

1 Initiation of chromosome replication 2 controls both division and 3 replication cycles in *E. coli* through a 4 double-adder mechanism

5 **Guillaume Witz^{1,2*†}, Erik van Nimwegen^{1,2}, Thomas Julou^{1,2}**

*For correspondence:

guillaume.witz@math.unibe.ch
(GW)

Present address:

[†]Mathematisches Institut,
Universität Bern, Switzerland

6 ¹Biozentrum, University of Basel, Switzerland.; ²Swiss Institute of Bioinformatics,
7 Switzerland

8 **Abstract** Living cells proliferate by completing and coordinating two essential cycles, a division cycle that controls cell size, and a DNA replication cycle that controls the number of chromosomal copies in the cell. Despite lacking dedicated cell cycle control regulators such as cyclins in eukaryotes, bacteria such as *E. coli* manage to tightly coordinate those two cycles across a wide range of growth conditions, including situations where multiple nested rounds of replication progress simultaneously. Various cell cycle models have been proposed to explain this feat, but it has been impossible to validate them so far due to a lack of experimental tools for systematically testing their different predictions. Recently new insights have been gained on the division cycle through the study of the structure of fluctuations in growth, size, and division in individual cells. In particular, it was found that cell size appears to be controlled by an adder mechanism, *i.e.* the added volume between divisions is held approximately constant and fluctuates independently of growth rate and cell size at birth. However, how replication initiation is regulated and coupled to cell size control remains unclear, mainly due to scarcity of experimental measurements on replication initiation at the single-cell level. Here, we used time-lapse microscopy in combination with microfluidics to directly measure growth, division and replication in thousands of single *E. coli* cells growing in both slow and fast growth conditions. In order to compare different phenomenological models of the cell cycle, we introduce a statistical framework which assess their ability to capture the correlation structure observed in the experimental data. Using this in combination with stochastic simulations, our data indicate that, instead of thinking of the cell cycle as running from birth to division, one should consider the chromosome replication cycle as central and in control of the cell cycle through two adder mechanisms: the added volume since the last initiation event controls the timing of both the next division event and the next replication initiation event. Interestingly the double-adder mechanism identified in this study has recently been found to explain the more complex cell cycle of mycobacteria, suggesting shared control strategies across species.

35 **Introduction**

36 Across all domains of life, cell proliferation requires that the chromosome replication and cell
37 division cycles are coordinated to ensure that every new cell receives one copy of the genetic
38 material. While in eukaryotes this coordination is implemented by a dedicated regulatory system in
39 which genome replication and division occur in well-separated stages, no such system has been

40 found in most bacteria. This suggests that the molecular events that control replication initiation
41 and division might be coordinated more directly in bacteria, through molecular interactions that
42 are yet to be elucidated. The contrast between this efficient coordination and the apparent absence
43 of a dedicated regulatory system is particularly remarkable since most bacteria feature a unique
44 replication origin which imposes that multiple rounds of replication occur concurrently in fast
45 growth conditions. For example, in the specific case of *E. coli* that we study here, it has long
46 been known that growth rate, cell size, and replication initiation are coordinated such that the
47 average number of replication origins per unit of cellular volume is approximately constant across
48 conditions (Donachie, 1968) or that cellular volume grows approximately exponentially with growth
49 rate (Taheri-Araghi et al., 2017). Although several models have been proposed over the last decades
50 to explain such observations, so far direct validation of these models has been lacking, due to a
51 large extent to the lack of quantitative measurements of cell cycles parameters in large samples
52 with single-cell resolution.

53 Thanks to techniques such as microfluidics and time-lapse microscopy, it has recently become
54 possible to perform long-term observation of growth and division in single bacteria. By systematically
55 quantifying how cell cycle variables such as size at birth, size at division, division time, and
56 growth rate vary across single cells, insights can be gained about the mechanism of cell cycle control.
57 Several recent studies have focused on understanding the regulation of cell size, resulting in the
58 discovery that *E. coli* cells maintain a constant average size by following an adder strategy: instead of
59 attempting to reach a certain size at division (i.e. a sizer mechanism) or to grow for a given time (i.e.
60 a timer mechanism), it was found that cells add a constant length dL to their birth length L_b before
61 dividing (Amir, 2014; Campos et al., 2014; Taheri-Araghi et al., 2017). In particular, while the cell size
62 at division and the division time correlate with other variables such the cell size at birth and growth
63 rate, the added length dL fluctuates independently of birth size and growth rate. A remarkable
64 feature of the adder model is its capacity to efficiently dampen large cell size fluctuations caused
65 by the intrinsically noisy regulation, without the need for any fail-safe mechanism. This efficient
66 strategy has been shown to be shared by various bacterial species as well as by archaea (Eun et al.,
67 2018) and even some eukaryotes such as budding yeast (Soifer et al., 2016).

68 Here we focus on how the control of replication initiation is coordinated with cell size control in *E.*
69 *coli*. Several models have been proposed to explain how the adder behavior at the level of cell size
70 might arise from a coordinated control of replication and division. Broadly, most models assume
71 that the accumulation of a molecular trigger, usually assumed to be DnaA, leads to replication
72 initiation, which in turn controls the corresponding future division event (Campos et al., 2014; Ho
73 and Amir, 2015; Wallen et al., 2016). Subtle variations in how the initiation trigger accumulates
74 and how the initiation to division period is set in each model imply distinct molecular mechanisms,
75 and thus fundamentally different cell cycle regulations. Specifically, most models assume that
76 initiation is triggered either when a cell reaches a critical absolute volume (initiation size, see
77 e.g. Wallen et al., 2016) or alternatively when it has accumulated a critical volume since the last
78 initiation event (see e.g. Ho and Amir, 2015). In order to explain the coordination between cell cycle
79 events, division is often assumed to be set by a timer starting at replication initiation, but recent
80 studies have also proposed that the two cycles might be independently regulated (Micali et al.,
81 2018a; Si et al., 2019). Finally, it is often assumed that the regulation strategy could be different at
82 slow and fast growth where different constraints occur.

83 We use an integrated microfluidics and time-lapse microscopy approach to quantitatively char-
84 acterize growth, division, and replication in parallel across many lineages of single *E. coli* cells,
85 both in slow and fast growth conditions. We show that insights about the underlying control
86 mechanisms can be gained by systematically studying the structure of correlations between these
87 different variables. Our single-cell observations are inconsistent with several previously proposed
88 models including models that assume replication is initiated at a critical absolute cell volume and
89 models that assume division is set by a timer that starts at replication initiation. Instead, the most
90 parsimonious model consistent with our data is a double-adder model in which the cell cycle

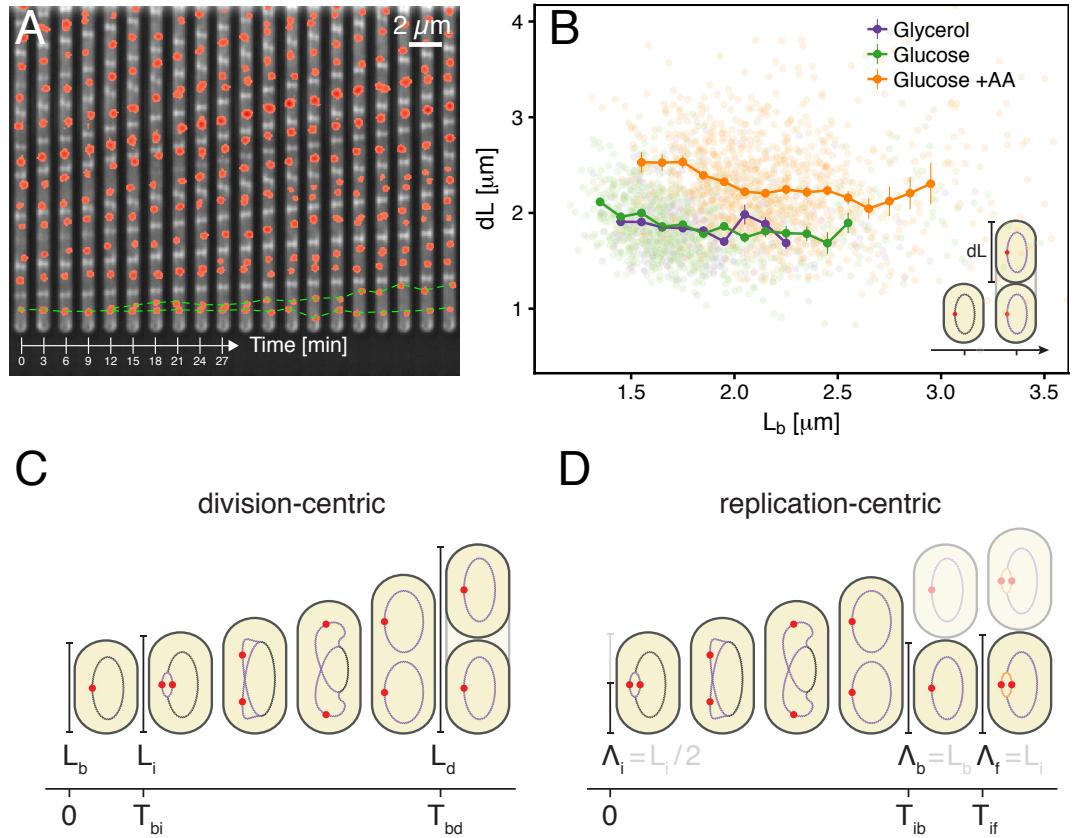
91 commences at initiation of replication and both the subsequent division and the next initiation of
92 replication are controlled by the added volume. We show that this model is most consistent with
93 the correlation structure of the fluctuations in the data and, through simulations, we show that
94 this model accurately reproduces several non-trivial observables including the previously observed
95 adder behavior for cell size control, the distribution of cell sizes at birth, and the distribution of
96 the number of origins per cell. Moreover, the same model best describes the data both at slow
97 and fast growth rates. As far as we are aware, no other proposed model can account for the full set of
98 observations we present here.

99 **Results**

100 To test possible models for the coordination of replication and division in *E. coli* we decided to
101 systematically quantify growth, replication initiation, and division across thousands of single *E.*
102 *coli* cell cycles, across multiple generations, and in various growth conditions. To achieve this,
103 cells were grown in a Mother Machine type microfluidic device (*Wang et al., 2010*) and imaged
104 by time-lapse microscopy. We used M9 minimal media supplemented with glycerol, glucose or
105 glucose and 8 amino acids, resulting in doubling times of 89, 53 and 41 min, respectively. The cell
106 growth and division cycles were monitored by measuring single-cell growth curves obtained through
107 segmentation and tracking of cells in phase contrast images using the MoMA software (*Kaiser et al.,*
108 *2018*). The replication cycle was monitored by detecting initiation as the duplication of an *oriC*
109 proximal FROS tagged *locus* imaged by fluorescence microscopy (*Figure 1A*). These measurements
110 allowed us to quantify each single cell cycle by a number of variables such as the growth rate, the
111 sizes at birth, replication initiation, and division, the times between birth and replication initiation
112 and the time between birth and division. As done previously, we assume that cell radius is constant
113 and use cell length as a proxy for cell volume (*Adicptaningrum et al., 2015; Taheri-Araghi et al.,*
114 *2017*). Since we can follow cells over multiple generations, we can also measure quantities that span
115 multiple division cycles such as the total time or total cell growth between consecutive replication
116 initiation events. As we analyze growth conditions spanning cases with both single and overlapping
117 rounds of replication, we defined a consistent way of measuring variables. Noticeably, while the cell
118 cycle is classically defined from division to division (*Figure 1C*), as has been proposed previously
119 *Ho and Amir (2015); Amir (2017)*, we use an alternative framework where the cell cycle is defined
120 from one replication initiation to the next (*Figure 1D*). This framework being centered on origins
121 of replication rather than on cells, we consequently define a new quantity Λ , the cell length per
122 origin, which allows to track the growth allocated to a given origin of replication. For instance, in a
123 case where a cell is born with an ongoing round of replication which started at time t , Λ_i for that
124 cell is defined as $\Lambda_i = L_i/4$ where L_i is the length of the mother cell which contains four origins
125 at time t (*Figure 1-Figure Supplement 1*). This avoids artificial cut-offs as e.g. done in *Wallen*
126 *et al. (2016)*. In this article, we explore a series of models belonging to these two views of the cell
127 cycle. Using the correlation structure of variables, we show how classes of models can be rejected
128 entirely. Additionally, we use a more general statistical framework to rank models according to their
129 explanatory power.

130 **Cell size adder**

131 We first verified whether our measurements support the previously observed adder behavior in cell
132 size, and find that added length dL between birth and division is indeed uncorrelated with length
133 at birth L_b in all growth conditions (*Figure 1B*), and, also in agreement with the adder model, the
134 heritability of birth length between mother and daughter is characterized by a Pearson correlation
135 coefficient of $r \approx 0.5$ (see Table 1). With the exception of one study (*Wallen et al., 2016*), moderately
136 slow growth conditions (100 min doubling time) have not been yet tested extensively for adder
137 behavior. The fact that we observe it in conditions where replication occurs both in overlapping-
138 and non-overlapping modes further highlights its pervasiveness.



Experimental approach and analysis framework.

Figure 1. A. Time-lapse of *E. coli* cells growing in a single microfluidic channel. Fluorescence signal from FROS labeling is visible as red spots in each cell. The green dotted line is an aid to the eye, illustrating the replication of a single origin. **B.** Consistent with an adder behavior, the added length between birth and division is uncorrelated with length at birth. **C.** The classical cell cycle is defined between consecutive division events, shown here with replication and division for slow growth conditions (i.e. without overlapping rounds of replication). **D.** We introduce an alternative description framework where the cell cycle is defined between consecutive replication initiation events. The observables that are relevant to characterize the cell cycle in these two frameworks are indicated (see also *Table 1*).

