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Abstract
The human brain is inherently limited in the information it can make consciously
accessible. When people monitor a rapid stream of visual items for two targets, they can
typically report the first, but not the second target, if these appear within 200-500 ms of
each other, a phenomenon known as the attentional blink (AB). No work has
determined the neural basis for the AB, partly because conventional neuroimaging
approaches lack the temporal resolution to adequately characterise the neural activity
elicited by each item in a rapid stream. Here we introduce a new approach that can
identify the precise effect of the AB on behaviour and neural activity. Specifically, we
employed a multivariate encoding approach to extract feature-selective information
carried by randomly-oriented gratings within a rapid serial stream. We show that feature
selectivity is enhanced for correctly reported targets and suppressed when the same
items are missed. By contrast, no such effects were apparent for irrelevant distractor
items. Our findings point to a new theoretical account that involves both short- and long-

range temporal interactions between visual items competing for consciousness.
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Introduction

Despite the remarkable capacity of the human brain, it is found wanting when
undertaking multiple tasks concurrently, or when several goal-relevant items must be
dealt with in rapid succession. These limitations are particularly evident when
individuals are required to execute responses to multiple items under time pressure’2,
or when they must report relevant target items that appear briefly and in rapid
succession®>. Elucidating the source of these limitations has been a persistently difficult
challenge in neuroscience and psychology. While the neural bases for these processing
limits are not fully understood, it is widely assumed that they are adaptive because they
provide a mechanism by which selected sensory events can gain exclusive control over
the motor systems responsible for goal-directed action.

Here we address a long-standing question concerning the neural basis of the
widely-studied ‘attentional blink’ (AB), where observers often fail to report the second of
two target items (referred to as T2) when presented within 200-500 ms of the first target
(T1) in a rapid stream of distractors3-®. Functional magnetic resonance imaging (fMRI)
lacks the temporal resolution to accurately characterise neural activity associated with
the rapid serial visual presentation (RSVP) tasks presented at rates of 8-12 Hz, which
are commonly used to elicit the AB®7. Even electroencephalography (EEG), which has
relatively good temporal resolution, produces smeared responses to items in an RSVP
stream?8. Furthermore, mass-univariate approaches applied to fMRI or EEG data only
measure overall neural activity while providing no information about how neural activity

represents featural information carried by single items (e.g., their orientation).
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Here we overcame these limitations by combining recently-developed
multivariate modelling techniques for neuroimaging®'® with a novel RSVP task designed
to determine the neural and behavioural basis for the AB. Forward (or inverted)
encoding modelling determines the neural representation of feature-selective
information contained within patterns of brain activity, using multivariate linear
regression®16. This approach allowed us to explicitly measure the neural representation
of specific features — in this case, orientation-selective information elicited by grating
stimuli — separately for each item within an entire RSVP stream.

We used this approach to address two central theoretical questions. First, does
selection of a target from within an RSVP stream increase the gain or the precision of its
neural representation? Previous efforts to answer this question in the domain of spatial
attention have come from single cell recordings in non-human primates'”'8, as well as
whole-brain activity measured using fMRI'51® and EEG?® in humans. With few
exceptions??, these studies have found that spatial attention increases the gain of
feature-selective processing of attended items. By contrast, feature-based
manipulations of attention, in which specific characteristics of an item such as its colour
or motion are cued for selective report, typically result in a sharpening of neural
selectivity?0-?2, To date, it remains unknown whether the limits of temporal attention in
the AB are associated with changes in neural tuning to targets, distractors, or both
classes of items. The neural response in human primary visual cortex® and macaque
lateral intraparietal area®® to the second target is reduced overall on AB trials compared

with non-AB trials, while subtraction-based EEG designs have shown that a late-stage
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component of the ERP (the N400) is reduced 200-400 ms after target presentationg.
Critically, however, these measures cannot determine how the AB affects the neural
representation of visual information, which could conceivably reflect a reduction in gain,
an increase in tuning sharpness, or both.

A second, unresolved theoretical question concerns the source of the AB.
Existing theories have often attributed the AB to either extended processing of the first
target, or to inadvertent distractor processing. In the first class of theories, it is assumed
that all items generate representations in early visual areas, but that the system inhibits
items after T1 detection to avoid contamination by distractors#24-27. On other accounts
(so-called ‘distractor-based’ theories), the AB is assumed to reflect a cost associated
with switching between target and distractor processing?*. Finally, a third class of
theories argues that the representation of the second target can become merged with
either the first target or the distractors?>26. This class of theories is motivated by the
finding that the perceived order of targets is often reversed (i.e., T2 is reported as
appearing before T1).

Our RSVP task consisted of a stream of randomly-oriented Gabor gratings, with
two higher-spatial frequency targets set amongst lower-spatial frequency distractors
(Figure 1A and Movie 1). At the end of the stream, participants were asked to reproduce
the orientations of the two targets (Figure 1B). Critically, the orientation of each item in
the stream was uncorrelated with the orientation of all other items (Figure 1C), thus
permitting the use of linear regression analyses to separately extract the influence of

each item in the stream on neural activity measured by EEG, and on behavioural
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112  reports of the orientations of the two targets. These aspects of the experimental design
113 allowed us to quantify the influence of both targets and distractors on participants’
114  perceptual reports and on their associated neural representations.

115
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117  Figure 1. Schematic of stimuli and timing of displays in the novel rapid serial visual

118  presentation (RSVP) task. A. An illustration of a typical trial in the RSVP task, which

119  consisted of 20 sequentially presented Gabor patches at fixation. Each of the twenty
120 items within a single RSVP stream was presented for 40 ms, with an 80 ms blank

121  interval between items (120 ms inter-stimulus interval), yielding an 8.33 Hz presentation
122 rate. The number of items (Lag) between the first (T1) and second (T2) targets was

123  varied to measure the temporal duration of the AB. At the end of each RSVP stream,
124  participants reproduced the orientations of T1 and T2 (higher spatial-frequency gratings)
125 in the order in which they were presented by adjusting an on-screen cursor at the end of
126  the trial. They were asked to determine the orientations as accurately as possible and
127  were not given any time restriction to do this. Visual feedback was provided following
128 the response. B. A schematic of the feedback screen for responses. C. The correlation
129 values between orientations of the RSVP items over trials in Experiment 1. As Gabor
130 orientations were randomly drawn (without replacement) on each trial, across all trials
131  the orientation of any given item in the stream was uncorrelated with the orientation of
132 any other item. This permitted the use of regression-based approaches to isolate the
133  behavioural and neural processing of individual items independently of surrounding

134  items within the stream. The correlations were calculated for each participant and are
135 displayed as averaged across participants.
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//

Movie 1. Examples of two trials from the RSVP task.

To preview the results, behavioural target reproduction replicated the key
hallmarks of the AB effect: the orientation of T1 was reported with a relatively high
degree of accuracy, whereas orientation judgements for T2 were degraded when T2
appeared 200-400 ms after T1. Forward encoding analyses of EEG activity showed that
targets evoked greater orientation-selective information than distractors when T2 was
accurately reported (i.e., in non-AB trials), and that orientation information evoked by
both targets was suppressed, relative to the distractors, when T2 was missed (i.e., in
AB trials). Critical to our first question of whether focused attention influences the gain
or precision of feature-specific representations, only the gain of the encoded EEG
response was affected by T2 response accuracy.

