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Abstract

Background: Identifying the genetic architecture of complex traits requires ac-
cess to populations with sufficient genetic diversity and recombination. Multi-
parent Advanced Generation InterCross (MAGIC) populations are a powerful
resource due to their balanced population structure, allelic diversity and en-
hanced recombination. However, implementing a MAGIC population in com-
plex polyploids such as wheat is not trivial, as wheat harbours many introgres-
sions, inversions and other genetic factors that interfere with linkage mapping.

Results: By utilising a comprehensive crossing strategy, additional rounds
of mixing and novel genotype calling approaches, we developed a bread wheat
eight parent MAGIC population made up of more than 3000 fully genotyped
recombinant inbred lines derived from 2151 distinct crosses, and achieved a dense
genetic map covering the complete genome. Further rounds of inter-crossing led
to increased recombination in inbred lines, as expected. The comprehensive
and novel approaches taken in the development and analysis of this population
provide a platform for genetic discovery in bread wheat. We identify previously
unreported structural variation highlighted by segregation distortion, along with
the identification of epistatic allelic interactions between specific founders. We
demonstrate the ability to conduct high resolution QTL mapping using the
number of recombination events as a trait, and identify several significant QTLs
explaining greater than 50% of the variance.

Conclusions: We report on a novel and effective resource for genomic and
trait exploration in hexaploid wheat, that can be used to detect small genetic
effects and epistatic interactions due to the high level of recombination and
large number of lines. The interactions and genetic effects identified provide a
basis for ongoing research to understand the basis of allelic frequencies across
the genome, particularly where economically important loci are involved.
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Background

Due to the large genome size of bread wheat and its hexaploid nature, powerful
genetic resources are required to understand the underlying genetic mechanisms
for a wide variety of phenotypes. While a variety of biparental and association
populations have been developed for this purpose, multiparental populations of-
fer a novel opportunity to dissect genomic structure by combining strengths of
both prior approaches. In particular, Multiparent Advanced Generation Inter-
Crosses (MAGIC) mix the genomes of several diverse founders through multiple
generations of intercrossing and selfing or double haploidy, to generate a large
population of immortalised lines.

MAGIC populations have been developed as genetic resource panels in a
number of species [Cavanagh et al., 2008, Huang et al., 2015], but have seen the
greatest uptake in wheat in terms of both number of different populations and
size thereof. The first plant MAGIC population was developed in Arabidopsis
thaliana [Kover et al., 2009], and since then populations have been developed
in crops including barley [Mathew et al., 2018], chickpea [Gaur et al., 2012],
rice [Bandillo et al., 2013], ryegrass [Begheyn et al., 2018] and tomato [Pascual
et al., 2015]. None of these populations in other crops explore the full range of
potential intercrosses possible in the early stages of MAGIC designs, and besides
[Bandillo et al., 2013] none of them have been genotyped on more than 1000
lines. By contrast, the four-parent spring wheat MAGIC population [Huang
et al., 2012] consists of nearly 1500 RILs genotyped at high density, while the
eight-parent winter wheat MAGIC [Mackay et al., 2014] consists of 1091 F7RILs,
of which 720 have been genotyped with the 90K SNP chip [Wang et al., 2014].
This wealth of genetic data and genetic diversity facilitates the use of these
populations for uncovering genomic structures.

Thus far, MAGIC populations have been analyzed primarily with a focus
on linkage map construction and QTL mapping. High-density linkage maps
have been constructed in wheat [Huang et al., 2012, Cavanagh et al., 2013,
Gardner et al., 2016, Sannemann et al., 2018], durum wheat [Milner et al.,
2016], barley [Sannemann et al., 2015] and tomato [Pascual et al., 2015], and
validated against consensus and physical maps. The diversity and resolution of
MAGIC populations enables the mapping of more markers, more precisely, than
in previous populations. The resulting maps provide greater resolution in QTL
mapping, which has been performed in all of the crops previously mentioned,
both for proof of concept [Kover et al., 2009, Huang et al., 2012, Sannemann
et al., 2015] and discovery of novel loci [Rebetzke et al., 2014, Barrero et al.,
2015].

The rich genomic information contained in these populations enables inves-
tigation of genomic structure at a level of detail not possible in biparental popu-
lations. Multi-parental populations have been used to demonstrate widespread
genetic incompatibilities in Drosophila, Arabidopsis, and maize [Corbett-Detig
et al., 2013], and characterize regions associated with maternal transmission ra-
tio distortion in mice [Didion et al., 2015]. In wheat, they have previously been
used to identify widespread segregation distortion and introgressions [Gardner
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et al., 2016].
The production of a high-quality reference sequence for bread wheat has

been a challenging problem, due to its large genome size and three separate
subgenomes. The recent publication of the first reference sequence [The Inter-
national Wheat Genome Sequencing Consortium (IWGSC), 2018] has under-
lied more recent work on the bread wheat genome [Keeble-Gagnère et al., 2018,
Ramı́rez-González et al., 2018]. However, genetic maps constructed from large
populations remain useful for the investigation of non-mendelian inheritance
and for highlighting regions of uncertainty in the sequence data [Deokar et al.,
2014].

In this paper we present an eight parent spring bread wheat MAGIC pop-
ulation. Three founders (Baxter, Westonia, and Yitpi) are Australian culti-
vars, which were previously used in a four-parent MAGIC population [Huang
et al., 2012]. The other five founders originated from Canada (AC Barrie);
USA (Alsen); CIMMYT (Pastor); Israel (Volcani); and China (Xiaoyan54). All
founders are spring wheats with the exception of Xiaoyan54 which is a winter
wheat. Founders were chosen on the basis of genetic and phenotypic diversity,
with a particular emphasis on diversity for wheat quality traits. All except
Volcani have been grown commercially.

Our single population contains three subpopulations, which have been pro-
duced with different levels of intercrossing in the mixing phase, allowing the
assessment of the advantages such an approach gives. All of these subpopu-
lations are used for linkage map construction, resulting in a dense and high-
resolution map, which can be used to link genetic and physical maps for wheat.
The completeness of the funnel structure and size of the population provide
power to dissect the genetic structure of wheat, including genetic interactions
and localized segregation distortion.

