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Abstract

Cells in largely non-mitotic tissues such as the brain are prone to stochastic (epi-)genetic alterations
that may cause increased variability between cells and individuals over time. Although increased inter-
individual heterogeneity in gene expression was previously reported, whether this process starts during
development or if it is restricted to the aging period has not yet been studied. The regulatory dynamics
and functional significance of putative aging-related heterogeneity are also unknown. Here we address
these by a meta-analysis of 19 transcriptome datasets from diverse human brain regions. We observed
a significant increase in inter-individual heterogeneity during aging (20+ years) compared to postnatal
development (0 to 20 years). Increased heterogeneity during aging was consistent among different
brain regions at the gene level and associated with lifespan regulation and neuronal functions. Overall,
our results show that increased expression heterogeneity is a characteristic of aging human brain, and

may influence aging-related changes in brain functions.
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Aging is a complex process characterized by a gradual decline in maintenance and repair mechanisms,
accompanied by an increase in genetic and epigenetic mutations, and oxidative damage to nucleic
acids, protein and lipids'-2. The human brain experiences dramatic structural and functional changes in
the course of aging. These include decline in gray matter and white matter volumes?, increase in axonal
bouton dynamics* and reduced synaptic plasticity, all processes that may be associated with decline in
cognitive functions®. Changes during brain aging are suggested to be a result of stochastic processes,
unlike changes associated with postnatal neuronal development that are known to be primarily
controlled by adaptive regulatory processes®®. The molecular mechanisms underlying age-related
alteration of regulatory processes and eventually leading to aging-related phenotypes, however, are

little understood.

Over the past decade, a number of transcriptome studies focusing on age-related changes in human
brain gene expression profiles were published?®'2, These studies report aging-related differential
expression patterns in many functions, including synaptic functions, energy metabolism, inflammation,
stress response, and DNA repair. By analyzing age-related change in gene expression profiles in
diverse brain regions, we previously showed that for many genes, gene expression changes occur in
opposite directions during postnatal development (pre-20 years of age) and aging (post-20 years of
age), which may be associated with aging-related phenotypes in healthy brain aging3. While different
brain regions are associated with specific, and often independent, gene expression profiles® 1912, these
studies also show that age-related alteration of gene expression profiles during aging is a widespread

effect across different brain regions.

One of the suggested effects of aging is increased variability between individuals and somatic cells,
which has been previously reported by several studies. Some of these studies find an increase in age-
related heterogeneity in heart, lung and white blood cells of mice'*'8, Caenorhabditis elegans'’, and
human twins'®. A study analysing microarray datasets from different tissues of humans and rats also
reported an increase in age-related heterogeneity in expression as a general trend'®, although this study
found no significant consistency across datasets, nor any significant enrichment in functional gene
groups. That said, the generality of increase in expression heterogeneity remains unresolved. For
instance, Vifiuela et al. find more decrease than an increase in heterogeneity in human twins?® and
Ximerakis et al. show the direction of the heterogeneity change depends on cell type in aging mice
brain?'. Using GTEx data covering different brain regions (20 to 70 years of age), Brinkmeyer-Langford
et al. identify a set of differentially variable genes between age groups, but they do not observe
increased heterogeneity at old age??. Meanwhile, another study performing single-cell RNA sequencing
of human pancreatic cells, identifies an increase in transcriptional heterogeneity and somatic mutations
with age?. A meta-analysis also suggested more shared expression patterns during development than

in aging, implying an increase in inter-individual variability'3. Likewise, a prefrontal cortex transcriptome
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69  analysis we recently conducted revealed a weak increase in age-dependent heterogeneity at the gene,

70  transcriptome and pathway levels, irrespective of the preprocessing methods?*.
71

72 Whether age-related increase in heterogeneity is a universal phenomenon thus remains contentious.
73 Furthermore, where it can be detected, whether this is a time-dependent process that starts at the
74 beginning of life or whether this increase and its functional consequences are only seen after
75 developmental processes are completed, have not yet been explored. In this study, we retrieved
76  transcriptome data from independent studies covering the whole lifespan, including data from diverse
77 brain regions, and conducted a comprehensive analysis to identify the prevalence of age-related
78 heterogeneity changes in human brain aging compared with those observed during postnatal
79  development. We confirmed that increased age-related heterogeneity is a consistent trend in the human
80 brain transcriptome during aging but not during development, and it is associated with the pathways

81 and biological functions that are related to longevity and neuronal function.
82
83 Results

84  To investigate how heterogeneity in gene expression changes with age, we used 19 published
85 microarray datasets from three independent studies. Datasets included 1,010 samples from 17 different
86  brain regions of 298 individuals whose ages ranged from 0 to 98 years (Supplementary Table S1, Fig.
87 S1). In order to analyze the age-related change in gene expression heterogeneity during aging
88 compared to the change in development, we divided datasets into two subsets as development (0 to
89 20 years of age, n = 441) and aging (20 to 98 years of age, n = 569). We used the age of 20 to separate
90  pre-adulthood and adulthood based on commonly used age intervals in earlier studies (see Methods).
91 For the analysis, we focused only on the genes for which we have a measurement across all datasets
92  (n=11,137).
93
94  Age-related change in gene expression levels
95 To quantify age-related changes in gene expression, we used a linear model between gene expression
96 levels and age (see Methods, Supplementary Fig. S2). We transformed the ages to the fourth root scale
97 before fitting the model as it provides relatively uniform distribution of sample ages across the lifespan,
98 but we also confirmed that different age scales yield quantitatively similar results (see Supplementary
99 Fig. S3). We quantified expression change of each gene in aging and development periods separately
100  and considered regression coefficients from the linear model (8 values) as a measure of age-related
101  expression change (Supplementary Fig. S4).
102
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Figure 1. Age-related change in gene expression during postnatal development and aging. (a) Spearman
correlations among age-related expression changes (8 values) across datasets. The color of the squares indicates
if the correlation between the corresponding pair of datasets (across [ values of 11,137 common genes) is positive
(red) or negative (blue), while darker color specifies a stronger correlation. Diagonal values were removed in order
to enhance visuality. Annotation rows and columns indicate data source, brain region and period of each dataset.
Hierarchical clustering was performed for each period separately (color of the dendrogram indicates periods) to
determine the order of datasets. (b) Principal component analysis (PCA) of age-related expression changes during
aging and development. The analysis was performed on age-related expression change values of 11,137 common
genes among all 38 datasets. The values of the first principal component on the x-axis and second principal
component on the y-axis were drawn, where the values in the parenthesis indicate the variation explained by the
corresponding principal component. Median Euclidean pairwise distances among development and aging datasets
calculated using PC1 and PC2 were annotated on the figure. Different shapes show different data sources and
colors show development (dark orange) and aging (blue) (c) Number of significant (FDR corrected p < 0.05) gene
expression changes in development (left panel) and aging (right panel). The x-axis shows the number of genes in
the log scale. The color of the bars shows the direction of change, decrease (steel gray), and increase (orange).
The exact number of genes are also displayed on the plot.
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121 We first analyzed similarity in age-related expression changes across datasets by calculating pairwise
122 Spearman’s correlation coefficients among the B values (Figure 1a). Both development (median
123 correlation coefficient = 0.56, permutation test p < 0.001, Supplementary Fig. S5) and aging datasets
124  (median correlation coefficient = 0.43, permutation test p = 0.003, Supplementary Fig. S5) showed
125 moderate correlation with the datasets within the same period. Although the difference between dataset
126 correlations within development and aging datasets was not significant (permutation test p = 0.1,
127 Supplementary Fig. S6), weaker consistency during aging may reflect the stochastic nature of aging,

