	of	population	activity.	We	find	that	single-neuron	responses	in	both	tasks	59	

are	very	diverse	(Bruce	&	Goldberg,	1985;	Chafee	&	Goldman-Rakic,	1998),	and	that	profiles	of	activity	60	

across	the	population	can	be	thought	of	as	mixtures	of	only	a	few	distinct	population	patterns,	which	have	61	
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either	mostly	persistent	or	transient	temporal	dynamics	(Machens	et	al.,	2010;	Mante	et	al.,	2013;	Singh	62	

&	Eliasmith,	2006).	Second,	we	determine	 to	what	extent	choice	responses	 in	PFC	are	 input	and	task-63	

dependent,	by	asking	if	the	responses	in	the	decision-making	task	can	be	predicted	based	on	responses	in	64	

the	 delayed-saccade	 task.	 Critically,	 we	 find	 that	 the	 dynamics	 of	 single-neuron	 responses	 is	 largely	65	

preserved	 across	 tasks.	 Both	 findings	 are	 inconsistent	 with	 the	 high-dimensional,	 input-dependent	66	

dynamics	expected	from	reservoir	computing	(Buonomano	&	Maass,	2009;	Jaeger	&	Haas,	2004;	Maass	et	67	

al.,	2002;	Rabinovich	et	al.,	2008).		68	

Notably,	much	of	the	observed	diversity	of	single-neuron	dynamics	in	the	decision-making	task,	which	69	

could	result	from	almost-random	connectivity	in	the	underlying	recurrent	networks	(Barak	et	al.,	2013;	70	

Rajan	et	al.,	2016;	Rigotti	et	al.,	2013;	Sussillo,	2014),	instead	reflects	the	task-independent,	topographical	71	

arrangement	of	single-unit	response-field	properties	across	the	cortical	surface.	Such	properties	are	not	72	

systematically	 probed	 by	 many	 current	 decision-making	 paradigms	 (Hanks	 &	 Summerfield,	 2017;	73	

Shadlen	&	Kiani,	2013),	which	typically	employ	highly	restricted	subsets	of	possible	spatial	arrangements	74	

of	 sensory	 inputs	 and	 motor	 outputs,	 and	 thus	 by	 themselves	 seem	 inadequate	 to	 interpret	 the	75	

increasingly	large	population	responses	revealed	by	modern	recording	approaches	(Cunningham	&	Yu,	76	

2014).	77	

Results	78	

Behavioral	task	and	neural	recordings	79	

We	studied	choice	related	neural	activity	in	dorsolateral	PFC	of	two	macaque	monkeys	engaged	in	a	two-80	

alternative,	forced-choice	sensory	discrimination	task	(Fig.	1;	Supp.	Fig.	1).	The	monkeys	were	trained	to	81	

report	 the	 prevalent	 direction	 of	 motion	 in	 a	 random-dot	 stimulus	 (Britten,	 Shadlen,	 Newsome,	 &	82	

Movshon,	1992)	(e.g.	left	vs.	right)	with	a	saccade	to	one	of	two	choice	targets	(Fig.	1a),	and	were	rewarded	83	

for	correct	choices.	While	the	monkeys	performed	this	task,	we	recorded	single-	and	multi-unit	activity	84	

with	a	multi-electrode	 array	 (96	 channels)	 chronically	 implanted	 in	 the	 left	 pre-arcuate	 gyrus	 (Kiani,	85	

Cueva,	 Reppas,	 &	 Newsome,	 2014;	 Kiani	 et	 al.,	 2015;	 Schall,	 1997)	 (area	 8Ar,	 Supp.	 Fig.	 2).	 In	 each	86	

experimental	session,	we	recorded	the	simultaneous	activity	from	185±43	units	per	session	(mean±std)	87	

in	monkey	T	and	241±46	in	monkey	V,	for	a	total	of	185	and	184	sessions	distributed	over	67	and	62	days,	88	

with	a	median	session	duration	of	293	and	173	trials.	Below	we	focus	on	data	from	monkey	T,	whereas	89	

the	largely	analogous	data	from	monkey	V	is	shown	in	the	supplementary	material.	90	

Each	behavioral	trial	consisted	of	a	stereotyped	sequence	of	events	(Fig.	1a).	The	monkeys	initiated	each	91	

trial	by	looking	at	a	fixation	point.	After	a	short	delay,	the	two	choice	targets	appeared,	followed	by	the	92	

random-dot	stimulus	of	fixed	duration	(0.8s).	The	offset	of	the	random-dots	initiated	a	delay-period	of	93	

random	duration	(0.3-1.1s).	The	delay-period	ended	with	the	disappearance	of	the	fixation	point,	which	94	

instructed	the	monkey	to	quickly	indicate	its	choice	with	a	saccade	to	one	of	the	targets.	The	saccade	was	95	

followed	 by	 a	 hold	 period	 of	 random	duration	 (0.5-1.3s),	 during	which	 the	monkey	 had	 to	maintain	96	
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fixation	 on	 the	 chosen	 target	 until	 a	 feedback	 tone	 was	 played	 (correct	 or	 wrong)	 and	 the	 reward	97	

delivered.	98	

The	location	of	the	two	choice	targets	was	varied	across	sessions	to	obtain	extensive	coverage	of	both	99	

visual	hemi-fields,	while	the	random-dots	stimulus	was	always	shown	at	the	center	of	gaze	(Fig.	1b).	The	100	

monkeys	were	highly	proficient	at	the	task	in	all	target	configurations	(Fig.	1c),	though	performance	was	101	

noticeably	 better	 for	 the	 configurations	 that	were	 used	most	 often	 during	 training	 (horizontal	 target	102	

arrangement).	103	

The	activity	of	a	large	fraction	of	recorded	units	was	related	to	the	monkey’s	upcoming	choice	at	some	104	

point	 during	 the	 trial	 (64±10%	 and	 43±10%	 in	 monkeys	 T	 and	 V,	 p=0.05	 corrected	 for	 multiple	105	

comparisons;	null	distribution	based	on	random	permutations	of	all	trials,	see	Methods).	For	each	unit,	106	

here	we	separated	trials	based	on	the	combination	of	choice	(choice	1	vs.	choice	2)	and	outcome	(correct	107	

vs.	 error),	 resulting	 in	 four	 condition-averages	 for	 each	 unit	 (Fig.	 1d,e;	 Supp.	 Fig.	 3).	 In	 most	 task	108	

configurations,	 we	 define	 saccades	 to	 the	 target	 in	 the	 right	 visual	 hemi-field	 (contralateral	 to	 the	109	

recording	array)	as	choice	1,	and	saccades	to	the	other	target	as	choice	2.	When	both	targets	are	in	the	110	

right	hemi-field,	choice	1	is	defined	as	the	saccade	to	the	upper	hemi-field	(Fig.	1b).	With	this	definition,	111	

population-average	responses	during	the	delay	period	tend	to	be	larger	for	choice	1	than	choice	2	(Fig.	112	

1d).	Below	we	use	such	condition	averages	to	characterize	the	responses	of	individual	units	and	of	the	113	

population.	Trial-by-trial	 variability	 of	 responses	within	a	 condition,	which	may	 further	 constrain	 the	114	

nature	of	the	underlying	neural	processes	(Bollimunta,	Totten,	&	Ditterich,	2012;	A.	K.	Churchland	et	al.,	115	

2011;	M.	M.	Churchland	et	al.,	2010;	Latimer,	Yates,	Meister,	Huk,	&	Pillow,	2015;	Morcos	&	Harvey,	2016;	116	

Seidemann,	Meilijson,	Abeles,	Bergman,	&	Vaadia,	1996)	is	mostly	not	considered	here.		117	

The	 recordings	 reveal	 a	 considerable	 diversity	 of	 responses	 across	 individual	 units.	 Choice-related	118	

responses	do	not	occur	simultaneously	across	all	units,	but	rather	can	occur	at	different	times	in	different	119	

units	(Fig.	1e).	Indeed,	the	average	response	over	a	large	number	of	units	(Fig.	1d)	resembles	the	activity	120	

of	some	individual	units	but	not	that	of	others	(Fig.	1e).	The	extent	of	heterogeneity	across	the	population,	121	

however,	is	difficult	to	assess	based	on	such	anecdotal	examples,	which	may	represent	outliers	of	a	rather	122	

homogeneous	population.	To	obtain	a	more	complete	picture	of	the	diversity	of	choice	responses,	below	123	

we	characterize	the	responses	of	all	units	in	the	population.	124	

Hypothesized	choice	representations	125	

We	 start	 by	 considering	 four	 simulated	 neural	 populations	 that	 represent	 choice	 in	 fundamentally	126	

different	ways	(Fig.	2).	We	will	use	these	simulated	responses	as	four	hypotheses	that	can	be	compared	127	

to	 the	 responses	measured	 in	 PFC,	 and	 to	 illustrate	 several	 complementary	 analysis	 approaches	 that	128	

together	can	distinguish	between	these	hypotheses.	The	simulations	are	not	meant	to	faithfully	reproduce	129	

the	diversity	of	responses	observed	in	the	recorded	units,	but	rather	represent	idealized	implementations	130	

of	different	possible	choice	representations.	131	
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The	 four	simulated	populations	are	shown	 in	 the	 four	rows	 in	Fig.	2.	 In	 the	 first	population,	choice	 is	132	

represented	by	a	single,	stable	pattern	of	activation,	meaning	that	the	response	of	all	single	neurons	in	the	133	

population	are	essentially	scaled	versions	of	each	other	(Fig.	2a,	stable).	In	the	second	population,	each	134	

neuron	 responds	 only	 transiently,	 at	 a	 consistent	 time	 during	 the	 trial,	 with	 different	 neurons	135	

representing	choice	at	different	times	during	the	trial	(Fig.	2a,	unit	sequence).	In	the	third	population,	the	136	

representation	of	choice	is	passed	sequentially	along	a	chain	of	activation	patterns,	with	single	neurons	137	

showing	 diverse,	 multi-peaked	 responses	 (Fig.	 2a,	 pattern	 sequence).	 Finally,	 the	 fourth	 population	138	

contains	patterns	of	activation	that	are	persistent,	but	are	recruited	at	progressively	later	times	during	139	

the	trial,	again	resulting	in	diverse	single	neuron	responses	(Fig.	2a,	recruitment).	Experimental	evidence	140	

for	most	of	these	representations	has	been	previously	reported	(e.g.	stable	(Ganguli	et	al.,	2008;	Machens	141	

et	al.,	2005;	Mazurek,	Roitman,	Ditterich,	&	Shadlen,	2003;	Wang,	2002),	sequence	of	units	(Baeg	et	al.,	142	

2003;	Fujisawa	et	al.,	2008;	Harvey	et	al.,	2012;	Morcos	&	Harvey,	2016;	Rajan	et	al.,	2016),	sequence	of	143	

patterns	(Bollimunta	et	al.,	2012;	Goldman,	2009;	Wehr	&	Laurent,	1996),	and	combinations	thereof	(M.	144	

M.	Churchland	et	al.,	2012;	Kaufman,	Churchland,	Ryu,	&	Shenoy,	2014)).		145	

A	first	approach	to	distinguishing	some	of	these	representations	relies	on	visualizing	the	activity	of	all	146	

units	after	sorting	them	by	the	time	of	peak-activation	(Fujisawa	et	al.,	2008;	Harvey	et	al.,	2012;	Morcos	147	

&	Harvey,	2016)	(Fig.	2b).	When	the	population	response	is	organized	as	a	sequence	of	units,	these	plots	148	

reveal	a	prominent	diagonal	band	(Fig.	2b,	unit	sequence),	which	corresponds	to	the	“wave”	of	activity	149	

traveling	across	the	population.	This	diagonal	band	is	absent	for	a	stable	representation	(Fig.	2b,	stable)	150	

and	for	recruitment	(Fig.	2b,	recruitment).	A	similar	band	can	be	observed	for	a	sequence	of	patterns—151	

the	band	however	is	less	prominent,	as	individual	units	that	are	active	more	than	once	over	the	course	of	152	

the	trial	contribute	to	“off-diagonal”	responses	(Fig.	2b,	pattern	sequence).	153	

A	second	approach	relies	on	characterizing	the	temporal	dynamics	of	population	patterns,	rather	than	154	

single	neurons	(Fig.	2c,d).	The	population	activity	pattern	at	a	given	time	during	the	trial	is	given	by	the	155	

responses	along	the	corresponding	vertical	line	in	Fig.	2b.	Differences	between	the	representations	are	156	

revealed	by	asking	how	long	the	pattern	observed	at	any	given	time	persists	in	the	population	response.	157	

To	answer	this	question,	we	first	define	three	average	patterns	by	averaging	responses	over	time	within	158	

three	distinct	temporal	windows	(Fig.	2c,	left;	t1-t3	windows:	gray	rectangles	in	Fig.	2a,	b,	and	d).	We	then	159	

obtain	 three	 component	 patterns	 by	 orthogonalizing	 the	 three	 average	 patterns	 (Fig.	 2c,	 right).	 The	160	

orthogonalization	ensures	that	each	component	pattern	describes	features	of	the	population	response	161	

that	 are	 not	 already	 captured	 by	 the	 previous	 component	 patterns.	 Finally,	 we	 compute	 component	162	

activations	 (Fig.	 2d)	 by	 taking	 the	 dot	 product	 of	 each	 component	 pattern	 (Fig.	 2c,	 right)	 with	 the	163	

population	patterns	at	each	point	in	time	(Fig.	2b).	These	steps	amount	to	a	dimensionality	reduction	164	

approach	(Briggman,	Abarbanel,	&	Kristan,	2005;	M.	M.	Churchland	et	al.,	2012;	Cunningham	&	Yu,	2014;	165	

Kobak	 et	 al.,	 2016;	 Laurent,	 2002;	 Mante	 et	 al.,	 2013;	 Yu	 et	 al.,	 2009),	 as	 each	 component	 pattern	166	

corresponds	 to	 a	 dimension	 in	 state-space,	 and	 the	 activations	 capture	 the	 contribution	 of	 the	167	

corresponding	dimension	to	the	population	response.	168	
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The	 component	 activations	 reveal	many	 defining	 features	 of	 the	 underlying	 representations.	 For	 the	169	

stable	representation,	the	first	component	pattern	(Fig.	2c,	stable;	right,	t1)	is	persistently	active	(Fig.	2d,	170	

stable;	component	1)	beyond	the	time	window	used	to	define	that	component	(Fig.	2d,	stable;	gray	bin	at	171	

t1).	The	second	and	third	component	patterns	(Fig.	2c,	stable;	right,	t2	and	t3)	essentially	reflect	noise,	and	172	

show	very	small	activations	(Fig.	2d,	stable;	components	2	and	3).	For	a	sequence	of	units	or	patterns,	the	173	

component	activations	are	transient	(Fig.	2d,	unit	sequence	and	pattern	sequence),	and	large	only	during	174	

the	 time	window	used	to	define	 the	corresponding	component	pattern,	 indicating	that	 the	population	175	

continuously	 undergoes	 smooth	 transitions	 from	 one	 activity	 pattern	 to	 another.	 In	 the	 case	 of	176	

recruitment,	 several	 components	 can	 show	persistent	 activation,	 each	 starting	 from	 the	 time	 used	 to	177	

define	the	corresponding	pattern	(Fig.	2d,	recruitment).		178	

A	 third	 approach	 to	 comparing	 representations	 relies	 on	 computing	 the	 similarity	 between	 activity	179	

patterns	measured	at	different	times	in	the	trial	(i.e.	activity	along	any	possible	vertical	line	in	Fig.	2b).	180	

This	 approach	 does	 not	 provide	 all	 the	 insights	 revealed	 by	 the	 component	 activations,	 but	 has	 the	181	

advantage	of	not	depending	on	a	particular	choice	of	average	patterns	as	in	Fig.	2c.	For	any	pair	of	times	182	

in	Fig	2b,	we	define	similarity	as	the	correlation	between	the	corresponding	activity	patterns.	We	plot	the	183	

full	set	of	similarities	as	the	matrices	in	Fig.	2e,	with	each	point	in	the	matrix	corresponding	to	a	pair	of	184	

time	bins	in	Fig	2b.	Since	patterns	extracted	at	nearby	times	are	similar,	similarity	is	largest	close	to	the	185	

positive	diagonal	(Fig.	2e;	from	bottom-left	to	top-right).	The	different	persistence	of	responses	in	the	186	

stable,	sequential,	and	serial	recruitment	representations	is	reflected	by	how	far	these	large	similarity	187	

values	extend	away	from	the	diagonal,	i.e.	to	more	dissimilar	times	(Fig.	2e).		188	

Dynamics	of	single	unit	responses	189	

Below	we	use	these	three	approaches	to	characterize	the	dots-task	responses	in	PFC.	As	for	the	simulated	190	

responses	(Fig.	2b),	we	first	sort	units	by	the	time	of	peak-activation	(Fig.	3;	Supp.	Fig.	4).	Since	for	some	191	

units	the	response	for	a	given	choice,	or	the	difference	in	the	response	to	the	two	choices,	shows	peaks	at	192	

multiple	times	(e.g.	Fig.	1e,	units	2,	5,	or	6)	we	sort	the	units	repeatedly	based	on	the	responses	in	three	193	

distinct	 task	epochs,	namely	 the	dots-period	(Fig.	3a,d;	 left	panel),	 the	delay	period	(middle),	and	 the	194	

saccade/hold	periods	(right).	To	exclude	contributions	from	trial-by-trial	variability	to	these	plots,	we	195	

applied	 a	 cross-validation	 procedure.	 For	 each	 unit,	 we	 randomly	 assigned	 trials	 into	 a	 sorting	 or	 a	196	

validation	set—we	used	responses	from	the	sorting	set	to	order	units	based	on	their	peak	activation-time	197	

(Fig.	3a,d)	and	responses	from	the	validation	set	to	evaluate	the	existence	of	a	sequence	(Fig.	3b,e).	The	198	

ordering	 of	 units	 along	 the	 vertical	 axis	 across	 the	 resulting	 two	 plots	 is	 preserved,	 but	 is	 entirely	199	

determined	by	responses	in	the	sorting	set.		200	

The	resulting	cross-validated	plots	show	little	evidence	of	sequences	throughout	much	of	the	trial	(Fig.	201	

3b,e).	Here,	we	generated	these	plots	directly	for	the	choice–related	activity,	measured	as	the	difference	202	

between	choice	1	and	choice	2	responses.	A	clear,	but	brief	sequence	of	units	can	be	observed	starting	203	

from	about	100ms	before	saccade	onset	to	about	400ms	after	(Fig.	3b,e,	right).	During	the	dots	period,	204	

responses	also	peak	at	different	times	in	different	units	(Fig.	3b,	left),	although	peak-times	might	not	be	205	
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distributed	evenly	across	the	population	in	all	task	configurations,	but	rather	may	fall	 into	two	largely	206	

separate	time	windows,	early	and	late	after	dots	onset	(Fig.	3e,	left).	During	the	delay	period,	we	find	no	207	

evidence	of	a	sequence	irrespective	of	task	configuration	(Fig.	3b,e;	middle	panels).	Interestingly,	a	more	208	

prominent	 sequence	 can	 be	 observed	 during	 the	 dots	 period	 if	 choice	 1	 and	 choice	 2	 responses	 are	209	

considered	 separately	 (Fig.	 3c,f).	 These	 sequences	 appear	 to	 reflect	 activity	 that	 is	 common	 to	 both	210	

choices,	and	is	thus	less	prominent	when	considering	the	difference	between	choice	1	and	choice	2	activity	211	

