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Initiation of chromosome replication
controls both division and
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double-adder mechanism

Guillaume Witz'2*t, Erik van Nimwegen'Z, Thomas Julou’2

1Biozentrum, University of Basel, Switzerland.; 2Swiss Institute of Bioinformatics,
Switzerland

Abstract Living cells proliferate by completing and coordinating two essential cycles, a division
cycle that controls cell size, and a DNA replication cycle that controls the number of chromosomal
copies in the cell. Despite lacking dedicated cell cycle control regulators such as cyclins in
eukaryotes, bacteria such as E. coli manage to tightly coordinate those two cycles across a wide
range of growth conditions, including situations where multiple nested rounds of replication
progress simultaneously. Various cell cycle models have been proposed to explain this feat, but it
has been impossible to validate them so far due to a lack of experimental tools for systematically
testing their different predictions. Recently new insights have been gained on the division cycle
through the study of the structure of fluctuations in growth, size, and division in individual cells. In
particular, it was found that cell size appears to be controlled by an adder mechanism, i.e. the
added volume between divisions is held approximately constant and fluctuates independently of
growth rate and cell size at birth. However, how replication initiation is regulated and coupled to
cell size control remains unclear, mainly due to scarcity of experimental measurements on
replication initiation at the single-cell level. Here, we used time-lapse microscopy in combination
with microfluidics to directly measure growth, division and replication in thousands of single E. coli
cells growing in both slow and fast growth conditions. In order to compare different
phenomenological models of the cell cycle, we introduce a statistical framework which assess their
ability to capture the correlation structure observed in the experimental data. Using this in
combination with stochastic simulations, our data indicate that, instead of thinking of the cell cycle
as running from birth to division, one should consider the chromosome replication cycle as central
and in control of the cell cycle through two adder mechanisms: the added volume since the last
initiation event controls the timing of both the next division event and the next replication initiation
event. Interestingly the double-adder mechanism identified in this study has recently been found
to explain the more complex cell cycle of mycobacteria, suggesting shared control strategies across
species.

Introduction

Across all domains of life, cell proliferation requires that the chromosome replication and cell
division cycles are coordinated to ensure that every new cell receives one copy of the genetic
material. While in eukaryotes this coordination is implemented by a dedicated regulatory system in
which genome replication and division occur in well-separated stages, no such system has been
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found in most bacteria. This suggests that the molecular events that control replication initiation
and division might be coordinated more directly in bacteria, through molecular interactions that
are yet to be elucidated. The contrast between this efficient coordination and the apparent absence
of a dedicated regulatory system is particularly remarkable since most bacteria feature a unique
replication origin which imposes that multiple rounds of replication occur concurrently in fast
growth conditions. For example, in the specific case of E. coli that we study here, it has long
been known that growth rate, cell size, and replication initiation are coordinated such that the
average number of replication origins per unit of cellular volume is approximately constant across
conditions (Donachie, 1968) or that cellular volume grows approximately exponentially with growth
rate (Taheri-Araghi et al., 2017). Although several models have been proposed over the last decades
to explain such observations, so far direct validation of these models has been lacking, due to a
large extent to the lack of quantitative measurements of cell cycles parameters in large samples
with single-cell resolution.

Thanks to techniques such as microfluidics and time-lapse microscopy, it has recently become
possible to perform long-term observation of growth and division in single bacteria. By systemat-
ically quantifying how cell cycle variables such as size at birth, size at division, division time, and
growth rate vary across single cells, insights can be gained about the mechanism of cell cycle control.
Several recent studies have focused on understanding the regulation of cell size, resulting in the
discovery that E. coli cells maintain a constant average size by following an adder strategy: instead of
attempting to reach a certain size at division (i.e. a sizer mechanism) or to grow for a given time (i.e.
a timer mechanism), it was found that cells add a constant length d L to their birth length L, before
dividing (Amir, 2014; Campos et al., 2014; Taheri-Araghi et al., 2017). In particular, while the cell size
at division and the division time correlate with other variables such the cell size at birth and growth
rate, the added length d L fluctuates independently of birth size and growth rate. A remarkable
feature of the adder model is its capacity to efficiently dampen large cell size fluctuations caused
by the intrinsically noisy regulation, without the need for any fail-safe mechanism. This efficient
strategy has been shown to be shared by various bacterial species as well as by archea (Eun et al.,
2018) and even some eukaryotes such as budding yeast (Soifer et al., 2016).

Here we focus on how the control of replication initiation is coordinated with cell size control in E.
coli. Several models have been proposed to explain how the adder behavior at the level of cell size
might arise from a coordinated control of replication and division. Broadly, most models assume
that the accumulation of a molecular trigger, usually assumed to be DnaA, leads to replication
initiation, which in turn controls the corresponding future division event (Campos et al., 2014; Ho
and Amir, 2015; Wallden et al., 2016). Subtle variations in how the initiation trigger accumulates
and how the initiation to division period is set in each model imply distinct molecular mechanisms,
and thus fundamentally different cell cycle regulations. Specifically, most models assume that
initiation is triggered either when a cell reaches a critical absolute volume (initiation size, see
e.g. Wallden et al., 2016) or alternatively when it has accumulated a critical volume since the last
initiation event (see e.g. Ho and Amir, 2015). In order to explain the coordination between cell cycle
events, division is often assumed to be set by a timer starting at replication initiation, but recent
studies have also proposed that the two cycles might be independently regulated (Micali et al.,
2018a; Si et al., 2019). Finally, it is often assumed that the regulation strategy could be different at
slow and fast growth where different constraints occur.

We use an integrated microfluidics and time-lapse microscopy approach to quantitatively char-
acterize growth, division, and replication in parallel across many lineages of single E. coli cells,
both in slow and fast growth conditions. We show that insights about the underlying control
mechanisms can be gained by systematically studying the structure of correlations between these
different variables. Our single-cell observations are inconsistent with several previously proposed
models including models that assume replication is initiated at a critical absolute cell volume and
models that assume division is set by a timer that starts at replication initiation. Instead, the most
parsimonious model consistent with our data is a double-adder model in which the cell cycle
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commences at initiation of replication and both the subsequent division and the next initiation of
replication are controlled by the added volume. We show that this model is most consistent with
the correlation structure of the fluctuations in the data and, through simulations, we show that
this model accurately reproduces several non-trivial observables including the previously observed
adder behavior for cell size control, the distribution of cell sizes at birth, and the distribution of
the number of origins per cell. Moreover, the same model best describes the data both at slow
and fast growth rates. As far as we aware, no other proposed model can account for the full set of
observations we present here.

