

1 **Genetically diverse uropathogenic *Escherichia coli* adopt a common transcriptional**
2 **program in patients with urinary tract infections.**

3

4

5 Anna Sintsova¹, Arwen Frick-Cheng¹, Sara Smith¹, Ali Pirani¹, Sargurunathan
6 Subashchandrabose², Evan Snitkin¹ and Harry L. T. Mobley¹

7

8

9 ¹*Department of Microbiology and Immunology, University of Michigan, Ann Arbor,*
10 *Michigan, USA;*

11 ²*Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas,*
12 *USA*

13

14 Corresponding Author: Harry L. T. Mobley, hmobley@med.umich.edu

15 Keywords: UPEC, transcriptome, metabolism, human infection, *in vivo* gene
16 expression

17

18

19 **Abstract**

20 Uropathogenic *Escherichia coli* (UPEC) is the major causative agent of
21 uncomplicated urinary tract infections (UTIs). A common virulence genotype of UPEC
22 strains responsible for UTIs is yet to be defined, due to the large variation of virulence
23 factors observed in UPEC strains. We hypothesized that studying UPEC functional
24 responses in patients might reveal universal UPEC features that enable pathogenesis.
25 Here we identify a transcriptional program shared by genetically diverse UPEC strains
26 isolated from 14 patients during uncomplicated UTIs. Strikingly, this *in vivo* gene
27 expression program is marked by upregulation of translational machinery, providing a
28 mechanism for the rapid growth within the host. Our analysis indicates that switching to a
29 more specialized catabolism and scavenging lifestyle in the host allows for the increased
30 translational output. Our study identifies a common transcriptional program underlying
31 UTIs and illuminates the molecular underpinnings that likely facilitate the fast growth
32 rate of UPEC in infected patients.

33

34 **Introduction**

35 Urinary tract infections (UTIs) are among the most common bacterial infections
36 in humans, affecting 150 million people each year worldwide (1). A high incidence of
37 recurrence and frequent progression to chronic condition exacerbates the negative impact
38 of UTIs on patients' quality of life and healthcare costs (2). Despite the magnitude of the
39 problem, treatment remains limited by a strain's susceptibility to available antibiotics,
40 which are often ineffectual (3–5).

41 The major causative agent of uncomplicated UTIs is Uropathogenic *Escherichia*
42 *coli* (UPEC), which is responsible for upwards of 70% of all cases (1). The majority of
43 our insights into UPEC pathogenesis have been obtained through *in vitro* assays, cell
44 culture systems, and animal models (6–9). While these studies have identified virulence
45 and fitness factors that are important for UPEC infection, how these studies translate to
46 human infection is not clear. As a result, we do not yet have a complete understanding of
47 UPEC physiology in the human urinary tract. Moreover, the genetic heterogeneity of
48 UPEC isolates, which carry diverse and functionally redundant virulence systems
49 including iron acquisition, adherence, and toxins, further complicates our understanding
50 of uropathogenesis (10–14). The different constellations of virulence factors and diverse
51 genetic backgrounds raise the question of whether different UPEC strains vary in their
52 strategies for pathogenesis.

53 Since defining conserved UPEC characteristics have proven elusive to
54 comparative genomics strategies, we hypothesized that comparing functional responses in
55 the context of the host may uncover disease-defining features. To that end, we directly

56 examined UPEC gene expression directly from 14 patients with documented significant
57 bacteriuria and presenting with uncomplicated UTI and compared it to the gene
58 expression of identical strains cultured to mid-exponential stage in filter-sterilized pooled
59 human urine. Despite the genetic diversity of the pathogen and the human hosts, we
60 identified a remarkably conserved gene expression program that is specific to human
61 infection, can be recapitulated in the mouse model of infection and bears all the
62 hallmarks of extremely rapid growth rate. Based on extensive analysis, we propose a
63 model where UPEC shut down all non-essential metabolic processes and commit all
64 available resources to rapid growth during human UTI. Critically, our discovery of a
65 common transcriptional program of UPEC in patients significantly expands our
66 understanding of bacterial adaptation to the human host and provides a platform to design
67 universal therapeutic strategies.

68 **Results**

69 **Study design.** To better understand UPEC functional responses to the human host, we
70 isolated and sequenced RNA from the urine (stabilized immediately after collection)
71 from fourteen otherwise healthy women diagnosed with UPEC-associated urinary tract
72 infection. To identify infection-specific responses, we cultured the same fourteen UPEC
73 isolates *in vitro* in filter-sterilized human urine (mid-exponential phase, 2-hour time point
74 in **Fig S1**), and isolated and sequenced RNA from these cultures (study design and
75 quality control is described in detail in Methods section). Phylogenetic analysis showed
76 high degree of genetic diversity, as we identified strains belonging to 3 distinct
77 phylogroups (**Fig. S2**). The majority of UPEC isolates (10 of 14) belonged to the B2
78 phylogroup, which is consistent with previously published studies (2, 13, 16–18).
79 Although the majority (10 of 14) of patients had previous history of UTIs, we found no
80 relationship between patients' previous UTI history and bacterial genotype (**Fig. S2**).
81 Moreover, the fourteen clinical isolates showed a wide array of antibiotic resistance
82 phenotypes (**Fig. S2**).
83

84 **Virulence factor expression is not specific to infection.** We first assessed the virulence
85 genotype of the fourteen UPEC strains by looking at the presence or absence of a
86 comprehensive list of known virulence factors, including adhesins, toxins, iron
87 acquisition proteins, and flagella (9–14)(**Fig. 1A**). As previously reported (13), B1 strains
88 appear to carry fewer virulence factors overall when compared to B2 strains, suggesting
89 that UTIs can be established by UPEC strains with vastly diverse virulence genotypes.
90 We then compared the levels of gene expression of these virulence factors following

91 culture in filter-sterilized urine (**Fig. 1B**) to that during infection (**Fig. 1C**). Gene
92 expression during infection and in urine showed strain-to-strain variability, which is
93 consistent with previous reports (15). Virulence factors were expressed at similar levels
94 in *in vitro* urine cultures and during infection. For example, iron acquisition systems were
95 expressed regardless of experimental condition (**Fig. 1B, C**). Notably, virulence factor
96 carriage varies greatly between UPEC strains and we did not discern any infection-
97 specific gene expression among the virulence factors we examined (**Fig S3**).

98

99 **The UPEC core genome exhibits a common gene expression program during clinical**
100 **infection.** To perform a comprehensive comparison of gene expression between the
101 different clinical UPEC strains, we identified a set of 2653 genes present in all 14 UPEC
102 strains in this study as well as the reference *E. coli* MG1655 strain (hereafter referred to
103 as the core genome; see Methods, **Fig S4, Fig S5**). We then assessed the uniformity of
104 core genome expression of 14 isolates cultured *in vitro* in filter-sterilized urine. As
105 expected for bacterial strains cultured under identical conditions, we saw high correlation
106 of gene expression between any two isolates cultured *in vitro* (**Fig. 2A, B** (blue box), with
107 median Pearson correlation coefficient of 0.92). Remarkably, the correlation of gene
108 expression was just as high between any two patient samples (median of 0.91, **Fig. 2A, B**
109 (red box)), while the correlation between *in vitro* urine and patient samples was
110 considerably lower (median of 0.73 (**Fig. 2A, B** (green box))). The gene expression
111 correlation between *in vitro* and patient samples remained low, even when we directly
112 compared identical strains (*i.e.* HM56 cultured *in vitro* in urine vs. HM56 isolated from
113 the patient, median of 0.74, **Fig. 2A, B** (yellow box)). This analysis suggested that UPEC

114 adopt an infection-specific gene expression program that is distinct from UPEC
115 undergoing exponential growth in urine *in vitro*. We confirmed this observation using
116 principal component analysis (PCA), which revealed that patient samples form a tight
117 cluster, distinct from *in vitro* cultures (**Fig. 2C**), demonstrating the common
118 transcriptional state of UPEC during human UTI.

119 We also performed PCA analysis on *in vitro* (**Fig. S6A, B**) and patient samples
120 (**Fig. S6C, D**) separately, to ascertain whether there is any discernable effect of bacterial
121 phylogroup (**Fig. S6A, C**) or patients' previous history of UTI (**Fig. S6B, D**) on gene
122 expression. Interestingly, B1 and B2 strains did cluster separately and a number of genes
123 were expressed differentially in B1 and B2 backgrounds (**Dataset S1, S2**), suggesting
124 that variation in gene regulatory elements between phylogroups has a small but
125 discernable role in gene expression both *in vitro* and during infection. However, we
126 found that patients' history of UTI had no effect on bacterial gene expression.

127 Taken together, our data indicate diverse UPEC strains adopt a specific and
128 conserved transcriptional program for their core genome during human infection.

129

130 **UPEC show increased expression of replication and translation machinery during**
131 **UTI.** Differential expression analysis of the infection and *in vitro* transcriptomes
132 identified 492 differentially expressed genes (\log_2 fold change greater than 2 or less than
133 -2, adjusted p values < 0.05) (**Fig. 3A, Dataset S3, S4**). Interestingly, pathway analysis
134 and manual curation of the differentially expressed gene list revealed that expression of
135 ribosomal subunits (r-proteins), and enzymes involved in rRNA, tRNA modification,
136 purine and pyrimidine metabolism, are significantly higher in patients compared to *in*

137 *vitro* cultures (**Fig. 3B, Table S2**). Together, these data strongly suggest that replication
138 rates during infection are significantly higher than during mid-exponential growth in
139 urine.

140 We also observed infection-specific downregulation of pathways involved in
141 amino acid biosynthesis and sugar metabolism, and a general switch from expression of
142 sugar transporters to that of amino acid transporters (**Fig. 3B**) (with the exception of 4
143 sugar transporters that were expressed at higher levels in patients: *ptsG*, *fruA*, *fruB*, and
144 *gntU*. **Fig. S6**). Downregulation of sugar catabolism genes and upregulation of amino
145 acid transporters suggest a metabolic switch to a more specific catabolic program as well
146 as a scavenger lifestyle as examined in detail below.

147

148 **A shift in metabolic gene expression during UTI to optimize growth potential.**
149 During our analysis, we observed that 99% (on average 2621/2653 genes) of core
150 genome was expressed during *in vitro* culture, in contrast to only 94% in patient samples
151 (2507/2653 genes). Patient samples also contained higher proportion of genes expressed
152 at low levels when compared to *in vitro* samples. (**Fig. S5**). Moreover, we noted that the
153 majority of differentially expressed genes were downregulated in patients (343/492
154 differentially expressed genes). On the other hand, 30% of all upregulated genes (48/149)
155 were ribosomal proteins. Together, these data gave us the first indication that UPEC may
156 undergo a global gene expression reprogramming during urinary tract infection.

157 Bacterial growth laws postulate that bacteria dedicate a fixed amount of cellular
158 resources to the expression of ribosomes and metabolic machinery. As a consequence,
159 higher growth rates are achieved by allocating resources to ribosome expression at the

160 expense of metabolic machinery production (16–21). However, this resource reallocation
161 between ribosomal and metabolic gene expression has not yet been measured *in vivo*.

162 First, we wanted to determine what proportion of the total transcriptome is
163 dedicated to core genome expression. We first hypothesized that during infection
164 transcription could shift from the core genome to the accessory genome, which is
165 enriched for virulence factors. However, we found that approximately 50% of total reads
166 mapped to the core genome regardless of whether the bacteria were isolated from the
167 patients or cultured *in vitro* (Fig. 4A). Therefore, our data indicated that a fixed
168 proportion of cellular resources were being dedicated to expression of conserved
169 ribosomal and metabolic machinery, regardless of external environment.

