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Abstract 18 
Cells in largely non-mitotic tissues such as the brain are prone to stochastic (epi-)genetic alterations 19 
that may cause increased variability between cells and individuals over time. Although increased inter-20 
individual heterogeneity in gene expression was previously reported, whether this process starts during 21 
development or if it is restricted to the aging period has not yet been studied. The regulatory dynamics 22 
and functional significance of putative aging-related heterogeneity are also unknown. Here we address 23 
these by a meta-analysis of 19 transcriptome datasets from diverse human brain regions. We observed 24 
a significant increase in inter-individual heterogeneity during aging (20+ years) compared to postnatal 25 
development (0 to 20 years). Increased heterogeneity during aging was consistent among different 26 
brain regions at the gene level and associated with lifespan regulation and neuronal functions. Overall, 27 
our results show that increased expression heterogeneity is a characteristic of aging human brain, and 28 
may influence aging-related changes in brain functions. 29 
 30 
Keywords: aging, development, gene expression, transcriptome, heterogeneity, human, brain  31 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 2 

Aging is a complex process characterized by a gradual decline in maintenance and repair mechanisms, 32 
accompanied by an increase in genetic and epigenetic mutations, and oxidative damage to nucleic 33 
acids, protein and lipids1,2. The human brain experiences dramatic structural and functional changes in 34 
the course of aging. These include decline in gray matter and white matter volumes3, increase in axonal 35 
bouton dynamics4 and reduced synaptic plasticity, all processes that may be associated with decline in 36 
cognitive functions5. Changes during brain aging are suggested to be a result of stochastic processes, 37 
unlike changes associated with postnatal neuronal development that are known to be primarily 38 
controlled by adaptive regulatory processes6–8. The molecular mechanisms underlying age-related 39 
alteration of regulatory processes and eventually leading to aging-related phenotypes, however, are 40 
little understood.  41 
 42 
Over the past decade, a number of transcriptome studies focusing on age-related changes in human 43 
brain gene expression profiles were published2,9–12. These studies report aging-related differential 44 
expression patterns in many functions, including synaptic functions, energy metabolism, inflammation, 45 
stress response, and DNA repair. By analyzing age-related change in gene expression profiles in 46 
diverse brain regions, we previously showed that for many genes, gene expression changes occur in 47 
opposite directions during postnatal development (pre-20 years of age) and aging (post-20 years of 48 
age), which may be associated with aging-related phenotypes in healthy brain aging13. While different 49 
brain regions are associated with specific, and often independent, gene expression profiles9,10,12, these 50 
studies also show that age-related alteration of gene expression profiles during aging is a widespread 51 
effect across different brain regions. 52 
 53 
One of the suggested effects of aging is increased variability between individuals and somatic cells, 54 
which has been previously reported by several studies. Some of these studies find an increase in age-55 
related heterogeneity in heart, lung and white blood cells of mice14–16, Caenorhabditis elegans17,⁠ and 56 
human twins18.  A study analysing microarray datasets from different tissues of humans and rats also 57 
reported an increase in age-related heterogeneity in expression as a general trend19, although this study 58 
found no significant consistency across datasets, nor any significant enrichment in functional gene 59 
groups. That said, the generality of increase in expression heterogeneity remains unresolved. For 60 
instance, Viñuela et al. find more decrease than an increase in heterogeneity in human twins20 and 61 
Ximerakis et al. show the direction of the heterogeneity change depends on cell type in aging mice 62 
brain21. Using GTEx data covering different brain regions (20 to 70 years of age), Brinkmeyer-Langford 63 
et al. identify a set of differentially variable genes between age groups, but they do not observe 64 
increased heterogeneity at old age22. Meanwhile, another study performing single-cell RNA sequencing 65 
of human pancreatic cells, identifies an increase in transcriptional heterogeneity and somatic mutations 66 
with age23. A meta-analysis also suggested more shared expression patterns during development than 67 
in aging, implying an increase in inter-individual variability13. Likewise, a prefrontal cortex transcriptome 68 
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analysis we recently conducted revealed a weak increase in age-dependent heterogeneity at the gene, 69 
transcriptome and pathway levels, irrespective of the preprocessing methods24. 70 
 71 
Whether age-related increase in heterogeneity is a universal phenomenon thus remains contentious. 72 
Furthermore, where it can be detected, whether this is a time-dependent process that starts at the 73 
beginning of life or whether this increase and its functional consequences are only seen after 74 
developmental processes are completed, have not yet been explored. In this study, we retrieved 75 
transcriptome data from independent studies covering the whole lifespan, including data from diverse 76 
brain regions, and conducted a comprehensive analysis to identify the prevalence of age-related 77 
heterogeneity changes in human brain aging compared with those observed during postnatal 78 
development. We confirmed that increased age-related heterogeneity is a consistent trend in the human 79 
brain transcriptome during aging but not during development, and it is associated with the pathways 80 
and biological functions that are related to longevity and neuronal function.   81 
 82 

Results 83 
To investigate how heterogeneity in gene expression changes with age, we used 19 published 84 
microarray datasets from three independent studies. Datasets included 1,010 samples from 17 different 85 
brain regions of 298 individuals whose ages ranged from 0 to 98 years (Supplementary Table S1, Fig. 86 
S1). In order to analyze the age-related change in gene expression heterogeneity during aging 87 
compared to the change in development, we divided datasets into two subsets as development (0 to 88 
20 years of age, n = 441) and aging (20 to 98 years of age, n = 569). We used the age of 20 to separate 89 
pre-adulthood and adulthood based on commonly used age intervals in earlier studies (see Methods). 90 
For the analysis, we focused only on the genes for which we have a measurement across all datasets 91 
(n = 11,137). 92 
 93 
Age-related change in gene expression levels 94 
To quantify age-related changes in gene expression, we used a linear model between gene expression 95 
levels and age (see Methods, Supplementary Fig. S2). We transformed the ages to the fourth root scale 96 
before fitting the model as it provides relatively uniform distribution of sample ages across the lifespan, 97 
but we also confirmed that different age scales yield quantitatively similar results (see Supplementary 98 
Fig. S3). We quantified expression change of each gene in aging and development periods separately 99 
and considered regression coefficients from the linear model (β values) as a measure of age-related 100 
expression change (Supplementary Fig. S4). 101 
 102 
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 103 
Figure 1. Age-related change in gene expression during postnatal development and aging. (a) Spearman 104 
correlations among age-related expression changes (β values) across datasets. The color of the squares indicates 105 
if the correlation between the corresponding pair of datasets (across β values of 11,137 common genes) is positive 106 
