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Abstract Living cells proliferate by completing and coordinating two essential cycles, a division9

cycle that controls cell size, and a DNA replication cycle that controls the number of chromosomal10

copies in the cell. Despite lacking dedicated cell cycle control regulators such as cyclins in11

eukaryotes, bacteria such as E. colimanage to tightly coordinate those two cycles across a wide12

range of growth conditions, including situations where multiple nested rounds of replication13

progress simultaneously. Various cell cycle models have been proposed to explain this feat, but it14

has been impossible to validate them so far due to a lack of experimental tools for systematically15

testing their different predictions. Recently new insights have been gained on the division cycle16

through the study of the structure of fluctuations in growth, size, and division in individual cells. In17

particular, it was found that cell size appears to be controlled by an adder mechanism, i.e. the18

added volume between divisions is held approximately constant and fluctuates independently of19

growth rate and cell size at birth. However, how replication initiation is regulated and coupled to20

cell size control remains unclear, mainly due to scarcity of experimental measurements on21

replication initiation at the single-cell level. Here, we used time-lapse microscopy in combination22

with microfluidics to directly measure growth, division and replication in thousands of single E. coli23

cells growing in both slow and fast growth conditions. In order to compare different24

phenomenological models of the cell cycle, we introduce a statistical framework which assess their25

ability to capture the correlation structure observed in the experimental data. Using this in26

combination with stochastic simulations, our data indicate that, instead of thinking of the cell cycle27

as running from birth to division, one should consider the chromosome replication cycle as central28

and in control of the cell cycle through two adder mechanisms: the added volume since the last29

initiation event controls the timing of both the next division event and the next replication initiation30

event. Interestingly the double-adder mechanism identified in this study has recently been found31

to explain the more complex cell cycle of mycobacteria, suggesting shared control strategies across32

species.33

34

Introduction35

Across all domains of life, cell proliferation requires that the chromosome replication and cell36

division cycles are coordinated to ensure that every new cell receives one copy of the genetic37

material. While in eukaryotes this coordination is implemented by a dedicated regulatory system in38

which genome replication and division occur in well-separated stages, no such system has been39
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found in most bacteria. This suggests that the molecular events that control replication initiation40

and division might be coordinated more directly in bacteria, through molecular interactions that41

are yet to be elucidated. The contrast between this efficient coordination and the apparent absence42

of a dedicated regulatory system is particularly remarkable since most bacteria feature a unique43

replication origin which imposes that multiple rounds of replication occur concurrently in fast44

growth conditions. For example, in the specific case of E. coli that we study here, it has long45

been known that growth rate, cell size, and replication initiation are coordinated such that the46

average number of replication origins per unit of cellular volume is approximately constant across47

conditions (Donachie, 1968) or that cellular volume grows approximately exponentially with growth48

rate (Taheri-Araghi et al., 2017). Although several models have been proposed over the last decades49

to explain such observations, so far direct validation of these models has been lacking, due to a50

large extent to the lack of quantitative measurements of cell cycles parameters in large samples51

with single-cell resolution.52

Thanks to techniques such as microfluidics and time-lapse microscopy, it has recently become53

possible to perform long-term observation of growth and division in single bacteria. By systemat-54

ically quantifying how cell cycle variables such as size at birth, size at division, division time, and55

growth rate vary across single cells, insights can be gained about the mechanism of cell cycle control.56

Several recent studies have focused on understanding the regulation of cell size, resulting in the57

discovery that E. coli cells maintain a constant average size by following an adder strategy: instead of58

attempting to reach a certain size at division (i.e. a sizer mechanism) or to grow for a given time (i.e.59

a timer mechanism), it was found that cells add a constant length dL to their birth length Lb before60

dividing (Amir, 2014; Campos et al., 2014; Taheri-Araghi et al., 2017). In particular, while the cell size61

at division and the division time correlate with other variables such the cell size at birth and growth62

rate, the added length dL fluctuates independently of birth size and growth rate. A remarkable63

feature of the adder model is its capacity to efficiently dampen large cell size fluctuations caused64

by the intrinsically noisy regulation, without the need for any fail-safe mechanism. This efficient65

strategy has been shown to be shared by various bacterial species as well as by archea (Eun et al.,66

2018) and even some eukaryotes such as budding yeast (Soifer et al., 2016).67

Here we focus on how the control of replication initiation is coordinated with cell size control in E.68

coli. Several models have been proposed to explain how the adder behavior at the level of cell size69

might arise from a coordinated control of replication and division. Broadly, most models assume70

that the accumulation of a molecular trigger, usually assumed to be DnaA, leads to replication71

initiation, which in turn controls the corresponding future division event (Campos et al., 2014; Ho72

and Amir, 2015; Wallden et al., 2016). Subtle variations in how the initiation trigger accumulates73

and how the initiation to division period is set in each model imply distinct molecular mechanisms,74

and thus fundamentally different cell cycle regulations. Specifically, most models assume that75

initiation is triggered either when a cell reaches a critical absolute volume (initiation size, see76

e.g. Wallden et al., 2016) or alternatively when it has accumulated a critical volume since the last77

initiation event (see e.g. Ho and Amir, 2015). In order to explain the coordination between cell cycle78

events, division is often assumed to be set by a timer starting at replication initiation, but recent79

studies have also proposed that the two cycles might be independently regulated (Micali et al.,80