Results and discussion

Genotype calling

Genotyping was performed for lines from all populations using the Infinium
iSelect 90K [Wang et al., 2014] SNP assay. This resulted in data from 81,587
markers. At the end of the marker calling process there were 29,566 polymorphic
markers, of which 6,743 were reviewed manually. Figure S1 shows the number
of markers called using each marker calling strategy. Method “DBSCAN-n”
indicates the use of DBSCAN, where n is the number of alleles identified by
DBSCAN.

For the markers called using HBC, the proportion of marker heterozygote
calls is shown in Figure S2. The theoretically expected proportion of identity by
descent heterozygotes for five generations of selfing is 0.0312 without intercross-
ing, and 0.0273 with intercrossing. Note that marker heterozygotes are not the
same as identity-by-descent heterozygotes; if two parents carry the same marker
allele, then a heterozygote for those parents will not be a marker heterozy-
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gote. So the proportion of marker heterozygotes is lower than the proportion
of identity-by-descent heterozygotes, and Figure S2 shows a situation where the
proportion of marker heterozygotes is generally higher than expected. This is
partially due to our fairly aggresive calling of marker heterozygotes. The higher
rate of heterozygote calls could also be due to the presence of homologues. A
proper assesement of heterozygosity will be made by using identity-by-descent
hetoryzogetes, using all markers jointly, in subsequent analysis.

Calling for most markers was straightforward, however there were a small
number of challenging cases that were initially miscalled. These cases are only
identifiable after a genetic map has been constructed. For example, marker
Kukri c37840 253 is present on chromosomes 2A and 2B, and polymorphic on
both, although with a genetic map this is not obvious (Figure S3a). In Figure
S3b, color represents the imputed genotype at a location on chromosome 2B. In
Figure S3c, color represents the imputed genotype at a location on chromosome
2A. As this pattern cannot reasonably have arisen by chance, it is clear that
there are four clusters here. Without a genetic map there will appear to be
only two clusters, and calling of this marker will be incorrect. The marker will
appear to map to two chromosomes, although due to the incorrect calling it will
not be correct on either chromosome.

Table S1 summarises the number of markers with segregation distortion,
on each chromosome. However, this potentially says more about the markers
than the underlying genetic structure; the ability to successfully call marker
alleles varies across markers, and across marker alleles for each marker. So
observed segregation distortion at the individual marker level is susceptible to
effects relating to the marker calling algorithm, and the ease with which different
marker alleles can be called. A better investigation of genetic distortion will
be made using identity-by-descent probabilities, using all markers jointly, in
subsequent analysis.

Map summary

Our constructed map has 27,687 markers across all 21 chromosomes. Table
S1 provides a complete summary of the mapped markers. Markers that are
distorted are still present in the map. Removing markers on the basis of single-
locus distortion is difficult, as the distortion may be due only to a difference in
the marker calling rate for different marker alleles.

Figure S4 shows the positions of all markers, and all gaps in the map, with
color representing the number of unique positions per centiMorgan. Figure S5 is
similar, but color represents the number of markers per centiMorgan. Chromo-
some 2B has been estimated as being very long; this is an unavoidable result of
the large number of markers on that chromosome. As marker density increases,
distances between adjacent markers become extremely small. As a result, any
estimation error will almost certainly be in the direction of estimating a distance
that is too large. Compounding the problem, there are more such estimates to
be made. Genotyping error may also lead to the separation of markers that
do not have any true recombination event separating them. We note that the
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relevant inputs to QTL mapping algorithms, such as genotype probabilities and
imputed genotypes, are relatively insensitive to overall chromosome length.

The marker densities of 1.58 unique positions / cM on the A genome and
2.02 unique positions / cM on the B genome were far higher than the marker
density of 0.50 unique positions / cM for the D genome. Around 37%, 55% and
6% of markers were mapped to the A, B and D genomes respectively. The lower
coverage on the D chromosomes is reflected both in the length (parts missing)
and the resolution (bigger gaps). This feature is known to reflect the lower
polymorphism of the D genome [Wang et al., 2014]. However, it may also be
related to the presence of markers polymorphic on multiple chormosomes. For
example, we have noted a large number of markers polymorphic on both 2B and
2D. These markers are not simple to map, and have not been included. If a large
fraction of markers on the D genomes are also present on the A or B genomes,
and cannot be mapped, this could be interpreted as reduced polymorphism on
the D genome.

In general, the number of unique positions per chromosome was far lower
than the number of markers mapped. The 27,687 markers were mapped to 7,674
unique positions.

Map comparison

The map constructed in this population has the highest combination of cover-
age, density and resolution of any constructed from a single population in wheat.
While the 90K consensus map contains nearly 47,000 markers, each of the eight
individual biparental populations contributing to this map contains fewer than
19,000 markers. A previously published consensus map [Li et al., 2015] has
28,000 markers at 3,757 unique positions, but for each of the three populations
merged to form the consensus, fewer than 20,000 markers were mapped. Geno-
typing by sequencing can detect a very high number of markers, resulting in
genetic maps with extremely high marker density. In wheat, GBS-based maps
have been reported with nearly 20,000 SNPs in 1,485 bins [Poland et al., 2012],
over 400,000 in 1421 bins [Saintenac et al., 2013], and 1.7 million markers in
1335 bins [Chapman et al., 2015]. In the last example, the map was constructed
from a doubled haploid population of 90 lines, demonstrating that the number
of unique locations is limited by the recombination observed in the population.
One of the significant advantages of MAGIC populations is the high number
of recombination events due to the multiple rounds of crossing. A previously
reported map developed with 643 lines from an 8-way wheat MAGIC popula-
tion (referred to subsequently as NIAB 8-way Gardner et al. [2016]) has 18,601
markers in 4,578 unique positions.

Map validation

Figure S6 shows the comparison of the MAGIC map with the consensus map
based on the 90K SNP chip [Wang et al., 2014]. Points in blue represent markers
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that are within 20cM vertically of the line of best fit. Other (conflicting) markers
are shown in red. Figure S7 shows a similar figure for the NIAB 8-way.

A summary of the markers with agreeing and conflicting positions can be
found in Table S2. The comparisons show a large number of conflicts on chro-
mosome 2B. This is due to the Sr36 introgression [Tsilo et al., 2008]. The
introgression is rarely broken up by recombination events (see discussion of re-
combination), and displays distorted inheritance (see discussion of segregation
distortion main effects). This makes map construction for chromosome 2B dif-
ficult using this population.