128  causing increased heterogeneity between aging datasets.
129

130  The principal component analysis (PCA) of age-related expression changes (f) revealed distinct
131 clusters of development and aging datasets (Figure 1b). Moreover, aging datasets were more dispersed
132 than development datasets (median pairwise Euclidean distances between PC1 and PC2 were 77 for
133 aging and 21 for development), which may again reflect stochasticity in gene expression change during
134 aging and can indicate more heterogeneity among different brain regions or datasets during aging than
135  in development.

136

137  We next identified genes showing significant age-related expression change (FDR-corrected p < 0.05),
138  for development and aging datasets separately (Figure 1c). Development datasets showed more
139  significant changes compared to aging (permutation test p = 0.003, Supplementary Fig. S6), which may
140 again indicate higher expression variability among individuals during aging. The direction of change in
141 development was mostly positive (14 datasets with more positive and 5 with more negative), whereas
142 in aging datasets, we observed more genes with a decrease in expression level (13 datasets with more
143 genes decreasing expression and 5 with no significant change, and 1 with an equal number of positive

144  and negative changes).
145

146  Age-related change in gene expression heterogeneity

147  To assess age-related change in heterogeneity, we obtained the unexplained variance (residuals) from
148 the linear models used to calculate the change in gene expression level. For each gene in each dataset,
149  we separately calculated Spearman’s correlation coefficient (p) between the absolute value of residuals
150 and age, irrespective of whether the gene shows a significant change in expression (see Methods,
151 Supplementary Fig. S2). We considered p values as a measure of heterogeneity change, where positive
152  values mean an increase in heterogeneity with age. We also repeated this approach using loess
153 regression instead of a linear model between expression level and age, and found high correspondence
154 between p values based on linear and loess regression models (Supplementary Fig. S7). Still, loess
155 regression was more sensitive to the changes in sample sizes and parameters and we therefore
156 continued downstream analyses with the p estimates based on the residuals from the linear model.
157
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158  We next asked if datasets show similar p, i.e. age-related changes in heterogeneity, by calculating
159  pairwise Spearman’s correlation between pairs of datasets, across shared genes (Figure 2a). Unlike
160  the correlations among expression level changes, p values did not show a higher consistency during
161 development. In fact, although the difference is not significant (permutation test p = 0.2, Supplementary
162 Fig. S6), the median value of the correlation coefficients was higher in aging (median correlation
163 coefficient = 0.21, permutation test p = 0.24, Supplementary Fig. S5), than in development (median
164  correlation coefficient = 0.11, permutation test p = 0.25, Supplementary Fig. S5).

165

166 A principal component analysis (PCA) showed that, like expression change, heterogeneity change with
167 age can also differentiate aging datasets from development (Figure 2b). Similar to the pairwise
168 correlations (Figure 2a), aging datasets clustered more closely than development datasets (median
169  pairwise Euclidean distances between PC1 and PC2 are 41 and 44 for aging and development,
170 respectively). Both observations imply more similar changes in heterogeneity during aging.

171

172 Using the p-values from Spearman’s correlation between age and the absolute value of residuals for
173 each gene, we then investigated the genes showing a significant change in heterogeneity during aging
174  and development (FDR corrected p-value < 0.05). We found almost no significant change in
175 heterogeneity during development, except for the Colantuoni2011 dataset, for which we have high
176 statistical power due to its large sample size. In aging datasets, on the other hand, we observed more
177  genes with significant changes in heterogeneity (permutation test p = 0.06, Supplementary Fig. S6) and
178 the majority of the genes with significant changes in heterogeneity tended to increase in heterogeneity
179 (Figure 2c). However, the genes showing a significant change did not overlap across aging datasets
180  (Supplementary Fig. S8).

181

182 Nevertheless, our analyses indicated relatively more consistent heterogeneity changes among datasets
183 in aging compared to development, implying that heterogeneity change could be a characteristic linked
184  to aging (see Discussion).

185
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Figure 2. Age-related change in gene expression heterogeneity during development and aging. The procedures
are similar to those in Figure 1, except, age-related heterogeneity changes (p values) were used instead of
expression changes (B values). (a) Spearman correlations among age-related heterogeneity changes (p values)
across datasets. (b) Principal component analysis (PCA) of heterogeneity change with age. (c) The number of

genes showing significant heterogeneity change in aging and development.

Consistent increase in heterogeneity during aging

As our previous analyses suggested age-related changes in heterogeneity can differentiate
development from aging and show more similarity during aging, we sought to characterize the genes
displaying such changes. Since the significance of the changes is highly dependent on the sample size,
instead of focusing on significant genes identified within individual datasets, we leveraged upon the
availability of multiple datasets and focused on their shared trends, capturing weak but reproducible
trends across multiple datasets. Consequently, we used the level of consistency in age-related

heterogeneity change across datasets to sort genes.
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203 Figure 3. (a) Boxplots, showing distributions of age-related heterogeneity changes (p values) of 11,1137 common
204 genes for each dataset and period separately. The dotted red line (vertical line at x = 0) reflects no change in
205 heterogeneity. The difference between median heterogeneity change in aging and development is given as a bar
206 plot on the right panel. Datasets are ordered by the differences in median heterogeneity changes in aging and
207 development. (b) The relationship between expression and heterogeneity change with age. Spearman correlation
208 analysis was performed between age-related expression changes (B values) and age-related heterogeneity
209 changes (p values) of 11,137 common genes, separately for each dataset. The dotted gray line at y = O reflects no
210 correlation between expression and heterogeneity. (c) Expected and observed consistency in the heterogeneity
211 change across datasets in development and aging. There is a significant shift toward heterogeneity increase in
212 aging (permutation test p<107) (lower panel), while there is no significant consistency in either direction in
213 development (upper panel). The expected distribution is constructed using a permutation scheme that accounts
214 for the dependence among datasets and is more stringent than random permutations (see Supplementary Fig. S10
215  for details).