2018a; Si et al., 2019). Finally, it is often assumed that the regulation strategy could be different at81

slow and fast growth where different constraints occur.82

We use an integrated microfluidics and time-lapse microscopy approach to quantitatively char-83

acterize growth, division, and replication in parallel across many lineages of single E. coli cells,84

both in slow and fast growth conditions. We show that insights about the underlying control85

mechanisms can be gained by systematically studying the structure of correlations between these86

different variables. Our single-cell observations are inconsistent with several previously proposed87

models including models that assume replication is initiated at a critical absolute cell volume and88

models that assume division is set by a timer that starts at replication initiation. Instead, the most89

parsimonious model consistent with our data is a double-adder model in which the cell cycle90
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commences at initiation of replication and both the subsequent division and the next initiation of91

replication are controlled by the added volume. We show that this model is most consistent with92

the correlation structure of the fluctuations in the data and, through simulations, we show that93

this model accurately reproduces several non-trivial observables including the previously observed94

adder behavior for cell size control, the distribution of cell sizes at birth, and the distribution of95

the number of origins per cell. Moreover, the same model best describes the data both at slow96

and fast growth rates. As far as we aware, no other proposed model can account for the full set of97

observations we present here.98

Results99

To test possible models for the coordination of replication and division in E. coli we decided to100

systematically quantify growth, replication initiation, and division across thousands of single E.101

coli cell cycles, across multiple generations, and in various growth conditions. To achieve this,102

cells were grown in a Mother Machine type microfluidic device (Wang et al., 2010) and imaged103

by time-lapse microscopy. We used M9 minimal media supplemented with glycerol, glucose or104

glucose and 8 amino acids, resulting in doubling times of 89, 53 and 41 min, respectively. The cell105

growth and division cycles were monitored by measuring single-cell growth curves obtained through106

segmentation and tracking of cells in phase contrast images using the MoMA software (Kaiser et al.,107

2018). The replication cycle was monitored by detecting initiation as the duplication of an oriC108

proximal FROS tagged locus imaged by fluorescence microscopy (Figure 1A). These measurements109

allowed us to quantify each single cell cycle by a number of variables such as the growth rate, the110

sizes at birth, replication initiation, and division, the times between birth and replication initiation111

and the time between birth and division. As done previously, we assume that cell radius is constant112

and use cell length as a proxy for cell volume (Adiciptaningrum et al., 2015; Taheri-Araghi et al.,113

2017). Since we can follow cells over multiple generations, we can also measure quantities that span114

multiple division cycles such as the total time or total cell growth between consecutive replication115

initiation events. As we analyze growth conditions spanning cases with both single and overlapping116

rounds of replication, we defined a consistent way of measuring variables. Noticeably, while the cell117

cycle is classically defined from division to division (Figure 1C), as has been proposed previously118

Ho and Amir (2015); Amir (2017), we use an alternative framework where the cell cycle is defined119

from one replication initiation to the next (Figure 1D). This framework being centered on origins120

of replication rather than on cells, we consequently define a new quantity Λ, the cell length per121

origin, which allows to track the growth allocated to a given origin of replication. For instance, in a122

case where a cell is born with an ongoing round of replication which started at time t, Λi for that123

cell is defined as Λi = Li∕4 where Li is the length of the mother cell which contains four origins124

at time t (Figure 1–Figure Supplement 1). This avoids artificial cut-offs as e.g. done in Wallden125

et al. (2016). In this article, we explore a series of models belonging to these two views of the cell126

cycle. Using the correlation structure of variables, we show how classes of models can be rejected127

entirely. Additionally, we use a more general statistical framework to rank models according to their128

explanatory power.129

Cell size adder130

We first verified whether our measurements support the previously observed adder behavior in cell131

size, and find that added length dL between birth and division is indeed uncorrelated with length132

at birth Lb in all growth conditions (Figure 1B), and, also in agreement with the adder model, the133

heritability of birth length between mother and daughter is characterized by a Pearson correlation134

coefficient of r ≈ 0.5 (see Table 1). With the exception of one study (Wallden et al., 2016), moderately135

slow growth conditions (100 min doubling time) have not been yet tested extensively for adder136

behavior. The fact that we observe it in conditions where replication occurs both in overlapping-137

and non-overlapping modes further highlights its pervasiveness.138
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Figure 1. A. Time-lapse of E. coli cells growing in a single microfluidic channel. Fluorescence signal from FROS
labeling is visible as red spots in each cell. The green dotted line is an aid to the eye, illustrating the replication

of a single origin. B. Consistent with an adder behavior, the added length between birth and division is
uncorrelated with length at birth. C. The classical cell cycle is defined between consecutive division events,
shown here with replication and division for slow growth conditions (i.e. without overlapping rounds of

replication). D. We introduce an alternative description framework where the cell cycle is defined between
consecutive replication initiation events. The observables that are relevant to characterize the cell cycle in these

two frameworks are indicated (see also Table 1).
Figure 1–Figure supplement 1. Schema of the cell cycle and variable definitions for the case of fast growth
with overlapping replication cycles.
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Table 1. Variables definitions.
division-centric replication-centric

measured variables
Lb Size at birth* Λi Size per origin at initial repli-

cation initiation*

Ld Size at division* Λf Size per origin at final replica-
tion initiation*

Tbd Duration between birth and

division

Tif Duration between consecu-

tive replication initiations

Li Size at replication initiation* Λb Size per origin at birth*

Tbi Duration between birth and

replication initiation

Tib Duration between replication

initiation and birth

derived variables
� = 1

Tbd
log

Ld
Lb

Cell growth rate* (between

birth and division)

� = 1
Tif

log
Λf
Λi

Cell growth rate* (between

consecutive replication initi-

ations)

dL = Ld − Lb Division “adder” dΛif = Λf − Λi Replication “adder”

dLbi = Li − Lb Birth-to-initiation “adder” dΛib = Λb − Λi Initiation-to-birth “adder”

Rbd = Ld∕Lb Growth ratio between birth

and division

Rif = Λf∕Λi Growth ratio between con-

secutive initiations

Rbi = Li∕Lb Growth ratio between birth

and initiation

Rib = Λb∕Λi Growth ratio between initia-

tion and birth

* variables indicated by a star are measured from a linear fit of exponential elongation.