With respect to our second question — whether accuracy in registering the
second target is linked to the processing of T1 or to the intervening distractors — the
evidence was in favour of T1-based theories of the AB. We found no evidence to

suggest that neural representations of the distractors were affected by target
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153  processing. Finally, we describe a novel observation — one not predicted by any theory
154  of the AB — namely, a significant interaction of the specific features of T1 and T2,

155 implying a previously unknown long-range temporal integration of target representations
156  within rapid sequential visual streams.

157

158 Results

159 Experiment 1 - Behavioural measurement of target orientation perception for

160 items in RSVP streams

161  Behavioural results replicate hallmarks of the attentional blink

162 Participants’ (N=22) response errors (i.e., the difference between the presented
163  and reported orientation for each target) were centred around 0°, verifying that they
164  were able to perform the task as instructed. Figure 2A captures the temporal dynamics
165 of the AB, such that accuracy was affected by target position (T1 or T2) and Lag.

166  Specifically, at Lag 1 accuracy for both T1 and T2 was degraded relative to accuracy at
167 the other lags (2, 3, 5 & 7). Moreover, at Lags 2 and 3, T1 accuracy was high whereas
168 T2 accuracy was relatively poor. This was largely due to an increase in the baseline
169 guessing rates (where errors occurred evenly across all orientations). Finally, at longer

170 temporal separations (Lags 5 and 7), target accuracy was similar for both items.
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171
172  Figure 2. Behavioural results for the RSVP task in Experiment 1. A. The distribution of

173 response errors (difference between presented and reported orientation) across

174  participants (N=22) for the first (T1) and second (T2) target for each Lag condition. The
175 line shows fitted four-parameter Gaussian function. B. Quantified behavioural

176  responses for the four parameters of the fitted Gaussian function (see Supplementary
177  Figure 1) for each participant. Gain shows the amplitude, width shows the standard
178  deviation of the function, centre orientation is the mean (which should be centred

179 around 0° for unbiased estimates), and baseline is a constant parameter accounting for
180 non-orientation selective responses which indicates guessing. Asterisks indicate

181  Bonferroni-corrected significant differences at p < .05. C. Regression results for the
182 influence of distractors and targets on participants’ responses. Higher regression

183 weights indicate that a given item’s orientation was more influential for determining the
184  reported orientation. The dotted vertical lines indicate the position of the other target
185 (colour matched). Consider, for example, the panel depicting Lag 2 results. For T1

186 report, T2 occurred at item+2 as indicated by the dotted blue line, whereas when for T2
187 report, T1 occurred at item-2, as indicated by the dotted red line. Across all panels, error
188 bars indicate +1 standard error of mean.

189
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190 Gain or precision of behavioural response?

191 We fitted Gaussian functions to each individual’s data to quantify how the AB
192  affected target perception (Figure 2B; see Methods and Supplementary Figure 1). The
193  accuracy reduction for T2 at Lags 2 and 3 was primarily linked to a reduction in gain. A
194 2 (Target; T1,T2) x 5 (Lag; 1,2,3,5,7) within-subjects ANOVA showed the gain

195 parameter was affected by Target (F(1,21)=10.00, p=0.005, ny,?=0.32) and Lag

196 (F(4,84)=11.66, p<0.0001, np*=0.36), and the interaction between these factors

197 (F(4,84)=7.10, p<0.0001, np?=0.25). Critically for our first theoretical question, the

198 spread (width) of orientation errors was unaffected by the factors of Target

199 (F(1,21)=0.10, p=0.76, np?=0.005) or Lag (F(4,84)=0.55, p=0.70, np?=0.03), or by the
200 interaction between these factors (F(4,84)=0.19, p=0.94, n,?>=0.01). The baseline

201  parameter, which reflects guessing of random orientations, was also significantly

202 affected by the factors of Target (F(1,21)=12.72, p=0.002, np?=0.38) and Lag

203 (F(4,84)=4.82, p=0.002, n,’=0.19), and by the interaction between them (F(4,84)=5.04,
204 p=0.001, np?=0.19). These same effects were also evident when the data were not
205 normalized (Supplementary Figure 2), and with a wide range of parameters to specify
206 the orientation errors (Supplementary Figure 3).

207 Taken together, these results are consistent with a previous AB study using
208 similar analysis methods?’. They also lend weight to the global workspace theory of
209 consciousness in the AB?8, which argues that participants either see the target and have
210 full awareness of it (allowing them to respond precisely), or they have no awareness

211 (and so simply guess randomly). By contrast, the results are inconsistent with the

11
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opposing view that the AB involves a noisier (i.e., weaker precision) signal for the target
that is inaccurately reported?°.
Targets, not distractors, influence judgements of T1 and T2 orientation

To evaluate the influence of distractors on participants’ reports, we aligned the
orientations of the items relative to target position within the RSVP stream (-4 to +7
items) and constructed a regression matrix to predict the behavioural response for each
target. If the orientation of an item is influential in determining the reported orientation,
the regression weight will be relatively high (Figure 2C). As expected, for all lags, each
target item was influenced principally by its own orientation. The one exception was the
item at Lag 1, where the reported orientation of T1 was as strongly influenced by the
orientation of T2 as by the orientation of T1. This observation is in line with numerous
studies which have suggested that temporal order information can be lost for
consecutive targets?526:30, This phenomenon, also known as Lag 1 switching, where the
perceived order of the targets is reversed, explains why the accuracy of orientation
judgements on both T1 and T2 was reduced at Lag 1 (see also Supplementary Figure
4). By contrast, for items at Lags 2 and 3, orientation judgements on T1 were only
marginally influenced by the orientation of T2 (i.e., for items at positions +2 and +3,
respectively, in the RSVP stream). However, at these same lags (where the AB was
maximal) T2 reports were significantly influenced by T1 orientation (i.e., for items at
positions -2 and -3, respectively). Importantly, there was no reliable influence of
distractors on reported target orientation at any lag, suggesting distractors played little

or no role in target orientation errors.

12
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234 Long-range temporal integration of target orientations

235 One account of the AB?%26 has suggested that successive targets presented at
236 short lags are integrated into a single ‘episodic trace’, which accounts for Lag 1

237  switching. With the present task, we can directly quantify how targets are integrated by
238 looking for systematic biases in the reported orientation of a given target based on its
239 orientation difference with respect to the other target. Figure 3A shows orientation

240 judgement errors as a function of the difference between the two target orientations.
241 While the average orientation error is centred on 0°, the perceived orientation of either
242  target (T1 or T2) was significantly biased toward the orientation of the other target within
243 the RSVP stream at early Lags. Furthermore, these biases were orientation-tuned, such
244  that the largest bias occurred when targets differed by approximately 45°, somewhat
245  analogous to serial dependency effects3'-33, This profile of biases suggests response
246 integration, rather than replacement, as the latter would predict that only the orientation
247  of T2 should drive the reported orientation of T1. Instead, and consistent with our linear
248  regression analysis (see Figure 2C), the bias reflected the difference between target
249  orientations, which supports the idea that the critical features of the two targets are

250 assimilated over time?5:26.

