
DRAFT

libsbmljs — Enabling Web–Based SBML Tools
J Kyle Medley1,�, Joseph Hellerstein2, and Herbert M Sauro1

1Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5061, United States of America
2eScience Institute, University of Washington, Seattle, Washington, 98195-5061, United States of America

The SBML standard is used in a number of online reposito-
ries for storing systems biology models, yet there is currently
no Web–capable JavaScript library that can read and write
the SBML format. This is a severe limitation since the Web
has become a universal means of software distribution, and the
graphical capabilities of modern web browsers offer a power-
ful means for building rich, interactive applications. Also, there
is a growing developer population specialized in web technolo-
gies that is poised to take advantage of the universality of the
web to build the next generation of tools in systems biology
and other fields. However, current solutions require server–
side processing in order to support existing standards in model-
ing. We present libsbmljs, a JavaScript / WebAssembly library
for Node.js and the Web with full support for all SBML exten-
sions. Our library is an enabling technology for online SBML
editors, model–building tools, and web–based simulators, and
runs entirely in the browser without the need for any dedicated
server resources. We provide NPM packages, an extensive set of
examples, JavaScript API documentation, and an online demo
that allows users to read and validate the SBML content of any
model in the BioModels and BiGG databases. We also provide
instructions and scripts to allow users to build a copy of libs-
bmljs against any libSBML version. Although our library sup-
ports all existing SBML extensions, we cover how to add ad-
ditional extensions to the wrapper, should any arise in the fu-
ture. To demonstrate the utility of this implementation, we also
provide a demo at https://libsbmljsdemo.github.io/
with a proof–of–concept SBML simulator that supports ODE
and stochastic simulations for SBML core models. Our project
is hosted at https://libsbmljs.github.io/, which con-
tains links to examples, API documentation, and all source code
files and build scripts used to create libsbmljs. Our source code
is licensed under the Apache 2.0 open source license.

sbml | systems biology | web

Correspondence: medleyj@uw.edu

Introduction

The SBML (1) standard is used for encoding reaction net-
work models in systems biology research in a reusable, ex-
changeable, and future–proof manner. One of the factors
behind SBML’s wide adoption is the SBML standard’s pro-
cess for introducing extension modules, which allow in-
cremental incorporation of new capabilities. While the
core components of the standard are designed for describ-
ing kinetic chemical reaction network models, SBML exten-
sions exist for encoding constraint–based models (the "flux–
balance constraints" extension, employed by the widely used
COBRA framework for constraint–based modeling (2, 3)),
and rule–based models (the SBML "multi" extension (4)).
SBML is used in several online model repositories includ-

ing BioModels (5, 6) and JWS Online (7, 8), which host
primarily kinetic reaction network models, and BiGG Mod-
els cite (9), which hosts primarily genome–scale constraint–
based models.
Despite this wide–spread adoption and inclusion in several
online repositories, no feature–complete JavaScript library
currently exists that can run in a web browser (a native
Node.js module exists, but cannot run in the browser). Thus,
these online repositories must rely on server–side processing
of all SBML–related requests. A JavaScript library would al-
low these services to offload some of their processing to the
client, and would also allow for more interactive features on
the Web. Furthermore, the Web is becoming a major plat-
form for systems biology tools. With the advent of Web ap-
plications for pathway visualization (Escher (10)), gene inter-
action network visualization (Cytoscape.js (11)), expression
analysis (ZBIT (12)) and integrated design systems (Caffeine
(13)), the need for a JavaScript library which can read and
write SBML becomes imperative.
We present libsbmljs, a feature–complete JavaScript library
for reading and writing SBML in the browser and Node.js.
libsbmljs uses the full codebase of the libSBML C++ li-
brary compiled to the web using Emscripten, a toolset for
compiling C++ projects to the web. Emscripten emits We-
bAssembly (14), a W3C standard for running platform–
independent binary code on the web that is supported on
all major browsers. We have designed a JavaScript wrapper
around this binary format that allows libsbmljs to be used like
a normal JavaScript library. Our wrapper supports all SBML
Level 3 extensions, meaning it can read and write any type
of SBML content. Since our library runs in the browser, it
does not require a dedicated web server. This is an impor-
tant consideration for academic software, where long–term
maintenance cost is a concern.