Replication initiation mass139

A popular idea dating back to the 1960’s and still often used today to explain the coupling of140

division and replication cycles is the initiation mass model. The observations that cell volume grows141

exponentially with growth rate (Schaechter et al., 1958) and that, across a range of conditions, the142

time between replication initiation and division is roughly constant (Helmstetter et al., 1968) led143

Donachie to propose that the volume per origin of replication is held constant (Donachie, 1968).144

In particular, the model proposes that initiation occurs when a cell reaches a critical volume. A145

simple prediction of this model is that, for a given cell, the cell length Li at which initiation occurs146

should be independent of other cell cycle variables such as the length at birth Lb. However, as147

can be seen in Figure 2A, we observe that the initiation length Li and birth length Lb are clearly148

correlated in all conditions, rejecting the initiation mass model. The absence of an initiation mass149

has been noted recently elsewhere (Micali et al., 2018a). It should be noted, however, that even150

though the single-cell fluctuations show that initiation is unlikely to be triggered by a critical volume151

per origin, the constancy of the average volume per origin at initiation across growth conditions (Si152

et al., 2017) still indicates that initiation is probably regulated through a measure of cell volume.153

Multiple origins accumulation model154

Just as a constant average cell size can be accomplished by adding a constant volume per division155

cycle rather than by dividing at a critical division volume, so a constant average volume per origin of156

replication can also be implemented by controlling the added volume between replication initiations157

rather than by a critical initiation volume. A concrete proposal for such an adder mechanism, called158

the multiple origins accumulation model, has recently received increasing attention (Ho and Amir,159

2015). In this model, a molecule that is expressed at a constant cellular concentration accumulates160
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Figure 2. Models for initiation control. A. The initiation mass model predicts that the length at initiation Li
should be independent of the length at birth Lb. However, we observe clear positive correlations between Li
and Lb in all growth conditions. B. In contrast, the length accumulated between two rounds of replication dΛif
is independent of the initiation size Λi, suggesting that replication initiation may be controlled by an adder
mechanism.
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Figure 3. Initiation to division period. A. Several models assume that a constant time passes from an initiation
event to it corresponding division event. However, within each growth condition, that period is clearly

dependent on fluctuations in growth rate. B. The length accumulated from initiation to division is constant for

each growth condition, suggesting an adder behavior for that period. In A and B, the Pearson correlation

coefficient R and p values are indicated for each condition.

at each origin until it reaches a critical amount, triggering replication, after which it is degraded and161

starts a new accumulation cycle. Given that, for a molecule at constant concentration, the added162

volume over some time period is proportional to the amount produced of the molecule, the result163

of this process is that the cell adds a constant volume per origin dΛif between initiation events164

(with dΛif = Λf − Λi where indexes stand for "initial" and "final" respectively, see Figure 1D and165

Table 1 for more details). If replication is indeed triggered by such an adder mechanism, then one166

would expect the observed added lengths dΛif to be independent of the length Λi at the previous167

initiation. As shown in Figure 2B, our data support this prediction.168

Connecting replication and division cycles169

Having validated the multiple origins accumulation model for replication control, we now investigate170

its relation to the division cycle. A common assumption is that the period Tid from initiation to171

division (classically split into the replication period C and the end of replication to division period D)172

is constant and independent of growth rate (Cooper and Helmstetter, 1968; Ho and Amir, 2015). As173

visible in Figure 3A, while on average Tid is indeed rather constant across growth conditions, within174

each condition fast growing cells clearly complete this period faster than slow growing cells. One175
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Figure 4. The double-adder model postulates that E. coli cell cycle is orchestrated by two independent adders,
one for replication and one for division, reset at replication initiation. Both adders (shown as coloured bars)

start one copy per origin at replication initiation and accumulate in parallel for some time. After the division

adder (green) has reached its threshold, the cell divides, and the initiation adder (orange) splits between the

daughters. It keeps accumulating until it reaches its own threshold and initiates a new round of division and

replication adders. Note that the double-adder model is illustrated here for the simpler case of slow growth.

Figure 4–Figure supplement 1. Average localization of the origin in cells growing in M9 glycerol.

way to model this behavior is to define an empirical relation between growth rate � and Tid (Wallden176

et al., 2016). However, Figure 3B reveals another and arguably simpler solution. We find that177

dΛid = Λd − Λi, the length per origin added by a cell between initiation and division, has an adder178

behavior as well: independently of its size at initiation Li, a cell will complete the corresponding179

division cycle after having accumulated a constant volume per origin dΛid .180

The double-adder model181

These observations motivated us to formulate a model in which the cell cycle does not run from182

one division to the next, but rather starts at initiation of replication, and that both the next initiation183

of replication and the intervening division event, are controlled by two distinct adder mechanisms.184

In this replication-centric view, the cell cycles are controlled in a given condition by three variables:185

an average growth rate �, an average added length per origin dΛif , and an average added length186

dΛid between replication initiation and division. In particular, we assume that these three variables187

fluctuate independently around these averages for each individual cell cycle, and that all other188

parameters such as the sizes at birth, initiation, and the times between birth and division or between189

initiation and division, are all a function of these three fundamental variables. This double-adder190

model is sketched in Figure 4 for the case of slow growth conditions: a cell growing at a rate � and191

of length L initiates replication and thereby starts two adder processes. First, the cell will divide192

when reaching a size nΛd = L + ndΛid = n(Λi + dΛid) where n = 2 is the number of replication origins.193