251
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Figure 3. The influence of targets and distractors on the reported orientation in
Experiment 1. A. Orientation error (the difference between presented and reported
orientation) plotted against the difference between T1 and T2 orientations (divided into
30° bins, for clarity of presentation). Negative values on the X-axis indicate that a given
target was rotated clockwise relative to the other target. For instance, when examining
T1, a negative value indicates that T2 was rotated clockwise relative to T1, whereas a
positive value indicates that T2 was rotated anti-clockwise relative to T1. For T1, the
plotted values reflect the calculation of T1 minus T2, and vice versa for the calculation
of T2, to ensure values were equivalent for the comparison of interest. The same
convention applies to orientation error, shown on the Y-axis. The fitted line is the first
derivative of a Gaussian (D1) function showing the orientation-tuned gain and width of
the response. B. Bias magnitude was quantified across participants by fitting the D1
function to each participant’s (non-binned) data, with the gain showing bias magnitude.
A negative gain on the Y-axis indicates that the perceived orientation was biased
toward, rather than away from, the other target. C. Bias magnitude by difference with
target and distractors. For both T1 and T2, the difference between the target and the
item was found in the same manner as in A. We fit the D1 function to find the magnitude
of bias induced by each item for each participant. The dotted coloured lines indicate the
temporal position of the other target (T1 = blue, T2 = red). For all panels, the asterisks
indicate, for each target, at which lags the bias was significantly greater than zero
(Bonferroni-corrected one-sample t-test p<0.05). Across all panels, error bars indicate
+1 standard error of mean.
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We fit first derivative of Gaussian (D1) functions3+-36 to quantify the amount of
orientation-selective bias for both targets at each Lag for each participant. A 2 (Target;
T1,T2) x 5 (Lag; 1,2,3,5,7) within-subjects ANOVA revealed significant main effects of
Target (F(1,21)=5.04, p=0.04, nx°=0.19) and Lag (F(4,84)=6.54, p<.0001, ny?=0.24),
and a significant interaction (F(4,84)=6.14, p<.0001, np?=0.27). For T1 reporting, the
bias was significantly greater than chance at all intervals except Lag 7, whereas for T2,
there was a significant bias at Lags 2 and 3 only (Bonferroni-corrected one-sample t-
test, all ps<0.05). As might be expected?>26, the ‘attraction’ bias in target reports was
strongest when the two targets were presented with no intervening distractors between
them (i.e., at Lag 1). An entirely novel finding, however, is that there was an equally
strong attraction bias between targets presented at Lags 2 and 3 (see Figure 3B), even
though participants were not explicitly aware of the orientation of T2 on AB trials.

Only the distractor immediately following each target biases reporting

Previous work suggests that distractor processing can significantly interfere with
target processing®’-%°, particularly for the immediate post-target item which can be
integrated into the target representation2526:30. To determine whether this was the case
in our data, we repeated the previous analysis but used the difference in orientation
between the target and each of the other items in the RSVP stream (Figure 3C). For
most lags, the reported target orientation was significantly attracted toward the
immediately following distractor, but was not reliably influenced by any other distractor.
A 2 (Target; T1, T2) x 5 (Lag; 1,2,3,5,7) x 4 (Iltem position; -1,1,2,3,4) within-subjects

ANOVA confirmed a significant three-way interaction between the factors
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(F(16,336)=4.11,p<.0001,n,°=0.16). At Lag 1, there was no influence of distractors on
reported orientations for either T1 or T2. Taken with the previous result, this suggests
that the representation of a given target is influenced by both the other target and by the
post-target item. The results suggest that when the visual system detects a target, it
automatically integrates features from the immediately subsequent item. This is
consistent with previous studies that have highlighted the importance of masking by the

item immediately following the target in eliciting the AB*°.

Experiment 2 — Characterizing neural representations of target orientation
information in RSVP streams

We next characterized the neural activity elicited by individual RSVP items, and
determined how this was affected by the AB. In Experiment 2, a group of 23 new
participants undertook the RSVP task introduced in Experiment 1 while neural activity
was concurrently measured using EEG. The method was identical in all respects,
except that we now included targets only at Lags 3 and 7 (i.e., a single target inside and
outside the AB, respectively) to increase the within-subject power for the EEG analyses.
Behavioural results

The behavioural results replicated, in all important respects, those found in
Experiment 1. As shown in Figure 4A, participants performed well overall, and their
orientation judgements for T1 and T2 were centred on the presented orientations. As in
Experiment 1, we fit Gaussian functions to quantify the results (Figure 4B). For the gain

parameter, a 2 (Target; T1, T2) x 2 (Lag; 3,7) within-subjects ANOVA revealed
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significant main effects of Target (F(1,22)=11.63, p=0.003, n,?=0.35) and Lag
(F(1,22)=18.70, p<0.0001, np?=0.46), and a significant interaction (F(1,22)=40.19,
p<0.0001, np?=0.65). Likewise for the baseline parameter, there were significant effects
of Target (F(1,22)=8.96, p=0.007, n,’=0.30) and Lag (F(1,22)=12.21, p=0.002,
npr?’=0.36), and a significant interaction (F(1,22)=7.91, p=0.01, n,?=0.26). By contrast,
there were no significant main effects and no interaction for the width parameter (Target
(F(1,22)=1.19, p=0.29, np?=0.05; Lag (F(1,22)=3.90, p=0.06, np?=0.15); interaction

(F(1,22)=0.14, p=0.71, n,2=0.0086).
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Figure 4. Behavioural results for the RSVP task in Experiment 2. A. Aggregate
response accuracy across participants (difference between presented and reported
orientations) for T1 and T2, shown separately for Lag 3 and Lag 7 trials. Lines are fitted
Gaussian functions. B. Quantified behavioural responses for the four parameters of the
fitted Gaussian functions (gain, width, centre orientation and baseline) to each
participant’s data. Asterisks indicate significant differences at Bonferroni-corrected
p<0.05. C. Regression results for the influence of distractors and targets on participants’
responses. The dotted vertical lines indicate the position of the other target (colour
matched). Consider, for example, the panel depicting Lag 3 results. For T1 report, T2
occurred at item+3 as indicated by the dotted blue line, whereas when for T2 report, T1
occurred at item-3, as indicated by the dotted red line. Across all panels error bars
indicate +1 standard error of mean.
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Orientation selectivity of RSVP items

We next applied forward modelling to the EEG data recorded during the task to
quantify orientation information contained within multivariate patterns of neural activity.
Because the orientations of successive items were uncorrelated, we were able to
quantify orientation selectivity for each grating without contamination from adjacent
items. Forward encoding uses a linear regression-based approach to find multivariate
patterns of EEG activity that are selective for features of interest — in this case
orientation. As no previous study has used forward encoding in conjunction with rapid
visual presentations, we first verified that orientation selectivity for each of the 20 RSVP
items could be extracted separately using this approach, and at what time point any
such response was evident. To do this, we constructed 20 encoding models, one for
each of the item position for the 20-item RSVP stream, based on the orientations
presented for that item across trials.

As shown in Figure 5, the forward encoding revealed robust and reliable feature
selectivity derived from patterns of EEG activity for each of the gratings presented
during the RSVP. Each item’s orientation was successfully decoded over a time window
that extended from 74 to 398 ms after the item was presented. Examination of the
neural responses to each of the 20 items within the RSVP stream (Figure 5C) shows
that feature selectivity was evident as a series of regularly spaced, short-lived impulse
responses, each with a delay of around 50 ms from grating onset and lasting
approximately 300 ms. To quantify these observations, we fit Gaussian functions to the

forward encoding results for each item separately for each participant and at each time
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363 point. There was significant feature selectivity (given by the gain of the Gaussian) for
364 each item immediately after it was presented but not before (Figure 5D). These

365 representations were temporally overlapping, such that multiple orientation-selective
366 responses (~3) were detectable at the same time. Taken together, the forward encoding
367 analyses verify that it is possible to reliably recover the presented orientation of every
368 RSVP item from the multivariate pattern of neural activity recorded using EEG.