216

217  We first examined profiles of age-related heterogeneity change in aging and development. Among
218 aging datasets 18/19 showed more increase than decrease in heterogeneity with age (median p > 0,
219 i.e. higher numbers of genes with increase), while the median heterogeneity change in one dataset was

220  zero. In development, on the other hand, only 5/19 datasets showed more increase in heterogeneity,
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221  while the remaining 14/19 datasets showed more decrease with age (median p < 0) (Figure 3a). The
222 age-related change in heterogeneity during aging was significantly higher than during development
223 (permutation test p < 0.001, Supplementary Fig. S6). We also checked if there is a relationship between
224 changes in heterogeneity during development and during aging (e.g. if those genes that decrease in
225 heterogeneity tend to increase in heterogeneity during aging) but did not find any significant trend
226  (Supplementary Fig. S9).

227

228 A potential explanation why we see different patterns of heterogeneity change with age in development
229  and aging could be the accompanying changes in the expression levels, as it is challenging to remove
230  dependence between the mean and variance. To address this possibility, we first calculated
231 Spearman’s correlation coefficient between the changes in heterogeneity (o values) and expression
232 (Bvalues), for each dataset. Overall, all datasets had values close to zero, suggesting the association
233 is not strong. Surprisingly, we saw an opposing profile for development and aging; while the change in
234 heterogeneity and expression were positively correlated in development, they showed a negative
235  correlation in aging (Figure 3b).

236

237  Having observed both a tendency to increase and a higher consistency in heterogeneity change during
238 aging, we asked which genes show consistent increase in heterogeneity across datasets in aging and
239  development. We therefore calculated the number of datasets with an increase in heterogeneity during
240  development and aging for each gene (Figure 3c). To calculate significance and expected consistency,
241  while controlling for dataset dependence, we performed 1,000 random permutations of individuals’ ages
242 and re-calculated the heterogeneity changes (see Methods). In development, there was no significant
243 consistency in heterogeneity change in either increase or decrease. During aging, however, there was
244  a significant signal of consistent heterogeneity increase, i.e. more genes showed consistent
245 heterogeneity increase across aging datasets than randomly expected (Figure 3c, lower panel). We
246  identified 147 common genes with a significant increase in heterogeneity across all aging datasets
247  (permutation test p < 0.001, Supplementary Table S2). Based on our permutations, we estimated that
248 84/147 genes could be expected to have consistent increase just by chance, suggesting only ~40%
249 true positives. In development, in contrast, there was no significant consistency in heterogeneity change
250 in either direction (increase or decrease). Nevertheless, comparing the consistency in aging and
251 development, there was an apparent shift towards a consistent increase in aging — even if we cannot
252 confidently report the genes that become significantly more heterogeneous with age across multiple
253  datasets.

254

255  Heterogeneity Trajectories

256  We next asked if there are specific patterns of heterogeneity change, e.g. increase only after a certain
257  age. We used the genes with a consistent increase in heterogeneity with age during aging (n = 147) to

258 explore the trajectories of heterogeneity change (Figure 4). Genes grouped with k-means clustering
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259  revealed three main patterns of heterogeneity increase (Supplementary Table S2): i) genes in clusters
260 3 and 7 show noisy but a steady increase throughout aging, ii) genes in clusters 4, 5 and 8 show
261 increase in early aging but a later slight decrease, revealing a reversal (up-down) pattern, and iii) the
262  remaining genes in cluster 1, 2 and 6 increase in heterogeneity dramatically after the age of 60. We
263  next asked if these genes have any consistent heterogeneity change pattern in development
264  (Supplementary Fig. S11), but most of the clusters showed no or only weak age-related changes during
265 development. We also analyzed the accompanying changes in mean expression levels for these
266 clusters. Except for cluster 1, which shows a decrease in expression level at around the age of 60 and
267  then shows a dramatic increase, all clusters show a steady scaled mean expression level at around
268  zero, i.e. different genes in a cluster show different patterns (Supplementary Fig. S12).

269

270  We further tested the genes showing dramatic heterogeneity increase after the age of 60 (clusters 1, 2
271 and 6) for association with Alzheimer's Disease, as the disease incidence increases after 60%° as well;
272 however, we found no evidence for such an association (see Supplementary Fig. S13).

273
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276 Figure 4. Clusters of genes showing a consistent heterogeneity increase in aging (n = 147). Clustering was
277 performed based on patterns of the change in heterogeneity, using the k-means clustering method (see Methods).
278 The x- and y-axes show age and heterogeneity levels, respectively. Mean heterogeneity change for the genes in
279 each cluster was drawn by spline curves. The colors and line-types of curves specify different brain regions and
280 data sources, respectively.