Second, the next replication round will be initiated at a given origin after the corresponding Λ has194

increased by dΛif .195

Simulations of the double-adder model196

To assess to what extent our double-adder model can recover our quantitative observations,197

we resorted to numerical simulations. We first obtained from experimental data the empirical198

distributions of growth rates �, the added length per initiation dΛif , and the added length between199

initiation and division dΛid . A series of cells are initialized at the initiation of replication, with200

sizes taken from the experimental distributions. For each cell, a growth rate � is independently201
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drawn from its empirical distribution, and values of dΛid and dΛif are drawn from independent202

distributions, to set the times of the next division and replication initiation events. This procedure is203

then iterated indefinitely, i.e a new growth rate and values of each adder are independently drawn204

for each subsequent cycle. As has been observed previously (Campos et al., 2014) the growth rate is205

correlated (r ≈ 0.3) between mother and daughter. Accounting for this mother-daughter correlation206

in growth rate was found not to be critical for capturing features of E. coli cell cycle, but was included207

in the model to reproduce simulation conditions of of previous studies.208

As can be seen in Figure 5, the double-adder model accurately reproduces measured distri-209

butions and correlations at all growth rates. In particular, the global adder behavior for cell size210

regulation naturally emerges from it (Figure 5A). Similarly, the specific relation between length211

at initiation Li and length at birth Lb, which prompted us to reject the initiation mass model, is212

reproduced by the model as well (Figure 5B). Finally, the distribution of the number of origins at213

birth, which reflects the presence of overlapping replication cycles is reproduced as well (Figure 5D).214

An exhaustive comparison between experiments and simulations can be found in Figure 5–Figure215

Supplement 1.216

The double-adder model best captures the correlation structure of the data217

Although our simulations show that the double-adder model, which takes �, dΛid and dΛif as the218

key independently fluctuating quantities, can accurately reproduce our observations, it is less clear219

whether there are not many other models that could reproduce the data equally well? As the space220

of possible models is arguably unlimited, it is difficult to answer this question in full generality.221

However, we can rigorously compare a large class of possible models, by quantitatively comparing222

the correlation structure that each model implies, with the correlation structure evident in the223

data. For example, as noted above, the main argument in favor of a cell size adder model is that,224

whereas birth and division size generally correlate, added volume does not correlate with birth size.225

Similarly, while the time between birth and division correlates with both the added volume and226

the growth rate, growth rate and added volume do not correlate. That is, the evidence in favor of a227

given model can be quantified by the extent to which the key variables of the model are fluctuating228

independently.229

The quantities that are measured directly for each cell cycle are the times and cell sizes at which230

various events take place. If we take a division-centric view, i.e. thinking of each cell cycle as running231

from birth to division, each cell cycle is characterized by four directly measured quantities: the sizes232

at birth Lb, initiation Li, and division Ld , and the doubling time Tbd . Similarly, for a replication-centric233

view, the four directly measured quantities are the sizes per origin at initiation Λi, at birth after the234

subsequent division Λb, and at the next initiation Λf , as well as the time Tif between consecutive235

initiations (Fig.1 C-F). However, these directly measured quantities are highly correlated. The236

correlation structure of the data is captured by the covariance matrix C , with diagonal components237

Cxx corresponding to the variances Vx of each variable x, and the off-diagonal components Cxy238

corresponding to the covariances between pairs of variables (x, y). If one thinks of the collection239

statistics of all single cell cycles as a scatter in 4-dimensional space, then the determinant of the240

covariance matrix D(C) can be thought of as the square of the volume covered by this 4-dimensional241

scatter. This squared-volume D(C) can be at most as large as the product of the variances of all242

variables D(C) ≤ Vmax =
∏

x Vx with equality if and only if all variables are independent (see Fig.6B243

for an illustration of the 2D case). That is, the smaller the ratio D(C)∕Vmax, the stronger are the244

correlations of the variables. We call this ratio independence and denote it as I = D(C)∕Vmax. In245

Appendix 3, we apply this approach to the simpler case of the sole division cycle that is defined by246

only three variables. We show that the variables of the adder model constitute the set for which247

fluctuations are most independent; remarkably I ≈ 1 indicates almost full independence in this248

case.249

We can now systematically explore which set of variables best explains the correlation structure250

in the data by searching for the set of variables that maximizes independence I . For example,251
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Figure 5. Comparison of predictions of the double-adder model with experimental observations. (A) Added
length between birth and division dL versus length at birth Lb show no correlations in both the data and the
simulations, demonstrating that the double-adder model reproduces the adder behavior at the level of cell size.

(B) Length at initiation versus length at birth show almost identical correlations in data and simulation. (C) The

distribution of cell sizes at birth are highly similar in experiments (solid lines) and simulations (dashed lines), in

all growth conditions. (D) The distribution of the number of origins at birth is also highly similar between

experiments and data for all growth conditions.

Figure 5–Figure supplement 1. Detailed comparisons between experiments and simulations for M9+glycerol
condition (with automated origin tracking).

Figure 5–Figure supplement 2. Detailed comparisons between experiments and simulations for M9+glycerol
condition (with manual origin tracking).

Figure 5–Figure supplement 3. Detailed comparisons between experiments and simulations for M9+glucose
condition (with manual origin tracking).

Figure 5–Figure supplement 4. Detailed comparisons between experiments and simulations for

M9+glucose+8a.a. condition (with manual origin tracking).

Figure 5–Figure supplement 5. Improved simulation by reducing variance.
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BA

I
Λi α dΛif dΛib

Λf α Rif dΛib

Λi α Rif dΛib

Tib α dΛif Λb

Λi Tib α dΛif

I
Λi α dΛif dΛib

Λf α Rif dΛib

Λi α Rif dΛib

α dΛif Λb dΛib

Tib α dΛif Λb

I
Lb λ dL dLbi

Tbi λ dL Li

Ld λ Rdb dLbi

λ dL Li dLbi

Lb Tbi λ dL

I
Lb λ dL dLbi

Ld λ Rdb dLbi

Lb Tbi λ dL
Lb Ld λ dLbi
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∏

i

Var(xi)

I � 1

I ∼ 1

Figure 6. Decomposition method. A. Best decompositions for replication-centric and division-centric models.
The matrices show the correlation structure between the variables composing the most independent set of

variables. Each square corresponds to a pair of variables, red indicating positive and blue negative correlation.

