

1 **High-throughput single nucleotide polymorphism (SNP) discovery and validation through whole-
2 genome resequencing of hundreds of individuals in Nile tilapia (*Oreochromis niloticus*)**

3

4 J.M. Yáñez^{1,2}, G. Yoshida^{1,3}, A. Barria¹, R. Palma-Véjares^{4,5}, D. Travisany^{4,5}, D. Díaz^{4,5}, G. Cáceres¹,
5 M.I. Cádiz¹, M.E. López^{1,7}, J.P. Lhorente³, A. Jedlicki¹, J. Soto⁶, D. Salas⁶, A. Maass^{4,5}

6

7 ¹ Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile

8 ² Nucleo Milenio INVASAL, Concepción, Chile

9 ³ Benchmark Genetics Chile, Puerto Montt, Chile

10 ⁴ Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile

11 ⁵ Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile

12 ⁶ Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica

13 ⁷ Present Address: Department of Animal Breeding and Genetics, Swedish University of Agricultural
14 Sciences, Uppsala, Sweden

15 Corresponding author:

16 E-mail: José M. Yáñez, E-mail: jmayanez@uchile.cl, + 56 99 8101584.

17

18

19

20

21

22

23

24

25

ABSTRACT

26 Nile Tilapia (*Oreochromis niloticus*) is the second most important farmed fish in the world and a
27 sustainable source of protein for human consumption. Several genetic improvement programs have been
28 established for this species in the world and so far, they are mainly based on conventional selection using
29 genealogical and phenotypic information to estimate the genetic merit of breeders and make selection
30 decisions. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to
31 measure in the breeding goal. Thus, SNPs are required to investigate phenotype–genotype associations
32 and determine the genomic basis of economically important traits. We performed *de novo* SNP discovery
33 in three different populations of farmed tilapias. A total of 29.9 million non-redundant SNPs were
34 identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After
35 applying several filtering steps including removing SNP based on genotype and site quality, presence of
36 Mendelian errors, and non unique position in the genome, a total of high quality 50,000 SNP were selected
37 for validation purposes. These SNPs were highly informative in the three populations analyzed showing
38 between 43,869 (94%) and 46,139 (99%) SNP in HWE; 37,843 (76%) and 45,171(90%) SNP with a MAF
39 higher than 0.05 and; 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The final list
40 of 50K SNPs will be very useful for the dissection of economically relevant traits, enhancing breeding
41 programs through genomic selection as well as supporting genetic studies in farmed populations Nile
42 tilapia using dense genome-wide information.

43

44 *Keywords:* Single Nucleotide Polymorphism; *Oreochromis niloticus*; next-generation sequencing;
45 Illumina; genomic selection

46

47

48

49

INTRODUCTION

50 The study of phenotype-genotype association, identification of the genomic basis of economically
51 important traits and the implementation of genomic predictions in farmed fish require a considerable
52 number of highly informative single nucleotide polymorphisms (SNP) that preferably segregate in
53 multiple populations. Thus, the discovery and characterization of dense SNP panels will help to a better
54 understanding of complex traits architecture and genome biology in farmed fish (Yáñez et al. 2015). From
55 an animal breeding perspective, the use of a high number of SNPs markers to support tilapia genetic
56 improvement programs has the potential to speed up genetic gains for traits which by their nature cannot
57 be directly recorded in selection candidates e.g. carcass quality and disease resistance traits (Yáñez and
58 Martinez 2010; Ødegård et al. 2014; Yáñez et al. 2014). Dense SNP panels can also allow the
59 determination of genomic regions underlying selection and adaptation to different environmental
60 conditions during the domestication process in farmed fish populations (López et al. 2015).

61 The discovery of SNP markers in aquaculture species of commercial interest has been widely
62 spread due the availability of high quality reference genomes as it is the case of Atlantic salmon (*Salmo*
63 *salar*) (Lien et al. 2016), rainbow trout (*Oncorhynchus mykiss*) (Berthelot et al. 2014) and Pacific oyster
64 (*Crassostrea gigas*) (Zhang et al. 2012). These information has facilitated the development of dense SNP
65 panels, being currently available for different species including Atlantic salmon (Houston et al. 2014;
66 Yáñez et al. 2016), rainbow trout (Palti et al. 2015), channel catfish (*Ictalurus punctatus*) (Liu et al. 2014;
67 Zeng et al. 2017) and Pacific oyster (Gutierrez et al. 2017; Qi et al. 2017). These genomic resources have
68 been used to carry out several studies aimed at identifying the genetic architecture of economically
69 relevant traits in fish by means of genome-wide association studies for traits such as growth (Gutierrez et
70 al. 2015; Tsai et al. 2015; Yoshida et al. 2017; Neto et al. 2019), disease resistance (Correa et al. 2015;
71 Tsai et al. 2016; Barría et al. 2018) and carcass quality (Gonzalez-Pena et al. 2016). These SNP panels
72 have also been used to test different approaches for the implementation of genomic predictions in Atlantic

73 salmon (Ødegård et al. 2014; Bangera et al. 2017; Correa et al. 2017; Sae-Lim et al. 2017) and rainbow
74 trout (Vallejo *et al.* 2016, 2017, 2018; Yoshida, *et al.* 2018a; Yoshida, *et al.* 2018b).