170 We next looked at r-protein expression. Remarkably, we found that almost 25%
171 of core genome reads mapped to r-proteins during infection, while this number was only
172 7% during exponential growth in urine (Fig. 4B). These findings support the idea of
173 extremely fast UPEC growth during UTI. Furthermore, this increase in r-protein
174 expression correlated with a marked decrease in the proportion of core genome reads
175 dedicated to the expression of catabolic genes (20% *in vitro*, 11% in patients, Fig. 4C)
176 and amino acid biosynthesis genes (5% *in vitro*, 1% in patients, Fig. 4D). Thus, our data
177 highlight a dramatic and conserved resource reallocation from metabolic gene expression
178 to replication and translational gene expression during human UTI. We postulate that this
179 resource reallocation is required to facilitate the rapid growth rate of UPEC in the host,
180 which has been previously documented (22).

181

182 **Increase in r-protein transcripts is an infection-specific response.** Doubling time
183 during exponential growth in urine is longer than the doubling time during exponential
184 growth in rich media, such as LB (23). Thus, we wanted to determine whether the
185 differences between the infection-specific and *in vitro* transcriptomes are due to longer
186 doubling times of UPEC cultured in urine. For that purpose, one of the clinical strains,
187 HM43, was cultured in LB, and in a new batch of filter sterilized urine. Using the optical
188 density (OD) curves shown in **Fig 5A**, we estimated the doubling time of HM43 during
189 exponential growth in LB to be approximately 33 min and the doubling time in urine to
190 be 54 minutes. In addition, we sequenced RNA from 3-hour-old LB cultures, 3-hour-old
191 urine cultures and from the urine of CBA/J mice, 48 hours after intraurethral inoculation
192 with HM43.

193 We then determined the proportion of r-protein transcripts in the HM43
194 transcriptomes isolated from urine and LB cultures. Consistent with our previous
195 experiments, this proportion was very small in urine culture (4%). Interestingly, while the
196 proportion of r-protein transcripts was approximately three times larger in LB cultures
197 compared to urine, it was still significantly lower compared to what we observe during
198 infection (**Fig 5B**). In contrast, the bacterial transcriptome during mouse infection
199 exhibited r-protein expression that was similar to the human infection (**Fig 5B**).
200 Additionally, the proportion of the transcriptome dedicated to catabolic gene expression
201 was highest during urine cultures and lowest during mouse and human infections,
202 indicating a negative correlation between the expression of r-protein and sugar
203 catabolism genes. (**Fig 5C**). Overall, we show that exponential growth in rich medium
204 alone cannot recapitulate the transcriptional signature observed during human infection.

205 Taken together, our data suggest that the resource reallocation described in this study is
206 an infection-specific response.

207

208 **Environment-responsive regulators facilitate patient-specific gene expression**
209 **program.** We next sought to identify potential regulators involved in resource
210 reallocation that facilitate the infection-specific UPEC gene expression program. To do
211 so, we performed gene set enrichment analysis (GSEA) on *E. coli* co-regulated genes
212 (regulons). This analysis allowed us to identify regulons enriched in differentially
213 expressed genes. We identified 22 transcriptional factors whose regulon's expression was
214 statistically different between infection and *in vitro* cultures (**Table S3**). 18/22 regulons
215 were expressed at higher level during *in vitro* culture, and eight representative regulons
216 are shown in **Fig. 6**. Overall, we found that these regulons accounted for 50% of
217 differentially expressed genes that were determined to be significantly down-regulated. In
218 contrast, only 6% of upregulated genes belonged to the 4 regulons that were expressed at
219 higher levels during infection. These included genes involved in the SOS response, as
220 well as purine synthesis (**Table S3**).

221 In support of our previous data, the expression of catabolic genes controlled by
222 the Crp regulator was lower in patients compared to urine cultures. In conjunction with
223 the previously described role for Crp in resource reallocation (21), our *in vivo* findings
224 strongly suggest that catabolite repression plays an important role in bacterial growth rate
225 during UTI. Interestingly, other regulators identified in this analysis (NarL, ModE, MetJ,
226 GadE, YdeO) are known sensors of environmental cues, suggesting that the infection-
227 specific gene expression program may be driven by additional environmental signals.

228 Taken together, we propose a model where simultaneous sensing of multiple
229 environmental cues in the urinary tract leads to the global down-regulation of multiple
230 metabolic regulons during infection. The cellular resources (*e.g.*, RNA polymerase) that
231 are freed as a result are then allocated to the transcription of genes (for example, r-
232 proteins), which are required to maintain rapid growth rate.

233

234 **Discussion**

235 As UPEC causes one of the most prevalent bacterial infections in humans, the
236 virulence mechanisms of UPEC infection have been well-characterized. However, while
237 we know that these virulence strategies (*e.g.*, iron acquisition, adhesion, immune evasion)
238 are essential for establishing infection, UPEC strains can differ dramatically in the
239 specific factors that are utilized. Additionally, our data indicate that the expression of
240 virulence factors can change from patient to patient, suggesting that the need for a
241 specific factor might vary during the course of the infection.

242 In this study, we set out to uncover universal bacterial features during human
243 UTIs, regardless of the stage of the infection or patient history. To do so, we performed
244 transcriptomic analysis on bacterial RNA isolated directly from the urine of 14 patients
245 and compared it to the gene expression of identical strains cultured to mid-exponential
246 phase in sterile urine. Our analysis focused on the core genome as opposed to the more
247 commonly studied accessory genome, which contains the majority of the classical
248 virulence factors. This allowed us to identify a remarkably conserved gene expression
249 signature shared by all 14 UPEC strains during UTI.

250 Although frequently overlooked, bacterial metabolism is an essential component
251 of bacterial pathogenesis. Since the core genome is enriched for metabolic genes, we
252 anticipated that our study, for the first time, would illuminate the UPEC metabolic state
253 during human infection. Our data revealed an infection-specific increase in ribosomal
254 protein expression in all 14 UPEC isolates, which was suggestive of bacteria undergoing
255 rapid growth. While we did observe increased r-protein expression in exponentially
256 growing UPEC cultured in LB, these transcripts were dramatically more abundant in the

257 context of infection (human or mouse). These data suggest that UPEC are growing faster
258 in the host in comparison to exponential growth in LB and supports recent studies that
259 have documented very rapid UPEC growth rate in patients (22, 24).

260 Importantly, our analysis reveals how this growth rate can be achieved. We found
261 that regardless of external environment, ~50% of total gene expression is allocated to the
262 core genome, consisting of metabolic and replication machinery, which mediate bacterial
263 growth potential. When the infection-specific transcriptome was compared to that of
264 UPEC cultured to mid-exponential phase in urine, we observed that elevated levels of
265 ribosomal transcripts correlated with decreased levels of metabolic gene expression. We
266 propose that this reallocation of resources within the core genome drives the rapid growth
267 rate of UPEC during infection.

268 This resource reallocation is equivalent to what has been described as the
269 bacterial ‘growth law’. Based on *in vitro* studies, the growth law proposes that increases
270 in ribosomal gene expression occurs at the expense of a cell’s metabolic gene expression
271 (17, 19). Our analysis of UPEC gene expression directly from patients is consistent with
272 this hypothesis. In addition, regulatory network analysis revealed that multiple metabolic
273 regulons exhibit decreased transcript levels in patients suggesting an actively regulated
274 process. In contrast, synthesis of ribosomal RNA (rRNA) coordinates the expression of
275 ribosomal proteins by a translational feedback regulation mechanism (25, 26). rRNA
276 synthesis is proposed to be regulated by the competition of RNA polymerase between
277 transcription of rRNA operons and that of other genes, with some studies suggesting that
278 mid-log growing cells might require almost all RNA polymerase dedicated to rRNA
279 synthesis (30–33). Thus, decreased metabolic gene expression could allow the cell to

280 shift its allocation of RNA polymerase towards rRNA synthesis and as a result, ribosomal
281 protein expression. Although we cannot exclude other mechanisms, we propose that the
282 reallocation of RNA polymerase molecules from metabolic genes to rRNA and ribosomal
283 protein genes is a common feature adopted by diverse UPEC to promote rapid growth
284 during UTI.

285 Three recent studies have attempted to characterize UPEC gene expression in
286 patients with UTIs (15, 27, 28). These studies focused on the importance of virulence
287 factor expression in specific strains and have demonstrated changes in gene expression
288 between infection and *in vitro* cultures. It should be noted that all of these studies, as well
289 as our own, were performed using bacterial RNA isolated from patient urine (that was
290 immediately stabilized upon collection). As a result, we cannot exclude the possibility
291 that gene expression of UPEC residing in the bladder may differ from UPEC isolated
292 from patient urine. However, the fact remains that 14 patients with different histories of
293 UTIs all harbored a population of actively dividing bacteria in a remarkably specific
294 metabolic state, which we have also recapitulated in a mouse model of infection.

295 These findings raise a number of interesting questions. Firstly, how is rapid
296 growth rate beneficial to UPEC and how does it influence the tempo and mode of
297 bacterial evolution, especially with regards to genomic integrity and the acquisition of
298 antibiotic resistance? Secondly, what are the external cues that launch the infection-
299 specific transcriptional response? While our study was not designed to identify infection-
300 specific metabolites, our regulatory network analysis suggests that multiple
301 environmental cues might reinforce the suppression of metabolic gene expression. We

302 suggest that identifying and targeting these environmental cues is a promising approach

303 to limit UPEC growth during UTI and gain the upper hand on this pathogen.

304

305 **Methods.**

306 **Study design.** Sample collection was previously described (15). Briefly, a total of 86
307 female participants, presenting with symptoms of lower UTI at the University of
308 Michigan Health Service Clinic in Ann Arbor, MI in 2012, were enrolled in this study.
309 The participants were compensated with a \$10 gift card to a popular retail store. Clean
310 catch midstream urine samples from participants were immediately stabilized with two
311 volumes of RNAProtect (Qiagen) to preserve the *in vivo* transcriptional profile. De-
312 identified patient samples were assigned unique sample numbers and used in this study.
313 Of the 86 participants, 38 were diagnosed with UPEC-associated UTIs (15). Of these, 19
314 samples gave us sufficient RNA yield of satisfactory quality. Five were used for a pilot
315 project (15), the remaining 14 were used in this study.

316

317 **Genome sequencing and assembly.** The genomic DNA from clinical strains of *E. coli*
318 were isolated with CTAB/phenol-chloroform based protocol. Library preparation and
319 sequencing were performed on PacBio RS system at University of Michigan Sequencing
320 Core. *De novo* assemblies were performed with [canu](#) *de novo* assembler (29) with all the
321 parameters set to default mode and correction phase turned on. We used
322 progressiveMauve (30) with default parameters to align draft assemblies of clinical
323 strains, and MG1655. Maximum likelihood tree was generated based on core SNPs
324 modeled with a general-time reversible (GTR) model in RAxML (31).

325

326 **Phylogroup analysis.** Phylogroups were assigned using an in-house script based on the
327 presence and absence of primer target sequences and typing scheme (32).

328

329 **Bacterial culture conditions.** Human urine was pooled from four age-matched healthy
330 female volunteers. Overnight cultures of clinical isolates were washed once in human
331 urine, then 250 μ l of overnight culture was added to 25 ml of filter-sterilized human urine
332 and cultured statically at 37C for 2 hours. Six milliliters of this culture were stabilized
333 with RNAProtect (Qiagen) and used for RNA purification.

