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Abstract

Despite the reliability of intelligence measures in predicting important life outcomes such as
educational achievement and mortality, the exact configuration and neural correlates of
cognitive abilities remain poorly understood, especially in childhood and adolescence.
Therefore, we sought to elucidate the factorial structure and neural substrates of child and
adolescent intelligence using two cross-sectional, developmental samples (CALM: N=551,
age range: 5-18 years, NKI: N=337, age range: 6-18 years). In a preregistered analysis, we
used structural equation modelling (SEM) to examine the neurocognitive architecture of
individual differences in childhood and adolescent cognitive ability. In both samples, we
found that cognitive ability in lower and typical-ability cohorts is best understood as two
separable constructs, crystallized and fluid intelligence, which became more distinct across
development. Further analyses revealed that white matter microstructure, most prominently
the superior longitudinal fasciculus, was strongly associated with crystallized (gc) and fluid
(gf) abilities. Finally, we used SEM trees to demonstrate evidence for age differentiation-
dedifferentiation of gc and gf and their white matter substrates such that the relationships
among these factors dropped between 7-8 years before increasing around age 10. Together,
our results suggest that shortly before puberty marks a pivotal phase of change in the

neurocognitive architecture of intelligence.
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1. Introduction

Intelligence measures have repeatedly been shown to predict important life
outcomes such as educational achievement (Deary et al., 2007) and mortality (Calvin et al.,
2011). Modern investigations of intelligence began over 100 years ago, when Spearman first
proposed g (for ‘general intelligence’) as the underlying factor behind his positive manifold of
cognitive ability and established intelligence as a central theme of psychological research
(Spearman, 1904). Cattell proposed a division of Spearman’s g-factor into two separate yet
related constructs, crystallized (gc) and fluid (gf) intelligence (Cattell, 1967). Cattell
suggested that gc represents the capacity to effectively complete tasks based on acquired
knowledge and experience (e.g. arithmetic, vocabulary) whereas gf refers to one’s ability to
solve novel problems without task-specific knowledge, relying on abstract thinking and
pattern recognition (see also Deary et al., 2010).

Current understanding of lifespan trajectories of gc and gf using cross-sectional
(Horn and Cattell, 1967) and longitudinal (McArdle et al., 2000; Schaie, 1994) cohorts
indicates that gc slowly improves until late age while gf increases into early adulthood before
steadily decreasing. However, the majority of the literature on individual differences between
gc and gf has focused on early to late adulthood. As a result, considerably less is known
about the association between gc and gf in childhood and adolescence (but see Hulir et al.,
2011).

There has, however, been a recent rise in interest in this topic in child and adolescent
samples. For instance, research on age-related differentiation and its inverse, age
dedifferentiation, in younger samples has greatly expanded since first being pioneered in the
middle of the 20th century (Garrett, 1946). According to the age differentiation hypothesis,
cognitive factors become less correlated (more differentiated) with increasing age. For
example, the relationship (covariance) between gc and gf would decrease as children age
into adolescence, suggesting that cognitive abilities increasingly specialize into adulthood. In
contrast, the age dedifferentiation hypothesis predicts that cognitive abilities become more
strongly related (less differentiated) throughout development. In this case, gc and gf
covariance would increase between childhood and adolescence, potentially indicating a
strengthening of the g-factor across age. However, despite its increased attention in the
literature, the debate remains unsolved as evidence in support of both hypotheses has been
found (Bickley et al., 1995; de Mooij et al., 2018; Gignac, 2014; Hldr et al., 2011; Juan-
Espinosa et al., 2000; Tideman and Gustafsson, 2004). Together, this literature highlights
the importance of a lifespan perspective on theories of cognitive development, as neither
age differentiation nor dedifferentiation may be solely able to capture the dynamic changes