Figure S8 compares our map and the IWGSC RefSeq v1.0. Large disagree-
ments between the physical map and the MAGIC map may indicate differences
in genome ordering between Chinese Spring and the parents used for mapping.
They may also be due to paralogous sequences, or genetic insertions, deletions
and inversions. On a fine scale, the order of markers in the genetic map and
the IWGSC RefSeq v1.0 are not expected to match exactly, due to variability
in recombination fraction estimates affecting the ordering in the MAGIC map.
We do not expect to have high enough resolution in the MAGIC map to match
the resolution of the sequence data; it has previously been demonstrated that
a genetic map is insufficient to completely order scaffolds in tomato [Shearer
et al., 2014]. However, the high resolution of the MAGIC map can be used to
highlight regions of uncertainty or dissonance in the physical map and improve
reference assemblies [Deokar et al., 2014].

Recombination

Comparison of the three subpopulations allows assessment of the benefit of the
additional intercrossing, since AIC2RIL and AIC3RIL have two and three extra
rounds of crossing, respectively. Table S3 shows the average number of re-
combination events for each chromosome, for each of the three subpopulations.
Additional generations of intercrossing lead to a noticeable increase in recom-
bination events. The imputed number of recombination events for chromosome
3B was much higher than the value of 2.6 in [Choulet et al., 2014], highlighting
the high level of recombination in the MAGIC population. Figure S9 shows the
distribution of the number of recombination events, for all subpopulations and
the entire population.

The imputed haplotype blocks were used to estimate the average haplotype
block size, at different points on the genome, for all three subpopulations. The
haplotype block sizes were represented as a proportion of the chromosome size,
and the results for the A and B genomes are shown in Figure S10. The decrease
in block sizes toward either end of the chromosome is an obvious edge effect;
the sizes of haplotype blocks near the ends of the chromosomes are limited by
the edges of the chromosome. The two chromosomes with the largest average
haplotype block size, as a proportion of chromosome length, are chromosomes
2B and 6B; both these chromosomes contain introgressions that distort genetic
inheritance.

The haplotype blocks on chromosome 2B are particularly interesting. Figure
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S11 shows the average sizes of the haplotype blocks, classified according to their
underlying genotype. The influence of the Sr36 introgression is obvious in the
much larger size of the Baxter haplotype blocks. Figure S11 also shows an
interesting spike in the average size of the Volcani haplotype blocks around 400
cM. This is difficult to interpret, as the difference seems to be due to a decrease
in the number of small Volcani haplotype blocks at around 400 cM.

The results of performing QTL mapping, using the number of recombination
events as a trait, are shown in Tables S4 - S7. For the number of recombination
events on the B subgenome, the number of recombinations on chromosomes
2B and 6B was excluded, as these chromosomes are known to have large in-
trogressions. QTL mapping was performed with these four traits, using the
whole-genome approach [Verbyla et al., 2014]. We report only those QTL which
explain over 1% of the phenotypic variance.

We found QTL explaining a total of 50.28%, 73.05% and 20.27% of variance
for the A, B and D sub-genomes, respectively, and 37.37% for the whole genome.
For the A subgenome, positions on the first half of chromosome 1A are highly
significant, as are positions at the start of chromosome 3A. For the B subgenome,
we find extremely large effects on chromosomes 5B and 7B. For the D genome,
there are significant positions on chromosomes 3D and 7D. For the genome
as a whole, we identify QTL on chromosomes 2A, 2B, 5B and 7B; recall that
recombination on chromosome 2B was not counted as part of the B-subgenome
recombination trait, but is included in the number of recombination events
across the whole genome.

There is potential for very significant confounding effects when analysing
recombination as a trait. The trait is a function of the imputed genotypes, as
the trait is a count of the number of times the imputed genotype changes. If such
confounding is present, we would expect to detect QTL that are artifacts of this
functional relationship, and would have no meaning in terms of the underlying
genetics. These would be likely to appear as QTL on a particular subgenome
associated with variance for recombination events on the same subgenome. To
check this, we simulated genetic data according to our pedigree and genetic
map. We then counted recombination events for each line from the simulated
data, and performed QTL mapping using the simulated trait and genetic data.
We found that all detected QTL from simulated data explained less than 1%
of the phenotypic variance, and also found no tendency for QTL for specific
subgenome recombination traits to be on the same subgenome. This suggests
that confounding effects are minimal in our analysis.

Another potential source of error in determining the number of recombina-
tions could be incorrect marker ordering. If the marker ordering were wrong,
we might see the imputed underlying genotype switch repeatedly between two
genotypes. By contrast, in the correct ordering, the imputed underlying geno-
type might only change once. This badly ordered genetic region might then be
detected as a QTL for recombination.

We do not believe that these errors contribute meaningfully to our results.
Our genotype imputation method uses an error model, which can consider such
repeated changes to be less likely than genotyping error, especially if the re-
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peated changes happen in a small genetic region. Also, the artificially increased
recombination would only occur within lines which actually had a recombina-
tion event within the badly ordered region. The number of such lines will be
small, limiting the effect, because in regions with a large number of recombi-
nation events, genetic markers are easier to order. For these reasons, marker
ordering errors are unlikely to reach high significance, especially for the whole-
genome trait. By contrast, we find very highly significant effects; the QTL on
chromosome 2B explain over 12% of genome-wide variation in recombination,
and the QTL on chromosome 7B explain over 5% of genome-wide variation in
recombination.

Analysis of a nested association mapping (NAM) population of 1,983 lines
has previously found that variation in recombination is explained by a large
number of rare alleles with small effects [Jordan et al., 2018]. In that NAM
population, the average effect size was around 6.5% of variance explained,
regardless of which trait was used. Accounting for the fact that our effects are
estimated as spread over a number of genetic intervals, the QTL we report here
are somewhat larger. We note that chromosome 7B was found to have the most
QTL in the NAM population, with a region of 50 - 60 cM being identified as
important in three separate biparental families. Excluding the 2B introgression,
we also found that 7B had QTL with the largest effect, in approximately the
same genetic region.