334

335 **Antibiotic resistance profiling.** As described in (15), identity and antibiotic resistance
336 profiles of UPEC isolates were determined using a VITEK2 system (BioMerieux).

337

338 **RNA isolation and sequencing.** RNA isolation protocol was previously described (15).
339 Briefly, samples were treated with proteinase K and total RNA was isolated using Qiagen
340 RNAeasy minikit. Turbo DNase kit (Ambion) was used to remove contaminating DNA.
341 Bacterial content of patient samples was enriched using MICROBenrich kit (Ambion).
342 Library preparation and sequencing was performed by University of Michigan
343 sequencing core. Illumina ScriptSeq v2 library kit was used to construct rRNA-depleted
344 stranded cDNA libraries. These were sequenced using Illumina HiSeq2500 (single end,
345 50-bp read length).

346

347 **Characterization of virulence factors' gene expression.** We compiled a literature
348 search-based list of virulence factors belonging to different functional groups. Sequences
349 for each virulence factor gene were extracted from reference UPEC genomes (either
350 CFT073 or UTI89). Presence or absence of each virulence factor within clinical genomes

351 was determined using BLAST (with percent identity $\geq 80\%$ and percent coverage $\geq 90\%$,
352 e-value $\leq 10^{-6}$). Hierarchical clustering of strains based on presence or absence of
353 virulence factors was performed using Python's `scipy.cluster.hierarchy.linkage` function
354 with default parameters. Heatmaps of virulence factors' gene expression in urine and in
355 patients show normalized transcripts per million (TPMs) (same as for correlation analysis
356 and PCA, see below).

357

358 **RNAseq Data Processing.** A custom bioinformatics pipeline was used for the analysis
359 (github.com/ASintsova/rnaseq_analysis). Raw fastq files were processed with
360 Trimmomatic (33) to remove adapter sequences and analyzed with FastQC to assess
361 sequencing quality. Mapping was done with bowtie2 aligner (34) using default
362 parameters. Alignment details can be found in **Table S1**. Read counts were calculated
363 using HTseq `htseq-count` (union mode) (35).

364

365 **Quality control.** Since some of our clinical samples yielded lower numbers of bacterial
366 reads than desired (**Table S1**), we performed a comprehensive quality assurance to
367 determine if the sequencing depth of our clinical samples was sufficient for our analysis
368 (see Saturation curves and Gene expression ranges analysis below, **Fig. S4**, **Fig. S5**).
369 Overall, all patient samples except for HM66 passed quality control (see gene expression
370 ranges analysis, **Fig. S5**). While we elected to keep all of the strains in our subsequent
371 analysis, this observation explains why the patient HM66 sample appears as an outlier in
372 **Fig. 2.**

373

374 **Saturation curves.** We created saturation curves for each of our sequencing files to
375 assess whether we have sufficient sequencing depth for downstream analysis. Each
376 sequencing file was subsampled to various degrees and number of genes detected in those
377 subsamples (y-axis) was graphed against number of reads in the subsample (x-axis). As
378 expected, all of the *in vitro* samples reached saturation (**Fig. S4**, blue lines).
379 Unfortunately, 6 out of our 14 samples did not reach saturation, which warranted us to
380 investigate further (see Gene expression ranges analysis) **Fig S4**, red lines).

381 **Core genome identification.** Core genome for 14 clinical isolates and MG1655 was
382 determined using `get_homologues` (36). We explored multiple parameter values for our
383 analysis and their effect on final core genome, in the end we set the cut off of 90% of
384 sequence identity and 50% sequence coverage (similar results were obtained when using
385 different cutoffs). The intersection of three algorithms employed by `get_homologues`
386 contained 2653 gene clusters.

387

388 **Gene expression ranges analysis.** Due to low sequencing depth of 6 of our isolates, we
389 were worried we would not be able to detect genes expressed at low levels in those
390 samples. To evaluate whether we were losing information about low-level expression, we
391 compared a number of genes in the core genome that were expressed at different levels
392 (1000 TPMS, 100 TPMS, 10 TPMS and 1 TPM) between clinical samples that reached
393 saturation (**Fig. S5A**) and those that did not (**Fig. S5B**). Only one of the clinical samples
394 (HM66) seemed to lack genes expressed in the range of 1-10 TPMs. Thus, we conclude
395 that all but one sample (HM66) had sufficient coverage for downstream analysis.

396

397 **Pearson correlation coefficient calculation and PCA analysis.** For PCA and
398 correlation analysis, transcript per million (TPM) was calculated for each gene, TPM
399 distribution was then normalized using inverse rank transformation. Pearson correlation
400 and PCA was performed using python Python sklearn library. Jupyter notebooks used to
401 generate the figures are available at https://github.com/ASintsova/HUTI_RNAseq

402

403 **Differential expression analysis.** Differential expression analysis was performed using
404 DESeq2 R package (37). Genes with log2 fold change of greater than 2 or less than -2
405 and adjusted *p* value (Benjamini-Hochberg adjustment) of less than 0.05 were considered
406 to be differentially expressed. DESeq2 normalized counts were used to generate **Fig. 3**
407 and **6**. Pathway analysis was performed using R package topGO (38).

408

409 **RNA sequencing of HM43 from mouse model of UTI.** Forty CBA/J mice were infected
410 using the ascending model of UTI as previously described (39, 40). Briefly, 40 six-week-
411 old female mice were transurethrally inoculated with 10^8 CFU of UPEC isolate HM43.
412 48 hours post infection urine was collected from each mouse directly into bacterial
413 RNAprotect (Qiagen). All collected urine was pooled together and pelleted, and
414 immediately placed in the -80°C freezer. This collection was repeated every 45 minutes
415 five more times, resulting in six collected pellets consisting of bacteria and eukaryotic
416 cells.

417 For *in vitro* controls, UPEC strain HM43 was cultured overnight in LB. The next
418 morning, the culture was spun down, and the pellet washed twice with PBS. LB or
419 pooled human urine was then inoculated with the washed bacteria at a ratio of 1:100 and

420 incubated with shaking at 37°C for 3 hours. Cultures were then treated with bacterial
421 RNAProtect (Qiagen), pellets collected and stored at -80°C.

422 All the pellets were treated with both lysozyme and proteinase K, and then total
423 RNA was extracted using RNAeasy kit (Qiagen). Genomic DNA was removed using the
424 Turbo DNA free kit (ThermoFisher). Eukaryotic mRNA was depleted using dynabeads
425 covalently linked with oligo dT (ThermoFisher). The supernatant was collected from this
426 treatment, and the RNA was concentrated and re-purified using RNA Clean &
427 Concentrator kit (Zymo). Library preparation and sequencing was done as described
428 above.

429

430 **Estimation of HM43 doubling time.** For both LB and urine OD curves were performed
431 using Bioscreen-C Automated Growth Curve Analysis System (Growth Curves USA)
432 8 separate times. For each time point, the mean values of the 8 replicates were used for
433 doubling time estimation. The equation bellow was used to estimate doubling time during
434 logarithmic growth in LB or urine, where DT is doubling time, C2 is final OD, C1 is
435 initial OD, and Δt is time elapsed between when C2 and C1 were taken.

$$DT = \frac{\Delta t * \log 2}{\log(C2) - \log(C1)}$$

436 DT was calculated for every two measurements taken between 30 and 180 minutes and
437 mean of these values is reported.

438

439 **Regulon analysis.** Regulon gene sets were extracted from RegulonDB 9.4 (41) using
440 custom Python scripts (available https://github.com/ASintsova/HUTI_RNAseq). Gene set
441 enrichment analysis was performed using Python GSEAPY library.

442

443 **Data access.** Jupyter notebooks as well as count data used to generate all the figures in

444 this paper are available on github: https://github.com/ASintsova/HUTI_RNAseq

445

446

447 **References.**

448

449 1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract
450 infections: epidemiology, mechanisms of infection and treatment options. *Nat Rev
451 Microbiol* 13(5):269–284.

452 2. Foxman B (2010) The epidemiology of urinary tract infection. *Nat Rev Urol*
453 7(12):653–660.

454 3. Albert X, et al. (2004) Antibiotics for preventing recurrent urinary tract infection
455 in non-pregnant women. *Cochrane Database Syst Rev* (3):CD001209.

456 4. Nickel JC (2005) Practical management of recurrent urinary tract infections in
457 premenopausal women. *Rev Urol* 7(1):11–17.

458 5. Sihra N, Goodman A, Zakri R, Sahai A, Malde S (2018) Nonantibiotic prevention
459 and management of recurrent urinary tract infection. *Nat Rev Urol*. doi:10.1038/s41585-
460 018-0106-x.

461 6. Alteri CJ, Mobley HLT (2015) Metabolism and Fitness of Urinary Tract
462 Pathogens. *Microbiol Spectr* 3(3). doi:10.1128/microbiolspec.MBP-0016-2015.

463 7. Alteri CJ, Smith SN, Mobley HLT (2009) Fitness of *Escherichia coli* during
464 urinary tract infection requires gluconeogenesis and the TCA cycle. *PLoS Pathog*
465 5(5):e1000448.

466 8. Sivick KE, Mobley HLT (2010) Waging war against uropathogenic *Escherichia*
467 *coli*: winning back the urinary tract. *Infect Immun* 78(2):568–585.

468 9. Subashchandrabose S, Mobley HLT (2015) Virulence and Fitness Determinants
469 of Uropathogenic *Escherichia coli*. *Microbiol Spectr* 3(4).

470 doi:10.1128/microbiolspec.UTI-0015-2012.

471 10. Johnson JR, Delavari P, Kuskowski M, Stell AL (2001) Phylogenetic distribution
472 of extraintestinal virulence-associated traits in *Escherichia coli*. *J Infect Dis* 183(1):78–
473 88.

474 11. Johnson JR, Stell AL (2000) Extended virulence genotypes of *Escherichia coli*
475 strains from patients with urosepsis in relation to phylogeny and host compromise. *J*
476 *Infect Dis* 181(1):261–272.

477 12. Köhler C-D, Dobrindt U (2011) What defines extraintestinal pathogenic
478 *Escherichia coli*? *Int J Med Microbiol IJMM* 301(8):642–647.

479 13. Schreiber HL, et al. (2017) Bacterial virulence phenotypes of *Escherichia coli* and
480 host susceptibility determine risk for urinary tract infections. *Sci Transl Med* 9(382).
481 doi:10.1126/scitranslmed.aaf1283.

482 14. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J (2013) Distribution of
483 uropathogenic virulence genes in *Escherichia coli* isolated from patients with urinary
484 tract infection. *Int J Infect Dis IJID Off Publ Int Soc Infect Dis* 17(6):e450-453.

485 15. Subashchandrabose S, et al. (2014) Host-specific induction of *Escherichia coli*
486 fitness genes during human urinary tract infection. *Proc Natl Acad Sci U S A*
487 111(51):18327–18332.

488 16. Basan M, et al. (2015) Overflow metabolism in *Escherichia coli* results from
489 efficient proteome allocation. *Nature* 528(7580):99–104.

490 17. Basan M (2018) Resource allocation and metabolism: the search for governing
491 principles. *Curr Opin Microbiol* 45:77–83.

492 18. Molenaar D, van Berlo R, de Ridder D, Teusink B (2009) Shifts in growth
493 strategies reflect tradeoffs in cellular economics. *Mol Syst Biol* 5:323.