(Fig.	3b,e).	212	

Dynamics	of	population	activity	patterns	213	

To	characterize	the	dynamics	of	population	activity	patterns	(Fig.	4;	Supp.	Fig.	5),	we	restrict	the	analysis	214	

to	choice-related	activity	in	the	population,	by	considering	only	activity	patterns	that	are	modulated	by	215	

choice.	 We	 use	 linear	 regression	 to	 extract	 the	 pattern	 of	 population	 activity	 that	 best	 predicts	 the	216	

upcoming	choice	at	any	given	time	during	the	trial	(Mante	et	al.,	2013),	define	component	patterns	(as	in	217	

Fig.	2c)	by	averaging	the	extracted	choice	predictive	patterns	within	different	time-windows	in	the	trial	218	

(gray	stripes	in	Fig.	4a,c,	t1	to	t5),	and	then	compute	the	corresponding	component	activations	as	the	dot	219	

product	 between	 the	 component	 patterns	 and	 the	 population	 activity	 (Fig.	 4a,c).	 As	 for	 single	 unit	220	

responses	(Fig.	1d),	we	computed	condition-averaged	component	activations	based	on	choice	and	trial	221	

outcome	(Fig.	4a,c).		222	

This	approach	reveals	both	persistent	and	transient	choice	components	(Fig.	4a,c),	which	are	predictive	223	

of	choice	at	different	times	during	the	trial	(as	quantified	by	the	area	under	the	ROC	curve,	Fig.	4b,d).	A	224	

first	choice-related	pattern	(component	1)	emerges	shortly	after	dots-onset,	is	largely	persistent	across	225	

the	dots	and	delay	periods,	peaks	around	the	time	of	saccade	initiation,	and	shows	inverted	selectivity	for	226	

choice	 after	 the	 saccade.	 A	 second	 persistent	 pattern	 (component	 2)	 emerges	 later	 during	 the	 dots	227	

presentation,	becomes	increasingly	choice-predictive	during	the	delay	period,	and	also	shows	inverted	228	

selectivity	after	the	saccade.	A	third	pattern	(component	3),	defined	at	the	time	of	saccadic	initiation,	is	229	

instead	mostly	 transient.	Two	additional	patterns	defined	after	saccade	 initiation	(components	4	&	5)	230	

peak	at	increasingly	later	times	during	the	hold	period	prior	to	reward	(Fig.	1a),	as	expected	by	sequential	231	

activation,	but	are	also	largely	persistent	throughout	the	hold	period.		232	

The	component	activations	overall	mirror	the	characterization	of	the	dynamics	at	the	level	of	individual	233	

units	 (Figs.	1e	and	3)	and	suggest	a	representation	with	prominent	serial	 recruitment	of	components	234	

before	 the	 saccade	 (e.g.	 compare	 components	1-3	 in	 Fig.	 4a,c	 to	 Fig.	 2d,	 recruitment),	 fast	 sequential	235	

encoding	around	the	 time	of	 the	saccade	(e.g.,	 choice	1	responses	peak	at	 increasingly	 later	 times	 for	236	

components	1-5	in	Fig.	4a,	as	for	components	1-3	in	Fig.	2d,	second	and	third	rows),	and	a	slow	sequence	237	

and	possibly	recruitment	after	the	saccade	(e.g.	choice	1	responses	for	components	4,5	in	Fig.	4c	&	Supp.	238	

Fig.	5a,c).	This	conclusion	is	further	supported	by	the	similarity	matrices	for	PFC	responses	(Fig.	4e,g—239	

same	format	as	Fig.	2e),	which	show	periods	of	persistent,	or	slow,	dynamics	during	the	delay	and	hold	240	

periods	(i.e.	large	similarities	away	far	from	the	diagonal),	and	transient	dynamics	around	the	time	of	the	241	

saccade	(large	similarities	only	along	the	diagonal).	The	time-course	of	similarity,	however,	is	not	a	fixed	242	
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property	of	 the	neural	 population,	 but	 rather	depends	on	 task-configuration—in	 some	 configurations	243	

(Fig.	4e)	the	early	choice	signals	appear	to	be	more	persistent	than	in	others	(Fig.	4g),	again	in	qualitative	244	

agreement	with	the	other	analyses	(compare	Figs.	3b	and	e;	and	Figs.	4a	and	c,	component	1).	245	

Notably,	these	five	component	activations	provide	a	largely	complete	description	of	choice	responses	in	246	

single	sessions	of	the	dots-task.	To	illustrate	this	point,	we	reconstructed	the	response	of	every	recorded	247	

unit	as	a	weighted	sum	of	the	component	activations	(Kobak	et	al.,	2016),	with	weights	varying	across	248	

components	 and	 units	 (the	 weights	 are	 discussed	 in	 more	 detail	 below,	 see	 Fig.	 5g).	 The	 observed	249	

diversity	 of	 single-unit	 responses	 (e.g.	 Fig.	 3)	 reflects	 differences	 in	 the	 relative	 weights	 of	 the	 five	250	

components	across	units.	We	then	computed	similarities	on	the	reconstructed	population	responses	(Fig.	251	

4f,h)	as	we	did	for	the	recorded	responses	(Fig.	4e,g).	When	each	unit’s	response	is	reconstructed	based	252	

on	only	the	first	component,	the	match	between	predicted	(Fig.	4f,h;	left-most	panel)	and	measured	(Fig.	253	

4e,g)	similarities	is	poor.	However,	as	more	and	more	components	are	added	(Fig.	4f,h;	additional	panels)	254	

the	 match	 progressively	 improves,	 and	 becomes	 very	 good	 when	 all	 five	 components	 are	 used	 to	255	

reconstruct	the	responses	(Fig.	4f,h;	right-most	panel;	correlation	between	measured	similarity	in	Fig.	256	

4e,g	and	predicted	similarity	in	the	right-most	panels	of	Fig.	4f,h	is	R=0.993	and	R=0.991,	for	the	two	task	257	

configurations).	Additional	component	patterns	that	can	be	defined	from	the	responses	account	only	for	258	

a	small	fraction	of	the	variance	in	the	choice-predictive	activity	(Fig.	4i,j;	Supp.	Fig.	4i,j).		259	

Measuring	response-fields	with	a	delayed-saccade	task	260	

Having	characterized	the	temporal	dynamics	of	responses	in	a	decision-making	task	(Figs.	3,4)	we	aim	to	261	

relate	these	responses	to	those	in	a	visually-guided,	delayed-saccade	task	(Fig.	5;	Supp.	Fig.	6).	If	PFC	were	262	

implementing	strongly	input-dependent	dynamics	akin	to	reservoir	computing,	single	unit	responses	in	263	

the	two	tasks	can	be	expected	to	be	substantially	different	(Buonomano	&	Maass,	2009;	Jaeger	&	Haas,	264	

2004;	Maass	et	al.,	2002;	Morcos	&	Harvey,	2016;	Rabinovich	et	al.,	2008).	265	

In	the	delayed-saccade	task,	the	monkeys	were	rewarded	for	making	a	saccade	to	a	single	target,	whose	266	

location	was	varied	across	trials	to	obtain	extensive	coverage	of	the	visual	field	(Fig.	5a).	Only	one	target	267	

was	presented	on	each	trial,	and	no	random-dots	were	shown,	but	the	timing	of	task	events	was	otherwise	268	

analogous	 to	 the	 dots-task	 (Fig.	 1),	 in	particular	with	 respect	 to	 the	 durations	 of	 the	 delay	 and	 hold	269	

periods.		270	

For	any	given	unit,	the	condition-averaged	responses	for	each	target	location	(Fig.	5b)	are	best	visualized	271	

as	a	time-dependent	response-field,	representing	the	spatial	tuning	of	visual,	delay,	movement,	and	hold	272	

period	activity	(Fig.	5c).	At	each	time	in	the	trial,	we	obtain	smooth	response-fields	from	the	condition-273	

averaged	responses	(Fig.	5c,	top)	either	through	linear	interpolation	(Fig.	5c,	middle)	or	by	fits	of	a	simple	274	

descriptive	model	that	assumes	separable	tuning	for	eccentricity	and	angular	location	(Bruce	&	Goldberg,	275	

1985)	(Fig.	5c,	bottom).	We	use	the	fits	to	estimate	the	response-field	center	at	each	time,	i.e.	the	spatial	276	

location	of	the	peak	response	at	that	time	(Fig.	5c,	red	dots;	Fig.	5e-h).		277	
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The	response-fields	can	be	widely	different	across	different	units,	both	in	terms	of	spatial	organization	278	

and	temporal	dynamics	(Fig.	5c,d).	A	complete	characterization	of	all	observed	response-fields	is	beyond	279	

the	 scope	of	 this	 study,	 but	 one	 can	 easily	 show	 that	 the	 response-field	properties	 are	not	 randomly	280	

distributed	 across	 cortical	 locations.	 To	 visualize	 the	 underlying	 topography,	 we	 relate	 the	 cortical	281	

location	of	each	unit	to	the	visual	location	of	its	response-field	center	after	target	onset	(Fig.	5e,g)	and	282	

after	saccade	onset	 (Fig.	5f,h).	We	show	each	response-field	center	twice,	either	colored	based	on	the	283	

anterior-posterior	(Fig.	5e,f)	or	the	medio-lateral	location	(Fig.	5g,h)	of	the	array	electrode	where	it	was	284	

recorded.	The	majority	of	units	responding	to	the	target	onset	are	most	active	when	the	target	appears	in	285	

the	right	(contralateral),	upper	visual	quadrant	(Fig.	5e,g).	These	units	are	mostly	recorded	in	posterior	286	

locations	on	the	array	(Fig.	5e,	red	colors),	and	their	angular	preference	varies	based	on	medio-lateral	287	

location—units	 from	 lateral	array	locations	prefer	targets	 in	 the	upper-right	quadrant	and	units	 from	288	

medial	locations	prefer	the	lower-right	quadrant	(Fig.	5g,	blue	vs.	red	colors).	Post-saccadic	responses	are	289	

more	broadly	distributed	across	the	array,	but	again	the	target	preferences	map	regularly	onto	the	cortical	290	

surface	 (Fig.	 5f,h).	 Post-saccadic	 responses	 to	 targets	 in	 the	 left	 (ipsilateral)	 and	 right	 (contralateral)	291	

hemifield	mostly	occur	at	posterior	and	anterior	locations,	respectively	(Fig.	5f,	red	vs.	blue	colors)	while	292	

angular	preference	depends	on	medio-lateral	location	(Fig.	5h).	293	

Relating	these	response-fields	to	the	unit	responses	in	the	dots-task	(Figs.	3,4)	is	challenging,	because	we	294	

could	 not	 without	 a	 doubt	 identify	 units	 that	 were	 recorded	 in	 both	 tasks	 (see	 Methods,	 Neural	295	

recordings).	A	direct	comparison	of	responses	 in	 the	 two	tasks	is	 further	complicated	because	on	any	296	

given	 trial	 of	 the	delayed-saccade	 task,	 only	one	 response	 target,	and	no	 random-dots,	appear	on	 the	297	

screen.	The	responses	in	the	two	tasks	thus	can	be	expected	to	be	different	even	if	fixed,	task-independent	298	

response-fields	were	to	explain	the	responses	in	both	settings.		299	

To	overcome	this	challenge,	instead	of	comparing	responses	in	the	two	tasks	unit-by-unit,	we	compare	300	

them	at	the	level	of	the	population,	focusing	on	“global”	properties	of	the	population	that	are	robust	to	the	301	

expected	differences	in	the	underlying	unit	responses.	Specifically,	we	ask	whether	the	response-fields	302	

estimated	in	the	delayed-saccade	task	can	be	used	to	predict:	(1)	the	overall	diversity	of	unit	responses	303	

measured	in	the	dots-task,	and	(2)	the	resemblance	(or	difference)	of	unit	responses	measured	in	any	two	304	

task-configurations	and	cortical	locations.	We	first	develop	a	description	of	the	population	response	that	305	

is	well	suited	to	study	these	global	properties	in	the	measured	dots-task	responses	(Fig.	6),	and	then	use	306	

this	 description	 to	 evaluate	 the	 response-field	 based	 predictions	 both	 qualitatively	 (Fig.	 7)	 and	307	

quantitatively	(Fig.	8).		308	

Global	structure	of	unit	responses	in	the	dots-task	309	

We	exploit	the	inferred	component	activations	(Fig.	4)	to	generate	a	description	of	the	neural	population	310	

that	exploits	nearest-neighbor	relations	between	unit	responses	(Fig.	6;	Supp.	Fig.	7).	As	a	first	step,	we	311	

reconstruct	each	unit’s	response	as	a	mixture	of	the	5	component	activations	(as	for	generating	Fig.	4f,h,	312	

rightmost	plots).	This	reconstruction	step	mainly	amounts	to	aggressively	“de-noising”	the	unit	responses	313	

(Supp.	Fig.	3).	Second,	we	characterize	each	unit	by	 the	resulting	average	responses	 for	eight	distinct	314	
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conditions	(Fig.	6a),	differing	in	choice	(choice	1	vs.	2),	outcome	(correct	vs.	error),	and	motion	strength	315	

(high	vs.	 low).	Third,	we	concatenate	these	condition-averages	to	obtain	a	single	vector,	which	can	be	316	

interpreted	as	a	single	point	in	a	high	dimensional	space.	The	dimensionality	of	this	space	is	given	by	the	317	

product	between	the	number	of	conditions	and	the	number	of	time-points	per	condition.	Finally,	we	use	318	

a	non-linear	dimensionality	reduction	technique	(t-SNE	(Van	Der	Maaten,	2013),	see	Methods)	to	find	a	319	

two-dimensional	representation	of	all	points	 that	optimally	preserves	nearest-neighbor	relations	(Fig.	320	

6b),	meaning	that	units	with	similar	condition-averaged	responses	(as	assessed	by	the	Euclidian	distance	321	

between	the	corresponding	points	in	the	high-dimensional	space;	Fig.	6a)	are	placed	close-by	in	the	two-322	

dimensional	representation.	We	refer	to	this	representation	as	an	embedding	of	the	responses,	and	to	the	323	

two	axes	spanning	the	two-dimensional	space	as	the	embedding	dimensions.		324	

The	embedding	reveals	the	overall	diversity	of	unit	 responses	measured	 in	the	dots-task.	To	show	all	325	

kinds	of	dynamics	observed	in	individual	units,	we	averaged	the	responses	of	units	located	nearby	in	the	326	

embedding	 space	 (i.e.,	 at	 the	 same	 grid-location	 in	 Fig.	 6c)	 and	 plotted	 the	 resulting	 averages	 at	 the	327	

corresponding	locations	(Fig.	6d).	Different	locations	along	the	embedding	dimensions	map	onto	different	328	

kinds	 of	 responses,	 including	 units	 with	 persistent	 predictive	 activity	 (top-right	 locations,	 choice	 1	329	

preferring;	left,	choice	2	preferring),	transient	saccade	related	activity	(right	and	top-left),	persistent	post-330	

choice	 activity	 (top	 and	 bottom),	 and	 combinations	 thereof.	 Notably,	 our	 definition	 of	 the	 high-331	

dimensional	space	in	Fig.	6a	implies	that	here	unit	responses	are	considered	in	their	entirety,	rather	than	332	

separately	 in	 the	 three	 task	 epochs	 as	 in	Fig.	 3.	As	described	above,	 each	unit’s	 response	 (Fig.	 6a)	 is	333	

reconstructed	as	a	weighted	sum	of	the	component	activations	(Fig.	4a,c).	We	refer	to	these	weights	as	334	

the	component	contributions,	 shown	 in	Fig.	6e.	The	relative	contributions	of	 the	 five	components	vary	335	

strongly	across	units,	resulting	in	the	diversity	of	unit	responses	shown	in	Fig.	6d.	336	

The	embedding	also	reveals	how	the	unit	responses	depend	on	task-configuration	(Fig.	6f)	and	cortical	337	

location	 (Fig.	 6g).	 Some	 kinds	 of	 responses	 are	 not	 observed	 in	 some	 configurations—for	 instance,	338	

responses	with	large	contributions	from	component	1	(Fig.	6e,	left;	red	points)	are	rare	when	the	choice	339	

1	 target	 is	 located	 in	 the	 bottom-right	 quadrant	 (Fig.	 6f,	 left),	 and	 responses	 with	 large	 negative	340	

contributions	from	component	4	(Fig.	6e,	fourth	panel;	blue	points)	are	rare	when	both	targets	are	in	the	341	

right	hemi-field	(Fig.	6f,	right).	These	observations	mimic	the	properties	of	the	average	unit	responses	for	342	

these	configurations	(Fig.	1d).	The	responses	also	vary	across	cortical	locations,	i.e.	array	electrodes	(Fig.	343	

6g).	Units	with	large	positive	or	negative	contributions	from	one	or	more	of	the	choice	components	(Fig.	344	

6e;	red	and	blue	points)	mostly	occur	at	posterior	locations	on	the	array,	close	to	the	arcuate	sulcus	(Fig.	345	

6g,	left).	For	these	posterior	locations,	the	responses	also	vary	based	on	the	medio-lateral	position	on	the	346	

array,	as	units	from	different	medio-lateral	locations	tend	to	map	onto	different	locations	along	the	top	347	

and	right	edge	of	the	embedding	space	(Fig.	6g,	right).		348	

Predicting	dots-task	responses	from	delayed-saccade	responses	349	

To	 assess	 if	 the	 response	 fields	 estimated	 in	 the	delayed-saccade	 task	 (Fig.	 5)	 can	 explain	 the	 global	350	

structure	of	unit	responses	in	the	dots-task	(Fig.	6),	we	generated	predicted	dots-task	responses	based	on	351	
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the	estimated	response	fields.	For	any	unit	recorded	in	the	dots	task,	we	randomly	picked	a	unit	recorded	352	

in	 the	 delayed-saccade	 task	 on	 the	 same	 array	 electrode,	 and	 generated	 predicted	 responses	 by	353	

interpolating	the	responses	from	the	delayed-saccade	task	at	the	two	target	locations	used	in	the	dots-354	

task.	This	resulted	in	a	predicted	population	that	matched	the	one	recorded	in	the	dots-task	both	with	355	

respect	to	total	number	of	units,	and	to	the	combinations	of	recording	locations	and	target	configurations.	356	

We	evaluate	the	accuracy	of	these	predictions	qualitatively	by	computing	a	non-linear	embedding	of	the	357	

predicted	responses	(Fig.	7,	Supp.	Fig.	8),	as	we	did	for	the	measured	responses	(Fig.	6).	The	embedding	358	

shows	that	the	response-field	based	predictions	(Fig.	7a)	reproduce	the	overall	diversity	of	measured	unit	359	

responses	in	the	dots-task	(Fig.	6d).	In	the	predictions,	the	time-course	of	choice-related	activity	varies	360	

substantially	across	units	(Fig.	7a),	and	reproduces	the	different	combinations	of	predictive,	saccadic,	and	361	

post-choice	activity	observed	in	the	measured	responses	(compare	Fig.	7a	with	Fig.	6d).	As	expected,	not	362	

all	features	of	the	dots-task	responses	are	well	predicted.	Because	in	the	delayed-saccade	task	only	one	363	

target	is	presented	on	a	given	trial,	and	the	resulting	visual	transient	differs	across	choices,	for	many	units	364	

the	predicted	 responses	 separate	by	 choice	 right	 after	 the	onset	 of	 the	 target	 (i.e.	 at	 the	onset	 of	 the	365	

response	in	Fig.	7a;	units	on	the	left	and	right	of	the	embedding	space),	while	in	the	measured	responses	366	

the	separation	emerges	gradually	during	the	dots	presentation.		367	

Despite	these	differences,	the	predictions	also	qualitatively	reproduce	how	the	unit	responses	depend	on	368	

task-configuration	and	cortical	 location.	To	illustrate	how	these	two	factors	interact,	we	computed	the	369	

average	 location	 in	 the	 embedding	 space	 of	 all	 units	 recorded	 from	a	 given	 array	 electrode	 (Fig.	 7b;	370	

colored	circles)	and	task	configuration	(7b;	different	rows).	We	assigned	a	unique	color	to	each	average	371	

location	based	on	the	same	scheme	as	in	Fig.	6c,d,	and	then	projected	that	color	onto	the	corresponding	372	

electrode	location	in	the	array	(Kiani	et	al.,	2015)	(Fig.	7c;	each	square	corresponds	to	a	dot	in	Fig.	7b).	373	