369
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371  Figure 5. Feature (orientation) selectivity for RSVP items derived using forward

372 encoding modelling of multi-variate patterns of EEG activity in Experiment 2. A. Forward
373 encoding results aligned at the time of item onset and the presented orientation across
374  all participants. All representations have been re-aligned so that the presented

375 orientation is equivalent to 0°. B. Forward encoding results averaged over 50 ms bins
376 (shown by corresponding colour in (A) following each item. Feature selectivity peaks
377 around 50-120 ms after the onset of each item and persists for ~200 ms. C. Forward
378 encoding results for each item in the RSVP stream. Vertical black lines indicate the

379 presentation time of each of the 20 items within the RSVP stream. The dotted horizontal
380 line indicates the presented orientation. The colour scale is the same as in panel A. D.
381  Gaussian distributions were fitted to each participant’s data for each item in the stream,
382  with the gain showing feature selectivity. The red horizontal line segments underneath
383 each trace indicate timepoints over which feature selectivity was significantly different
384 from zero (i.e., where feature selectivity was greater than what would be expected by
385 chance; two-tailed, sign-flipping cluster-permutation, alpha p<0.05, cluster alpha

386 p<0.05, N permutations = 20,000), which occurs immediately following item

387 presentation. Across all panels shading indicates +1 standard error of the mean across
388 participants. a.u = arbitrary units.
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The attentional blink is associated with reduced feature-selective information for
the second target

We next examined how neural representations of the target items were affected
by the AB. To increase signal-to-noise for training the encoding model, we aligned the
EEG data to the presentation time of each item in the RSVP stream and applied the
same forward encoding procedure. This meant that the model was trained and tested
across 12,000 presentations (600 trials by 20 RSVP items; see Figure 6). To determine
the effect of the AB on orientation-selectivity, we separated the forward encoding results
by target (T1,T2) and T2 accuracy (correct, incorrect). For the purposes of the analyses,
trials were scored as correct if the reported orientation was within £30 degrees of the
presented orientation, a criterion which yielded roughly equal correct and incorrect trials
at Lag 3. In line with the AB literature, for all the EEG analyses we only included trials
where participants correctly identified T1. Applying these criteria yielded the classic AB
effect (Supplementary Figure 5). A 2 (Lag; 3,7) x 2 (Target; T1,T2) within-subjects
ANOVA applied to these scores revealed significant main effects of Lag
(F(1,22)=199.52, p<0.0001, np?=0.90) and Target (F(1,22)=8.58, p=0.008, n°=0.28),
and a significant interaction (F(1,22)=9.64, p=0.005, np,?=0.31). Follow-up t-tests
showed that Lag 3 accuracy was significantly lower than Lag 7 accuracy for T2 items
(t(22)=8.15, Bonferroni p=0.01, d=0.66) but not for T1 items (1(22)=1.97, Bonferroni
p=0.12,d=0.41).

We again fitted Gaussians to each time point to quantify the amount of feature-

selective information evoked by the targets. For both T1 and T2, there was significant
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feature-selective activity shortly after each item appeared (Figure 6A). For Lags 3 and 7,
there was no difference between correct and incorrect trials for the T1 representation.
For T2, however, incorrect trials resulted in a significantly decreased feature-selective
response (cluster p=0.02) relative to correct trials shortly after each item appeared (100
to 150 ms) at Lag 3, although the response was not completely suppressed. There were
no significant differences in the orientation-selective response between correct and
incorrect trials for T2 at Lag 7, suggesting the suppression is caused by the AB rather
than general target detection. This was expected because the AB typically lasts less
than 500 ms, and is consistent with the current behavioural results showing an AB at
Lag 3 but not at Lag 7. Performing the same analysis on the other parameters of the
Gaussian (width, centre, baseline) showed no effect of the AB (Supplementary Figure

6).
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425  Figure 6. Neural representations of feature-selective information during the attentional
426  blink for the first (T1) and second target (T2) based on reporting accuracy for T2 for
427  Experiment 2. A. Time course of measured feature selectivity for T1 and T2, given by
428 the gain of the fitted Gaussian parameter. Trials were scored as correct if the

429 participant’s response was within 30° of the presented T2 orientation. Only trials in
430 which participants responded accurately to T1 were included in the analysis. The thick
431  black horizontal line in the upper right panel indicates a period of significant difference
432 between Incorrect and Correct trials (two-tailed sign-flipping cluster-permutation, alpha
433  p<0.05, cluster alpha p<0.05, N permutations = 20,000). B. Forward encoding results
434  were averaged across the significant time points for T2 Lag 3 shown in A (upper right
435 panel) to reconstruct the full representation of orientation. Reliable changes in the gain
436  of orientation representations for T2 were present at Lag 3 (upper panel) but not at Lag
437 7 (lower panel). There was no difference in the width for either Lag. Shading indicates
438 +1 standard error of the mean.

439

440 To ensure we did not miss any small but consistent effects, we averaged the
441  forward encoding results (Orientation x Time) over the early (100 to 150 ms) timepoints

442  to increase signal-to noise-ratio and recovered the orientation tuning curve (Figure 6B).
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443  Fitting Gaussians to these values confirmed that the AB was associated with a change
444  in the gain of feature selectivity for T2 at Lag 3, such that correct trials showed

445  significantly greater gain than incorrect trials (#22)=3.12, p=0.01, d=0.65; Figure 6B
446 upper panel). By contrast, the width of the representation was again unaffected by the
447  AB (#(22)=1.66, p=0.11,0d=0.35) for the same item.

448 The reduction in T2 selectivity for incorrect trials at Lag 3 was not driven by an
449  arbitrary split of trials into correct and incorrect categories. To verify this, we sorted the
450 evoked T2 forward encoding results by the amount of orientation error (in 15° error bins
451  to allow sufficient signal-to-noise ratios for fitting). There was significantly greater

452  feature selectivity when the orientation error was small, and this selectivity gradually
453 decreased with larger errors (one-way within-subjects ANOVA, F(1,22)=2.76, p=0.02,
454  np?=0.11; Figure 7). These results indicate that the AB is associated with a reduction in
455  gain, but not width, of feature-selective information for the second target item (T2), and
456 that this effect occurs soon after the target appears within the RSVP stream.

457
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459  Figure 7. Gain of feature-selective information for T2 items presented at Lag 3 in

460 Experiment 2, plotted as a function of reporting error. Forward encoding results were
461 averaged across early time points (100-150ms), and were binned by the absolute

462 difference between the presented and reported orientations (in 15° increments). Each
463 binis displayed as the starting value (e.g., 0° incorporates errors from 0° to 15°).

464  Gaussians were fitted to quantify selectivity with the gain parameter shown here.

465 Feature selectivity was highest when participants reported the orientation to within 30°
466 of the presented orientation, and declined significantly with larger reporting errors. Error
467  bars indicate +1 standard error of the mean.

468

469 How do neural representations of targets and distractors contribute to the AB?
470 We next examined the neural representations both of targets and distractors to
471  test the different predictions made by T1- versus distractor-based accounts of the AB.
472  T1-based accounts*'4? argue that the second target deficit is caused by extended

473  processing of the first target, whereas distractor-based accounts?#43 argue that

474  deleterious processing of the distractors, mainly between T1 and T2, causes the second
475 target to be missed. The theories thus make distinct predictions about the neural

476 representation of target and distractor items. According to T1-based accounts, target
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representations should be enhanced relative to those of distractors, and missed T2
items on AB trials should be more poorly represented than correctly reported T2 items.
By contrast, distractor-based accounts predict that neural representations of distractor
items should be stronger on AB trials than on non-AB trials and weaker following T1
presentation.