494 19. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence
495 of cell growth and gene expression: origins and consequences. *Science* 330(6007):1099–
496 1102.

497 20. Scott M, Hwa T (2011) Bacterial growth laws and their applications. *Curr Opin*
498 *Biotechnol* 22(4):559–565.

499 21. You C, et al. (2013) Coordination of bacterial proteome with metabolism by
500 cyclic AMP signalling. *Nature* 500(7462):301–306.

501 22. Forsyth VS, et al. (2018) Rapid Growth of Uropathogenic Escherichia coli during
502 Human Urinary Tract Infection. *mBio* 9(2). doi:10.1128/mBio.00186-18.

503 23. Plank LD, Harvey JD (1979) Generation time statistics of Escherichia coli B
504 measured by synchronous culture techniques. *J Gen Microbiol* 115(1):69–77.

505 24. Burnham P, et al. (2018) Urinary cell-free DNA is a versatile analyte for
506 monitoring infections of the urinary tract. *Nat Commun* 9(1):2412.

507 25. Nomura M, Gourse R, Baughman G (1984) Regulation of the synthesis of
508 ribosomes and ribosomal components. *Annu Rev Biochem* 53:75–117.

509 26. Jin DJ, Cagliero C, Zhou YN (2012) Growth rate regulation in Escherichia coli.
510 *FEMS Microbiol Rev* 36(2):269–287.

511 27. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT (2010) Escherichia
512 coli global gene expression in urine from women with urinary tract infection. *PLoS*
513 *Pathog* 6(11):e1001187.

514 28. Bielecki P, et al. (2014) In vivo mRNA profiling of uropathogenic Escherichia
515 coli from diverse phylogroups reveals common and group-specific gene expression
516 profiles. *mBio* 5(4):e01075-1014.

517 29. Koren S, et al. (2017) Canu: scalable and accurate long-read assembly via
518 adaptive k-mer weighting and repeat separation. *Genome Res* 27(5):722–736.

519 30. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome
520 alignment with gene gain, loss and rearrangement. *PLoS One* 5(6):e11147.

521 31. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-
522 analysis of large phylogenies. *Bioinforma Oxf Engl* 30(9):1312–1313.

523 32. Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont
524 Escherichia coli phylo-typing method revisited: improvement of specificity and detection
525 of new phylo-groups. *Environ Microbiol Rep* 5(1):58–65.

526 33. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for
527 Illumina sequence data. *Bioinforma Oxf Engl* 30(15):2114–2120.

528 34. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. *Nat
529 Methods* 9:357.

530 35. Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with
531 high-throughput sequencing data. *Bioinforma Oxf Engl* 31(2):166–169.

532 36. Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile
533 software package for scalable and robust microbial pangenome analysis. *Appl Environ
534 Microbiol* 79(24):7696–7701.

535 37. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and
536 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15(12):550.

537 38. Alexa A, Rahnenfuhrer J (2018) topGO: Enrichment Analysis for Gene Ontology.
538 R package version 2.34.0.

539 39. Hagberg L, et al. (1983) Ascending, unobstructed urinary tract infection in mice

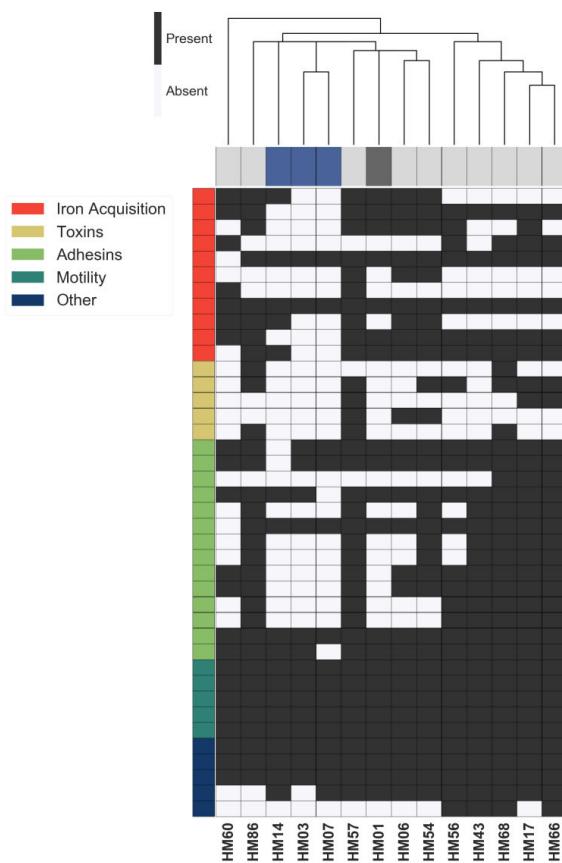
540 caused by pyelonephritogenic *Escherichia coli* of human origin. *Infect Immun* 40(1):273–

541 283.

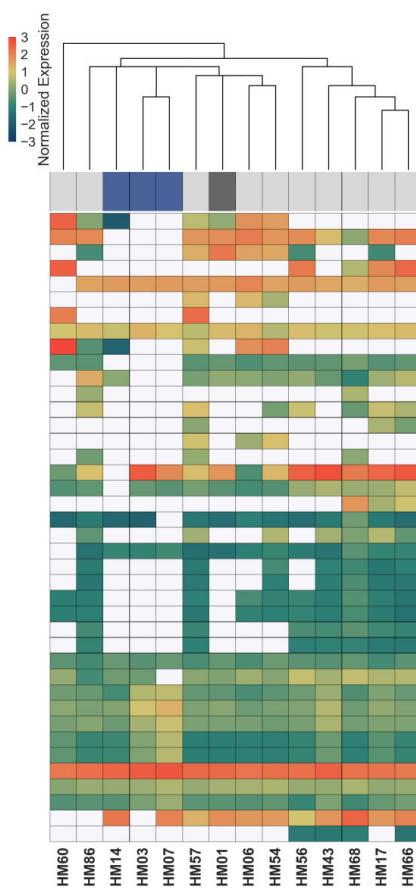
542 40. Johnson DE, et al. (1998) Comparison of *Escherichia coli* strains recovered from

543 human cystitis and pyelonephritis infections in transurethrally challenged mice. *Infect*

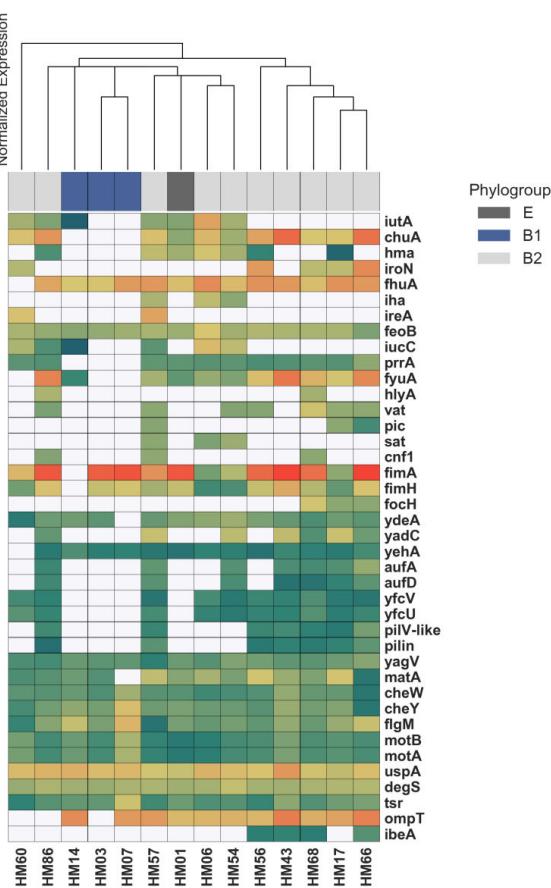
544 *Immun* 66(7):3059–3065.

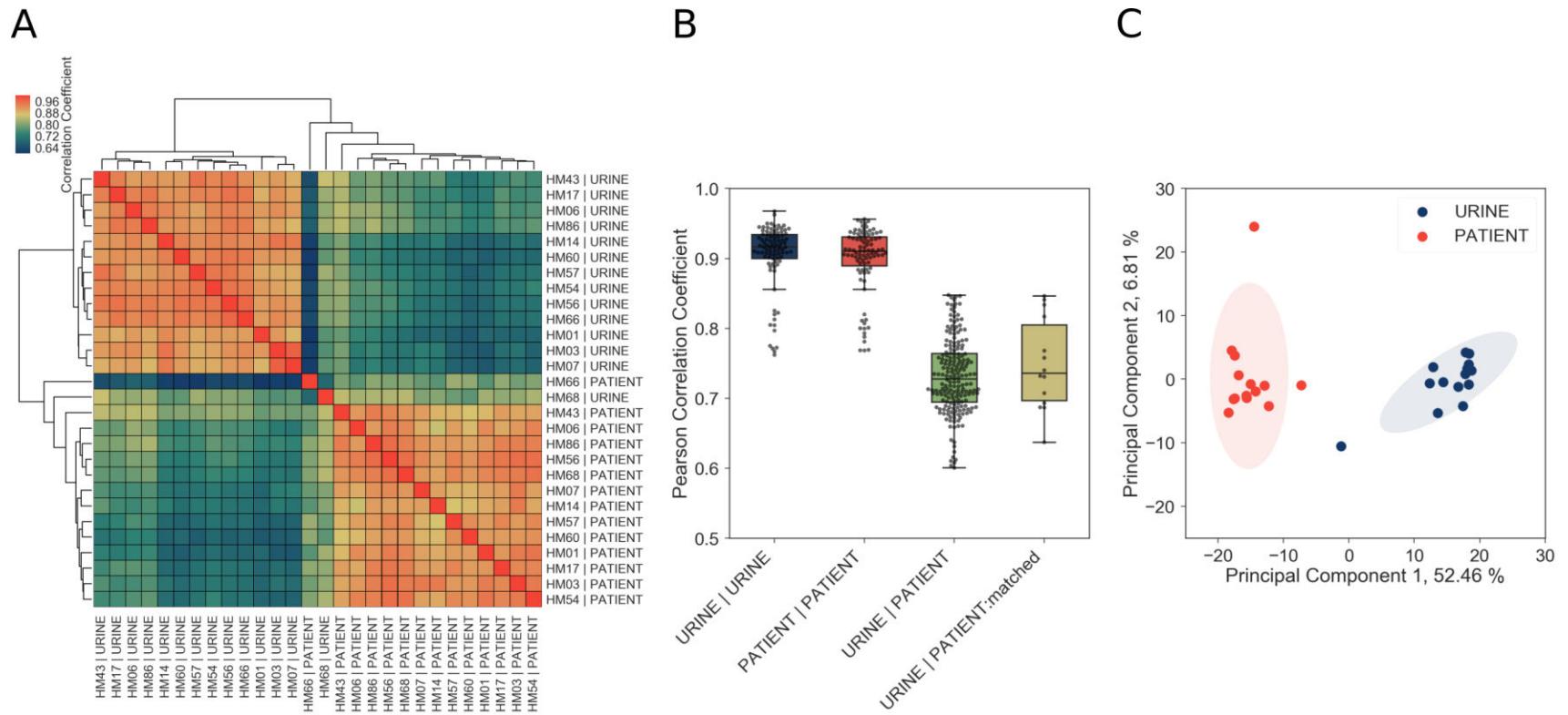

545 41. Gama-Castro S, et al. (2016) RegulonDB version 9.0: high-level integration of

546 gene regulation, coexpression, motif clustering and beyond. *Nucleic Acids Res*


547 44(D1):D133-143.