75 Nile tilapia (*Oreochromis niloticus*) is among the most important fresh-water species farmed
76 worldwide. Several selective breeding programs have been established for this specie since 1990's,
77 allowing to genetically improve important commercial traits and expand tilapia farming across the globe.
78 To date, the most widespread improved tilapia strain is the Genetically Improved Farmed Tilapia (GIFT)
79 (Webster and Lim 2006), being farmed in Latin America, Asia, and Africa (Gupta and Acosta 2004). It
80 has been shown that the response to selection for growth rate reached up to a 15% per generation after six
81 generations of selection (Ponzoni et al. 2011), demonstrating the feasibility to improve this trait by means
82 of artificial selection. However, and despite the large number of genetic programs and the advantages of
83 Nile tilapia farming (e.g. fast growth and high adaptability), there are scarce studies on the application of
84 genomic technologies for mapping variants associated with desired traits and enhancing selection through
85 the use of genomic predictions in comparison with other aquaculture species. Consequently, up to date,
86 genetic improvement programs mainly rely on traditional pedigree-based breeding approaches, with only
87 one published report on the development of genome resources to enhance selective breeding in a single
88 Nile tilapia population (Joshi et al. 2018).

89 The objective of this study was to perform a large-scale *de novo* SNP discovery and using whole genome
90 resequencing of hundreds of Nile tilapia individuals from three different farmed populations and
91 characterize a medium-density (50K) SNP panel to be further used in the determination of the genetic
92 basis of complex traits and genomic selection in this species.

93

94

95 MATERIALS AND METHODS

96 **Populations**

97 The principal aim of the present study was to discover and characterize highly informative SNP variants
98 in Nile tilapia farmed populations. Thus, we included animals from three different commercial breeding
99 populations established in Latin America, originated from admixed stocks imported from Asia. We used
100 59 samples from POP A breeding population (Brazil) and 126 and 141 samples from POP B and POP C
101 breeding populations, respectively, both belonging to Aquacorporación Internacional (Costa Rica). The
102 three breeding populations are directly or indirectly related to the GIFT (Genetically Improved Farmed
103 Tilapia), which is the most spread Nile tilapia strain used for farming purposes worldwide. The GIFT
104 strain was initially established in Philippines by the crosses between four farmed Asian strains originally
105 from Israel, Singapore, Taiwan and Thailand and four wild strains from Egypt, Senegal, Kenya and Ghana.
106 The POP A breeding population represents GIFT animals which were introduced to Brazil for
107 multiplication and farming purposes in early 2000. The POP B breeding population is a mixture of the
108 original Asian farmed populations from Israel, Singapore, Taiwan and Thailand present in the Philippines
109 in the late 1980s, which give origin to the GIFT strain. The POP C breeding population represents a
110 combination of genetic material from the best available stocks corresponding to GIFT (Generation 8) and
111 two original African strains founding GIFT. The three populations have been genetically improved for
112 growth rate for more than 10 generations in total, using genetic evaluations based on the best linear
113 unbiased predictor.

114

115 **Whole-genome resequencing**

116 Tissue samples from the 326 fish were obtained by partial fin-clipping of fish anesthetized using
117 benzocaine. Tissue sampling was carried out in accordance with the commercial practice and norms held
118 by the two companies, Aquacorporación Internacional and Aquamerica, which provided the samples.
119 Genomic DNA was extracted from fin-clip samples using the DNeasy Blood & Tissue Kit (QIAGEN)

120 following manufacturer's protocol. Whole-genome resequencing was performed on each of the individuals
121 multiplexing five bar-coded samples per lane of 150 bp paired-end in Illumina HiSeq-2500.

122

123 **SNP discovery and annotation**

124 We used the assembly ASM185804v2 (GenBank accession GCF_001858045.1) of the *O. niloticus* as a
125 reference genome sequence. This assembly consists of 1,010 Mb of total sequence comprising 2,990
126 contigs with a contig N50 of 3.09 kb. Sequences from all samples were evaluated using FASTQC (Wingett
127 and Andrews 2018) to assess base quality and primer adapter contamination. Burrows-Wheeler Aligner
128 (BWA-MEM) (Li and Durbin 2009) was used to map the reads of each sample to the reference genome.
129 Briefly, BWA-MEM starts a local alignment between a fragment of the read to the reference genome and
130 extends it until the read is completely mapped, if the read cannot be fully mapped is soft clipped or
131 eventually discarded. To avoid invalid flags in further analysis, reads without a pair were discarded from
132 the output using SAMtools (Li et al. 2009). In order to obtain a high quality BAM file all duplicated reads
133 were masked as such using PICARD (<http://broadinstitute.github.io/picard>). For variant calling we used
134 the standard protocol implemented in the Genome Analysis Tool (GATK) version 3.5.0. All high-quality
135 BAM files for each sample obtained previously, were assessed at the SNP calling step and summarized
136 into a single Genotyped Variant Calling Format file (VCF) containing all data. Each SNP was categorized
137 as being either homozygous or heterozygous for the ALT allele (i.e., the non-REF allele). To call a sample
138 homozygous for an ALT allele at a given site, the most common ALT allele variant confidence divided
139 by the total sample reads (QD) must be at least 10 (QD > 10). This normalized ALT alleles in zones with
140 high density depth and poor-quality calls. Only bi-allelic SNPs were pre-selected in posterior filters. The
141 final VCF file was annotated using Variant Effect Predictor (VEP v92.1) in offline mode using the cached
142 Orenil1.0 genome database and the gff file GCF_001858045.1_ASM185804v2_genomic.gff.