One possible reason for the larger effect sizes in our MAGIC population is
the much higher genetic complexity; in our population all genetic variability is
incorporated in a single population, whereas the NAM population is a collection
of individual populations. Ultimately, this makes it difficult to draw direct
comparisons.

Segregation distortion

Subpopulation AC-Barrie Alsen Baxter Pastor Volcani Westonia Xiaoyan Yitpi
All 0.08 0.09 0.26 0.14 0.11 0.09 0.14 0.09
MP8RIL 0.09 0.09 0.23 0.13 0.12 0.10 0.14 0.10
AIC2RIL 0.07 0.08 0.30 0.16 0.07 0.09 0.14 0.10
AIC3RIL 0.07 0.07 0.27 0.16 0.08 0.10 0.16 0.07

Table 1: Genetic composition at position 311 cM on chromosome 2B, which has
the highest rate of Baxter alleles on chromosome 2B.

Main effects:

Individual markers displaying distortion of segregation from that expected under
Mendelian assumptions may indicate genotyping error. However, large groups
of distorted markers may indicate biologically relevant phenomena, such as in-
trogressions or translocations of genetic material. We have previously demon-
strated that such regions can be mapped successfully in MAGIC populations
[Huang et al., 2012, Shah et al., 2014].
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Figure 1: Average genetic composition across the entire population, for
chromosomes 2B (left) and 6B (right).

Figure S12 gives a plot of the chi-squared statistics, testing for segregation
distortion at the identity-by-descent level. We note (Table S1, Figure 1) a large
region of segregation distortion on Chr 2B. At the most distorted point on
chromosome 2B, Baxter is inherited by 26% of the final population, instead of
the expected 12.5%. At the most distorted point, the chi-squared test statistic
for this effect is 705, and the associated P-value is numerically equal to 0.
In light of this P-value, and the presence of distortion across a large region
of chromosome 2B, it is clear that this is real genetic effect. This distortion
identifies an introgression known as Sr36 [Tsilo et al., 2008], which is contributed
by the parent Baxter and is known to undergo meiotic drive.

Based on cytogentic analysis of Baxter (personal communications Cavanagh)
the long arm of Chromosome 2B is replaced with 2G for Triticum Timopheevi.
[Badaeva et al., 1996] showed that Chromosome 2G substituted for 2B at a fre-
quency higher than expected, and suggested it may carry putative homoeoalleles
of gametocidal genes present on group-2 chromosomes of several alien species.
Chromosome 2G is recovered at a higher than expected frequency in the progeny
of a hexaploid derivative of a cross between wheat and T. araraticum that was
heterozygous for chromosomes 2G and 2B [Brown-Guedira et al., 1996].

The markers on chromosome 2B with the highest distortion are located be-
tween 299 cM and 322 cM in our map. This region was identified by first
manually choosing ten markers known to be part of the introgression. These
markers were all specific for the Baxter allele, and highly distorted. We then
identified other markers specific for the Baxter allele, which were extremely
strongly linked to the initial ten. As shown in Figures S4 and S5, this region
contains a large number of markers.

The proportion of lines containing the introgression appears to depend on
the number of generations of intercrossing (Table 1). It is clear that lines with
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Baxter Other
Sr36 0.39 0.61

1B, 150 cM 0.27 0.73
1A, 150 cM 0.31 0.69
5B, 150 cM 0.22 0.78

(a) Genetic composition of AIC2 lines at a position, for which a related AIC3 line has
a Baxter genotype at the same position.

Baxter Other
Sr36 0.20 0.80

1B, 150 cM 0.13 0.87
1A, 150 cM 0.12 0.88
5B, 150 cM 0.12 0.88

(b) Genetic composition of AIC2 lines at a position, for which a related AIC3 line has
a non-Baxter genotype at the same position.

Table 2: Genotypes of subsets of AIC2 lines, at several positions.

Subpopulation AC-Barrie Alsen Baxter Pastor Volcani Westonia Xiaoyan Yitpi
All 0.13 0.11 0.15 0.11 0.04 0.18 0.12 0.15
MP8RIL 0.12 0.12 0.15 0.11 0.05 0.19 0.12 0.15
AIC2RIL 0.13 0.14 0.15 0.12 0.03 0.20 0.09 0.13
AIC3RIL 0.15 0.09 0.16 0.14 0.02 0.17 0.11 0.17

Table 3: Genetic composition at position 190 cM on chromosome 6B, which has
the lowest rate of Volcani alleles on chromosome 6B.

intercrossing carry the introgression more frequently than those without in-
tercrossing. It would also be expected that AIC3RIL lines should carry the
introgression more frequently than AIC2RIL lines, but this is not observed; this
may be due to the smaller sample size for the AIC2RIL and AIC3RIL subpop-
ulations, compared to the MP8RIL subpopulation.

We also looked at the proportion of AIC2RIL lines carrying the introgression,
out of those AIC2RIL lines for which a related AIC3RIL line carried the intro-
gression (Table 2a). These AIC2RIL lines carry a Baxter allele at a much higher
rate than on other non-distorted chromosomes. Similarly for those AIC2RIL
lines without a related AIC3RIL line carrying the introgression (Table 2b).

The presence of the introgression makes estimated recombination fractions
somewhat unreliable, despite our use of a correction. As the estimation of map
distances is based on estimated recombination fractions, this has the effect of
inflating the length of chromosome 2B. Without a reliable model of genetic
inheritance, there is little that can be done to fix this, short of rescaling the
positions of all markers on that chromosome. The high marker density also
contributes to the inflated length of this chromosome.

On chromosome 6B, Volcani is under-represented across most of the chro-
mosome, being present in 4.2% of the final lines at position 190 cM, which is

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/594317doi: bioRxiv preprint 

https://doi.org/10.1101/594317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subpopulation AC-Barrie Alsen Baxter Pastor Volcani Westonia Xiaoyan Yitpi
All 0.09 0.10 0.19 0.09 0.09 0.19 0.07 0.17
MP8RIL 0.10 0.10 0.19 0.09 0.10 0.18 0.08 0.17
AIC2RIL 0.08 0.10 0.18 0.09 0.07 0.20 0.10 0.18
AIC3RIL 0.08 0.11 0.19 0.07 0.09 0.23 0.05 0.18

Table 4: Genetic composition at position 308 cM on chromosome 6B, which has
the highest rate of Baxter alleles on chromosome 6B.

the point on 6B with the lowest rate of Volcani alleles. Westonia alleles are
also inherited more frequently than expected, at this point. Table 3 shows the
genetic composition of the population at 190 cM on chromosome 6B, for the
entire population and all three subpopulations. The proportion of Volcani alle-
les decreases as the number of generations of intercrossing increases, with only
2% of AIC3RIL lines carrying the Volcani allele. This suggests that the Volcani
allele is inherited less than 50% of the time in every generation.