As before, we averaged the forward encoding modelling representations
(Orientation x Time) across an early time point (100 to 150 ms), and fit Gaussians to
each participant’s data to quantify feature selectivity (Figure 8A). For correct trials (i.e.,
orientation responses to T2 were within 30° of the presented orientation), the two
targets resulted in significantly higher feature selectivity (gain) than the immediately
adjacent distractors (-2,-1,+1 and +2 items) for both T1 and T2 representations (all
ps<0.04). On incorrect trials, feature selectivity for T1 was not significantly greater than
selectivity for the surrounding distractors (#(22)=0.15, p=0.88,0d=0.03), even though we
included only trials in which T1 was correctly reported. Most interestingly, on incorrect
trials the representations of T2 items were significantly lower than that of the
immediately adjacent distractors ((22)=2.09, p=0.04,d=0.44), suggesting that the
featural information carried by T2 was suppressed, while distractors were unaffected.
To directly test the distractor model of the AB, we compared distractor representations
before T1 with distractor representations during the AB (i.e., between T1 and T2). The
account predicts that distractors presented during the AB should elicit a stronger neural
representation as they are likely to be incorrectly selected as targets. Instead, we found

that distractors were represented similarly before and during the AB for both correct
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trials (#(22)=0.85, p=0.40,0=0.18) and incorrect trials (#(22)=1.83, p=0.08,0=0.38).Taken
together, these results suggest that for trials where participants accurately report target
orientation, the neural representations of targets are boosted relative to those of
distractors. By contrast, when the second target is missed, as occurs during the AB,

there is a significant suppression of the target’s featural information.

B Targets
Oto 100 to 200 to 300 to
100 ms 200 ms 300 ms 400 ms

AL /‘ /\
i 74 \ (/‘\‘
vt @O0,

Distractors

Feature selectivity
gain (a.u.)
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Item position relative to T1

Orientation selectivity (a.u.)

Figure 8. Feature selectivity and scalp topographies for targets and distractors in
Experiment 2. A. Neural feature selectivity (gain of Gaussian) of target and distractor
representations for Lag 3 trials. Gaussians were fit to the averaged neural
representation from 100 to 150 ms. To aid comparison, the grey bar indicates the
average distractor representation (+1 standard error of mean). Note that all distractors
and targets have gain values significantly above 0 arbitrary units (a.u.) indicating robust
feature-selectivity. Error bars indicate +1 standard error of mean. B. Headmaps
showing univariate orientation selectivity over time, plotted separately for targets and
distractors. Plus symbols indicate positive cluster-permuted differences between targets
and distractors (two-tailed cluster-permutation, alpha p<0.05, cluster alpha p<0.025, N
permutations = 1,500).

Localisation of feature selectivity of targets and distractors
In a final step, we performed a univariate sensor-level analysis for feature
selectivity'? to find the topographies associated with target and distractor processing. To

do this, we trained a simplified model of feature selectivity on each type of item (targets
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and distractors) separately for each EEG sensor. Orientation information for both
targets and distractors was evident most strongly over occipital and parietal areas, and
target items generated significantly greater selectivity over these areas than distractors
(Figure 8B). These findings suggest that while target and distractor items are processed
in overlapping brain regions, targets generate significantly greater orientation-selective

information than distractors.

Discussion

We developed a novel RSVP paradigm to determine the neural and behavioural
bases of the limits of temporal attention. The behavioural results replicated the hallmark
of the AB with response accuracy being significantly reduced when T2 was presented
within 200-400 ms of T1. We discovered that target representations influenced one
another, such that the reported orientation of one target was biased toward the
orientation of the other. Results from Experiment 2 revealed that successfully reporting
T2 depended on a boost to its neural representation relative to other items in the RSVP
stream, whereas missing T2 corresponded to a suppressed neural response relative to
the distractors. Notably, there was no evidence for suppression of neural
representations of the distractors, suggesting the AB is primarily driven by processing
competition between target items. This observation supports theories that have
attributed the second-target deficit to first target processing*#344, but is inconsistent with

theories that attribute the AB to inadvertent processing of distractor items2445.
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An important but unexpected result is that target reports were influenced by one
another despite being separated by several hundred milliseconds and multiple distractor
items. One influential theory argues that the AB is caused by temporal integration of the
target with the immediate post-target distractor?>26. Our RSVP task found evidence for
this but also showed that target representations appear to be integrated with each other
even when they are separated by multiple distractor items within the stream. This
finding is not explicitly predicted by any existing account of the AB. The largest bias was
for Lag 1 trials, in which the two targets appear sequentially, a result that is consistent
with Lag 1 switching?526:30, The orientation of the immediate post-target distractor also
significantly biased the perceived target orientation, whereas the distractors that
appeared between the targets did not bias perceptual judgements. Taken together, our
findings across two experiments suggest that the detection of a target in an RSVP
sequence starts a period of local integration which involuntarily captures the next item,
whether it is a target or a distractor. This is followed by a more global integration of
targets, possibly within working memory*.

Our first major aim was to determine how the AB affects target representations.
The forward encoding modelling of the EEG data adds to previous results?’ by
demonstrating that the gain in neural representations of Lag 3 items is significantly
reduced in AB trials, compared with non-AB trials. Supporting the behavioural results,
there was no effect on the width of EEG-derived feature selectivity during the AB. The
neural results also go beyond the behavioural findings by showing that the gain of Lag 3

items is not only suppressed on AB trials, but boosted on non-AB trials compared with
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those of the distractors. Taken together, these results suggest that temporal attention
operates in a similar manner to spatial'517-1? attention, but not to feature-based
attention?21, as the former has been found to affect the gain of neural responses
whereas the latter tends to affect the sharpness of neural tuning.

The second major aim of our study was to resolve the persistent debate between
T1- and distractor-based theories of the AB+2441-45, Behaviourally, we found scant
evidence that distractors (apart from the immediately subsequent distractor) influence
target perception. Consistent with T1-based accounts of the AB*2427, there were robust
neural representations of distractors and no evidence that distractor representations
were boosted following initial target detection, as would be predicted by distractor-based
accounts. Furthermore, we found no evidence that post-T1 distractors were
suppressed, as would be predicted by T1-based inhibition accounts of the AB*44.
Instead, consistent with T1-based accounts*?4-27, the representations of both targets
were boosted relative to those of the distractors. If the second target was missed,
however — as occurs during the AB — then the representation of the second target was
significantly suppressed relative to the distractors. Taken together, these results
suggest that when the first target is processed rapidly, attention is efficiently redeployed
to the second target, causing its representation to be boosted. By contrast, if the second
target appears while processing of the first target is ongoing, the visual system actively
suppresses the information to avoid the targets interfering with each other.

Suppression of the T2 representation occurred 100-150 ms after the target

appeared, suggesting inhibition by ongoing processing of T1. This fits well with previous
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work showing that the AB is associated with a reduced late-stage response, as
indicated by an ERP component associated with working memory consolidation&46.
Taken together with the current results, it seems that suppressing the initial T2
representation is likely to inhibit information from being passed to later cortical stages
associated with working memory consolidation. As this information does not reach
higher cortical stages, it results in a reduced working memory ERP component during
the AB. This could also explain why the T2 representation was only initially affected
(100-150 ms), as only its early appearance needs to be suppressed to stop inference
with T1 processing at a higher stage. These behavioural results may be consistent with
sequential working memory consolidation of targets. We found the precision of reporting
T1 was unaffected by Lag, even though often during the AB only one item is reported,
whereas at longer lags two items are reported. During spatial working memory tasks,
where multiple items are simultaneously presented, longer lags should have a higher
memory load and lead to lower precision*’. Instead, the current results suggest that
each target is consolidated into working memory before the store allows a second item
to enter.