The lower-left corners contain experimental data and the upper-right ones simulation data B. 2D illustration of

the independence quantification. The distribution of a pair of variables is shown. The variance of each variable

is indicated in blue. The shaded blue area corresponds to the product of variances. The determinant of the

correlation matrix of two variables gives the area spanned by the eigenvectors of the matrix (red). The variances

are the same for the example with correlations (top) and without (bottom). The area determined by det(C) is
strongly reduced in the correlated case. D. Five best decompositions for replication- and division-centric models

of experimental and simulation data.

Figure 6–Figure supplement 1. Detailed results of the nine best decompositions for experimental data.
Figure 6–Figure supplement 2. Detailed results of the nine best decompositions for simulation data.
Figure 6–Figure supplement 3. Complete tables of decomposition.
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while a model that assumes a timer between initiation and division would treat the time Tib as an252

independent variable, in our double-adder model the variables are the growth rate � and added253

length dΛid ; by definition, the time Tib is related to these through ΛieTib∕� = Λi + dΛid . In this way, we254

can systematically explore different models by taking different sets of variables as fundamental and255

calculate the independence of each parameter set. Such a statistical analysis is only relevant when256

applied to a large dataset and we therefore focus here on the slow growth condition (M9 glycerol)257

for which we implemented automatic origin tracking.258

The tables Figure 6A bottom show the five best models ranked by decreasing independence259

(all decompositions can be found in Figure 6–Figure Supplement 3). Note that these variable sets260

include all the previously proposed sizer and timer models as special cases, for example the inter-261

initiation model combined with an initiation to division timer is highlighted in red in Figure 6–Figure262

Supplement 3. The most successful models are shown in greater detail as correlation matrices263

Fig.6A top, where residual correlations between all pairs of variables are visible. We find that none264

of the division-centric models accomplishes high independence. For example, as shown in the265

correlation matrix, the best division-centric model is plagued by high correlation between Lb and266

dLbi. This strongly suggests that the cell cycle control is better described from a replication-centric267

point of view. Of all replication-centric models, our double-adder model clearly reaches the highest268

independence, followed by various derivative models in which one of the adders is replaced by269

another variable. We note that independence of our double-adder model on the real data is only270

slightly lower than on simulated data Figure 6D, i.e 0.86 versus 0.98. This residual dependence might271

either result from correlated errors in the measurements, or it might reflect some small biological272

dependence not captured by our model. In summary, a systematic analysis shows that, within a273

large class of alternative models, the double-adder model best captures the correlation structure274

evident in the data.275

Discussion276

Thanks to experimental techniques like the one used here, models of bacterial cell cycle regulation277

dating back from the 1960’s have been recently re-examined in detail in several studies Campos278

et al. (2014); Tanouchi et al. (2015); Ho and Amir (2015); Adiciptaningrum et al. (2015); Wallden279

et al. (2016); Si et al. (2017); Logsdon et al. (2017); Micali et al. (2018a); Eun et al. (2018); Si et al.280

(2019). As much as these new data have been useful in shedding light on regulation mechanisms of281

bacterial physiology such as the adder, they have also revealed that multiple models are capable282

of reproducing in large parts experimental data, mainly as a consequence of the correlations283

existing between measurable cell cycle parameters. However, all of them fail at reproducing at least284

one important aspect of the experimental observations. To illustrate this, we show in Appendix 2285

how two recently proposed models (Wallden et al., 2016;Micali et al., 2018b), despite being very286

successful, fail to capture at least one important observation. In this study, we have in a first step287

empirically built a model which is based on previous ideas and which recapitulates measured cell288

cycle parameters. This model makes replication the central regulator of the cell cycle, with each289

initiation round triggering subsequent division and replication events through an adder mechanism.290

In a second step, we then constructed and applied a statistical method to determine, within a291

class of models, which set of cell cycle parameters best explains measurements. Following this292

fully independent approach, our empirical double-adder model clearly comes out as the most293

successful.294

While the division and replication cycles are seemingly coupled, our analysis demonstrates295

that two simple adders connected to replication initiation are sufficient to recapitulate both cycles296

without explicitly enforcing constraints reflecting mechanisms such as over-initiation control by297

SeqA and nucleoid occlusion which ensures that division only occurs after chromosome replication298

is completed. The initiation adder mimicks SeqA activity by creating a refractory period without299

initiation, and the division adder ensures that a minimal time is allocated for replication to complete.300

While the simulations might in rare cases generate unrelasitic situations, for example if a large301
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initiation adder is combined with a small division adder leading to premature division, those clashes302

seem rare enough to not affect the global statistical behavior of the model. Naturally the model303

would break down and these controls would need to be explicitly included in the case where cells304

are subject to stress conditions where these control mechanisms act as fail-safes e.g. to ensure that305

division is delayed if DNA repair is needed. In the course of our study, new research Si et al. (2019)306

proposed that division and replication cycles are only seemingly connected, and used perturbation307

methods to drive cells to states where the uncoupling is revealed. While such perturbation studies308

are very informative, more work is needed to understand to what extent hidden compensatory309

mechanisms might be at play e.g. when affecting DnaA or FtsZ expression. Also, that study focuses310

exclusively on a model which explicitly enforces various correlations between variables unlike our311

model which naturally produces such relations. It would thus be a worthwhile future endeavour to312

test our simpler model on such perturbed growth conditions, a task beyond the purpose of this313

study, which tries to clarify the normal growth case.314

Interestingly, a double-adder mechanism similar to the one that we propose here has been315

shown to explain cell-cycle control in mycobacteria (Logsdon et al., 2017). These mycobacteria have316

a much more complex behavior than E. coli, in particular characterized by a strong asymmetry317

between daughter cells and a growth rate almost an order of magnitude smaller than that of E.318

coli. Despite those important differences, it was shown that mycobacterial cell cycles exhibit adder319

behavior for both division and replication starting at initiation, in a manner highly similar to our320

observations in E. coli. This suggests that the mechanism connecting replication and division must321

be quite fundamental and independent of the specifics of available genes and their expression.322