The chi-squared test statistic for distortion at 190 cM on chromosome 6B
is 325, and the associated P-value is numerically equal to 0. In light of this
P-value, and the presence of distortion across a large region of chromosome 6B,
it is clear that this effect is statistically significant. As the distortion occurs
almost chromosome-wide, it is not possible to determine the position of any
genetic cause.

There is a further distortion on 6B, specific to the end of the chromosome.
We estimate the position of this distortion as 308 cM. At this position, the Bax-
ter, Westonia and Yitpi alleles are all inherited more frequently than expected.
Table 4 gives the genetic composition at this point, for the entire population
and all three subpopulations. Interestingly, additional generations of intercross-
ing seem to increase the proportion of Westonia alleles. One potential cause
for segregation distortion on Chromosome 6B could be the introgression from
wild emmer wheat (Triticum turgidum ssp. dicoccoides) present in the Volcani
founder which carries the NAM-B1 gene, also known as GPC-B1 [Uauy et al.,
2006, Distelfeld et al., 2012].

Other localised regions of segregation distortion occur on chromosomes 2D,
4A and 7D. The most distorted point on chromosome 2D occurs at 155 cM;
this is likely due to a genetic interaction (discussed in the next seciton). Ta-
ble S8 gives the genetic composition at 155 cM. The most distorted point on
chromosome 4A occurs at 136 cM; Table S9 gives the genetic composition at
this point. The most distorted point on chromosome 7D occurs at 72 cM; Table
S10 gives the genetic composition at this point. The effect on chromosome 7D
may be due to a funnel effect; see the discussion of segregation due to funnel
effects. There is another region of distortion at the end of chromosome 7D, at
238 cM. The genetic composition at this second position on chromosome 7D is
substantially different to the composition at the first distorted position. There
is also evidence for distortion on chromosomes 1D and 5A.

The P-values for a test for distortion are numerically equal to 0 for the lo-
calised distortions on chromosomes 2D, 4A and 7D. For localised distortion,
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P-values should be interpreted extremely cautiously. They may, for example,
indicate mapping or genotyping errors, which invalidate the underlying assump-
tions [Greenland et al., 2016]. Our use a genotyping error rate parameter in
haplotype probability computation and imputation tends to guard against these
types of errors.

Pairwise effects:

Interactions were identified as “significant” if the P-value was smaller than
10−9.5; this fairly strict threshold was chosen to account for multiple hypothesis
testing. There are two significant interactions.

The first is between position 445 cM on chromosome 2B and position 127 cM
on chromosome 2D. Although we give the most significant position, the range
of locations for which this interaction is significant is very large, especially on
chromosome 2B. A table showing the most significant 2B-2D interaction is given
in Table S12. A visual representation of the interaction is shown in Figure S13,
where colour represents the observed frequency as a multiple of the expected
frequency under independence. Dark blue represents combinations present much
more frequently than expected under independence. We see that lines with
Baxter alleles at both locations occur much more frequently than expected. We
also see that lines with a Baxter allele on chromosome 2B and a Xiaoyan allele
on chromosome 2D occur much less frequently than expected. We note that the
segregation distortion detected at 155 cM on chromosome 2D may be caused by
the interaction term detected here.

This interaction might be due to an issue with marker calling for markers
on chromosomes 2B and 2D. The large segment of Timopheevi intrgrogression
(most of the long arm of 2B) means that the Aestivum 2B chromosome is
missing. So the normal hybridisation state for many 2D markers will appear to
have a lower copy number and potentially a theta shift. The interaction might
also be due to an issue with the map construction process, with some markers
being mapped to the wrong chromosome. However, an extensive search for
mapping errors failed to identify problems that could be responsible for this
interaction.

The second significant interaction is between chromosomes 2B and 6B, and
occurs over a more limited region. The location on chromosome 6B (306 cM) is
almost the same as one of the locations identified for a main effect, so a genetic
interaction may be the cause of that main effect. Table S13 shows the joint
distribution of the underlying alleles at position 306 cM on chromosome 6B and
position 462 cM on chromosome 2B. A visual representation of the interaction
is shown in Figure S14.

The nominal significance threshold of 10−9.5 is extremely conservative, and
there are likely to be other interaction terms. This conversatism is necessary
because, in our experience, markers polymorphic on multiple chromosomes can
introduce an erroneous (yet highly significant) interaction. Using the Bonferroni
correction to account for the 22,992,937 tests results in an adjusted significance
threshold of 0.0073. The Bonferroni correction is likely to be extremely conser-
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vative in this case. Use of P-values assumes correctness of the genetic map and
the marker calling process; P-values should be used with caution.

Sex-specific effects:

A plot of the chi-squared test statistics for the presence of a sex-specific effect
is shown in Figure S16, for every founder and every position. There is one very
clear effect on chromosome 6B, related to the sex of the Westonia line in the
initial cross. The most significant position for this effect is 158 cM. At this
point, the Westonia allele is present in 19% of lines. For lines where Westonia
is always a maternal contribution, the Westonia allele is present in 9% of lines.
For lines where Westonia is always a paternal contribution, the Westonia allele
is present in 29% of lines. The nominal P-value of this effect (ignoring multiple
testing) is 8.32 × 10−10.

AC-Barrie Alsen Baxter Pastor Westonia Xiaoyan Yitpi
0.12 0.15 0.18 0.10 0.01 0.02 0.03

Table 5: Proportion of Volcani alleles present at location 0 cM on chromosome
6B, if Volcani is crossed with the specified founders in the first generation. If
Volcani is crossed with Westonia, Xiaoyan or Yitpi in the initial cross, then the
haplotype at 0 cM on chromosome 6B is highly unlikely to be contributed by
Volcani.