Results

To test possible models for the coordination of replication and division in E. coli we decided to
systematically quantify growth, replication initiation, and division across thousands of single E.
coli cell cycles, across multiple generations, and in various growth conditions. To achieve this,
cells were grown in a Mother Machine type microfluidic device (Wang et al., 2070) and imaged
by time-lapse microscopy. We used M9 minimal media supplemented with glycerol, glucose or
glucose and 8 amino acids, resulting in doubling times of 89, 53 and 41 min, respectively. The cell
growth and division cycles were monitored by measuring single-cell growth curves obtained through
segmentation and tracking of cells in phase contrast images using the MoMA software (Kaiser et al.,
2018). The replication cycle was monitored by detecting initiation as the duplication of an oriC
proximal FROS tagged locus imaged by fluorescence microscopy (Figure 1A). These measurements
allowed us to quantify each single cell cycle by a number of variables such as the growth rate, the
sizes at birth, replication initiation, and division, the times between birth and replication initiation
and the time between birth and division. As done previously, we assume that cell radius is constant
and use cell length as a proxy for cell volume (Adiciptaningrum et al., 2015; Taheri-Araghi et al.,
2017). Since we can follow cells over multiple generations, we can also measure quantities that span
multiple division cycles such as the total time or total cell growth between consecutive replication
initiation events. As we analyze growth conditions spanning cases with both single and overlapping
rounds of replication, we defined a consistent way of measuring variables. Noticeably, while the cell
cycle is classically defined from division to division (Figure 1C), as has been proposed previously
Ho and Amir (2015); Amir (2017), we use an alternative framework where the cell cycle is defined
from one replication initiation to the next (Figure 1D). This framework being centered on origins
of replication rather than on cells, we consequently define a new quantity A, the cell length per
origin, which allows to track the growth allocated to a given origin of replication. For instance, in a
case where a cell is born with an ongoing round of replication which started at time ¢, A, for that
cell is defined as A, = L,/4 where L, is the length of the mother cell which contains four origins
at time ¢ (Figure 1-Figure Supplement 1). This avoids artificial cut-offs as e.g. done in Wallden
et al. (2016). In this article, we explore a series of models belonging to these two views of the cell
cycle. Using the correlation structure of variables, we show how classes of models can be rejected
entirely. Additionally, we use a more general statistical framework to rank models according to their
explanatory power.

Cell size adder

We first verified whether our measurements support the previously observed adder behavior in cell
size, and find that added length d L between birth and division is indeed uncorrelated with length
at birth L, in all growth conditions (Figure 1B), and, also in agreement with the adder model, the
heritability of birth length between mother and daughter is characterized by a Pearson correlation
coefficient of r ~ 0.5 (see Table 1). With the exception of one study (Wallden et al., 2016), moderately
slow growth conditions (100 min doubling time) have not been yet tested extensively for adder
behavior. The fact that we observe it in conditions where replication occurs both in overlapping-
and non-overlapping modes further highlights its pervasiveness.
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Figure 1. A. Time-lapse of E. coli cells growing in a single microfluidic channel. Fluorescence signal from FROS
labeling is visible as red spots in each cell. The green dotted line is an aid to the eye, illustrating the replication
of a single origin. B. Consistent with an adder behavior, the added length between birth and division is
uncorrelated with length at birth. C. The classical cell cycle is defined between consecutive division events,
shown here with replication and division for slow growth conditions (i.e. without overlapping rounds of
replication). D. We introduce an alternative description framework where the cell cycle is defined between
consecutive replication initiation events. The observables that are relevant to characterize the cell cycle in these
two frameworks are indicated (see also Table 7).

Figure 1-Figure supplement 1. Schema of the cell cycle and variable definitions for the case of fast growth

with overlapping replication cycles.
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Table 1. Variables definitions.

division-centric replication-centric

measured variables

L, Size at birth* A, Size per origin at initial repli-
cation initiation*
L, Size at division* A, Size per origin at final replica-
tion initiation*
T, Duration between birth and T}, Duration between consecu-
division tive replication initiations
L, Size at replication initiation* A, Size per origin at birth*
T, Duration between birth and T, Duration between replication
replication initiation initiation and birth
derived variables
A= L1og ﬁ Cell growth rate* (between a= R log % Cell growth rate* (between
T Lo ith and division) Tis " consecutive replication initi-
ations)
dL=L,-L, Division“adder” dA;; =A;— A, Replication “adder”
dL,;=L,— L, Birth-to-initiation “adder” dA;, = A, — A, Initiation-to-birth “adder”
R, =L,/L, Growth ratio between birth R, = A/ /A, Growth ratio between con-
and division secutive initiations
R,=L,/L, Growth ratio between birth R, = A, /A, Growth ratio between initia-
and initiation tion and birth

* variables indicated by a star are measured from a linear fit of exponential elongation.

Replication initiation mass

A popular idea dating back to the 1960's and still often used today to explain the coupling of
division and replication cycles is the initiation mass model. The observations that cell volume grows
exponentially with growth rate (Schaechter et al., 1958) and that, across a range of conditions, the
time between replication initiation and division is roughly constant (Helmstetter et al., 1968) led
Donachie to propose that the volume per origin of replication is held constant (Donachie, 1968).
In particular, the model proposes that initiation occurs when a cell reaches a critical volume. A
simple prediction of this model is that, for a given cell, the cell length L, at which initiation occurs
should be independent of other cell cycle variables such as the length at birth L,. However, as
can be seen in Figure 2A, we observe that the initiation length L, and birth length L, are clearly
correlated in all conditions, rejecting the initiation mass model. The absence of an initiation mass
has been noted recently elsewhere (Micali et al., 2018a). It should be noted, however, that even
though the single-cell fluctuations show that initiation is unlikely to be triggered by a critical volume
per origin, the constancy of the average volume per origin at initiation across growth conditions (Si
et al., 2017) still indicates that initiation is probably regulated through a measure of cell volume.

Multiple origins accumulation model

Just as a constant average cell size can be accomplished by adding a constant volume per division
cycle rather than by dividing at a critical division volume, so a constant average volume per origin of
replication can also be implemented by controlling the added volume between replication initiations
rather than by a critical initiation volume. A concrete proposal for such an adder mechanism, called
the multiple origins accumulation model, has recently received increasing attention (Ho and Amir,
2015). In this model, a molecule that is expressed at a constant cellular concentration accumulates
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Figure 2. Models for initiation control. A. The initiation mass model predicts that the length at initiation L;
should be independent of the length at birth L,. However, we observe clear positive correlations between L,
and L, in all growth conditions. B. In contrast, the length accumulated between two rounds of replication dA,
is independent of the initiation size A;, suggesting that replication initiation may be controlled by an adder
mechanism.
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Figure 3. Initiation to division period. A. Several models assume that a constant time passes from an initiation
event to it corresponding division event. However, within each growth condition, that period is clearly
dependent on fluctuations in growth rate. B. The length accumulated from initiation to division is constant for
each growth condition, suggesting an adder behavior for that period. In A and B, the Pearson correlation
coefficient R and p values are indicated for each condition.

at each origin until it reaches a critical amount, triggering replication, after which it is degraded and
starts a new accumulation cycle. Given that, for a molecule at constant concentration, the added
volume over some time period is proportional to the amount produced of the molecule, the result
of this process is that the cell adds a constant volume per origin dA,, between initiation events
(with dA,, = A, — A, where indexes stand for "initial" and "final" respectively, see Figure 1D and
Table 1 for more details). If replication is indeed triggered by such an adder mechanism, then one
would expect the observed added lengths dA,, to be independent of the length A, at the previous
initiation. As shown in Figure 2B, our data support this prediction.