(red) or negative (blue), while darker color specifies a stronger correlation. Diagonal values were removed in order 107 
to enhance visuality. Annotation rows and columns indicate data source, brain region and period of each dataset. 108 
Hierarchical clustering was performed for each period separately (color of the dendrogram indicates periods) to 109 
determine the order of datasets. (b) Principal component analysis (PCA) of age-related expression changes during 110 
aging and development. The analysis was performed on age-related expression change values of 11,137 common 111 
genes among all 38 datasets. The values of the first principal component on the x-axis and second principal 112 
component on the y-axis were drawn, where the values in the parenthesis indicate the variation explained by the 113 
corresponding principal component. Median Euclidean pairwise distances among development and aging datasets 114 
calculated using PC1 and PC2 were annotated on the figure. Different shapes show different data sources and 115 
colors show development (dark orange) and aging (blue) (c) Number of significant (FDR corrected p < 0.05) gene 116 
expression changes in development (left panel) and aging (right panel). The x-axis shows the number of genes in 117 
the log scale. The color of the bars shows the direction of change, decrease (steel gray), and increase (orange). 118 
The exact number of genes are also displayed on the plot. 119 
 120 
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We first analyzed similarity in age-related expression changes across datasets by calculating pairwise 121 
Spearman’s correlation coefficients among the β values (Figure 1a). Both development (median 122 
correlation coefficient = 0.56, permutation test p < 0.001, Supplementary Fig. S5) and aging datasets 123 
(median correlation coefficient = 0.43, permutation test p = 0.003, Supplementary Fig. S5) showed 124 
moderate correlation with the datasets within the same period. Although the difference between dataset 125 
correlations within development and aging datasets was not significant (permutation test p = 0.1, 126 
Supplementary Fig. S6), weaker consistency during aging may reflect the stochastic nature of aging, 127 
causing increased heterogeneity between aging datasets.  128 
 129 

The principal component analysis (PCA) of age-related expression changes (b) revealed distinct 130 
clusters of development and aging datasets (Figure 1b). Moreover, aging datasets were more dispersed 131 
than development datasets (median pairwise Euclidean distances between PC1 and PC2 were 77 for 132 
aging and 21 for development), which may again reflect stochasticity in gene expression change during 133 
aging and can indicate more heterogeneity among different brain regions or datasets during aging than 134 
in development. 135 
 136 
We next identified genes showing significant age-related expression change (FDR-corrected p < 0.05), 137 
for development and aging datasets separately (Figure 1c). Development datasets showed more 138 
significant changes compared to aging (permutation test p = 0.003, Supplementary Fig. S6), which may 139 
again indicate higher expression variability among individuals during aging. The direction of change in 140 
development was mostly positive (14 datasets with more positive and 5 with more negative), whereas 141 
in aging datasets, we observed more genes with a decrease in expression level (13 datasets with more  142 
genes decreasing expression and 5 with no significant change, and 1 with an equal number of positive 143 
and negative changes). 144 
 145 
Age-related change in gene expression heterogeneity 146 
To assess age-related change in heterogeneity, we obtained the unexplained variance (residuals) from 147 
the linear models used to calculate the change in gene expression level. For each gene in each dataset, 148 
we separately calculated Spearman’s correlation coefficient (r) between the absolute value of residuals 149 
and age, irrespective of whether the gene shows a significant change in expression (see Methods, 150 
Supplementary Fig. S2). We considered r values as a measure of heterogeneity change, where positive 151 
values mean an increase in heterogeneity with age. We also repeated this approach using loess 152 
regression instead of a linear model between expression level and age, and found high correspondence 153 
between r values based on linear and loess regression models (Supplementary Fig. S7). Still, loess 154 
regression was more sensitive to the changes in sample sizes and parameters and we therefore 155 
continued downstream analyses with the r estimates based on the residuals from the linear model.  156 
 157 
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We next asked if datasets show similar r, i.e. age-related changes in heterogeneity, by calculating 158 
pairwise Spearman’s correlation between pairs of datasets, across shared genes (Figure 2a). Unlike 159 
the correlations among expression level changes, r values did not show a higher consistency during 160 
development. In fact, although the difference is not significant (permutation test p = 0.2, Supplementary 161 
Fig. S6), the median value of the correlation coefficients was higher in aging (median correlation 162 
coefficient = 0.21, permutation test p = 0.24, Supplementary Fig. S5), than in development (median 163 
correlation coefficient = 0.11, permutation test p = 0.25, Supplementary Fig. S5).  164 
 165 

A principal component analysis (PCA) showed that, like expression change, heterogeneity change with 166 
age can also differentiate aging datasets from development (Figure 2b). Similar to the pairwise 167 
correlations (Figure 2a), aging datasets clustered more closely than development datasets (median 168 
pairwise Euclidean distances between PC1 and PC2 are 41 and 44 for aging and development, 169 
respectively). Both observations imply more similar changes in heterogeneity during aging. 170 
 171 
Using the p-values from Spearman’s correlation between age and the absolute value of residuals for 172 
each gene, we then investigated the genes showing a significant change in heterogeneity during aging 173 
and development (FDR corrected p-value < 0.05). We found almost no significant change in 174 
heterogeneity during development, except for the Colantuoni2011 dataset, for which we have high 175 
statistical power due to its large sample size. In aging datasets, on the other hand, we observed more 176 
genes with significant changes in heterogeneity (permutation test p = 0.06, Supplementary Fig. S6) and 177 
the majority of the genes with significant changes in heterogeneity tended to increase in heterogeneity 178 
(Figure 2c). However, the genes showing a significant change did not overlap across aging datasets 179 
(Supplementary Fig. S8). 180 
 181 
Nevertheless, our analyses indicated relatively more consistent heterogeneity changes among datasets 182 
in aging compared to development, implying that heterogeneity change could be a characteristic linked 183 
to aging (see Discussion). 184 
 185 
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 186 
Figure 2. Age-related change in gene expression heterogeneity during development and aging. The procedures 187 
are similar to those in Figure 1, except, age-related heterogeneity changes (r values) were used instead of 188 
expression changes (β values). (a) Spearman correlations among age-related heterogeneity changes (r values) 189 
across datasets. (b) Principal component analysis (PCA) of heterogeneity change with age. (c) The number of 190 
genes showing significant heterogeneity change in aging and development. 191 
 192 
Consistent increase in heterogeneity during aging 193 
As our previous analyses suggested age-related changes in heterogeneity can differentiate 194 
development from aging and show more similarity during aging, we sought to characterize the genes 195 
displaying such changes. Since the significance of the changes is highly dependent on the sample size, 196 
instead of focusing on significant genes identified within individual datasets, we leveraged upon the 197 