that occur from childhood to adolescence and (late) adulthood (Hartung et al., 2018).
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The introduction of non-invasive brain imaging technology has complemented
conventional psychometric approaches by allowing for fine-grained probing of the neural
bases of human cognition. A particular focus in developmental cognitive neuroscience has
been the study of white matter using techniques such as diffusion-weighted imaging, which
allows for the estimation of white matter microstructure (Wandell, 2016). Both cross-
sectional and longitudinal research in children and adolescents using fractional anisotropy
(FA), a commonly used estimate of white matter integrity, have consistently revealed positive
correlations between FA and cognitive ability using tests of working memory, verbal and
non-verbal performance (Krogsrud et al., 2018; Peters et al., 2014; Tamnes et al., 2010;
Urger et al., 2015). In particular, recent research has found associations between the corpus
callosum (Navas-Sanchez et al., 2014; Westerhausen et al., 2018) association fibers (e.qg.
inferior longitudinal fasciculus, see Peters et al., 2014), the superior longitudinal fasciculus
(Urger et al., 2015), and differences in cognitive ability, suggesting the importance of white
matter integrity across large coordinated brain networks for high cognitive performance.
However, interpretations of these studies are limited due to restricted cognitive batteries
(e.g. small number of tests used) and a dearth of theory-driven statistical analyses (e.g.
structural equation modelling).

For these reasons, several outstanding questions in the developmental cognitive
neuroscience of intelligence remain: 1) Are the white matter substrates underlying
intelligence in childhood and adolescence best understood as a single global factor or do
individual tracts provide specific contributions to gc and gf?, 2) If they are specific, are the
tract contributions identical between gc and gf?, and 3) Does this brain-behavior mapping
change in development (e.g. age differentiation/dedifferentiation or both)?

To examine these questions, our preregistered hypotheses are as follows:

1) gc and gf are separable constructs in childhood and adolescence. More

specifically, the covariance among scores on cognitive tests are more adequately
captured by the two-factor (gc-gf) model as opposed to a single-factor (e.g. g)
model.

2) The covariance between gc and gf changes (decreases) across childhood and

adolescence.

3) White matter tracts make unique complementary contributions to gc and gf.

4) The contributions of these tracts to gc and gf change (decrease) with age.

To address these questions, we examined the relationship between gc and gf in two
large cross-sectional child and adolescent samples. The first is the Centre for Attention,
Learning and Memory (CALM, see Holmes et al., 2019). This sample, included in our
preregistration, was recruited atypically (see Methods for more detail) and generally includes

children with slightly lower cognitive abilities than age-matched controls. To examine
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whether findings from CALM would generalize to other samples, we also conducted non-
preregistered analyses on the Nathan Kline Institute (NKI) Rockland Sample, a cohort with
similar population demographics to the United States (e.g. race and socioeconomic status,
see Table 1 of Nooner et al., 2012). All analyses were carried out using structural equation
modelling (SEM), a multivariate statistical framework combining factor and path analysis to
examine the extent to which causal hypotheses concerning latent (unobserved, e.g. g) and
manifest (observed, e.g. cognitive tests scores) variables (Schreiber et al., 2006) are in line
with the observed data. Taken together, this paper sought to investigate the relationship
between measures of intelligence (gc and gf) and white matter connectivity in typically and
atypically (struggling learners) developing children and adolescents.

2. Methods

2.1.1 Participants

For the CALM sample, we analyzed the most recent data release (N=551; 170

female, 381 male'; age range=5.17-17.92 years) at the time of preregistration (see

https://aspredicted.orq/5pz52.pdf). Participants were recruited based on referrals made for
possible attention, memory, language, reading and/or mathematics problems (Holmes et al.,
2019). Participants with or without formal clinical diagnosis were referred to CALM.
Exclusion criteria included known significant and uncorrected problems in vision or hearing
and a native language other than English. A subset of participants completed MRI scanning
(N=165; 56 female, 109 male; age range=5.92-17.92 years). For more information about

CALM, see http://calm.mrc-cbu.cam.ac.uk/.