AC-Barrie Alsen Baxter Volcani Westonia Xiaoyan Yitpi
0.11 0.15 0.01 0.13 0.10 0.11 0.01

Table 6: Proportion of Pastor alleles present at location 299 cM on chromosome
3B, if Pastor is crossed with a specific founder in the first generation. If Pastor
is crossed with Baxter or Yitpi in the initial cross, then the haplotype at 299
cM on chromosome 3B is highly unlikely to be contributed by Pastor.

AC-Barrie Alsen Baxter Volcani Westonia Xiaoyan Yitpi
0.13 0.13 0.01 0.09 0.12 0.11 0.01

Table 7: Proportion of Pastor alleles present at location 12 cM on chromosome
7D, if Pastor is crossed with a specific founder in the first generation. If Pastor
is crossed with Baxter or Yitpi in the initial cross, then the haplotype at 12 cM
on chromosome 7D is highly unlikely to be contributed by Pastor.

Funnel effects:

Next, we consider effects relating to the specific combinations of founders in
the original cross (funnels). A plot of the chi-squared test statistics for every
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founder is shown in Figure S17. There is an obvious effect relating to founder
Volcani on chromosome 6B, which appears to occur chromosome-wide. Table 5
shows the effect at position 0 cM, which is one of the places where the P-value
of the effect is numerically zero. If founder Volcani is crossed with Westonia,
Xiaoyan or Yitpi in the first generation, then the haplotype on 6B is extremely
unlikely to contain any Volcani alleles. If Volcani is crossed with Baxter in
the initial cross, then inheritance of Volcani alleles on 6B is inflated. Table 5
understates the size of the effect, particularly with respect to Westonia / Volcani
crosses. Out of 355 MP8RIL lines that cross Westonia and Volcani in the first
generation, only 1 has greater than 0.2 probability of having a Volcani allele at
0 cM. It is possible that no lines from these crosses carry a Volcani allele at this
position.

As the Volcani funnel effect on chromosome 6B occurs chromosome-wide, it
also occurs at the location on chromosome 6B where we previously detected seg-
regation distortion (308 cM), and at the location where we previously detected
an interaction term (306 cM). It is possible all three of these effects have the
same underlying genetic cause.

There are two slightly less significant effects relating to Pastor. The first is
at 299 cM on chromosome 3B, with a nominal P-value of 3.1 × 10−13. Table
6 shows the chromosome 3B effect; if Pastor is crossed with Baxter or Yitpi
in the first generation, then it is unlikely to find a Pastor allele at 299 cM on
chromosome 3B. Out of 341 MP8RIL lines that cross Pastor and Yitpi in the
first generation, only 5 lines have greater than 0.5 probability of having a Pastor
allele at 299 cM. Out of 332 MP8RIL lines that cross Pastor and Baxter in the
first generation, only 2 lines have greater than 0.5 probability of having a Pastor
allele at 299 cM.

There is another effect relating to Pastor on chromosome 7D at position 12
cM, with a nominal P-value of 8.0 × 10−12. Table 7 shows the chromosome 7D
effect; if Pastor is crossed with Baxter or Yitpi in the first generation, then
it is unlikely to find a Pastor allele at 12 cM on chromosome 7D. Out of 341
MP8RIL lines that cross Pastor and Yitpi in the first generation, only 4 lines
have greater than 0.5 probability of having a Pastor allele at 12 cM. Out of 332
MP8RIL lines that cross Pastor and Baxter in the first generation, only 3 lines
have greater than 0.5 probability of having a Pastor allele at 12 cM.

It is highly unlikely for a funnel effect to arise by chance; most types of
errors (e.g. mapping errors, genotyping errors) would not cause such an effect.
So the effects on chromosomes 3B and 7D represent at least one funnel effect.
But the funnel effects on chromosomes 3B and 7D appear very similar; it is
concievable that there is only a single effect which, due to a mapping error,
(wrongly) appears in two different regions. The most significant interaction
between positions 295 cM - 303 cM on chromosome 3B and positions 8 cM - 16
cM on chromosome 7D has a P-value of 0.24. This suggests that there may be
two separate effects.
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Heterozygosity

Figure S18 shows the distribution of the proportion of residual heterozygosity,
as determined by the Viterbi algorithm. There are 75 lines with a proportion or
residual heterozygosity greater than 0.2. This is likely due to mistakes during
the selfing stages of the pedigree, where a line was outcrossed instead of being
self-pollinated; it is difficult to guarantee that selfing occurs.

The proportion of residual heterozygosity identified by the Viterbi algorithm
was 0.0146 for the MP8RIL lines, 0.034 for the AIC2RIL lines and 0.0273 for
the AIC3RIL lines. The theoretical expected residual heterozygosity propor-
tions are 0.0312 without intercrossing, and 0.0273 with intercrossing. While the
values for the AIC2RIL and AIC3RIL populations roughly agree with the the-
oretically expected proportion, the MP8RIL subpulation contains substantially
less residual heterozygosity than expected.

Conclusion

We have presented a large, densely genotyped, high-resolution mapping pop-
ulation and demonstrated its use for a variety of investigations providing new
insight into genomic structure in wheat. We have validated a high-density map
with the highest resolution currently available in any single wheat population,
and used it to identify recombination breakpoints and characterize regions of
segregation distortion.

We have identified numerous regions which display distortion in a general
sense. In some cases this is due to introgressions (e.g., Chr. 2B). Chromosome
6B is particularly interesting, as we find evidence for segregation distortion, an
interaction term, a sex-specific effect and a funnel effect. It is unclear how many
underlying genetic causes there are for these effects; potentially, there could be
a single causal locus, however the effects identified could have significant impli-
cations on breeding programs selecting for the GPC locus on 6B. Identification
of these types of genetic effects is vital for translational research in crops, as it
leads to a deeper understanding of genomic structure and its influence on breed-
ing decisions. This population provides a high-value genetic resource useful for
better understanding basic wheat genetics and improving the crop.

In the map presented in this paper, we have excluded markers that are poly-
morphic on more than one chromosome. However, it is feasible to map such
markers to multiple locations. As the positions of these markers on different
chromosomes are likely to be related, they are particularly useful for under-
standing homeoallele effects and contributions to phenotypes. It is also possible
to use the constructed genetic map to identify and call additional marker alleles,
for currently mapped markers.