availability of multiple datasets and focused on their shared trends, capturing weak but reproducible 198 
trends across multiple datasets. Consequently, we used the level of consistency in age-related 199 
heterogeneity change across datasets to sort genes.  200 
 201 
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 202 
Figure 3. (a) Boxplots, showing distributions of age-related heterogeneity changes (r values) of 11,1137 common 203 
genes for each dataset and period separately. The dotted red line (vertical line at x = 0) reflects no change in 204 
heterogeneity. The difference between median heterogeneity change in aging and development is given as a bar 205 
plot on the right panel. Datasets are ordered by the differences in median heterogeneity changes in aging and 206 
development. (b) The relationship between expression and heterogeneity change with age. Spearman correlation 207 
analysis was performed between age-related expression changes (β values) and age-related heterogeneity 208 
changes (r values) of 11,137 common genes, separately for each dataset. The dotted gray line at y = 0 reflects no 209 
correlation between expression and heterogeneity. (c) Expected and observed consistency in the heterogeneity 210 
change across datasets in development and aging. There is a significant shift toward heterogeneity increase in 211 
aging (permutation test p<10-7) (lower panel), while there is no significant consistency in either direction in 212 
development (upper panel). The expected distribution is constructed using a permutation scheme that accounts 213 
for the dependence among datasets and is more stringent than random permutations (see Supplementary Fig. S10 214 
for details).  215 
 216 
We first examined profiles of age-related heterogeneity change in aging and development. Among 217 
aging datasets 18/19 showed more increase than decrease in heterogeneity with age (median r > 0, 218 
i.e. higher numbers of genes with increase), while the median heterogeneity change in one dataset was 219 
zero. In development, on the other hand, only 5/19 datasets showed more increase in heterogeneity, 220 
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while the remaining 14/19 datasets showed more decrease with age (median r < 0) (Figure 3a). The 221 
age-related change in heterogeneity during aging was significantly higher than during development 222 
(permutation test p < 0.001, Supplementary Fig. S6). We also checked if there is a relationship between 223 
changes in heterogeneity during development and during aging (e.g. if those genes that decrease in 224 
heterogeneity tend to increase in heterogeneity during aging) but did not find any significant trend 225 
(Supplementary Fig. S9). 226 
 227 
A potential explanation why we see different patterns of heterogeneity change with age in development 228 
and aging could be the accompanying changes in the expression levels, as it is challenging to remove 229 
dependence between the mean and variance. To address this possibility, we first calculated 230 
Spearman’s correlation coefficient between the changes in heterogeneity (r values) and expression 231 
(b values), for each dataset. Overall, all datasets had values close to zero, suggesting the association 232 
is not strong. Surprisingly, we saw an opposing profile for development and aging; while the change in 233 
heterogeneity and expression were positively correlated in development, they showed a negative 234 
correlation in aging (Figure 3b).  235 
 236 
Having observed both a tendency to increase and a higher consistency in heterogeneity change during 237 
aging, we asked which genes show consistent increase in heterogeneity across datasets in aging and 238 
development. We therefore calculated the number of datasets with an increase in heterogeneity during 239 
development and aging for each gene (Figure 3c). To calculate significance and expected consistency, 240 
while controlling for dataset dependence, we performed 1,000 random permutations of individuals’ ages 241 
and re-calculated the heterogeneity changes (see Methods). In development, there was no significant 242 
consistency in heterogeneity change in either increase or decrease. During aging, however, there was 243 
a significant signal of consistent heterogeneity increase, i.e. more genes showed consistent 244 
heterogeneity increase across aging datasets than randomly expected (Figure 3c, lower panel). We 245 
identified 147 common genes with a significant increase in heterogeneity across all aging datasets 246 
(permutation test p < 0.001, Supplementary Table S2). Based on our permutations, we estimated that 247 
84/147 genes could be expected to have consistent increase just by chance, suggesting only ~40% 248 
true positives. In development, in contrast, there was no significant consistency in heterogeneity change 249 
in either direction (increase or decrease). Nevertheless, comparing the consistency in aging and 250 
development, there was an apparent shift towards a consistent increase in aging – even if we cannot 251 
confidently report the genes that become significantly more heterogeneous with age across multiple 252 
datasets. 253 
 254 
Heterogeneity Trajectories   255 
We next asked if there are specific patterns of heterogeneity change, e.g. increase only after a certain 256 
age. We used the genes with a consistent increase in heterogeneity with age during aging (n = 147) to 257 
explore the trajectories of heterogeneity change (Figure 4). Genes grouped with k-means clustering 258 
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revealed three main patterns of heterogeneity increase (Supplementary Table S2): i) genes in clusters 259 
3 and 7 show noisy but a steady increase throughout aging, ii) genes in clusters 4, 5 and 8 show 260 
increase in early aging but a later slight decrease, revealing a reversal (up-down) pattern, and iii) the 261 
remaining genes in cluster 1, 2 and 6 increase in heterogeneity dramatically after the age of 60. We 262 
next asked if these genes have any consistent heterogeneity change pattern in development 263 
(Supplementary Fig. S11), but most of the clusters showed no or only weak age-related changes during 264 
development. We also analyzed the accompanying changes in mean expression levels for these 265 
clusters. Except for cluster 1, which shows a decrease in expression level at around the age of 60 and 266 
then shows a dramatic increase, all clusters show a steady scaled mean expression level at around 267 
zero, i.e. different genes in a cluster show different patterns (Supplementary Fig. S12).  268 
 269 
We further tested the genes showing dramatic heterogeneity increase after the age of 60 (clusters 1, 2 270 
and 6) for association with Alzheimer’s Disease, as the disease incidence increases after 6025 as well; 271 
however, we found no evidence for such an association (see Supplementary Fig. S13). 272 
 273 
 274 

 275 
Figure 4. Clusters of genes showing a consistent heterogeneity increase in aging (n = 147). Clustering was 276 
performed based on patterns of the change in heterogeneity, using the k-means clustering method (see Methods). 277 
The x- and y-axes show age and heterogeneity levels, respectively. Mean heterogeneity change for the genes in 278 
each cluster was drawn by spline curves. The colors and line-types of curves specify different brain regions and 279 
data sources, respectively. 280 
 281 
Functional analysis 282 
To examine the functional associations of heterogeneity changes with age, we performed gene set 283 
enrichment analysis using KEGG pathways26, Gene Ontology (GO) categories27,28, Disease Ontology 284 
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(DO) categories29, Reactome pathways30, transcription factor (TF) targets (TRANSFAC)31, and miRNA 285 
targets (MiRTarBase)32. Specifically, we rank-ordered genes based on the number of datasets that 286 
show a consistent increase in heterogeneity and asked if the extremes of this distribution are associated 287 
with the gene sets that we analyzed. There was no significant enrichment for any of the functional 288 