Next, to assess the generalizability of our findings in CALM, we used a non-
preregistered subset of the data from the Nathan Kline Institute (NKI) Rockland Sample
(cognitive data: N=337; 149 female, 188 male; age range=6.12-17.94 years; neural data:
N=65; 27 female, 38 male; age range=6.97-17.8 years). This multi-institutional initiative
recruited a lifespan (aged between 6 and 85 years), community-ascertained sample (Nooner
et al., 2012). We chose this sample due to its representativeness (demographics resemble
those of the United States population) and the fact that its cognitive battery assessments
closely-matched CALM. For more information about the NKI Rockland Sample and its

procedures, see http://rocklandsample.org/. Also see Fig. 1 for age distributions of CALM

! Gender was coded as either female or male. However, it should be noted that participants might
identify themselves as ‘Other’, which, to our knowledge, was not an option according to the
biographical produces used in either sample.
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146  and NKI. These same two cohorts were used in a recent paper to address a distinct set of

147  questions (Fuhrmann et al., 2019).

CALM NKI

Count

8 12 16 8 12 16
Age (years)

Fig. 1. Histograms of age distributions for CALM and NKI Rockland samples.

148  2.1.2 Statistical analyses

149

150 We used structural equation modelling (SEM), a multivariate approach that combines
151 latent variables and path modelling to test causal hypotheses (Schreiber et al., 2006) as well
152  as SEM trees, which combine SEM and decision tree paradigms to simultaneously permit
153  exploratory and confirmatory data analysis (Brandmaier et al., 2013).

154 We performed structural equation modelling (SEM) using the lavaan package version
155  0.5-22 (Rosseel, 2012) in R (R Core Team, 2018) and versions 2.9.9 and 0.9.12 of the R
156  packages OpenMx (Boker et al., 2011) and semtree (Brandmaier et al., 2013), respectively.
157  To account for missing data and deviations from multivariate normality, we used robust full
158 information maximum likelihood estimator (FIML) with a Yuan-Bentler scaled test statistic
159 (MLR) and robust standard errors (Rosseel, 2012). We evaluated overall model fit via the
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(Satorra-Bentler scaled) chi-squared test, the comparative fit index (CFl), the standardized
root mean squared residuals (SRMR), and the root mean square error of approximation
(RMSEA) with its confidence interval (Schermelleh-Engel et al., 2003). Assessment of model
fit was defined as: CFI (acceptable fit 0.95-0.97, good fit >0.97), SRMR (acceptable fit 0.05-
.10, good fit <0.05), and RMSEA (acceptable fit 0.05-0.08, good fit <0.05). To determine
whether gc and gf were separable constructs, we compared a two-factor (gc-gf) model to an
single-factor (g) model. To investigate if the covariance between gc and gf differed across
ages, we conducted multiple group comparisons between younger and older participants
based on median splits (CALM split at 8.91 years yielding N=279 young and 272 old; NKI
split at 11.38 years into N=169 young and N=168 old). Doing so inevitably led to slightly
unbalanced numbers of participants with white matter data (CALM: young, N=60 & old,
N=105; NKI: young, N=19 & old, N=46). To test measurement invariance across age groups
(Putnick and Bornstein, 2016), we fit multigroup models (French and Finch, 2008),
constraining key parameters across groups. Model comparisons and deviations from
measurement invariance were determined using the likelihood ratio test and Akaike
information criterion (AIC, see Bozdogan, 1987).

To examine whether white matter tracts made unique contributions to our latent
variables we fit Multiple Indicator, Multiple Cause (MIMIC) models (Jéreskog and
Goldberger, 1975; Kievit et al., 2012). Lastly, we conducted a SEM tree analysis, a method
that combines the confirmatory nature of SEM with the exploratory framework of decision
trees (Brandmaier et al., 2013). SEM trees hierarchically and recursively partition data
(decision tree) according to covariates that explain the maximum difference in parameter
estimates of a theorized model (SEM). For each SEM tree analysis, a minimum sample size
of 100 was set for each node to aid estimation. Our use of this technique was twofold: 1)
Examine the robustness of findings based on the median age split, and 2) examine whether
white matter contributions differed across age groups of younger and older participants
(Hypothesis 4). Therefore, for our SEM tree analyses in CALM and NKI, we used age as a

continuous covariate.