281

282  Functional analysis

283 To examine the functional associations of heterogeneity changes with age, we performed gene set
284  enrichment analysis using KEGG pathways?®, Gene Ontology (GO) categories®’?8, Disease Ontology

10
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285  (DO) categories?®, Reactome pathways®, transcription factor (TF) targets (TRANSFAC)3!, and miRNA
286  targets (MiRTarBase)®2. Specifically, we rank-ordered genes based on the number of datasets that
287  show a consistent increase in heterogeneity and asked if the extremes of this distribution are associated
288  with the gene sets that we analyzed. There was no significant enrichment for any of the functional
289  categories and pathways for the consistent changes in development. The significantly enriched KEGG
290 pathways for the genes that become consistently heterogeneous during aging included multiple KEGG
291  pathways known to be relevant for aging, including the longevity regulating pathway, autophagy?3,
292  mTOR signaling®* and FoxO signaling® (Figure 5a). Among the pathways with a significant association
293 (listed in Figure 5a), only protein digestion and absorption, primary immunodeficiency, linoleic acid
294 metabolism, and fat digestion and absorption pathways had negative enrichment scores, meaning
295  these pathways were significantly associated with the genes having the least number of datasets
296  showing an increase. However, it is important to note that this does not mean these pathways have a
297  decrease in heterogeneity as the distribution of consistent heterogeneity levels is skewed (Figure 3c,
298  lower panel). We also calculated if the KEGG pathways that we identified are particularly enriched in
299  any of the heterogeneity trajectories we identified. Although we lack the necessary power to test the
300 associations statistically due to small number of genes, we saw that i) group 1, which showed a stable
301 increase in heterogeneity, is associated more with the metabolic pathways and mRNA surveillance
302 pathway, ii) group 2, which showed first an increase and a slight decrease at later ages, is associated
303 with axon guidance, mTOR signaling, and phospholipase D signaling pathways, and iii) group 3, which
304  showed a dramatic increase after age of 60, is associated with autophagy, longevity regulating pathway
305 and FoxO signaling pathways. The full list is available as Supplementary Figure S14.

306
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308 Figure 5. Functional analysis of consistent heterogeneity changes. (a) Distribution of consistent heterogeneity
309 increase for the significantly enriched KEGG pathways, in development and aging. x- and y-axes show the number
310 of datasets with a consistent increase and the density for each significant pathway, respectively. The dashed red
311 line shows x = 9.5, which is the middle point for 19 datasets, representing no tendency to increase or decrease.

312 Values higher than 9.5, shown with red color, indicate an increase in heterogeneity while values lower than 9.5,
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313 shown with blue color, indicate a decrease in heterogeneity and the darkness shows the consistency in change
314 across datasets. b) The longevity regulating pathway (KEGG Pathway ID: hsa04211), exemplifying the distribution
315 of the genes (circles), their heterogeneity across datasets (color — the same color scheme as panel (a)), and their
316 relationship in the pathway (edges). More detailed schemes for all significant pathways with the gene names are
317  givenas SI.

318

319  The distribution of consistent heterogeneity in development and aging also showed a clear difference.
320  The pathway scheme for the longevity regulating pathway (Figure 5b), colored based on the number of
321 datasets with a consistent increase, shows how particular genes compare between development and
322  aging. The visualizations for all significant pathways, including the gene names are given in the
323 Supplementary Information. Other significantly enriched gene sets, including GO, Reactome, TF and
324  miRNA sets, are included as Supplementary Tables S3-10. In general, while the consistent
325 heterogeneity changes in development did not show any enrichment (except for miRNAs, see
326  Supplementary Table S10), we detected a significant enrichment for the genes that become more
327  heterogeneous during aging, with the exception that Disease Ontology terms were not significantly
328  associated with consistent changes in either development or aging. The gene sets included specific
329 categories such as autophagy and synaptic functions as well as broad functional categories such as
330 regulation of transcription and translation processes, cytoskeleton or histone modifications. We also
331 performed GSEA for each dataset separately and confirmed that these pathways show consistent
332 patterns in aging (Supplementary Figs. S15-S19). There were 30 significantly enriched transcription
333 factors, including EGR and FOXO, and 99 miRNAs (see Supplementary Table S8-9 for the full list). We
334  also asked if the genes that become more heterogenous consistently across datasets are known aging-
335 related genes, using the GenAge Human gene set®, but did not find a significant association
336  (Supplementary Fig. S20).

337

338 It has been reported that the total number of distinct regulators of a gene (apart from its specific
339  regulators) is correlated with gene expression noise®”. Accordingly, we asked if the total number of
340 transcription factors (TFs) or miRNAs regulating a gene might be related to the heterogeneity change
341  with age (Figure 6). We calculated the correlations between the total number of regulators and the
342  heterogeneity changes and found a mostly positive (18 / 19 for miRNA and 15/ 19 for TFs), and higher
343 correlation between change in heterogeneity and the number of regulators in aging (p = 0.007 for
344 miRNA and p = 0.045 TFs). We further tested the association while controlling for the expression
345 changes in development and aging since regulation of expression changes during development could
346 confound a relationship. However, we found that the pattern is mainly associated with the genes that
347  show a decrease in expression during aging, irrespective of their expression during development
348  (Supplementary Fig. S21).

349
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350

351 Figure 6. Correlation between the change in heterogeneity and number of transcriptional regulators, i.e. miRNA
352 and transcription factors. Each point represents a dataset, and the color shows the data source. p-values are
353 calculated using a permutation test. The dashed line at y = 0 shows zero correlation.

354

355  We further tested if genes with a consistent heterogeneity increase in aging are more central in the
356  protein interaction network using STRING database®®. Using multiple cutoffs and repeating the analysis,
357 we observed a higher degree of interactions for the genes with increasing heterogeneity
358  (Supplementary Fig. S22).

359

360 Johnson and Dong et al. previously compiled a list of traits that are age-related and have been
361  sufficiently tested for genome-wide associations (n = 39)%*. Using the genetic associations for GWAS
362 Catalog traits, we tested if there are significantly enriched traits for the consistent changes in
363  heterogeneity during aging (Supplementary Table S11). Although there was no significant enrichment,
364  all these age-related terms had positive enrichment scores, i.e. they all tended to include genes that
365  consistently become more heterogeneous with age during aging.

366

367 Using cell-type specific transcriptome data generated from FACS-sorted cells in mouse brain*?, we also
368  analyzed if there is an association between genes that become heterogeneous with age and cell-type
369  specific genes, which could be expected if brain cell-type composition progressively varied among
370  individuals with age. Although there was an overlap with oligodendrocytes and myelinated
371 oligodendrocytes, there was no significant enrichment (which could be attributed to low power due to

372  small overlap between aging and cell-type specific expression datasets) (Supplementary Fig. S23).
373
374 Discussion
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375 Aging is characterized by a gradual decrease in the ability to maintain homeostatic processes, which
376 leads to functional decline, age-related diseases, and eventually to death. This age-related
377  deterioration, however, is thought as not a result of expression changes in a few individual genes, but
378 rather as a consequence of an age-related alteration of the whole genome, which could be a result of
379  anaccumulation of both epigenetic and genetic errors in a stochastic manner?3#', This stochastic nature
380  of aging impedes the identification of conserved age-related changes in gene expression from a single
381  dataset with a limited number of samples.