143

144 **SNP filtering and validation**

145 Population genetics analyses and filtering described here, including Hardy-Weinberg Equilibrium (HWE),
146 minor allele frequencies (MAF) and observed and expected heterozygosities (H_O and H_E , respectively),
147 were carried out using *VCFTools* (Danecek et al. 2011) and *Plink* (Purcell et al. 2007). An initial common
148 quality control (QC) for the three populations was performed using VCF tools software. The genotypes
149 were filtered to remove indels and sequence alterations, markers with genotypes quality ($GQ < 0.15$) and
150 minimum quality ($minQ < 40$). Furtherly, specific QC filters for each population were applied discarding
151 SNPs with missing genotypes > 0.60 , minor allele frequency (MAF) < 0.01 , Hardy-Weinberg Equilibrium
152 (HWE) p -value $< 1e-06$, Illumina score < 0.8 (Table 1). SNPs were also filtered based on Mendelian error
153 using genotypes from 8 trios (sire, dam and offspring) from POP B, in which markers with less than one
154 Mendelian error were retained. In addition, SNP probes were aligned to the Nile tilapia reference genome
155 to retain markers which have a unique position in the genome assembly (GenBank accession
156 GCF_001858045.1) generated by the University of Maryland and the University of Stirling (Conte et al.
157 2017) using the following procedure: i) SNP probes of 121 bp were built using flanking SNPs sequences
158 (60 bp upstream and 60 bp downstream of each SNP); and ii) each probe was aligned to the reference
159 genome by means of BLASTN version 2.3.0+ (Madden 2002), using the following parameters: word size
160 of 11 (-w) and minimum e-value of e-40 (e); iii) all hits were evaluated tolerating only 2 mismatches, and
161 no gaps were allowed; and iv) probes having a unique location in the genome were retained. All this
162 procedure was achieved using in-house Python scripts. Furtherly, SNPs with MAF > 0.05 in the three
163 commercial populations were prioritized. Finally, SNPs were selected so that they are as evenly distributed
164 along the genome as possible. This was done by selecting SNPs from windows of equal size across various
165 chromosomes of the genome using THIN < 9 kb command. When selecting SNPs from windows, higher
166 preference was given to common SNPs between population POP B and POP C.

167

168 **Animals ethics approval**

169 DNA sampling was carried out in accordance with the commercial practice and norms by
170 Aquacorporación Internacional and Aquamerica.

171

172

173 **RESULTS**

174

175 **SNP discovery**

176 Whole-genome resequencing of 326 fish yielded a mean of 79.6 (SD = 65.0) millions of raw reads per
177 fish, with a minimum and maximum of 20.6 and 545.6 millions of raw reads per fish, respectively. Quality
178 controlled reads were aligned to the Nile tilapia reference genome, and an average of 76.3 (SD = 64.6)
179 million read per fish, with a minimum and maximum of 20.5 and 543.1 million reads per fish, respectively,
180 could be confidently and uniquely mapped to a single position in the genome and these were used for SNP
181 discovery. Thus, the mean coverage for each fish was 8.7x (SD = 8.9x), with a minimum and maximum
182 of 2.1x and 65.7x coverage per fish, respectively. After the SNP discovery phase, approximately
183 38,454,404 sequence variants were identified across the panel of 326 individuals. A total 29,956,401 non-
184 redundant SNPs were identified across the panel of 326 fish, and 26,415,097 (88.17%) of these SNPs
185 passed the genotypes quality (GQ<0.15) and minimum quality (minQ<40) filters (Table 1). After
186 discarding 1,596 SNPs from mitochondria, specific QC filters were applied for each population separately,
187 removing SNP based on missing genotypes >0.60, MAF <0.01, HWE P-value < 1e-06, at least one
188 Mendelian error assessed in trios from POP B and non-unique position of SNP probes in the Nile tilapia
189 genome. A total of 261,550; 887,072 and 461,645 SNP were retained after the filtering steps mentioned
190 above for POP A, POP B and POP C, respectively. From all these high quality SNP variants, only 31,694
191 were common between the three populations and 238,025 SNP variants were common between the two

192 high priority populations POP B and POP C. After applying THIN < 9 kb command in order to select SNP
193 as evenly distributed along the genome as possible only 16,275 SNP were common between the three
194 populations, which were used as the base. The gaps to have a mean of one SNP every 9 kb were filled
195 with additional 33,769 SNP common between POP B and POP C to reach a total of 50,044. Out of these
196 50,04 SNPs, 44 SNPs from short unplaced scaffolds were removed.

197

198 **SNP distribution and annotation**

199 To determine the distribution of SNPs in the Nile tilapia genome, we identified their chromosome and
200 position into the public GenBank accession assembly GCF_001858045.1 produced by the University of
201 Maryland and the University of Stirling (Conte et al., 2017). The SNPs cover 1.01 Gb of the total assembly
202 length and averaged one SNP every 9 kb. A total of 47,349 SNP (94.70%) were located in chromosomes
203 and 2,651 SNP were located into unplaced scaffolds. After SNP annotation, we found that most of the
204 uniquely anchored SNPs were located in introns (57.81%). Further a total of 12.2%, 11.97%, 7.16% and
205 0.63 were located downstream, upstream, intergenic and exon regions, respectively. The remaining SNPs
206 were found in splice acceptor, splice donor, splice site, 3'UTR and 5'UTR regions. The Pearson
207 correlation coefficient between the number of SNPs within each chromosome and total chromosome size
208 in terms of Mb is $r = 0.95$ (p-value $< 2.24e^{-11}$). The relationship between the number of SNPs per
209 chromosome and the total chromosome length in Mb is shown in Figure 1. Thus, the discovered SNP
210 present an even distribution across the chromosomes on the Nile tilapia genome assembly.

211

212 **SNP validation and population segregation**

213 We also performed comparisons between different populations in terms of population genetic estimates
214 using a 50K SNP validation panel. In this respect, the percentage of SNP segregating in HWE in all the
215 populations was 99%, 98% and 94% of the 50K SNP validation panel for POP A, POP B and POP C,

216 respectively. Furthermore, these SNPs showed 76% and 87%, 89% and 93%, and 90% and 93% of MAF
217 > 0.05 and MAF > 0.01 for POP A, POP B and POP C, respectively (Table 2). The distribution of MAF
218 values across SNPs ranged from 0.04 to 0.50 with mean MAF value of 0.24 ± 0.12 (Figure 2). The average
219 observed and estimated heterozygosity (H_o and H_E) was evaluated in each population (Table 2). Although
220 the H_o values were very similar among populations, POP A and POP B expressed the lowest (0.20) and
221 the highest (0.25) H_o values, respectively, suggesting that these populations are the least and the most
222 genetically diverse populations in the present study. In the three populations, H_o diverged considerably
223 from H_E , resulting in a heterozygote deficiency compared to HWE expectations.