categories and pathways for the consistent changes in development. The significantly enriched KEGG 289 
pathways for the genes that become consistently heterogeneous during aging included multiple KEGG 290 
pathways known to be relevant for aging, including the longevity regulating pathway, autophagy33, 291 
mTOR signaling34 and FoxO signaling35 (Figure 5a). Among the pathways with a significant association 292 
(listed in Figure 5a), only protein digestion and absorption, primary immunodeficiency, linoleic acid 293 
metabolism, and fat digestion and absorption pathways had negative enrichment scores, meaning 294 
these pathways were significantly associated with the genes having the least number of datasets 295 
showing an increase. However, it is important to note that this does not mean these pathways have a 296 
decrease in heterogeneity as the distribution of consistent heterogeneity levels is skewed (Figure 3c, 297 
lower panel). We also calculated if the KEGG pathways that we identified are particularly enriched in 298 
any of the heterogeneity trajectories we identified. Although we lack the necessary power to test the 299 
associations statistically due to small number of genes, we saw that i) group 1, which showed a stable 300 
increase in heterogeneity, is associated more with the metabolic pathways and mRNA surveillance 301 
pathway, ii) group 2, which showed first an increase and a slight decrease at later ages, is associated 302 
with axon guidance, mTOR signaling, and phospholipase D signaling pathways, and iii) group 3, which 303 
showed a dramatic increase after age of 60, is associated with autophagy, longevity regulating pathway 304 
and FoxO signaling pathways. The full list is available as Supplementary Figure S14. 305 
 306 

 307 
Figure 5. Functional analysis of consistent heterogeneity changes. (a) Distribution of consistent heterogeneity 308 
increase for the significantly enriched KEGG pathways, in development and aging. x- and y-axes show the number 309 
of datasets with a consistent increase and the density for each significant pathway, respectively. The dashed red 310 
line shows x = 9.5, which is the middle point for 19 datasets, representing no tendency to increase or decrease. 311 
Values higher than 9.5, shown with red color, indicate an increase in heterogeneity while values lower than 9.5, 312 
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shown with blue color, indicate a decrease in heterogeneity and the darkness shows the consistency in change 313 
across datasets. b) The longevity regulating pathway (KEGG Pathway ID: hsa04211), exemplifying the distribution 314 
of the genes (circles), their heterogeneity across datasets (color – the same color scheme as panel (a)), and their 315 
relationship in the pathway (edges). More detailed schemes for all significant pathways with the gene names are 316 
given as SI.   317 
 318 
The distribution of consistent heterogeneity in development and aging also showed a clear difference. 319 
The pathway scheme for the longevity regulating pathway (Figure 5b), colored based on the number of 320 
datasets with a consistent increase, shows how particular genes compare between development and 321 
aging. The visualizations for all significant pathways, including the gene names are given in the 322 
Supplementary Information. Other significantly enriched gene sets, including GO, Reactome, TF and 323 
miRNA sets, are included as Supplementary Tables S3-10. In general, while the consistent 324 
heterogeneity changes in development did not show any enrichment (except for miRNAs, see 325 
Supplementary Table S10), we detected a significant enrichment for the genes that become more 326 
heterogeneous during aging, with the exception that Disease Ontology terms were not significantly 327 
associated with consistent changes in either development or aging. The gene sets included specific 328 
categories such as autophagy and synaptic functions as well as broad functional categories such as 329 
regulation of transcription and translation processes, cytoskeleton or histone modifications. We also 330 
performed GSEA for each dataset separately and confirmed that these pathways show consistent 331 
patterns in aging (Supplementary Figs. S15-S19). There were 30 significantly enriched transcription 332 
factors, including EGR and FOXO, and 99 miRNAs (see Supplementary Table S8-9 for the full list). We 333 
also asked if the genes that become more heterogenous consistently across datasets are known aging-334 
related genes, using the GenAge Human gene set36, but did not find a significant association 335 
(Supplementary Fig. S20). 336 
 337 
It has been reported that the total number of distinct regulators of a gene (apart from its specific 338 
regulators) is correlated with gene expression noise37. Accordingly, we asked if the total number of 339 
transcription factors (TFs) or miRNAs regulating a gene might be related to the heterogeneity change 340 
with age (Figure 6). We calculated the correlations between the total number of regulators and the 341 
heterogeneity changes and found a mostly positive (18 / 19 for miRNA and 15 / 19 for TFs), and higher 342 
correlation between change in heterogeneity and the number of regulators in aging (p = 0.007 for 343 
miRNA and p = 0.045 TFs). We further tested the association while controlling for the expression 344 
changes in development and aging since regulation of expression changes during development could 345 
confound a relationship. However, we found that the pattern is mainly associated with the genes that 346 
show a decrease in expression during aging, irrespective of their expression during development 347 
(Supplementary Fig. S21).  348 
 349 
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 350 
Figure 6. Correlation between the change in heterogeneity and number of transcriptional regulators, i.e. miRNA 351 
and transcription factors. Each point represents a dataset, and the color shows the data source. p-values are 352 
calculated using a permutation test. The dashed line at y = 0 shows zero correlation.  353 
 354 
We further tested if genes with a consistent heterogeneity increase in aging are more central in the 355 
protein interaction network using STRING database38. Using multiple cutoffs and repeating the analysis, 356 
we observed a higher degree of interactions for the genes with increasing heterogeneity 357 
(Supplementary Fig. S22).  358 
 359 
Johnson and Dong et al. previously compiled a list of traits that are age-related and have been 360 
sufficiently tested for genome-wide associations (n = 39)39. Using the genetic associations for GWAS 361 
Catalog traits, we tested if there are significantly enriched traits for the consistent changes in 362 
heterogeneity during aging (Supplementary Table S11). Although there was no significant enrichment, 363 
all these age-related terms had positive enrichment scores, i.e. they all tended to include genes that 364 
consistently become more heterogeneous with age during aging. 365 
 366 
Using cell-type specific transcriptome data generated from FACS-sorted cells in mouse brain40, we also 367 
analyzed if there is an association between genes that become heterogeneous with age and cell-type 368 
specific genes, which could be expected if brain cell-type composition progressively varied among 369 
individuals with age. Although there was an overlap with oligodendrocytes and myelinated 370 
oligodendrocytes, there was no significant enrichment (which could be attributed to low power due to 371 
small overlap between aging and cell-type specific expression datasets) (Supplementary Fig. S23).  372 
 373 

Discussion  374 
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Aging is characterized by a gradual decrease in the ability to maintain homeostatic processes, which 375 
leads to functional decline, age-related diseases, and eventually to death. This age-related 376 
deterioration, however, is thought as not a result of expression changes in a few individual genes, but 377 