382

383 In this study, we examined 19 gene expression datasets compiled from three independent studies to
384 identify the changes in gene expression heterogeneity with age. While all datasets have samples
385 representing the whole lifespan, we separated postnatal development (0 to 20 years of age) and aging
386 (20 to 98 years of age) by the age of 20, as this age is considered to be a turning-point in gene
387  expression trajectories’®. We implemented a regression-based method and identified genes showing a
388 consistent change in heterogeneity with age, during development and aging separately. At the single
389  gene level, we did not observe significant age-related heterogeneity change in most of the datasets,
390 possibly due to insufficient statistical power due to small sample sizes and the subtle nature of the
391 phenomenon. We hence took advantage of a meta-analysis approach and focused on consistent
392  signals among datasets, irrespective of their effect sizes and significance. Although this approach fails
393  to capture patterns that are specific to individual brain regions, it identifies genes that would otherwise
394 not pass the significance threshold due to insufficient power. Furthermore, we demonstrated that our
395 method is robust to noise and confounding effects within individual datasets.

396

397 By analyzing age-related gene expression changes, we first observed that there are more significant
398  and more similar changes during development than aging. Additionally, genes showing significant
399 change during aging tended to decrease in expression (Figure 1). These results can be explained by
400  the accumulation of stochastic detrimental effects during aging, leading to a decrease in expression
401  levels?. Our initial analysis of gene expression changes suggested a higher heterogeneity between
402  aging datasets.

403

404  We next focused on age-related heterogeneity change between individuals and found a significant
405 increase in age-related heterogeneity during aging, compared to development. Notably, increased
406 heterogeneity is not limited to individual brain regions, but a consistent pattern across different regions
407  during aging. We found that age-related heterogeneity change is more consistent among aging
408 datasets, which may reflect an underlying systemic mechanism. Further, a larger number of genes
409  showed more significant heterogeneity changes during aging than in development, and the majority of
410  these genes tended to have more heterogeneous expression.

411
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412 It was previously proposed that somatic mutation accumulations®#'43 and epigenetic regulations**
413  might be associated with transcriptome instability. While Enge et al. and Lodato et al. suggested that
414  genome-wide substitutions in single cells are not so common as to influence genome stability and cause
415  transcriptional heterogeneity at the cellular level?>#°, epigenetic mechanisms may be relevant. Although
416  we cannot test age-related somatic mutation accumulation and epigenetic regulation in this study, an
417  alternative mechanism might be related to transcriptional regulation, which is considered to be
418 inherently stochastic*®. Several studies demonstrated that variation in gene expression is positively
419  correlated with the number of TFs controlling gene’s regulation®’. We also found that genes with a
420 higher number of regulators and a decrease in expression during aging become more heterogeneous.
421 Further, significantly enriched TFs include early growth response (EGF), known to be regulating the
422 expression of many genes involved in synaptic homeostasis and plasticity, and FOXO TFs, which
423 regulate stress resistance, metabolism, cell cycle arrest and apoptosis. Together with these studies,
424 our results support that transcriptional regulation may be associated with age-related heterogeneity
425 increase during aging and may have important functional consequences in brain aging.

426

427 We next confirmed that observed increase in heterogeneity was not a result of low statistical power
428 (Supplementary Fig. S1) or a technical artifact (Figure 3b, Supplementary Figs. S24-S25). Specifically,
429  we tested whether increased heterogeneity during aging can be a result of the mean-variance
430 relationship, but we found no significant effect that can confound our results. In fact, the mean-variance
431 relationship in development and aging showed opposing profiles. We further analyzed this by grouping
432  genes based on their expression in development and aging (Supplementary Fig. S24). The genes that
433  decrease in expression both in development and aging showed the most opposing profiles in terms of
434  the mean-variance relationship, which could suggest that the decrease in development are more
435 coordinated and well-regulated whereas the decrease in aging occurs due to stochastic errors. Another
436 potential confounder is the post-mortem interval (PMI), which is the time between death and sample
437  collection. Since we do not have this data for all datasets we analyzed, we could not account for PMI
438 in our model. However, using the list of genes previously suggested as associated with PMI*’, we
439 checked if the consistency among aging datasets could be driven by PMI. Only 2 PMI-associated genes
440  were among the 147 that become consistently heterogeneous, and the distribution also suggested there
441 is no significant relationship (Supplementary Fig. S25). We also confirmed that the increase in
442  heterogeneity is not caused by outlier samples in datasets (Supplementary Fig. S26) or by the confound
443  of sex with age (Supplementary Fig. S27).

444

445 One important limitation of our study is that we analyze microarray-based data. Since gene expression
446 levels measured by microarray do not reflect an absolute abundance of mRNAs, but rather are relative
447  expression levels, we were only able to examine relative changes in gene expression. A recent study
448 analyzing single-cell RNA sequencing data from the aging Drosophila brain identified an age-related
449  decline in total MRNA abundance®. It is also suggested that, in microarray studies, genes with lower

450 expression levels tend to have higher variance®. In this context, whether the change in heterogeneity
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451 is a result of the total mMRNA decay is an important question. As an attempt to see if the age-related
452 increase in heterogeneity is dependent on the technology used to generate data, we repeated the initial
453  analysis using RNA sequencing data for the human brain, generated by GTEx Consortium 5°
454 (Supplementary Figs. S28-30). Nine out of thirteen datasets displayed more increase than decrease in
455 heterogeneity during aging, consistent with 18/19 microarray datasets, while the remaining four
456 datasets showed the opposite pattern (BA24, cerebellar hemisphere, cerebellum and substantia nigra).
457 Unlike what we observed for the microarray datasets, the change in expression levels and
458 heterogeneity were strongly positively correlated (Supplementary Fig. S30). Unfortunately, average
459 expression levels and variation levels in RNA sequencing is challenging to disentangle. Thus, the
460 biological relevance of the relationship between the age-related change in expression levels and
461 expression heterogeneity still awaits to be studied through novel experimental and computational
462 approaches. Nevertheless, RNA sequencing analysis also suggests an overall increase in age-related
463  heterogeneity increase.