Although the single-cell observations provide clear indications of which variables are most323

likely to be directly involved in the cell cycle control, they of course do not indicate the underlying324

molecular mechanisms. However, it is not hard to speculate about possible molecular mechanisms325

that could implement the double-adder behavior. As others have pointed out previously (Ho and326

Amir, 2015), an adder for the regulation of replication initiation can be easily implemented at327

the molecular level by having a "sensor" protein that builds up at each origin, and that triggers328

replication initiation whenever a critical mass is reached at a given origin. If this sensor protein329

is additionally homeostatically controlled such that its production relative to the overall protein330

production is kept constant, then the average volume per origin will also be kept constant across331

conditions.332

It is more challenging to define a molecular system that can implement the second adder that333

controls division. The main challenge is that this adder does not run throughout the entire cell334

cycle, but only between replication initiation and division. It is well known that division is driven by335

the polymerization of the FtsZ ring, which includes a host of other FtsZ-ring associated proteins,336

and its progressive constriction. It might seem simplest to assume that the division adder could337

be implemented directly through FtsZ production, again in the logic of the regulated "sensor"338

mentioned above. However, this would require FtsZ to be produced and accumulating at the339

division sites only from replication initiation to cell division. Although this is conceivable, i.e. it340

is known that FtsZ and other division proteins are heavily regulated at several levels (Dewar and341

Dorazi, 2000) and that especially in slow growth conditions its concentration varies during the cell342

cycle (Männik et al., 2018), it is hard to imagine how this model could work under fast growth343

conditions in which there are overlapping rounds of replication such that FtsZ would be constantly344

expressed. Moreover recent data (Si et al., 2019) rather suggest that FtsZ concentration is constant345

during the cell cycle.346

Alternatively, rather than FtsZ production, Ftsz polymerization could be regulated. One remark-347

able observation that is well known within the field (Lau et al., 2004; Nielsen et al., 2006) and that348

we also observe in our data (see Figure Supplement 1), is that origins always occupy the position349

of future division sites (mid-cell, 1/4 and 3/4 positions etc.) when replication is initiated. This350

observation not only suggests that, at replication initiation, some local molecular event occurs that351

will eventually trigger division at the same site, but it is also remarkably consistent with the idea352
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of an adder running only between replication initiation and division. One long-standing idea that353

is consistent with these observations is that some molecular event that occurs during replication354

initiation triggers the start of FtsZ ring formation, and that the timing from initiation to division355

is controlled by the polymerization dynamics of the FtsZ ring (Weart and Levin, 2003). At the356

molecular level, the common triggering of initiation and polymerization might be explained by the357

accumulation of acidic phosholipids in the cell membrane precisely at future division sites (Renner358

and Weibel, 2011) where they probably interact with components of the division machinery. At359

the same time those lipids are known to play a role in promoting replication by rejuvenating the360

initiator protein DnaA-ADP into DnaA-ATP (Saxena et al., 2013), and might therefore be a "hub"361

coordinating the two cycles. Finally, it remains to be explained how FtsZ polymerization or pole362

building could result in an adder beahviour. For that purpose, future experiments should focus on363

combining the type of information collected in this study and detailed measures of the dynamics of364

FtsZ-ring assembly and constriction as done in Coltharp et al. (2016).365

Methods and Materials366

Bacterial strains and media367

All strains are derived from the K-12 strain BW27378, a Δ(araH-araF)570(::FRT) derivative of the368

Keio collection background strain (Baba et al., 2006) obtained from the Yale Coli Genetic Stock369

Center. This strain was further modified by �-Red recombination (Datsenko and Wanner, 2000)370

and P1 transduction to result in ΔaraFGH(::FRT), ΔaraE(::FRT), ΔlacIZYA(::FRT). A 250 lacO repeats371

FROS array with chloramphenicol resistance was inserted close to the origin of replication in the372

asnA gene by �-Red recombination and P1 transduction. The lacO-CmR array was derived from the373

original plasmid pLau43 (Lau et al., 2004) by replacing the kanamycin resistance and a series of374

operators on both sides of it with the CmR gene. For visualization of the array, LacI-mVenus was375

expressed from the plasmid pGW266, derived from the original FROS plasmid pLAU53 (Lau et al.,376

2004) from which the tetR construct was removed and the lacI-CFP replaced by lacI-mVenus. For377

the experiment analyzed automatically the same stain carried in addition the plasmid pGW339378

expressing FtsZ-mVenus under the control of the araBAD promoter using 0.002% arabinose for379

induction. Expression is tighly controlled by using the approache proposed in Morgan-Kiss et al.380

(2002).381

All experiments were done using M9 minimal media supplemented with 2mMMgSO4, 0.1mM382

CaCl2, and sugars (0.2% for glucose and 0.2% for glycerol). In one experiment, the media was383

supplemented with 8 amino acids at a concentration of 5 µg/ml: Threonine, Aspagrinine, Methionine,384

Proline, Leucine, Tryptophane, Serine, Alanine. All experiments were carried out at 37 ◦C.385

Microfluidic device fabrication386

Mother Machine experiments were performed using the Dual Input Mother Machine (DIMM) mi-387

crofluidic design which has been described elsewhere (Kaiser et al., 2018) and is freely available388

online (https://metafluidics.org/devices/dual-input-mother-machine/); since no change of condi-389

tions was intended during experiments, the same media was flown at both inputs.390

Several microfluidics masters were produced using soft lithography techniques by micro-resist391