rather as a consequence of an age-related alteration of the whole genome, which could be a result of 378 
an accumulation of both epigenetic and genetic errors in a stochastic manner23,41. This stochastic nature 379 
of aging impedes the identification of conserved age-related changes in gene expression from a single 380 
dataset with a limited number of samples. 381 
 382 
In this study, we examined 19 gene expression datasets compiled from three independent studies to 383 
identify the changes in gene expression heterogeneity with age. While all datasets have samples 384 
representing the whole lifespan, we separated postnatal development (0 to 20 years of age) and aging 385 
(20 to 98 years of age) by the age of 20, as this age is considered to be a turning-point in gene 386 
expression trajectories13. We implemented a regression-based method and identified genes showing a 387 
consistent change in heterogeneity with age, during development and aging separately. At the single 388 
gene level, we did not observe significant age-related heterogeneity change in most of the datasets, 389 
possibly due to insufficient statistical power due to small sample sizes and the subtle nature of the 390 
phenomenon. We hence took advantage of a meta-analysis approach and focused on consistent 391 
signals among datasets, irrespective of their effect sizes and significance. Although this approach fails 392 
to capture patterns that are specific to individual brain regions, it identifies genes that would otherwise 393 
not pass the significance threshold due to insufficient power. Furthermore, we demonstrated that our 394 
method is robust to noise and confounding effects within individual datasets.   395 
 396 
By analyzing age-related gene expression changes, we first observed that there are more significant 397 
and more similar changes during development than aging. Additionally, genes showing significant 398 
change during aging tended to decrease in expression (Figure 1). These results can be explained by 399 
the accumulation of stochastic detrimental effects during aging, leading to a decrease in expression 400 
levels2. Our initial analysis of gene expression changes suggested a higher heterogeneity between 401 
aging datasets. 402 
 403 

We next focused on age-related heterogeneity change between individuals and found a significant 404 
increase in age-related heterogeneity during aging, compared to development. Notably, increased 405 
heterogeneity is not limited to individual brain regions, but a consistent pattern across different regions 406 
during aging.  We found that age-related heterogeneity change is more consistent among aging 407 
datasets, which may reflect an underlying systemic mechanism. Further, a larger number of genes 408 
showed more significant heterogeneity changes during aging than in development, and the majority of 409 
these genes tended to have more heterogeneous expression.  410 
 411 
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It was previously proposed that somatic mutation accumulations2,41–43 and epigenetic regulations44 412 
might be associated with transcriptome instability. While Enge et al. and Lodato et al. suggested that 413 
genome-wide substitutions in single cells are not so common as to influence genome stability and cause 414 
transcriptional heterogeneity at the cellular level23,45, epigenetic mechanisms may be relevant. Although 415 
we cannot test age-related somatic mutation accumulation and epigenetic regulation in this study, an 416 
alternative mechanism might be related to transcriptional regulation, which is considered to be 417 
inherently stochastic46. Several studies demonstrated that variation in gene expression is positively 418 
correlated with the number of TFs controlling gene’s regulation37. We also found that genes with a 419 
higher number of regulators and a decrease in expression during aging become more heterogeneous. 420 
Further, significantly enriched TFs include early growth response (EGF), known to be regulating the 421 
expression of many genes involved in synaptic homeostasis and plasticity, and FOXO TFs, which 422 
regulate stress resistance, metabolism, cell cycle arrest and apoptosis. Together with these studies, 423 
our results support that transcriptional regulation may be associated with age-related heterogeneity 424 
increase during aging and may have important functional consequences in brain aging. 425 
 426 
We next confirmed that observed increase in heterogeneity was not a result of low statistical power 427 
(Supplementary Fig. S1) or a technical artifact (Figure 3b, Supplementary Figs. S24-S25). Specifically, 428 
we tested whether increased heterogeneity during aging can be a result of the mean-variance 429 
relationship, but we found no significant effect that can confound our results. In fact, the mean-variance 430 
relationship in development and aging showed opposing profiles. We further analyzed this by grouping 431 
genes based on their expression in development and aging (Supplementary Fig. S24). The genes that 432 
decrease in expression both in development and aging showed the most opposing profiles in terms of 433 
the mean-variance relationship, which could suggest that the decrease in development are more 434 
coordinated and well-regulated whereas the decrease in aging occurs due to stochastic errors. Another 435 
potential confounder is the post-mortem interval (PMI), which is the time between death and sample 436 
collection. Since we do not have this data for all datasets we analyzed, we could not account for PMI 437 
in our model. However, using the list of genes previously suggested as associated with PMI47, we 438 
checked if the consistency among aging datasets could be driven by PMI. Only 2 PMI-associated genes 439 
were among the 147 that become consistently heterogeneous, and the distribution also suggested there 440 
is no significant relationship (Supplementary Fig. S25). We also confirmed that the increase in 441 
heterogeneity is not caused by outlier samples in datasets (Supplementary Fig. S26) or by the confound 442 
of sex with age (Supplementary Fig. S27). 443 
 444 
One important limitation of our study is that we analyze microarray-based data. Since gene expression 445 
levels measured by microarray do not reflect an absolute abundance of mRNAs, but rather are relative 446 
expression levels, we were only able to examine relative changes in gene expression. A recent study 447 
analyzing single-cell RNA sequencing data from the aging Drosophila brain identified an age-related 448 
decline in total mRNA abundance48. It is also suggested that, in microarray studies, genes with lower 449 
expression levels tend to have higher variance49. In this context, whether the change in heterogeneity 450 
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is a result of the total mRNA decay is an important question. As an attempt to see if the age-related 451 
increase in heterogeneity is dependent on the technology used to generate data, we repeated the initial 452 
analysis using RNA sequencing data for the human brain, generated by GTEx Consortium 50 453 
(Supplementary Figs. S28-30). Nine out of thirteen datasets displayed more increase than decrease in 454 
heterogeneity during aging, consistent with 18/19 microarray datasets, while the remaining four 455 
datasets showed the opposite pattern (BA24, cerebellar hemisphere, cerebellum and substantia nigra). 456 
Unlike what we observed for the microarray datasets, the change in expression levels and 457 
heterogeneity were strongly positively correlated (Supplementary Fig. S30). Unfortunately, average 458 
expression levels and variation levels in RNA sequencing is challenging to disentangle. Thus, the 459 
biological relevance of the relationship between the age-related change in expression levels and 460 
expression heterogeneity still awaits to be studied through novel experimental and computational 461 
approaches. Nevertheless, RNA sequencing analysis also suggests an overall increase in age-related 462 
heterogeneity increase.  463 