548


A


B

C

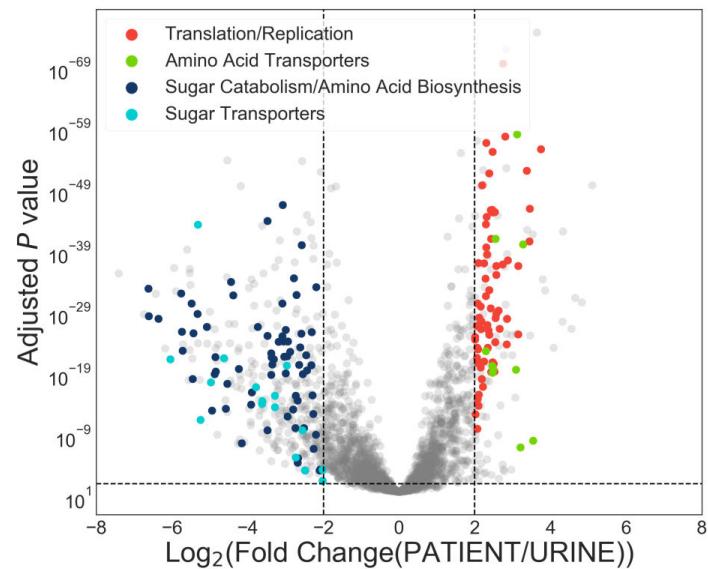


Fig. 1. Clinical UPEC isolates carry a highly variable set of virulence factors. (A) Clinical UPEC isolates were examined for presence of 40 virulence factors. Virulence factors were identified based on homology using BLAST searches ($\geq 80\%$ identity, $\geq 90\%$ coverage, average % identity indicated next to gene name). The heatmap shows presence (black) or absence (white) of virulence factors across 14 UPEC strains. Hierarchical clustering based on presence/absence of virulence factors shows separate clustering of B1 isolates. (B) Normalized gene expression of the 40 virulence factors in UPEC strains during *in vitro* urine culture. (C) Normalized gene expression of the 40 virulence factors in UPEC strains in patients.

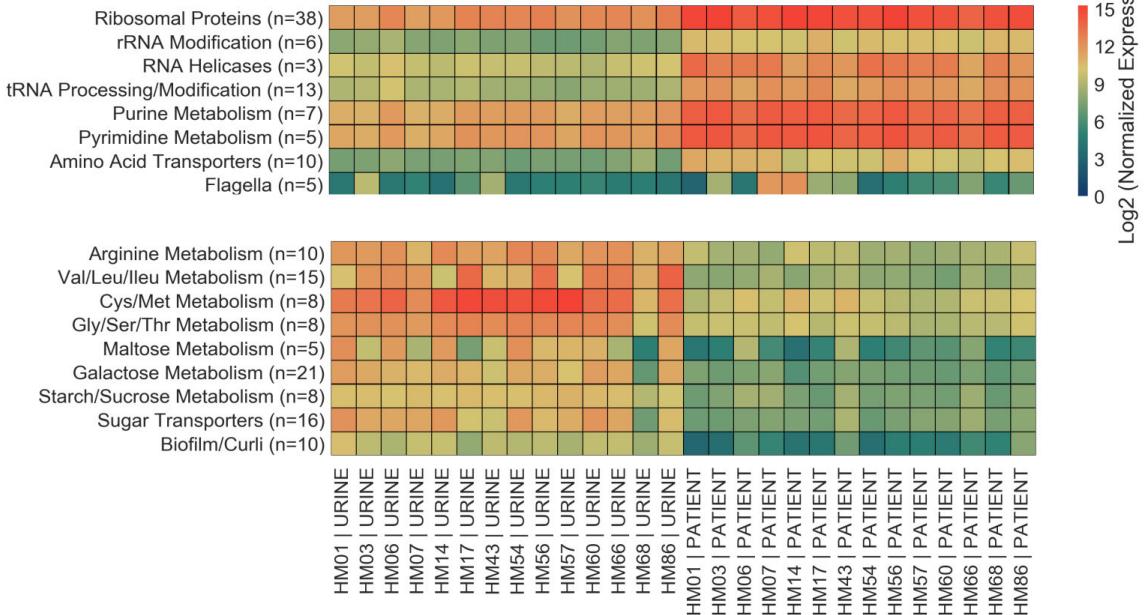
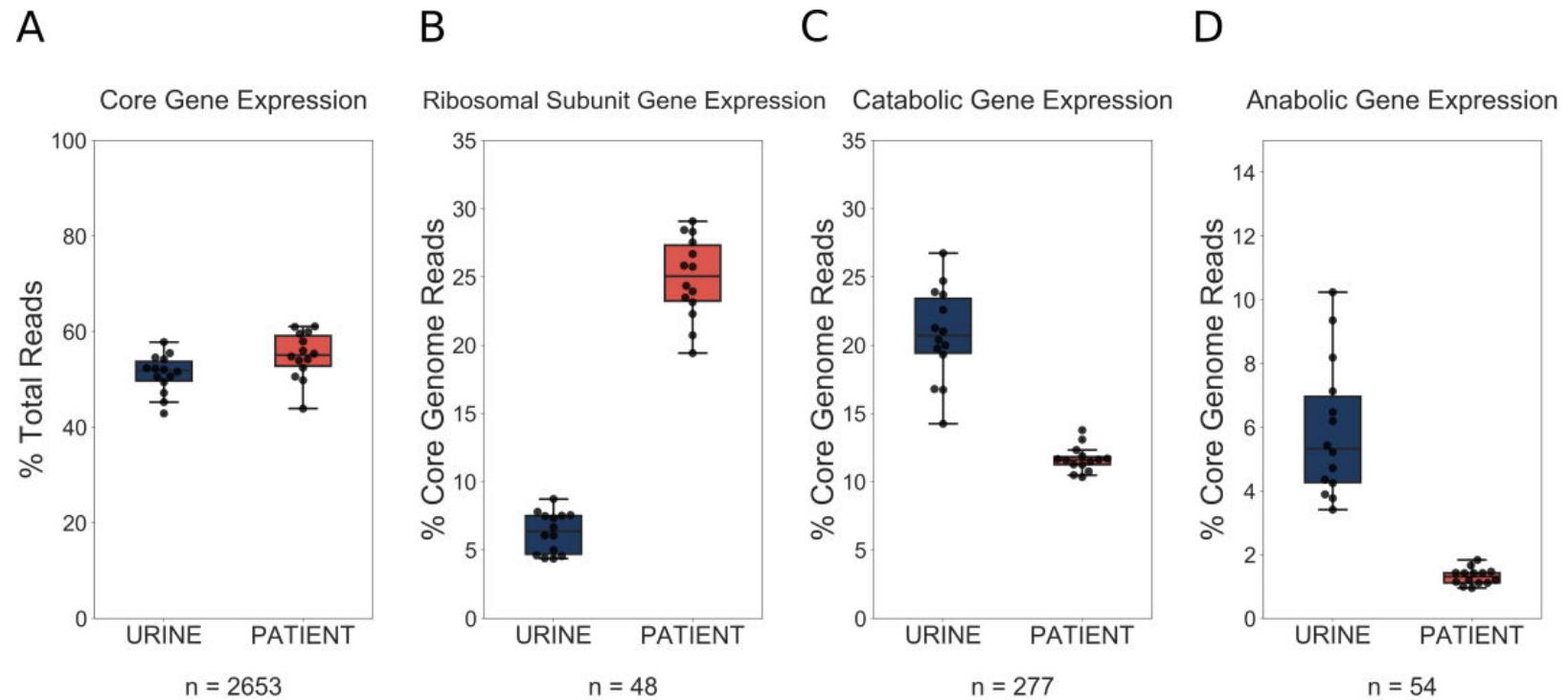
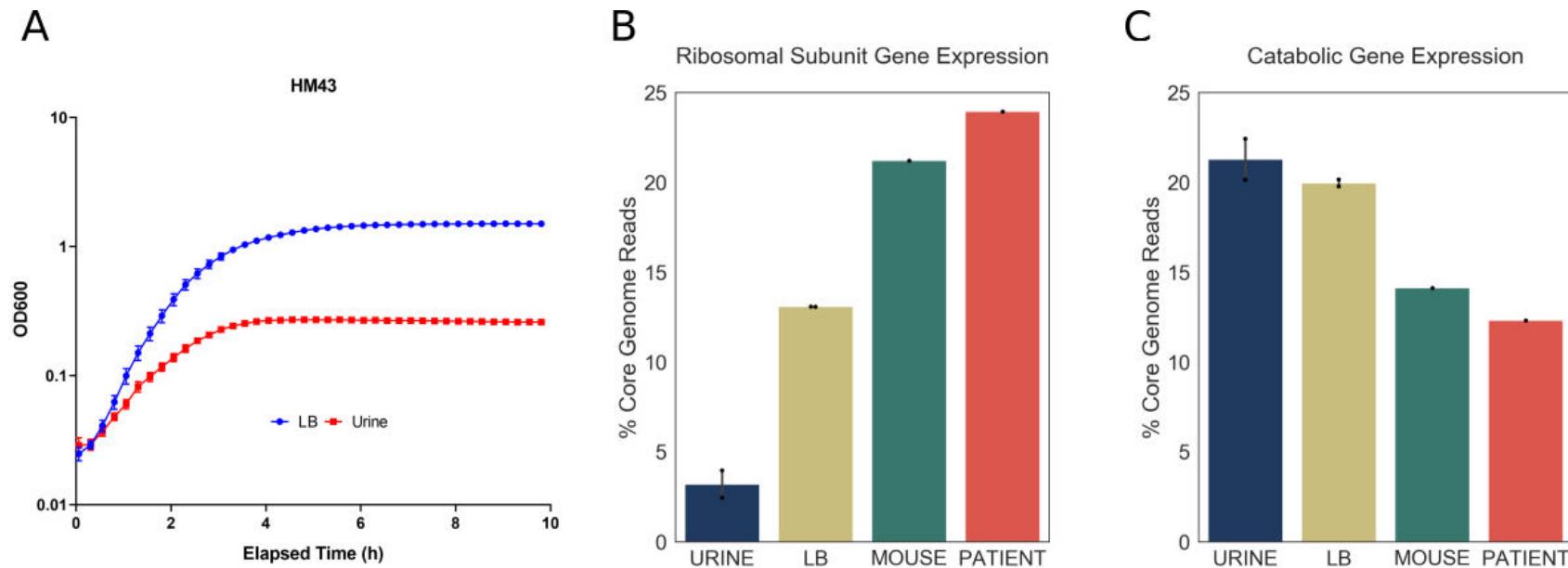


Fig. 2. Core genome expression in patients is highly correlated. (A) Correlations among *in vitro* and patient samples measured by Pearson correlation coefficient of normalized gene expression plotted according to hierarchical clustering of samples. (B) Pearson correlation coefficient among all samples cultured *in vitro* (URINE | URINE, median = 0.92), among all samples isolated from patients (PATIENT | PATIENT, median = 0.91), between samples cultured in urine and samples isolated from patients (URINE | PATIENT, median = 0.73), and between matching urine/patient samples (ex. HM14 | URINE vs HM14 | PATIENT), (URINE | PATIENT:matched, median = 0.74). (C) Principal component analysis of normalized gene expression of 14 clinical isolates in patients and *in vitro* urine cultures shows distinct clustering of *in vitro* and patient isolates.