2.1.3 Cognitive assessments: gc, gf, and working memory

All cognitive data from the CALM sample were collected on a one-to-one basis by an
examiner in a dedicated child-friendly testing room. The test battery included a wide range of
standardized assessments of cognition and learning (Holmes et al., 2019). Participants were
given regular breaks throughout the session. Testing was divided into two sessions for
participants who struggled to complete the assessments in one sitting. For analyses of the

NKI Rockland Sample cohort, we matched tasks used in CALM except for the Peabody
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Picture Vocabulary Test, Dot Matrix, and Mr. X, which were only available for CALM. For the
NKI Rockland Sample, we included the N-Back task, which is not available in CALM (Nooner
et al., 2012). In both samples, only raw scores obtained from assessments were included in
analyses. Due to varying delays between recruitment and testing in NKI, we only used
cognitive test scores completed no later than six months after initial recruitment. The

cognitive tasks are further described in Table 1; the raw scores are depicted in Fig. 2.

Cognitive - Mean (sd) Missing
Domain Sample Task and Description [range] Data % Reference
Peabody Picture Vocabulary Test
(PPVT): Participants were asked to CALM: 133.77 CALM: Dunn and
choose the picture (out of four (31.68) 1.09
CALM Dunn
multiple-choice options) showing the [8, 215] NKI: 2007’
meaning of a word spoken by an NKI: N/A N/A
examiner.
Single Word Reading (SWR): CALM: 80.95
Participants read aloud first a list of (24.35) CALM:
CALM | letters and then words that gradually [7, 130] 236 '
llized & NKI | increased in complexity. Correct NKI: 104.47 Nkl' 0
Crystallize responses required correctness and (20.28) '
Ability (gc) fluency. [35, 131]
Spelling (Spell): Participants )
spelled words with increasing CALQA'GSLN CALM:
CALM | difficulty one at a time that were [(0.48)] 3.09 " Wechsler,
& NKI | spoken by an examiner. NKI: 33.57 (10.55) = NKI: 0 2005
[4, 52]
Numerical Operations (NO): )
Participants answered written CAI‘(QA4é)4 83 CALM:
CALM  mathematical problems that [0.48] 13 61.
& NKI | increased in difficulty. NKI: 27.95 (11.95)  NKI: 0
[4, 53]
Matrix Reasoning (MR): )
Participants saw sequences of CAL(g/I 41)0 68 CALM: Wechsler,
Fluid Ability = CALM  partial matrices and selected the [0 ' 25] 0 ' 1999
(of) & NKI ' response option that best completed o . Wechsler,
each matrix. SE %1'277](5'19) SNEL 2011
Working Digit Recall/Span (DR): Participants CALM: 24.22
Memory (WM) recalled sequences of single digit 5 '32 ' CALM: | Alloway,
CALM | numbers given in audio format. [(7'43)] 0.36 2007
& NKI o NKI: Kaufman,
NKI: 5.97 (1.25) 24,63 1975

[3, 9]
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Backward Digit Recall/Span
(BDR): Same as regular digit
recall/span but in reversed order.

Dot Matrix (Dot): For 2 seconds,
participants were shown the location
of a red dot in a sequence of 4x4
matrices and had to recollect this
location by tapping the squares on a
computer screen.

Mr. X (MRX): Participants
remembered spatial locations of a
ball held by a cartoon man rotated in
one of seven positions.

N-Back (NB): For 500 ms
participants were presented letter
sequences with a further 2000 ms to
respond by pressing the computer
spacebar. The task consisted of
three separate conditions: 0-Back—
participants pressed the spacebar
whenever an “X” appeared; 1-Back—
participants pressed the spacebar
whenever the same letter was
presented twice in a row; and, lastly,
2-Back— participants pressed the
spacebar each time the letter
presented matched the one shown
two letters beforehand.

CALM: 9.2 (4.42)
[0, 25]

NKI: 4.04 (1.40)
[0, 8]

CALM: 17.94
(5.49)
[2, 35]
NKI: N/A

CALM: 8.94 (4.90)
[0, 30]
NKI: N/A

CALM: N/A
NKI: 16.32 (4.22)
[0, 20]

Table 1. List and Descriptions of Cognitive Assessments used in CALM & NKI

Rockland samples

204

CALM:
1.63
NKI:

24.63

CALM:
0.18
NKI:

N/A

CALM:
0.91
NKI:

N/A

CALM:
N/A
NKI:
20.47

Gur et al.,
2010
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Age (years)

Fig. 2. Scatterplots of cognitive task scores across age for CALM and NKI Rockland
samples. Lines reflect linear fit.