Methods
Prior work on implementing the SBML standard has resulted
in two libraries: libSBML (15), a C++ library with inter-
faces for many languages, and JSBML (16, 17), a platform–
independent pure Java library. While the existence of these
separate implementations is certainly a convenience for C++
and Java developers respectively, it necessitates the mainte-
nance of two independent libraries. Rather than attempt to
create a third implementation in pure JavaScript, we have cre-
ated a web–capable interface for the libSBML C++ library
using Emscripten (18), a C++–to–JavaScript compiler. De-
spite its C++ origins, libsbmljs is completely platform inde-
pendent and runs on modern browsers on any device which

Medley et al. | bioRχiv | June 5, 2019 | 1–5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/594804doi: bioRxiv preprint

https://libsbmljsdemo.github.io/
https://libsbmljs.github.io/
https://doi.org/10.1101/594804
http://creativecommons.org/licenses/by/4.0/

DRAFT

supports web standards.
Compiling a C++ library with Emscripten does not produce a
ready–to–use JavaScript library automatically. Instead, Em-
scripten compiles to WebAssembly (19), a low–level binary
format similar to x86 machine code but with additional fea-
tures for security and platform–independence. Since We-
bAssembly is very low level, it is difficult to use to design
JavaScript web applications. Instead, Emscripten can be used
to also compile a JavaScript interface that abstracts the low–
level details of calling into WebAssembly and instead allows
developers to use familiar JavaScript objects and methods.
However, this interface is not generated automatically by Em-
scripten. Instead, it must be manually specified using We-
bIDL.
Web IDL is a World Wide Web Consortium (W3C®) standard
that specifies interfaces to EMCAScript (i.e. JavaScript) ob-
jects. For example, the libSBML C++ class SBase has the
method getId(), which returns a string. In WebIDL, this
would be specified as:

/**
* SBase: the base class of

* most SBML elements

*/
[Prefix="libsbml::"]
interface SBase {

/**
* Returns this element’s

* id attribute

*/
DOMString getId();

};

In the example above, the body of the getId method is in-
tentionally left blank because it will delegate to the corre-
sponding WebAssembly routine. Using syntax similar to the
above, we manually designed WebIDL interface files for ev-
ery libSBML class and method. However, one issue remains
with this approach. The comments entered into the IDL def-
inition above will not appear in the JavaScript interface gen-
erated by Emscripten. Thus, there is no way of adding doc-
umentation to the generated JavaScript code, which defeats
any attempt to generate API documentation. To remedy this
issue, we created a script to automatically extract documen-
tation strings from IDL files and insert them into the gen-
erated JavaScript code. This allowed us to generate exten-
sive API documentation using documentationjs, a doc-
umentation generator for JavaScript.

Special Considerations for Usage. Emscripten–
generated WebAssembly/JavaScript libraries are sup-
ported on a wide variety of browsers and devices
(https://github.com/libsbmljs/libsbmljs
lists the browsers we have tested). However, there are minor
differences between these libraries and regular JavaScript
libraries, which are described below.

Asynchronous Loading. Emscripten–generated libraries load
asynchronously. In other words, the library cannot be used

immediately as soon as the web page has loaded. This is due
to the fact that Emscripten–generated libraries consist of both
a JavaScript source file (.js) containing JavaScript classes and
methods, and a WebAssembly file (.wasm) containing the
compiled C++ code. The browser may load the JavaScript
source file before completely loading and compiling the We-
bAssembly file. In order to accommodate this, Emscripten
libraries provide a ‘then()‘ method for the JavaScript module
object similar to a JavaScript Promise. This method accepts
a callback that will execute once the WebAssembly is fully
downloaded and compiled.

Manual Memory Management. Most modern languages fea-
ture some type of automatic garbage collection. However,
WebAssembly is a low–level binary–like format, and hence
does not provide high–level features like garbage collection.
This means that whenever the user creates an object in libs-
bmljs using the new keyword, the user must also destroy the
object using libsbml.destroy(obj). In most cases,
this simply amounts to destroying the SBML document when
it is no longer needed.