The	resulting	images	show	that	the	topographical	arrangement	of	the	different	unit	responses	(colors	in	374	

Fig.	7c)	is	not	fixed,	but	rather	depends	on	task-configuration	(Fig.	7c,	rows).	Critically,	this	dependency	375	

between	 neural	 dynamics	 and	 task-inputs	 is	 well	 reproduced	 by	 the	 predictions	 (Fig.	 7c,	 compare	376	

measured	and	predicted).		377	

In	addition	to	the	comparisons	in	Fig.	7c,	which	rely	on	two-dimensional	embeddings	of	the	data,	we	also	378	

compared	the	measured	and	predicted	responses	directly	(Fig.	8;	Supp.	Fig.	9)	based	on	their	original,	379	

high-dimensional	 representations	 (Fig.	 6a).	 Such	 a	 direct	 comparison	 is	 important,	 because	 a	 two-380	

dimensional	embedding	(Fig.	6b)	is	necessarily	an	approximate	representation	of	data	that	(locally)	spans	381	

more	than	two	dimensions,	as	appears	to	be	the	case	for	the	measured	unit	responses.	For	instance,	for	382	

any	given	unit	(Fig.	8a,	green	dot)	the	90	closest	neighbors	in	the	high-dimensional	space	(red	and	black	383	

units,	defining	the	“neighborhood”	of	the	green	dot)	typically	do	not	correspond	to	the	90	closest	units	in	384	

the	embedding	space	(gray	dots	closest	to	the	green	dot).		385	

To	measure	the	similarity	between	unit	responses	recorded	on	any	two	electrodes	directly	in	the	high-386	

dimensional	 space,	we	 introduce	 the	 concept	 of	 “neighborhood-mixing”	 (Fig.	 8a,b).	 In	 essence,	 if	 unit	387	

responses	 from	 two	 electrodes	 are	 similar,	 their	 corresponding	 neighborhoods	 will	 tend	 to	 be	388	
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overlapping,	 i.e.	mixed.	By	characterizing	the	degree	of	mixing	between	neighborhoods	for	any	pair	of	389	

electrodes,	we	define	a	“mixing-matrix”	(e.g.	Fig.	8c)	where	large	counts	(relative	to	the	null	hypothesis,	390	

i.e.	 no	 topographical	 organization	 of	 responses)	 indicate	 that	 unit	 responses	 on	 the	 corresponding	391	

electrodes	are	similar,	and	vice	versa.	Comparing	mixing-matrices	between	task-configurations	(Fig.	8c,e)	392	

and	 between	measured	 and	 predicted	 responses	 (Fig.	 8c,d)	 is	 analogous	 to	 comparing	 the	 rows	 and	393	

columns	of	Fig.	7c.	As	in	Fig.	7c,	the	comparisons	are	robust	to	the	expected	differences	between	measured	394	

and	predicted	responses,	but	here	can	be	more	easily	quantified	(e.g.	 in	terms	of	correlations	between	395	

mixing-matrices,	Fig.	8g-j)	and	do	not	require	a	low-dimensional	embedding	of	the	data.	396	

The	measured	mixing-matrices	for	electrode	location	vary	with	task-configuration,	as	demonstrated	by	397	

the	correlation	coefficients	in	Fig.	8g,	in	agreement	with	the	structure	of	the	embedded	responses	(Fig.	398	

7c),	and	the	effects	of	task-configuration	on	the	mixing	matrix	are	well	reproduced	by	the	predictions	(Fig.	399	

8h,i).	Notably,	different	predictions	generated	by	reconstructing	unit	responses	with	only	one	of	the	five	400	

choice-components	(Fig.	8j)	cannot	account	for	the	measured	mixing-matrices	nearly	as	well,	indicating	401	

that	the	mixing-matrices	are	sensitive	to	contributions	from	several	choice	components	(Fig.	4a,b).	The	402	

accuracy	of	the	predictions	thus	suggests	that	global	structure	of	unit	responses	in	the	dots-task	is	largely	403	

determined	by	the	properties	of	the	underlying,	task-independent	response-fields.		404	

Discussion	405	

Our	 large-scale	recordings	reveal	a	rich	and	diverse	representation	of	choice	at	the	 level	of	 individual	406	

units.	The	recorded	units	did	not	fall	into	distinct	functional	classes,	but	rather	covered	a	continuum	of	407	

response	types	(e.g.,	no	obvious	clusters	are	apparent	in	Fig.	6b),	with	choice-related	activity	occurring	in	408	

relation	 to	 different	 task-events	 in	 different	 units,	 including	 combinations	 of	 early	 and	 late	 choice-409	

predictive	activity,	saccade-related	activity,	and	post-saccadic	activity	(Bruce	&	Goldberg,	1985;	Chafee	&	410	

Goldman-Rakic,	1998;	Markowitz,	Curtis,	&	Pesaran,	2015).	This	diversity	of	unit	responses	reflects	the	411	

combined	effect	of	only	a	few	choice-related	components	contributing	to	the	population	dynamics	(Fig.	412	

4).	Two	predictive	components	are	recruited	at	consecutive	times	in	the	time-window	preceding	a	choice	413	

and	persist	until	the	initiation	of	a	saccade	(Markowitz	et	al.,	2015;	Yates	et	al.,	2017).	The	saccade-related	414	

activity	is	transient,	and	comprises	a	fast	temporal	sequence	across	units.	After	the	saccade,	one	or	two	415	

additional	components	are	recruited	and	persist	until	reward	delivery.	The	low-dimensional,	persistent	416	

dynamics	 of	 choice	 responses	 before	 and	 after	 the	 saccade	 appear	 more	 consistent	 with	 attractor	417	

dynamics	(Brody	et	al.,	2003;	Ganguli	et	al.,	2008;	Machens	et	al.,	2005;	Mante	et	al.,	2013;	Murray	et	al.,	418	

2017)	than	with	the	high-dimensional	dynamics	predicted	by	reservoir	computing	(Buonomano	&	Maass,	419	

2009;	Jaeger	&	Haas,	2004;	Maass	et	al.,	2002;	Morcos	&	Harvey,	2016;	Rabinovich	et	al.,	2008).	420	

Even	 though	we	 do	 not	 attempt	 to	 assign	 a	 functional	 significance	 to	 these	 choice	 components,	 past	421	

studies	provide	pointers	in	this	respect.	In	particular,	the	first	and	second	components	most	likely	relate	422	

to	 processes	 of	 evidence	 accumulation	 or	 motor	 preparation	 (Gold	 &	 Shadlen,	 2007;	 Hanks	 &	423	

Summerfield,	2017;	Kiani	et	al.,	2014;	Schall,	2001;	Shadlen	&	Kiani,	2013).	The	two	components	could	424	
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either	reflect	two	distinct	processes	(Yates	et	al.,	2017)	or,	alternatively,	both	components	could	reflect	a	425	

single	variable	(e.g.	 integrated	evidence)	that	is	represented	in	a	dynamic,	time-varying	fashion	at	the	426	

level	of	the	population	(Goldman,	2009;	Harvey	et	al.,	2012;	Morcos	&	Harvey,	2016;	Parthasarathy	et	al.,	427	

2017;	 Spaak,	 Watanabe,	 Funahashi,	 &	 Stokes,	 2017).	 In	 either	 case,	 it	 is	 notable	 that	 these	 choice-428	

predictive	components	tend	to	be	most	active	at	the	time	of	saccade	initiation	(Fig.	4a,b),	resulting	in	a	429	

peak	 of	 activity	 that	 precedes	 the	 purely	movement	 related,	 third	 component.	 Population	 responses	430	

during	saccade	initiation	thus	involve	strong	modulation	of	the	very	same	components	that	are	active	431	

during	saccade	preparation	(i.e.	during	the	dots	and	delay	periods).	This	observation	seems	at	odds	with	432	

findings	 in	 premotor	 and	 motor	 cortex	 during	 reaches,	 where	 movement	 related	 activity	 is	 strictly	433	

orthogonal	to	preparatory	activity	(Kaufman	et	al.,	2014).	The	prominent	components	observed	during	434	

the	hold	period,	after	the	monkey’s	choice,	seem	to	represent	a	form	of	“postdictive”	persistent	activity	435	

(as	opposed	to	visual	activity,	see	Supplementary	Material),	which	is	distinct	from	the	predictive	activity	436	

encoded	by	the	first	two	components.	Similar	postdictive	persistent	activity	has	previously	been	linked	437	

to	cognitive	processes	required	for	decision-making,	like	updating	and	maintaining	the	value	of	available	438	

choice	options	(Curtis	&	Lee,	2010).	439	

We	 find	 that	 the	 interplay	between	these	choice	 components	at	 the	 level	of	 individual	units	 is	largely	440	

preserved	between	a	decision-making	task	and	a	visually-guided,	delayed-saccade	 task	(Fig.	7,8).	This	441	

finding	 is	not	a	 forgone	conclusion—context-dependence	 is	a	hallmark	of	prefrontal	 responses,	and	 is	442	

thought	 to	be	critical	 for	generating	 learned,	cognitively	demanding	behaviors	(Fuster,	2008;	Miller	&	443	

Cohen,	 2001;	 Tanji	 &	Hoshi,	 2008).	 One	may	 thus	 have	 expected	more	 prominent	 differences	 in	 the	444	

structure	of	 the	 responses	between	a	decision-making-task,	which	monkeys	 learn	 to	master	over	 the	445	

course	of	months,	and	a	much	simpler	saccade	task	that	is	 learned	over	the	course	of	days.	A	relation	446	

between	 choice-predictive	 activity	 in	 the	 dots-task	 and	 preparatory	 saccade	 activity	 has	 often	 been	447	

assumed	(Kim	&	Shadlen,	1999;	Shadlen	&	Newsome,	2001).	Systematic	comparisons	of	the	two,	however,	448	

have	typically	not	been	reported,	or	suggested	little	or	no	relation	between	these	measures	(Meister	et	449	

al.,	2013).	The	observation	that	the	organization	of	choice	responses	in	the	population	is	preserved	across	450	

two	 tasks	 with	 different	 inputs	 provides	 a	 second	 line	 of	 evidence	 against	 reservoir	 computing	451	

(Buonomano	&	Maass,	2009;	Jaeger	&	Haas,	2004;	Maass	et	al.,	2002;	Morcos	&	Harvey,	2016;	Rabinovich	452	

et	al.,	2008),	which	predicts	strongly	input-dependent	neural	dynamics.	453	

These	results	seem	at	odds	with	the	findings	of	some	studies	of	decision-making	in	rodents,	which	have	454	

revealed	response	dynamics	that	are	high-dimensional,	organized	in	temporal	sequences	spanning	the	455	

entire	trial,	and	strongly	context-dependent	(Baeg	et	al.,	2003;	Fujisawa	et	al.,	2008;	Harvey	et	al.,	2012;	456	

Morcos	&	Harvey,	2016;	Rajan	et	al.,	2016;	Scott	et	al.,	2017).	It	is	possible	that	some	of	these	studies	may	457	

have	over-emphasized	the	prominence	of	temporal	sequences	in	the	population,	as	they	often	relied	on	458	

sorting	units	based	on	the	time	of	peak-activation,	but	did	not	include	a	cross-validation	step	(Fig.	3a,d	vs.	459	

b,e).	 Alternatively,	 the	 reported	 dynamics	 could	 reflect	 computational	 principles	 that	 are	 genuinely	460	

different	from	those	implemented	by	the	PFC	circuits	analyzed	here,	or	could	reflect	differences	in	the	461	
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employed	behavioral	tasks.	For	one,	we	find	the	strongest	evidence	for	persistent	activity	during	epochs	462	

leading	to	behavioral	events	of	unpredictable	timing	(the	saccade	go-cue	and	the	feedback),	when	it	might	463	

be	advantageous	to	maintain	the	neural	activity	in	a	stable	configuration	that	is	optimal	for	processing	464	

the	event	 information.	This	constraint	does	not	apply	when	the	 timing	of	relevant	task	events,	and	 in	465	

particular	of	the	choice,	is	under	control	of	the	animal,	as	is	the	case	for	rodents	navigating	in	a	real	(Baeg	466	

et	al.,	2003;	Fujisawa	et	al.,	2008)	or	virtual	environment	(Harvey	et	al.,	2012;	Morcos	&	Harvey,	2016;	467	

Rajan	et	al.,	2016;	Scott	et	al.,	2017).	For	another,	the	differences	in	dynamics	could	also	reflect	differences	468	

in	the	dimensionality	of	the	observed	tasks	(Cowley,	Smith,	Kohn,	&	Yu,	2016;	Gao	&	Ganguli,	2015).	It	469	

seems	plausible	that	tasks	involving	extended	spatial	navigation	through	locomotion	(Baeg	et	al.,	2003;	470	

Fujisawa	et	al.,	2008;	Harvey	et	al.,	2012;	Morcos	&	Harvey,	2016;	Rajan	et	al.,	2016;	Scott	et	al.,	2017)	are	471	

higher	dimensional	than	one	requiring	ballistic	saccades	to	only	two	locations,	and	would	thus	result	in	472	

dynamics	that	are	much	more	high-dimensional.	473	

In	our	recordings,	much	of	the	diversity	in	the	responses	of	individual	units	in	the	decision-making	task,	474	

as	 well	 as	 differences	 in	 population	 dynamics	 across	 task-configurations,	 reflect	 the	 topographical	475	

arrangement	of	response-field	properties	across	the	cortical	surface	(Markowitz	et	al.,	2015;	Robinson	&	476	

Fuchs,	1969;	Schall,	1997;	Suzuki	&	Azuma,	1983).	Thus,	even	in	a	prefrontal	area	like	pre-arcuate	cortex,	477	

whose	computations	are	thought	to	emerge	from	the	collective	activity	of	large	populations	of	neurons	478	

(Mante	 et	 al.,	 2013;	 Rolls	 et	 al.,	 2008;	 Wang,	 2002),	 accounts	 of	 the	 dynamics	 that	 rely	 entirely	 on	479	

population-level	descriptions	may	miss	relevant	structure	at	the	level	of	individual	units.	This	structure	480	

reflects	regularities	in	the	underlying	anatomical	connectivity	that	are	likely	to	be	critical	to	the	functions	481	

of	the	corresponding	PFC	areas.	However,	such	regularities	remain	largely	hidden	in	recordings	obtained	482	

during	the	dots-task	because	of	the	impoverished	motor	outputs	employed	(frequently	only	two	saccade	483	

targets),	a	common	feature	of	many	tasks	currently	used	in	cognitive	neuroscience	(Hanks	&	Summerfield,	484	

2017;	 Shadlen	&	Kiani,	 2013).	While	 these	 designs	 have	proven	 extremely	 valuable	 in	 the	 context	 of	485	

single-unit	 recordings,	 the	 low-dimensionality	 of	 the	 task	 parameters	 may	 lead	 one	 to	 severely	486	

underestimate	the	natural,	intrinsic	dimensionality	of	a	neural	system,	even	when	neural	responses	are	487	

studied	with	modern,	large-scale	recording	approaches	(Cunningham	&	Yu,	2014).	488	

Current	analysis	approaches,	at	 the	single-unit	or	population	 level,	 can	provide	 insights	into	different,	489	

complementary	 aspects	 of	 such	 high-dimensional	 data,	 but	 obtaining	 a	 complete	 characterization	 of	490	

neural	population	responses	spanning	these	levels	remains	challenging.	The	non-linear	embeddings	used	491	

here	offer	a	promising	approach	to	study	the	structure	of	neural	populations	in	their	entirety,	while	still	492	

maintaining	an	explicit	representation	of	each	units’	response.	In	addition,	our	nearest-neighbor	statistics	493	

(Fig.	8a,b)	provide	a	novel	and	very	general	approach	to	building	similarity	or	distance	matrices	(Kiani	et	494	

al.,	2015;	Kriegeskorte	et	al.,	2008)	(Fig.	8a-d),	which	makes	essentially	no	assumptions	about	the	nature	495	

of	 the	 underlying	 high-dimensional	 data.	 Ultimately,	 the	 insights	 provided	 even	 by	 these	 novel	496	

approaches	will	 be	 limited	 by	 the	 richness	 of	 the	 employed	 behavioral	 tasks,	which	 in	many	 current	497	

experimental	designs	may	be	insufficient	to	reveal	all	the	relevant	structure	in	the	responses.	 	498	
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Methods	499	

Experimental	procedures	500	

We	collected	behavioral	and	neural	data	from	two	adult	male	rhesus	monkeys:	monkeys	T	(14	kg)	and	V	501	

(11	kg).	All	surgical,	behavioral,	and	animal-care	procedures	complied	with	National	Institutes	of	Health	502	

guidelines	and	were	approved	by	the	Stanford	University	Institutional	Animal	Care	and	Use	Committee.	503	

Prior	to	training	on	the	direction	discrimination	task,	the	monkeys	were	implanted	with	a	stainless-steel	504	

head	 holder	 (Evarts,	 1968)	 and	 a	 scleral	 search	 coil	 for	 monitoring	 monocular	 eye	 position	 (Judge,	505	

Richmond,	&	Chu,	 1980).	We	used	operant	 conditioning	with	 liquid	 rewards	 to	 train	 the	monkeys	 to	506	

perform	 a	 two-alternative,	 forced-choice,	motion	 discrimination	 task,	 and	a	 visually	 guided,	 delayed-507	

saccade	task,	both	described	below.	508	

During	training	and	experimental	sessions,	monkeys	sat	in	a	primate	chair	with	their	head	restrained.	509	

Visual	 stimuli	 were	 presented	 on	 a	 cathode	 ray	 tube	 monitor	 controlled	 by	 a	 VSG	 graphics	 card	510	

(Cambridge	Graphics,	UK),	at	a	frame	rate	of	120Hz,	and	viewed	from	a	distance	of	57	cm.	Eye	movements	511	

were	monitored	through	the	scleral	eye	coils	(C-N-C	Engineering,	Seattle,	WA).	Behavioral	control	and	512	

data	acquisition	were	managed	by	a	computer	running	the	REX	software	environment	and	QNX	Software	513	

System’s	(Ottawa,	Canada)	real-time	operating	system.	514	

Behavioral	tasks	515	

Monkeys	 performed	 a	 motion-direction	 discrimination	 task	 in	 which	 perceptual	 judgments	 were	516	

reported	by	saccadic	eye	movements	to	one	of	two	targets	(Britten	et	al.,	1992)	(Fig.	1a).	The	eccentricity	517	