2.1.4 MRI acquisition

The CALM sample neuroimaging data were obtained at the MRC Cognition and
Brain Sciences Unit, Cambridge, UK. Scans were acquired on the Siemens 3 T Tim Trio
system (Siemens Healthcare, Erlangen, Germany) via 32-channel quadrature head coil.
Echo-planar diffusion-weighted images were used to attain diffusion scans using a set of 60
non-collinear directions and a weighting factor of b=1000s*mm2 combined with a T2-
weighted (b=0) volume. Whole brain coverage was obtained with 60 contiguous axial slices
and an isometric image resolution of 2mm. Total echo time and repetition time were 90ms
and 8400ms, respectively.

For the NKI sample, participants were also scanned using a Siemens 3 T Tim Trio
system. All T1-weighted images were attained via magnetization-prepared rapid gradient

echo (MPRAGE) sequence with 1mm isotropic resolution. An isotopic set of gradients using
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137 directions with a weighting factor of b=1000s*mm-2 and an isotropic resolution of 2mm
were used to acquire diffusion scans. For further details regarding scan sequences, see

http://fcon_1000.projects.nitrc.org/indi/enhanced/mri_protocol.html.

2.1.5 White matter connectome construction

Note that part of the following pipeline is identical to that described in Bathelt et al.,
(in press). Diffusion-weighted images were pre-processed to create a brain mask based on
the bO-weighted image (FSL BET; Smith, 2002) and to correct for movement and eddy
current-induced distortions (eddy; Graham et al., 2016). Subsequently, the diffusion tensor
model was fitted and fractional anisotropy (FA) maps were calculated (dtifit). Images with a
between-image displacement greater than 3mm as indicated by FSL eddy were excluded
from further analysis. All steps were carried out with FSL v5.0.9 and were implemented in a
pipeline using NiPyPe v0.13.0 (Gorgolewski et al., 2011). To extract FA values for major
white matter tracts, FA images were registered to the FMRIB58 FA template in MNI space
using a sequence of rigid, affine, and symmetric diffeomorphic image registration (SyN) as
implemented in ANTS v1.9 (Avants et al., 2008). Visual inspection indicated good image
registration for all participants. Subsequently, binary masks from a probabilistic white matter
atlas (threshold at >50% probability) in the same space were applied to extract FA values for
white matter tracts (see below).

Participant movement, particularly in developmental samples, can significantly affect
the quality, and, hence, statistical analyses of MRI data. Therefore, we undertook several
procedures to ensure adequate MRI data quality and minimize potential biases due to
subject movement. First, for the CALM sample, children were trained to lie still inside a
realistic mock scanner prior to their actual scans. Secondly, for both samples, all T1-
weighted images and FA maps were visually examined by a qualified researcher to remove
low quality scans. Lastly, quality of the diffusion-weighted data were evaluated in both
samples by calculating the framewise displacement between subsequent volumes in the
sequence. Only data with a maximum between-volume displacement below 3mm were
included in the analyses. All steps were carried out with FMRIB Software Library v5.0.9 and
implemented in the pipeline using NiPyPe v0.13.0 (see
https://nipype.readthedocs.io/en/latest/).

2.1.6 Neural measures: white matter and fractional anisotropy

To approximate white matter contributions to fluid and crystallized ability, we

analyzed fractional anisotropy (FA; see Wandell, 2016). We based our choice of FA on
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256  previous studies of white matter in developmental samples (de Mooij et al., 2018; Kievit et
257 al., 2016). We used FA as a general summary metric of white matter microstructure as it
258  cannot directly discern between specific cellular components (e.g. axonal diameter, myelin
259  density, water fraction). Mean FA was computed for 10 bilateral tracts as defined by the
260  Johns Hopkins University DTI-based white matter tractography atlas (see Fig. 1 of Hua et
261  al., 2008): forceps minor (FMin), forceps major (FMaj), anterior thalamic radiations (ATR),
262  cingulate gyrus (CING), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus
263  (ILF), corticospinal tract (CST), uncinate fasciculus (UNC), cingulum [hippocampus]

264  (CINGh), and inferior fronto-occipital fasciculus (IFOF). Fig. 3 shows the cross-sectional
265  trends of FA across the age range.