In terms of modern programming languages, this may seem
like a significant regression, but it is an unavoidable tradeoff
when using C++ compiled WebAssembly, at least for cur-
rently available technology (a proposal exists to add garbage
collection to WebAssembly (20), but an implementation is
not available at the time of writing). In the event that the user
forgets to call the libsbml.destroy function, the allo-
cated object will persist in the browser’s memory until the
browser tab is closed. Since our main target users are devel-
opers of web applications, and browser tabs are short–lived,
we do not believe this is a significant concern. However,
Node.js developers should take care to destroy all created ob-
jects. The same requirement also applies to libSBML’s native
Node.js module.

Client–side SBML Simulation. We used libsbmljs to con-
struct a fully client–side, web–based SBML simula-
tor (sbml_websim), which supports ODE–based (us-
ing the Bulirsch–Stoer algorithm (22, 23) implemented
in JavaScript (24)) and stochastic (using the Next Reac-
tion / “Gibson” method (25)) simulations. This simula-
tor is directly connected to the BioModels / BiGG Mod-
els browser demo associated with this manuscript (https:
//libsbmljsdemo.github.io). The simulator sup-
ports SBML core features including rate rules and events.
Although slow compared to state–of–the–art simulators like
libroadrunner (26), the main utility of this simulator is to
demonstrate the technological readiness of this approach for
creating standards–supporting web–apps. This method could
be used, for example, to integrate simulation capability into
the BioModels and BiGG Models repositories. Figure 2
shows web–based simulations of each of these models us-
ing sbml_websim. Figure 3 shows an example stochastic
simulation.

2 | bioRχiv Medley et al. | libsbmljs

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/594804doi: bioRxiv preprint

https://github.com/libsbmljs/libsbmljs
https://libsbmljsdemo.github.io
https://libsbmljsdemo.github.io
https://doi.org/10.1101/594804
http://creativecommons.org/licenses/by/4.0/

DRAFT

A

WebIDL InterfacelibSBML C++
Code

Gradle Script

*.js file *.wasm file API
Documentation

Emscripten
C++-to-JavaScript

Compiler

Runtime
Loading

B

http://identi�ers.org/biomodels.db/BIOMD0000000012

BIOMD0000000012

Reactions (12)

Species (6)

Compartments (1)

Parameters (16)

Events (0)

Functions (0)

Rules (9)

Checks for measurement units associated with quantities

Identi�er consistency checks

MathML syntax checks

SBO consistency checks

Check if the model is overdetermined

Checks for best practices

General SBML consistency checks

BIOMD0000000012 | BioModels

Elowitz2000 - Repressilator

Validation

elowitz

VALIDATE NOW

Fig. 1. (A) A workflow diagram of the process used to produce libsbmljs. The lib-
SBML C++ source code and a hand–written WebIDL interface are processed by a
Gradle script to produce Emscripten–compiled bytecode and JavaScript API docu-
mentation. The Emscripten bytecode is further compiled into separate JavaScript
(*.js) and WebAssembly (*.wasm) files. When the JavaScript source file is loaded
by the browser, it executes instructions to fetch the corresponding WebAssembly
file asynchronously. These two files are then combined into an npm package.
(B) A screenshot of the demo page showing the Repressilator model (21) in the
BioModels database (BIOMD0000000012). After selecting a model via using the
demo’s search bar or uploading an SBML file, the demo allows the user to view
SBML content as a tree–like structure and validate the SBML model subject to the
validation options provided by libSBML. This particular model can be viewed at
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012

A

B 0 1000 2000 3000 4000 5000 6000

0

20

40

60

80

100

120 [Mdm2]

[p53]

[Mdm2_p53]

[Mdm2_mRNA]

[ARF]

[ARF_Mdm2]

[damDNA]

[mdm2deg]

[mdm2syn]

[Mdm2mRNAdeg]

[Mdm2mRNAsyn]

totp53

totMdm2

C
Fig. 2. Example web–based simulations of BioModels: the repressilator
(https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012,
12 reactions, A), p53 p14ARF (https://libsbmljsdemo.github.
io/#/view?m=BIOMD0000000189, 14 reactions, B), and MAPK
(https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000014,
300 reactions, C) models. These results were separately compared to the
libroadrunner simulator to verify accuracy (not shown).