(6-18	deg	of	visual	angle)	and	angular	location	of	the	 targets	varied	across	sessions	(Fig.	1b)	Animals	518	

discriminated	the	direction	of	motion	in	a	fixed-duration	random-dot	kinematogram	contained	within	a	519	

circular	aperture	of	7°	(monkey	T)	or	6°	(Monkey	V)	in	diameter	and	centered	on	the	fixation	point.	The	520	

difficulty	of	the	discrimination	was	varied	parametrically	from	trial	to	trial	by	adjusting	the	percentage	of	521	

dots	 in	coherent	motion	(Britten	et	al.,	1992)	(Fig.	1c).	The	animals	were	rewarded	 for	 indicating	 the	522	

correct	direction	of	motion	with	a	saccadic	eye	movement	to	the	target	corresponding	to	the	prevalent	523	

direction	 of	 motion	 (choice	 1	 or	 2).	 At	 0%	 coherence	 the	 animals	 were	 rewarded	 randomly	 (50%	524	

probability).		525	

Each	trial	(Fig.	1a)	began	with	the	appearance	of	a	small	spot	that	the	monkey	was	required	to	fixate	for	526	

500	ms	(fixation	period;	±1.5	deg	fixation	window)	before	the	two	saccade	targets	were	displayed	(target	527	

period).	After	400	msec	the	random-dot	stimulus	was	presented	for	a	fixed	duration	of	800	msec	(dots	528	

period).	The	viewing	of	the	dots	was	followed	by	a	variable-interval	delay	period,	during	which	only	the	529	

fixation	point	and	the	two	peripheral	targets	were	visible	(300-1100ms,	mean	700ms)	(Kim	&	Shadlen,	530	

1999).	At	the	end	of	the	delay	period,	the	fixation	point	disappeared,	cuing	the	monkey	to	quickly	initiate	531	

the	 choice	 saccade.	 The	 saccade	was	 followed	 by	 an	 additional	 randomized	 interval,	 the	 hold	 period,	532	

during	which	the	monkey	was	required	to	fixate	the	target	before	the	trial	outcome	(500-1200ms,	mean	533	

900ms;	±2-4	deg	fixation	window,	depending	on	eccentricity).	At	the	end	of	the	hold	time,	both	targets	534	
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disappeared,	 a	 liquid	 reward	 was	 delivered	 for	 correct	 trials,	 and	 the	 monkey	 was	 released	 from	535	

behavioral	control.	At	this	point,	the	monkey	could	initiate	the	next	trial	by	re-directing	his	gaze	to	the	536	

central	fixation	spot,	although	he	did	not	always	do	so.	537	

In	 separate	 sessions,	 monkeys	 also	 performed	 a	 visually-guided,	 delayed-saccade	 task	 (Fig.	 5a).	 The	538	

sequence	of	events	in	this	task	was	similar	to	that	in	the	dots	task,	but	no	random-dots	were	shown,	and	539	

only	one	target	was	presented	on	any	given	trial.	The	fixation	period	(500ms)	was	followed	by	the	target	540	

period	(500-1100ms,	mean	800ms),	the	go-cue	(fixation	point	disappearance)	and	instructed	saccade,	541	

and	 the	hold	period	(700-1300ms,	mean	1000ms).	Within	a	session,	 target	location	on	each	 trial	was	542	

pseudo-randomly	chosen	from	a	set	of	locations	distributed	across	the	visual	field.	The	number	of	target	543	

locations,	(24-33),	eccentricities	(3	values,	4-12	deg)	and	angular	locations	(8-11	angles)	varied	across	544	

sessions.	545	

Neural	recordings	546	

We	 recorded	 single	 and	 multi-unit	 neural	 signals	 with	 a	 chronically-implanted	 10	 by	 10	 array	 of	547	

electrodes	 (Cyberkinetics	Neurotechnology	 Systems,	 Foxborough,	MA;	 now	Blackrock	Microsystems).	548	

The	inter-electrode	spacing	was	0.4	mm;	electrodes	were	1.5	mm	long.	Arrays	were	surgically	implanted	549	

into	 the	 pre-arcuate	 gyrus	 (Supp.	 Fig.	 2)	 according	 to	 a	 previously-published	 surgical	 protocol	550	

(Santhanam,	Ryu,	Yu,	Afshar,	&	Shenoy,	2006;	Suner,	Fellows,	Vargas-Irwin,	Nakata,	&	Donoghue,	2005).	551	

We	targeted	the	array	to	a	region	of	prefrontal	cortex	between	the	posterior	end	of	the	principal	sulcus,	552	

and	the	anterior	bank	of	the	arcuate	sulcus,	near	the	rostral	zone	of	Brodmann’s	area	8	(area	8Ar).	The	553	

arrays	were	 implanted	in	the	 left	hemisphere	 in	both	monkeys.	The	exact	 location	of	the	array	varied	554	

slightly	across	monkeys	(Supp.	Fig.	2),	due	to	inter-animal	variations	in	cortical	vasculature	and	sulcal	555	

geometry	that	constrained	the	location	of	the	array	insertion	site	in	each	monkey.	556	

Array	signals	were	 amplified	with	 respect	 to	 a	 common	 subdural	 ground,	 filtered	 and	digitized	using	557	

hardware	and	software	from	Cyberkinetics.	For	each	of	the	96	recording	channels,	‘spikes’	from	the	entire	558	

duration	of	a	recording	session	were	sorted	and	clustered	offline,	based	on	a	principal	component	analysis	559	

of	voltage	waveforms,	using	Plexon	Offline	Sorter	(Plexon	 Inc.,	Dallas,	Texas).	This	automated	process	560	

returned	 a	 set	 of	 candidate	 action-potential	 classifications	 for	 each	 electrode	 that	 were	 subject	 to	561	

additional	quality	controls,	including	considerations	of	waveform	shape,	waveform	reproducibility,	inter-562	

spike	interval	statistics,	and	the	overall	firing	rate.	For	clusters	returned	by	this	post-processing,	both	563	

spike-waveform	and	 spike-timing	metrics	 fell	within	previously-reported	 ranges	 for	 array	 recordings	564	

(Suner	et	al.,	2005).		565	

Daily	recordings	yielded	~100-200	single	and	multi-unit	clusters	distributed	across	the	array.	We	do	not	566	

differentiate	between	single-unit	and	multi-unit	recordings,	referring	to	both	collectively	as	“units”	in	a	567	

way	that	is	agnostic	to	their	biological	origin.	No	conclusions	we	draw	in	this	study	appear	to	depend	on	568	

a	 distinction	 between	 single	 and	 multi-unit	 responses;	 indeed,	 we	 replicated	 several	 main	 findings	569	

reported	 here	 in	 a	much	 smaller	 population	 of	 well-discriminated	 single-units	 from	 single-electrode	570	
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recordings	in	two	additional	animals	(pre-arcuate	and	arcuate	cortex;	data	from	(Mante	et	al.,	2013),	not	571	

shown).		572	

Neural	responses	in	the	dots-task	were	recorded	over	a	total	of	67	and	62	experiments	in	monkeys	T	and	573	

V,	for	a	total	of	59727	and	37985	trials.	Each	daily	recording	was	subdivided	into	several	short	“sessions”	574	

with	 identical	 behavioral	 parameters.	 The	 behavioral	 paradigm	 was	 interrupted	 for	 a	 few	 seconds	575	

between	the	sessions	 to	close	and	open	data	 files.	In	many	recordings,	these	 interruptions	introduced	576	

discontinuities	in	the	overall	firing	rate	of	units	across	sessions.	To	ensure	maximal	stationarity	in	the	577	

recordings,	we	thus	analyzed	each	session	separately.	Overall,	we	analyzed	responses	from	185	and	184	578	

sessions	in	monkeys	T	and	V,	yielding	a	total	of	34233	and	44386	units.	Since	many	of	these	units	were	579	

likely	recorded	repeatedly	across	sessions	and	days	(Chestek	et	al.,	2007;	Santhanam	et	al.,	2009),	these	580	

totals	should	be	interpreted	as	the	number	of	samples	drawn	from	a	smaller	underlying	neural	population	581	

of	unknown	size.	The	responses	during	the	delayed-saccade	task	were	recorded	over	a	total	of	26	and	11	582	

experiments	 in	monkeys	 T	 and	 V,	 for	 a	 total	 of	 23865	 and	 4768	 trials,	 distributed	 across	61	 and	13	583	

sessions,	 and	 yielding	 11468	 and	 3069	 units.	 In	 both	monkeys,	 recordings	 from	 the	 two	 tasks	were	584	

interleaved	over	the	same	time-period	(9	and	18	months,	monkeys	V	and	T).		585	

Two	studies	reporting	analyses	on	a	subset	of	these	recordings	were	published	previously	(Kiani	et	al.,	586	

2014;	Kiani	et	al.,	2015).	587	

Analysis	of	choice	behavior	588	

To	quantify	the	effect	of	target	configuration	on	the	monkey’s	performance,	we	computed	for	each	session	589	

the	percentage	of	correct	responses	as	a	function	of	motion	coherence	(Fig.	1c,	left)	and	fitted	a	sigmoidal	590	

curve	to	all	the	resulting	points	from	the	same	target	configuration	(Fig.	1c,	middle;	one	curve	per	target	591	

configuration).	 The	 estimates	 of	 percentage	 correct	 at	 zero	 coherence	 are	more	 variable	 than	 those	592	

obtained	for	non-zero	coherences,	as	the	latter	are	based	on	twice	as	many	trials	per	session	(average	593	

over	 two	 directions	 of	 motion).	 We	 summarized	 the	 performance	 of	 the	 monkey	 in	 each	 target	594	

configuration	by	using	the	fitted	curves.	Specifically,	we	defined	an	average	performance	for	each	target	595	

configuration	 (Fig.	 1c,	 right)	 as	 the	 average	 fitted	 performance	 over	 100	 coherence	 values	 spaced	596	

logarithmically	between	1%	and	100%	(Fig.	1b).	597	

Analysis	of	eye	movement	data	598	

We	estimated	 the	 saccade	 initiation	and	end	 times	 in	 each	 trial	 by	 applying	 a	Gaussian	 fit	 to	 the	 eye	599	

velocity	profile	of	the	choice	saccade.	Saccade	initiation	and	end	times	were	defined,	respectively,	as	the	600	

times	when	the	derivative	of	the	fit	first	exceeded	a	velocity	threshold	of	15◦/sec	and	decreased	below	601	

10◦/sec.	602	

Analysis	of	neurophysiology	data	603	

Throughout	 the	 paper,	 we	 consider	 neural	 responses	 occurring	 during	 two	 distinct,	 largely	 non-604	

overlapping	time	epochs.	The	first	epoch	starts	100ms	before	onset	of	the	random-dots,	and	ends	200ms	605	
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after	their	offset.	The	second	epoch	starts	600ms	before	and	ends	600ms	after	the	initiation	of	the	choice	606	

saccade.	For	each	 trial,	we	computed	 time-varying	 firing	rates	by	counting	spikes	 in	non-overlapping,	607	

square	time-windows	of	width	50ms.		608	

We	defined	condition-average	responses	for	each	unit	by	averaging	the	time-varying	firing	rates	across	609	

all	 trials	 belonging	 to	 a	 given	 condition.	 We	 define	 each	 condition	 based	 on	 a	 combination	 of	 task	610	

variables,	 specifically	 the	 monkey’s	 choice	 (choice	 1	 or	 2),	 trial	 outcome	 (correct	 or	 error),	 motion	611	

coherency	(values	differ	across	experiments),	and	overall	difficulty	(high	vs.	low	coherence,	defined	by	612	

splitting	coherences	into	two	sets).	Some	of	these	conditions	are	shown	only	in	a	subset	of	the	figures.	In	613	

sessions	with	one	target	per	hemifield,	choice	1	was	defined	as	the	target	in	the	right	visual	hemifield,	i.e.	614	

contralateral	to	the	left	hemisphere	containing	the	recording	array	(see	above,	Neural	recordings);	when	615	

both	targets	appeared	in	the	same	hemifield,	choice	1	and	choice	2	corresponded	to	the	targets	in	the	616	

upper	and	lower	visual	fields,	respectively.	617	

The	 condition-average	 responses	 are	 defined	 at	 the	 level	 of	 individual	 experimental	 sessions,	 each	618	

containing	only	a	fraction	of	the	trials	recorded	on	a	given	day	(see	Neural	recordings	above).	As	a	result,	619	

the	 condition-averages	 can	 be	 rather	 noisy	 (Supp.	 Fig.	 3,	 Measured).	 We	 thus	 use	 a	 dimensionality	620	

reduction	approach	to	de-noise	the	responses	of	individual	units.	For	each	session,	we	identify	patterns	621	

of	population	activity	that	are	robustly	modulated	by	 the	choice	on	a	given	 trial	and	reconstruct	each	622	

unit’s	 response	based	only	on	 these	 choice-related	patterns—the	 contribution	of	 all	 other	patterns	 is	623	

removed	from	each	unit.	The	resulting,	reconstructed	responses	differ	from	the	raw	condition-averages	624	

mainly	 in	 two	 respects	 (Supp.	 Fig.	 3;	 15	 PC	 dimensions	 or	 10	 choice	 components).	 First,	 they	 are	625	

substantially	less	noisy.	Second,	they	typically	display	smaller	modulations	over	time	that	are	common	to	626	

all	conditions.	This	second	observation	implies	that	a	substantial	fraction	of	the	condition-independent	627	

variance	occurs	in	a	subspace	of	the	population	dynamics	that	is	orthogonal	to	the	inferred	task-related	628	

patterns,	in	agreement	with	previous	reports	(Kobak	et	al.,	2016).	As	the	focus	of	this	report	lies	on	the	629	

choice-related	 components	 of	 the	 response,	 these	 condition-independent	 signals	 are	 not	 considered	630	

further.		631	

Reconstructed	unit	responses	based	on	varying	degrees	of	de-noising	are	shown	in	Fig.	1	and	Fig.	3	(10	632	

choice	 components),	 Fig.	 6	 (5	 choice	 components),	 and	 the	 corresponding	 supplementary	 figures.	633	

Including	 additional	 dimensions	 to	 the	 unit	 responses	 does	 not	 significantly	 affect	 the	 results	 of	 the	634	

sorting	procedure	used	 to	 identify	 sequences	 at	 the	 level	 of	 individual	units	 (Fig.	3	and	Supp.	Fig.	4).	635	

Including	 additional	 dimensions	 to	 the	 unit	 responses	 does	 also	 not	 affect	 the	 conclusions	 about	 the	636	

structure	and	origin	of	diversity	in	unit	responses	across	the	population	(Figs.	6-8).	However,	the	non-637	

linear	embeddings	are	sensitive	to	noise,	and	for	large	number	of	components	(e.g.	10)	result	in	a	high	638	

number	of	artefactual,	small	clusters	that	do	not	reflect	bona	fide	neural	activity	(not	shown).	The	details	639	

of	the	dimensionality	reduction	approach	are	described	in	the	next	sections.		640	

Targeted	dimensionality	reduction	641	
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We	 analyzed	 the	 population	 response	 in	 each	 session	 with	 Targeted	 Dimensionality	 Reduction,	 a	642	

dimensionality	reduction	approach	based	on	linear	regression	(Mante	et	al.,	2013).	We	 first	applied	a	643	

“soft”	z-scoring	(referred	to	simply	as	“z-scoring”	below)	to	the	responses	of	a	given	unit	by	subtracting	644	

the	mean	response	from	the	firing	rate	at	each	time	and	in	each	trial	and	by	dividing	the	result	by	the	645	

standard	deviation	of	the	responses	(plus	a	constant):	646	

𝑟",$(𝑘) =
𝑓",$(𝑘) − 〈𝑓",$(𝑘)〉$,-
𝑠𝑡𝑑 1𝑓",$(𝑘)2

$,-
+ 𝜎5

	647	

where	𝑓",$(𝑘)	and	𝑟",$(𝑘)	are	the	firing	rate	and	z-scored	responses	of	unit	i	at	time	t	and	on	trial	k,	〈∙〉$,-	648	

and	𝑠𝑡𝑑(∙)$,-	indicate	the	mean	and	standard	deviation	across	times	and	trials,	and		𝜎5	is	a	constant	defined	649	

as	the	median	of	the	standard	deviation	across	all	units	in	a	session.	The	z-scoring	de-emphasizes	the	650	

contribution	to	the	population	response	of	units	with	very	high	firing	rates	(typically	multi-unit	activity),	651	

while	the	constant	term	ensures	that	units	with	very	small	firing	rates	are	not	over-emphasized.	We	do	652	

not	apply	any	temporal	smoothing	to	the	responses.	653	

We	used	a	permutation	test	to	determine	the	fraction	of	units	with	significant	choice	responses.	For	each	654	

unit,	we	measure	the	largest	absolute	difference	between	average	choice	1	and	2	responses	over	all	times:	655	

𝑚" = 𝑚𝑎𝑥$;〈𝑓",$(𝑘)〉-∈=>?"=@A − 〈𝑓",$(𝑘)〉-∈=>?"=@B;	656	

We	assessed	the	significance	of	𝑚"	by	comparing	it	to	the	null	distribution	for	𝑚"	obtained	with	10,000	657	

random	permutations	of	 trials	𝑘.	This	 test	makes	no	assumptions	about	 the	distribution	of	𝑓",$(𝑘)	and	658	

incorporates	the	correction	for	multiple	comparisons	across	times	𝑡.		659	

We	describe	the	z-scored	responses	of	unit	𝑖	at	time	𝑡	as	a	linear	combination	of	several	task	variables:		660	

𝑟",$(𝑘) = 𝛽",$(1)	𝑐ℎ𝑜𝑖𝑐𝑒(𝑘) + 𝛽",$(2)	𝑚𝑜𝑡𝑖𝑜𝑛(𝑘) + 𝛽",$(3)	𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦(𝑘) + 𝛽",$(4)	661	

where	𝑐ℎ𝑜𝑖𝑐𝑒(𝑘)	is	 the	monkey’s	 choice	 on	 trial	𝑘 	(+1:	 to	 choice	 1;	 -1:	 to	 choice	 2),	𝑚𝑜𝑡𝑖𝑜𝑛(𝑘)	is	 the	662	

“signed”	motion	coherence	of	the	dots	on	trial	𝑘	(positive	values	for	motion	towards	the	choice	1	target,	663	

and	negative	values	 towards	choice	2),	and	𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦(𝑘)	is	 the	 “unsigned”	motion	coherence,	 i.e.	 the	664	

absolute	value	of	𝑚𝑜𝑡𝑖𝑜𝑛(𝑘).	The	regression	coefficients	𝛽",$(𝑣),	for	𝑣=1	to	3,	describe	how	much	the	trial-665	

by-trial	firing	rate	of	unit	i,	at	a	given	time	t	during	the	trial,	depends	on	the	corresponding	task	variable	666	

𝑣.	The	last	regression	coefficient	(𝑣=4)	captures	variance	that	is	independent	of	the	three	task	variables,	667	

and	instead	results	from	differences	in	the	responses	across	time.	The	signed	and	unsigned	coherence	are	668	

added	to	the	regression	for	consistency	with	a	previous	study	(Mante	et	al.,	2013)	but	explain	only	little	669	

variance	in	the	responses	compared	to	choice	(not	shown).	670	

To	estimate	the	regression	coefficients	𝛽",$(𝑣)	we	first	define,	for	each	unit	i	and	time	t,	a	matrix	𝑭𝒊	of	size	671	