464

465  Another limitation is related to use of bulk RNA expression datasets, where each value is an average
466  for the tissue. While it is important to note that our results indicate increased heterogeneity between
467 individuals rather than cells, the fact that the brain is composed of different cell types raises the question
468 if increased heterogeneity may be a result of changes in brain cell-type proportions. To explore the
469 association between heterogeneity and cell-type specific genes, we used FACS-sorted cell type specific
470  transcriptome dataset from mouse brain*®. We only had nine genes that have consistent heterogeneity
471 increase and are specific to one cell-type. Eight out of nine were highly expressed in oligodendrocytes,
472  which is consistent with the results reported in our earlier work?*. However, we did not observe any
473 significant association between cell-type specific genes and heterogeneity (Supplementary Fig. S23).
474

475 Gene set enrichment analysis of the genes with increased heterogeneity with age revealed a set of
476 significantly enriched pathways that are known to modulate aging, including longevity regulating
477 pathway, autophagy, mTOR signaling pathway (Figure 5a). Furthermore, GO terms shared among
478  these genes include some previously identified common pathways in aging and age-related diseases
479  (Supplementary Figs. S16-18). We have also tested if these genes are associated with age-related
480  diseases through GWAS, and although not significant, we found a positive association with all age-
481  related traits defined in Johnson and Dong et al. Overall, these results indicate the effect of
482  heterogeneity on pathways that modulate aging and may reflect the significance of increased
483 heterogeneity in aging. Importantly, we identified genes that are enriched in terms related to neuronal
484 and synaptic functions, such as axon guidance, neuron to neuron synapse, postsynaptic specialization,
485  which may reflect the role of increased heterogeneity in synaptic dysfunction observed in the
486  mammalian brain, which is considered to be a major factor in age-related cognitive decline®!. We also
487  observed genes that become more heterogeneous with age consistently across datasets are more
488 central (i.e. have a higher number of interactions) in a protein-protein interaction network

489  (Supplementary Fig. S22). Although this could mean the effect of heterogeneity could be even more
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490 critical because it affects hub genes, another explanation is research bias that these genes are studied
491  more than others.

492

493 In summary, by performing a meta-analysis of transcriptome data from diverse brain regions we found
494 a significant increase in gene expression heterogeneity during aging, compared to development.
495 Increased heterogeneity was a consistent pattern among diverse brain regions in aging, while no
496 significant consistency was observed across development datasets. Our results support the view of
497  aging as a result of stochastic molecular alterations, whilst development has a higher degree of gene
498  expression regulation. We also found that genes showing a consistent increase in heterogeneity during
499 aging are involved in pathways important for aging and neuronal function. Therefore, our results
500  demonstrate that increased heterogeneity is one of the characteristics of brain aging and is unlikely to

501  be only driven by the passage of time starting from developmental stages.
502

503 Methods

504

505  Dataset collection

506 In this study, we performed re-analysis of publicly available transcriptome datasets to test age-related
507 change in gene expression heterogeneity. All data collection in these previous studies were performed
508 in accordance with relevant guidelines, regulations and approved experimental protocols, including
509 informed consents for the use of samples for research from all donors or their next of kin.

510 Microarray datasets: Raw data used in this study were retrieved from the NCBI Gene Expression

511 Omnibus (GEO) from three different sources (Supplementary Table S1). All three datasets consist of
512 human brain gene expression data generated on microarray platforms. In total, we obtained 1017
513 samples from 298 individuals, spanning the whole lifespan with ages ranging from 0 to 98 years
514  (Supplementary Fig. S1).

515  RNA sequencing dataset: We used the transcriptome data generated by the GTEx Consortium (v6p)®°.

516  We only used the samples with a death circumstance of 1 (violent and fast deaths due to an accident)
517  and 2 (fast death of natural causes) on the Hardy Scale excluding individuals who died of illnesses. As
518  we focus only on the brain, we used all 13 brain tissue data in GTEx. We thus analyzed 623 samples
519  obtained from 99 individuals.

520 Separating datasets into development and aging datasets: To differentiate changes in gene expression

521 heterogeneity during aging from those during development, we used the age of 20 to separate pre-
522 adulthood from adulthood. It was shown that the age of 20 corresponds to the first age of reproduction
523  in human societies®?. Structural changes after the age of 20 in the human brain were previously linked
524  to age-related phenotypes, specifically neuronal shrinkage and a decline in total length of myelinated
525 fibers®. Earlier studies examining age-related gene expression changes in different brain regions also

526  showed a global change in gene expression patterns after the age of 20'"'353, Thus, consistent with
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527  these studies, we separated datasets using the age of 20 into development (0 to 20 years of age, n =
528  441) and aging (20 to 98 years of age, n = 569).

529

530  Preprocessing

531  Microarray datasets: RMA correction (using the ‘oligo’ library in R)** and log2 transformation were

532 applied to Somel2011 and Kang2011 datasets. For the Colantuoni2011 dataset, as there was no public
533 R package to analyze the raw data, we used the preprocessed data deposited in GEO, which had been
534 loess normalized by the authors. We quantile normalized all datasets using the ‘preprocessCore’ library
535 in R%. Notably, our analysis focused on consistent patterns across datasets, instead of considering
536  significant changes within individual datasets. Since we don’t expect random confounding factors to be
537 shared among datasets, we used quantile normalization to minimize the effects of confounders, and we
538 treated consistent results as potentially a biological signal. We also applied an additional correction
539  procedure for Somel2011 datasets, in which there was a batch effect influencing the expression levels,
540  as follows: for each probeset (1) calculate mean expression (M), (2) scale each batch separately (to
541 mean = 0, standard deviation = 1), (3) add M to each value. We excluded outliers given in
542 Supplementary Table S1, through a visual inspection of the first two principal components for the
543 probeset expression levels (same as in Donertas, Fuentealba Valenzuela, Partridge, & Thornton, 2018;
544  Doénertag et al., 2017). We mapped probeset IDs to Ensembl gene IDs 1) using the Ensembl database,
545  through the ‘biomaRt’ library % in R for the Somel2011 dataset, 2) using the GPL file deposited in GEO
546  for Kang2011, as probeset IDs for this dataset were not complete in Ensembl, and 3) using the Entrez
547  gene IDs in the GPL file deposited in GEO for the Colantuoni2011 dataset and converting them into
548 Ensembl gene IDs using the Ensemble database, through the “biomaRt” library in R. Lastly, we scaled
549  expression levels for genes (to mean = 0, standard deviation = 1) using the ‘scale’ function in R. Age
550  values of individuals in each dataset were converted to the fourth root of age (in days) to have a linear
551 relationship between age and expression both in development and aging. However, we repeated the
552 analysis using different age scales and confirmed that the results were quantitatively similar
553  (Supplementary Fig. S3).