In summary, the current work adds to our understanding of the neural and
behavioural basis of temporal attention. For the first time, we were able to recover a
neural signature for each item within an RSVP stream, something that has not been
possible with conventional approaches to EEG and fMRI data. Our novel methodology
indicated that while there is co-modulation of featural information carried by each of the

targets, there is no evidence for distractor suppression in this RSVP task. We also
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document for the first time the existence of interactions among targets that are
separated by several hundred milliseconds.

Our novel methodology provides a rich framework for exploring the neural bases
of many psychological phenomena, including repetition blindness*® and contingent
attentional capture*®. The current work was not designed to pinpoint the neural locus of
the AB, combining the technique with fMRI could elucidate its cortical origins.
Furthermore, feedback and feedforward processes are thought to modulate different
aspects of the AB®C. Future studies might fruitfully combine our method with invasive
recordings in animals, particularly if multiple areas were recorded from simultaneously®’
to resolve these questions.

Methods
Participants

In Experiment 1, 22 participants (13 females, 9 males; median age 22 years;
range 19-33 years) were recruited from a paid participant pool and reimbursed at
AUD$20/hr. In Experiment 2, 23 participants (14 females, 9 males; median age 23
years; range 19-33 years old) were recruited from the same pool and reimbursed at the
same rate. Each person provided written informed consent prior to participation and had
normal or corrected-to-normal vision. The study was approved by The University of
Queensland Human Research Ethics Committee and was in accordance with the
Declaration of Helsinki.

Experimental setup

Both experiments were conducted inside dimly-illuminated rooms. The items
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were displayed on a 22-inch LED monitor (resolution 1920 x 1080 pixels, refresh rate
100 Hz) using the PsychToolbox presentation software5253 for MATLAB. In Experiment
1, participants were seated at a distance of approximately 45 cm from the monitor. In
Experiment 2, the same viewing distance was maintained using a chinrest to minimise
head motion artefacts in the EEG. At a viewing distance of 45 cm, the monitor
subtended 61.18° x 36.87° (one pixel = 2.4’ x 2.4°).
Task

A schematic of the task is shown in Figure 1. Movie 1 shows two example trials.
Each trial began with a central fixation point and the RSVP stream commenced after
300 ms. The stream consisted of 20 Gabors (0.71° standard deviation, ~5° diameter,
100% contrast, centred at fixation) on a mid-grey background. On each trial, the
orientations of the twenty Gabors in the stream were drawn pseudo-randomly without
replacement from integer values ranging from 0-179°. Both targets and distractors were
drawn from the same random distribution, meaning there was no restriction on the
relationship between targets. Each item was presented for 40 ms and was separated
from the next item by a blank interval of 80 ms, yielding an 8.33 Hz presentation rate.
The participants’ task was to reproduce the orientations of the two high-spatial
frequency Gabors (targets; 2 ¢/°) while ignoring the items of a low-spatial frequency
(distractors; 1 ¢/°). Between 4 and 8 distractors, varied pseudo-randomly on each trial,
were presented before the first target (T1) to minimise the development of strong
temporal expectations, which can reduce the AB3%:54. The number of distractor items

between T1 and T2 defined the inter-target lag (1,2,3,5,7 in Experiment 1, and 3,7 in
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Experiment 2). There were 600 trials in each of the two experiments, with an equal
distribution of trials across the lag conditions (120 in Experiment 1, 300 in Experiment
2), with fewer lags included in Experiment 2 to increase signal-to-noise for the
regression-based EEG analysis.

Participants were asked to monitor the central RSVP stream until the
presentation of the last Gabor, after which a response screen appeared (see Figure
1B). The response screen consisted of a centrally-presented black circle (10° diameter)
and a yellow line. Participants rotated the line using a computer mouse to match the
perceived orientation of the target and clicked to indicate their desired response. They
were asked to reproduce the orientations of the two targets (T1, T2) in the order they
were presented, and to respond as accurately as possible, with no time limit. After
providing their responses, participants were shown a feedback screen which displayed
their orientation judgements for T1 and T2, and the actual orientations of both targets
(see Figure 1C). The feedback was displayed for 500 ms before the next trial began,
and participants were given a self-paced rest break every 40 trials. Each experiment
took between 50 and 60 minutes to complete.

EEG acquisition and pre-processing

In Experiment 2, continuous EEG data were recorded using a BioSemi Active
Two system (BioSemi, Amsterdam, Netherlands). The signal was digitised at 1024 Hz
sampling rate with a 24-bit A/D conversion. The 64 active scalp Ag/AgCl electrodes
were arranged according to the international standard 10-20 system for electrode

placement®® using a nylon head cap. As per BioSemi system design, the common mode
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sense and driven right leg electrodes served as the ground, and all scalp electrodes
were referenced to the common mode sense during recording. Pairs of flat Ag-AgCl
electro-oculographic electrodes were placed on the outside of both eyes, and above
and below the left eye, to record horizontal and vertical eye movements, respectively.

Offline EEG pre-processing was performed using EEGLAB in accordance with
best practice procedures®®-%’, The data were initially down sampled to 512 Hz and
subjected to a 0.5 Hz high-pass filter to remove slow baseline drifts. Electrical line noise
was removed using the clean_line, and clean_rawdata functions in EEGLAB®® was used
to remove bad channels (identified using Artifact Subspace Reconstruction), which were
then interpolated from the neighbouring electrodes. Data were then re-referenced to the
common average before being epoched into segments for each trial (-0.5st0 3.0 s
relative to the first Gabor in the RSVP). Systematic artefacts from eye blinks,
movements and muscle activity were identified using semi-automated procedures in the
SASICA toolbox®® and regressed out of the signal. The data were then baseline
corrected to the mean average EEG activity from 500 to O ms before the first Gabor in
the trial.
Behavioural analysis

To determine how the AB affected participants’ perception of targets, for each
trial we found the difference between the actual target orientation and the reported
orientation (i.e., the orientation error) for T1 and T2. This approach is analogous to one
employed in previous work that examined whether the AB is associated with discrete or

graded awareness of T2%7. The continuous nature of the orientation responses given by
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participants on each trial raises the challenge of distinguishing “correct” and “incorrect”
trials. For Experiment 2, we scored trials as correct when the orientation error was less
than 30° from the presented orientation; trials were scored as incorrect when the
orientation error was greater than 30°. As shown in Supplementary Figure 5, this
approach to scoring yielded a classic blink effect, suggesting the tasks captures the
important behavioural features of the widely-reported AB phenomenon. For each lag
condition, we found the proportion of responses (in 15° bins) between -90° and +90° for
the orientation errors (see Figure 2A and 4A) and fit Gaussian functions with a constant
offset (Equation 1) using non-linear least square regression to quantify these results for
each participant (Figure 2B and 4B):

G(x) = Aexp(—%)+€ 1)
Where A is the gain, reflecting the number of responses around the reported orientation,
u is the orientation on which the function is centred (in degrees), o is the standard
deviation (degrees), which provides an index of the precision of participants’ responses,
and C s a constant used to account for changes in the guessing rate. Using different
bin sizes yields the same pattern of results suggesting this procedure did not bias the
results (Supplementary Figure 3).