Gmbh; two masters with regular growth channels of suitable size (0.8 µm width × 0.9 µm height392

for growth in glycerol, and 1 µm width x 1.2 µm height for growth in glucose) were used for all393

experiments.394

For each experiment, a new chip was produced by pouring PDMS (Sylgard 184 with 1:9w/w395

ratio of curing agent) on the master and baking it for 4 h or more at 80ºC. After cutting the chip396

and punching inlets, the chip was bonded to a #1.5 glass coverslip as follows: the coverlsip was397

manually washed in water and soap, rinsed in isopropanol then water; the chip cleaned from dust398

using MagicTape, rinsed in isopropanol then water; surfaces were activated with air plasma (40 sec399

at 1500 µm of Hg) before being put in contact; the assembled chip was cooked 1 h or more at 80ºC.400
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Before running the experiment, the chip was primed and incubated 1 h at 37ºC using passivation401

buffer (2.5 mg/mL salmon sperm DNA, 7.5 mg/mL bovine serum albumin) for the mother machine402

part and water for the overflow channels.403

Experiment setup and conditions404

Bacteria were stored as frozen glycerol stocks at −80 ◦C and streaked onto LB agar plates to obtain405

clonal colonies. Overnight precultures were grown from single colonies in the same growth media406

as the experiment. The next day, cells were diluted 100-fold into fresh medium and harvested after407

4-6 h.408

The experimental apparatus was initialized, pre-warmed and equilibrated. Media flow was409

controlled using a pressure controller and monitored with flow-meters, set to run a total flow of410

≈1.5µL∕min (corresponding to a pressure of ≈1600mbar).411

The primedmicrofluidic chip was mounted, connected to media supply and flushed with running412

media for 30 min or more to rinse passivation buffer. The grown cell culture was centrifuged at413

4000×g for 5 min, and the pellet re-suspended in a few µL supernatant and injected into the device414

from the outlet using the pressure controller. To facilitate the filling of growth channels by swimming415

and diffusing cells, the pressure was adjusted in order to maintain minimal flow in the main channel416

(loading time 40min).417

After loading, bacteria were incubated during 2 h before starting image acquisition. Every 3 min,418

phase contrast and fluorescence images were acquired for several well-separated positions in419

parallel.420

Microscopy and image analysis421

An inverted Nikon Ti-E microscope, equipped with a motorized xy-stage and enclosed in a tempera-422

ture incubator (TheCube, Life Imaging Systems), was used to perform all experiments. The sample423

was fixed on the stage using metal clamps and focus was maintained using hardware autofocus424

(Perfect Focus System, Nikon). Images were recorded using a CFI Plan Apochromat Lambda DM425

×100 objective (NA 1.45, WD 0.13 mm) and a CMOS camera (Hamamatsu Orca-Flash 4.0). The426

setup was controlled using µManager (Edelstein et al., 2014) and timelapse movies were recorded427

with its Multi-Dimensional Acquisition engine. Phase contrast images were acquired using 200428

ms exposure (CoolLED pE-100, full power). Images of mCherry fluorescence were acquired using429

200ms exposure (Lumencor SpectraX, Green LED at 33% with ND4) using a Semrock triple-band430

emission filter (FF01-475/543/702-25).431

Image analysis was performed using MoMA (Kaiser et al., 2018) as described in its documenta-432

tion (https://github.com/fjug/MoMA/wiki). Raw image datasets were transferred to a centralised433

storage and preprocessed in batch. Growth channels were chosen randomly after discarding those434

where cell cycle arrest occurred in the mother cell, and curated manually in MoMA. An exponential435

elongation model was then fitted to each cell cycle, and cycles presenting large deviations were436

discarded (1-3% of each experiment).437

For the automated origin detection and tracking we used custom Python code. Spots were438

detected following the method proposed in Aguet et al. (2013). Briefly, amplitude and background439

are estimated for each pixel using a fast filtering method and a spot model corresponding to the440

optical setup. Among the local maxima found in the amplitude estimates, spots are then selected441

using a statistical test based on the assumption that background noise is Gaussian. To track spots442

we used the trackpy package Allan et al. (2018). We kept only cell cycles where origin tracks behaved443

in a biologically reasonable way, i.e. one track splitting in two, splitting in four etc. The time of444

initiation was assigned as the first time point where a track splits into two. For the manual analysis445

of the other experiments, the frame showing origin splitting was selected manually.446

Using the the timing of origin splitting, the corresponding cell length could be determined. All447

further variables like dL or dΛib are deduced from the primary variables. For the decomposition448

analysis, a pseudo-cell cycle was created by concatenating the mother cell cycle from initiation to449
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division with the daughter cell cycle from birth to initiation. The growth rate � for this pseudo-cell450

cycle was again obtained by fitting an exponential growth model. All the growth lanes corresponding451

to a given conditions were then pooled to generate the various statistics shown in this article.452

The entire analysis pipeline is available as Python modules and Jupyter Notebooks on Github453

(https://github.com/guiwitz/DoubleAdderArticle).454

Simulations455

The numerical implementation of the model described in Figure 4 and used in Figure 5 requires456

several parameters for each individual cell cycle. To generate those, the following distributions were457

extracted from experimental data, and if needed their means and variances were obtained by a458

fitting procedure:459

• The growth rate distributions P (�).460

• The growth rate correlation from mother to daughters.461

• The length distributions of the two adder processes P (dΛib) and P (dΛif ).462

• The distributions of length ratios between sister cells to account for imprecision in division463

placement P (r).464

For the simulation, a series of 500 cells is initialized with all required parameters: initial length465

L0 taken from the birth length distribution, � = P (�), number of origins nori = 1, and the two adders466

dΛib = P (�) and dΛif = P (dΛif )) whose counters are starting at 0. The exact initialization is not467

crucial as the system relaxes to its equilibrium state after a few generations. Cells are then growing468

incrementally following an exponential law, and the added length is monitored. Every time the cell469

reaches its target dΛif , the number of origins doubles and a new initiation adder is drawn from470

P (dΛif ). Every time the cell reaches its target dΛib the cell 1) divides into two cells using a division471

ratio drawn P (r), 2) the number of origins per cell is divided by two, 3) a new division adder is drawn472

from P (dΛib), and finally 4) a new growth rate is drawn from P (�). Each simulation runs for 30h in473

steps of 1min. In the end, the cell tracks resulting from the simulation are formatted in the same474

format as the experimental data, and follow the same analysis pipeline. The code is available on475