554 RNA sequencing dataset: The genes with median RPKM value of 0 were excluded from the dataset.

555  The RPKM values provided in the GTEx data were log2 transformed and quantile-normalized. Similar
556  to the microarray data, we excluded the outliers based on the visual inspection of the first and second
557  principal components (Supplementary Table S1). In GTEX, ages are given as 10 year intervals. We
558 therefore used the middle point of these age intervals to represent that individual's age.

559

560

561  Age-related expression change

562  We used linear regression to assess the relationship between age and gene expression. The model
563  used in the analysis is:

564

565 (1) Yi=Po+Bi*Age™ + &
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566

567  where Yiis the scaled log2 expression level for the i" gene, B is the intercept, Bi1 is the slope, and & is
568  the residual. We performed the analysis for each dataset (development and aging datasets separately)
569 and considered the (7 value as a measure of change in expression. p-values obtained from the model
570  were corrected for multiple testing according to Benjamini and Hochberg procedure® by using ‘p.adjust’
571  function in R.

572

573  Age-related heterogeneity change

574 In order to quantify the age-related change in gene expression heterogeneity, we calculated
575 Spearman’s correlation coefficient (p). The correlations were calculated between the absolute values
576  of residuals obtained from equation (1) and the fourth root of individual age. We regarded the absolute
577  values of residuals as a measure of heterogeneity. Therefore, high positive correlation coefficients
578 suggest that heterogeneity increases with age, whereas strong negative correlation implies
579 heterogeneity decreases with age. p-values were calculated from the correlation analysis and corrected
580  for multiple testing with the Benjamini and Hochberg method using the ‘p.adjust’ function in R. To
581 compare heterogeneity changes in aging and development, we employed paired Wilcoxon test
582 (‘wilcox.test’ in the R ‘stats’ package) in which we compared median heterogeneity changes in aging
583  and development dataset pairs.

584

585  Principal Component Analysis

586  We conducted principal component analysis on both age-related changes in expression (8) and
587 heterogeneity (p). We followed a similar procedure for both analyses, in which we used the ‘prcomp’
588  functionin R. The analysis was performed on a matrix containing 8 values (for the change in expression
589 level) and p values (for the change in heterogeneity), for 11,137 commonly expressed genes for all 38
590 development and aging datasets. In each dataset, the estimates of expression change (B) or
591 heterogeneity change (p) values were scaled for each dataset before calculating principal components.
592

593  Permutation test

594  We performed a permutation test, taking into account the non-independence of samples across the
595 Somel2011 and Kang2011 datasets, due to the fact that these datasets include multiple samples from
596  the same individuals for different brain regions. We first randomly permuted ages among individuals,
597 not samples, for 1,000 times in each data source, using the ‘sample’ function in R. Next, we assigned
598 ages of individuals to corresponding samples and calculated age-related expression and heterogeneity
599 change for each dataset, corresponding to different brain regions. For the tests related to the changes
600 in gene expression with age, we used a linear model between gene expression levels and the
601  randomized ages. In contrast, for the tests related to the changes in heterogeneity with age, we
602 measured the correlation between the randomized ages and the absolute value of residuals from the

603  linear model that is between expression levels and non-randomized ages for each gene. In this way,
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604 we preserved the relationship between age and expression, and we were able to ensure that our
605 regression model was viable for calculating age-related heterogeneity change. Using expression and
606 heterogeneity change estimates calculated using permuted ages, we tested (a) if the correlation of
607 expression (and heterogeneity) change in aging is higher than in development datasets; (b) if the
608 correlations of expression (and heterogeneity) change in development and in aging datasets are
609  significantly higher than null expectation; (c) if the number of genes showing significant change in
610  expression (and heterogeneity) is significantly higher in aging than in development datasets; (d) if the
611 overall increase in age-related heterogeneity during aging is significantly higher than development; (e)
612 if the observed consistency in heterogeneity increase is significantly different from expected. All tests
613 using permuted ages were performed one-tailed. We also demonstrate that our permutation strategy is
614 more stringent than random permutations in Supplementary Figure S10, giving the distributions
615 calculated using both dependent permutations and random permutations.

616

617  To test the overall correlation within development or aging datasets for the changes in expression (5)
618 and heterogeneity (p), we calculated median correlations among independent three subsets of datasets
619  (one Kang2011, one Somel2011 and the Colantuoni2011 dataset), taking the median value calculated
620  for each possible combination of independent subsets (16 x 2 x 1 = 32 combinations). Using 1,000
621  permutations of individuals’ ages, we generated an expected distribution for the median correlation
622  coefficient for triples and compared these with the observed values, asking how many times we observe
623 a higher value. We used this approach to calculate expected median correlation among development
624  (and aging) datasets, because the number of independent pairwise comparisons are outnumbered by
625 the number of dependent pairwise comparisons, causing low statistical power.

626

627  To further test the significance of the difference between correlations among development and aging
628  datasets, we calculated the median difference in correlations between aging and development datasets
629  for each permutation. We next constructed the null distribution of 1,000 median differences and
630  calculated empirical p-values compering the observed differences with these null distributions. Next, to
631 test the significance of the difference in the number of significantly changing genes between
632  development and aging, we calculated the difference in the number of genes showing significant
633  change between development and aging datasets for each permutation. Empirical p-values were
634  computed according to observed differences. Likewise, to test if the overall increase in age-related
635 heterogeneity during aging is significant compared to development, we computed median differences
636 between median heterogeneity change values of each aging and development dataset, for each
637  permutation, followed by an empirical p-value calculation to answer if the aging datasets have a higher
638 increase in age-related heterogeneity.

639

640  Expected heterogeneity consistency
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641 Expected consistency in heterogeneity change was calculated from heterogeneity change values
642 () measured using permuted ages. For each permutation, we first calculated the total number of genes
643  showing consistent heterogeneity increase for N number of datasets (N =0, ..., 19). To test if observed
644 consistency significantly differed from the expected, we compared observed consistency values to the
645  distribution of expected numbers, by performing a one-sided test for the consistency in N number of
646  datasets, N=1, ..., 19.