224

225

DISCUSSION

226 The application of molecular markers into breeding programs has been widely spread along terrestrial and
227 aquaculture species. Dense SNP panels have been shown to facilitate genome-scale studies by allowing
228 the simultaneous evaluation of thousands of SNPs in commercially important fish species, such as Atlantic
229 salmon (Houston et al. 2014; Yáñez et al. 2016) and rainbow trout (Palti et al. 2015). These markers have
230 facilitated the discovery of genetic variants associated with important commercial traits and also the
231 evaluation and implementation of genomic selection in aquaculture species (Correa et al. 2015;
232 Palaiokostas et al. 2016; Bangera et al. 2017; Gutierrez et al. 2018; Vallejo et al. 2018). However, and
233 despite Nile tilapia is widely produced in several countries, with the existence of more than 20 breeding
234 programs (Neira 2010), there are still scarce studies aiming at the application of genome-wide SNP
235 information for the identification of quantitative trait loci and the evaluation and practical implementation
236 of genomic predictions in this species. The SNP discovery strategy used here allowed us to identify a large
237 number of high quality SNPs that can reliably be genotyped across different populations of farmed Nile
238 tilapia with a GIFT origin. The GIFT strain is the most spread Nile tilapia strain used for farming purposes
239 worldwide (Ponzoni et al. 2011). The results from the segregation of SNPs between different populations

240 indicate that the molecular markers identified in the present study would be useful for genetic studies
241 across populations, although the performance of this set of markers would slightly decrease when used in
242 POP A. This is most likely due to the genetic differentiation between populations associated with their
243 distinct origin (founder effect) and independent genetic selection by more than ten generations. The
244 emphasis placed on including SNPs segregating in POP B and POP C may have caused ascertainment
245 bias, which most likely contributed to the lower diversity observed in the POP A. In addition, there is
246 difference in the number of SNPs with MAFs higher than 0.05 and 0.01 for POP A compared to POP B
247 and C. Therefore, these considerations must be taken into account when using the current SNP panel in
248 farmed Nile tilapia populations with different origins and even on wild populations.
249 A recent study has shown the development of a 58K SNP array for Nile tilapia by means of SNP discovery
250 performed using whole-genome resequencing data of 32 fish from one commercial population (Joshi *et*
251 *al.*, 2018). In this previous study, 40,549 (69.35%) out of 58,466 SNPs were retained after filtering by
252 MAF ≤ 0.05 . In our study, between 37,843 (75.68%) and 45,171 (90.34) out of the 50K SNP validation
253 panel were retained after filtering by HWE and MAF ≤ 0.05 , indicating a better proportion of SNP
254 validated and a moderate variation (~15%) of availability of SNPs, depending on the target population.
255 The latter is most likely due to ascertainment bias in SNP discovery and selection and it has to be taken
256 into account in further applications of this SNP panel in populations with different origins. When
257 comparing the SNP list from the 50K SNP validation panel against the 58K SNP array developed by Joshi
258 *et al.* (2018), by means of aligning SNP probes, we found that 100% of the SNPs were exclusive to each
259 SNP panel. The high proportion of SNPs exclusive to each of the two SNP panels can be mainly explained
260 by the different genetic background of populations and design of the whole-genome resequencing
261 experiments used for SNP discovery. The 50K SNP validation panel presented here was produced using
262 whole-genome resequencing of 326 fish from three independent populations, which allowed us to have an
263 initial list of 29.9 million putative SNPs, which was almost a three times larger initial set when compared

264 against the previous study from Joshi et al. (2018), in which 32 fish from a single population were whole-
265 genome resequenced, generating 10.5 million putative SNPs for further filtering steps. More importantly,
266 the results presented here indicate that currently available Nile tilapia SNP panels can be considered more
267 as being highly complementary than redundant in terms of the variants represented.
268 The SNP panel presented here provides an excellent resource for the development of genome-scale studies
269 of biologically and economically important traits. For instance, a recent genome-wide association study
270 using a subset 2.4 million SNPs derived from the 29.9 million SNPs available from the present study,
271 confirmed the anti-Müllerian hormone as a major gene associated with sex determination in different
272 populations of farmed Nile tilapia (Caceres et al. 2019). This information could assist future strategies
273 aiming at generating monosex (all-male) Nile tilapia populations for farming purposes without using
274 hormones, to better exploit the sexual dimorphism present in the species, in which male individuals growth
275 faster than females (Baroiller and D'Cotta 2001; Alcantar et al. 2014). In addition, the SNP panel
276 developed in the present study will also allow the practical implementation of genomic predictions in Nile
277 tilapia selective breeding programs, as it has been reported in a recent study in which an increase in
278 accuracy of EBVs has been demonstrated through the incorporation of genomic information into genetic
279 evaluations for fillet traits (Yoshida et al. 2019a). Finally, the SNP resources presented here will also allow
280 other kind of population genetic studies in farmed populations of Nile tilapia using dense genome-wide
281 information, as for example, has been recently done by the determination of the genetic structure and
282 linkage disequilibrium in farmed populations using dense SNP genotypes (Yoshida et al. 2019b).

283

284

CONCLUSIONS

285 This paper describes the simultaneous discovery and validation of SNP markers in Nile tilapia through the
286 use of whole-genome resequencing of hundreds of animals. The SNPs identified here will provide an
287 opportunity for the dissection traits of biological and economic importance, such as growth, carcass quality

288 and disease resistance traits, through the application in genome-scale studies. Furthermore, it will allow
289 increasing the response to selection for these traits by means of genomic selection in breeding programs.
290 We believe that downstream applications of this important genomic platform will help to enhance Nile
291 tilapia production by making it more efficient and sustainable.