A


B

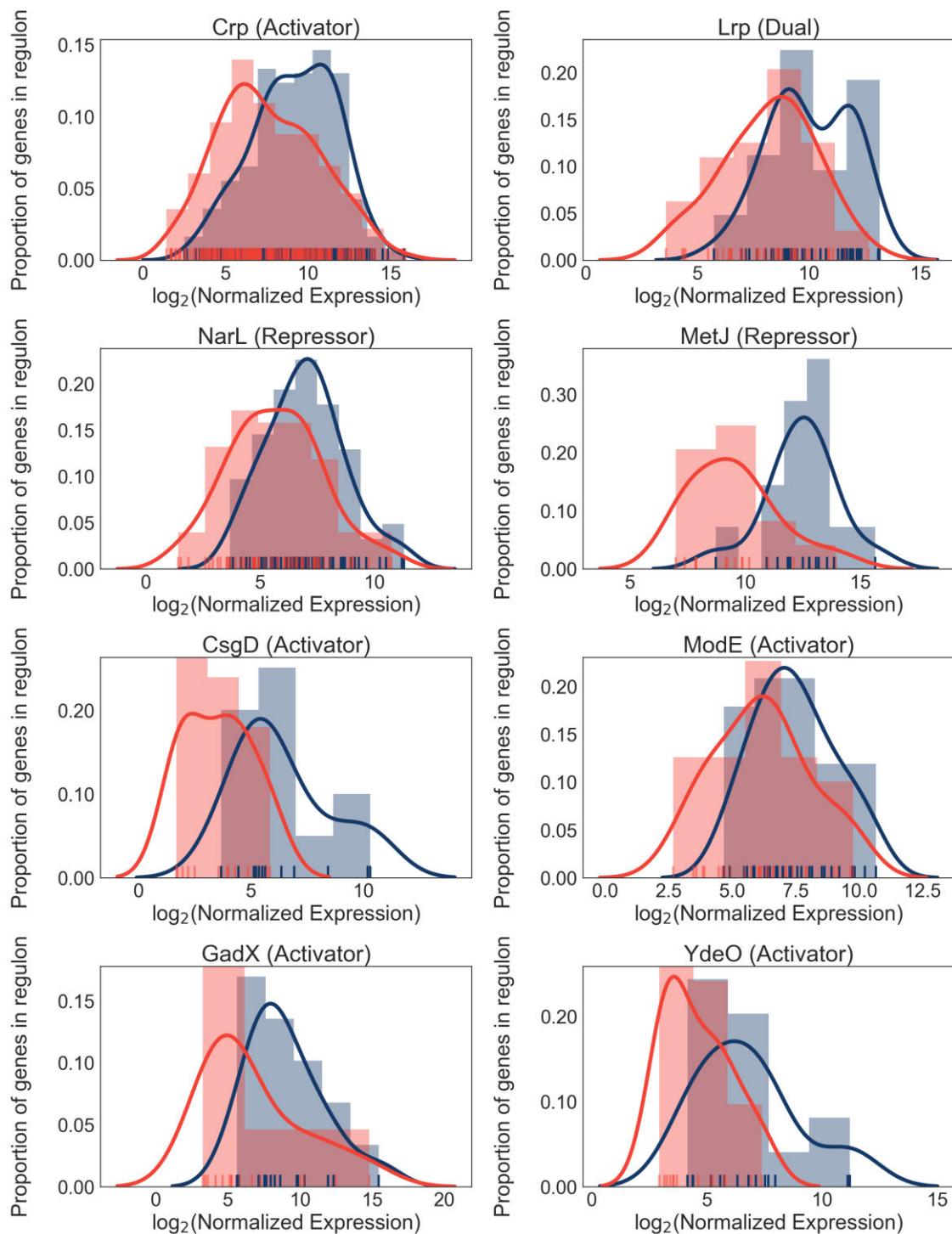

Fig. 3. Patient-associated transcriptional signature is consistent with rapid bacterial growth. (A) The DESeq2 R package was used to compare *in vitro* urine cultures gene expression to that in patients. Each UPEC strain was considered an independent replicate ($n = 14$). Genes were considered up-regulated (down-regulated) if log₂ fold change in expression was higher (lower) than 2 (vertical lines), and P value < 0.05 (horizontal line). Using these cutoffs, we identified 149 upregulated genes, and 343 downregulated genes. GO/pathway analysis showed that large proportion of these genes belonged to one of the 4 functional categories (see legend) (B) Mean normalized expression for genes belonging to differentially expressed functional categories/pathways. Number of up(down)-regulated genes belonging to each category is indicated next to the category name.

Fig. 4. UPEC optimize growth potential via resource reallocation during UTI. (A) Percentage of reads that aligned to the core genome (2653 genes) out of total mapped reads. (B) Percentage of core genome reads that mapped to R-proteins (ribosomal subunit proteins, 48 genes). (C) Percentage of core genome reads that mapped to catabolic genes (defined as genes regulated by Crp and present in the core genome (277 genes). (D) Percentage of core genome reads that mapped to amino acid biosynthesis genes (54 genes)

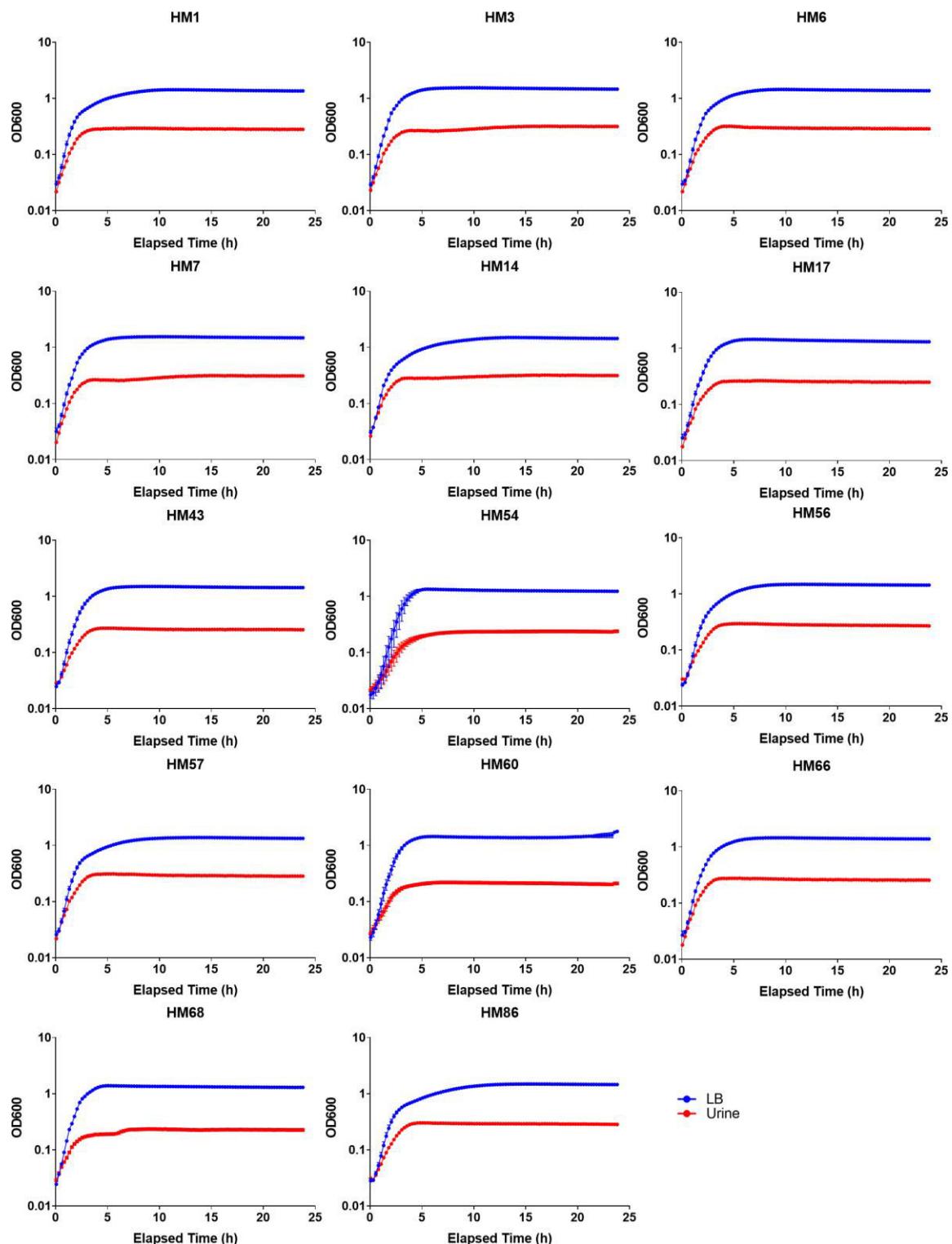


Fig. 5. Increased expression of ribosomal subunit transcripts is a host specific response. (A) OD curve for HM43 strain cultured in LB and filter-sterilized urine. (B) Percentage of HM43 core genome reads that mapped to ribosomal subunit proteins under different conditions (URINE: *in vitro* culture in filter-sterilized urine, LB: *in vitro* culture in LB, MOUSE: mice with UTI, PATIENT: human UTI. (C) Percentage of HM43 core genome reads that mapped to catabolic genes under different conditions.

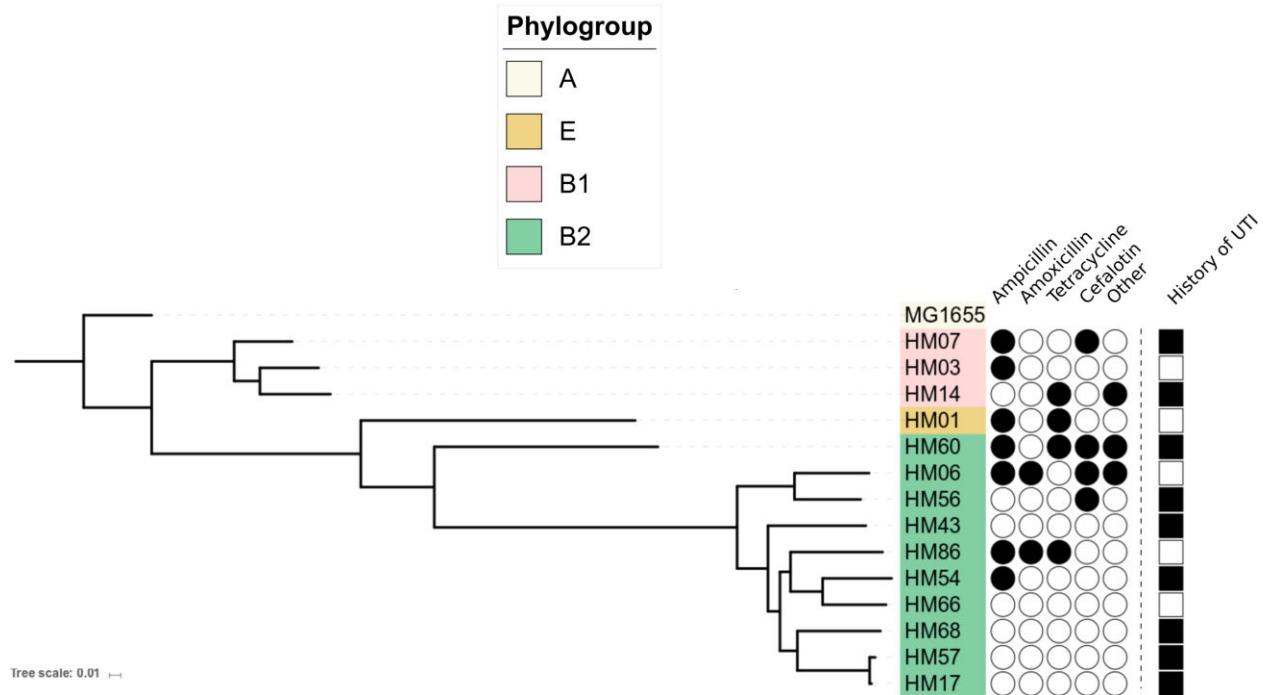


Fig. 6. Differential regulon expression suggests role for multiple regulators in resource reallocation. Regulon expression for 8 out of 22 regulons enriched for genes downregulated in the patients. Expression of each gene in the regulon during *in vitro* culture (blue) or during UTI (red) is shown along the x-axis. Histograms show proportion of genes in the regulon expressed at any given level.