Figure 1-Figure supplement 1. Schema of the cell cycle and variable definitions for the case of fast growth with overlapping replication cycles.

Table 1. Variables definitions.

division-centric		replication-centric	
<i>measured variables</i>			
L_b	Size at birth*	Λ_i	Size per origin at <i>initial</i> replication initiation*
L_d	Size at division*	Λ_f	Size per origin at <i>final</i> replication initiation*
T_{bd}	Duration between birth and division	T_{if}	Duration between consecutive replication initiations
L_i	Size at replication initiation*	Λ_b	Size per origin at birth*
T_{bi}	Duration between birth and replication initiation	T_{ib}	Duration between replication initiation and birth
<i>derived variables</i>			
$\lambda = \frac{1}{T_{bd}} \log \frac{L_d}{L_b}$	Cell growth rate* (between birth and division)	$\alpha = \frac{1}{T_{if}} \log \frac{\Lambda_f}{\Lambda_i}$	Cell growth rate* (between consecutive replication initiations)
$dL = L_d - L_b$	Division "adder"	$d\Lambda_{if} = \Lambda_f - \Lambda_i$	Replication "adder"
$dL_{bi} = L_i - L_b$	Birth-to-initiation "adder"	$d\Lambda_{ib} = \Lambda_b - \Lambda_i$	Initiation-to-birth "adder"
$R_{bd} = L_d/L_b$	Growth ratio between birth and division	$R_{if} = \Lambda_f/\Lambda_i$	Growth ratio between consecutive initiations
$R_{bi} = L_i/L_b$	Growth ratio between birth and initiation	$R_{ib} = \Lambda_b/\Lambda_i$	Growth ratio between initiation and birth

* variables indicated by a star are measured from a linear fit of exponential elongation.

139 Replication initiation mass

140 A popular idea dating back to the 1960's and still often used today to explain the coupling of
 141 division and replication cycles is the initiation mass model. The observations that cell volume grows
 142 exponentially with growth rate (**Schaechter et al., 1958**) and that, across a range of conditions, the
 143 time between replication initiation and division is roughly constant (**Helmstetter et al., 1968**) led
 144 Donachie to propose that the volume per origin of replication is held constant (**Donachie, 1968**).
 145 In particular, the model proposes that initiation occurs when a cell reaches a critical volume. A
 146 simple prediction of this model is that, for a given cell, the cell length L_i at which initiation occurs
 147 should be independent of other cell cycle variables such as the length at birth L_b . However, as
 148 can be seen in **Figure 2A**, we observe that the initiation length L_i and birth length L_b are clearly
 149 correlated in all conditions, rejecting the initiation mass model. The absence of an initiation mass
 150 has been noted recently elsewhere (**Micali et al., 2018a**). It should be noted, however, that even
 151 though the single-cell fluctuations show that initiation is unlikely to be triggered by a critical volume
 152 per origin, the constancy of the average volume per origin at initiation across growth conditions (**Si**
 153 **et al., 2017**) still indicates that initiation is probably regulated through a measure of cell volume.

154 Multiple origins accumulation model

155 Just as a constant average cell size can be accomplished by adding a constant volume per division
 156 cycle rather than by dividing at a critical division volume, so a constant average volume per origin of
 157 replication can also be implemented by controlling the added volume between replication initiations
 158 rather than by a critical initiation volume. A concrete proposal for such an adder mechanism, called
 159 the multiple origins accumulation model, has recently received increasing attention (**Ho and Amir,**
 160 **2015**). In this model, a molecule that is expressed at a constant cellular concentration accumulates

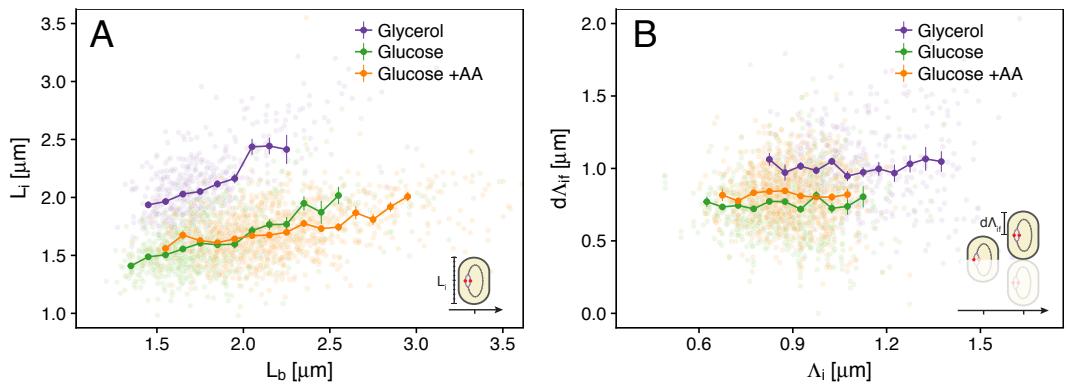


Figure 2. Models for initiation control. **A.** The initiation mass model predicts that the length at initiation L_i should be independent of the length at birth L_b . However, we observe clear positive correlations between L_i and L_b in all growth conditions. **B.** In contrast, the length accumulated between two rounds of replication $d\Delta_{if}$ is independent of the initiation size Δ_i , suggesting that replication initiation may be controlled by an adder mechanism.

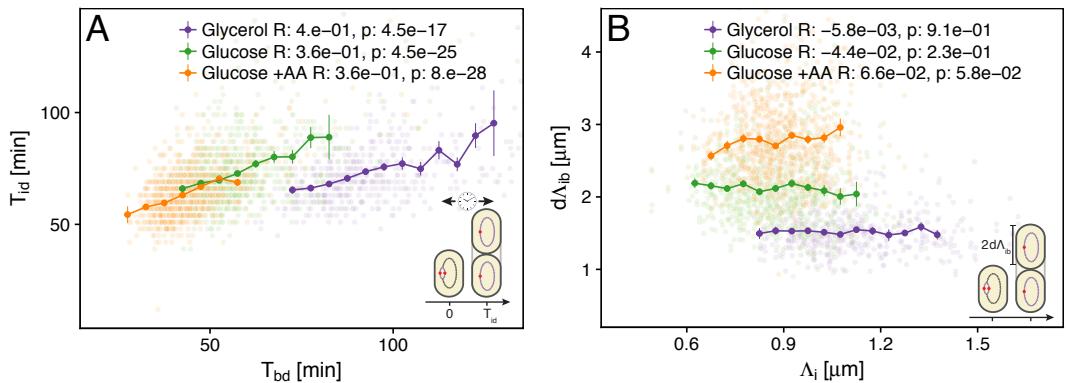


Figure 3. Initiation to division period. **A.** Several models assume that a constant time passes from an initiation event to its corresponding division event. However, within each growth condition, that period is clearly dependent on fluctuations in growth rate. **B.** The length accumulated from initiation to division is constant for each growth condition, suggesting an adder behavior for that period. In A and B, the Pearson correlation coefficient R and p values are indicated for each condition.

161 at each origin until it reaches a critical amount, triggering replication, after which it is degraded and
 162 starts a new accumulation cycle. Given that, for a molecule at constant concentration, the added
 163 volume over some time period is proportional to the amount produced of the molecule, the result
 164 of this process is that the cell adds a constant volume per origin $d\Delta_{if}$ between initiation events
 165 (with $d\Delta_{if} = \Delta_f - \Delta_i$ where indexes stand for "initial" and "final" respectively, see **Figure 1D** and
 166 **Table 1** for more details). If replication is indeed triggered by such an adder mechanism, then one
 167 would expect the observed added lengths $d\Delta_{if}$ to be independent of the length Δ_i at the previous
 168 initiation. As shown in **Figure 2B**, our data support this prediction.

169 **Connecting replication and division cycles**

170 Having validated the multiple origins accumulation model for replication control, we now investigate
 171 its relation to the division cycle. A common assumption is that the period T_{id} from initiation to
 172 division (classically split into the replication period C and the end of replication to division period D)
 173 is constant and independent of growth rate (**Cooper and Helmstetter, 1968; Ho and Amir, 2015**). As
 174 visible in **Figure 3A**, while on average T_{id} is indeed rather constant across growth conditions, within
 175 each condition fast growing cells clearly complete this period faster than slow growing cells. One

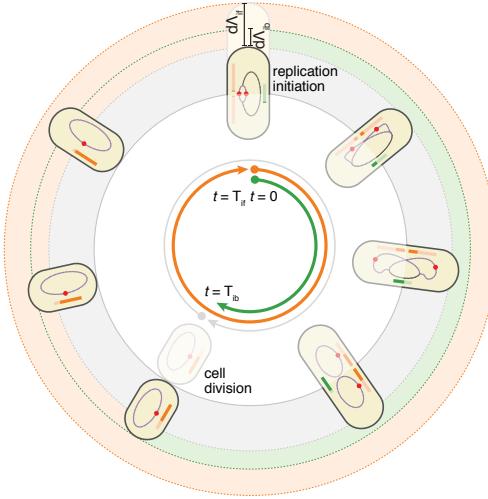


Figure 4. The double-adder model postulates that *E. coli* cell cycle is orchestrated by two independent adders, one for replication and one for division, reset at replication initiation. Both adders (shown as coloured bars) start one copy per origin at replication initiation and accumulate in parallel for some time. After the division adder (green) has reached its threshold, the cell divides, and the initiation adder (orange) splits between the daughters. It keeps accumulating until it reaches its own threshold and initiates a new round of division and replication adders. Note that the double-adder model is illustrated here for the simpler case of slow growth.

Figure 4–Figure supplement 1. Average localization of the origin in cells growing in M9 glycerol.

176 way to model this behavior is to define an empirical relation between growth rate λ and T_{id} (Wallden
177 *et al.*, 2016). However, **Figure 3B** reveals another and arguably simpler solution. We find that
178 $d\Lambda_{id} = \Lambda_d - \Lambda_i$, the length per origin added by a cell between initiation and division, has an adder
179 behavior as well: independently of its size at initiation L_i , a cell will complete the corresponding
180 division cycle after having accumulated a constant volume per origin $d\Lambda_{id}$.

181 **The double-adder model**

182 These observations motivated us to formulate a model in which the cell cycle does not run from
183 one division to the next, but rather starts at initiation of replication, and that both the next initiation
184 of replication and the intervening division event, are controlled by two distinct adder mechanisms.
185 In this replication-centric view, the cell cycles are controlled in a given condition by three variables:
186 an average growth rate λ , an average added length per origin $d\Lambda_{if}$, and an average added length
187 $d\Lambda_{id}$ between replication initiation and division. In particular, we assume that these three variables
188 fluctuate independently around these averages for each individual cell cycle, and that all other
189 parameters such as the sizes at birth, initiation, and the times between birth and division or between
190 initiation and division, are all a function of these three fundamental variables. This double-adder
191 model is sketched in **Figure 4** for the case of slow growth conditions: a cell growing at a rate λ and
192 of length L initiates replication and thereby starts two adder processes. First, the cell will divide
193 when reaching a size $n\Lambda_d = L + nd\Lambda_{id} = n(\Lambda_i + d\Lambda_{id})$ where $n = 2$ is the number of replication origins.
194 Second, the next replication round will be initiated at a given origin after the corresponding Λ has
195 increased by $d\Lambda_{if}$.

196 **Simulations of the double-adder model**

197 To assess to what extent our double-adder model can recover our quantitative observations,
198 we resorted to numerical simulations. We first obtained from experimental data the empirical
199 distributions of growth rates λ , the added length per initiation $d\Lambda_{if}$, and the added length between
200 initiation and division $d\Lambda_{id}$. A series of cells are initialized at the initiation of replication, with
201 sizes taken from the experimental distributions. For each cell, a growth rate λ is independently

202 drawn from its empirical distribution, and values of $d\Lambda_{id}$ and $d\Lambda_{if}$ are drawn from independent
203 distributions, to set the times of the next division and replication initiation events. This procedure is
204 then iterated indefinitely, *i.e.* a new growth rate and values of each adder are independently drawn
205 for each subsequent cycle. As has been observed previously (*Campos et al., 2014*) the growth rate is
206 correlated ($r \approx 0.3$) between mother and daughter. Accounting for this mother-daughter correlation
207 in growth rate was found not to be critical for capturing features of *E. coli* cell cycle, but was included
208 in the model to reproduce simulation conditions of of previous studies.

209 As can be seen in *Figure 5*, the double-adder model accurately reproduces measured distri-
210 butions and correlations at all growth rates. In particular, the global adder behavior for cell size
211 regulation naturally emerges from it (*Figure 5A*). Similarly, the specific relation between length
212 at initiation L_i and length at birth L_b , which prompted us to reject the initiation mass model, is
213 reproduced by the model as well (*Figure 5B*). Finally, the distribution of the number of origins at
214 birth, which reflects the presence of overlapping replication cycles is reproduced as well (*Figure 5D*).
215 An exhaustive comparison between experiments and simulations can be found in *Figure 5-Figure*
216 *Supplement 1*.

217 **The double-adder model best captures the correlation structure of the data**

218 Although our simulations show that the double-adder model, which takes λ , $d\Lambda_{id}$ and $d\Lambda_{if}$ as the
219 key independently fluctuating quantities, can accurately reproduce our observations, it is less clear
220 whether there are not many other models that could reproduce the data equally well? As the space
221 of possible models is arguably unlimited, it is difficult to answer this question in full generality.
222 However, we can rigorously compare a large class of possible models, by quantitatively comparing
223 the correlation structure that each model implies, with the correlation structure evident in the
224 data. For example, as noted above, the main argument in favor of a cell size adder model is that,
225 whereas birth and division size generally correlate, added volume does not correlate with birth size.
226 Similarly, while the time between birth and division correlates with both the added volume and
227 the growth rate, growth rate and added volume do not correlate. That is, the evidence in favor of a
228 given model can be quantified by the extent to which the key variables of the model are fluctuating
229 independently.