𝑁=?@U × 𝑁$W"XY ,	where	𝑁=?@U 	is	the	number	of	regression	coefficients	to	be	estimated	(4),	and	𝑁$W"XY	is	the	672	

number	of	trials	recorded	for	unit	𝑖.	The	first	three	rows	of	𝑭𝒊	each	contain	the	trial-by-trial	values	of	one	673	
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of	 the	 three	 task	 variables.	The	 last	 row	consists	only	of	 ones,	 and	 is	needed	to	 estimate	𝛽",$(4).	 The	674	

regression	coefficients	can	then	be	estimated	as:	675	

𝜷",$ = [𝑭"𝑭"𝑻]
^𝟏
𝑭"𝒓",$,	676	

where	𝜷",$ 	is	a	vector	of	length	𝑁=?@U 	with	elements	𝛽",$(𝑣),	𝑣=1-4.	We	denote	vectors	and	matrices	with	677	

bold	letters,	and	use	the	same	letter	(not	bold)	to	refer	to	the	corresponding	entries	of	the	vector	or	matrix,	678	

which	in	this	case	are	indexed	by	𝑣.	679	

The	regression	coefficients	𝜷",$	can	be	re-arranged	to	produce	a	set	of	coefficient	vectors	𝜷a,$	(𝑣=1-4)	of	680	

length	𝑁bc"$ 	whose	entries	𝛽a,$(𝑖)	correspond	to	the	regression	coefficient	for	task	variable	𝑣	for	unit	𝑖	at	681	

time	𝑡.	Each	vector	𝜷a,$	then	corresponds	to	the	direction	in	state	space	that	accounts	for	variance	in	the	682	

population	response	due	to	the	corresponding	task	variable	at	time	𝑡.	Targeted	dimensionality	reduction	683	

involves	projecting	the	population	response	into	subspaces	derived	from	these	regression	vectors.		684	

Single-trial	population	responses	are	constructed	by	re-arranging	 the	z-scored	responses	 into	vectors	685	

𝒔-,$,	where	𝒔-,$(𝑖) = 𝒓",$(𝑘).	The	dimensionality	of	the	state	space	corresponds	to	𝑁bc"$ ,	 the	number	of	686	

units	 in	 the	 population.	 Condition-averaged	 responses	 𝒙=,$ 	are	 obtained	 by	 averaging	 single-trial	687	

responses	 over	 all	 trials	 belonging	 to	 condition	𝑐 .	 We	 defined	 conditions	 based	 on	 the	 choice	 of	 the	688	

monkey	(choice	1	or	choice	2),	the	motion	coherence,	the	outcome	of	the	trial	(correct	or	incorrect),	and	689	

pairwise	combinations	thereof.		690	

We	used	PCA	to	identify	the	dimensions	in	state	space	that	captured	the	most	variance	in	the	condition-691	

averaged	 population	 responses.	We	 first	 build	 a	 data	matrix	𝑿 	of	 size	𝑁bc"$ × (𝑁=?cg"$"?c ∙ 𝑇) ,	 whose	692	

columns	correspond	to	the	z-scored	population	response	vectors	𝒙=,$ .	𝑁=?cg"$"?c 	corresponds	to	the	total	693	

number	of	conditions,	and	𝑇	to	the	number	of	time	samples.	The	PCs	of	this	data	matrix	are	vectors	𝒗X	of	694	

length	𝑁bc"$ ,	indexed	by	𝑎	from	the	PC	explaining	the	most	variance	to	the	one	explaining	the	least.	We	695	

use	the	first	𝑁j=X	PCs	to	define	a	first	de-noising	matrix	𝑫	of	size	𝑁bc"$ × 𝑁bc"$:	696	

𝑫 = ∑ 𝒗X𝒗Xs
tuvw
Xxy .	697	

We	use	this	matrix	to	de-noise	the	regression	vectors	defined	above	by	projecting	them	into	the	subspace	698	

spanned	by	the	first	𝑁j=X = 15	principal	components:	699	

𝜷a,$
j=X = 𝑫	𝜷a,$ ,	700	

with	 the	 set	 of	 vectors	𝜷a,$
j=X 	also	 of	 length	𝑁bc"$ .	 We	make	 use	 of	 the	𝜷a,$

j=X 	to	 build	 the	 two	 distinct	701	

subspaces	of	the	dynamics	that	are	considered	in	the	main	text.		702	

We	build	a	first	subspace	by	focusing	on	the	10	state-space	dimensions	that	account	for	most	variance	in	703	

the	 choice	 regression	 vectors.	 We	 first	 define	 a	 matrix	𝒀 	of	 size	𝑁bc"$ × 2𝑇 	whose	 first	𝑇 	columns	704	

correspond	 to	 the	 de-noised	 regression	 vectors	 of	 choice	𝜷y,$
j=X 	and	 second	𝑇 	columns	 correspond	 to	705	
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−𝜷y,$
j=X ,	compute	principal	components	𝒘X 	of	this	matrix,	and	define	a	projection	matrix	𝑫y}	based	on	the	706	

first	10	PCs:	707	

𝑫y} = ∑ 𝒘X𝒘X
sy}

Xxy .	708	

We	build	a	second	subspace	based	on	de-noised	‘regression	vectors’	obtained	by	averaging	𝜷y,$
j=X	over	all	709	

times	𝑡	falling	within	time	windows	𝑆� 	for	𝑗=1-5:	710	

𝜷�� = 〈𝜷y,$
j=X〉$∈��			711	

where	each	𝜷�� 	is	of	dimension	𝑁bc"$ ,	 and	 the	 time	windows	𝑆� 	cover	 times	𝑡	within	the	 intervals	 [0.20,	712	

0.60]	relative	to	dots	onset,	and	[-0.55,	-0,30],	[-0.10,	-0.05],	[0,	0.05],	[0.10,	0.15]	relative	to	saccade	onset	713	

(all	times	in	seconds).	We	orthogonalize	the	regression	vectors	with	the	QR-decomposition:	714	

𝐁� = 𝑸	𝑹,	715	

where	𝐁� = �𝜷�y	𝜷� �	𝜷��	𝜷��	𝜷���	is	 a	matrix	whose	 columns	 correspond	 to	 the	 regression	 vectors,	𝑸	is	 an	716	

orthogonal	matrix,	 and	𝑹	is	 an	upper	 triangular	matrix.	The	 first	 five	 columns	of	𝑸	correspond	 to	 the	717	

orthogonalized	 regression	 vectors	𝜷�� .	 The	 entries	𝛽��(𝑖) 	for	 𝑗 =1-5	 correspond	 to	 the	 “component	718	

contributions”	in	Fig.	6e,	and	together	are	analogous	to	the	“component	patterns”	shown	schematically	in	719	

Fig.	 2c.	 Because	 of	 the	 orthogonalization	 step,	 each	 component	 pattern	 explains	 distinct	 portions	 of	720	

choice-related	 variance	 in	 the	 responses.	 Note	 that	we	 did	not	 apply	 any	 temporal	 smoothing	 to	 the	721	

responses,	and	thus	the	component	activations	faithfully	reflect	the	temporal	dynamics	of	the	underlying	722	

population	 responses.	 We	 define	 the	 projection	 matrix	𝑫� 	based	 on	 the	 orthogonalized	 regression	723	

vectors:	724	

𝑫� = ∑ 𝜷��𝜷��
s�

�xy .	725	

We	use	the	projection	matrices	𝑫y}	and	𝑫�	to	de-noise	the	responses	of	individual	units,	and	to	focus	our	726	

analyses	to	the	contributions	of	choice	to	the	responses	(see	below,	Reconstructed	unit	responses).	The	727	

first	projection	matrix,	𝑫y},	results	in	a	“milder”	de-noising,	and	is	based	on	a	conservative	estimate	of	the	728	

number	 of	 choice	 components	 in	 the	 population	 response	 from	 any	 single	 session	 (Figs.	 1,3).	 This	729	

conservative	estimate	ensures	that	no	“meaningful”	diversity	of	unit	responses	is	lost	because	of	the	de-730	

noising,	which	 is	 important	 in	particular	 for	 the	 identification	of	 sequences	 across	units	 (Fig.	 3).	The	731	

second	projection	matrix,	𝑫�,	 is	based	on	a	definition	of	choice-components	that	is	tailored	to	identify	732	

sequences	or	 recruitment	of	 patterns	 in	 the	population	(Fig.	 4),	 and	 results	 in	 a	more	 aggressive	de-733	

noising	suitable	for	generating	the	non-linear	embeddings	(Fig.	6).	The	bulk	of	the	variance	in	the	de-734	

noised	regression	coefficients	𝜷y,$
j=X	is	contained	in	the	subspace	defined	by	𝑫�	(Fig.	4i,j;	see	below,	Quality	735	

of	 reconstructions),	and	 the	overall	diversity	 of	 unit	 responses	 across	 the	population	 is	similar	when	736	

responses	 are	 de-noised	 with	 either	 projection	 matrix	 (Supp.	 Fig.	 4),	 suggesting	 that	 choice	 related	737	

responses	within	a	session	can	be	captured	by	less	than	10	components.	738	
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Component	activations	739	

To	 extract	 component	 activations	 (Fig.	 4a,c;	 schematically	 in	 Fig.	 2d)	 we	 first	 define	 a	matrix		𝑿- 	of	740	

dimensions	𝑁bc"� × 𝑇,	 whose	 columns	 correspond	 to	 the	 single-trial	 population	 responses	𝒔-,$(𝑖)	(see	741	

above,	Targeted	dimensionality	reduction).	Component	activations	are	obtained	by	projecting	the	single	742	

trial	responses	into	subspace	defined	by	the	orthogonalized	regression	vectors:	743	

𝒑�,- = 𝜷��
s	𝑿- ,	744	

where	𝒑�,-	is	a	set	of	time-series	vectors	over	all	components	and	trials,	each	with	length	𝑇.	To	avoid	the	745	

extraction	of	spurious	choice	activations,	for	each	experimental	session	we	computed	the	activations	𝒑�,-	746	

with	a	10-fold	 validation	procedure.	We	 first	 randomly	 assigned	each	 trial	𝑘	to	1	of	 10	 sets.	We	 then	747	

computed	the	component	activations	𝒑�,-	for	all	trials	in	a	given	set	based	on	orthogonalized	regression	748	

vectors	𝜷�� 	that	 were	 estimated	 from	 responses	 on	 the	 remaining	 9	 sets	 of	 trials.	 We	 repeated	 this	749	

procedure	10	times	to	compute	𝒑�,-	for	all	trials	in	the	session.		750	

We	quantified	the	strength	of	choice	related	activity	along	component	𝑗	and	at	time	𝑡	as	the	area	under	751	

the	ROC	curve	between	the	two	distributions	of	𝒑�,-	corresponding	to	choice	1	and	choice	2	trials	(Fig.	752	

4b,d;	 Supp.	 Fig.	 5b,d).	We	 computed	 condition-averaged	 component	 activations	𝒑�,= 	by	 averaging	𝒑�,-	753	

over	all	trials	𝑘	belonging	to	a	given	condition	𝑐	(Fig.	4a,c;	Supp.	Fig.	5a,c).		754	

Reconstructed	unit	responses	755	

We	obtain	reconstructed,	de-noised	population	responses	by	projecting	the	population	responses	into	the	756	

corresponding	subspaces	(Supp.	Fig.	3).	Specifically,	 the	reconstructions	based	on	the	mild	de-noising	757	

(Figs.	1,3)	are	obtained	from:	758	

𝑿=y} = 𝑫y}𝑿=,	759	

where	 	𝑿= 	is	 obtained	 by	 averaging	𝑿- 	over	 all	 trials	𝑘 	belonging	 to	 a	 given	 condition	𝑐 .	 The	 more	760	

aggressively	de-noised	reconstructions	𝑿=�	are	obtained	as	a	weighted	sum	of	the	component	patterns,	761	

weighed	by	the	corresponding	component	activations:	762	

𝑿-� = ∑ 𝜷��𝒑�,-�
�xy ,	763	

and	by	again	averaging	over	all	trials	belonging	to	a	given	conditions.	The	resulting	reconstructions	are	764	

approximately	equivalent	to	those	that	one	would	obtain	by	projecting	the	condition	averaged	population	765	

responses	directly	into	the	subspace	spanned	by	the	orthogonalized	regression	vectors:	766	

𝑿=� ≈ 𝑫�𝑿=,		767	

as	for	the	mild	de-noising.	The	equality,	however,	is	only	approximate	because	the	𝒑�,-	are	cross-validated	768	

(see	above,	Component	activations),	while	𝑿= 	is	not.		769	

Quality	of	reconstructions	770	
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To	 validate	 the	 quality	 of	 the	 aggressively	 de-noised	 reconstructions,	 we	 used	 the	 reconstructed	771	

responses	to	predict	the	observed	similarity	𝜑$,$� 	between	choice	related	population	activity	at	times	𝑡	and	772	

𝑡̂	(Fig.	4e,g),	defined	as:	773	

𝜑$,$� = �𝜷y,$
j=Xs𝜷y,$�

j=X�,		774	

where	 |∙| 	indicates	 the	 absolute	 value.	 We	 applied	 a	 cross-validation	 procedure	 to	 compute	 these	775	

similarities,	by	estimating	𝜷y,$
j=Xs	and	𝜷y,$�

j=X	from	two	separate	sets	of	trials,	each	containing	a	randomly	776	

chosen	half	of	the	trials	in	a	session.	We	repeated	this	procedure	with	10	different	random	assignments	777	

of	trials	into	two	halves,	and	averaged	the	resulting	similarities	to	obtain	the	matrices	in	Fig.	4e,g.	Because	778	

of	 this	 cross-validation,	 typically	𝜑$,$� < 1	even	 for	𝑡 = 𝑡̂ .	 In	 general,	𝜑$,$� 	approaches	 a	 value	of	1	when	779	

choice	strongly	modulates	the	population	response	both	at	times	𝑡	and	𝑡̂,	and	the	resulting	choice-related	780	

patterns	are	similar	(up	to	a	sign-change).	On	the	other	hand,	𝜑$,$� 	approaches	a	value	of	0	if	the	patterns	781	

at	𝑡	or	𝑡̂	are	dissimilar,	and/or	choice	does	not	strongly	modulate	the	population	response	at	either	𝑡	or	𝑡̂.	782	

Predicted	similarities	can	be	computed	in	the	same	way,	by	re-applying	all	the	above	steps	(starting	from	783	

Targeted	dimensionality	reduction)	to	the	reconstructed	responses.	However,	this	approach	results	in	784	

similarities	 that	 are	 much	 larger	 than	 those	 in	 Fig.	 4e,g	 (not	 shown).	 These	 larger	 values	 are	 a	785	

consequence	 of	 the	 de-noising	 procedure,	 as	 the	 estimates	 of	𝜷y,$
j=X 	obtained	 from	 the	 reconstructed	786	

responses	𝑿-� 	have	substantially	smaller	 trial-by-trial	variability	 than	 those	obtained	 from	the	original	787	

responses	𝑿- .	We	thus	added	Gaussian	noise	to	the	reconstructions:	788	

𝑋�-�(𝑖, 𝑡) = 𝑋-�(𝑖, 𝑡) + 𝑁(0, 𝜎�),	789	

where	𝑁(0, 𝜎�)	are	 draws	 from	 a	 normal	 distribution	 of	mean	 0	 and	 standard	 deviation	𝜎� = 1,	 and	790	

computed	 predicted	 similarities	 from	 the	 resulting	 𝑿�-� ,	 rather	 than	 directly	 from	 the	 de-noised	791	

reconstructions	𝑿-� .	With	 this	choice	of	𝜎� ,	 the	predicted	similarities	qualitatively	match	 the	observed	792	

ones	(Fig.	4f,h;	rightmost	panel).	Predicted	similarities	based	on	𝑚 < 5	choice	components	(Fig.	4f,h;	left	793	

panels)	were	obtained	in	the	same	way,	but	with	reconstructions	based	on:	794	

𝑿-� = ∑ 𝜷��𝒑�,-�
�xy .	795	

We	also	directly	quantified	the	fraction	of	choice	related	variance	in	the	population	responses	captured	796	

by	the	individual	choice	components	(colored	points,	Fig.	4i,j;	Supp.	Fig.	5i,j),	defined	as:	797	

𝑣� = 𝑣𝑎𝑟 1𝜷��
s𝒀2 ∑ 𝑣𝑎𝑟(𝒘X

s𝒀)y}
Xxy� ,		798	

and	compared	it	to	the	variance	explained	by	individual	PCs	of	the	de-noised	regression	vectors	(gray	799	

points,	Fig.	4i,j;	Supp.	Fig.	5i,j):	800	

𝑣X
j=X = 𝑣𝑎𝑟(𝒘X

s𝒀) ∑ 𝑣𝑎𝑟(𝒘X
s𝒀)y}

Xxy⁄ ,		801	

with	the	relevant	quantities	defined	above	(Targeted	dimensionality	reduction).	802	
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Sequences	across	units	803	

To	demonstrate	temporal	sequences	of	activation	across	individual	units,	we	visualized	the	population	804	

response	by	plotting	all	units’	responses	after	sorting	them	by	the	time	of	peak-activation	(Fig.	3;	Supp.	805	

Fig.	 4).	 For	 each	unit,	we	 first	 computed	 the	 time	of	peak	 activation	within	one	of	 three	 task	 epochs,	806	

extending	from	-0.1	to	1s	relative	to	dots-onset,	from	-0.6	to	-0.2s	relative	to	saccade	onset,	and	from	-807	

0.15	to	0.6s	relative	to	saccade	onset.	We	pooled	all	units	from	sessions	with	the	same	task	configuration,	808	

and	then	sorted	units	based	on	the	computed	peak-times,	resulting	in	three	different	orderings	of	units	809	

(e.g.	 corresponding	to	 the	 three	panels	 in	Fig.	3a).	We	applied	 this	analysis	to	 the	condition-averaged	810	

responses	𝑿=y}	obtained	with	mild	de-noising	(see	above,	Reconstructed	unit	responses).	Here	we	define	811	

𝑿yy}	and	𝑿�y}	as	the	average	activity	over	all	choice	1	and	choice	2	trials,	respectively.	We	computed	the	812	

peak	times	and	sorted	responses	either	on	𝑿yy} − 𝑿�y}	(e.g.	Fig.	3a,b),	or	directly	on	𝑿yy}	(Fig.	3c,	top)	and	813	

𝑿�y}	(Fig.	3c,	bottom).	In	all	panels,	after	sorting	we	averaged	the	responses	of	the	250	neighboring	rows	814	

(i.e.	units)	with	a	square	moving	window,	and	down-sampled	the	units	by	keeping	only	every	100th	row.	815	

To	identify	contributions	of	trial-by-trial	variability	to	the	resulting	plots,	we	generated	each	plot	from	816	

two	separate	groups	of	trials,	the	“validation”	set	(reflecting	only	contributions	to	the	responses	that	are	817	

conserved	 across	 trials)	 and	 the	 “sorting”	 set	 (reflecting	 also	 trial-by-trial	 variability).	 For	 each	818	

experimental	session,	we	randomly	assigned	half	of	the	trials	to	the	sorting	set,	and	the	other	half	to	the	819	

validation	set.	We	used	only	responses	from	the	sorting	set	to	compute	the	peak	activation	times	for	each	820	

unit,	and	then	ordered	the	unit	responses	from	both	the	sorting	(Fig.	3a)	and	validation	set	(Fig.	3b)	based	821	

on	these	times.	As	a	result,	the	ordering	of	units	along	the	vertical	axis	across	the	resulting	two	plots	is	822	

preserved,	but	is	entirely	determined	by	responses	in	the	sorting	set.	We	repeated	this	procedure	10	times	823	

for	each	session,	with	different	random	assignments	of	 trials	 into	 the	sorting	and	validation	sets,	and	824	

obtained	e.g.	Fig.	3	by	averaging	the	plots	resulting	from	the	10	different	orderings	of	units.		825	