Connecting replication and division cycles

Having validated the multiple origins accumulation model for replication control, we now investigate
its relation to the division cycle. A common assumption is that the period T;, from initiation to
division (classically split into the replication period C and the end of replication to division period D)
is constant and independent of growth rate (Cooper and Helmstetter, 1968; Ho and Amir, 2015). As
visible in Figure 3A, while on average T}, is indeed rather constant across growth conditions, within
each condition fast growing cells clearly complete this period faster than slow growing cells. One
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Figure 4. The double-adder model postulates that E. coli cell cycle is orchestrated by two independent adders,
one for replication and one for division, reset at replication initiation. Both adders (shown as coloured bars)
start one copy per origin at replication initiation and accumulate in parallel for some time. After the division
adder (green) has reached its threshold, the cell divides, and the initiation adder (orange) splits between the
daughters. It keeps accumulating until it reaches its own threshold and initiates a new round of division and
replication adders. Note that the double-adder model is illustrated here for the simpler case of slow growth.

Figure 4-Figure supplement 1. Average localization of the origin in cells growing in M9 glycerol.

way to model this behavior is to define an empirical relation between growth rate 4 and T, (Wallden
et al., 2016). However, Figure 3B reveals another and arguably simpler solution. We find that
dA, = A, — A, the length per origin added by a cell between initiation and division, has an adder
behavior as well: independently of its size at initiation L,, a cell will complete the corresponding
division cycle after having accumulated a constant volume per origin dA,,.

The double-adder model

These observations motivated us to formulate a model in which the cell cycle does not run from
one division to the next, but rather starts at initiation of replication, and that both the next initiation
of replication and the intervening division event, are controlled by two distinct adder mechanisms.
In this replication-centric view, the cell cycles are controlled in a given condition by three variables:
an average growth rate 4, an average added length per origin dA,,, and an average added length
dA,, between replication initiation and division. In particular, we assume that these three variables
fluctuate independently around these averages for each individual cell cycle, and that all other
parameters such as the sizes at birth, initiation, and the times between birth and division or between
initiation and division, are all a function of these three fundamental variables. This double-adder
model is sketched in Figure 4 for the case of slow growth conditions: a cell growing at a rate 4 and
of length L initiates replication and thereby starts two adder processes. First, the cell will divide
when reaching a size nA, = L + ndA,;, = n(A; + dA,;) where n = 2 is the number of replication origins.
Second, the next replication round will be initiated at a given origin after the corresponding A has
increased by dA,;.

Simulations of the double-adder model

To assess to what extent our double-adder model can recover our quantitative observations,
we resorted to numerical simulations. We first obtained from experimental data the empirical
distributions of growth rates 4, the added length per initiation dA, ;, and the added length between
initiation and division dA,,. A series of cells are initialized at the initiation of replication, with
sizes taken from the experimental distributions. For each cell, a growth rate 4 is independently
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drawn from its empirical distribution, and values of dA,, and dA,, are drawn from independent
distributions, to set the times of the next division and replication initiation events. This procedure is
then iterated indefinitely, i.e a new growth rate and values of each adder are independently drawn
for each subsequent cycle. As has been observed previously (Campos et al., 2014) the growth rate is
correlated (r ~ 0.3) between mother and daughter. Accounting for this mother-daughter correlation
in growth rate was found not to be critical for capturing features of E. coli cell cycle, but was included
in the model to reproduce simulation conditions of of previous studies.

As can be seen in Figure 5, the double-adder model accurately reproduces measured distri-
butions and correlations at all growth rates. In particular, the global adder behavior for cell size
regulation naturally emerges from it (Figure 5A). Similarly, the specific relation between length
at initiation L; and length at birth L,, which prompted us to reject the initiation mass model, is
reproduced by the model as well (Figure 5B). Finally, the distribution of the number of origins at
birth, which reflects the presence of overlapping replication cycles is reproduced as well (Figure 5D).
An exhaustive comparison between experiments and simulations can be found in Figure 5-Figure
Supplement 1.

The double-adder model best captures the correlation structure of the data
Although our simulations show that the double-adder model, which takes 1, dA,, and dA, ; as the
key independently fluctuating quantities, can accurately reproduce our observations, it is less clear
whether there are not many other models that could reproduce the data equally well? As the space
of possible models is arguably unlimited, it is difficult to answer this question in full generality.
However, we can rigorously compare a large class of possible models, by quantitatively comparing
the correlation structure that each model implies, with the correlation structure evident in the
data. For example, as noted above, the main argument in favor of a cell size adder model is that,
whereas birth and division size generally correlate, added volume does not correlate with birth size.
Similarly, while the time between birth and division correlates with both the added volume and
the growth rate, growth rate and added volume do not correlate. That is, the evidence in favor of a
given model can be quantified by the extent to which the key variables of the model are fluctuating
independently.

The quantities that are measured directly for each cell cycle are the times and cell sizes at which
various events take place. If we take a division-centric view, i.e. thinking of each cell cycle as running
from birth to division, each cell cycle is characterized by four directly measured quantities: the sizes
at birth L,, initiation L,, and division L,, and the doubling time T,,. Similarly, for a replication-centric
view, the four directly measured quantities are the sizes per origin at initiation A, at birth after the
subsequent division A,, and at the next initiation A, as well as the time T;, between consecutive
initiations (Fig.1 C-F). However, these directly measured quantities are highly correlated. The
correlation structure of the data is captured by the covariance matrix C, with diagonal components
C,, corresponding to the variances ¥, of each variable x, and the off-diagonal components C,,
corresponding to the covariances between pairs of variables (x, y). If one thinks of the collection
statistics of all single cell cycles as a scatter in 4-dimensional space, then the determinant of the
covariance matrix D(C) can be thought of as the square of the volume covered by this 4-dimensional
scatter. This squared-volume D(C) can be at most as large as the product of the variances of all
variables D(C) <V, = [], V., with equality if and only if all variables are independent (see Fig.6B
for an illustration of the 2D case). That is, the smaller the ratio D(C)/V,,,,, the stronger are the
correlations of the variables. We call this ratio independence and denote it as I = D(C)/V,,- IN
Appendix 3, we apply this approach to the simpler case of the sole division cycle that is defined by
only three variables. We show that the variables of the adder model constitute the set for which
fluctuations are most independent; remarkably I ~ 1 indicates almost full independence in this
case.

We can now systematically explore which set of variables best explains the correlation structure
in the data by searching for the set of variables that maximizes independence I. For example,
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Figure 5. Comparison of predictions of the double-adder model with experimental observations. (A) Added
length between birth and division d L versus length at birth L, show no correlations in both the data and the
simulations, demonstrating that the double-adder model reproduces the adder behavior at the level of cell size.
(B) Length at initiation versus length at birth show almost identical correlations in data and simulation. (C) The
distribution of cell sizes at birth are highly similar in experiments (solid lines) and simulations (dashed lines), in
all growth conditions. (D) The distribution of the number of origins at birth is also highly similar between
experiments and data for all growth conditions.

Figure 5-Figure supplement 1. Detailed comparisons between experiments and simulations for M9+glycerol
condition (with automated origin tracking).

Figure 5-Figure supplement 2. Detailed comparisons between experiments and simulations for M9+glycerol
condition (with manual origin tracking).