230 The quantities that are measured directly for each cell cycle are the times and cell sizes at which
231 various events take place. If we take a division-centric view, *i.e.* thinking of each cell cycle as running
232 from birth to division, each cell cycle is characterized by four directly measured quantities: the sizes
233 at birth L_b , initiation L_i , and division L_d , and the doubling time T_{bd} . Similarly, for a replication-centric
234 view, the four directly measured quantities are the sizes per origin at initiation Λ_i , at birth after the
235 subsequent division Λ_b , and at the next initiation Λ_f , as well as the time T_{if} between consecutive
236 initiations (Fig.1 C-F). However, these directly measured quantities are highly correlated. The
237 correlation structure of the data is captured by the covariance matrix C , with diagonal components
238 C_{xx} corresponding to the variances V_x of each variable x , and the off-diagonal components C_{xy}
239 corresponding to the covariances between pairs of variables (x, y) . If one thinks of the collection
240 statistics of all single cell cycles as a scatter in 4-dimensional space, then the determinant of the
241 covariance matrix $D(C)$ can be thought of as the square of the *volume* covered by this 4-dimensional
242 scatter. This squared-volume $D(C)$ can be at most as large as the product of the variances of all
243 variables $D(C) \leq V_{\max} = \prod_x V_x$ with equality if and only if all variables are independent (see Fig.6B
244 for an illustration of the 2D case). That is, the smaller the ratio $D(C)/V_{\max}$, the stronger are the
245 correlations of the variables. We call this ratio independence and denote it as $I = D(C)/V_{\max}$. In
246 *Appendix 3*, we apply this approach to the simpler case of the sole division cycle that is defined by
247 only three variables. We show that the variables of the adder model constitute the set for which
248 fluctuations are most independent; remarkably $I \approx 1$ indicates almost full independence in this
249 case.

250 We can now systematically explore which set of variables best explains the correlation structure
251 in the data by searching for the set of variables that maximizes independence I . For example,

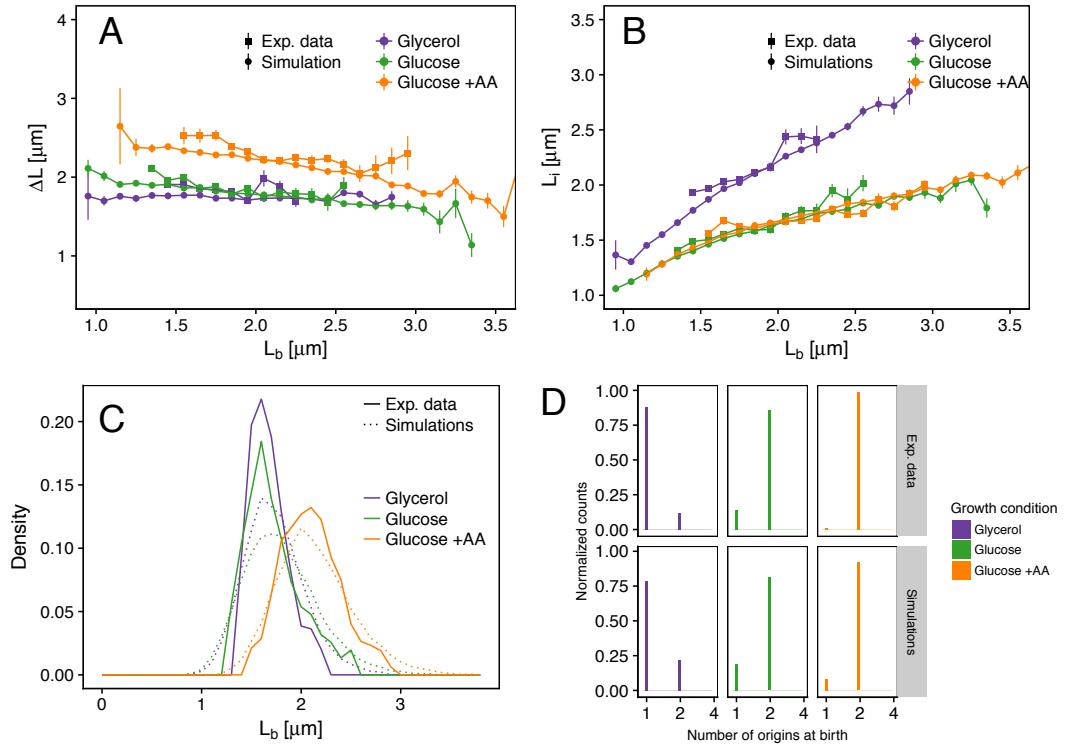


Figure 5. Comparison of predictions of the double-adder model with experimental observations. (A) Added length between birth and division dL versus length at birth L_b show no correlations in both the data and the simulations, demonstrating that the double-adder model reproduces the adder behavior at the level of cell size. (B) Length at initiation versus length at birth show almost identical correlations in data and simulation. (C) The distribution of cell sizes at birth are highly similar in experiments (solid lines) and simulations (dashed lines), in all growth conditions. (D) The distribution of the number of origins at birth is also highly similar between experiments and data for all growth conditions.

Figure 5-Figure supplement 1. Detailed comparisons between experiments and simulations for M9+glycerol condition (with automated origin tracking).

Figure 5-Figure supplement 2. Detailed comparisons between experiments and simulations for M9+glycerol condition (with manual origin tracking).

Figure 5-Figure supplement 3. Detailed comparisons between experiments and simulations for M9+glucose condition (with manual origin tracking).

Figure 5-Figure supplement 4. Detailed comparisons between experiments and simulations for M9+glucose+8a.a. condition (with manual origin tracking).

Figure 5-Figure supplement 5. Improved simulation by reducing variance.

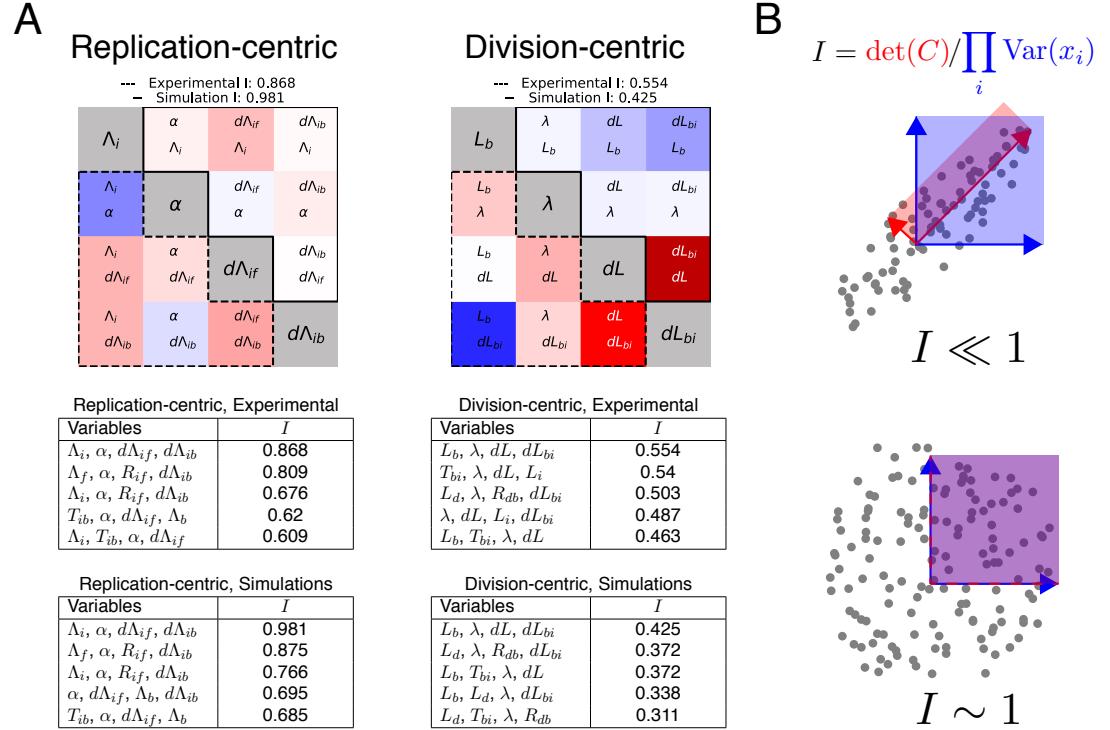


Figure 6. Decomposition method. A. Best decompositions for replication-centric and division-centric models. The matrices show the correlation structure between the variables composing the most independent set of variables. Each square corresponds to a pair of variables, red indicating positive and blue negative correlation. The lower-left corners contain experimental data and the upper-right ones simulation data B. 2D illustration of the independence quantification. The distribution of a pair of variables is shown. The variance of each variable is indicated in blue. The shaded blue area corresponds to the product of variances. The determinant of the correlation matrix of two variables gives the area spanned by the eigenvectors of the matrix (red). The variances are the same for the example with correlations (top) and without (bottom). The area determined by $\det(C)$ is strongly reduced in the correlated case. D. Five best decompositions for replication- and division-centric models of experimental and simulation data.

Figure 6-Figure supplement 1. Detailed results of the nine best decompositions for experimental data.

Figure 6-Figure supplement 2. Detailed results of the nine best decompositions for simulation data.

Figure 6-Figure supplement 3. Complete tables of decomposition.

252 while a model that assumes a timer between initiation and division would treat the time T_{ib} as an
253 independent variable, in our double-adder model the variables are the growth rate λ and added
254 length $d\Lambda_{id}$; by definition, the time T_{ib} is related to these through $\Lambda_i e^{T_{ib}/\lambda} = \Lambda_i + d\Lambda_{id}$. In this way, we
255 can systematically explore different models by taking different sets of variables as fundamental and
256 calculate the independence of each parameter set. Such a statistical analysis is only relevant when
257 applied to a large dataset and we therefore focus here on the slow growth condition (M9 glycerol)
258 for which we implemented automatic origin tracking.

259 The tables **Figure 6A** bottom show the five best models ranked by decreasing independence
260 (all decompositions can be found in **Figure 6—Figure Supplement 3**). Note that these variable sets
261 include all the previously proposed sizer and timer models as special cases, for example the inter-
262 initiation model combined with an initiation to division timer is highlighted in red in **Figure 6—Figure**
263 **Supplement 3**. The most successful models are shown in greater detail as correlation matrices
264 Fig.6A top, where residual correlations between all pairs of variables are visible. We find that none
265 of the division-centric models accomplishes high independence. For example, as shown in the
266 correlation matrix, the best division-centric model is plagued by high correlation between L_b and
267 dL_{bi} . This strongly suggests that the cell cycle control is better described from a replication-centric
268 point of view. Of all replication-centric models, our double-adder model clearly reaches the highest
269 independence, followed by various derivative models in which one of the adders is replaced by
270 another variable. We note that independence of our double-adder model on the real data is only
271 slightly lower than on simulated data **Figure 6D**, *i.e.* 0.86 versus 0.98. This residual dependence might
272 either result from correlated errors in the measurements, or it might reflect some small biological
273 dependence not captured by our model. In summary, a systematic analysis shows that, within a
274 large class of alternative models, the double-adder model best captures the correlation structure
275 evident in the data.

276 Discussion

277 Thanks to experimental techniques like the one used here, models of bacterial cell cycle regulation
278 dating back from the 1960's have been recently re-examined in detail in several studies **Campos**
279 **et al. (2014)**; **Tanouchi et al. (2015)**; **Ho and Amir (2015)**; **Adicptaningrum et al. (2015)**; **Wallden**
280 **et al. (2016)**; **Si et al. (2017)**; **Logsdon et al. (2017)**; **Micali et al. (2018a)**; **Eun et al. (2018)**; **Si et al.**
281 **(2019)**. As much as these new data have been useful in shedding light on regulation mechanisms of
282 bacterial physiology such as the adder, they have also revealed that multiple models are capable
283 of reproducing in large parts experimental data, mainly as a consequence of the correlations
284 existing between measurable cell cycle parameters. However, all of them fail at reproducing at least
285 one important aspect of the experimental observations. To illustrate this, we show in **Appendix 2**
286 how two recently proposed models (**Wallden et al., 2016**; **Micali et al., 2018b**), despite being very
287 successful, fail to capture at least one important observation. In this study, we have in a first step
288 empirically built a model which is based on previous ideas and which recapitulates measured cell
289 cycle parameters. This model makes replication the central regulator of the cell cycle, with each
290 initiation round triggering subsequent division and replication events through an adder mechanism.
291 In a second step, we then constructed and applied a statistical method to determine, within a
292 class of models, which set of cell cycle parameters best explains measurements. Following this
293 fully independent approach, our empirical double-adder model clearly comes out as the most
294 successful.

295 While the division and replication cycles are seemingly coupled, our analysis demonstrates
296 that two simple adders connected to replication initiation are sufficient to recapitulate both cycles
297 without explicitly enforcing constraints reflecting mechanisms such as over-initiation control by
298 SeqA and nucleoid occlusion which ensures that division only occurs after chromosome replication
299 is completed. The initiation adder mimicks SeqA activity by creating a refractory period without
300 initiation, and the division adder ensures that a minimal time is allocated for replication to complete.
301 While the simulations might in rare cases generate unrelasitic situations, for example if a large

302 initiation adder is combined with a small division adder leading to premature division, those clashes
303 seem rare enough to not affect the global statistical behavior of the model. Naturally the model
304 would break down and these controls would need to be explicitly included in the case where cells
305 are subject to stress conditions where these control mechanisms act as fail-safes e.g. to ensure that
306 division is delayed if DNA repair is needed. In the course of our study, new research *Si et al. (2019)*
307 proposed that division and replication cycles are only seemingly connected, and used perturbation
308 methods to drive cells to states where the uncoupling is revealed. While such perturbation studies
309 are very informative, more work is needed to understand to what extent hidden compensatory
310 mechanisms might be at play e.g. when affecting DnaA or FtsZ expression. Also, that study focuses
311 exclusively on a model which explicitly enforces various correlations between variables unlike our
312 model which naturally produces such relations. It would thus be a worthwhile future endeavour to
313 test our simpler model on such perturbed growth conditions, a task beyond the purpose of this
314 study, which tries to clarify the normal growth case.