292

293

294 Acknowledgments

295 This study was partially funded through financial support from CORFO grant number 14EIAT-28667
296 from the Government of Chile. This work was supported by Basal grant of the Center for Mathematical
297 Modeling AFB170001 (UMI2807 UCHILE-CNRS) and Center For Genome Regulation Fondap Grant
298 15090007. Powered@NLHPC This research was partially supported by the supercomputing infrastructure
299 of the NLHPC (ECM-02). We would like to acknowledge to AquaAmerica and Aquacorporación
300 Internacional for kindly providing the samples used in this work. We would also like to acknowledge to
301 Gabriel Rizzato and Natalí Kunita from AquaAmerica and Diego Salas and José Soto from
302 Aquacorporación International and for their contribution of samples from Brazil and Costa Rica,
303 respectively.

304

305 Author Contributions

306 J.M.Y. conceived and designed the study, contributed to the analysis and drafted the manuscript. G.Y.
307 contributed to analysis and writing. A.B. drafted the first version of the manuscript. G.C., M.E.L. and A.J.
308 participated in data collection, purification and management of the samples for sequencing and
309 genotyping. R.P., D.D., D.T., and A.M. performed the bioinformatics analysis and contributed to writing.
310 J.P.L. participated in the design of the study and writing. JS and DS contributed to samples collection. All
311 authors have reviewed and approved the manuscript.

312

313 Conflict of Interests

314 Two commercial organizations (Aquainnovo and Illumina) were involved in the SNP identification and
315 preparation of the manuscript. However, this does not alter public accessibility to data from the SNP data
316 presented in this study. JPL was employed by Benchmark Genetics Chile during the course of the study.

317

318 Data Availability

319 The sequence data used for SNP discovery will be deposited in public database upon acceptance. The full
320 SNP list can be found in the Figshare repository (accession number 10.6084/m9.figshare.7581581).

321

322 References

323 Alcantar JP, Santos C, Moreno R, Antonio C (2014) Manual para la Producción de supermachos de
324 tilapia del Nilo (*Oreochromis niloticus*)

325 Bangera R, Correa K, Lhorente JP, et al (2017) Genomic predictions can accelerate selection for
326 resistance against *Piscirickettsia salmonis* in Atlantic salmon (*Salmo salar*). *BMC Genomics* 18:121

327 Baroiller JF, D'Cotta H (2001) Environment and sex determination in alligators. *Comp Biochem Physiol*
328 Part C 130:399–409

329 Barría A, Christensen KA, Yoshida GM, et al (2018) Genomic predictions and genome-wide association
330 study of resistance against *Piscirickettsia salmonis* in coho salmon (*Oncorhynchus kisutch*) using
331 ddRAD sequencing. *G3 Genes Genomes Genet* 4231:g3.200053.2018

332 Berthelot C, Brunet F, Chalopin D, et al (2014) The rainbow trout genome provides novel insights into
333 evolution after whole-genome duplication in vertebrates. *Nat Commun* 5:

334 Caceres G, Lopez ME, Cadiz MI, et al (2019) Fine mapping using whole-genome sequencing confirms
335 anti-Müllerian hormone as a major gene for sex determination in farmed Nile tilapia (*Oreochromis*

336 *niloticus* L.). BioRxiv. doi: 10.1101/573014

337 Conte MA, Gammerdinger WJ, Bartie KL, et al (2017) A high quality assembly of the Nile Tilapia

338 (*Oreochromis niloticus*) genome reveals the structure of two sex determination regions. BMC

339 Genomics 18:1–19. doi: 10.1186/s12864-017-3723-5

340 Correa K, Bangera R, Figueroa R, et al (2017) The use of genomic information increases the accuracy of

341 breeding value predictions for sea louse (*Caligus rogercresseyi*) resistance in Atlantic salmon

342 (*Salmo salar*). Genet Sel Evol 49:15

343 Correa K, Lhorente JP, López ME, et al (2015) Genome-wide association analysis reveals loci

344 associated with resistance against *Piscirickettsia salmonis* in two Atlantic salmon (*Salmo salar* L.)

345 chromosomes. BMC Genomics 16:854

346 Danecek P, Auton A, Abecasis G, et al (2011) The variant call format and VCFtools. Bioinformatics

347 27:2156–2158

348 Gonzalez-Pena D, Gao G, Baranski M, et al (2016) Genome-wide association study for identifying loci

349 that affect fillet yield, carcass, and body weight traits in rainbow trout (*Oncorhynchus mykiss*).

350 Front Genet 7:

351 Gupta M, Acosta B (2004) From drawing board to dining table: the success story of the GIFT project.

352 NAGA, WorldFish Cent Q 27:4–14

353 Gutierrez AP, Matika O, Bean TP, Houston RD (2018) Genomic Selection for Growth Traits in Pacific

354 Oyster (*Crassostrea gigas*): Potential of Low-Density Marker Panels for Breeding Value Prediction.

355 Front Genet 9:1–9

356 Gutierrez AP, Turner F, Gharbi K, et al (2017) Development of a Medium Density Combined-Species

357 SNP Array for Pacific and European Oysters (*Crassostrea gigas* and *Ostrea edulis*). G3:

358 Genes|Genomes|Genetics 7:2209–2218

359 Gutierrez AP, Yáñez JM, Fukui S, et al (2015) Genome-wide association study (GWAS) for growth rate

360 and age at sexual maturation in Atlantic salmon (*Salmo salar*). PLoS One 10:e0119730

361 Houston RD, Taggart JB, Cézard T, et al (2014) Development and validation of a high density SNP

362 genotyping array for Atlantic salmon (*Salmo salar*). BMC Genomics 15:90

363 Joshi R, Árnyasi M, Lien S, et al (2018) Development and Validation of 58K SNP-Array and High-

364 Density Linkage Map in Nile Tilapia (*O. niloticus*). Front Genet 9:1–15

365 Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform.