We used a regression-based approach (see Figure 2D and 4C) to determine how
targets and distractors within each RSVP stream influenced behavioural responses®°.
To do this, we aligned the orientations of both distractor and target items from 4 items
prior to the appearance of the target through to 9 items after the appearance of the

target to construct a regression matrix of the presented orientations. The regression
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matrix was converted to complex numbers (to account for circularity of orientations)
using Equation 2.
C, = exp(li C) (2)

Where C is the regression matrix (in radians) and 1i is an imaginary unit. Standard
linear regression was used to determine how the orientations of the items affected the
reported orientation using Equation 3.

W=(CiCiT)"CiTR )
Where R is the reported orientation (in radians). This was done separately for T1 and
T2 reports, with a higher regression weight indicating the item was more influential in
determining the reported orientation.

To determine whether the finding that the orientations of T1 and T2 influenced
the reported orientation was due to participants integrating the other target or the
surrounding distractors (Figure 3), we found the difference in orientation between the
target of interest and the other item (either target or distractor) and the orientation error
for each trial. This showed an orientation-tuned effect characteristic of integration. To
quantitatively determine the magnitude of this effect, we fit first-derivative Gaussian

functions (D1; Equation 4) to these responses3°-36,

DI(x) = A X 1 xx — i x exp(- 2L (4)
Where A is the gain, u is the orientation on which the function is centred (in degrees),
and o is the standard deviation (degrees).

Forward encoding modelling

Forward encoding modelling was used to recover orientation-selective responses
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741  from the pattern of EEG activity for both target and distractor items in the RSVP stream.
742  This technique has been used previously to reconstruct colour'®, spatial'® and

743  orientation® selectivity from timeseries data acquired through functional magnetic

744  resonance imaging (fMRI). More recently, the same approach has been used to encode
745  orientation® '3 and spatial'4 information contained within MEG and EEG data, which

746  have better temporal resolution than fMRI.

747 We used the orientations of the epoched data segments to construct a

748  regression matrix with 9 regression coefficients, one for each of the orientations (Figure
749  9A). This regression matrix was convolved with a tuned set of nine basis functions (half
750  cosine functions raised to the eighth power®10.1° Equation 5) centred from 0° to 160° in
751  20° steps.

752 F(x) = cos(x — u)® (5)
753  Where pu is the orientation that the channel is centred, and x are orientations from 0° to
754 180°in 1° steps.

755
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757  Figure 9. Schematic illustrating the forward encoding procedure used to estimate

758 feature-selectivity for orientation in Experiment 2. A. A basis set of the nine channels
759 used to model feature (orientation) selectivity. B. The basis set was used to find the
760 expected response (regression coefficients) for each different RSVP item in every trial,
761  for each EEG electrode (three electrodes are shown here for a single example

762 participant). Three trials are shown for the corresponding gratings. C. Ordinary least
763  squares regression was used to find regression weights for the orientation channels
764  across trials for each EEG electrode (three electrodes are shown here for a single

765 example participant). D. Shrinkage matrix'!.1361 that the weights were divided by to

766  perform regularization, to account for correlated activity between electrodes. E. The
767  regression weights were applied to predict the presented orientation. Neural activity
768 (headmaps) from two trials, with the channel responses for those trials. Dotted lines
769 indicate the presented orientations. F. Applying this procedure to each time point gives
770 the time-course of feature-(orientation) selectivity (for one participant). Trials have been
771  binned in 20° intervals, with the dotted lines representing the presented orientation in
772  those trials. On the y-axis, 0 ms represents the onset of the item within the RSVP

773  stream. Feature selectivity emerged around 75 ms after stimulus presentation. G.

774  Modified Gaussian functions (equation) were used to quantify the tuning. The colours of
775 the free parameters in the equation correspond to the relevant components of the tuning
776  curve below.
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This tuned regression matrix was used to measure orientation information either
across trials or in epoched segments. This was done by solving the linear equation (6):
Bi= WCi (6)
Where B1 (64 sensors x N training trials) is the electrode data for the training set, C1 (9
channels x N training trials) is the tuned channel response across the training trials, and
W is the weight matrix for the sensors to be estimated (64 sensors x 9 channels).
Following methods recently introduced for M/EEG analysis, we separately estimated the
weights associated with each channel individually'36'. W was estimated using least
square regression to solve equation (7):
W = (C1 C1T)"* C4T Bs (7)
Following this previous work'".1361 we removed the correlations between sensors, as
these add noise to the linear equation. To do this, we first estimated the noise
correlation between electrodes and removed this component through regularisation2.63
by dividing the weights by the shrinkage matrix. The channel response in the test set Cz
(9 channels x N test trials) was estimated using the weights in (7) and applied to activity
in B2 (64 sensors x N test trials), as per Equation 8:
Cz2= (W WT) WT B2 (8)
To avoid overfitting, we used cross validation (10-fold in the initial whole-trial analysis,
and 20-fold when the item presentations were stacked), where X-1 of epochs were used
to train the model, and this was then tested on the remaining (X) epoch. This process
was repeated until all epochs had served as both test and training trials. We also

repeated this procedure for each point in the epoch to determine time-resolved feature-
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selectivity. To re-align the trials with the exact presented orientation, we reconstructed
the item representation’® by multiplying the channel weights (9 channels x time x trial)
against the basis set (180 orientations x 9 channels). This resulted in a 180 (-89° to 90°)
Orientations x Trial x Time reconstruction. In order to average across trials, the
orientation dimension was shifted so that 0° corresponded to the presented orientation
in each trial.

For the initial encoding analysis (Figure 5), to determine whether feature
selectivity could be recovered for each RSVP item we used 20 encoding models (one
for each item position in the stream) with 600 trials. We trained and tested each model
across the entire 2250 ms of the trial to determine when feature selectivity emerged for
that RSVP item. This analysis verified that each RSVP item could be encoded
independently. We aligned all RSVP items across trials (N = 12,000; 600 trials by 20
items) and used a fixed encoding model for training and testing (Figures 6-8)6465. This
meant we trained and tested all encoding models across all items (both targets and
distractors) regardless of trial type'>13,

Aligned item reconstructions were then averaged over the relevant condition
(Lag, Accuracy or item position) and smoothed using a Gaussian with a temporal kernel
of 6 ms'%.12 to quantify feature selectivity. The Gaussian functions were fit, using least
square regression, to quantify different parameters of feature selectivity across time
points, as per Equation 1, where A is the gain representing the amount of feature
selective activity, u is the orientation on which the function is centred (in degrees), o is

the width (degrees), and Cis a constant used to account for non-feature selective
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821 baseline shifts.

822 Univariate orientation selectivity analysis

823 We used a univariate selectivity analysis'® to determine the topography

824  associated with orientation-selective activity for targets and distractors (Figure 8B). Data
825 were epoched in the same manner as in the forward encoding model where EEG

826  activity was aligned with each stream item. We separated these epochs into target and
827 distractor presentations to determine whether these two types of stimulus were

828 processed differently. All target presentations were used in training (1200 in total; 600
829 trials with two targets in each), together with a pseudo-random selection of the same
830 number of distractor items. To determine the topography, we used a general linear

831 model to estimate orientation selectivity for each sensor from the sine and cosine of the
832 presentation orientation, and a constant regressor in each presentation. From the

833  weights of the two orientation coefficients we calculated selectivity using Equation 9:

834 A= \/Blcosz + B,sin? 9)

835 A was derived through permutation testing in which the design matrix was shuffled (N =
836 1000) and weights calculated. The non-permuted weights were ranked and compared
837  with the permutation distribution, thus enabling calculation of the z-scored difference. To
838 calculate group-level effects, cluster-based sign-flipping permutation testing (N=1500)
839 across electrodes and time was implemented in Fieldtrip® to determine whether the
840 topographies differed between conditions.