Medley et al. | libsbmljs bioRχiv | 3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/594804doi: bioRxiv preprint

https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000189
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000189
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000014
https://doi.org/10.1101/594804
http://creativecommons.org/licenses/by/4.0/

DRAFT

Fig. 3. A stochastic simulation of the repressilator model the Next Reaction
Method(25). sbml_websim allows the user to repeat the stochastic simulation
for a desired number of replicates (10 here) and plots all replicates (faint lines) in
addition to the mean value of each variable over all replicates (solid line).

Discussion & Conclusion

Currently, there is no web–capable library that can read and
write SBML models. We have presented a WebAssembly /
JavaScript library that can read and write all SBML pack-
ages. We have provided tutorials, examples and extensive
API documentation for potential users. We have also pro-
vided a modular build system that can be used to regenerate
the wrapper from any recent checkout of the libSBML C++
library from the stable or experimental branch, as well as in–
browser tests of the wrapper using the Karma testing engine.
Additionally, we have used this wrapper to create the first
web–based client–side SBML simulator. We hope these ad-
vances will enable the development of systems biology web
applications and services that can use the SBML standard.

ACKNOWLEDGEMENTS
We would like to thank Ricardo Henriques for providing the template on which this
article is based.

Bibliography
1. Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid Bolouri, John C Doyle, Hiroaki

Kitano, Adam P Arkin, Benjamin J Bornstein, Dennis Bray, Athel Cornish-Bowden, et al.
The systems biology markup language (sbml): a medium for representation and exchange
of biochemical network models. Bioinformatics, 19(4):524–531, 2003.

2. Scott A Becker, Adam M Feist, Monica L Mo, Gregory Hannum, Bernhard Ø Palsson, and
Markus J Herrgard. Quantitative prediction of cellular metabolism with constraint-based
models: the cobra toolbox. Nature protocols, 2(3):727, 2007.

3. Jan Schellenberger, Richard Que, Ronan MT Fleming, Ines Thiele, Jeffrey D Orth, Adam M
Feist, Daniel C Zielinski, Aarash Bordbar, Nathan E Lewis, Sorena Rahmanian, et al. Quan-
titative prediction of cellular metabolism with constraint-based models: the cobra toolbox v2.
0. Nature protocols, 6(9):1290, 2011.

4. Fengkai Zhang and Martin Meier-Schellersheim. Sbml level 3 package: multistate, mul-
ticomponent and multicompartment species, version 1, release 1. Journal of integrative
bioinformatics, 15(1), 2018.

5. Nicolas Le Novere, Benjamin Bornstein, Alexander Broicher, Melanie Courtot, Marco
Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce Shapiro, et al.
Biomodels database: a free, centralized database of curated, published, quantitative ki-
netic models of biochemical and cellular systems. Nucleic acids research, 34(suppl 1):
D689–D691, 2006.

6. Chen Li, Marco Donizelli, Nicolas Rodriguez, Harish Dharuri, Lukas Endler, Vijayalakshmi
Chelliah, Lu Li, Enuo He, Arnaud Henry, Melanie I Stefan, et al. Biomodels database: An
enhanced, curated and annotated resource for published quantitative kinetic models. BMC
systems biology, 4(1):92, 2010.

7. Brett G Olivier and Jacky L Snoep. Web-based kinetic modelling using jws online. Bioinfor-
matics, 20(13):2143–2144, 2004.

8. Martin Peters, Johann J. Eicher, David D. van Niekerk, Dagmar Waltemath, and Jacky L.
Snoep. The jws online simulation database. Bioinformatics, 33(10):1589–1590, 2017. doi:
10.1093/bioinformatics/btw831.

9. Zachary A King, Justin Lu, Andreas Dräger, Philip Miller, Stephen Federowicz, Joshua A
Lerman, Ali Ebrahim, Bernhard O Palsson, and Nathan E Lewis. Bigg models: A platform
for integrating, standardizing and sharing genome-scale models. Nucleic acids research,
44(D1):D515–D522, 2015.

10. Zachary A King, Andreas Dräger, Ali Ebrahim, Nikolaus Sonnenschein, Nathan E Lewis,
and Bernhard O Palsson. Escher: a web application for building, sharing, and embed-
ding data-rich visualizations of biological pathways. PLoS computational biology, 11(8):
e1004321, 2015.