366 Bioinformatics 25:1754–1760

367 Li H, Handsaker B, Wysoker A, et al (2009) The Sequence Alignment/Map format and SAMtools.

368 Bioinformatics 25:2078–2079

369 Lien S, Koop BF, Sandve SR, et al (2016) The Atlantic salmon genome provides insights into

370 rediploidization. Nature 533:200–205

371 Liu S, Sun L, Li Y, et al (2014) Development of the catfish 250K SNP array for genome-wide

372 association studies. BMC Res Notes 7:1–12

373 López ME, Neira R, Yáñez JM (2015) Applications in the search for genomic selection signatures in

374 fish. Front Genet 5:1–12

375 Madden T (2002) The BLAST sequence analysis tool. In: The NCBI Handbook. National Library of

376 Medicine. pp 1–18

377 Neira R (2010) Breeding in aquaculture species: genetic improvement programs in developing countries.

378 In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production

379 Neto R, Yoshida GM, Paul J, et al (2019) Genome-wide association analysis for body weight identifies

380 candidate genes related to development and metabolism in rainbow trout (*Oncorhynchus mykiss*).

381 Mol Genet Genomics. doi: 10.1007/s00438-018-1518-2

382 Ødegård J, Moen T, Santi N, et al (2014) Genomic prediction in an admixed population of Atlantic

383 salmon (*Salmo salar*). Front Genet 5:1–8. doi: 10.3389/fgene.2014.00402

384 Palaiokostas C, Ferarreso S, Franch R, et al (2016) Genomic prediction of resistance to pasteurellosis in
385 gilthead sea bream (*Sparus aurata*) using 2b-RAD sequencing. *G3 Genes Genomes Genet* X:1–8

386 Palti Y, Gao G, Liu S, et al (2015) The development and characterization of a 57K single nucleotide
387 polymorphism array for rainbow trout. *Mol Ecol Resour* 15:662–672

388 Ponzoni RW, Nguyen NH, Khaw HL, et al (2011) Genetic improvement of Nile tilapia (*Oreochromis*
389 *niloticus*) with special reference to the work conducted by the World Fish Center with the GIFT
390 strain. *Rev Aquac* 3:27–41

391 Purcell S, Neale B, Todd-brown K, et al (2007) PLINK : A Tool Set for Whole-Genome Association and
392 Population-Based Linkage Analyses. *Am J Hum Genet* 81:559–575

393 Qi H, Song K, Li C, et al (2017) Construction and evaluation of a high-density SNP array for the Pacific
394 oyster (*Crassostrea gigas*). *PLoS One* 12:1–16

395 Sae-Lim P, Kause A, Lillehammer M, Mulder HA (2017) Estimation of breeding values for uniformity
396 of growth in Atlantic salmon (*Salmo salar*) using pedigree relationships or single-step genomic
397 evaluation. *Genet Sel Evol* 49:1–12. doi: 10.1186/s12711-017-0308-3

398 Tsai HY, Hamilton A, Tinch AE, et al (2015) Genome wide association and genomic prediction for
399 growth traits in juvenile farmed Atlantic salmon using a high density SNP array. *BMC Genomics*
400 16:1–9

401 Tsai HY, Hamilton A, Tinch AE, et al (2016) Genomic prediction of host resistance to sea lice in farmed
402 Atlantic salmon populations. *Genet Sel Evol* 48:1–11

403 Vallejo R, Liu S, Gao G, et al (2017) Similar genetic architecture with shared and unique quantitative
404 trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations. *Front
405 Genet* 8:1–15

406 Vallejo RL, Leeds TD, Fragomeni BO, et al (2016) Evaluation of genome-enabled selection for bacterial
407 cold water disease resistance using progeny performance data in rainbow trout: Insights on

408 genotyping methods and genomic prediction models. *Front Genet* 7:1–13

409 Vallejo RL, Silva RMO, Evenhuis JP, et al (2018) Accurate genomic predictions for BCWD resistance

410 in rainbow trout are achieved using low-density SNP panels : evidence that long-range LD is a

411 major contributing factor. *J Anim Breed Genet*

412 Webster C, Lim C (2006) Tilapia: Biology, Culture, and Nutrition

413 Wingett SW, Andrews S (2018) FastQ Screen: A tool for multi-genome mapping and quality control.

414 *F1000Research* 7:1338

415 Yáñez JM, Houston RD, Newman S (2014) Genetics and genomics of disease resistance in salmonid

416 species. *Front Genet* 5:1–13. doi: 10.3389/fgene.2014.00415

417 Yáñez JM, Martinez V (2010) Genetic factors involved in resistance to infectious diseases in salmonids

418 and their application in breeding programmes. *Arch Med Vet* 42:1–13

419 Yáñez JM, Naswa S, Lopez ME, et al (2016) Genomewide single nucleotide polymorphism discovery in

420 Atlantic salmon (*Salmo salar*): validation in wild and farmed American and European populations.

421 *Mol Ecol Resour* 16:1002–1011

422 Yáñez JM, Newman S, Houston RD (2015) Genomics in aquaculture to better understand species

423 biology and accelerate genetic progress. *Front Genet* 6:1–3. doi: 10.3389/fgene.2015.00128

424 Yoshida G, Barria A, Caceres G, et al (2019a) Genome-wide patterns of population structure and

425 linkage disequilibrium in farmed Nile tilapia (*Oreochromis niloticus*). *BioRxiv*. doi:

426 10.1101/519801

427 Yoshida G, Lhorente JP, Correa K, et al (2019b) Genome-wide association study and low-cost genomic

428 predictions for growth and fillet yield in Nile tilapia (*Oreochromis niloticus*). *BioRxiv*. doi:

429 10.1101/573022.