Figure 5-Figure supplement 3. Detailed comparisons between experiments and simulations for M9+glucose
condition (with manual origin tracking).

Figure 5-Figure supplement 4. Detailed comparisons between experiments and simulations for
M9+glucose+8a.a. condition (with manual origin tracking).

Figure 5-Figure supplement 5. Improved simulation by reducing variance.
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Figure 6. Decomposition method. A. Best decompositions for replication-centric and division-centric models.
The matrices show the correlation structure between the variables composing the most independent set of
variables. Each square corresponds to a pair of variables, red indicating positive and blue negative correlation.
The lower-left corners contain experimental data and the upper-right ones simulation data B. 2D illustration of
the independence quantification. The distribution of a pair of variables is shown. The variance of each variable
is indicated in blue. The shaded blue area corresponds to the product of variances. The determinant of the
correlation matrix of two variables gives the area spanned by the eigenvectors of the matrix (red). The variances
are the same for the example with correlations (top) and without (bottom). The area determined by det(C) is
strongly reduced in the correlated case. D. Five best decompositions for replication- and division-centric models
of experimental and simulation data.

Figure 6-Figure supplement 1. Detailed results of the nine best decompositions for experimental data.
Figure 6-Figure supplement 2. Detailed results of the nine best decompositions for simulation data.
Figure 6-Figure supplement 3. Complete tables of decomposition.
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while a model that assumes a timer between initiation and division would treat the time T}, as an
independent variable, in our double-adder model the variables are the growth rate 1 and added
length dA,,; by definition, the time T, is related to these through A,e”ie/* = A, + dA,,. In this way, we
can systematically explore different models by taking different sets of variables as fundamental and
calculate the independence of each parameter set. Such a statistical analysis is only relevant when
applied to a large dataset and we therefore focus here on the slow growth condition (M9 glycerol)
for which we implemented automatic origin tracking.

The tables Figure 6A bottom show the five best models ranked by decreasing independence
(all decompositions can be found in Figure 6-Figure Supplement 3). Note that these variable sets
include all the previously proposed sizer and timer models as special cases, for example the inter-
initiation model combined with an initiation to division timer is highlighted in red in Figure 6-Figure
Supplement 3. The most successful models are shown in greater detail as correlation matrices
Fig.6A top, where residual correlations between all pairs of variables are visible. We find that none
of the division-centric models accomplishes high independence. For example, as shown in the
correlation matrix, the best division-centric model is plagued by high correlation between L, and
dL,,. This strongly suggests that the cell cycle control is better described from a replication-centric
point of view. Of all replication-centric models, our double-adder model clearly reaches the highest
independence, followed by various derivative models in which one of the adders is replaced by
another variable. We note that independence of our double-adder model on the real data is only
slightly lower than on simulated data Figure 6D, i.e 0.86 versus 0.98. This residual dependence might
either result from correlated errors in the measurements, or it might reflect some small biological
dependence not captured by our model. In summary, a systematic analysis shows that, within a
large class of alternative models, the double-adder model best captures the correlation structure
evident in the data.

Discussion

Thanks to experimental techniques like the one used here, models of bacterial cell cycle regulation
dating back from the 1960's have been recently re-examined in detail in several studies Campos
et al. (2014);, Tanouchi et al. (2015); Ho and Amir (2015); Adiciptaningrum et al. (2015); Wallden
et al. (2016); Si et al. (2017); Logsdon et al. (2017); Micali et al. (2018a); Eun et al. (2018); Si et al.
(2019). As much as these new data have been useful in shedding light on regulation mechanisms of
bacterial physiology such as the adder, they have also revealed that multiple models are capable
of reproducing in large parts experimental data, mainly as a consequence of the correlations
existing between measurable cell cycle parameters. However, all of them fail at reproducing at least
one important aspect of the experimental observations. To illustrate this, we show in Appendix 2
how two recently proposed models (Wallden et al., 2016; Micali et al., 2018b), despite being very
successful, fail to capture at least one important observation. In this study, we have in a first step
empirically built a model which is based on previous ideas and which recapitulates measured cell
cycle parameters. This model makes replication the central regulator of the cell cycle, with each
initiation round triggering subsequent division and replication events through an adder mechanism.
In a second step, we then constructed and applied a statistical method to determine, within a
class of models, which set of cell cycle parameters best explains measurements. Following this
fully independent approach, our empirical double-adder model clearly comes out as the most
successful.

While the division and replication cycles are seemingly coupled, our analysis demonstrates
that two simple adders connected to replication initiation are sufficient to recapitulate both cycles
without explicitly enforcing constraints reflecting mechanisms such as over-initiation control by
SegA and nucleoid occlusion which ensures that division only occurs after chromosome replication
is completed. The initiation adder mimicks SegA activity by creating a refractory period without
initiation, and the division adder ensures that a minimal time is allocated for replication to complete.
While the simulations might in rare cases generate unrelasitic situations, for example if a large
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initiation adder is combined with a small division adder leading to premature division, those clashes
seem rare enough to not affect the global statistical behavior of the model. Naturally the model
would break down and these controls would need to be explicitly included in the case where cells
are subject to stress conditions where these control mechanisms act as fail-safes e.g. to ensure that
division is delayed if DNA repair is needed. In the course of our study, new research Si et al. (20719)
proposed that division and replication cycles are only seemingly connected, and used perturbation
methods to drive cells to states where the uncoupling is revealed. While such perturbation studies
are very informative, more work is needed to understand to what extent hidden compensatory
mechanisms might be at play e.g. when affecting DnaA or FtsZ expression. Also, that study focuses
exclusively on a model which explicitly enforces various correlations between variables unlike our
model which naturally produces such relations. It would thus be a worthwhile future endeavour to
test our simpler model on such perturbed growth conditions, a task beyond the purpose of this
study, which tries to clarify the normal growth case.

Interestingly, a double-adder mechanism similar to the one that we propose here has been
shown to explain cell-cycle control in mycobacteria (Logsdon et al., 2017). These mycobacteria have
a much more complex behavior than E. coli, in particular characterized by a strong asymmetry
between daughter cells and a growth rate almost an order of magnitude smaller than that of E.
coli. Despite those important differences, it was shown that mycobacterial cell cycles exhibit adder
behavior for both division and replication starting at initiation, in a manner highly similar to our
observations in E. coli. This suggests that the mechanism connecting replication and division must
be quite fundamental and independent of the specifics of available genes and their expression.

Although the single-cell observations provide clear indications of which variables are most
likely to be directly involved in the cell cycle control, they of course do not indicate the underlying
molecular mechanisms. However, it is not hard to speculate about possible molecular mechanisms
that could implement the double-adder behavior. As others have pointed out previously (Ho and
Amir, 2015), an adder for the regulation of replication initiation can be easily implemented at
the molecular level by having a "sensor" protein that builds up at each origin, and that triggers
replication initiation whenever a critical mass is reached at a given origin. If this sensor protein
is additionally homeostatically controlled such that its production relative to the overall protein
production is kept constant, then the average volume per origin will also be kept constant across
conditions.