Simulations	of	choice-encoding	scenarios	826	

We	illustrate	how	different	representations	of	choice	could	be	revealed	by	our	dimensionality	reduction	827	

approach	 with	 simulated	 population	 responses	 corresponding	 to	 four	 idealized	 scenarios	 for	 the	828	

encoding	 of	 choice-related	 activity	 (Fig.	 2).	 Our	 goal	 was	 not	 to	 reproduce	 the	 full	 richness	 of	 unit	829	

responses	observed	in	prefrontal	cortex,	but	rather	to	capture	the	defining	features	of	each	scenario	with	830	

the	simplest	possible	population	of	idealized	neurons.	We	constructed	population	responses	such	that	the	831	

population	average	response	was	(approximately)	the	same	across	all	encoding	scenarios	(Fig.	2a,	red	832	

curves).		833	

For	 all	 scenarios,	 we	 constructed	 single	 unit	 responses	𝒖 ,@ 	covering	𝐾 =73	 temporal	 samples,	 for	834	

encoding	scenarios	𝑒=1-4.	The	entries	𝑢 ,@(𝑘)	can	be	thought	of	as	the	average	choice	1	response	for	unit	835	

𝑞,	encoding	scenario	𝑒,	at	time	𝑘	for	choice	1.	The	average	response	for	choice	2	is	set	to	zero	at	all	times.	836	

The	 various	 encoding	 scenarios	 differ	 with	 respect	 to	 the	 definition	 of	𝒖  .	 The	 population	 average	837	

response	𝒖�@ 	is	defined	by	averaging	all	the	single	units	responses,	i.e.	𝒖�@ = 〈𝒖 ,@〉 .	838	
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(1) Sequence	 across	 units	 (Fig.	 2,	 second	 row).	 We	 first	 define	 normalized	 responses	𝑛y(𝑘) =839	

𝑠𝑖𝑛�(𝜋(𝑘 − 1)/24)	for	𝑘=1-25	 and	𝑛y(𝑘) = 0	otherwise.	 For	𝑞=2-49	we	 define	𝑛 (𝑘) = 𝑛y(𝑘 −840	

𝑞 + 1)	for	𝑘=𝑞-(𝑞+24),	 and	𝑛 (𝑘) = 0	otherwise,	which	 corresponds	 to	delaying	 the	 response	841	

𝑛y(𝑘)	by	𝑞-1	temporal	samples.	We	obtain	single	unit	response	as	𝒖 ,y = 𝒈s𝒏 ,	where	𝑔(𝑞)	is	a	842	

gain	factor	that	emphasizes	the	responses	of	units	around	the	time	of	saccade.	We	set	𝑔(𝑞) 	= 1	843	

for	𝑞=1-36	and	𝑔(𝑞) 	= 1 + 𝑠𝑖𝑛�(𝜋(𝑞 − 37)/12)	for	𝑞=37-49.	844	

(2) Stable	(Fig.	2,	 first	row).	Here	 the	response	of	every	unit	 in	 the	population	 is	 identical	up	to	a	845	

scaling	factor,	and	corresponds	to	the	population	average	response	𝒖�y	obtained	from	sequential	846	

encoding.	Specifically,	𝒖 ,� = 𝒔s𝒖�y	with	the	scaling	𝑠(𝑞)	homogeneously	covering	the	range	0.1	to	847	

1.9.	848	

(3) Recruitment	(Fig.	2,	 fourth	row).	We	 first	defined	component	signals	𝒄� 	for	𝑗=1-3	based	on	the	849	

single-unit	responses	𝒖 ,y	from	sequential	encoding.	Specifically,	we	define	an	early	component	850	

𝒄y = 〈𝒖 ,y〉 xy:�« = 𝒖�y ,	 a	 late	 component	𝒄� = 〈𝒖 ,y〉 xy¬:�« ,	 and	 a	 saccade	 component	 	𝒄� =851	

〈𝒖 ,y〉 x��:�«	.	We	then	defined	single	unit	responses	by	mixing	the	early	and	late	signals,	𝒖 ,� =852	

cos(𝜑) 𝒄y + sin(𝜑)𝒄� ,	 for	𝜑 	in	 the	 range	0 -𝜋 ,	𝑞=1-17;	 the	 early	 and	 saccade	 signals,	𝒖 ,� =853	

cos(𝜑) 𝒄y + sin(𝜑)𝒄�,	 for	𝜑	in	the	range	0-2𝜋,	𝑞=18-49;	and	the	late	and	saccade	signals,	𝒖 ,� =854	

cos(𝜑) 𝒄� + sin(𝜑)𝒄�,	for	𝜑	in	the	range	0-2𝜋,	𝑞=50-81.	855	

(4) Sequence	 across	 patterns	 (Fig.	 2,	 third	 row).	We	 use	 a	 different,	more	 elaborate	 approach	 to	856	

simulate	 the	 responses	 of	 this	 encoding	 scheme.	 We	 simulated	 responses	 from	 a	 non-linear,	857	

recurrent	neural	network	consisting	of	𝑞	=	100	hidden	units	and	a	single	read-out	(i.e.	output)	858	

dimension.	The	input	weights	of	the	read-out	unit	were	fixed	to	1/100,	meaning	that	the	read-out	859	

unit	 computes	 the	 average	of	 all	 hidden	unit	 activities	𝒖 ,� 	in	 the	network,	 i.e.	 the	population	860	

average	response	𝒖� ,� .	The	RNN	was	randomly	initialized	(except	readout	weights)	and	trained	861	

using	Hessian	free	optimization	(Martens	&	Sutskever,	2011)	such	that	after	training	the	activity	862	

of	 its	 read-out	 unit	 matched	𝒖�y .	 During	 training,	 the	 read-out	 weights	 were	 kept	 fixed.	 To	863	

regularize	 and	 keep	 RNN	 dynamics	 low	 dimensional,	 we	 used	 Frobenius	 regularization.	864	

Additional	RNN	parameters	and	procedures	are	described	in	(Mante	et	al.,	2013).	865	

In	(1)	to	(4),	we	added	noise	drawn	for	a	normal	distribution	to	each	𝒖 ,@(𝑘).	In	analogy	to	the	Targeted	866	

Dimensionality	Reduction	described	above,	we	extract	population	patterns	𝜷�� 	for	𝑗	=1-3,	which	capture	867	

the	representation	of	choice	within	three	different	time	windows.	Here,	instead	of	using	linear	regression,	868	

we	simply	average	the	population	activity	within	the	temporal	windows	𝑆� ,	𝛽̅�(𝑞) = 〈𝑢 (𝑘)〉-∈�� 	(Fig.	2c,	869	

left).	 The	 three	 temporal	windows	 cover	 the	 ranges	𝑆y = [11,15] ,	𝑆� = [31,35] ,	𝑆� = [51,55].	We	 then	870	

obtain	the	component	patterns	𝜷��	by	orthogonalizing	these	three	population	patterns	(as	above;	Fig.	2c,	871	

right).	Component	activation	are	obtained	by	projecting	the	single	unit	activations	onto	the	component	872	

patterns,	i.e.	𝒑@ = 𝜷��
s	𝑿@ ,	where	each	row	of	𝑿@ 	corresponds	to	a	vector	𝒖 ,@.	873	
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Non-linear	embeddings	874	

We	used	t-SNE	(t-Stochastic	Neighbor	Embedding)	to	visualize	and	characterize	the	diversity	of	response	875	

properties	across	units	in	the	population.	This	approach	yields	a	low-dimensional	representation	of	the	876	

entire	neural	population	that	maintains	an	explicit	representation	of	each	unit’s	unit	response.	Units	that	877	

are	nearby	in	the	low	dimensional	representation	have	similar	unit	responses.	We	use	this	representation	878	

to	characterize	the	global	structure	of	unit	responses	in	the	dots-task	(Fig.	6;	Supp.	Fig.	7),	and	to	compare	879	

them	to	responses	predicted	based	on	the	response	fields	estimated	in	the	delayed-saccade	task	(Figs.	7,8	880	

and	Supp.	Figs.	8,9;	see	below,	Prediction	of	dots	task	responses).		881	

As	a	first	step,	we	described	the	response	of	each	individual	unit	by	its	condition-averaged	responses	(Fig.	882	

6a).	 Here	 we	 considered	 a	 total	 of	 8	 conditions	 for	 each	 unit.	 Conditions	 1-4	 correspond	 to	 all	883	

combinations	of	choice	(1	or	2)	and	outcome	(correct	and	incorrect).	Conditions	5-6	correspond	to	all	884	

combinations	of	choice	(1	or	2)	and	a	reduced	measure	of	motion	strength	(high	and	low	coherence).	To	885	

define	the	latter	conditions,	for	each	session	we	separated	trials	into	high	and	low	coherence	conditions	886	

based	on	whether	the	corresponding	unsigned	coherence	was	larger	or	equal/smaller	than	the	median	887	

value	across	all	trials.	Here	we	use	condition-averages	from	𝑿=�,	i.e.	the	aggressively	de-noised	population	888	

responses	(see	above,	Reconstructed	unit	responses).	889	

As	a	second	step,	we	use	t-SNE	to	find	a	two-dimensional	representation	of	the	population	that	optimally	890	

preserves	 nearest	 neighbor	 relations	 (Fig.	 6b).	 To	 define	 a	 distance	 metric	 between	 units,	 we	891	

concatenated	each	units’	condition	average	responses	into	a	single	vector	of	length	8 × 𝑇,	i.e.	the	number	892	

of	conditions	times	the	number	of	time	samples	for	each	condition	(Fig.	6a).	We	then	defined	the	distance	893	

between	two	units	as	the	Euclidian	distance	between	the	corresponding	vectors,	after	the	latter	had	been	894	

transformed	by	a	compressive	non-linearity.	Specifically,	we	define	the	distance	𝑑	between	units	𝑖y	and	895	

𝑖�	as:	896	

𝑑(𝑖y, 𝑖�) = ³∑ ´𝑓 1𝑋=�(𝑖y, 𝑡)2 − 𝑓 1𝑋=�(𝑖�, 𝑡)2µ
�

=,$ ,	897	

where	 the	sum	runs	over	 the	8	conditions	𝑐 = 1	to	8,	over	𝑡 = 1	to	𝑇,	 and	𝑓(∙)	is	 the	compressive	non-898	

linearity:	899	

𝑓(𝑥) = tanh[𝑠𝑖𝑔𝑛(𝑥)𝑙𝑜𝑔(1 + |𝑥|)].	900	

This	compressive	non-linearity	de-emphasizes	the	contribution	of	the	transient,	but	large	saccade-aligned	901	

responses	 observed	 in	many	 units	 (Fig.	 1e),	 and	 in	 turn	 increases	 the	 contribution	 of	 the	 persistent	902	

activity	occurring	during	the	dots,	delay,	and	hold	periods	to	the	distance	between	units.	The	persistent	903	

activity	is	arguably	more	likely	to	depend	on	the	contingencies	of	the	task	at	hand,	as	thus	provides	a	more	904	

stringent	test	of	the	claim	that	choice-related	activity	is	task-independent.	The	conclusions	in	the	main	905	

text	are	robust	to	the	exact	definition	(or	the	absence)	of	the	compressive	non-linearity	(not	shown).		906	
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We	used	the	Barnes-Hut-t-SNE	algorithm	(Van	Der	Maaten,	2013)	to	accommodate	the	large	number	of	907	

data	points	(34233	and	44386	in	monkeys	T	and	V	for	the	dots	task).	We	used	the	algorithm	with	the	908	

following	 choice	 of	 parameters	 (same	 conventions	 as	 in	 (Van	 Der	 Maaten,	 2013):	 perplexity=30;	909	

theta=0.5;	 number	 of	 iterations=2500;	 number	 of	 iterations	 until	momentum	 switch=750).	 As	 a	pre-910	

processing	step,	data	was	projected	onto	its	first	100	principal	components,	and	the	algorithm	run	on	the	911	

resulting	projections.	The	 algorithm	 is	 iterative	 and	 converges	 to	 a	 local	minimum	dependent	on	 the	912	

initialization	 of	 the	 low	 dimensional	 representation.	 Many	 of	 those	 minima	 are	 equivalent	 as	 they	913	

represent	the	same	neighborhood	relationships—for	example,	a	rotation	of	the	entire	embedding	does	914	

not	change	neighborhood	relationships.	These	invariances	complicate	visual	comparisons	of	embeddings	915	

obtained	from	different	initial	conditions.	Rather	than	using	random	initial	conditions,	as	is	typically	done,	916	

we	thus	used	custom,	fixed	initial	conditions.	For	both	the	measured	(Fig.	6,	Supp.	Fig.	7)	and	predicted	917	

(Fig.	7,8,	Supp.	Fig.	8,9)	dots-task	responses,	we	initialized	each	unit’s	position	in	the	low	dimensional	918	

embedding	space	as	the	contributions	from	the	first	two	choice	components	(Fig.	6e,	first	two	panels),	i.e.	919	

the	orthogonalized	regression	vectors	𝜷y�	(initialization	for	first	embedding	dimension)	and	𝜷��	(second	920	

dimension).	These	 custom	 initial	 conditions	do	not	decrease	 embedding	quality	 compared	to	 random	921	

initial	conditions	(not	shown).	922	

Characterization	of	response-fields	923	

We	characterized	the	response-field	of	each	unit	with	a	visually-guided,	delayed-saccade	task	(Fig.	5	and	924	

Supp.	Fig.	6;	see	above,	Behavioral	tasks).	In	this	task,	monkeys	made	delayed	saccades	to	a	single	target	925	

chosen	from	a	set	of	locations	covering	the	entire	visual	field	(e.g.	Fig.	5a).	The	targets	were	shown	at	one	926	

of	three	eccentricities	(4°,	8°,	12°	degrees	of	visual	angle),	but	their	angular	location,	and	the	total	number	927	

of	targets,	differed	somewhat	across	sessions.	As	a	result,	the	average	responses	to	each	target	location	928	

could	not	be	directly	compared	across	all	sessions.	To	obtain	a	representation	of	the	response-field	that	929	

is	 independent	 of	 the	 exact	 target	 locations,	 for	 each	 session	 we	 interpolated	 the	measured	 average	930	

responses	along	the	vertices	of	a	regular	grid	(linear	interpolation),	covering	11	vertices	ranging	from	-931	

14°	to	+14°	along	the	horizontal	and	vertical	meridians.	At	eccentricities	larger	than	14°	 the	receptive	932	

field	values	were	set	to	zero.	We	performed	the	interpolation	separately	at	each	time	during	the	trial.	We	933	

considered	responses	in	two	task	epochs,	covering	the	range	of	0.1	to	0.4s	aligned	to	target	onset	and	-0.5	934	

to	0.5s	aligned	to	saccade	onset.		935	

We	estimated	the	peak	location	of	the	response-field	at	any	given	time	by	fitting	a	descriptive	function	to	936	

the	condition-averaged	responses	(Bruce	&	Goldberg,	1985),	expressed	as	a	function	of	the	angular	and	937	

radial	visual	field	location,	𝜗	and	𝜌:	938	

𝑔(𝜗, 𝜌) = 𝑔} + 𝑔y𝑒
(»¼»½)B

B¾»
B 𝑒

[¿À(Á)¼¿À(Á½)]
B

B¿À[¾Á]
B

,	939	

where	𝜗}	and	𝜌}	are	the	angular	and	radial	locations	of	the	peak	(red	points	in	Fig.	5c;	circles	in	Fig.	5e-940	

h),	𝜎Â	and	𝜎Ã	determine	the	tuning	widths	along	the	angular	and	radial	directions,	and	𝑔}	and	𝑔y	set	the	941	
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baseline	response	and	modulation	depth	of	the	response-field.	We	fitted	the	parameters	of	this	model	942	

separately	for	each	unit	to	average	responses	within	the	epochs	0.1-04s	after	target	onset,	and	0.05-0.10s	943	

after	 saccade	 initiation.	 The	 model	 was	 fit	 by	 minimizing	 the	 summed	 square	 error	 over	 all	 target	944	

locations	between	the	model	predictions	and	the	condition-averaged	responses.	945	

In	addition	to	the	response-field	based	on	saccades	starting	from	the	fixation	point	(Fig.	5),	for	each	unit	946	

we	also	estimated	a	second	response-field	based	on	the	first	saccade	leaving	the	target	after	the	end	of	947	

trial	 (not	 shown).	 Only	 the	 direction	 and	 amplitude	 of	 the	 saccade	was	 used	 to	 estimate	 the	 second	948	

response-field,	while	the	starting	point	of	the	saccade	(one	of	the	target	locations)	was	discarded.	For	the	949	

overwhelming	majority	of	units,	the	spatial	and	temporal	structure	of	these	two	response-fields	were	very	950	

similar	around	the	time	of	the	saccade	(-0.4	to	0.3s	with	respect	to	saccade	onset).	In	particular,	the	spatial	951	

tuning	of	the	postdictive	activity	was	similar	in	the	two	response-fields,	even	though	the	retinal	images	952	

caused	by	saccades	with	the	same	amplitude	and	angle	could	be	very	different	depending	on	their	starting	953	

point	(i.e.	the	fixation	point	for	the	first	response-field;	one	of	the	targets	for	the	second	response-field).	954	

Thus,	postdictive	activity	is	most	likely	not	driven	by	visual,	retinal	inputs,	but	rather	seems	more	akin	to	955	

the	persistent	activity	observed	before	the	saccade.	956	

Prediction	of	dots-task	responses	957	

To	 explain	 the	 diversity	 of	 single	 unit	 responses	 observed	 in	 the	 dots	 task,	 and	 its	 relation	 to	 task	958	

configuration	and	cortical	location	(Fig.	6),	we	tested	whether	the	global	structure	of	dots	task	responses	959	

can	be	predicted	by	the	response-field	properties	measured	with	the	delayed-saccade	task.	In	general,	we	960	

could	not	with	certainty	identify	units	whose	responses	were	recorded	both	in	the	dots	task	and	in	the	961	

delayed-saccade	task	(see	Neural	recordings).	Rather	than	attempting	to	predict	responses	on	a	unit-by-962	

unit	basis,	we	thus	tried	to	predict	the	overall	structure	and	diversity	of	the	population	response	during	963	

the	dots	task.	For	every	unit	recorded	in	the	dots	task,	we	first	randomly	picked	a	unit	recorded	on	the	964	

same	 array	 electrode	 in	 the	 delayed	 saccade	 task.	We	 obtained	 surrogate	 dots-task	 responses	 as	 the	965	

condition-averaged	responses	recorded	during	the	delayed-saccade	responses	at	the	two	target	locations	966	

used	in	the	dots	task.	With	this	approach,	we	obtained	two	“predicted”	condition	averaged	responses	in	967	

the	dots	task—choice	1	responses	from	delayed-saccade	responses	at	the	corresponding	target	location,	968	

and	choice	2	responses	at	the	second	target	location.	In	cases	where	one	or	both	target	locations	in	the	969	

dots-task	did	not	have	an	exact	match	in	the	delayed-saccade	task,	we	generated	the	predicted	dots-task	970	

response	by	linear	interpolation	of	the	delayed-saccade	responses	at	the	corresponding	target	locations.	971	