647

648  Clustering

649  We used the k-means algorithm (‘kmeans’ function in R) to cluster genes showing consistent
650 heterogeneity change (n=147) according to their heterogeneity profiles. We first took the subset of the
651 heterogeneity levels (absolute value of the residuals from equation (1)) to include only the genes that
652  show a consistent increase with age and then scaled the heterogeneity levels to the same mean and
653 standard deviation. Since the number of samples in each dataset is different, just running k-means on
654  the combined dataset would not equally represent all datasets. Thus, we first calculated the spline
655 curves for scaled heterogeneity levels for each gene in each dataset (using the ‘smooth.spline’ function
656 in R, with three degrees of freedom). We interpolated at 11 (the smallest sample size) equally distant
657 age points within each dataset. Then we used the combined interpolated values to run the k-means
658 algorithm with k = 8, a liberal choice, given the total number of genes being 147.

659

660  To test association of the clusters with Alzheimer’s Disease, we retrieved overall AD association scores
661  of the 147 consistent genes (n = 40) from the Open Targets Platform®.

662

663  Functional Analysis

664  We used the "clusterProfiler" package in R to run Gene Set Enrichment Analysis, using Gene Ontology
665 (GO) Biological Process (BP), GO Molecular Function (MF), GO Cellular Compartment (CC),
666 Reactome, Disease Ontology (DO), and KEGG Pathways. We performed GSEA on all gene sets with
667  a size between 5 and 500, and we corrected the resulting p-values with the Benjamini and Hochberg
668 correction method. To test if the genes with a consistent increase or decrease in their expression are
669 associated with specific functions, we used the number of datasets with a consistent increase to run
670  GSEA. Since we are running GSEA using number of datasets showing consistency, our data includes
671 many ties, potentially making the ranking ambiguous and non-robust. In order to assess how robust our
672  results are, we ran GSEA 1,000 times on the same data and counted how many times we observed the
673  same set of KEGG pathways as significant (Supplementary Table S3). The lowest number among the
674 pathways with a significant positive enrichment score was 962 out of 1,000 (Phospholipase D signaling
675 pathway). Moreover, we repeated the same analysis using the heterogeneity change levels (p), instead
676  of using the number of datasets with a consistent change, for each dataset to confirm the gene sets are
677  indeed associated with the increase or decrease in heterogeneity (Supplementary Figs. S15-S19). We
678  visualized the KEGG pathways using ‘KEGGgraph'’ library in R and colored the genes by the number
679  of datasets that show an increase.
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680

681 We also performed an enrichment analysis of the transcription factors and miRNA to test if specific TFs
682  or miRNAs regulate the genes that become more heterogeneous consistently. We collected gene-
683  regulator association information using the Harmonizome database®, “MiRTarBase microRNA Targets”
684 (12086 genes, 596 miRNAs) and “TRANSFAC Curated Transcription Factor Targets” (13216 genes,
685 201 TFs) sets. We used the ‘fgsea’ package in R, which allows GSEA on a custom gene set. We tested
686  the association for each regulator with at least 10 and at most 500 targets. Moreover, we tested if the
687  number of regulators is associated with the change in heterogeneity. We first calculated the correlation
688  between heterogeneity change with age (or the number of datasets with an increase in expression
689  heterogeneity) and the number of TFs or miRNAs regulating that gene, for aging and development
690  separately. We repeated the analysis while accounting for the direction of expression changes in these
691 periods (i.e. separating genes into down-down, down-up, up-down, and up-up categories based on their
692  expression in development and aging, Supplementary Fig. S21). To test the difference in the
693 correlations between aging and development, we used 1,000 random permutations of the number of
694  TFs. For each permutation, we randomized the number of TFs and calculated the correlation between
695 heterogeneity change (or the number of datasets with an increase in heterogeneity) and the randomized
696  numbers. We then calculated the percentage of datasets where aging has a higher correlation than
697  development. Using the distribution of percentages, we tested if the observed value is expected by
698  chance.

699

700  Protein-protein interaction network analysis

701  We downloaded all human protein interaction data from the STRING database (v11)%. Ensembl
702 Peptide IDs are mapped to Ensembl Gene IDs using the “biomaRt” package in R. Here we aimed to
703  test whether genes showing consistent increase in heterogeneity have a different number of interactors
704  than other genes. For this we calculated the degree distributions for the genes that become consistently
705 more heterogeneous with age and all remaining genes using different cutoffs for interaction confidence
706  scores. In order to calculate the significance of the difference, we i) calculated the number of interactors
707  (degree) for each gene, ii) for 10,000 times, randomly sampled k genes from all interactome data (k =
708 number of genes that become heterogeneous with age across all datasets and have interaction
709  information in STRING database, after filtering for a cutoff), iii) calculated the median of degree for each
710 sample. We then calculated an empirical p-value by asking how many of these 10,000 samples we see
711 a median degree that is equivalent to or higher than our original value. The number of genes and
712 interactions after each cutoff are given in Supplementary Figure S22.

713

714  Cell-type specificity analysis

715  Using FACS-sorted cell-type specific transcriptome data from the mouse brain*®, we checked if there is
716 any overlap between genes that become heterogeneous with age and cell-type specific genes. We
717  downloaded the dataset from the GEO database (GSE9566) and preprocessed it by performing: i) RMA

718  correction using the ‘affy’ package in R®', ii) log2 transformation, iii) quantile normalization using the
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719  ‘preprocessCore’ package in R%, iv) mapping probeset IDs to first mouse genes, and then human
720 genes. We only included genes that have one to one orthologs in humans, after filtering out probesets
721 that map to multiple genes. We defined cell-type specific genes by calculating the effect size (Cohen’s
722 D) for each gene and cell type and identifying genes that have an effect size higher than or equal to 2
723 as specific to that cell type. At this cutoff, there was no overlap between cell type specific gene lists. To
724 test for association between heterogeneity and cell type specificity, we used the Fisher's exact test
725  using the R ‘fisher.test’ function.

726

727  Code Availability

728  All analysis was performed using R and the code to calculate heterogeneity changes with age is
729  available as an R package ‘hetAge’, documented at https://mdonertas.github.io/hetAge/. “ggplot275? and
730  “ggpubr’®® R libraries were used for the visualization.

731

732  Data availability

733 We performed re-analysis of the raw data that we downloaded from the GEO database (GSE30272,
734  GSE25219, GSE22569, GSE18069) and GTEx data portal. All results generated in this study are
735 available as Supplementary Tables and all summary statistics are available in the BioStudies database
736  (http://www.ebi.ac.uk/biostudies) under accession number S-BSST273.
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