Here we have focused on analysis of genomic structure facilitated by the large
number of lines genotyped at high density. This population has undergone phe-
notyping for a large number of traits, which almost always display transgressive
segregation. In future studies we hope to gain some insight into the effect of
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segregation distorting genetic effects on phenotypic performance.
By building on the foundation presented here with further investigation of

how the genomic structure contributes to phenotypic diversity, we expect that
our understanding of the importance of structural diversity in wheat can be
better understood and utilised for wheat improvement.

Methods

Population

The population is divided into the three subpopulations shown in Figure 3. For
each subpopulation the pedigree has three stages, as described in [Valdar et al.,
2006]. In the first stage, mixing, the parent genomes are combined together over
three generations of mating. In the first generation, 28 crosses were made in a
single direction (no reciprocal crosses). In the second generation, 210 crosses
were made in a single direction. In the third generation, 589 distinct crosses
were created, including reciprocal crosses in 276 cases. All unique combinations
of founders, referred to as funnels are shown in Figure 2, divided by each stage
of the mixing process. The G3 individuals were common to all subpopulations
and encompassed 313 of the 315 unique combinations possible for an eight-way
population, excluding reciprocal crosses. Figure S19 shows the structure of
the funnels, and the level of representation of each funnel at each stage in the
final population. In the second stage, maintenance or intercrossing, individuals
from different funnels were intercrossed to generate additional recombination
between genome segments. There were 293, 286 and 745 lines in the first,
second and third generations of intercrossing, respectively. Finally, in the third
stage, inbreeding, individuals were selfed for five generations. In all, there were
2151 distinct crosses made to generate the complete population.

The first subpopulation (MP8RIL) contained 2381 lines generated using mix-
ing and selfing, but no generations of intercrossing. Of the possible 315 unique
funnel combinations, 311 were used in the MP8RIL subpopulation. The sec-
ond subpopulation (AIC2RIL) contained 286 lines generated using two genera-
tions of intercrossing prior to inbreeding. The third subpopulation (AIC3RIL)
contained 745 lines generated using three generations of intercrossing prior to
inbreeding.

Genotyping and map construction

A preliminary map was constructed using five steps; genotype calling, recom-
bination fraction estimation, linkage group identification, marker ordering, and
map estimation. These steps were performed using R packages mpMap2, mpMap-
Interactive2 and magicCalling. Package mpMap2 [Shah and Huang, 2019] is an
R package for map construction using multi-parent crosses, and is an updated
version of mpMap [Huang and George, 2011]. Package mpMapInteractive2
[Shah, 2019] is a package for interactively making manual changes to linkage
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Figure 2: Radial representation of all 559 funnels used to generate the M8
RILs. An example single funnel is shown in the inset. Each ring in the
figure represents a plant in each stage of the crossing strategy. The first,
most central ring is the maternal founder in the first round of crossing.
The second ring is the paternal founder in the first round. The third ring
shows the founder makeup of the paternal 2-way line used in the second
round of crossing. The outermost ring shows the founder makeup of the
paternal 4-way line in the third round of crossing.
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Figure 3: Schematic of the different branches of the three sub-populations.
Genotyped individuals are shown in black. Levels indicate generations of
crossing; individuals of the same color have undergone similar breeding
up to that stage of the pedigree; S* indicates generation of selfing. M8
lines undergo only mixing of the parents and inbreeding; AIC2 and AIC3
lines undergo two and three additional generations of intercrossing prior
to inbreeding, respectively. This schematic represents a single funnel for
each sub-population type.
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groups and marker ordering, during the map construction process. Package
magicCalling contains code used for SNP calling. Unless otherwise noted, all R
functions are contained in mpMap2.

After the preliminary map was constructed, the map was improved incre-
mentally, until a final map was constructed, and it is this final version that is
discussed in this paper. It is not possible to construct a genetic map in a sin-
gle pass, as some types of improvements can only be made after a preliminary
map has been constructed. For example, some marker calling errors cannot
be accurately identified without a genetic map; see Figures S3a - S3c for an
example.

Genotype calling:

Each marker was first processed using the data normalization approach of Gen-
Call [Peiffer et al., 2006], and then converted to the polar coordinates (r, θ).
Markers were called using either DBSCAN [Ester et al., 1996] or the hierarchi-
cal Bayesian clustering (HBC) model described in [Shah and Whan, 2018]. The
HBC model is implemented using the JAGS library [Plummer, 2015]. It has
the advantage of calling heterozygotes, but the disadvantage that it cannot be
applied if there are more than two marker alleles. This can occur if there are
secondary polymorphisms at the target location, or if a marker is polymorphic
at multiple locations on the genome. We chose parameters for the HBC method
that resulted in fairly aggressive calling of heterozygotes.

DBSCAN can identify more than two marker alleles for a single marker.
However it cannot identify heterozygotes, and has two parameters (minPts and
ε) that must be specified manually for each marker.

These methods have advantages over the GenCall algorithm implemented in
Illumina GenomeStudio; DBSCAN can call more than two marker alleles, while
the HBC approach can call heterozygotes.

We performed genotype calling by first applying HBC to every marker. We
identified monomorphic markers, and lines that had a high error rate. These
lines were removed, and HBC was reapplied to the polymorphic markers. A
subset of the fitted HBC models were reviewed manually, based on some simple
heuristics. Reasons for needing to review a marker included non-convergence
of the MCMC algorithm used to fit the HBC model, an unreasonably high
rate (>0.06) of heterozygote calls, or the presence of more than two marker
alleles. If more than two marker alleles were found, DBSCAN was used to
define clusters. Both DBSCAN and the HBC model are implemented in the
magicCalling package.

Estimation of recombination fractions:

Recombination fractions between all 437,059,395 pairs of called markers were
estimated using the function estimateRF. Estimation was performed using nu-
merical maximum likelihood, with 61 possible recombination fraction values.
This step took 14 hours, and required 300GB of memory. Chromosome 2B car-
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ries the Sr36 introgression from Triticum timopheevi [Tsilo et al., 2008], which is
known to distort genetic inheritance. This was corrected for in later steps, using
the weighting method described in [Shah et al., 2014]. The weight assigned to
a particular line depended not only on whether the introgression was present or
absent, but the number of generations of intercrossing.