 464 
Another limitation is related to use of bulk RNA expression datasets, where each value is an average 465 
for the tissue. While it is important to note that our results indicate increased heterogeneity between 466 
individuals rather than cells, the fact that the brain is composed of different cell types raises the question 467 
if increased heterogeneity may be a result of changes in brain cell-type proportions. To explore the 468 
association between heterogeneity and cell-type specific genes, we used FACS-sorted cell type specific 469 
transcriptome dataset from mouse brain40. We only had nine genes that have consistent heterogeneity 470 
increase and are specific to one cell-type. Eight out of nine were highly expressed in oligodendrocytes, 471 
which is consistent with the results reported in our earlier work24. However, we did not observe any 472 
significant association between cell-type specific genes and heterogeneity (Supplementary Fig. S23).  473 
 474 
Gene set enrichment analysis of the genes with increased heterogeneity with age revealed a set of 475 
significantly enriched pathways that are known to modulate aging, including longevity regulating 476 
pathway, autophagy, mTOR signaling pathway (Figure 5a). Furthermore, GO terms shared among 477 
these genes include some previously identified common pathways in aging and age-related diseases 478 
(Supplementary Figs. S16-18). We have also tested if these genes are associated with age-related 479 
diseases through GWAS, and although not significant, we found a positive association with all age-480 
related traits defined in Johnson and Dong et al. Overall, these results indicate the effect of 481 
heterogeneity on pathways that modulate aging and may reflect the significance of increased 482 
heterogeneity in aging. Importantly, we identified genes that are enriched in terms related to neuronal 483 
and synaptic functions, such as axon guidance, neuron to neuron synapse, postsynaptic specialization, 484 
which may reflect the role of increased heterogeneity in synaptic dysfunction observed in the 485 
mammalian brain, which is considered to be a major factor in age-related cognitive decline51. We also 486 
observed genes that become more heterogeneous with age consistently across datasets are more 487 
central (i.e. have a higher number of interactions) in a protein-protein interaction network 488 
(Supplementary Fig. S22). Although this could mean the effect of heterogeneity could be even more 489 
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critical because it affects hub genes, another explanation is research bias that these genes are studied 490 
more than others. 491 
 492 
In summary, by performing a meta-analysis of transcriptome data from diverse brain regions we found 493 
a significant increase in gene expression heterogeneity during aging, compared to development. 494 
Increased heterogeneity was a consistent pattern among diverse brain regions in aging, while no 495 
significant consistency was observed across development datasets. Our results support the view of 496 
aging as a result of stochastic molecular alterations, whilst development has a higher degree of gene 497 
expression regulation. We also found that genes showing a consistent increase in heterogeneity during 498 
aging are involved in pathways important for aging and neuronal function. Therefore, our results 499 
demonstrate that increased heterogeneity is one of the characteristics of brain aging and is unlikely to 500 
be only driven by the passage of time starting from developmental stages. 501 
  502 

Methods 503 
 504 
Dataset collection 505 
In this study, we performed re-analysis of publicly available transcriptome datasets to test age-related 506 
change in gene expression heterogeneity. All data collection in these previous studies were performed 507 
in accordance with relevant guidelines, regulations and approved experimental protocols, including 508 
informed consents for the use of samples for research from all donors or their next of kin. 509 
Microarray datasets: Raw data used in this study were retrieved from the NCBI Gene Expression 510 
Omnibus (GEO) from three different sources (Supplementary Table S1). All three datasets consist of 511 
human brain gene expression data generated on microarray platforms. In total, we obtained 1017 512 
samples from 298 individuals, spanning the whole lifespan with ages ranging from 0 to 98 years 513 
(Supplementary Fig. S1).  514 
RNA sequencing dataset: We used the transcriptome data generated by the GTEx Consortium (v6p)50. 515 
We only used the samples with a death circumstance of 1 (violent and fast deaths due to an accident) 516 
and 2 (fast death of natural causes) on the Hardy Scale excluding individuals who died of illnesses. As 517 
we focus only on the brain, we used all 13 brain tissue data in GTEx. We thus analyzed 623 samples 518 
obtained from 99 individuals.  519 
Separating datasets into development and aging datasets: To differentiate changes in gene expression 520 
heterogeneity during aging from those during development, we used the age of 20 to separate pre-521 
adulthood from adulthood. It was shown that the age of 20 corresponds to the first age of reproduction 522 
in human societies52. Structural changes after the age of 20 in the human brain were previously linked 523 
to age-related phenotypes, specifically neuronal shrinkage and a decline in total length of myelinated 524 
fibers3. Earlier studies examining age-related gene expression changes in different brain regions also 525 
showed a global change in gene expression patterns after the age of 2011,13,53. Thus, consistent with 526 
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these studies, we separated datasets using the age of 20 into development (0 to 20 years of age, n = 527 
441) and aging (20 to 98 years of age, n = 569). 528 
 529 
Preprocessing 530 
Microarray datasets: RMA correction (using the ‘oligo’ library in R)54 and log2 transformation were 531 
applied to Somel2011 and Kang2011 datasets. For the Colantuoni2011 dataset, as there was no public 532 
R package to analyze the raw data, we used the preprocessed data deposited in GEO, which had been 533 
loess normalized by the authors. We quantile normalized all datasets using the ‘preprocessCore’ library 534 
in R55.  Notably, our analysis focused on consistent patterns across datasets, instead of considering 535 
significant changes within individual datasets. Since we don’t expect random confounding factors to be 536 
shared among datasets, we used quantile normalization to minimize the effects of confounders, and we 537 
treated consistent results as potentially a biological signal. We also applied an additional correction 538 
procedure for Somel2011 datasets, in which there was a batch effect influencing the expression levels, 539 
as follows: for each probeset (1) calculate mean expression (M), (2) scale each batch separately (to 540 
mean = 0, standard deviation = 1), (3) add M to each value. We excluded outliers given in 541 
Supplementary Table S1, through a visual inspection of the first two principal components for the 542 
probeset expression levels (same as in Dönertaş, Fuentealba Valenzuela, Partridge, & Thornton, 2018; 543 
Dönertaş et al., 2017). We mapped probeset IDs to Ensembl gene IDs 1) using the Ensembl database, 544 
through the ‘biomaRt’ library 57 in R for the Somel2011 dataset, 2) using the GPL file deposited in GEO 545 
for Kang2011, as probeset IDs for this dataset were not complete in Ensembl, and 3) using the Entrez 546 
gene IDs in the GPL file deposited in GEO for the Colantuoni2011 dataset and converting them into 547 
Ensembl gene IDs using the Ensemble database, through the “biomaRt” library in R. Lastly, we scaled 548 
expression levels for genes (to mean = 0, standard deviation = 1) using the ‘scale’ function in R. Age 549 
values of individuals in each dataset were converted to the fourth root of age (in days) to have a linear 550 
relationship between age and expression both in development and aging. However, we repeated the 551 