11. Max Franz, Christian T Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and Gary D Bader.
Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics, 32(2):
309–311, 2015.

12. Michael Römer, Johannes Eichner, Andreas Dräger, Clemens Wrzodek, Finja Wrzodek,
and Andreas Zell. Zbit bioinformatics toolbox: a web-platform for systems biology and
expression data analysis. PloS one, 11(2):e0149263, 2016.

13. Alba Lopez, Mátyás Fodor, Anna Sirunian, Ali Kaafarani, Christian Lieven, Nikolaus Son-
nenschein, Tala Azrak, and Moritz E. Beber. Dd-decaf/caffeine: Version 1. https:

//doi.org/10.5281/zenodo.2616028, March 2019.
14. Webassembly. https://webassembly.org.
15. Benjamin J Bornstein, Sarah M Keating, Akiya Jouraku, and Michael Hucka. Libsbml: an

api library for sbml. Bioinformatics, 24(6):880–881, 2008.
16. Nicolas Le Novére, Nicolas Rodriguez, Finja Wrzodek, Florian Mittag, Sebastian Fröhlich,

Michael Hucka, Alex Thomas, Bernhard Ø. Palsson, Nathan E. Lewis, Andreas Dräger,
Chris J. Myers, Leandro Watanabe, Ibrahim Y. Vazirabad, Victor Kofia, Harold F. Gómez,
Alexander Diamantikos, Eugen Netz, Jakob Matthes, Johannes Eichner, Roland Keller, Jan
Rudolph, and Clemens Wrzodek. JSBML 1.0: providing a smorgasbord of options to encode
systems biology models. Bioinformatics, 31(20):3383–3386, 06 2015. ISSN 1367-4803. doi:
10.1093/bioinformatics/btv341.

4 | bioRχiv Medley et al. | libsbmljs

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/594804doi: bioRxiv preprint

https://www.overleaf.com/latex/templates/henriqueslab-biorxiv-template/nyprsybwffws
https://doi.org/10.5281/zenodo.2616028
https://doi.org/10.5281/zenodo.2616028
https://webassembly.org
https://doi.org/10.1101/594804
http://creativecommons.org/licenses/by/4.0/

DRAFT

17. Andreas Dräger, Nicolas Rodriguez, Marine Dumousseau, Alexander Dörr, Clemens Wr-
zodek, Nicolas Le Novère, Andreas Zell, and Michael Hucka. JSBML: a flexible Java library
for working with SBML. Bioinformatics, 27(15):2167–2168, 06 2011. ISSN 1367-4803. doi:
10.1093/bioinformatics/btr361.

18. Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings of the ACM inter-
national conference companion on Object oriented programming systems languages and
applications companion, pages 301–312. ACM, 2011.

19. Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff, Dan Gohman, Luke
Wagner, Alon Zakai, J. F. Bastien, and Michael Holman. Bringing the web up to speed with
webassembly. Commun. ACM, 61(12):107–115, November 2018. ISSN 0001-0782. doi:
10.1145/3282510.

20. Webassembly garbage collection. https://github.com/WebAssembly/design/

issues/1079.
21. Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional

regulators. Nature, 403(6767):335, 2000.
22. Roland Bulirsch and Josef Stoer. Numerical treatment of ordinary differential equations by

extrapolation methods. Numerische Mathematik, 8(1):1–13, 1966.
23. Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II. Springer Berlin

Heidelberg, 1996.
24. Colin Smith. odex-js. https://github.com/littleredcomputer/odex-js.
25. Michael A Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of chemical

systems with many species and many channels. The journal of physical chemistry A, 104
(9):1876–1889, 2000.

26. Endre T Somogyi, Jean-Marie Bouteiller, James A Glazier, Matthias König, J Kyle Medley,
Maciej H Swat, and Herbert M Sauro. libroadrunner: a high performance sbml simulation
and analysis library. Bioinformatics, 31(20):3315–3321, 2015.

Medley et al. | libsbmljs bioRχiv | 5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/594804doi: bioRxiv preprint

https://github.com/WebAssembly/design/issues/1079
https://github.com/WebAssembly/design/issues/1079
https://github.com/littleredcomputer/odex-js
https://doi.org/10.1101/594804
http://creativecommons.org/licenses/by/4.0/