Github.476
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Appendix 1564

Experiments statistics565

Experiment Discarded % # cell cycles 1/�[min] Adder r �m−d r Lm−db r

Glycerol auto 3.3 3070 86.0 -0.10 0.33 0.45

Glycerol 2.1 810 89.0 -0.07 0.42 0.58

Glucose 2.1 1035 53.0 -0.04 0.47 0.66

Glucose +AA 2.4 1159 41.0 -0.12 0.36 0.48

566

567

Table 1. Statistics for all expderiments. Glycerol auto is that dataset analyzed automatically, while
Glycerol is the one analyzed manually. r stands for Pearson correlation, and the m − d superscript
indicates a mother-daughter correlation. The doubling time (1/�) is obtained by fitting the distribution
of growth rates with a log-normal distribution.
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Appendix 2573

Other models574

In this article we have shown that models relying on the concept of initiation mass, as

well as those involving a constant timer from initiation to division are incompatible with

measurements. Still, those models are able to reproduce a wide range of experimental

measurements, and we wanted to understand where they would break. We give here two

examples of such an analysis. In the first case we tried to reproduce the model proposed in

Wallden et al. (2016). This model assumes that cells initiate replication around a specific initi-
ation mass length Li and then grow for an amount of time depending on growth rate TCD(�)
before dividing (1A). In panels B and C of 1 we show that we are successfully reproducing the

model used e.g. in Figure 6 ofWallden et al. (2016). The histogram of the number of origins
at birth shown in 1D shows a clear failure of the model where cells in slow growth conditions

are all born with an ongoing round of replication in contradiction with experimental data

(see e.g. Figure 3 ofWallden et al. (2016)).
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Figure 1. Re-implementation of the model proposed inWallden et al. (2016) for three growth
conditions. A. Cells initiation at length Li and grow for a time TCD(�) before dividing. B. Cell volume at
birth and division as a function of growth rate. C. Cell volume at birth and division as a function of

generation time. D. Distributions of the number of origins at birth.
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591592

The second model we are investigating here has been recently proposed byMicali et al.
(2018b). It uses an inter-initiation adder for replication regulation, and combines it with a
classical adder (birth to division) without coupling those two regulation systems together

explicitly. We simulated such a model with the added constraint that division can only occur

if at least two origins are present in the cell. The results are shown in Fig.2. The model

surprisingly reproduces most of the features of the experimental data with one exception:

the initiation to division variable dΛib is clearly not anymore an adder. This can be trivially
explained: as the two mechanisms are uncoupled, an initiation at a large size automatically

leads to a small dΛib on average while an early initiation at small size leads to a large dΛib on
average.
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Figure 2. Comparison of experimental distributions and correlations with a model combining an
inter-initiation adder and a classic adder dL = Ld − Lb
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Appendix 3607

Decomposition: the classic adder model.608

In order to illustrate the functioning of the our decomposition approach, we apply it to the

familiar case of the classic division adder model. By considering all possible combinations of

standard cell cycle variables and estimating their independence, we find that the decomposi-

tion offering the most independent set of variables corresponds to the classic adder model

defined by Lb, dL and �, as can be seen in 1.
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Figure 1. All possible decompositions for the division cycle variables ranked from best (top left) to
worst (bottom right) in terms of variable independence.
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Figure 1–Figure supplement 1. Schema of the cell cycle and variable definitions for the case of
fast growth with overlapping replication cycles
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Figure 4–Figure supplement 1. The position along the cell axis and the cell-cycle time of all
detected spots were collected. The longitudinal position was scaled with cell length to indicate

the relative position in the cell. The cell cycle time was normalized between 0 and 1. The 1 shows

as 2D histogram of these space-time data. The intensity of each time point (columns) has been

normalized. The mid-cell and quarter-cell (mid-cell of daughter cell) positions are indicated with

dotted lines.
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Figure 5–Figure supplement 1. Detailed comparisons between experiments and simulations for
M9+glycerol condition (with automated origin tracking).
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Figure 5–Figure supplement 2. Detailed comparisons between experiments and simulations for
M9+glycerol condition (with manual origin tracking).
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Figure 5–Figure supplement 3. Detailed comparisons between experiments and simulations for
M9+glucose condition (with manual origin tracking).
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Figure 5–Figure supplement 4. Detailed comparisons between experiments and simulations for
M9+glucose+8a.a. condition (with manual origin tracking).
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Figure 5–Figure supplement 5. Focusing on the large dataset (with automated origin tracking) for
which we have the most accurate measures, we note that dL shows a slight deviation from adder
behavior. As shown here, we found that this could be corrected by slightly reducing the variance

level of the division adder distribution (to 70% of its original value). As the initiation measurement

is made imprecise for experimental (e.g. acquisition rate) and biological (e.g. variable cohesion of
origins), it is reasonable to assume that we overestimate the variance of that parameter.
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Figure 6–Figure supplement 1. In complement to the best decomposition shown in Fig.6, we show
here details for the first nine best decompositions for the experimental data.
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Figure 6–Figure supplement 2. In complement to the best decomposition shown in Fig.6, we show
here details for the first nine best decompositions for the simulation data.
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Figure 6–Figure supplement 3. All possible decompositions for both experimental and simulation
data are shown ranked from most to least independent.

627

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/593590doi: bioRxiv preprint 

https://doi.org/10.1101/593590
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Cell size adder
	Replication initiation mass
	Multiple origins accumulation model
	Connecting replication and division cycles
	The double-adder model
	Simulations of the double-adder model
	The double-adder model best captures the correlation structure of the data

	Discussion
	Methods and Materials
	Bacterial strains and media
	Microfluidic device fabrication

	Experiment setup and conditions
	Microscopy and image analysis
	Simulations

	Acknowledgments
	Additional information
	Experiments statistics
	Other models
	Decomposition: the classic adder model.