analysis using different age scales and confirmed that the results were quantitatively similar 552 
(Supplementary Fig. S3). 553 
RNA sequencing dataset: The genes with median RPKM value of 0 were excluded from the dataset. 554 
The RPKM values provided in the GTEx data were log2 transformed and quantile-normalized. Similar 555 
to the microarray data, we excluded the outliers based on the visual inspection of the first and second 556 
principal components (Supplementary Table S1). In GTEx, ages are given as 10 year intervals. We 557 
therefore used the middle point of these age intervals to represent that individual’s age. 558 
 559 
 560 
Age-related expression change 561 
We used linear regression to assess the relationship between age and gene expression. The model 562 
used in the analysis is: 563 
 564 

(1) Yi = βi0 + βi1*Age1/4 + εi                                                                                                                                                                                                                    565 
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 566 
where Yi is the scaled log2 expression level for the ith gene, βi0 is the intercept, βi1 is the slope, and εi is 567 
the residual. We performed the analysis for each dataset (development and aging datasets separately) 568 
and considered the β1 value as a measure of change in expression. p-values obtained from the model 569 
were corrected for multiple testing according to Benjamini and Hochberg procedure58 by using ‘p.adjust’ 570 
function in R. 571 
 572 
Age-related heterogeneity change 573 
In order to quantify the age-related change in gene expression heterogeneity, we calculated 574 
Spearman’s correlation coefficient (r). The correlations were calculated between the absolute values 575 
of residuals obtained from equation (1) and the fourth root of individual age. We regarded the absolute 576 
values of residuals as a measure of heterogeneity. Therefore, high positive correlation coefficients 577 
suggest that heterogeneity increases with age, whereas strong negative correlation implies 578 
heterogeneity decreases with age. p-values were calculated from the correlation analysis and corrected 579 
for multiple testing with the Benjamini and Hochberg method using the ‘p.adjust’ function in R. To 580 
compare heterogeneity changes in aging and development, we employed paired Wilcoxon test 581 
(‘wilcox.test’ in the R ‘stats’ package) in which we compared median heterogeneity changes in aging 582 
and development dataset pairs.   583 
 584 
Principal Component Analysis 585 
We conducted principal component analysis on both age-related changes in expression (β) and 586 
heterogeneity (r). We followed a similar procedure for both analyses, in which we used the ‘prcomp’ 587 
function in R.  The analysis was performed on a matrix containing β values (for the change in expression 588 
level) and r values (for the change in heterogeneity), for 11,137 commonly expressed genes for all 38 589 
development and aging datasets. In each dataset, the estimates of expression change (β) or 590 
heterogeneity change (r) values were scaled for each dataset before calculating principal components.  591 
 592 
Permutation test 593 
We performed a permutation test, taking into account the non-independence of samples across the 594 
Somel2011 and Kang2011 datasets, due to the fact that these datasets include multiple samples from 595 
the same individuals for different brain regions. We first randomly permuted ages among individuals, 596 
not samples, for 1,000 times in each data source, using the ‘sample’ function in R. Next, we assigned 597 
ages of individuals to corresponding samples and calculated age-related expression and heterogeneity 598 
change for each dataset, corresponding to different brain regions. For the tests related to the changes 599 
in gene expression with age, we used a linear model between gene expression levels and the 600 
randomized ages. In contrast, for the tests related to the changes in heterogeneity with age, we 601 
measured the correlation between the randomized ages and the absolute value of residuals from the 602 
linear model that is between expression levels and non-randomized ages for each gene. In this way, 603 
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we preserved the relationship between age and expression, and we were able to ensure that our 604 
regression model was viable for calculating age-related heterogeneity change. Using expression and 605 
heterogeneity change estimates calculated using permuted ages, we tested (a) if the correlation of 606 
expression (and heterogeneity) change in aging is higher than in development datasets; (b) if the 607 
correlations of expression (and heterogeneity) change in development and in aging datasets are 608 
significantly higher than null expectation; (c) if the number of genes showing significant change in 609 
expression (and heterogeneity) is significantly higher in aging than in development datasets; (d) if the 610 
overall increase in age-related heterogeneity during aging is significantly higher than development; (e) 611 
if the observed consistency in heterogeneity increase is significantly different from expected. All tests 612 
using permuted ages were performed one-tailed. We also demonstrate that our permutation strategy is 613 
more stringent than random permutations in Supplementary Figure S10, giving the distributions 614 
calculated using both dependent permutations and random permutations.  615 
 616 
To test the overall correlation within development or aging datasets for the changes in expression (b) 617 
and heterogeneity (r), we calculated median correlations among independent three subsets of datasets 618 
(one Kang2011, one Somel2011 and the Colantuoni2011 dataset), taking the median value calculated 619 
for each possible combination of independent subsets (16 x 2 x 1 = 32 combinations). Using 1,000 620 
permutations of individuals’ ages, we generated an expected distribution for the median correlation 621 
coefficient for triples and compared these with the observed values, asking how many times we observe 622 
a higher value. We used this approach to calculate expected median correlation among development 623 
(and aging) datasets, because the number of independent pairwise comparisons are outnumbered by 624 
the number of dependent pairwise comparisons, causing low statistical power.  625 
 626 
To further test the significance of the difference between correlations among development and aging 627 
datasets, we calculated the median difference in correlations between aging and development datasets 628 
for each permutation. We next constructed the null distribution of 1,000 median differences and 629 
calculated empirical p-values compering the observed differences with these null distributions. Next, to 630 
test the significance of the difference in the number of significantly changing genes between 631 
development and aging, we calculated the difference in the number of genes showing significant 632 
change between development and aging datasets for each permutation. Empirical p-values were 633 
computed according to observed differences. Likewise, to test if the overall increase in age-related 634 
heterogeneity during aging is significant compared to development, we computed median differences 635 
between median heterogeneity change values of each aging and development dataset, for each 636 
permutation, followed by an empirical p-value calculation to answer if the aging datasets have a higher 637 
increase in age-related heterogeneity.  638 
 639 
Expected heterogeneity consistency 640 
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Expected consistency in heterogeneity change was calculated from heterogeneity change values 641 
(r) measured using permuted ages. For each permutation, we first calculated the total number of genes 642 
showing consistent heterogeneity increase for N number of datasets (N = 0, ..., 19). To test if observed 643 