It is more challenging to define a molecular system that can implement the second adder that
controls division. The main challenge is that this adder does not run throughout the entire cell
cycle, but only between replication initiation and division. It is well known that division is driven by
the polymerization of the FtsZ ring, which includes a host of other FtsZ-ring associated proteins,
and its progressive constriction. It might seem simplest to assume that the division adder could
be implemented directly through FtsZ production, again in the logic of the regulated "sensor"
mentioned above. However, this would require FtsZ to be produced and accumulating at the
division sites only from replication initiation to cell division. Although this is conceivable, i.e. it
is known that FtsZ and other division proteins are heavily regulated at several levels (Dewar and
Dorazi, 2000) and that especially in slow growth conditions its concentration varies during the cell
cycle (Mdnnik et al., 2018), it is hard to imagine how this model could work under fast growth
conditions in which there are overlapping rounds of replication such that FtsZ would be constantly
expressed. Moreover recent data (Si et al., 2019) rather suggest that FtsZ concentration is constant
during the cell cycle.

Alternatively, rather than FtsZ production, Ftsz polymerization could be regulated. One remark-
able observation that is well known within the field (Lau et al., 2004; Nielsen et al., 2006) and that
we also observe in our data (see Figure Supplement 1), is that origins always occupy the position
of future division sites (mid-cell, 1/4 and 3/4 positions etc.) when replication is initiated. This
observation not only suggests that, at replication initiation, some local molecular event occurs that
will eventually trigger division at the same site, but it is also remarkably consistent with the idea
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of an adder running only between replication initiation and division. One long-standing idea that
is consistent with these observations is that some molecular event that occurs during replication
initiation triggers the start of FtsZ ring formation, and that the timing from initiation to division
is controlled by the polymerization dynamics of the FtsZ ring (Weart and Levin, 2003). At the
molecular level, the common triggering of initiation and polymerization might be explained by the
accumulation of acidic phosholipids in the cell membrane precisely at future division sites (Renner
and Weibel, 2011) where they probably interact with components of the division machinery. At
the same time those lipids are known to play a role in promoting replication by rejuvenating the
initiator protein DnaA-ADP into DnaA-ATP (Saxena et al., 2013), and might therefore be a "hub"
coordinating the two cycles. Finally, it remains to be explained how FtsZ polymerization or pole
building could result in an adder beahviour. For that purpose, future experiments should focus on
combining the type of information collected in this study and detailed measures of the dynamics of
FtsZ-ring assembly and constriction as done in Coltharp et al. (2016).

Methods and Materials

Bacterial strains and media

All strains are derived from the K-12 strain BW27378, a A(araH-araF)570(::FRT) derivative of the
Keio collection background strain (Baba et al., 2006) obtained from the Yale Coli Genetic Stock
Center. This strain was further modified by A-Red recombination (Datsenko and Wanner, 2000)
and P1 transduction to result in AaraFGH(::FRT), AaraE(::FRT), AlaclZYA(::FRT). A 250 lacO repeats
FROS array with chloramphenicol resistance was inserted close to the origin of replication in the
asnA gene by A-Red recombination and P1 transduction. The lacO-CmR array was derived from the
original plasmid pLau43 (Lau et al., 2004) by replacing the kanamycin resistance and a series of
operators on both sides of it with the CmR gene. For visualization of the array, Lacl-mVenus was
expressed from the plasmid pGW266, derived from the original FROS plasmid pLAU53 (Lau et al.,
2004) from which the tetR construct was removed and the lacl-CFP replaced by lacl-mVenus. For
the experiment analyzed automatically the same stain carried in addition the plasmid pGW339
expressing FtsZ-mVenus under the control of the araBAD promoter using 0.002% arabinose for
induction. Expression is tighly controlled by using the approache proposed in Morgan-Kiss et al.
(2002).

All experiments were done using M9 minimal media supplemented with 2mM MgS04, 0.1 mM
CaCl2, and sugars (0.2 % for glucose and 0.2% for glycerol). In one experiment, the media was
supplemented with 8 amino acids at a concentration of 5 yg/ml: Threonine, Aspagrinine, Methionine,
Proline, Leucine, Tryptophane, Serine, Alanine. All experiments were carried out at 37°C.

Microfluidic device fabrication

Mother Machine experiments were performed using the Dual Input Mother Machine (DIMM) mi-
crofluidic design which has been described elsewhere (Kaiser et al., 2018) and is freely available
online (https://metafluidics.org/devices/dual-input-mother-machine/); since no change of condi-
tions was intended during experiments, the same media was flown at both inputs.

Several microfluidics masters were produced using soft lithography techniques by micro-resist
Gmbh; two masters with regular growth channels of suitable size (0.8 pm width x 0.9 ym height
for growth in glycerol, and 1 pm width x 1.2 pm height for growth in glucose) were used for all
experiments.

For each experiment, a new chip was produced by pouring PDMS (Sylgard 184 with 1:9w/w
ratio of curing agent) on the master and baking it for 4 h or more at 80°C. After cutting the chip
and punching inlets, the chip was bonded to a #1.5 glass coverslip as follows: the coverlsip was
manually washed in water and soap, rinsed in isopropanol then water; the chip cleaned from dust
using MagicTape, rinsed in isopropanol then water; surfaces were activated with air plasma (40 sec
at 1500 pm of Hg) before being put in contact; the assembled chip was cooked 1 h or more at 80°C.
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Before running the experiment, the chip was primed and incubated 1 h at 37°C using passivation
buffer (2.5 mg/mL salmon sperm DNA, 7.5 mg/mL bovine serum albumin) for the mother machine
part and water for the overflow channels.

Experiment setup and conditions

Bacteria were stored as frozen glycerol stocks at —80°C and streaked onto LB agar plates to obtain
clonal colonies. Overnight precultures were grown from single colonies in the same growth media
as the experiment. The next day, cells were diluted 100-fold into fresh medium and harvested after
4-6 h.

The experimental apparatus was initialized, pre-warmed and equilibrated. Media flow was
controlled using a pressure controller and monitored with flow-meters, set to run a total flow of
~1.5 YL/ min (corresponding to a pressure of ~1600 mbar).

The primed microfluidic chip was mounted, connected to media supply and flushed with running
media for 30 min or more to rinse passivation buffer. The grown cell culture was centrifuged at
4000xg for 5 min, and the pellet re-suspended in a few pL supernatant and injected into the device
from the outlet using the pressure controller. To facilitate the filling of growth channels by swimming
and diffusing cells, the pressure was adjusted in order to maintain minimal flow in the main channel
(loading time 40min).

After loading, bacteria were incubated during 2 h before starting image acquisition. Every 3 min,
phase contrast and fluorescence images were acquired for several well-separated positions in
parallel.