315 Interestingly, a double-adder mechanism similar to the one that we propose here has been
316 shown to explain cell-cycle control in mycobacteria (*Logsdon et al., 2017*). These mycobacteria have
317 a much more complex behavior than *E. coli*, in particular characterized by a strong asymmetry
318 between daughter cells and a growth rate almost an order of magnitude smaller than that of *E. coli*.
319 Despite those important differences, it was shown that mycobacterial cell cycles exhibit adder
320 behavior for both division and replication starting at initiation, in a manner highly similar to our
321 observations in *E. coli*. This suggests that the mechanism connecting replication and division must
322 be quite fundamental and independent of the specifics of available genes and their expression.

323 Although the single-cell observations provide clear indications of which variables are most
324 likely to be directly involved in the cell cycle control, they of course do not indicate the underlying
325 molecular mechanisms. However, it is not hard to speculate about possible molecular mechanisms
326 that could implement the double-adder behavior. As others have pointed out previously (*Ho and
327 Amir, 2015*), an adder for the regulation of replication initiation can be easily implemented at
328 the molecular level by having a "sensor" protein that builds up at each origin, and that triggers
329 replication initiation whenever a critical mass is reached at a given origin. If this sensor protein
330 is additionally homeostatically controlled such that its production relative to the overall protein
331 production is kept constant, then the average volume per origin will also be kept constant across
332 conditions.

333 It is more challenging to define a molecular system that can implement the second adder that
334 controls division. The main challenge is that this adder does not run throughout the entire cell
335 cycle, but only between replication initiation and division. It is well known that division is driven by
336 the polymerization of the FtsZ ring, which includes a host of other FtsZ-ring associated proteins,
337 and its progressive constriction. It might seem simplest to assume that the division adder could
338 be implemented directly through FtsZ production, again in the logic of the regulated "sensor"
339 mentioned above. However, this would require FtsZ to be produced and accumulating at the
340 division sites only from replication initiation to cell division. Although this is conceivable, i.e. it
341 is known that FtsZ and other division proteins are heavily regulated at several levels (*Dewar and
342 Dorazi, 2000*) and that especially in slow growth conditions its concentration varies during the cell
343 cycle (*Männik et al., 2018*), it is hard to imagine how this model could work under fast growth
344 conditions in which there are overlapping rounds of replication such that FtsZ would be constantly
345 expressed. Moreover recent data (*Si et al., 2019*) rather suggest that FtsZ concentration is constant
346 during the cell cycle.

347 Alternatively, rather than FtsZ production, FtsZ polymerization could be regulated. One remarkable
348 observation that is well known within the field (*Lau et al., 2004; Nielsen et al., 2006*) and that
349 we also observe in our data (see *Figure Supplement 1*), is that origins always occupy the position
350 of future division sites (mid-cell, 1/4 and 3/4 positions etc.) when replication is initiated. This
351 observation not only suggests that, at replication initiation, some local molecular event occurs that
352 will eventually trigger division at the same site, but it is also remarkably consistent with the idea

353 of an adder running only between replication initiation and division. One long-standing idea that
354 is consistent with these observations is that some molecular event that occurs during replication
355 initiation triggers the start of FtsZ ring formation, and that the timing from initiation to division
356 is controlled by the polymerization dynamics of the FtsZ ring (*Weart and Levin, 2003*). At the
357 molecular level, the common triggering of initiation and polymerization might be explained by the
358 accumulation of acidic phospholipids in the cell membrane precisely at future division sites (*Renner*
359 and *Weibel, 2011*) where they probably interact with components of the division machinery. At
360 the same time those lipids are known to play a role in promoting replication by rejuvenating the
361 initiator protein DnaA-ADP into DnaA-ATP (*Saxena et al., 2013*), and might therefore be a "hub"
362 coordinating the two cycles. Finally, it remains to be explained how FtsZ polymerization or pole
363 building could result in an adder behaviour. For that purpose, future experiments should focus on
364 combining the type of information collected in this study and detailed measures of the dynamics of
365 FtsZ-ring assembly and constriction as done in *Coltharp et al. (2016)*.

366 **Methods and Materials**

367 **Bacterial strains and media**

368 All strains are derived from the K-12 strain BW27378, a Δ (araH-araF)570(:FRT) derivative of the
369 Keio collection background strain (*Baba et al., 2006*) obtained from the Yale Coli Genetic Stock
370 Center. This strain was further modified by λ -Red recombination (*Datsenko and Wanner, 2000*)
371 and P1 transduction to result in Δ araFGH(:FRT), Δ araE(:FRT), Δ lacIZYA(:FRT). A 250 lacO repeats
372 FROS array with chloramphenicol resistance was inserted close to the origin of replication in the
373 *asnA* gene by λ -Red recombination and P1 transduction. The lacO-CmR array was derived from the
374 original plasmid pLau43 (*Lau et al., 2004*) by replacing the kanamycin resistance and a series of
375 operators on both sides of it with the CmR gene. For visualization of the array, LacI-mVenus was
376 expressed from the plasmid pGW266, derived from the original FROS plasmid pLAU53 (*Lau et al.,*
377 *2004*) from which the tetR construct was removed and the lacI-CFP replaced by lacI-mVenus. For
378 the experiment analyzed automatically the same stain carried in addition the plasmid pGW339
379 expressing FtsZ-mVenus under the control of the araBAD promoter using 0.002% arabinose for
380 induction. Expression is tightly controlled by using the approach proposed in *Morgan-Kiss et al.*
381 (*2002*).

382 All experiments were done using M9 minimal media supplemented with 2 mM MgSO₄, 0.1 mM
383 CaCl₂, and sugars (0.2 % for glucose and 0.2 % for glycerol). In one experiment, the media was
384 supplemented with 8 amino acids at a concentration of 5 μ g/ml: Threonine, Asparagine, Methionine,
385 Proline, Leucine, Tryptophane, Serine, Alanine. All experiments were carried out at 37 °C.

386 **Microfluidic device fabrication**

387 Mother Machine experiments were performed using the Dual Input Mother Machine (DIMM) mi-
388 crofluidic design which has been described elsewhere (*Kaiser et al., 2018*) and is freely available
389 online (<https://metafluidics.org/devices/dual-input-mother-machine/>); since no change of condi-
390 tions was intended during experiments, the same media was flown at both inputs.

391 Several microfluidics masters were produced using soft lithography techniques by micro-resist
392 Gmbh; two masters with regular growth channels of suitable size (0.8 μ m width \times 0.9 μ m height
393 for growth in glycerol, and 1 μ m width \times 1.2 μ m height for growth in glucose) were used for all
394 experiments.

395 For each experiment, a new chip was produced by pouring PDMS (Sylgard 184 with 1:9w/w
396 ratio of curing agent) on the master and baking it for 4 h or more at 80°C. After cutting the chip
397 and punching inlets, the chip was bonded to a #1.5 glass coverslip as follows: the coverslip was
398 manually washed in water and soap, rinsed in isopropanol then water; the chip cleaned from dust
399 using MagicTape, rinsed in isopropanol then water; surfaces were activated with air plasma (40 sec
400 at 1500 μ m of Hg) before being put in contact; the assembled chip was cooked 1 h or more at 80°C.

401 Before running the experiment, the chip was primed and incubated 1 h at 37°C using passivation
402 buffer (2.5 mg/mL salmon sperm DNA, 7.5 mg/mL bovine serum albumin) for the mother machine
403 part and water for the overflow channels.

404 **Experiment setup and conditions**

405 Bacteria were stored as frozen glycerol stocks at -80 °C and streaked onto LB agar plates to obtain
406 clonal colonies. Overnight precultures were grown from single colonies in the same growth media
407 as the experiment. The next day, cells were diluted 100-fold into fresh medium and harvested after
408 4-6 h.

409 The experimental apparatus was initialized, pre-warmed and equilibrated. Media flow was
410 controlled using a pressure controller and monitored with flow-meters, set to run a total flow of
411 $\approx 1.5 \mu\text{L}/\text{min}$ (corresponding to a pressure of $\approx 1600 \text{ mbar}$).

412 The primed microfluidic chip was mounted, connected to media supply and flushed with running
413 media for 30 min or more to rinse passivation buffer. The grown cell culture was centrifuged at
414 4000×g for 5 min, and the pellet re-suspended in a few μL supernatant and injected into the device
415 from the outlet using the pressure controller. To facilitate the filling of growth channels by swimming
416 and diffusing cells, the pressure was adjusted in order to maintain minimal flow in the main channel
417 (loading time 40min).

418 After loading, bacteria were incubated during 2 h before starting image acquisition. Every 3 min,
419 phase contrast and fluorescence images were acquired for several well-separated positions in
420 parallel.

421 **Microscopy and image analysis**

422 An inverted Nikon Ti-E microscope, equipped with a motorized xy-stage and enclosed in a tempera-
423 ture incubator (TheCube, Life Imaging Systems), was used to perform all experiments. The sample
424 was fixed on the stage using metal clamps and focus was maintained using hardware autofocus
425 (Perfect Focus System, Nikon). Images were recorded using a CFI Plan Apochromat Lambda DM
426 $\times 100$ objective (NA 1.45, WD 0.13 mm) and a CMOS camera (Hamamatsu Orca-Flash 4.0). The
427 setup was controlled using μ Manager (*Edelstein et al., 2014*) and timelapse movies were recorded
428 with its Multi-Dimensional Acquisition engine. Phase contrast images were acquired using 200
429 ms exposure (CoolLED pE-100, full power). Images of mCherry fluorescence were acquired using
430 200ms exposure (Lumencor SpectraX, Green LED at 33% with ND4) using a Semrock triple-band
431 emission filter (FF01-475/543/702-25).

432 Image analysis was performed using MoMA (*Kaiser et al., 2018*) as described in its documenta-
433 tion (<https://github.com/fjug/MoMA/wiki>). Raw image datasets were transferred to a centralised
434 storage and preprocessed in batch. Growth channels were chosen randomly after discarding those
435 where cell cycle arrest occurred in the mother cell, and curated manually in MoMA. An exponential
436 elongation model was then fitted to each cell cycle, and cycles presenting large deviations were
437 discarded (1-3% of each experiment).

438 For the automated origin detection and tracking we used custom Python code. Spots were
439 detected following the method proposed in *Aguet et al. (2013)*. Briefly, amplitude and background
440 are estimated for each pixel using a fast filtering method and a spot model corresponding to the
441 optical setup. Among the local maxima found in the amplitude estimates, spots are then selected
442 using a statistical test based on the assumption that background noise is Gaussian. To track spots
443 we used the trackpy package *Allan et al. (2018)*. We kept only cell cycles where origin tracks behaved
444 in a biologically reasonable way, *i.e.* one track splitting in two, splitting in four *etc.* The time of
445 initiation was assigned as the first time point where a track splits into two. For the manual analysis
446 of the other experiments, the frame showing origin splitting was selected manually.

447 Using the the timing of origin splitting, the corresponding cell length could be determined. All
448 further variables like dL or $d\Lambda_{ib}$ are deduced from the primary variables. For the decomposition
449 analysis, a pseudo-cell cycle was created by concatenating the mother cell cycle from initiation to

450 division with the daughter cell cycle from birth to initiation. The growth rate α for this pseudo-cell
451 cycle was again obtained by fitting an exponential growth model. All the growth lanes corresponding
452 to a given conditions were then pooled to generate the various statistics shown in this article.

453 The entire analysis pipeline is available as Python modules and Jupyter Notebooks on Github
454 (<https://github.com/guiwitz/DoubleAdderArticle>).

455 **Simulations**

456 The numerical implementation of the model described in **Figure 4** and used in **Figure 5** requires
457 several parameters for each individual cell cycle. To generate those, the following distributions were
458 extracted from experimental data, and if needed their means and variances were obtained by a
459 fitting procedure:

- 460 • The growth rate distributions $P(\lambda)$.
- 461 • The growth rate correlation from mother to daughters.
- 462 • The length distributions of the two adder processes $P(d\Lambda_{ib})$ and $P(d\Lambda_{if})$.
- 463 • The distributions of length ratios between sister cells to account for imprecision in division
464 placement $P(r)$.

465 For the simulation, a series of 500 cells is initialized with all required parameters: initial length
466 L_0 taken from the birth length distribution, $\lambda = P(\lambda)$, number of origins $n_{ori} = 1$, and the two adders
467 $d\Lambda_{ib} = P(\lambda)$ and $d\Lambda_{if} = P(d\Lambda_{if})$ whose counters are starting at 0. The exact initialization is not
468 crucial as the system relaxes to its equilibrium state after a few generations. Cells are then growing
469 incrementally following an exponential law, and the added length is monitored. Every time the cell
470 reaches its target $d\Lambda_{if}$, the number of origins doubles and a new initiation adder is drawn from
471 $P(d\Lambda_{if})$. Every time the cell reaches its target $d\Lambda_{ib}$ the cell 1) divides into two cells using a division
472 ratio drawn $P(r)$, 2) the number of origins per cell is divided by two, 3) a new division adder is drawn
473 from $P(d\Lambda_{ib})$, and finally 4) a new growth rate is drawn from $P(\lambda)$. Each simulation runs for 30h in
474 steps of 1min. In the end, the cell tracks resulting from the simulation are formatted in the same
475 format as the experimental data, and follow the same analysis pipeline. The code is available on
476 Github.

477 **Acknowledgments**

478 **Additional information**

479 This study was funded through the SNSF Ambizione grant PZ00P3-161467 to GW and the SNSF
480 grant 31003A-159673 to EvN.