841  Statistics

842 All statistical tests were two-sided, and Bonferroni adjustments were used to
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correct for multiple comparisons where noted. Non-parametric sign permutation
tests®7.68 were used to determine differences in the time courses of feature selectivity
(Figures 5 and 6) between conditions. The sign of the data was randomly flipped
(N=20,000), with equal probability, to create a null distribution. Cluster-based
permutation testing was used to correct for multiple comparisons over the time series,
with a cluster-form threshold of p < .05 and significance threshold of p < .05.
Data availability

The EEG and behavioural data for both experiments are available at:

https://ost.io/f9g6h. The code is available at:

https://github.com/MatthewFTang/AttentionalBlinkForwardEncoding.
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Supplementary Figure 1. Examples of the four-parameter Gaussians used to quantify
behavioural orientation errors and forward encoding representations for orientation from
EEG activity. The figure shows the effect of different parameter values on the shape of
the resulting function. Each row has a different gain value, and each column has a
different width parameter. Within each panel, the baseline value changes. The width
parameter shows the precision (of either the behavioural responses or neural
representations). The baseline parameter captures non-selective responses that are
unrelated to the target. For the behavioural analysis, this reflects random guessing
which would be distributed equally across all orientations; for the EEG analysis, it
reflects overall, non-feature selective activity from the orientation encoding. For all
panels, the centre orientation of the Gaussian is set to 90°. The figure highlights the
independence of the parameters of the Gaussians. For instance, looking at the panels
across a given row (where width varies, but gain is fixed) reveals that curves with the
same baseline value have peaks at the same height. Inspecting any one panel shows
that the baseline and gain parameters are independent, with the differences between
the peaks of the curves being equal regardless of the baseline.
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Supplementary Figure 2. Re-analysis of behavioural results in Experiment 1. In the
original analysis (Figure 2), the responses were normalized to 1 for each participant to
show the proportion of total responses in each orientation error bin. To confirm that this
normalization did not bias the results, we re-ran the analysis but used the total number
of responses (120 trials for each condition). A. The distribution of response errors
(difference between presented and reported orientation) across participants for T1 and
T2 for each Lag condition. Lines show fitted Gaussian functions. B. Quantified
behavioural responses for the four parameters of the fitted Gaussian function for each
participant. We used 2 (Target; T1,T2) x 5 (Lag; 1,2,3,5,7) within-subject ANOVAs to
quantify the effect of the AB on the parameters of the fitted Gaussians. The gain
parameter was affected by the factors of Target (F(1,21)=8.97, p=0.007, np*=0.30) and
Lag (F(4,84)=11.78, p<.0001, ns?=0.36), and there was a significant interaction between
these factors (F(4,84)=7.29, p<.0001, np?=0.26). By contrast, and consistent with the
original analysis, for the width parameter there were no significant main effects of
Target (F(1,21)=0.54, p=0.47, ny?=0.02) or Lag (F(4,84)=1.08, p=0.37, np?=0.05), and
no interaction(F(4,84)=0.60, p=0.66, ny’=0.03). The baseline parameter, which reflects
guessing of random orientations, was significantly affected by Target (F(1,21)=8.72,
p=0.008, np?>=0.29) and Lag (F(4,84)=3.54, p=0.01, ny?=0.14). There was also a
significant interaction between these factors (F(4,84)=3.04, p=0.02, ny,?°=0.13). Taken
together, the results replicate those reported in the main analysis, and confirm that the
process of normalization did not bias the outcomes. Asterisks indicate Bonferroni-
corrected differences at p <.05. Error bars indicate +1 standard error of mean.
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Supplementary Figure 3. Re-analysis of behavioural results from Experiment 1, with
different bin sizes of orientation errors to generate the orientation error histogram. In the
original analysis, a 15° bin size was used to group responses. A. Examples of Lag 2
histograms for two bin sizes (5° and 20°) for responses across participants. For the 5°
bin size, orientation errors from -90° to -86° would be grouped together. By contrast, for
a 20° bin, orientation errors from -90° to -71° would be grouped together. B. For each
participant, Gaussians were fit to the resulting response function for each Lag and
Target (T1 and T2). Here the fits are shown for 5° (top row) and 20° (bottom row) for the
four parameters of the Gaussian. The p value is for the interaction term from the within-
subjects ANOVA used in the original analysis, with factors of Lag (1,2,3,5,7) x Target
(T1, T2). In the original analysis, as in the classic AB, a significant Lag x Target
interaction shows that T2 accuracy is impaired at early Lags, whereas T1 accuracy is
unaffected by Lag. C. P-values for the interaction term (Lag x Target) across a wide
range of bin sizes for the four Gaussian parameters. The dotted line indicates p = 0.05.
Note that the p values are displayed on a log axis. As in the original analysis, across
this wide range of bin sizes, there was a clear AB effect on the gain and baseline
parameters of the Gaussian, but no such effect on the width or centre orientation
parameters.
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Supplementary Figure 4. Heatmaps of reported versus presented orientations across
all participants in Experiment 1. These are analogous to confusion matrices for a
continuous report task. Warmer colours indicate a greater proportion of responses. Note
that participants were asked to report the targets in their presented order. Each row is a
lag and each column shows a different comparison. Panels in the leftmost column show
presented-T1 orientation against reported-T1 orientation. For Lags 2-7, there is a strong
correspondence between presented and reported orientations, confirming that
participants accurately reported T1 targets. The next column to the right shows the
outcome of the same analysis, but for T2 targets. For these items, there was a strong
correspondence between presented and reported orientations at Lags 1, 5 and 7, which
decreases (i.e., more random) for items at Lags 2 and 3. The next column shows T1
switching, where presented-T1 orientation is plotted against reported-T2 orientation.
The rightmost column shows T2 switching, where presented-T2 orientation is plotted
against reported-T2 orientation. Clear switching is evident only at Lag 1, where the
orientation of the item presented at T2 is reported as the orientation of T1.
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944  Supplementary Figure 5. Behavioural accuracy for the RSVP task in Experiment 2.
945 Each response was scored as correct if the participant responded within +30° of the
946 presented orientation. Trials were only included if participants responded correctly
947  (within £30°) to T1. Following conventional AB analysis procedures, T2 accuracy was
948  scored using only those trials in which the T1 response was correct. Error bars show
949  within-subject standard error.
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Supplementary Figure 6. Plots of three fitted parameters for the neural representations
of feature-selective information over time for T1 and T2 items in Experiment 2. A. Time
course of measured width of feature selectivity for T1 and T2 items, given by the width
(standard deviation) of the fitted Gaussian. Trials were scored as correct if the
participant’s response was within 30° of the presented orientation. Only trials in which
participants responded correctly to T1 were included in the analysis. B. Same as in
panel A but for the centre orientation parameter. C. Same as in panel A but for the
baseline parameter. For all panels, there were no significant differences between
conditions (two-tailed cluster-permutation, alpha p < .05, cluster alpha p < .05, N
permutations = 20,000). Shading indicates +1 standard error of mean.
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