Microscopy and image analysis

An inverted Nikon Ti-E microscope, equipped with a motorized xy-stage and enclosed in a tempera-
ture incubator (TheCube, Life Imaging Systems), was used to perform all experiments. The sample
was fixed on the stage using metal clamps and focus was maintained using hardware autofocus
(Perfect Focus System, Nikon). Images were recorded using a CFl Plan Apochromat Lambda DM
x100 objective (NA 1.45, WD 0.13 mm) and a CMOS camera (Hamamatsu Orca-Flash 4.0). The
setup was controlled using pManager (Edelstein et al., 2014) and timelapse movies were recorded
with its Multi-Dimensional Acquisition engine. Phase contrast images were acquired using 200
ms exposure (CoolLED pE-100, full power). Images of mCherry fluorescence were acquired using
200ms exposure (Lumencor SpectraX, Green LED at 33% with ND4) using a Semrock triple-band
emission filter (FF01-475/543/702-25).

Image analysis was performed using MoMA (Kaiser et al., 2018) as described in its documenta-
tion (https://github.com/fjlug/MoMA/wiki). Raw image datasets were transferred to a centralised
storage and preprocessed in batch. Growth channels were chosen randomly after discarding those
where cell cycle arrest occurred in the mother cell, and curated manually in MoMA. An exponential
elongation model was then fitted to each cell cycle, and cycles presenting large deviations were
discarded (1-3% of each experiment).

For the automated origin detection and tracking we used custom Python code. Spots were
detected following the method proposed in Aguet et al. (2013). Briefly, amplitude and background
are estimated for each pixel using a fast filtering method and a spot model corresponding to the
optical setup. Among the local maxima found in the amplitude estimates, spots are then selected
using a statistical test based on the assumption that background noise is Gaussian. To track spots
we used the trackpy package Allan et al. (2018). We kept only cell cycles where origin tracks behaved
in a biologically reasonable way, i.e. one track splitting in two, splitting in four etc. The time of
initiation was assigned as the first time point where a track splits into two. For the manual analysis
of the other experiments, the frame showing origin splitting was selected manually.

Using the the timing of origin splitting, the corresponding cell length could be determined. All
further variables like d L or dA,, are deduced from the primary variables. For the decomposition
analysis, a pseudo-cell cycle was created by concatenating the mother cell cycle from initiation to
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division with the daughter cell cycle from birth to initiation. The growth rate « for this pseudo-cell
cycle was again obtained by fitting an exponential growth model. All the growth lanes corresponding
to a given conditions were then pooled to generate the various statistics shown in this article.
The entire analysis pipeline is available as Python modules and Jupyter Notebooks on Github
(https://github.com/guiwitz/DoubleAdderArticle).

Simulations

The numerical implementation of the model described in Figure 4 and used in Figure 5 requires
several parameters for each individual cell cycle. To generate those, the following distributions were
extracted from experimental data, and if needed their means and variances were obtained by a
fitting procedure:

* The growth rate distributions P(4).

+ The growth rate correlation from mother to daughters.

* The length distributions of the two adder processes P(dA;,) and P(dA, ).

+ The distributions of length ratios between sister cells to account for imprecision in division
placement P(r).

For the simulation, a series of 500 cells is initialized with all required parameters: initial length
L, taken from the birth length distribution, A = P(4), number of origins n,,, = 1, and the two adders
dA, = P(4) and dA;; = P(dA,;;)) whose counters are starting at 0. The exact initialization is not
crucial as the system relaxes to its equilibrium state after a few generations. Cells are then growing
incrementally following an exponential law, and the added length is monitored. Every time the cell
reaches its target dA,, the number of origins doubles and a new initiation adder is drawn from
P(dA,;). Every time the cell reaches its target dA,, the cell 1) divides into two cells using a division
ratio drawn P(r), 2) the number of origins per cell is divided by two, 3) a new division adder is drawn
from P(dA,,), and finally 4) a new growth rate is drawn from P(4). Each simulation runs for 30h in
steps of Tmin. In the end, the cell tracks resulting from the simulation are formatted in the same
format as the experimental data, and follow the same analysis pipeline. The code is available on
Github.
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s« Appendix 1
s65 Experiments statistics
Experiment Discarded % # cell cycles 1/A[min]  Adderr A" “r L'b"*d r
566 Glycerolauto 3.3 3070 86.0 -0.10 0.33 0.45
=67 Glycerol 2.1 810 89.0 -0.07 0.42 0.58
Glucose 2.1 1035 53.0 -0.04 0.47 0.66
Glucose +tAA 2.4 1159 41.0 -0.12 0.36 0.48
568 Table 1. Statistics for all expderiments. Glycerol auto is that dataset analyzed automatically, while
569 Glycerol is the one analyzed manually. r stands for Pearson correlation, and the m — d superscript
570 indicates a mother-daughter correlation. The doubling time (1/4) is obtained by fitting the distribution
572 of growth rates with a log-normal distribution.
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s Appendix 2

574 Other models
575 In this article we have shown that models relying on the concept of initiation mass, as
576 well as those involving a constant timer from initiation to division are incompatible with
577 measurements. Still, those models are able to reproduce a wide range of experimental
578 measurements, and we wanted to understand where they would break. We give here two
579 examples of such an analysis. In the first case we tried to reproduce the model proposed in
580 Wallden et al. (2016). This model assumes that cells initiate replication around a specific initi-
581 ation mass length L, and then grow for an amount of time depending on growth rate T, (1)
582 before dividing (1A). In panels B and C of 1 we show that we are successfully reproducing the
583 model used e.g. in Figure 6 of Wallden et al. (2016). The histogram of the number of origins
584 at birth shown in 1D shows a clear failure of the model where cells in slow growth conditions
585 are all born with an ongoing round of replication in contradiction with experimental data
586 (see e.g. Figure 3 of Wallden et al. (2016)).
A B
Growth condition
TCD(”) ég ¢ I;aes(;ium
or % Slow
=
Li . T'b()\) § 1 Le':%ti:n
- L division
0.0025 0.0050 0.0100 0.0200
w [min™]
C D
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o 6 Fast ‘g %S
g peciad 8 Growth condition
= Slow o M slow
GE’ & & 050 B medium
2 Length I [ fast
. Hisw, 5o
0 0.00-H— H -
0 100 200 300 1248124812438
. Doubling Time [min] Number of origins at birth
588 Figure 1. Re-implementation of the model proposed in Wallden et al. (2016) for three growth
589 conditions. A. Cells initiation at length L, and grow for a time T, ,(u) before dividing. B. Cell volume at
590 birth and division as a function of growth rate. C. Cell volume at birth and division as a function of
592 generation time. D. Distributions of the number of origins at birth.
593 The second model we are investigating here has been recently proposed by Micali et al.
594 (2018b). It uses an inter-initiation adder for replication regulation, and combines it with a
595 classical adder (birth to division) without coupling those two regulation systems together
59 explicitly. We simulated such a model with the added constraint that division can only occur
597 if at least two origins are present in the cell. The results are shown in Fig.2. The model
598 surprisingly reproduces most of the features of the experimental data with one exception:
599 the initiation to division variable dA,, is clearly not anymore an adder. This can be trivially
600 explained: as the two mechanisms are uncoupled, an initiation at a large size automatically
601 leads to a small dA,, on average while an early initiation at small size leads to a large dA,, on
602 average.
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Figure 2. Comparison of experimental distributions and correlations with a model combining an

inter-initiation adder and a classicadderdL =L, - L,
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607 Appendix 3
608 Decomposition: the classic adder model.
609 In order to illustrate the functioning of the our decomposition approach, we apply it to the
610 familiar case of the classic division adder model. By considering all possible combinations of
611 standard cell cycle variables and estimating their independence, we find that the decomposi-
612 tion offering the most independent set of variables corresponds to the classic adder model
613 defined by L,, dL and 4, as can be seenin 1.
Division Adder Experimental
Lp, A, dL, Lp, Lg, A, Lp, Tpa, dL,
indep: 0.969 indep: 0.688 indep: 0.565
A
Ly
A
Lg
Lb, Lo, Toar Lo, Tha, A,
indep: 0.401 indep: 0.37
Lp, Tha, A, Lg, Tpa, dL,
indep: 0.279 indep: 0.195
614
615 Figure 1. All possible decompositions for the division cycle variables ranked from best (top left) to
618 worst (bottom right) in terms of variable independence.
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Figure 1-Figure supplement 1. Schema of the cell cycle and variable definitions for the case of
fast growth with overlapping replication cycles
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619