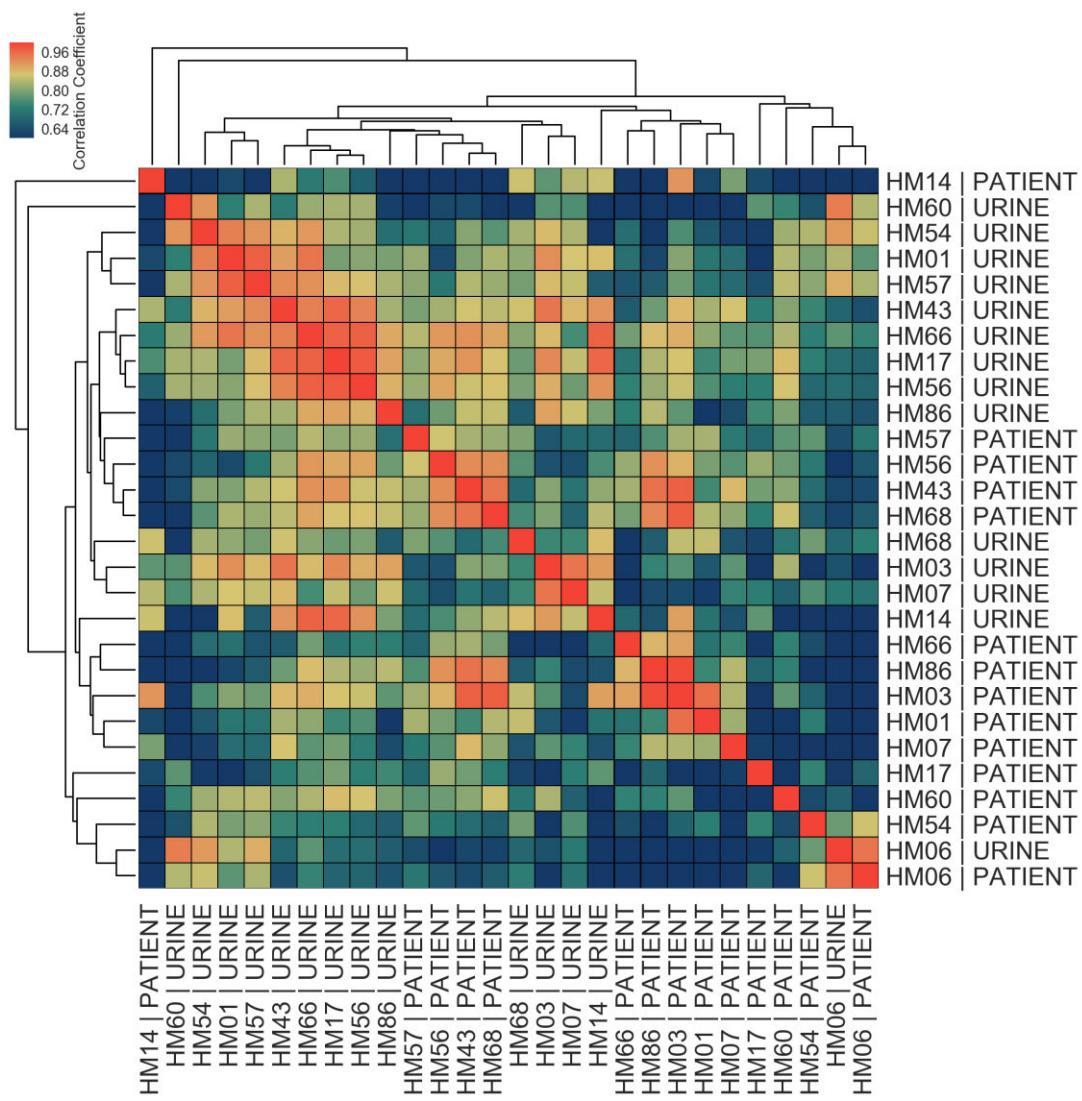

Supplementary Material.

Figure S1. OD curves for 14 clinical UPEC strains cultured in LB or filter-sterilized urine.

Figure S2. ML Phylogenetic tree reconstruction of 14 clinical UPEC strains isolated in this study using core SNPs. Antibiotic resistance profiles are indicated by filled in black circles (as determined by VITEK2 system (BioMerieux).) Patients with recurrent UTIs are indicated by filled in black square.

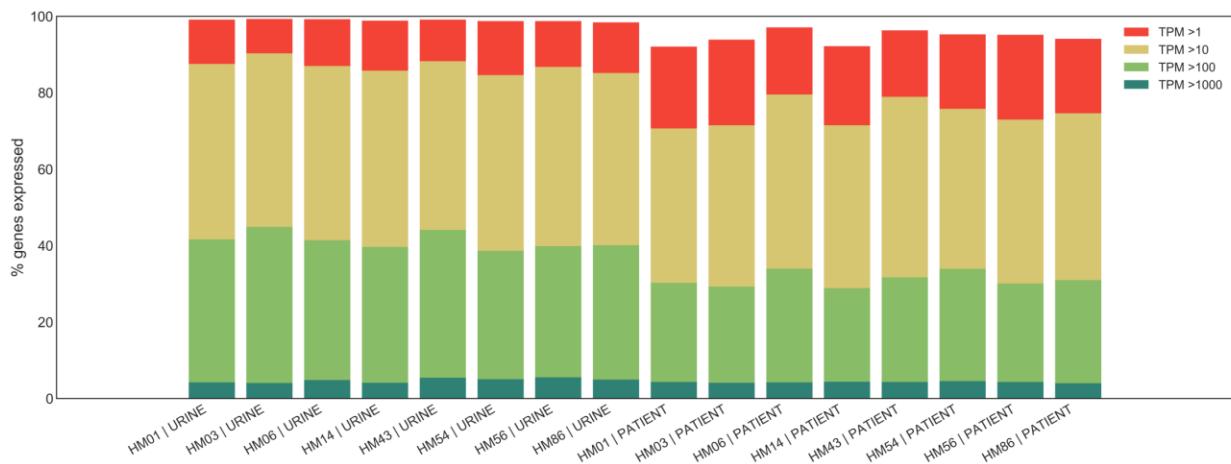


Fig. S3. Correlations among *in vitro* and patient samples measured by Pearson correlation coefficient of normalized gene expression of 40 virulence factors plotted according to hierarchical clustering of samples.

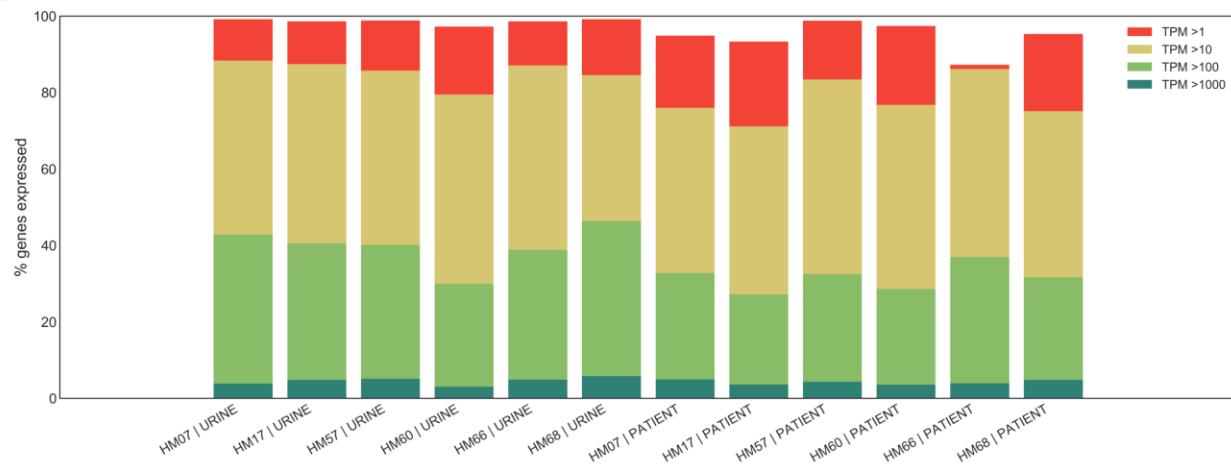
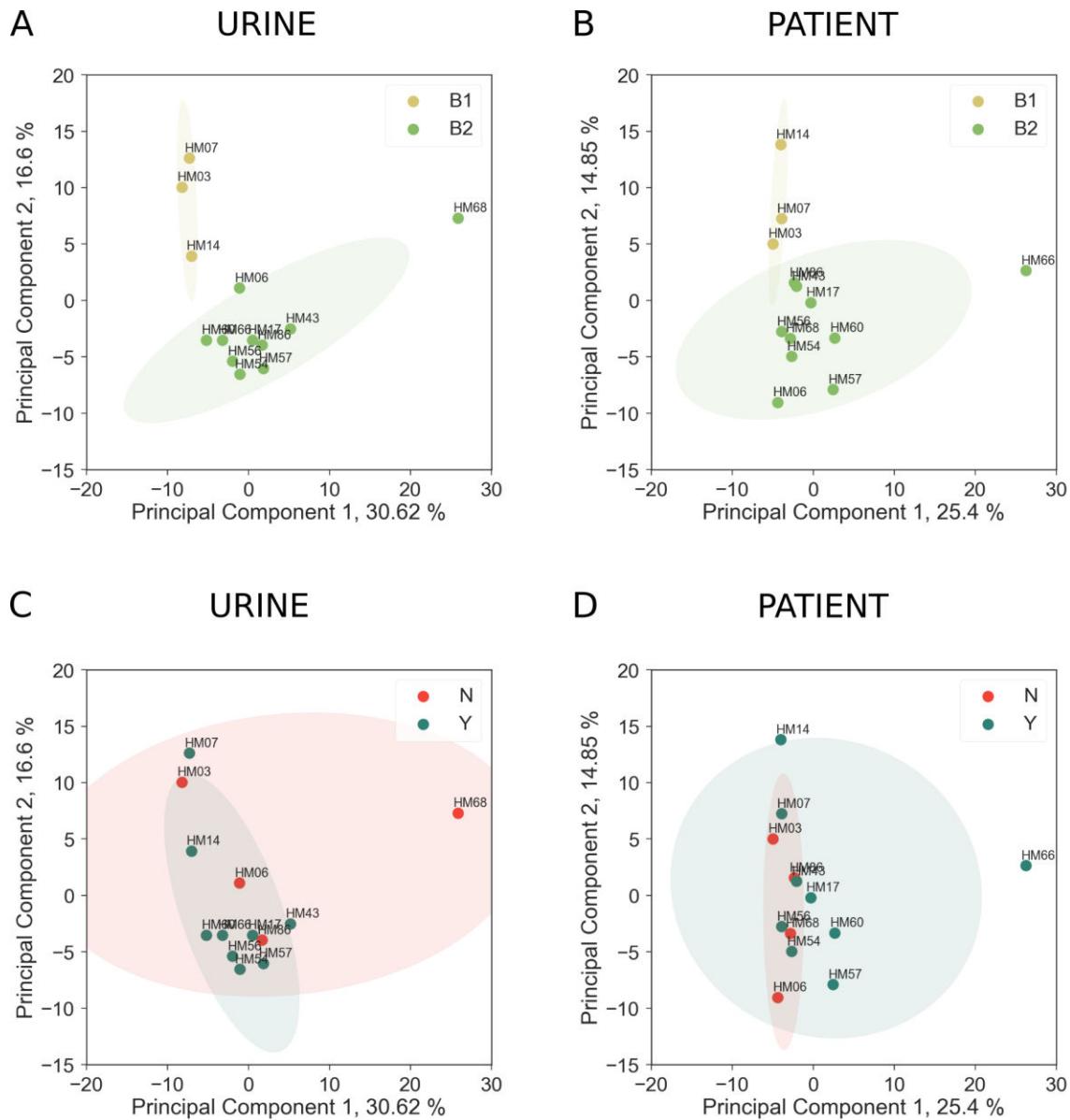