481 **References**

482 **Adiciptaningrum A**, Osella M, Moolman MC, Cosentino Lagomarsino M, Tans SJ. Stochasticity and Homeostasis
483 in the E. Coli Replication and Division Cycle. *Scientific reports*. 2015 Dec; 5:18261. doi: 10.1038/srep18261.

484 **Aguet F**, Antonescu CN, Mettlen M, Schmid SL, Danuser G. Advances in Analysis of Low Signal-to-Noise
485 Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint. *Developmental Cell*. 2013 Aug;
486 26(3):279-291. doi: 10.1016/j.devcel.2013.06.019.

487 **Allan DB**, Caswell T, Keim NC, van der Wel CM, Trackpy: Trackpy v0.4.1; 2018. doi: 10.5281/zenodo.1226458.
488 Zenodo.

489 **Amir A**. Cell Size Regulation in Bacteria. *Physical Review Letters*. 2014 May; 112(20):208102. doi: 10.1103/Phys-
490 RevLett.112.208102.

491 **Amir A**. Is Cell Size a Spandrel? *eLife*. 2017 Jan; 6:e22186. doi: 10.7554/eLife.22186.

492 **Baba T**, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Con-
493 struction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection. *Molecular
494 Systems Biology*. 2006 Feb; 2:2006.0008. doi: 10.1038/msb4100050.

495 **Campos M**, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, Ebmeier SE, Jacobs-Wagner C. A Constant Size Extension
496 Drives Bacterial Cell Size Homeostasis. *Cell*. 2014 Dec; 159(6):1433–1446. doi: [10.1016/j.cell.2014.11.022](https://doi.org/10.1016/j.cell.2014.11.022).

497 **Coltharp C**, Buss J, Plumer TM, Xiao J. Defining the Rate-Limiting Processes of Bacterial Cytokinesis.
498 Proceedings of the National Academy of Sciences of the United States of America. 2016 Feb; doi:
499 [10.1073/pnas.1514296113](https://doi.org/10.1073/pnas.1514296113).

500 **Cooper S**, Helmstetter CE. Chromosome Replication and the Division Cycle of *Escherichia coli*. *Journal of*
501 *Molecular Biology*. 1968 Feb; 31(3):519–540. doi: [10.1016/0022-2836\(68\)90425-7](https://doi.org/10.1016/0022-2836(68)90425-7).

502 **Datsenko KA**, Wanner BL. One-Step Inactivation of Chromosomal Genes in *Escherichia coli* K-12 Using PCR
503 Products. *Proceedings of the National Academy of Sciences of the United States of America*. 2000 Jun;
504 97(12):6640–6645. doi: [10.1073/pnas.120163297](https://doi.org/10.1073/pnas.120163297).

505 **Dewar SJ**, Dorazi R. Control of Division Gene Expression in *Escherichia coli*. *FEMS Microbiology Letters*. 2000;
506 187(1):1–7.

507 **Donachie WD**. Relationship between Cell Size and Time of Initiation of DNA Replication. *Nature*. 1968 Sep;
508 219(5158):1077–1079.

509 **Edelstein AD**, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. Advanced Methods of Microscope
510 Control Using μ Manager Software. *Journal of biological methods*. 2014; 1(2). doi: [10.14440/jbm.2014.36](https://doi.org/10.14440/jbm.2014.36).

511 **Eun YJ**, Ho PY, Kim M, LaRussa S, Robert L, Renner LD, Schmid A, Garner E, Amir A. Archaeal Cells Share Common
512 Size Control with Bacteria despite Noisier Growth and Division. *Nature microbiology*. 2018 Feb; 3(2):148–154.
513 doi: [10.1038/s41564-017-0082-6](https://doi.org/10.1038/s41564-017-0082-6).

514 **Helmstetter C**, Cooper S, Pierucci O, Revelas E. On the Bacterial Life Sequence. *Cold Spring Harbor Symposia*
515 on Quantitative Biology. 1968; 33:809–822.

516 **Ho PY**, Amir A. Simultaneous Regulation of Cell Size and Chromosome Replication in Bacteria. *Frontiers in*
517 *Microbiology*. 2015 Jul; 6. doi: [10.3389/fmicb.2015.00662](https://doi.org/10.3389/fmicb.2015.00662).

518 **Kaiser M**, Jug F, Julou T, Deshpande S, Pfohl T, Silander OK, Myers G, van Nimwegen E. Monitoring Single-Cell
519 Gene Regulation under Dynamically Controllable Conditions with Integrated Microfluidics and Software.
520 *Nature Communications*. 2018 Jan; 9(1):212. doi: [10.1038/s41467-017-02505-0](https://doi.org/10.1038/s41467-017-02505-0).

521 **Lau IF**, Filipe SR, Søballe B, Økstad OA, Barre FX, Sherratt DJ. Spatial and Temporal Organization of Replicating
522 *Escherichia coli* Chromosomes. *Molecular Microbiology*. 2004 Jan; 49(3):731–743. doi: [10.1046/j.1365-2958.2003.03640.x](https://doi.org/10.1046/j.1365-2958.2003.03640.x).

523 **Logsdon MM**, Ho PY, Papavinasasundaram K, Richardson K, Cokol M, Sassetti CM, Amir A, Aldridge BB. A Parallel
524 Adder Coordinates Mycobacterial Cell-Cycle Progression and Cell-Size Homeostasis in the Context of Asymmetric
525 Growth and Organization. *Current Biology*. 2017 Nov; 27(21):3367–3374.e7. doi: [10.1016/j.cub.2017.09.046](https://doi.org/10.1016/j.cub.2017.09.046).

526 **Männik J**, Walker BE, Männik J. Cell Cycle-Dependent Regulation of FtsZ in *Escherichia coli* in Slow Growth
527 Conditions. *Molecular Microbiology*. 2018 Dec; 110(6):1030–1044. doi: [10.1111/mmi.14135](https://doi.org/10.1111/mmi.14135).

528 **Micali G**, Grilli J, Marchi J, Osella M, Cosentino Lagomarsino M. Dissecting the Control Mechanisms for DNA Repli-
529 cation and Cell Division in *E. coli*. *Cell Reports*. 2018 Oct; 25(3):761–771.e4. doi: [10.1016/j.celrep.2018.09.061](https://doi.org/10.1016/j.celrep.2018.09.061).

530 **Micali G**, Grilli J, Osella M, Cosentino Lagomarsino M. Concurrent Processes Set *E. coli* Cell Division. *Science*
531 *Advances*. 2018 Nov; 4(11). doi: [10.1126/sciadv.aau3324](https://doi.org/10.1126/sciadv.aau3324).

532 **Morgan-Kiss RM**, Wadler C, Cronan JE. Long-Term and Homogeneous Regulation of the *Escherichia coli* araBAD
533 Promoter by Use of a Lactose Transporter of Relaxed Specificity. *Proceedings of the National Academy of*
534 *Sciences of the United States of America*. 2002 May; 99(11):7373–7377. doi: [10.1073/pnas.122227599](https://doi.org/10.1073/pnas.122227599).

535 **Nielsen HJ**, Li Y, Youngren B, Hansen FG, Austin S. Progressive Segregation of the *Escherichia coli* Chromosome.
536 *Molecular Microbiology*. 2006 Jul; 61(2):383–393. doi: [10.1111/j.1365-2958.2006.05245.x](https://doi.org/10.1111/j.1365-2958.2006.05245.x).

537 **Renner LD**, Weibel DB. Cardiolipin Microdomains Localize to Negatively Curved Regions of *Escherichia coli*
538 Membranes. *Proceedings of the National Academy of Sciences of the United States of America*. 2011 Apr;
539 108(15):6264–6269. doi: [10.1073/pnas.1015757108](https://doi.org/10.1073/pnas.1015757108).

540 **Saxena R**, Fingland N, Patil D, Sharma A, Crooke E. Crosstalk between DnaA Protein, the Initiator of *Escherichia*
541 *coli* Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes. *International*
542 *Journal of Molecular Sciences*. 2013 Apr; 14(4):8517–8537. doi: [10.3390/ijms14048517](https://doi.org/10.3390/ijms14048517).

544 **Schaechter M**, Maaloe O, Kjeldgaard NO. Dependency on Medium and Temperature of Cell Size and Chemical
545 Composition during Balanced Growth of *Salmonella Typhimurium*. *Journal of General Microbiology*. 1958 Dec;
546 19(3):592–606. doi: 10.1099/00221287-19-3-592.

547 **Si F**, Li D, Cox SE, Sauls JT, Azizi O, Sou C, Schwartz AB, Erickstad MJ, Jun Y, Li X, Jun S. Invariance of Initiation
548 Mass and Predictability of Cell Size in *Escherichia Coli*. *Current Biology*. 2017 May; 27(9):1278–1287. doi:
549 [10.1016/j.cub.2017.03.022](https://doi.org/10.1016/j.cub.2017.03.022).

550 **Si F**, Treut GL, Sauls JT, Vadia S, Levin PA, Jun S. Mechanistic Origin of Cell-Size Control and Homeostasis in
551 Bacteria. *bioRxiv*. 2019 Apr; p. 478818. doi: 10.1101/478818.

552 **Soifer I**, Robert L, Amir A. Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size
553 Regulation Strategy. *Current Biology*. 2016 Feb; 26(3):356–361. doi: [10.1016/j.cub.2015.11.067](https://doi.org/10.1016/j.cub.2015.11.067).

554 **Taheri-Araghi S**, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S. Cell-Size Control and
555 Homeostasis in Bacteria. *Current Biology*. 2017 May; 27(9):1392. doi: [10.1016/j.cub.2017.04.028](https://doi.org/10.1016/j.cub.2017.04.028).

556 **Tanouchi Y**, Pai A, Park H, Huang S, Stamatov R, Buchler NE, You L. A Noisy Linear Map Underlies Oscillations in
557 Cell Size and Gene Expression in Bacteria. *Nature*. 2015 Jul; 523(7560):357–360. doi: 10.1038/nature14562.

558 **Wallden M**, Fange D, Lundius EG, Baltekin O, Elf J. The Synchronization of Replication and Division Cycles in
559 Individual *E. Coli* Cells. *Cell*. 2016 Jul; 166(3):729–739. doi: [10.1016/j.cell.2016.06.052](https://doi.org/10.1016/j.cell.2016.06.052).

560 **Wang P**, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S. Robust Growth of *Escherichia Coli*. *Current
561 Biology*. 2010 May; p. 1–15. doi: [10.1016/j.cub.2010.04.045](https://doi.org/10.1016/j.cub.2010.04.045).

562 **Weart RB**, Levin PA. Growth Rate-Dependent Regulation of Medial FtsZ Ring Formation. *Journal of Bacteriology*.
563 2003 May; 185(9):2826–2834. doi: [10.1128/JB.185.9.2826-2834.2003](https://doi.org/10.1128/JB.185.9.2826-2834.2003).

564 **Appendix 1**

565

Experiments statistics

566

Experiment	Discarded %	# cell cycles	$1/\lambda[min]$	Adder r	$\lambda^{m-d} r$	$L_b^{m-d} r$
Glycerol auto	3.3	3070	86.0	-0.10	0.33	0.45
Glycerol	2.1	810	89.0	-0.07	0.42	0.58
Glucose	2.1	1035	53.0	-0.04	0.47	0.66
Glucose +AA	2.4	1159	41.0	-0.12	0.36	0.48

568

Table 1. Statistics for all experiments. Glycerol auto is that dataset analyzed automatically, while Glycerol is the one analyzed manually. r stands for Pearson correlation, and the $m - d$ superscript indicates a mother-daughter correlation. The doubling time ($1/\lambda$) is obtained by fitting the distribution of growth rates with a log-normal distribution.