Construction of linkage groups:

The set of all markers was divided into 400 smaller groups, by applying hier-
archical clustering to the matrix of recombination fractions, using the function
formGroups. The underlying implementation comes from the fastcluster pack-
age [Müllner, 2013]. These small groups were then aggregated by hand using
mpMapInteractive2, resulting in 29 groups of appreciable size (> 10 markers).
The linkage groups corresponding to the 21 chromosomes were identified based
on the consensus map [Wang et al., 2014]. In some cases it was difficult to
identify the correct linkage group for a chromosome, especially for the D chrom-
somes.

Marker ordering:

Ordering of chromosomes proceeded in three steps. The first step was performed
using the clusterOrderCross function. Each chromosome was divided into 30
subgroups using hierarchical clustering. These subgroups were used to define a
30×30 matrix, where each entry was the average of the recombination fractions
between markers in those subgroups. The 30 subgroups were automatically
ordered by applying anti-robinson serialization [Brusco et al., 2007, Hahsler
et al., 2008] to this 30 × 30 matrix. At the end of this step, the ordering of
markers within a subgroup is still arbitrary. An example of this step is shown
in Figures S20a - S20c.

The second step was the ordering of markers within chromosomes, using the
orderCross function. This function applies a modified version of anti-robinson
serialization to the matrix of recombination fractions. Standard anti-robinson
serialization allows global changes to the marker ordering. The modified version
only makes local changes to the ordering, and is therefore computationally much
faster. The result of this step is shown in Figure S20d.

The third step was manual changes made using the mpMapInteractive2
package, based on visual inspection of the recombination fraction heatmaps.

Map distance estimation:

Map distance estimation was performed by forming a collection of equations,
and approximately solving them using non-linear least squares. These equations
allow the genetic distances between pairs of markers, which are not adjacent in
the chosen ordering, to be used as part of the estimation process. Consider the
case where there are three markers, known to be in the correct order. If the ma-
trix of estimated genetic distances (obtained from the estimated recombination
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fractions) is  0 5 15
5 0 7
15 7 0

 ,

then the matrix equation to be solved is 1 0
1 1
0 1

( a1
a2

)
=

 5
15
7

 ,

where a1 is the distance between the first and second markers, and a2 is the
distance between the second and third markers. This method of estimating
the genetic map is implemented by the estimateMap function. See [Shah and
Huang, 2019] for further details.

Incremental changes:

After an initial map was constructed, it was improved incrementally, resulting
in the map presented in this paper. Incremental changes are necessary, as some
improvements are only possible after a preliminary map has been produced.
Three types of incremental changes were made. The first was the deletion of
markers that were found to be badly called (based on visual inspection of the
HBC models), or polymorphic on multiple chromosomes. The second was the
addition of markers that could be localised to specific genetic regions, using the
preliminary genetic map and a qtl-mapping approach, with marker data being
used as a trait.

The third was the identification of ‘dangling’ linkage groups, as being part
of a specific chromosome. In particularly marginal cases, we relied on the the
International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0
sequence.

Recombination

Recombination events were imputed by assuming a hidden Markov model (HMM)
for the identity-by-descent genotypes. This assumption is not exact, but is
known to be highly accurate as long as the distances between consecutive mark-
ers are not large. The HMM assumption allows the application of the Viterbi
algorithm to impute the most likely underlying genotype, for each line, in-
cluding imputation of heterozygosity. The Viterbi algorithm is implemented
in mpMap2. We used an error parameter of 0.1. The underlying probability
computations build on previous published work [Teuscher and Broman, 2007,
Broman, 2012].

Segregation Distortion

We ignored marker heterozygotes throughout our asessment of segregation dis-
tortion.
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Main effects

We performed tests for segregation distortion at a locus as follows. For each
potential genotype at that position, we computed the average, over all genetic
lines, of the probability that this genotypes occured in each line. These values
are then arranged into a vector, and the standard chi-squared test for indepen-
dence was performed.

This statistic is generated from a “contingency table” of non-integer values,
however it is still a valid test (central limit theorem). We applied this test for
all genetic locations, using a 1 cM grid of equally spaced points.

Pairwise effects

Genomic incompatibilities between parents can be detected by further analysis
of segregation distortion on the level of interactions. We performed tests for
the presence of interactions between a pair of genetic locations as follows. For
each potential combined genotype at these positions, we computed the average,
over all genetic lines, of the probability that these genotypes occured in each
line. These values are then arranged into a 8 × 8 matrix, and the standard
chi-squared test for independence was performed. An example of the matrix
used in this test is shown in Table S12. The top-left value is the average over
all genetic lines of P (L1 = AC-Barrie, L2 = AC-Barrie), where L1 and L2 are
genetic locations. In this case the value is around 0.01.

This statistic is generated from a “contingency table” of non-integer values,
however it is still a valid test. We applied this test for all pairs of genetic
locations on different chromosomes, using a 1 cM grid of equally spaced points.

Sex-specific effects

We also investigated segregation distortion that occurs in specific cross combi-
nations (funnels). For each line in the MP8RIL subpopulation, one founder was
maintained as a maternal contribution in every cross, and one was maintained as
a paternal contribution in every cross. For each founder f , we took two subsets
of the MP8RIL population - those which had f as only a maternal contribution,
and those which had f as only a paternal contribution. For each genetic loca-
tion on the 1 cM grid considered previously, we performed a chi-squared test
for the presence of a sex-specific effect on the inheritance of f . Similar to the
interactions, these tests were based on sums of haplotype probabilities.

Funnel effects

Another cause of segregation distortion is potential incompatibilities between
pairs of founders in the initial cross, which may lead to segregation distortion
in the final generation. For each founder f , we separated the MP8RIL lines
into seven groups, based on the founder which was crossed with f in the first
generation. We ignored the sex of f when forming these groups. We then
performed a chi-squared test for differences in genetic inheritance of f between
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these seven groups. This tests the presence of a funnel-specific effect, for the
inheritance of founder f . Similar to the interactions, these tests were based on
sums of haplotype probabilities.
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