Figure S4. Saturation curves. Number of mapped reads was plotted against number of expressed genes detected for each sample (*in vitro* samples are shown in blue, patient samples are shown in red). Vertical line shows 3 million reads cut off at which samples appear to reach saturation.


A

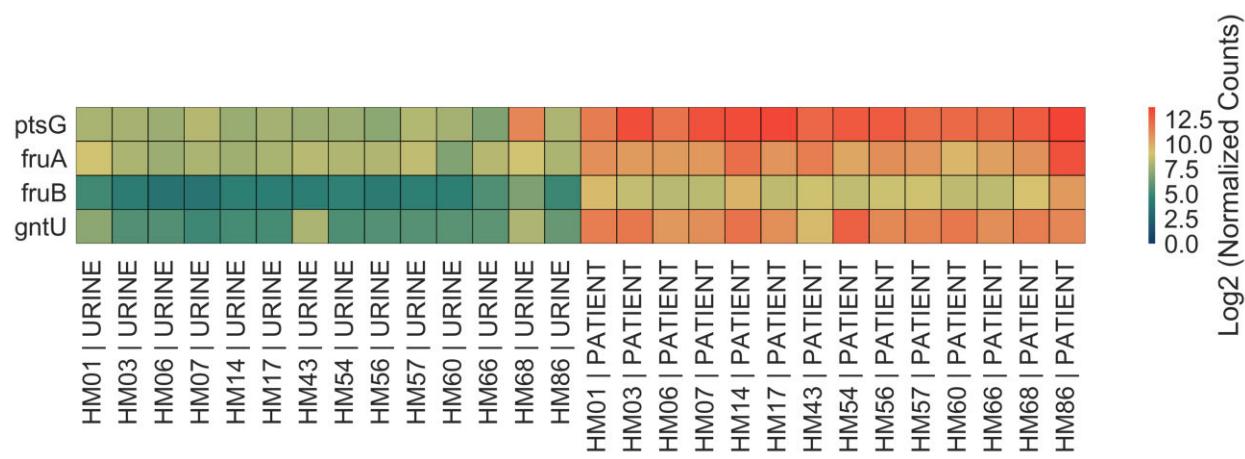

B

Figure S5. Expression ranges of core genome genes. (A) Percentage of genes in the core genome that are expressed at a given level (>1 TPM, >10 TPMs, > 100 TPMs, > 1000 TPMs, where TPMs are transcripts per million) is shown for patient samples that reached saturation (see Supplementary Figure 2) and corresponding *in vitro* samples. (B) Percentage of genes in the core genome that are expressed at a given level (>1 TPM, >10 TPMs, > 100 TPMs, > 1000 TPMs) is shown for patient samples that did not reach saturation and corresponding *in vitro* samples.

Figure S6. Effect of phylogenetic group on core genome expression. (A) and (C) Clustering of UPEC strains cultured in filter-sterilized urine based on PCA analysis of core genome gene expression. (B) and (D) Clustering of UPEC isolated from patients based on PCA analysis of core genome gene expression. Samples in (A) and (B) are colored based on their phylogroup designation. Samples in (C) and (D) are colored based on whether the strain was isolated from a patient with recurrent UTI (Y) or without recurrent UTI (N).

Figure S7. Gene expression of four sugar transporters upregulated in UTI patients.

Heatmap shows Log2 of normalized gene expression of *ptsG*, *fruA*, *fruB* and *gntU* for each *in vitro* and patient sample.

Table S1. Summary of alignment statistics.

Sample:	Total Reads:	Mapped Reads:	% Mapped:
HM01 URINE	17288419	16480326	95.3
HM01 PATIENT	18496607	3717040	20.1
HM03 URINE	21354719	20927541	98
HM03 PATIENT	16544044	8059076	48.7
HM06 URINE	23359847	22847374	97.8
HM06 PATIENT	57993519	4709092	8.1
HM07 URINE	21312224	20980473	98.4
HM07 PATIENT	70804688	2097350	3
HM14 URINE	21927302	21533817	98.2
HM14 PATIENT	15944762	12968218	81.3
HM17 URINE	19790215	19360294	97.8
HM17 PATIENT	23874585	1842583	7.7
HM43 URINE	18541484	18239826	98.4
HM43 PATIENT	58306859	8138559	14
HM54 URINE	21612581	21162544	97.9
HM54 PATIENT	18000843	6301998	35
HM56 URINE	17494135	17130847	97.9
HM56 PATIENT	25408755	14935948	58.8
HM57 URINE	19253078	18966748	98.5
HM57 PATIENT	105629816	926795	0.9
HM60 URINE	15898045	15651916	98.5
HM60 PATIENT	76149837	764255	1
HM66 URINE	17184018	16736066	97.4
HM66 PATIENT	25954183	79859	0.3
HM68 URINE	15841639	15562711	98.2
HM68 PATIENT	65413931	2401089	3.7
HM86 URINE	15019669	14606346	97.2
HM86 PATIENT	10667404	6413794	60.1

Supplementary Table 2: GO modules differentially expressed in UTI patients.

GO ID	Annotated	Significant	Expected	P value	Term
GO:0006518	89	24	16.63	0.03134	peptide metabolic process
GO:0016052	76	36	14.2	0.00403	carbohydrate catabolic process
GO:0044262	75	29	14.01	0.0022	cellular carbohydrate metabolic process
GO:0015980	70	20	13.08	0.02632	energy derivation by oxidation of organic compounds
GO:0043043	69	19	12.89	0.04306	peptide biosynthetic process
GO:0046395	65	25	12.14	0.00556	carboxylic acid catabolic process
GO:0006412	63	18	11.77	0.03421	translation
GO:0008643	55	30	10.28	0.02488	carbohydrate transport
GO:1903825	39	12	7.29	0.04583	organic acid transmembrane transport
GO:0008033	38	13	7.1	0.0159	tRNA processing
GO:1905039	38	12	7.1	0.03786	carboxylic acid transmembrane transport
GO:0046365	38	21	7.1	0.04177	monosaccharide catabolic process
GO:0034219	37	20	6.91	0.0005	carbohydrate transmembrane transport
GO:0042710	35	11	6.54	0.04746	biofilm formation
GO:0044010	34	11	6.35	0.03879	single-species biofilm formation
GO:0006400	34	11	6.35	0.03879	tRNA modification
GO:0072329	32	15	5.98	0.02795	monocarboxylic acid catabolic process
GO:0009401	30	11	5.6	0.01501	phosphoenolpyruvate-dependent sugar phosphotransferase system
GO:0010608	29	10	5.42	0.03121	posttranscriptional regulation of gene expression
GO:0034248	26	9	4.86	0.03925	regulation of cellular amide metabolic process
GO:0006417	26	9	4.86	0.03925	regulation of translation
GO:0015749	24	13	4.48	0.03338	monosaccharide transmembrane transport
GO:0051248	23	9	4.3	0.01728	negative regulation of protein metabolic process
GO:0044275	22	11	4.11	0.04263	cellular carbohydrate catabolic process
GO:0032269	22	8	4.11	0.03829	negative regulation of cellular protein metabolic process
GO:0015807	19	7	3.55	0.04819	L-amino acid transport
GO:0017148	18	8	3.36	0.01044	negative regulation of translation
GO:0034249	18	8	3.36	0.01044	negative regulation of cellular amide metabolic process
GO:1902475	17	7	3.18	0.02607	L-alpha-amino acid transmembrane transport
GO:0009409	14	8	2.62	0.00144	response to cold
GO:0042255	14	9	2.62	0.00021	ribosome assembly
GO:0019321	14	8	2.62	0.03705	pentose metabolic process
GO:0046835	13	6	2.43	0.02143	carbohydrate phosphorylation
GO:0006526	12	8	2.24	0.00034	arginine biosynthetic process
GO:0042542	10	5	1.87	0.02449	response to hydrogen peroxide
GO:0019323	10	7	1.87	0.02539	pentose catabolic process

Table S3: GSEA results¹.

	Function	Expression (higher in)	Regulon Size	Matched Size	NES	FDR
Lrp	Repressor	Urine	85	27	2.29079978	0
NarL	Repressor	Urine	87	65	2.24435801	0
Lrp	Activator	Urine	38	19	2.21269565	0
MetJ	Repressor	Urine	15	14	2.12885223	0.00083422
Crp	Activator	Urine	425	277	2.12150402	0.00066738
CsgD	Activator	Urine	13	12	2.01197693	0.00250267
GadX	Activator	Urine	23	15	1.89350304	0.00929563
ModE	Activator	Urine	31	28	1.87289606	0.0108449
YdeO	Activator	Urine	18	14	1.81975146	0.02002136
Fur	Repressor	Urine	110	66	1.76658693	0.02752936
PhoP	Activator	Urine	45	33	1.7607379	0.0256334
RcsB	Activator	Urine	58	28	1.70667558	0.03781812
Hns	Repressor	Urine	144	62	1.69880665	0.03657748
GadE	Activator	Urine	70	38	1.69400478	0.03515655
RcsA	Activator	Urine	42	24	1.68615633	0.03448122
NarP	Activator	Urine	32	29	1.65675898	0.04045982
NarP	Repressor	Urine	33	26	1.6406359	0.04279074
FhlA	Activator	Urine	30	15	1.62536048	0.04514074
FliZ	Repressor	Urine	20	15	1.60948953	0.04750681
LexA	Repressor	Patients	59	43	-1.696072	0.03586007
Cra	Repressor	Patients	59	50	-1.7121855	0.04267527
PurR	Repressor	Patients	31	31	-1.752299	0.04410253
FadR	Activator	Patients	12	11	-1.9871524	0.00342544

¹ Gene sets found to be enriched in differentially expressed genes. For example, Lrp, Repressor indicates gene set repressed by Lrp (data obtained from RegulonDB 9.4). Expression indicates whether regulon expression was higher in patients or during *in vitro* culture in urine. Regulon size: number of genes in the gene set; Matched size: number of genes found in data set; NES: normalized enrichment score; FDR: false discovery rate.