569

570

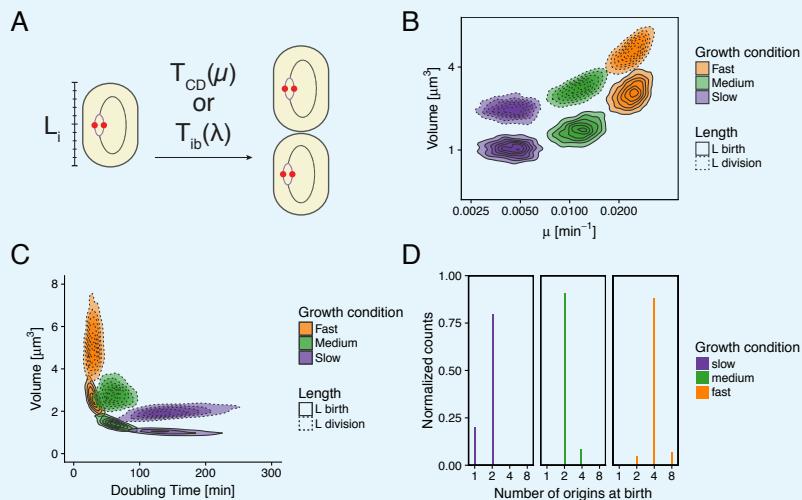
571

572

573 Appendix 2

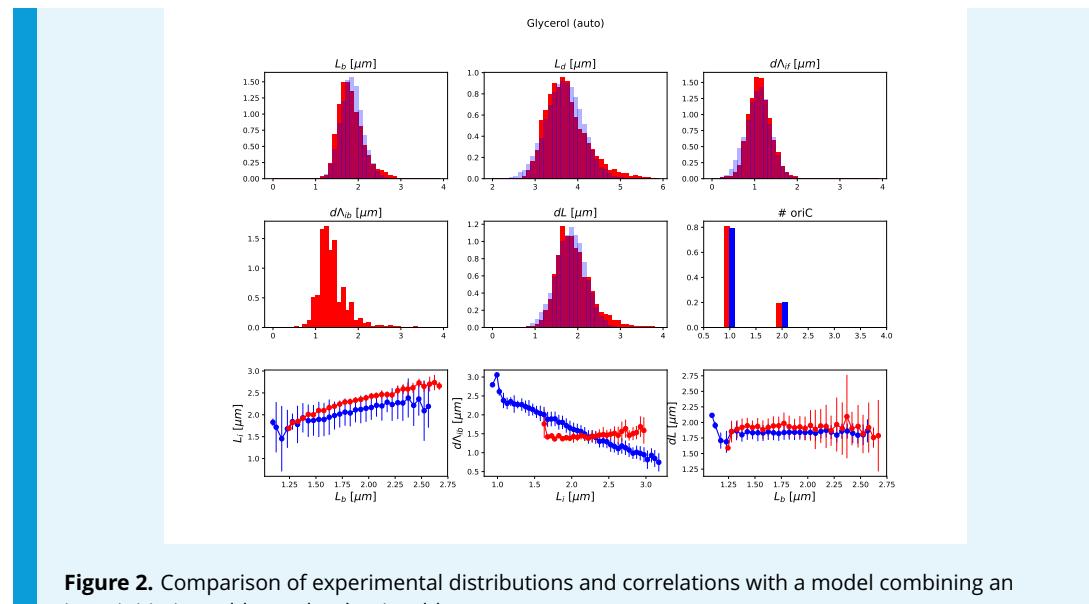
574 Other models

575 In this article we have shown that models relying on the concept of initiation mass, as
576 well as those involving a constant timer from initiation to division are incompatible with
577 measurements. Still, those models are able to reproduce a wide range of experimental
578 measurements, and we wanted to understand where they would break. We give here two
579 examples of such an analysis. In the first case we tried to reproduce the model proposed in
580 **Walden et al. (2016)**. This model assumes that cells initiate replication around a specific initia-
581 tion mass length L_i and then grow for an amount of time depending on growth rate $T_{CD}(\mu)$
582 before dividing (1A). In panels B and C of 1 we show that we are successfully reproducing the
583 model used e.g. in Figure 6 of **Walden et al. (2016)**. The histogram of the number of origins
584 at birth shown in 1D shows a clear failure of the model where cells in slow growth conditions
585 are all born with an ongoing round of replication in contradiction with experimental data
586 (see e.g. Figure 3 of **Walden et al. (2016)**).



587
588 **Figure 1.** Re-implementation of the model proposed in **Walden et al. (2016)** for three growth
589 conditions. A. Cells initiation at length L_i and grow for a time $T_{CD}(\mu)$ before dividing. B. Cell volume at
590 birth and division as a function of growth rate. C. Cell volume at birth and division as a function of
591 generation time. D. Distributions of the number of origins at birth.

592
593 The second model we are investigating here has been recently proposed by **Micali et al.**
594 (**2018b**). It uses an inter-initiation adder for replication regulation, and combines it with a
595 classical adder (birth to division) without coupling those two regulation systems together
596 explicitly. We simulated such a model with the added constraint that division can only occur
597 if at least two origins are present in the cell. The results are shown in Fig.2. The model
598 surprisingly reproduces most of the features of the experimental data with one exception:
599 the initiation to division variable $d\Lambda_{ib}$ is clearly not anymore an adder. This can be trivially
600 explained: as the two mechanisms are uncoupled, an initiation at a large size automatically
601 leads to a small $d\Lambda_{ib}$ on average while an early initiation at small size leads to a large $d\Lambda_{ib}$ on
602 average.



607 **Appendix 3**

608

608 **Decomposition: the classic adder model.**

609

610

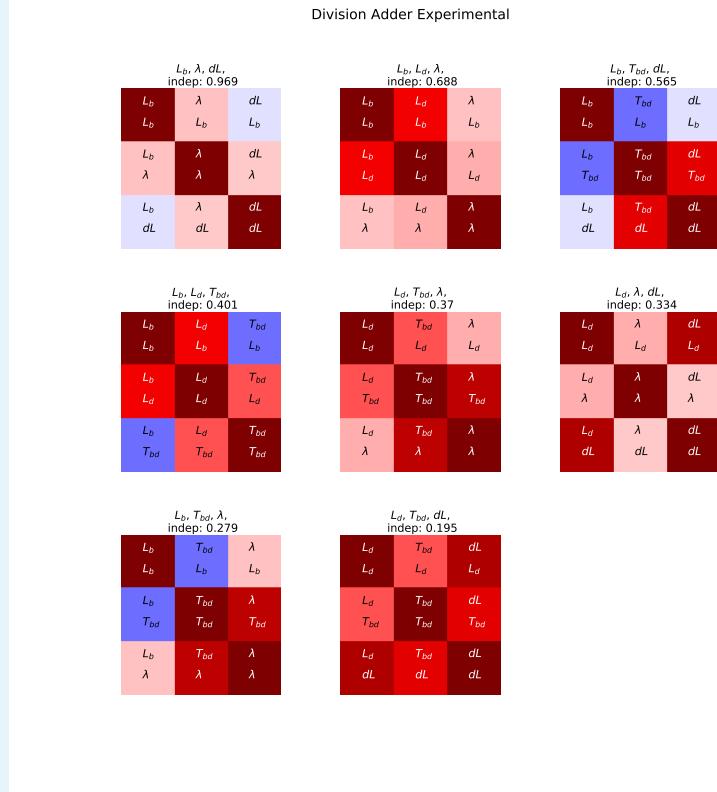
611

612

613

In order to illustrate the functioning of the our decomposition approach, we apply it to the familiar case of the classic division adder model. By considering all possible combinations of standard cell cycle variables and estimating their independence, we find that the decomposition offering the most independent set of variables corresponds to the classic adder model defined by L_b , dL and λ , as can be seen in 1.

614



615

616

Figure 1. All possible decompositions for the division cycle variables ranked from best (top left) to worst (bottom right) in terms of variable independence.

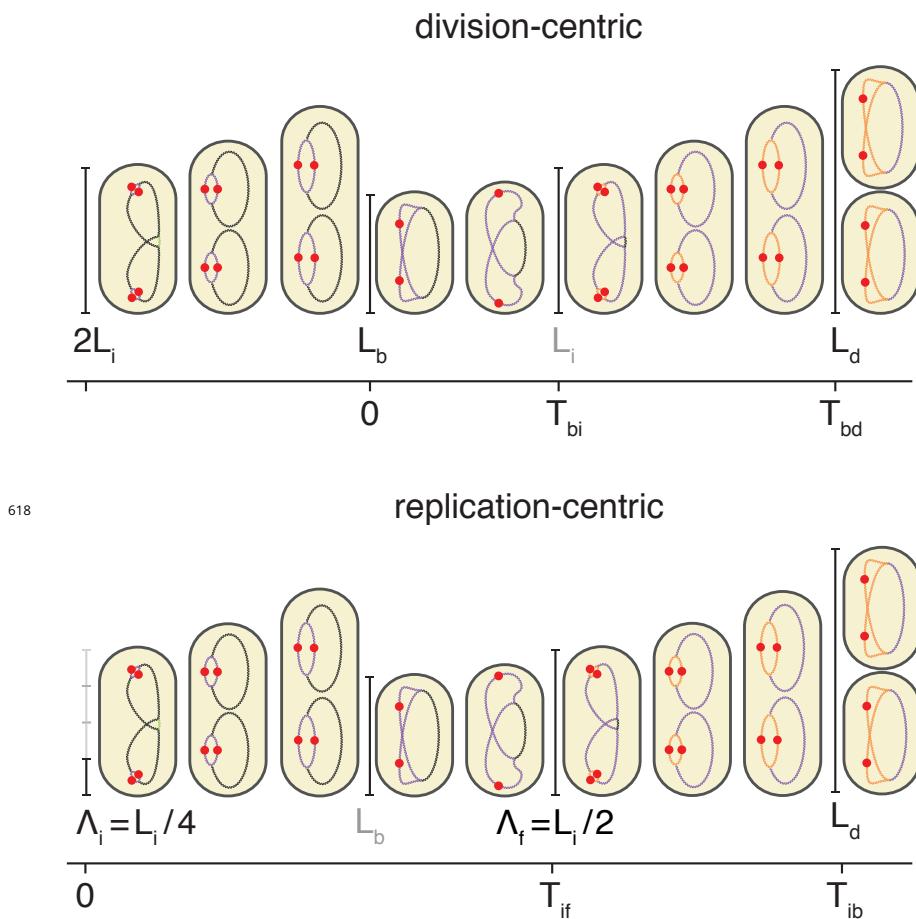


Figure 1–Figure supplement 1. Schema of the cell cycle and variable definitions for the case of fast growth with overlapping replication cycles

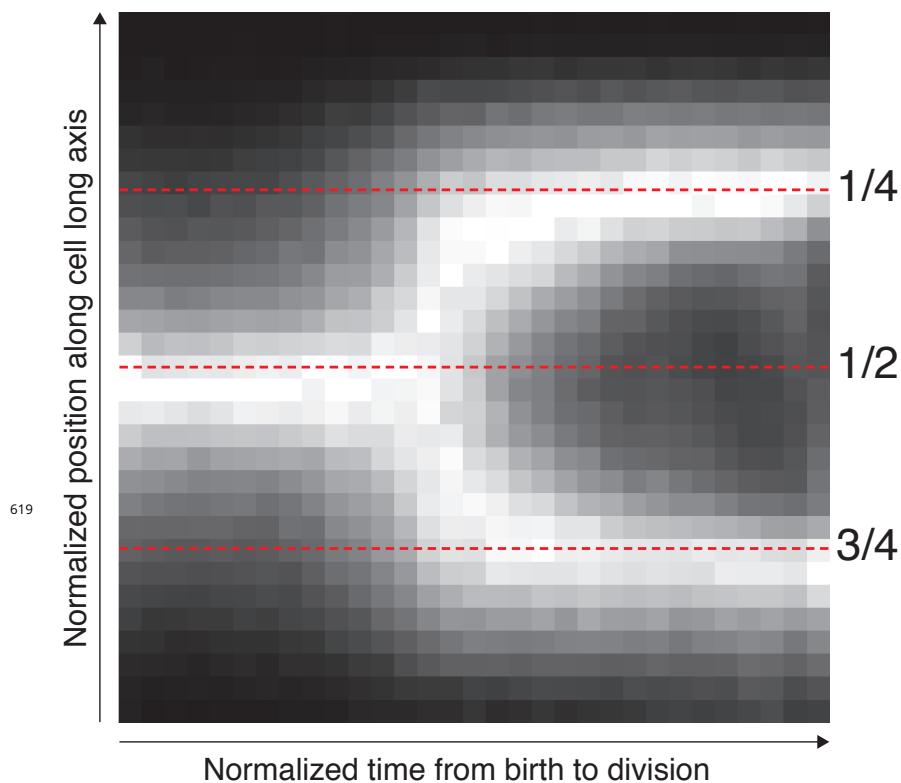


Figure 4-Figure supplement 1. The position along the cell axis and the cell-cycle time of all detected spots were collected. The longitudinal position was scaled with cell length to indicate the relative position in the cell. The cell cycle time was normalized between 0 and 1. The 1 shows as 2D histogram of these space-time data. The intensity of each time point (columns) has been normalized. The mid-cell and quarter-cell (mid-cell of daughter cell) positions are indicated with dotted lines.

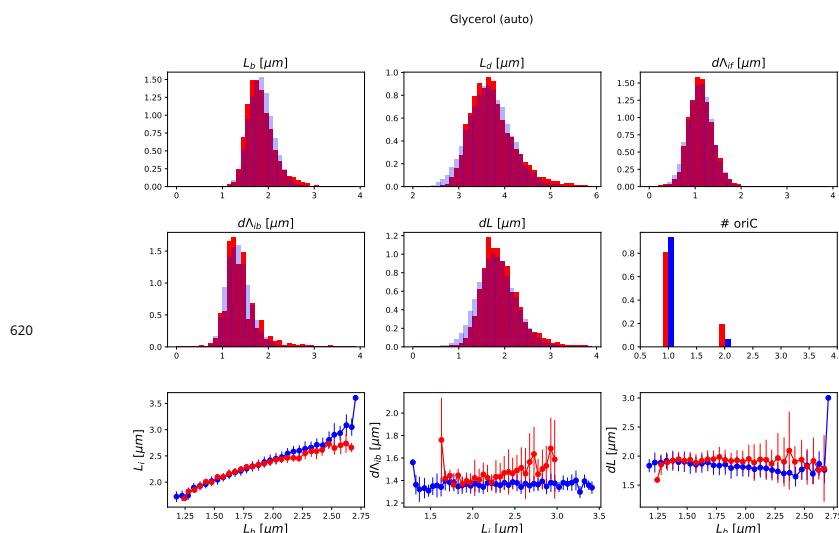


Figure 5-Figure supplement 1. Detailed comparisons between experiments and simulations for M9+glycerol condition (with automated origin tracking).

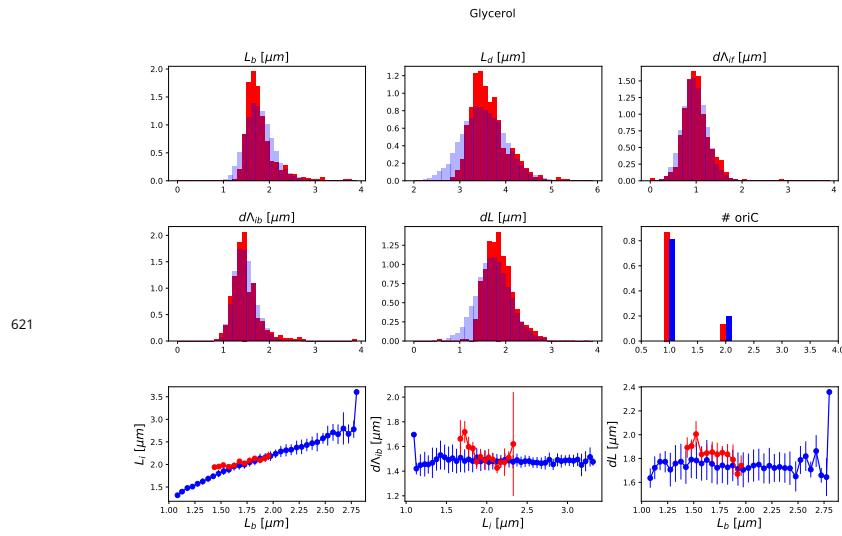


Figure 5-Figure supplement 2. Detailed comparisons between experiments and simulations for M9+glycerol condition (with manual origin tracking).