consistency significantly differed from the expected, we compared observed consistency values to the 644 
distribution of expected numbers, by performing a one-sided test for the consistency in N number of 645 
datasets, N = 1, …, 19. 646 
 647 
Clustering 648 
We used the k-means algorithm (‘kmeans’ function in R) to cluster genes showing consistent 649 
heterogeneity change (n=147) according to their heterogeneity profiles. We first took the subset of the 650 
heterogeneity levels (absolute value of the residuals from equation (1)) to include only the genes that 651 
show a consistent increase with age and then scaled the heterogeneity levels to the same mean and 652 
standard deviation. Since the number of samples in each dataset is different, just running k-means on 653 
the combined dataset would not equally represent all datasets. Thus, we first calculated the spline 654 
curves for scaled heterogeneity levels for each gene in each dataset (using the ‘smooth.spline’ function 655 
in R, with three degrees of freedom). We interpolated at 11 (the smallest sample size) equally distant 656 
age points within each dataset. Then we used the combined interpolated values to run the k-means 657 
algorithm with k = 8, a liberal choice, given the total number of genes being 147.   658 
 659 
To test association of the clusters with Alzheimer’s Disease, we retrieved overall AD association scores 660 
of the 147 consistent genes (n = 40) from the Open Targets Platform59. 661 
 662 
Functional Analysis 663 
We used the "clusterProfiler" package in R to run Gene Set Enrichment Analysis, using Gene Ontology 664 
(GO) Biological Process (BP), GO Molecular Function (MF), GO Cellular Compartment (CC), 665 
Reactome, Disease Ontology (DO), and KEGG Pathways. We performed GSEA on all gene sets with 666 
a size between 5 and 500, and we corrected the resulting p-values with the Benjamini and Hochberg 667 
correction method. To test if the genes with a consistent increase or decrease in their expression are 668 
associated with specific functions, we used the number of datasets with a consistent increase to run 669 
GSEA. Since we are running GSEA using number of datasets showing consistency, our data includes 670 
many ties, potentially making the ranking ambiguous and non-robust. In order to assess how robust our 671 
results are, we ran GSEA 1,000 times on the same data and counted how many times we observed the 672 
same set of KEGG pathways as significant (Supplementary Table S3). The lowest number among the 673 
pathways with a significant positive enrichment score was 962 out of 1,000 (Phospholipase D signaling 674 
pathway). Moreover, we repeated the same analysis using the heterogeneity change levels (r), instead 675 
of using the number of datasets with a consistent change, for each dataset to confirm the gene sets are 676 
indeed associated with the increase or decrease in heterogeneity (Supplementary Figs. S15-S19). We 677 
visualized the KEGG pathways using ‘KEGGgraph’ library in R and colored the genes by the number 678 
of datasets that show an increase. 679 
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 680 
We also performed an enrichment analysis of the transcription factors and miRNA to test if specific TFs 681 
or miRNAs regulate the genes that become more heterogeneous consistently. We collected gene-682 
regulator association information using the Harmonizome database60, “MiRTarBase microRNA Targets” 683 
(12086 genes, 596 miRNAs) and “TRANSFAC Curated Transcription Factor Targets” (13216 genes, 684 
201 TFs) sets. We used the ‘fgsea’ package in R, which allows GSEA on a custom gene set. We tested 685 
the association for each regulator with at least 10 and at most 500 targets. Moreover, we tested if the 686 
number of regulators is associated with the change in heterogeneity. We first calculated the correlation 687 
between heterogeneity change with age (or the number of datasets with an increase in expression 688 
heterogeneity) and the number of TFs or miRNAs regulating that gene, for aging and development 689 
separately. We repeated the analysis while accounting for the direction of expression changes in these 690 
periods (i.e. separating genes into down-down, down-up, up-down, and up-up categories based on their 691 
expression in development and aging, Supplementary Fig. S21). To test the difference in the 692 
correlations between aging and development, we used 1,000 random permutations of the number of 693 
TFs. For each permutation, we randomized the number of TFs and calculated the correlation between 694 
heterogeneity change (or the number of datasets with an increase in heterogeneity) and the randomized 695 
numbers. We then calculated the percentage of datasets where aging has a higher correlation than 696 
development. Using the distribution of percentages, we tested if the observed value is expected by 697 
chance. 698 
 699 
Protein-protein interaction network analysis 700 
We downloaded all human protein interaction data from the STRING database (v11)38. Ensembl 701 
Peptide IDs are mapped to Ensembl Gene IDs using the “biomaRt” package in R. Here we aimed to 702 
test whether genes showing consistent increase in heterogeneity have a different number of interactors 703 
than other genes. For this we calculated the degree distributions for the genes that become consistently 704 
more heterogeneous with age and all remaining genes using different cutoffs for interaction confidence 705 
scores. In order to calculate the significance of the difference, we i) calculated the number of interactors 706 
(degree) for each gene, ii) for 10,000 times, randomly sampled k genes from all interactome data (k = 707 
number of genes that become heterogeneous with age across all datasets and have interaction 708 
information in STRING database, after filtering for a cutoff), iii) calculated the median of degree for each 709 
sample. We then calculated an empirical p-value by asking how many of these 10,000 samples we see 710 
a median degree that is equivalent to or higher than our original value. The number of genes and 711 
interactions after each cutoff are given in Supplementary Figure S22. 712 
 713 
Cell-type specificity analysis 714 
Using FACS-sorted cell-type specific transcriptome data from the mouse brain40, we checked if there is 715 
any overlap between genes that become heterogeneous with age and cell-type specific genes. We 716 
downloaded the dataset from the GEO database (GSE9566) and preprocessed it by performing: i) RMA 717 
correction using the ‘affy’ package in R61, ii) log2 transformation, iii) quantile normalization using the 718 
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‘preprocessCore’ package in R55, iv) mapping probeset IDs to first mouse genes, and then human 719 
genes. We only included genes that have one to one orthologs in humans, after filtering out probesets 720 
that map to multiple genes. We defined cell-type specific genes by calculating the effect size (Cohen’s 721 
D) for each gene and cell type and identifying genes that have an effect size higher than or equal to 2 722 
as specific to that cell type. At this cutoff, there was no overlap between cell type specific gene lists. To 723 
test for association between heterogeneity and cell type specificity, we used the Fisher’s exact test 724 
using the R ‘fisher.test’ function.  725 
 726 
Code Availability 727 
All analysis was performed using R and the code to calculate heterogeneity changes with age is 728 
available as an R package ‘hetAge’, documented at https://mdonertas.github.io/hetAge/. “ggplot2”62 and 729 
“ggpubr”63 R libraries were used for the visualization. 730 
 731 
Data availability 732 
We performed re-analysis of the raw data that we downloaded from the GEO database (GSE30272, 733 
GSE25219, GSE22569, GSE18069) and GTEx data portal. All results generated in this study are 734 
available as Supplementary Tables and all summary statistics are available in the BioStudies database 735 
(http://www.ebi.ac.uk/biostudies) under accession number S-BSST273.  736 
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