430 Yoshida G, Bangera R, Carvalheiro R, et al (2018a) Genomic prediction accuracy for resistance against

431 *Piscirickettsia salmonis* in farmed rainbow trout. *G3 Genes Genomes Genet* 8:719–726

432 Yoshida G, Carvalheiro R, Rodríguez FH, Lhorente JP (2018b) Genomics Single-step genomic
433 evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic
434 necrosis virus in rainbow trout. Genomics 1–6

435 Yoshida G, Lhorente JP, Carvalheiro R, Yáñez JM (2017) Bayesian genome-wide association analysis
436 for body weight in farmed Atlantic salmon (*Salmo salar* L.). Anim Genet 48:698–703

437 Zeng Q, Fu Q, Li Y, et al (2017) Development of a 690 K SNP array in catfish and its application for
438 genetic mapping and validation of the reference genome sequence. Sci Rep 7:1–14

439 Zhang G, Fang Xi, Guo X, et al (2012) The oyster genome reveals stress adaptation and complexity of
440 shell formation. Nature 490:49–54

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456 **Table 1.** Summary of results from SNP discovery and quality control filtering for SNP selection in 326
457 whole-genome sequenced individuals from three farmed Nile tilapia (*Oreochromis niloticus*) populations.

Chr ^a	Initial Number of SNP	First common filter ^b	Population specific filters ^c			Last common Filter ^d
			POP A	POP B	POP C	
Mito^e	1671	1596	0	0	0	0
LG1	779881	708381	6768	31144	18046	2045
LG2	891811	797928	7765	32143	12664	1881
LG3a	626179	539885	6583	17175	9991	714
LG3b	3491391	2943480	22758	47028	29881	1823
LG4	1099494	983024	11401	38514	23132	2150
LG5	792857	706930	6497	26718	11529	1811
LG6	1247549	1112177	10300	47240	23576	2560
LG7	1326771	1191205	16277	61818	24935	3549
LG8	834050	752753	10587	35798	17751	1803
LG9	842634	757126	7171	27404	13135	1518
LG10	767756	689181	8389	29290	13115	1774
LG11	904270	813207	8839	31506	16411	2074
LG12	1178720	1051496	12065	39106	18552	2181
LG13	797314	722353	7152	29682	18623	1819
LG14	960008	861238	11750	39640	17386	2176
LG15	991645	895658	10517	32442	19090	2002
LG16	1319450	1181919	12268	49954	25188	2447
LG17	1023476	919757	9226	40200	25573	2502
LG18	1111651	988338	10630	39619	18910	2082
LG19	624640	563099	7781	26643	15163	1799
LG20	762408	685589	7586	27546	13409	2013
LG22	1202188	1062702	13440	42665	18451	2016
LG23	1229543	1099828	11769	43157	25489	2610

US^f	5149044	4386247	24031	50640	31645	2651
Total	29956401	26415097	261550	887072	461645	50000

458 ^a Chromosome

459 ^b First common quality control filtering using all populations including SNP *excluded by genotypes*

460 *quality* < 15 and minimum site *quality* < 40

461 ^c Population specific quality control filtering including removing SNP with missing genotypes >0.60,

462 minor allele frequency (MAF) <0.01, Hardy-Weinberg Equilibrium (HWE) P-value < 1e-06, Illumina

463 score <0.8 and at least one Mendelian error in POP B.

464 ^d Last common quality control filtering retaining markers with unique position in the genome,

465 prioritizing SNP with MAF > 0.05 in the three commercial populations and evenly distributed across

466 the genome

467 ^e Mitochondria

468 ^f Unplaced scaffolds

469

470

471

472

473

474

475

476

477

478

479

480

481 **Table 2.** Descriptive results of population genetic estimates and statistics for the different populations of
482 farmed Nile tilapia using the 50 K SNP validation panel.

Population	HWE ^a		MAF > 0.05 ^b		MAF > 0.01 ^c		H _O ^d	H _E ^e
	n	%	n	%	n	%		
POP A	46,139	99.07	37,843	75.69	43,450	86.9	0.2011	0.2843
POP B	45,757	98.25	44,696	89.39	46,570	93.14	0.2497	0.3130
POP C	43,869	94.20	45,171	90.34	46,570	93.14	0.2463	0.3243