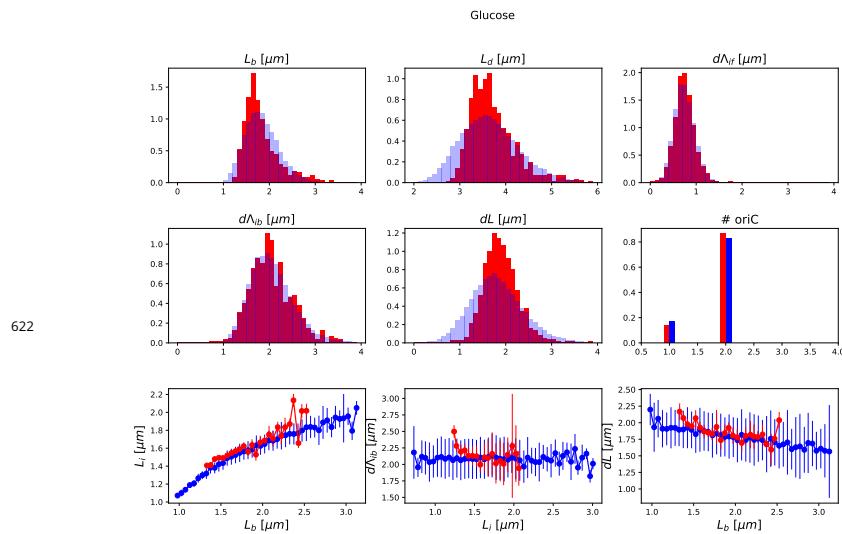


Figure 5-Figure supplement 3. Detailed comparisons between experiments and simulations for M9+glucose condition (with manual origin tracking).

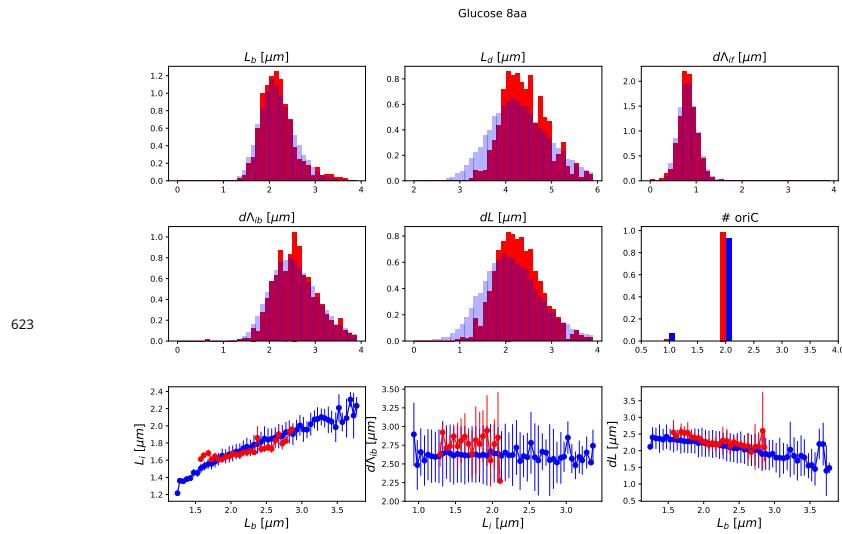


Figure 5-Figure supplement 4. Detailed comparisons between experiments and simulations for M9+glucose+8a.a. condition (with manual origin tracking).

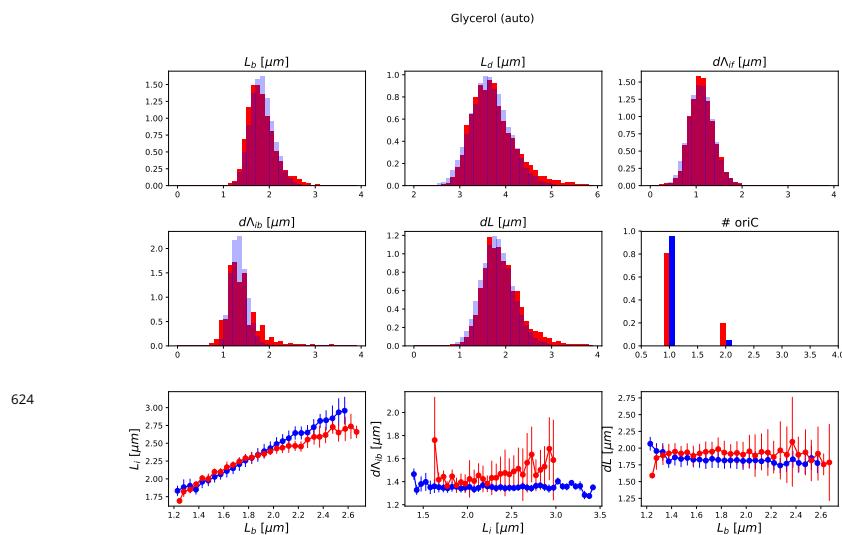


Figure 5-Figure supplement 5. Focusing on the large dataset (with automated origin tracking) for which we have the most accurate measures, we note that dL shows a slight deviation from adder behavior. As shown here, we found that this could be corrected by slightly reducing the variance level of the division adder distribution (to 70% of its original value). As the initiation measurement is made imprecise for experimental (e.g. acquisition rate) and biological (e.g. variable cohesion of origins), it is reasonable to assume that we overestimate the variance of that parameter.

Double-adder Experimental

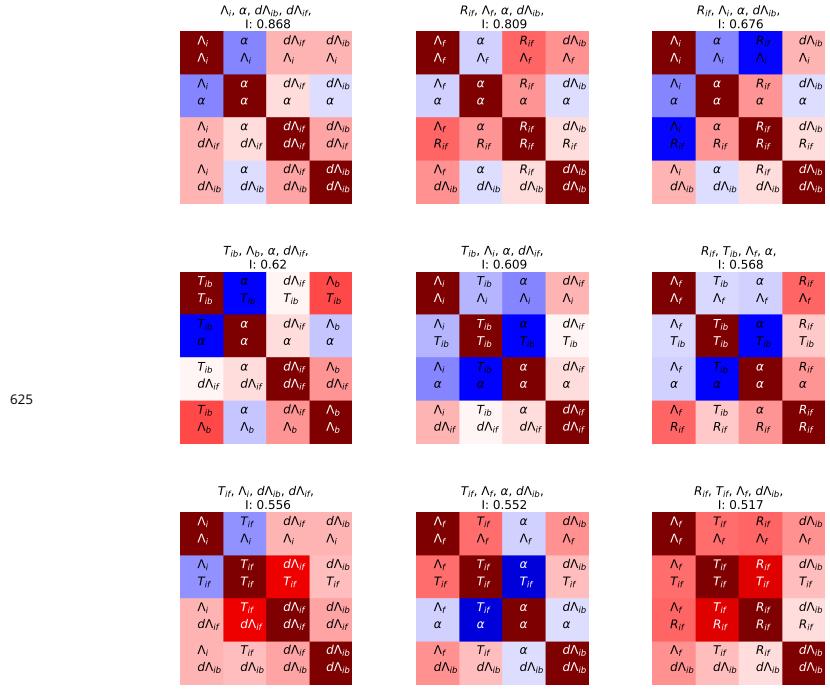


Figure 6-Figure supplement 1. In complement to the best decomposition shown in Fig.6, we show here details for the first nine best decompositions for the experimental data.

Double-adder Simulation

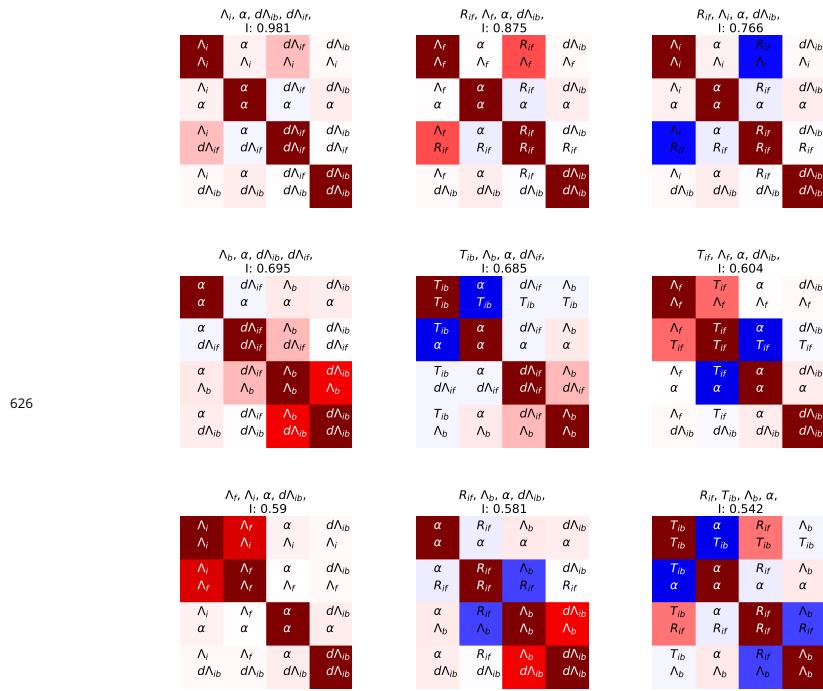


Figure 6-Figure supplement 2. In complement to the best decomposition shown in Fig.6, we show here details for the first nine best decompositions for the simulation data.