Normalized position along cell long axis

Normalized time from birth to division

Figure 4-Figure supplement 1. The position along the cell axis and the cell-cycle time of all
detected spots were collected. The longitudinal position was scaled with cell length to indicate
the relative position in the cell. The cell cycle time was normalized between 0 and 1. The 1 shows
as 2D histogram of these space-time data. The intensity of each time point (columns) has been
normalized. The mid-cell and quarter-cell (mid-cell of daughter cell) positions are indicated with
dotted lines.
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Figure 5-Figure supplement 1. Detailed comparisons between experiments and simulations for

M9+glycerol condition (with automated origin tracking).
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Figure 5-Figure supplement 2. Detailed comparisons between experiments and simulations for
M9+glycerol condition (with manual origin tracking).
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Figure 5-Figure supplement 3. Detailed comparisons between experiments and simulations for
M9+glucose condition (with manual origin tracking).
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Figure 5-Figure supplement 4. Detailed comparisons between experiments and simulations for
M9+glucose+8a.a. condition (with manual origin tracking).
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Figure 5-Figure supplement 5. Focusing on the large dataset (with automated origin tracking) for
which we have the most accurate measures, we note that d L shows a slight deviation from adder
behavior. As shown here, we found that this could be corrected by slightly reducing the variance
level of the division adder distribution (to 70% of its original value). As the initiation measurement
is made imprecise for experimental (e.g. acquisition rate) and biological (e.g. variable cohesion of
origins), it is reasonable to assume that we overestimate the variance of that parameter.
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Double-adder Experimental
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Figure 6-Figure supplement 1. In complement to the best decomposition shown in Fig.6, we show
here details for the first nine best decompositions for the experimental data.
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Double-adder Simulation
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Figure 6-Figure supplement 2. In complement to the best decomposition shown in Fig.6, we show
here details for the first nine best decompositions for the simulation data.
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(Glycerol) initiation centric ion (Glycerol) initiation centric i (Glycerol) division centric ion (Glycerol) division centric
combinations i combinations i combinations i
X, o, dAiy, dAy 0.868 X o, dhiy, dAy, 0.981 To, X, dL, dL,; 0.554 Ty, N, dL, dLy; 0425
Ap,a, Rig, dAy 0.809 Ag, o, Rig, dAgy 0.875 Ty, A, dL, L; 054 La, A, Ray, dLy; 0.372
Ai, o, Rig, dAy 0.676 Ai, a, Rig, dAy, 0.766 Lay Ay Rav, dLui 0.503 Ly, Thi, A, dL 0.372
Tip, @, dAig, Ay 0.62 a dAig, Ay, dAiy 0.695 A dL, L;, dLy; 0.487 Ly, La, A, dLy; 0.338
Ai, Ty, a0, dAig 0.609 T, o, dAig, Ay 0.685 Ly, Tyi, A, dL 0.463 La, Tyi, A, Ray 0.311
Ag, T, @, Rig 0.568 As, Tig, a, dAg 0.604 Ly, A, dL, L; 0.46 Ly, A, Ray, dLy; 0.302
Ai, Tig, dAig, dAy 0.556 Ai, A, a,dAy, 0.59 La, A, Ray, Li 0.403 Ly, A, dL, L; 0.301
Ag, Tigy a, dAy 0.552 @, Rig, Ay, dAy, 0.581 La, Tii, A, Ray, 0.403 Ly, La, Thiy A 0.295
Ap, T, Rig, dAyy 0.517 T @, Rig, Ay 0.542 Tyir A, Ray, Li 0.402 Tyi, A, dL, L; 0.29
T, a, Rig, Ay 0.506 Ai, Tig, , dAgy, 0.533 Ly, A, Ray, dLyi 0.396 La, A\, Ray, L 0.251
a, dAig, Ay, dAy, 0.505 Aiy Ty, dAis 0.487 Ly, La, A, dLy; 0.377 Ly, Ty, A, Ray 0.244
Aiy A, a, dAyy 0.479 Ay, Tip, o, Rig 0.432 La, Tvi, A, Li 0.363 La, Tya, A, dLy; 0.241
Aiy Ty, 0, Rig 0.473 Ag, a, Ay, dAgy, 0.418 A, Ray, Li, dLy; 0.348 L, La, A, Li 0.239
Ai, Ty, o, dAiy 0.447 Ag, Ty 0, Ay 0.416 Lay A, Li, dLy; 0.331 La, Tyi, A, L; 0.234
Ai, Tig, Rig, dAiy 0.433 A, Ty, dAig, dAsy 0.41 Ly, A, Ray, Li 0.328 A dL, L;, dLy; 0.226
Ay, T, dAig, dAy, 0.428 T, a, Ay, dAiy 0.403 Ly, Tyis A, Ray 0.317 Ly, A, Ran, Li 0214
a, Rig, Ay, dAyy 0.42 Ai, Ty, 0, Rig 0.38 Ly, La, Thi, A 0.314 Ly, Tha, A, dLyi 0.201