483 ^aSNPs in Hardy-Weinberg Equilibrium

484 ^bSNPs with Minor Allele Frequency > 0.05

485 ^cSNPs with Minor Allele Frequency > 0.01

486 ^dObserved heterozygosity

487 ^eExpected heterozygosity

488

489

490

491

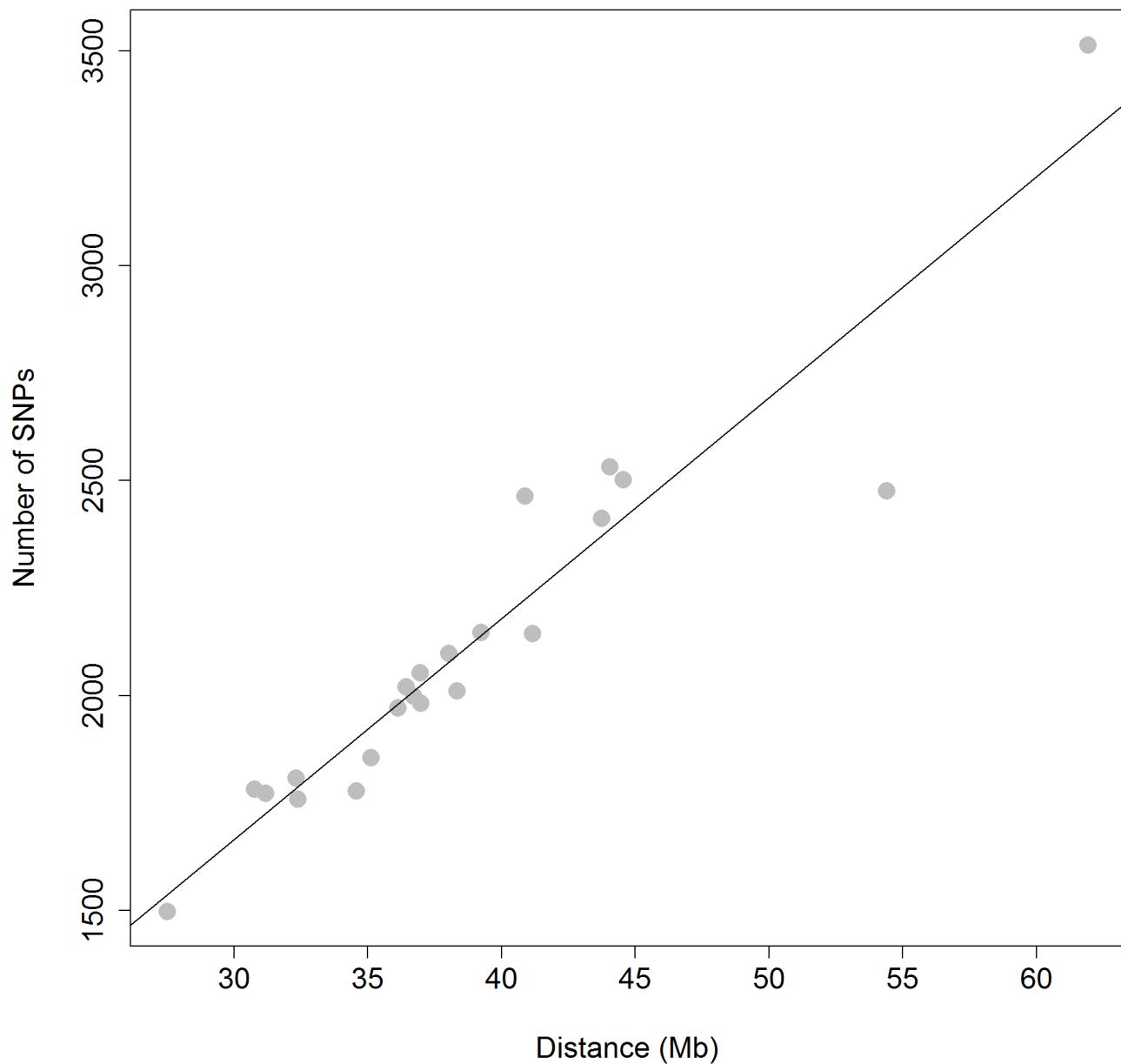
492

493

494

495

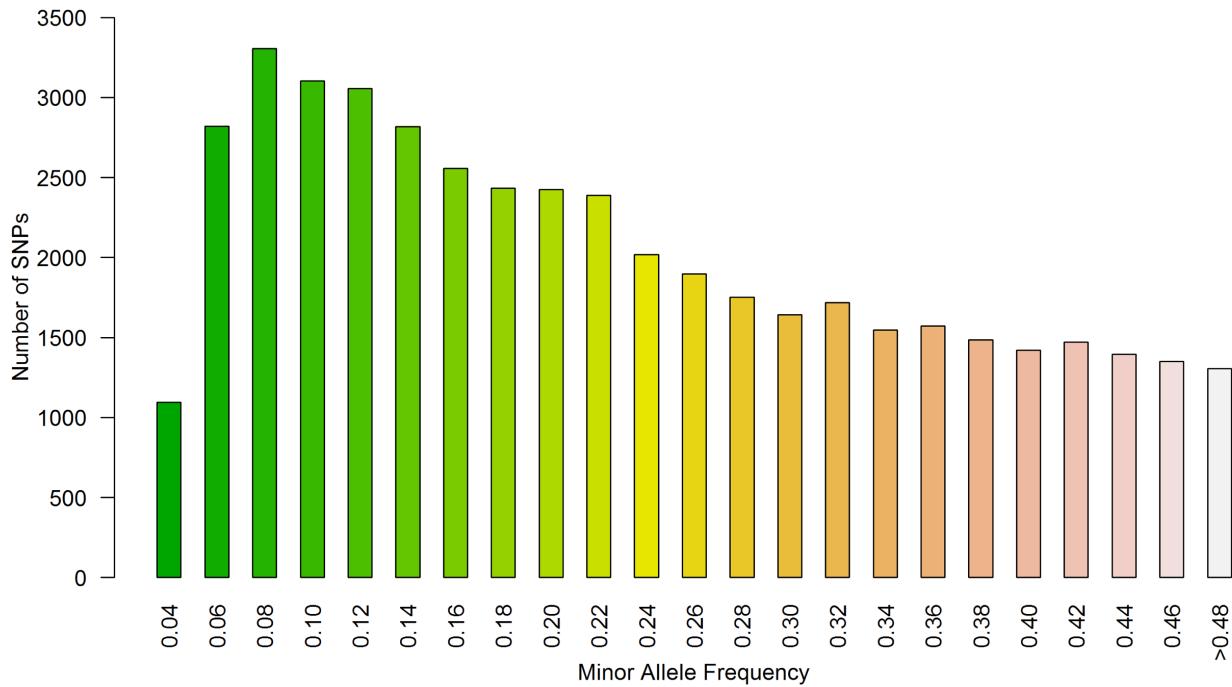
496


497

498

499

500


501

502

503 **Fig. 1 Relationship between the number of SNPs and chromosome length.** Scatter plot of the number
504 of SNPs per chromosome and the total chromosome length in Mb according to the assembly
505 GCF_001858045.1. The correlation coefficient between the number of SNPs and chromosome size is $r =$
506 0.95.

507

508

509 **Fig. 2 Distribution of minor allele frequencies (MAFs).** Distribution of MAFs for the 50K SNP
510 validation panel from 326 samples.

511