The	result	of	this	procedure	is	a	population	of	surrogate	responses	that	is	exactly	matched	to	the	recorded	972	

dots	 task	 response	with	 respect	 to	 the	 total	 number	of	 units,	 and	 their	distribution	 across	 recording	973	

locations	and	task	configurations.		974	

These	 surrogate	 responses	 lack	 several	 potentially	 important	 properties	 of	 the	 dots	 task.	 First,	 the	975	

surrogate	responses	are	based	on	recordings	where	no	dots	stimulus	was	present	on	the	screen,	and	the	976	

animal	therefore	was	not	involved	in	deciding	between	two	options.	The	appearance	of	the	dots	stimulus,	977	

and	the	following	decision	process,	result	in	a	characteristic	time	course	of	choice-predictive	activity	in	978	
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the	 recorded	 areas	 (Fig.	 6d).	 Unsurprisingly,	 this	 time-course	 is	 not	 fully	 replicated	 in	 the	 surrogate	979	

responses	(Fig.	7a).	Second,	the	surrogate	responses	are	based	on	recordings	where	only	one	target	was	980	

present	on	the	screen,	whereas	two	targets	were	simultaneously	shown	in	the	dots	task.	The	simultaneous	981	

appearance	 of	more	 than	 one	 target	may	 result	 in	 competitive	 interactions	within	 the	 population	 of	982	

recorded	neurons,	which	again	would	not	be	reproduced	in	the	surrogate	responses.	Third,	the	timing	of	983	

the	early	surrogate	response	is	somewhat	mismatched	to	those	recorded	in	the	dots	task.	For	the	recorded	984	

dots	task	data,	we	used	responses	in	the	interval	between	-0.1	and	1s	around	the	dots-stimulus	onset.	For	985	

the	surrogate	data,	we	 instead	considered	responses	 in	 the	 interval	between	0.1	and	0.4s	around	the	986	

target	onset.	The	early	choice	predictive	activity	in	the	surrogate	responses	thus	reflects	the	onset	of	the	987	

single	 target	 in	 the	delayed	saccade	 target,	while	 in	 the	dots	 task	 it	 reflects	 the	earliest	phases	of	 the	988	

decision	process.		989	

Despite	these	differences,	the	surrogate	data	reproduces	the	structure	of	the	recorded	dots	task	responses	990	

very	well	(Figs.	7,8	and	Supp.	Figs.	8,9).	991	

Mixing-matrices	based	on	neighborhood	relations	992	

To	quantitatively	 compare	 the	predicted	 and	measured	dots-task	 responses	 at	 the	 level	 of	 the	 entire	993	

population,	we	developed	a	novel	non-parametric,	statistical	approach	to	characterize	the	structure	of	994	

high-dimensional	 data	 sets	 in	 a	 way	 that	 allows	 easy	 comparisons	 between	 data	 sets	 (Fig.	 8).	 Our	995	

approach	is	based	entirely	on	a	quantification	of	the	nearest	neighbor	relations	in	the	data	(Fig.	8a-b).	996	

Because	high-dimensional	data	often	 lie	 on	non-linear	manifolds	 that	 can	 locally	be	 approximated	by	997	

linear	manifolds,	nearest-neighbor	relations	are	 typically	easier	 to	define,	and	can	be	estimated	more	998	

robustly,	than	relations	between	distant	(i.e.	very	dissimilar)	points	in	the	data.	Despite	being	based	on	999	

local	 relationships	between	data	points,	our	approach	 leads	 to	a	robust	characterization	of	 the	global	1000	

structure	of	a	given	data	set	that	(unlike	t-SNE,	e.g.	Fig.	6b)	does	not	involve	a	dimensionality	reduction	1001	

step.	1002	

Our	approach	can	be	applied	to	any	high-dimensional	set	of	 labeled	data	points.	Here,	each	data	point	1003	

consists	of	the	condition	averaged	dots-task	responses	(either	measured	or	predicted)	for	choice	1	and	1004	

choice	2.	The	dimensionality	of	each	data	point	thus	corresponds	to	twice	the	number	of	time-samples	in	1005	

each	 condition	 average.	Neighborhoods	 in	 this	high-D	 space	 correspond	 to	 groups	of	 units	with	 very	1006	

similar	condition-averaged	responses.	The	labels	instead	correspond	to	additional	properties	that	can	be	1007	

specified	for	each	data	point.	Here,	we	focus	on	a	single	label,	the	electrode	location	where	the	unit	was	1008	

recorded	(a	number	between	1	and	96).	We	then	summarize	the	structure	of	the	data	in	the	high-D	space	1009	

by	quantifying	which	labels	co-occur	together	in	local	neighborhoods.	We	call	the	result	of	this	analysis	a	1010	

“mixing-matrix”,	quantifying	to	what	extent	units	with	two	specific	values	for	a	given	label	(e.g.	recording	1011	

location,	 Fig.	 8c,e)	 are	 locally	mixed	 in	 the	high-D	 space	 (i.e.	 tend	 to	have	 similar	 condition-averaged	1012	

responses).	 Here,	 we	 compute	 mixing-matrices	 separately	 for	 measured	 and	 predicted	 dots-task	1013	

responses	(Fig.	8c,e	measured;	Fig.8d,f:	predicted)	and	for	each	task-configuration	(Fig.	8c,d	vs.	Fig.	8e,f,	1014	

see	insets	on	the	left).			1015	
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Concretely,	we	first	define	a	unit’s	neighborhood,	consisting	of	its	100	nearest	neighbors	based	on	the	1016	

Euclidean	distance	in	the	high-D	space.	For	example,	the	red	and	black	dots	in	Fig.	8a	correspond	to	the	1017	

neighborhood	of	an	example	unit	from	electrode	72,	indicated	with	the	green	dot.	Second,	we	count	how	1018	

often	each	label	occurs	in	the	neighborhood	of	a	given	unit.	For	each	unit,	this	results	in	a	histogram	of	1019	

labels	over	all	units	in	its	neighborhood.	For	example,	the	left	panel	in	Fig.	8b	shows	the	histogram	of	1020	

electrode	 locations	 in	 the	 neighborhood	 of	 the	 example	 unit	 from	 electrode	 72.	 Third,	we	 pool	 such	1021	

histograms	for	all	neighborhoods	of	units	with	the	same	label.	For	example,	the	middle	panel	in	Fig.	8b	1022	

shows	the	histogram	of	electrode	locations	across	all	neighborhoods	of	units	from	electrode	72.	Fourth,	1023	

we	rescale	the	resulting	pooled	histogram	by	dividing	all	its	values	by	the	predictions	of	a	null	hypothesis	1024	

(Fig.	8b,	right),	which	assumes	that	the	composition	of	any	neighborhood	is	independent	of	the	properties	1025	

of	the	unit	that	was	used	to	define	it	(permutation	null	hypothesis).	Based	on	this	null	hypothesis,	the	1026	

expected	histogram	value	for	units	from	electrode	i	in	the	neighborhood	of	units	from	electrode	j	is:	1027	

𝐻}(𝑖, 𝑗) = 𝑁ÅÆ𝑁jÇ𝑁j� 𝑁b⁄ ,	1028	

where	𝑁ÅÆ 	is	the	size	of	the	neighborhood	(here	𝑁ÅÆ = 100),	𝑁jÇ	is	the	total	number	of	units	in	the	data	1029	

set	recorded	from	electrode	𝑖,	𝑁j�	is	the	total	number	of	units	in	the	data	set	recorded	from	electrode	𝑗,	1030	

and	𝑁b 	is	 the	 total	 number	 of	 units	 in	 the	 data	 set.	 The	 resulting	 rescaled	 histogram	 corresponds	 to	1031	

column	 72	 of	 the	mixing	matrix	 (e.g.	 Fig.	 8c),	 where	 72	 is	 the	 electrode	 location	 used	 to	 define	 the	1032	

neighborhoods	contributing	to	the	pooled	histogram.	We	then	obtain	additional	columns	of	the	mixing	1033	

matrix	by	repeating	this	procedure	for	the	pooled	neighborhoods	of	units	from	electrode	1,	2,	and	so	on	1034	

for	all	other	array	electrodes.		1035	

The	values	of	the	rescaled	mixing-matrix	(Fig.	8c)	at	(𝑖, 𝑗)	provide	a	quantitative	measure	of	the	overall	1036	

(macroscopic)	 similarity	 of	 condition-averaged	 responses	 of	 units	 from	 electrode	 𝑖 	and	 units	 from	1037	

electrode	𝑗.	These	mixing	matrices	can	easily	be	compared	between	data	sets	(e.g.	measured	vs.	predicted,	1038	

or	between	different	task	configurations),	for	example	by	computing	the	correlation	coefficient	between	1039	

all	the	values	in	a	pair	of	mixing	matrices	(e.g.	Fig.	8g).		1040	

To	ease	visual	comparison	between	these	mixing	matrices	for	different	task-configurations	(e.g.	Fig	8c,e),	1041	

we	ordered	the	electrodes	along	the	vertical	and	horizontal	axes	in	Fig.	8c-e	such	that	electrode	locations	1042	

that	 recorded	 units	with	 similar	 responses	 are	 placed	 nearby.	We	 obtained	 such	 an	 ordering	 by	 (1)	1043	

computing	the	rescaled	mixing	matrix	values	𝑀(𝑖, 𝑗)	from	measured	responses	obtained	by	pooling	units	1044	

from	all	task-configurations;	(2)	defining	the	dissimilarity	between	electrodes	𝑖	and	𝑗	as:	2 − 𝑙𝑜𝑔[𝑀(𝑖, 𝑗)];	1045	

and	(3)	applying	multi-dimensional	scaling	to	obtain	a	one-dimensional	ordering	of	electrodes	based	on	1046	

this	dissimilarity.	The	resulting	ordering	is	shown	by	the	coloring	of	the	electrodes	in	the	inset	on	the	1047	

right	of	Fig.	8f.		1048	

Predictions	based	on	a	single	choice	component	(Fig.	8j)	were	computed	analogously	to	𝑿-�	(See	Quality	1049	

of	predictions)	but	by	including	only	a	single	component	activation.	1050	
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Figures	

	
Figure	1.	Behavioral	task	and	neural	responses	in	PFC.	
a,	Behavioral	task.	Monkeys	kept	their	center	of	gaze	(red	dot)	on	a	fixation	point,	indicated	the	perceived	direction	of	motion	of	a	
random-dots	stimulus	with	a	saccade	to	one	of	two	targets,	and	received	a	reward	(on	correct	trials)	after	briefly	fixating	on	the	
chosen	target	(hold	period).	
b-e,	Behavioral	performance	and	neural	responses	for	monkey	T.	
b,	Target	configurations.	The	random	dots	were	always	centered	on	the	fixation	point,	while	the	two	targets	were	arranged	in	
different	configurations	across	sessions	(insets:	number	of	sessions,	top;	average	number	of	behavioral	trials	per	session,	bottom;	
target	diameter	is	not	shown	to	scale).	We	grouped	the	22	different	target-configurations	into	4	“task-configurations”	(rows).	
c,	Behavioral	performance,	same	colors	as	in	b.	Left	panel:	fraction	correct	as	a	function	of	motion	strength	(coherence)	and	
configuration.	Middle:	Fits	of	a	behavioral	model	for	each	configuration,	based	on	the	data	in	the	left	panel.	Right:	average	
performance	for	each	configuration,	as	estimated	from	the	fits	(middle)	over	a	set	of	coherences	common	to	all	configurations.	
d,	Average	responses	over	units	recorded	in	one	of	the	four	task-configurations	in	b.	Normalized,	de-noised	responses	are	aligned	to	
dots	onset	and	saccade	onset	(tick	marks,	top)	and	averaged	based	on	the	location	of	the	chosen	target	(choice	1,	black;	choice	2,	
gray,	defined	as	in	b)	and	outcome	(correct,	thick;	error,	thin).	Responses	were	de-noised	with	Targeted	Dimensionality	Reduction	
(Supp.	Fig.	3).	Here	only	the	10%	most	choice-predictive	units	in	each	task	configuration	are	averaged.		
e,	Example	de-noised	responses	from	individual	units,	selected	to	illustrate	the	range	of	unit	responses	in	the	population.	Units	were	
recorded	in	different	target	configurations	(insets)	and	at	different	cortical	locations	(not	shown).	These	units	are	shown	also	in	
Fig.	6b	(red	crosses).	
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Figure	2.	Different	hypothesized	representations	of	choice	in	the	population.	
Each	row	illustrates	the	temporal	dynamics	of	single	unit	and	population	activity	for	four	idealized	representations	of	choice:	(1)	a	
stable	representation	(first	row	from	top);	(2)	a	sequence	across	units	(second	row);	(3)	a	sequence	across	patterns	(third	row);	(4)	
the	serial	recruitment	of	distinct	choice	patterns	(fourth	row).	Representations	1,	2,	and	4	were	constructed	by	hand.	
Representation	3	are	simulations	of	a	recurrent	neural	network,	trained	to	produce	the	population	average	response	of	
representation	2.		
a,	Responses	of	representative	single	units	(blue	to	green;	analogous	to	choice	1	responses	in	Fig.	1e)	and	normalized	population	
average	(red;	analogous	to	choice	1	response	in	Fig.	1d;	responses	to	choice	2	are	set	to	zero).	In	the	third	and	fourth	row,	single-
unit	and	population	average	responses	are	shown	with	respect	to	different	baselines	(compare	left	and	right	vertical	axes).	
b,	Responses	of	many	single	units,	ordered	along	the	vertical	axis	based	on	the	time	of	their	peak-response.	Activity	along	any	
vertical	line	in	each	plot	describes	the	population	activity	pattern	at	the	corresponding	time.	For	the	stable	and	recruitment	
representations,	the	exact	arrangement	of	units	along	the	vertical	axis	is	strongly	affected	by	noise.	For	example,	in	the	case	of	
recruitment	the	blue	bands	at	the	top	and	bottom	of	the	plot	correspond	to	units	whose	largest	firing	rate	is	close	to	zero,	occurring	
either	at	the	beginning	or	end	of	the	trial	depending	on	the	noise.			
c,	Definition	of	component	patterns.	We	first	averaged	population	patterns	over	time	within	three	non-overlapping	time	windows	
(t1,	t2,	and	t3;	gray	squares	in	a,	b,	and	d).	The	resulting	average	patterns	(left)	are	orthogonalized	and	normalized	to	obtain	the	
component	patterns	(right).		
d,	Definition	of	component	activations.	Each	component	activation	is	obtained	by	taking	the	“running”	dot-product	of	the	
corresponding	component	pattern	with	the	population	patterns	in	b.	The	component	activations	measure	how	much	each	
component	pattern	contributes	to	the	population	pattern	at	any	given	time.		
e,	Similarity	of	population	patterns	across	time.	For	every	pair	of	times,	similarity	is	computed	as	the	dot-product	of	the	
(normalized)	population	patterns	in	b	at	the	corresponding	times.	The	center	of	the	time	windows	used	to	define	the	component	
patterns	are	indicated	by	gray	dots.	
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Figure	3.	Dynamics	of	unit	responses	in	PFC.	
Average	de-noised	responses	for	all	units	recorded	in	two	task-configurations	(a-c	and	d-f,	top	insets	as	in	Fig.	1b),	sorted	by	peak-
time	(monkey	T),	analogous	to	Fig.	2b.	Responses	are	aligned	to	dots	onset	(left	sub-panels)	or	saccade	onset	(middle	and	right,	
showing	contiguous	times	in	the	delay	and	saccade	epochs).	Peak-time	is	determined	separately	for	the	dots,	delay,	and	saccade	
epochs.	Because	of	the	large	number	of	units	in	each	configuration,	after	arranging	the	sorted	responses	in	a	two-dimensional	
image	as	in	a,	we	smooth	(moving	square	filter,	width	250	rows)	and	subsample	(every	100th	row)	the	responses	along	the	vertical	
axis.	The	numbers	in	the	top-right	of	each	panel	indicate	the	peak	response	in	each	resulting	smoothed	image	(colorbar,	r).	
a,	Choice-related	activity,	defined	as	the	difference	between	condition-averaged	responses	for	choice	1	and	choice	2	trials	(correct	
only).	Averages	are	computed	based	on	a	randomly	selected	half	of	the	trials	(sorting	set).	Units	are	ordered	along	the	vertical	axis	
based	on	the	time	of	maximal	choice-related	activity	(early,	bottom;	late,	top).	
b,	Choice-related	activity	based	on	the	trials	not	used	in	a	(validation	set).	The	order	of	units	along	the	vertical	axis	is	maintained	
from	a.	
c,	Average	responses	to	choice	1	(top)	and	choice	2	(bottom),	sorted	separately	based	on	the	respective	peak-times.	Only	responses	
from	the	corresponding	validation	sets	are	shown.	
d-f,	Analogous	to	a-c,	for	a	different	task	configuration.		
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Figure	4.	Dynamics	of	population	activity	patterns	in	PFC.	
Data	from	monkey	T.	
a,	Component	activations	for	choice	1	(colored)	and	choice	2	(black)	on	correct	(thick)	and	incorrect	(thin)	trials	(analogous	to	Fig.	
2d).	The	five	components	were	estimated	separately	for	each	recording	session	from	population	patterns	defined	at	the	times	
indicated	by	the	corresponding	vertical	gray	stripes,	and	the	resulting	component	activations	were	averaged	over	all	sessions	
belonging	to	a	given	task-configuration	(inset	on	the	left).	Error	bars	are	the	standard	error	of	the	mean.	
b,	Separation	between	choice	1	and	choice	2	component	activations,	measured	as	area	under	the	ROC	curve	for	the	corresponding	
distributions	of	trial-by-trial	activations.	
c,d,	Same	as	a,b,	for	a	different	task	configuration	(left	inset,	as	in	Fig.	1b).	
e-h,	Measured	and	predicted	similarity	of	choice	predictive	patterns	estimated	at	different	times	in	the	trial	(analogous	to	Fig.	2e).	
Similarity	is	computed	separately	for	each	session,	and	averaged	across	sessions	from	the	same	task	configuration	(inset,	left).	
Similarity	is	cross-validated	(see	methods),	and	thus	can	be	smaller	than	1	even	for	patterns	extracted	at	the	same	time	(points	on	
the	diagonal	from	bottom-left	to	top-right).			
e,	Measured	similarity	between	choice-predictive	population	patterns	for	one	task	configuration.		
f,	Predicted	similarity,	based	on	population	responses	reconstructed	with	increasing	numbers	of	choice-related	component	patterns	
(from	component	1	only,	to	all	five	components;	left	to	right).	Substantial	random	noise	was	added	to	each	unit’s	response	in	the	
reconstruction.	Unlike	in	Fig.	2e	top,	similarity	thus	varies	across	pairs	of	times	even	when	only	component	1	is	used	(left-most	
panel)	and	reflects	the	difference	in	magnitude	between	choice	1	and	choice	2	responses	for	component	1	(left-most	panels	in	a,c).		
g,h,	Same	as	e,f,	for	a	different	task	configuration	(left	inset;	as	in	Fig.	1b).	
i,	Variance	in	the	choice-related	population	patterns	explained	by	the	5	component	patterns	(colored)	or	by	10	principal	
components.	Task	configurations	as	in	a	(left)	and	b	(right).	
j,	Cumulative	variance	explained,	computed	from	the	plots	in	i.	In	i	and	j,	standard	error	of	the	mean	over	sessions	is	smaller	than	
the	symbols.	 	
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Figure	5.	Response-field	properties	in	a	delayed-saccade	task.	
Data	from	monkey	T.	
a,	Locations	in	visual	space	of	all	saccade	targets	used	in	an	example	session	of	the	visually	guided,	delayed-saccade	task.		
b,	Normalized	average	responses	during	the	delayed-saccade	task	for	an	example	unit.	Same	target	locations	as	in	a,	varying	in	
radius	(left	to	right	panels)	and	angular	location	(color).	Responses	are	aligned	to	target	onset	and	saccade	onset	(tick	marks,	top).		
c,	Responses	of	the	unit	in	b,	replotted	at	discrete	times	during	the	trial	(relative	to	target	and	saccade	onset,	top	numbers	in	
seconds)	at	the	location	of	the	corresponding	target	(white	circles,	radius	proportional	to	response).	We	estimated	the	time-
varying	response-field	of	a	unit	by	either	interpolating	the	responses	at	regular	grid	locations	extending	over	the	possible	target	
locations	(middle)	or	by	fitting	a	response-field	model	to	the	responses	(bottom).	From	the	model	fits	we	extracted	the	response-
field	center	(i.e.	the	peak	location,	red	points)	at	each	time.	
d,	Interpolated	response-fields	for	five	example	units,	showing	a	diversity	of	visual,	delay-period,	movement,	and	hold-period	
responses.	
e,	Response-field	centers	for	all	units	recorded	in	the	delayed-saccade	task	(circles)	estimated	from	responses	obtained	0.1-0.4s	
after	target	onset.	Each	circle	marks	the	location	of	a	response-field	center	in	the	visual	field.	Circle	radius	is	proportional	to	the	
quality	of	the	underlying	fit	(percentage	of	variance	explained,	legend)	and	can	be	interpreted	as	the	strength	of	spatial	tuning	
(strong	vs.	weak;	large	vs.	small	circles).	Units	are	colored	based	on	their	anterior-posterior	location	along	the	electrode	array	
(inset)	and	are	plotted	in	random	order.	
f,	same	as	e,	for	responses	at	the	beginning	of	the	hold	period	(0.05-0.1s	after	saccade	onset).	
g-h,	same	data	as	in	e-f,	but	with	units	colored	based	on	their	medio-lateral	location	on	the	array	(inset).	
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Figure	6.	Global	structure	of	single-unit	responses	in	the	dots-task.	
Data	from	monkey	T.	
a,	Three	example	units	from	Fig.	1e.	Each	individual	unit	is	characterized	by	the	averaged,	de-noised	responses	on	eight	conditions	
defined	based	on	choice	(1	or	2),	outcome	(correct,	cor;	error;	err),	and	motion	coherence	(high	and	low,	only	for	correct	trials).	
Here	responses	are	aggressively	de-noised	by	reconstructing	each	unit’s	activity	based	on	the	five	choice	components	estimated	in	
the	corresponding	recording	session	(averages	across	sessions	shown	in	Fig.	4a,c).	For	each	unit,	we	concatenate	all	condition-
averages	into	a	single	vector,	and	then	compute	Euclidian	distances	between	vectors.	
b,	Two-dimensional,	non-linear	embedding	of	all	units	in	the	population	obtained	with	t-SNE.	Each	point	corresponds	to	a	unit.	The	
arrangement	of	units	within	the	two-dimensional	embedding	space	optimally	maintains	nearest-neighbor	relations	between	units	
in	the	high-dimensional	space,	defined	based	on	distances	computed	as	in	a.	The	red	crosses	indicate	the	twelve	example	units	in	
Fig.	1e.		
c,d,	Average	unit	responses	for	nearby	units	at	different	locations	along	the	embedding	dimensions.	We	overlaid	a	regular	12x12	
grid	over	the	embedding	space	(panel	c)	and	averaged	the	responses	of	all	units	falling	within	a	given	grid-square	to	obtain	the	
responses	at	the	corresponding	locations	in	d.	Only	the	first	four	conditions	in	panel	a	are	shown.	Choice	1	averages	are	colored	
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based	on	the	radial	and	angular	position	of	the	corresponding	units	in	the	embedding	space	(panel	c).	The	blue	cross	marks	the	
origin	of	the	embedding	space,	as	in	b.	
e-g,	Neural,	task,	and	cortical	factors	contributing	to	the	diversity	of	single-unit	responses.	The	arrangement	of	units	in	each	panel	
is	identical	to	b.	In	e	and	g	units	are	plotted	sequentially	in	a	random	order.		
e,	The	contributions	of	the	five	component	activations	to	the	responses	of	each	unit.	Reconstructed	unit	responses	as	in	a	are	
obtained	as	a	weighted	sum	of	the	component	activations	(Fig.	4a,c)	from	the	corresponding	recording	session,	with	the	weights	
given	by	the	component	contributions	shown	here.	The	relative	weights	of	the	five	components	differ	across	units,	resulting	in	the	
diversity	of	unit	responses	in	d.	
f,	Units	recorded	in	a	given	task	configurations	(black	points;	task-configurations	as	Fig.	1b)	overlaid	over	all	units	in	the	
population	(gray	points).	Some	unit	responses	(i.e.	embedding	locations)	are	not	observed	in	all	task	configurations.	
g,	Cortical	location	of	all	the	units	in	the	population.	AP,	anterior-posterior	axis	along	the	electrode	array;	ML:	medio-lateral	axis.	
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Figure	7.	Response-field	based	predictions	of	dots-task	responses.	
We	used	the	response-fields	estimated	in	monkey	T	(Fig.	5)	to	predict	single-unit	responses	in	the	dots-task,	and	embedded	the	
predicted	responses	with	the	same	approach	used	for	the	measured	responses	(Fig.	6).		
a,	Average	predicted	unit	responses,	obtained	with	a	non-linear	embedding	as	in	Fig.	6d	(responses	cover	a	shorter	time-range	
compared	to	Fig.	6d,	scale	bars).	Only	two	conditions	are	shown	(choice	1	and	2).		
b,	Effect	of	cortical	location	and	task-configuration	on	the	unit	responses	observed	in	the	dots-task.	Non-linear	embedding	of	
measured	dots-task	responses	(gray	dots,	left;	replotted	from	Fig.	6b)	and	of	predicted	dots-task	responses	(right).	Each	colored	
circle	corresponds	to	the	average	location	in	embedding	space	of	all	units	recorded	from	the	same	array	electrode	for	a	given	task	
configuration	(rows).	The	circles	are	colored	based	on	their	location	in	the	embedding	space	(same	mapping	of	embedding	space	to	
color	as	in	a	and	Fig.	6c).		
c,	Measured	and	predicted	topography	of	unit	responses	across	the	cortical	surface.	Each	square	corresponds	to	a	circle	in	b,	
replotted	with	the	same	color	at	the	corresponding	array	location.	The	resulting	mapping	of	unit	responses	(colors)	to	cortical	
locations	depends	on	task-configuration	(rows),	and	is	largely	reproduced	by	the	predictions.	
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Figure	8.	Accuracy	of	response-field	based	predictions.	
a,	An	example	neighborhood	(red	and	black	dots)	shown	in	the	embedding	space	(gray	dots	replotted	from	Fig.	6b).	The	
neighborhood	of	unit	12	(green	dot,	from	electrode	72;	shown	in	Fig.	1e)	is	defined	as	the	90	units	that	are	closest	to	unit	12	in	the	
high-dimensional	space.		
b,	Neighborhood-mixing	with	respect	to	array	electrodes.	Left:	units	in	the	example	neighborhood	(a)	grouped	by	the	electrode	at	
which	they	were	recorded.	Middle:	same	as	left	panel,	but	over	all	neighborhoods	of	units	from	electrode	72.	Right:	mixing	between	
units	from	electrode	72	and	all	other	electrodes,	defined	by	dividing	the	corresponding	counts	(middle	panel)	by	the	null	hypothesis	
(no	topographical	arrangement	of	unit	responses).	Large	relative	counts	indicate	electrodes	with	responses	that	are	similar	to	
those	on	electrode	72,	and	vice	versa.	As	an	example,	units	from	electrode	84	are	highlighted	in	red	(as	in	a).	
c,	Mixing	matrix	for	measured	dots-task	responses	(monkey	T)	in	one	task-configuration	(inset,	left),	with	respect	to	array	
electrodes.	Each	column	in	c	corresponds	to	relative	counts	as	in	b	(right	panel)	for	all	neighborhoods	of	the	corresponding	
electrode.	Electrodes	are	ordered	as	shown	in	the	inset	in	f	(see	methods).	
d,	Same	as	c,	for	responses	predicted	based	on	the	response-fields	estimated	in	the	delayed-saccade	task	(Fig.	7).	Same	task-
configuration	as	in	c.	
e,	Same	as	c,	for	a	different	task-configuration.	
f,	Same	as	d,	for	the	task-configuration	in	e.	
g,	Correlation	between	measured	mixing	matrices	from	different	task-configurations.	Correlations	based	on	the	mixing	matrices	in	
c	and	e	are	indicated	with	corresponding	letter	pairs.	By	design,	the	correlations	are	symmetric	with	respect	to	the	positive	
diagonal.	
h,	Correlation	between	measured	(horizontal	axis)	and	predicted	(vertical	axis)	mixing	matrices	from	different	task	configurations,	
analogous	to	g.	The	predictions	are	most	accurate	when	they	are	based	on	the	same	task-configuration	as	the	measured	responses	
(positive	diagonal).	
i,	Direct	comparison	of	the	correlations	in	g	(vertical	axis)	and	h	(horizontal	axis).	
j,	The	correlations	in	h	(horizontal	axis),	for	predictions	based	on	all	five	choice-components,	compared	to	correlations	for	
predictions	based	on	a	single	choice	component	(vertical	axis).	No	single	choice-component	can	account	for	the	accuracy	of	the	
predictions	for	all	task-configurations.		
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Supplementary	Figures	