Aiy o, dAig, Ay 0.41 Tigy Ty, Ay 0.371 Ly, La, A, Li 0.312 Tyis A Rav, Li 0.199
Ag, Tip, Rig, dAyy 0.398 Ag, Tip, Rig, dAyy 0.362 Ly, Ty, dL, dLy; 0.295 La, Toa, Toir A 0.191
Ag,a, Rig, Ay 0.387 Ty dAif, Ay, dAiy 0.335 La, Toa, Rav, dLui 0.274 La, A, Li, dLyi 0.179
A Tip, Ty 0.36 Ai a, dAg, Ay 0.321 Tya, dL, Ly, dLy; 0.26 La, Ty, A, Ly 0.164
Ay, Tip, o, Ay 0.359 Ai, T, Rig, dAiy 0.319 Ly, Tya, dL, L; 0.245 Ly, Tya, dL, dLy; 0.161
Ai, Tig, T, dAis 0.347 Ai, Tig, dAig, dAg 0.31 Lu, Tya, Ty, dL 0.244 A, Ray, Li, dLuy; 0.16
Ai Ag, T a 0.336 Ag, a, Rig, Ay 0.297 La, Tyas M dLy; 0.227 Ly, T Tyir A 0.152
A, Tan,y Rig, dAay 0.334 A Ag, T, 0.293 La, Toa, Rav, Li 0.219 Ly, Toay A, Li 0.142
Ag,a, Ay, dAgy 0.329 As, Tig, Ty 0.291 La, Ty, Ty, Ray 0.218 La, A, dL, dLy,; 0.14
Ag, Tig, T, Rig 0.323 Ao, dAg, dAiy 0.288 Ly, Tyar Ray, dLii 0.216 La, Toay Ray, dL; 0.139
Ay, Rigy Ay 0.319 Tiy, Rig, Ay, dAsy 0.274 Ly, Lay Tyay dLu; 0.201 Ly, Ty, Thiy dL 0.135
Tig, Ty, Ay 0.314 ApTig, R 0.271 Tyt Ras Li, dLii 0.19 Ly, La, Ty, dLy; 0.128
Aiy Ag, Tig, dAy 0.307 Ai 0.263 Lay A, dL, dLy; 0.181 La, Ty, A, dL 0.122
Ai, Tip, Tipy 0.304 Aia, 0.251 Ly, Tya, Rav, Li 0.179 Toa Toir A, Li 0.119
627 Tig, dAig, Ap, dAsy 0.297 Ay Ay, Ty, dAsy 0.246 Lay Toas Tois A 0.178 Ly, Toa, dL, L; 0.114
As Tipy Ay 0.289 Ai, Toy, Rig, dAg 0.237 La, Toa, La, dLy; 0.177 Ly, Tyay Ray, dLii 0.112
Tis, a, Ay, dAyy 0.282 Tis, dAig, Ap, dAyp 0.232 Ly, Tya, A, dLi 0.176 La, Tya, Ty, Ran 0.112
Ay, a, dAig, dAiy 0.282 A, Tig, T, dAiy 0.232 La, Toa, A, Li 0.173 Ly, La, Toa, Thi 0.107
Aiy Tigy T dAiy 0.275 As Tig, a, Ay 0.212 Ly, Toay Thoiy Ry 0.173 Tyay A, Liy dLy 0.107
Ai, Tig, Ty, Riy 0.271 Ay, Tip, Ay, dAip 0.202 Thas Tois A, Li 0.173 La, A\, dL, L; 0.099
Tig, Rig, Av, dAsy 0.266 A Agy o Ay 0.193 Ly, La, Tya, Li 0.166 La, Toa, Ran, Li 0.094
Ai, Top, dAig, Ay 0.266 Ti5, T Ay, dAy, 0.191 Ly, Lay Toas Thi 0.166 Ly, La, Toas Li 0.09
Ty dAig, Ay, dAiy 0.257 Aiy Ag, Tig, dAiy 0.186 Tyas A, Liy dLy; 0.155 Ly, Toa, Tois Ray 0.087
Ag, Tig, Rig, Ay 0.249 Tis, Rig, Ay, dAiy 0.18 La, Ty, A, dL 0.151 Tya, dL, L, dLy; 0.085
Ais Ay, T, dAiy 0.237 Ai, Tig, 0, Ay 0.174 La, A, dL, L; 0.15 Ly, Tya, Rap, Li 0.08
Ao Agy o, Ay 0.227 Ag, Tigs vy dAsy 0.164 Ly, Toas A, L 0.146 La, Ty, Li, dLy: 0.068
Ai, Ty, dAig, Ay 0.226 Ai, Tip, Tip, dAig 0.15 Ly, Toar Toir A 0.138 Thas Rav, Li, dLy; 0.06
Tivy Rig, Auy dAiy, 0.223 Ay, Ta, a0, dAig 0.143 La, Tya, dL, dLy; 0.096 La, Tya, dL, dLu; 0.053
Ay, T, Rig, Ay 0.215 Ap, Tig, T, Rig 0.131 Ly, Ty, dL, dLy; 0.086 La, Tya, Toiy dL 0.044
Aiy Tigy 0, Ay 0.211 A, Ty, dAig, Ay 0.123 La, Tya, dL, L; 0.08 Ly, Tyi, dL, dLy; 0.044
Ag, Topy Auy dAsy 0.209 Az, Ty dAig, dAy, 0.12 Lay Thoa, Tyiy dL 0.08 La, Ty, dL, L; 0.037
Ai, Ty, Rig, Ay 0.207 Ay, Tiv, Rig, Ay 0.119 Lg, Tyi, Rav, dLp; 0.076 La, Tyi, Rap, dLy; 0.036
Ag, Ty 0, dAigp 0.198 Ai, Tig, Ta, Rig 0.117 T, dL, Li, dLy; 0.076 Ly, La, Ty, dLyi 0.035
Ai Mg, Tip, Ty 0.192 Aiy Tog, dAig, Ay 0.101 Ly, T, dL, L; 0.071 Ly, Ty, dL, L; 0.031
Ag, Tig, dAig, dAsy 0.181 Aiy Ty, Rig, Ay 0.096 La, Tvi, Rav, Li 0.063 Lu, Tyiy Rap, dLy; 0.03
Ai, T, Rig, Ay 0177 Ap,a,dAip, Ay 0.094 Ly, Tyi, Ray, dLyi 0.061 Ly, Tya, Tii, dLy; 0.028
Tig, Ty, Ay, dAip 0.159 Ag, Tig, Rig, Ay 0.092 L, Toa, Tyir dLy 0.06 Ly, La, Tyi, Li 0.025
Ag, Tavy Avy dAiy, 0.159 Ay, Tig, dAig, dAgy, 0.091 Ly, La, Ty, dLy; 0.058 La, Ti, Ray, Li 0.024
A Ap, Tip, Ay 0.147 Ai, Ag, Tig, Ty 0.09 Tyi, Rav, Li, dLy; 0.053 Tyi, dL, L;, dLy; 0.023
Ag, Tivy dAig, dAsy 0.139 Aiy Tig, Rig, Ay 0.078 Ty Toiy Liy dLi 0.053 Ly, Thi, Ray, Li 0.022
Ag,a,dAig, Ay 0.133 A Ag, Ty Ay 0.074 Ly, Tyi, Li, dLy; 0.051 Ly, Toa, Toir Li 0.02
Ai, Tig, Tip, Ay 0.13 Ai, Tip, Tins As 0.072 Ly, Tyi, Rap, Li 0.05 La, Tyi, Li, dLpi 0.019
Aiy A, Ty Ay 0.125 A A, Ty Ay 0.061 Ly, Toas Thiy Li 0.05 Tyir Ray Li, dLy; 0.016
Ag, Tig, T, dAig 0.113 Ag, Tigy Ty dAip 0.044 Ly, La, Tyi, Li 0.048 Toar Thir Lir dLyi 0.015
Ag, Tig, dAig, Ay 0.086 A, Tay dAig, Ay 0.036 La, Ty, dL, dLy; 0.028 La, Tyi, dL, dLy; 0.015
Az, T dAig, A, 0.073 As, Tipy dAig, Ay 0.03 La, Ty, dL, L; 0.023 La, Ty, dL, L; 0.01

Figure 6-Figure supplement 3. All possible decompositions for both experimental and simulation
data are shown ranked from most to least independent.
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