Experimental (Glycerol) initiation centric combinations		Simulation (Glycerol) initiation centric combinations		Experimental (Glycerol) division centric combinations		Simulation (Glycerol) division centric combinations	
	independence		independence		independence		independence
$\Lambda_i, \alpha, d\Lambda_{if}, d\Lambda_{ib}$	0.868	$\Lambda_j, \alpha, d\Lambda_{if}, d\Lambda_{ib}$	0.981	$L_b, \lambda, dL_{if}, dL_{bi}$	0.554	$L_b, \lambda, dL_{if}, dL_{bi}$	0.425
$\Lambda_f, \alpha, R_{if}, d\Lambda_{ib}$	0.809	$\Lambda_j, \alpha, R_{if}, d\Lambda_{ib}$	0.875	$T_{bi}, \lambda, dL_{if}, L_i$	0.54	$L_d, \lambda, R_{ib}, dL_{bi}$	0.372
$\Lambda_i, \alpha, R_{if}, d\Lambda_{ib}$	0.676	$\Lambda_i, \alpha, R_{if}, d\Lambda_{ib}$	0.766	$L_d, \lambda, R_{ib}, dL_{bi}$	0.503	L_b, T_{bi}, λ, dL	0.372
$T_{bi}, \alpha, d\Lambda_{if}, \Delta_b$	0.62	$\alpha, d\Lambda_{if}, \Delta_b, d\Lambda_{ib}$	0.695	$L_b, \alpha, d\Lambda_{if}, \Delta_b$	0.685	$L_b, T_{bi}, \lambda, dL_{bi}$	0.338
$\Lambda_i, T_{bi}, \alpha, d\Lambda_{if}$	0.609	$T_{bi}, \alpha, d\Lambda_{if}, \Delta_b$	0.685	$\Lambda_f, T_{if}, \alpha, d\Lambda_{ib}$	0.604	L_b, T_{bi}, λ, dL	0.311
$\Lambda_f, T_{bi}, \alpha, R_{if}$	0.568	$\Lambda_f, T_{if}, \alpha, d\Lambda_{ib}$	0.604	$\Lambda_i, T_{if}, \alpha, d\Lambda_{ib}$	0.59	$L_b, \alpha, R_{ib}, dL_{bi}$	0.302
$\Lambda_i, T_{if}, \alpha, d\Lambda_{if}, \Delta_{ib}$	0.556	$\alpha, R_{if}, \Delta_b, d\Lambda_{ib}$	0.591	$L_b, T_{if}, \alpha, R_{ib}, L_i$	0.403	L_b, λ, dL, L_i	0.301
$\Lambda_f, T_{if}, \alpha, d\Lambda_{ib}$	0.553	$\alpha, R_{if}, \Delta_b, d\Lambda_{ib}$	0.591	$L_b, T_{if}, \lambda, R_{ib}$	0.403	$L_b, L_d, T_{bi}, \lambda$	0.295
$\Lambda_f, T_{if}, \alpha, d\Lambda_{if}, \Delta_{ib}$	0.517	$T_{bi}, \alpha, R_{if}, \Delta_b$	0.542	$T_{bi}, \alpha, R_{if}, \Delta_b$	0.402	T_{bi}, λ, dL, L_i	0.29
$T_{bi}, \alpha, R_{if}, d\Lambda_{ib}$	0.506	$\Lambda_i, T_{if}, d\Lambda_{ib}$	0.533	$L_b, T_{if}, R_{ib}, dL_{bi}$	0.396	$L_b, T_{if}, \lambda, R_{ib}$	0.251
$\alpha, d\Lambda_{if}, \Delta_b, d\Lambda_{ib}$	0.505	$\Lambda_i, T_{if}, d\Lambda_{ib}$	0.487	$L_b, T_{if}, R_{ib}, dL_{bi}$	0.377	$L_b, T_{if}, \lambda, R_{ib}$	0.244
$\Lambda_i, \Lambda_j, \alpha, d\Lambda_{ib}$	0.479	$\Lambda_f, T_{bi}, \alpha, R_{if}$	0.432	$L_b, T_{if}, \lambda, L_i$	0.363	$L_b, T_{if}, \lambda, dL_{bi}$	0.241
$\Lambda_i, T_{bi}, \alpha, R_{if}$	0.473	$\Lambda_f, \alpha, \Delta_b, d\Lambda_{ib}$	0.418	$\lambda, R_{ib}, L_i, dL_{bi}$	0.348	$L_b, T_{if}, \lambda, L_i$	0.239
$\Lambda_i, T_{if}, \alpha, d\Lambda_{ib}$	0.447	$\Lambda_i, T_{bi}, \alpha, \Delta_b$	0.416	$L_b, \lambda, L_i, dL_{bi}$	0.331	$L_b, T_{if}, \lambda, L_i$	0.234
$\Lambda_i, T_{if}, R_{if}, d\Lambda_{ib}$	0.433	$\Lambda_i, T_{bi}, d\Lambda_{if}, \Delta_{ib}$	0.41	L_b, T_{if}, R_{ib}, L_i	0.328	$\lambda, dL, L_i, dL_{bi}$	0.226
$\Lambda_i, T_{bi}, d\Lambda_{if}, \Delta_{ib}$	0.428	$T_{if}, \alpha, \Delta_b, d\Lambda_{ib}$	0.403	$L_b, T_{if}, \lambda, R_{ib}$	0.317	$L_b, T_{if}, \lambda, R_{ib}, L_i$	0.214
$\alpha, R_{if}, \Delta_b, d\Lambda_{ib}$	0.42	$\Lambda_i, T_{bi}, \alpha, R_{if}$	0.38	$L_b, T_{if}, \lambda, L_i$	0.312	$L_b, T_{if}, \lambda, dL_{bi}$	0.201
$\Lambda_i, \alpha, d\Lambda_{if}, \Delta_b$	0.41	$T_{if}, T_{bi}, \alpha, \Delta_b$	0.371	L_b, T_{if}, dL, dL_{bi}	0.295	$L_b, \lambda, R_{ib}, L_i$	0.199
$\Lambda_f, T_{bi}, R_{if}, d\Lambda_{ib}$	0.398	$\Lambda_f, T_{if}, d\Lambda_{if}, \Delta_b$	0.362	$L_d, T_{bi}, R_{ib}, dL_{bi}$	0.274	$L_d, T_{bi}, \lambda, dL_{bi}$	0.191
$\Lambda_f, T_{if}, R_{if}, \Delta_b$	0.387	$\Lambda_i, \alpha, d\Lambda_{if}, \Delta_b$	0.335	T_{bi}, dL, L_i, dL	0.26	$L_d, T_{bi}, \lambda, L_i$	0.179
$\Lambda_f, T_{if}, T_{bi}, \alpha$	0.36	$\Lambda_i, T_{bi}, R_{if}, d\Lambda_{ib}$	0.321	L_b, T_{bi}, dL, L_i	0.245	L_b, T_{bi}, dL, dL_{bi}	0.161
$\Lambda_f, T_{bi}, \alpha, \Delta_b$	0.359	$\Lambda_i, T_{bi}, R_{if}, d\Lambda_{ib}$	0.319	L_b, T_{bi}, dL, T_{bi}	0.244	$\lambda, R_{ib}, L_i, dL_{bi}$	0.16
$\Lambda_i, T_{if}, T_{bi}, d\Lambda_{if}$	0.347	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.31	L_b, T_{bi}, dL, dL_{bi}	0.227	L_b, T_{bi}, dL, L_i	0.152
$\Lambda_i, T_{if}, T_{bi}, \alpha$	0.336	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.307	L_d, T_{bi}, dL, dL_{bi}	0.219	L_b, T_{bi}, dL, L_i	0.142
$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.334	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.293	L_d, T_{bi}, dL, R_{ib}	0.218	L_b, T_{bi}, dL, L_i	0.14
$\Lambda_f, T_{bi}, \alpha, d\Lambda_{ib}$	0.329	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.291	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.216	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.139
$\Lambda_f, T_{if}, T_{bi}, R_{if}$	0.323	$\Lambda_f, T_{if}, d\Lambda_{if}, \Delta_b$	0.288	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.201	$L_b, T_{bi}, T_{bi}, dL_{bi}$	0.135
$\Lambda_i, \alpha, R_{if}, \Delta_b$	0.319	$T_{bi}, R_{if}, \Delta_b, d\Lambda_{ib}$	0.274	$L_b, T_{bi}, R_{ib}, L_i, dL_{bi}$	0.19	$L_b, L_d, T_{bi}, dL_{bi}$	0.128
$T_{if}, T_{bi}, \alpha, \Delta_b$	0.314	$\Lambda_i, T_{if}, R_{if}, d\Lambda_{ib}$	0.271	$L_b, \lambda, dL, dL_{bi}$	0.181	$L_b, T_{bi}, \lambda, dL_{bi}$	0.122
$\Lambda_i, T_{if}, T_{bi}, d\Lambda_{ib}$	0.307	$\Lambda_i, T_{if}, T_{bi}, \alpha$	0.263	L_b, T_{bi}, R_{ib}, L_i	0.179	$T_{bi}, T_{bi}, \lambda, L_i$	0.119
$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.304	$\Lambda_i, \alpha, R_{if}, \Delta_b$	0.251	$L_b, T_{bi}, R_{ib}, \lambda$	0.178	L_b, T_{bi}, dL, L_i	0.114
$T_{if}, d\Lambda_{if}, \Delta_b, d\Lambda_{ib}$	0.297	$\Lambda_i, T_{if}, R_{if}, d\Lambda_{ib}$	0.246	L_b, T_{bi}, dL, L_i	0.177	$L_b, T_{bi}, dL, R_{ib}, dL_{bi}$	0.112
$\Lambda_f, T_{if}, \alpha, \Delta_b$	0.289	$T_{if}, d\Lambda_{if}, \Delta_b, d\Lambda_{ib}$	0.232	L_b, T_{bi}, dL, dL_{bi}	0.176	$L_d, T_{bi}, T_{bi}, R_{ib}$	0.112
$T_{if}, \alpha, \Delta_b, d\Lambda_{ib}$	0.282	$\Lambda_i, T_{if}, T_{bi}, d\Lambda_{ib}$	0.232	$L_d, T_{bi}, \lambda, L_i$	0.173	L_b, L_d, T_{bi}, T_{bi}	0.107
$\Lambda_i, T_{if}, R_{if}, d\Lambda_{ib}$	0.275	$\Lambda_f, T_{if}, \alpha, \Delta_b$	0.212	L_b, T_{bi}, dL, R_{ib}	0.173	$T_{bi}, \lambda, L_i, dL_{bi}$	0.107
$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.271	$\Lambda_i, T_{if}, \alpha, d\Lambda_{ib}$	0.202	$T_{bi}, T_{bi}, \lambda, L_i$	0.173	L_b, λ, dL, L_i	0.099
$T_{if}, R_{if}, \Delta_b, d\Lambda_{ib}$	0.266	$\Lambda_i, T_{if}, \alpha, \Delta_b$	0.193	L_b, L_d, T_{bi}, L_i	0.166	L_d, T_{bi}, R_{ib}, L_i	0.094
$\Lambda_i, T_{if}, T_{bi}, \Delta_b$	0.265	$T_{if}, T_{bi}, \Delta_b, d\Lambda_{ib}$	0.191	L_b, L_d, T_{bi}, T_{bi}	0.166	L_b, L_d, T_{bi}, L_i	0.09
$T_{bi}, d\Lambda_{if}, \Delta_b, d\Lambda_{ib}$	0.257	$\Lambda_i, T_{if}, T_{bi}, \Delta_b$	0.186	$T_{bi}, \lambda, L_i, dL_{bi}$	0.155	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.085
$\Lambda_f, T_{if}, R_{if}, \Delta_b$	0.249	$T_{if}, R_{if}, \Delta_b, d\Lambda_{ib}$	0.18	$L_b, T_{bi}, \lambda, dL_{bi}$	0.151	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.08
$\Lambda_i, T_{if}, T_{bi}, d\Lambda_{ib}$	0.237	$\Lambda_i, T_{if}, \alpha, \Delta_b$	0.174	$L_b, T_{bi}, L_i, dL_{bi}$	0.15	L_b, T_{bi}, dL, dL_{bi}	0.068
$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.227	$\Lambda_f, T_{if}, \Delta_b, d\Lambda_{ib}$	0.164	$L_b, T_{bi}, \lambda, L_i$	0.146	$L_b, T_{bi}, L_i, dL_{bi}$	0.06
$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.226	$\Lambda_i, T_{if}, T_{bi}, d\Lambda_{ib}$	0.15	$L_b, T_{bi}, \lambda, \Delta_b$	0.138	$T_{bi}, R_{ib}, L_i, dL_{bi}$	0.06
$T_{bi}, R_{if}, \Delta_b, d\Lambda_{ib}$	0.223	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.143	L_d, T_{bi}, dL, dL_{bi}	0.096	L_d, T_{bi}, dL, dL_{bi}	0.053
$\Lambda_f, T_{bi}, R_{if}, \Delta_b$	0.215	$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.131	L_b, T_{bi}, dL, dL_{bi}	0.086	L_d, T_{bi}, dL, dL_{bi}	0.044
$\Lambda_i, T_{if}, \alpha, \Delta_b$	0.211	$\Lambda_i, T_{if}, \alpha, d\Lambda_{ib}$	0.123	L_b, T_{bi}, dL, L_i	0.08	L_b, T_{bi}, dL, dL_{bi}	0.044
$\Lambda_f, T_{if}, \Delta_b, d\Lambda_{ib}$	0.209	$\Lambda_f, T_{if}, d\Lambda_{if}, \Delta_b$	0.12	L_d, T_{bi}, T_{bi}, dL	0.08	L_d, T_{bi}, dL, L_i	0.037
$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.207	$\Lambda_i, T_{if}, R_{if}, d\Lambda_{ib}$	0.119	$L_d, T_{bi}, R_{ib}, dL_{bi}$	0.076	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.036
$\Lambda_f, T_{if}, \alpha, d\Lambda_{if}$	0.198	$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.117	L_b, T_{bi}, dL, L_i	0.076	L_b, T_{bi}, dL, dL_{bi}	0.035
$\Lambda_i, T_{if}, T_{bi}, T_{if}$	0.192	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_b$	0.101	L_b, T_{bi}, dL, L_i	0.071	L_b, T_{bi}, dL, L_i	0.031
$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.181	$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.096	L_b, T_{bi}, R_{ib}, L_i	0.063	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.03
$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.177	$\Lambda_f, T_{if}, \alpha, \Delta_b$	0.094	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.061	$L_b, T_{bi}, T_{bi}, dL_{bi}$	0.028
$T_{if}, T_{bi}, \alpha, d\Lambda_{ib}$	0.169	$\Lambda_f, T_{if}, R_{if}, \Delta_b$	0.092	L_b, T_{bi}, T_{bi}, L_i	0.06	L_b, L_d, T_{bi}, L_i	0.025
$\Lambda_f, T_{bi}, \alpha, d\Lambda_{ib}$	0.159	$\Lambda_f, T_{if}, d\Lambda_{if}, \Delta_{ib}$	0.091	$L_b, T_{bi}, T_{bi}, R_{ib}$	0.058	L_d, T_{bi}, R_{ib}, L_i	0.024
$\Lambda_i, T_{if}, T_{bi}, \alpha$	0.147	$\Lambda_i, T_{if}, d\Lambda_{if}, \Delta_{ib}$	0.09	$L_b, T_{bi}, T_{bi}, dL_{bi}$	0.053	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.023
$\Lambda_f, T_{bi}, \alpha, d\Lambda_{ib}$	0.139	$\Lambda_i, T_{if}, R_{if}, \Delta_b$	0.078	$L_b, T_{bi}, L_i, dL_{bi}$	0.053	L_b, T_{bi}, R_{ib}, L_i	0.022
$\Lambda_f, \alpha, d\Lambda_{if}, \Delta_b$	0.133	$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.074	$L_b, T_{bi}, L_i, dL_{bi}$	0.051	$L_b, T_{bi}, R_{ib}, dL_{bi}$	0.02
$\Lambda_i, T_{if}, T_{bi}, \Delta_b$	0.13	$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.072	L_b, T_{bi}, R_{ib}, L_i	0.05	$L_b, T_{bi}, L_i, dL_{bi}$	0.019
$\Lambda_i, T_{if}, T_{bi}, \Delta_b$	0.125	$\Lambda_i, T_{if}, T_{bi}, R_{if}$	0.061	$L_b, T_{bi}, L_i, dL_{bi}$	0.05	$T_{bi}, R_{ib}, L_i, dL_{bi}$	0.016
$\Lambda_f, T_{if}, T_{bi}, d\Lambda_{if}$	0.113	$\Lambda_f, T_{if}, T_{bi}, R_{if}$	0.044	L_b, L_d, T_{bi}, L_i	0.048	$T_{bi}, T_{bi}, L_i, dL_{bi}$	0.015
$\Lambda_f, T_{if}, d\Lambda_{if}, \Delta_b$	0.096	$\Lambda_f, T_{if}, T_{bi}, R_{if}$	0.036	L_d, T_{bi}, dL, dL_{bi}	0.028	L_d, T_{bi}, dL, dL_{bi}	0.015
$\Lambda_f, T_{if}, d\Lambda_{if}, \Delta_b$	0.073	$\Lambda_f, T_{if}, T_{bi}, R_{if}$	0.03	L_d, T_{bi}, dL, L_i	0.023	L_d, T_{bi}, dL, L_i	0.01

Figure 6-Figure supplement 3. All possible decompositions for both experimental and simulation data are shown ranked from most to least independent.