	

	

Supplementary	Figure	1.	Target	configurations	and	behavioral	performance	in	monkey	V.	
Same	conventions	as	in	Fig.	1.	
a,	Target	configurations	(insets:	number	of	sessions,	top;	average	number	of	behavioral	trials	per	session,	bottom),	sorted	into	4	
“task-configurations”	(rows).		
b,	Behavioral	performance,	same	colors	as	in	a.	Left	panel:	fraction	correct	as	a	function	of	motion	strength	(coherence)	and	
configuration.	Middle:	Fits	of	a	behavioral	model	for	each	configuration,	based	on	the	data	in	the	left	panel.	Right:	average	
performance	for	each	configuration,	as	estimated	from	the	fits	(middle)	over	a	set	of	coherences	common	to	all	configurations.	
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Supplementary	Figure	2.	Recording	locations	in	prefrontal	cortex.	
In	both	monkeys,	we	obtained	single-unit	and	multi-unit	recordings	from	a	10x10	array	implanted	in	pre-arcuate	cortex.	Black	
circles	indicate	the	cortical	locations	of	the	96	electrodes	used	for	recordings.	
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Supplementary	Figure	3.	De-noising	of	single	unit	responses.	
Same	12	units	as	in	Fig.	1e.	Each	group	of	three	adjacent	panels	shows	the	raw,	measured	responses	of	a	given	unit	(left	panel),	the	
responses	reconstructed	from	15	principle	components	(middle),	and	the	responses	reconstructed	from	10	choice	components	
(right,	replotted	from	Fig.	1e	with	different	colors).	For	any	given	recording	session,	we	used	the	raw	responses	of	all	neurons	to	
extract	dominant	components	of	the	population	response,	either	with	principle	component	analysis	(PC	components)	or	with	
Targeted	Dimensionality	Reduction	(choice	components).	The	PC	components	maximally	account	for	overall	variance	in	the	
responses,	while	the	choice	components	only	explain	variance	due	to	choice.	Unit	responses	are	reconstructed	based	on	either	the	
first	15	PC	components,	or	the	first	10	choice	components.	In	both	cases,	all	remaining	components	are	assumed	to	be	dominated	by	
noise,	and	are	ignored.	This	procedure	de-noises	the	single-unit	responses,	and	in	some	units	also	removes	components	of	the	
responses	that	are	common	to	all	conditions	(reconstruction	from	choice	components;	right	panels).	Responses	de-noised	with	10	
choice	components	are	used	for	the	analyses	in	Figs.	1,3.	Responses	de-noised	with	only	5	choice	components	(not	shown	here)	are	
used	for	the	analyses	in	Figs.	6,	7,	and	8.	
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Supplementary	Figure	4.	Dynamics	of	unit	responses	in	PFC	for	different	task-configurations	and	levels	of	de-noising.		
Same	conventions	as	in	Fig.	3.		
a-d,	Response	sequences	are	estimated	from	unit-responses	that	were	de-noised	based	on	the	first	10	choice	components	in	the	
population	of	a	given	session	(left	columns	in	a-d;	right	panels	in	Supp.	Fig.	3)	or	based	on	only	the	first	5	choice	components	(right	
columns).	The	resulting	sequences	are	similar	in	both	columns,	suggesting	that	choice-related	activity	in	a	given	session	is	largely	
captured	by	the	first	5	choice	components	of	the	population	response	(see	also	Fig.	4	and	Supp.	Fig.	5).		
a,	Choice-related	activity	in	monkey	T,	defined	as	the	difference	between	average	responses	to	choice	1	and	choice	2.	Averages	are	
obtained	based	on	a	randomly	selected	half	of	the	trials	(validation	set),	and	ordered	along	the	vertical	axis	based	on	the	peak	
times	of	choice	related	activity	in	the	other	half	of	trials	(sorting	set	as	in	Fig.	3a,	not	shown	here).	Analogous	to	Fig.	3b.	
b,	Same	as	a,	but	for	monkey	V	
c,	Average	validation	set	responses	in	monkey	T	for	choice	1	trials	(top)	and	choice	2	trials	(bottom),	sorted	based	on	the	peak	
times	estimated	on	sorting	set	responses.	Analogous	to	Fig.	3c.	Only	one	task-configuration	shown.	
d,	Same	as	c,	but	for	monkey	V.		
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Supplementary	Figure	5.	Dynamics	of	population	activity	patterns	in	PFC	of	monkey	V.	
Same	conventions	as	in	Fig.	4,	but	for	data	from	monkey	V.		
a,	Component	activations	for	choice	1	(colored)	and	choice	2	(black)	on	correct	(thick)	and	incorrect	(thin)	trials.	Error	bars	
indicate	standard	error	of	the	mean	across	sessions	(analogous	to	Fig.	2d).	
b,	Separation	between	choice	1	and	choice	2	component	activations,	measured	as	area	under	the	ROC	curve	for	the	corresponding	
distributions	of	trial-by-trial	activations.	
c,d,	Same	as	a,b,	for	a	different	task	configuration	(left	inset,	as	in	Supp.	Fig.	1a).	
e,	Measured	similarity	between	choice-related	population	patterns	at	different	times	during	the	trial	(analogous	to	Fig.	2e).		
f,	Predicted	similarity,	based	on	population	responses	reconstructed	with	increasing	numbers	of	choice-related	component	patterns	
(from	component	1	only,	to	all	five	components;	left	to	right).	
g,h,	Same	as	e,f,	for	different	task	configurations	(left	inset,	as	in	Supp.	Fig.	1a).	
i,	Variance	in	the	choice-related	population	patterns	explained	by	the	5	component	patterns	(colored)	or	by	10	principal	
components.	Task	configurations	as	in	a	(left)	and	b	(right).	
j,	Cumulative	variance	explained,	computed	from	the	plots	in	i.		
In	i	and	j,	standard	error	of	the	mean	over	sessions	is	smaller	than	the	symbols.	

	

	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595520doi: bioRxiv preprint 

https://doi.org/10.1101/595520
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 49	

	

	
Supplementary	Figure	6.	Response-field	properties	for	monkey	V.	
Same	conventions	as	in	Fig.	5e-h,	but	for	data	from	monkey	V.	
a,	Response-field	centers	after	target	onset	(0.1-0.4s)	for	all	units	recorded	in	the	delayed-saccade	task	(circles).	Circle	radius	is	
proportional	to	the	quality	of	the	underlying	fit	(percentage	of	variance	explained,	legend)	and	can	be	interpreted	as	the	strength	
of	spatial	tuning	(strong	vs.	weak;	large	vs.	small	circles).	Units	are	colored	based	on	their	anterior-posterior	location	along	the	
electrode	array	(inset)	and	were	plotted	in	random	order.	
b,	same	as	a,	for	response	during	the	hold	period	(0.05-0.1s	after	saccade	onset).	
c-d,	same	as	a-b,	but	units	are	colored	based	on	their	medio-lateral	location	on	the	array	(inset).	The	strongest	target	related	
responses	occur	in	the	upper	right	quadrant	(a),	as	in	monkey	T	(Fig.	5e).	After	the	saccade,	responses	also	occur	at	ipsilateral	
target	locations.	The	location	of	response-field	centers	after	the	saccade	(i.e.	ipsilateral	or	contralateral)	varies	along	the	medio-
lateral	axis	of	the	array	(d),	as	in	monkey	T	(colors,	Fig.	5h).		
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Supplementary	Figure	7.	Global	structure	of	unit	responses	in	monkey	V.	
Same	conventions	as	in	Fig.	6,	but	for	data	from	monkey	V.		
a,	Two-dimensional,	non-linear	embedding	of	all	units	in	the	population	obtained	with	t-SNE.	
b,c,	Average	unit	responses	for	nearby	units	at	different	grid-locations	(panel	b)	along	the	embedding	dimensions.	Choice	1	
averages	(panel	c)	are	colored	based	on	the	radial	and	angular	position	of	the	corresponding	units	in	the	embedding	space	(panel	
b).	The	blue	cross	marks	the	origin	of	the	embedding	space,	as	in	a.	
d-e,	Task-related	and	neural	factors	contributing	to	the	diversity	of	unit	responses.	The	arrangement	of	dots	(i.e.	units)	in	each	
panel	corresponds	is	identical	to	the	non-linear	embedding	in	a.	Units	in	d	and	f	are	plotted	sequentially	in	random	order.	
d,	The	contributions	of	the	five	component	activations	to	the	responses	of	each	unit	in	the	population.	
e,	Embedding	location	of	units	recorded	with	a	given	task	configurations	(black	points;	task-configurations	as	in	Supp.	Fig.	1a)	
overlaid	over	all	units	in	the	population	(gray	points).		
f,	Cortical	location	of	all	the	units	in	the	population.	AP,	anterior-posterior	axis	along	the	electrode	array;	ML:	medio-lateral	axis.	
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Supplementary	Figure	8.	Response-field	based	predictions	of	dots-task	responses	in	monkey	V.		
Same	conventions	as	in	Fig.	7.	
a,	Average	unit	responses	based	for	the	predicted	responses,	obtained	as	in	Supp.	Fig.	7b.		
b,	Effect	of	cortical	location	and	task-configuration	on	the	unit	responses	observed	in	the	dots-task.		
c,	Measured	and	predicted	topography	of	unit	responses	across	the	cortical	surface.	Each	square	corresponds	to	a	circle	in	b,	
replotted	with	the	same	color	at	the	corresponding	array	location.	
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Supplementary	Figure	9.	Accuracy	of	response-field	based	predictions	in	monkey	V.	
Same	conventions	as	in	Fig.	8.	
a,	Mixing-matrix	for	measured	dots-task	responses	(monkey	V)	in	one	task-configuration	(inset,	left),	with	respect	to	array	
electrodes.	
b,	Same	as	a,	for	responses	predicted	based	on	the	response-fields	estimated	in	the	delayed-saccade	task	(Supp.	Fig.	8).	Same	task-
configuration	as	in	a.	
c,	Same	as	a,	for	a	different	task-configuration.	
d,	Same	as	b,	for	the	task-configuration	in	c.	
e,	Correlation	between	measured	mixing	matrices	from	different	task-configurations.	
f,	Correlation	between	measured	(horizontal	axis)	and	predicted	(vertical	axis)	mixing	matrices	from	different	task	configurations,	
analogous	to	e.	The	predictions	are	most	accurate	when	they	are	based	on	the	same	task-configuration	as	the	measured	responses	
(positive	diagonal).	
g,	Direct	comparison	of	the	correlations	in	e	(vertical	axis)	and	f	(horizontal	axis).	
h,	The	correlations	in	f	(horizontal	axis),	for	predictions	based	on	all	five	choice-components,	compared	to	correlations	for	
predictions	based	on	a	single	choice	component	(vertical	axis).	No	single	choice-component	can	account	for	the	accuracy	of	the	
predictions	for	all	task-configurations.	
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