266

Value

Age (years)

267
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Fig. 3. Scatterplots of FA values for all white matter tracts across age for CALM and NKI
Rockland samples. Lines reflect linear fit. Note that the age trends are more pronounced
in CALM than in the NKI sample, possibly due to lower sample size in NKI (N=65).

268

269 3. Results

270

271 3.1 Covariance among cognitive abilities cannot be captured by a single-factor

272

273 In accordance with our preregistered analysis plan, we first describe model fit for the

274  measurement models of the cognitive data only. First, we tested hypothesis 1: that gc and gf
275  are separable constructs in childhood and adolescence. More specifically, we tested the

276  hypothesis that the covariance among scores on cognitive tests would be better captured by
277  atwo-factor (gc-gf) model than a single-factor (e.g. g) model. In support of this prediction,
278  the single-factor model fit the data poorly: x? (27) =317.695, p<.001, RMSEA=.146 [.132

279  .161], CFI=.908, SRMR=.040, Yuan-Bentler scaling factor=1.090, suggesting that cognitive
280 performance was not well represented by a single-factor. The two-factor (gc-gf) model also
281  displayed poor model fit (x? (24) =196.348, p<.001, RMSEA=.119 [.104 .135], CFI=.946,
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282  SRMR=.046, Yuan-Bentler scaling factor= 1.087), although it fit significantly better

283  (x?A=119.41, dfA=3, AICA=127, p<0.001) than the single-factor model.

284 To investigate the source of poor fit, we examined modification indices (Schermelleh-
285  Engel et al., 2003), which quantify the expected improvement in model fit if a parameter is
286  freed. Modification indices suggested that the Peabody Picture Vocabulary Test had a very
287  strong cross-loading onto the fluid intelligence latent factor. The Peabody Picture Vocabulary
288  Test (PPVT), often considered a crystallized measure in adult populations, asks participants
289  to choose the picture (out of four multiple-choice options) corresponding to the meaning of
290 the word spoken by an examiner. Including a cross-loading between gf and the PPVT

291  drastically improved goodness of fit (x?A= 67.52, dfA=1, AICA=100, p<0.001) to adequate
292 (x?(23) =104.533, p<.001, RMSEA=.083 [.067 .099], CFI=.975, SRMR=.025, Yuan-Bentler
293  scaling factor= 1.069). A likely explanation of this result is that such tasks may draw

294  considerably more on executive, gf-like abilities in younger, lower ability samples. For a

295  more thorough investigation of the loading of PPVT across development, see Supplementary
296  Material. Notably, fitting the PPVT as a solely fluid task (i.e. removing it as a measurement of
297  gc entirely) did not significantly decrease model fit (x?A= 2.058, dfA=1, AICA=1, p=0.152).
298  Therefore, we decided to proceed with the more parsimonious PPVT gf-only model (x? (24)
299 =106.382, p<.001, RMSEA=.082 [.066 .098], CFI=.972, SRMR=.025, Yuan-Bentler scaling
300 factor=1.073). We note that although this is a data-driven modification, we believe it would
301 likely generalize to samples with similarly low ages and abilities.

302 Next, we examined whether the single or two-factor model fit best in the NKI sample.
303 The single-factor model fit the data adequately (x? (14) =41.329, p<.001, RMSEA=.075 [.049
304 .102], CFI=.983, SRMR=.029, Yuan-Bentler scaling factor=.965). Moreover, all loadings

305 between the cognitive tasks and g were significant (p<.05) and high (standardized

306 loadings>=.5). However, as was the case in the CALM sample, the two-factor model showed
307 considerably better fit (x? (12) =19.732, p=.072, RMSEA=.043 [.000 .075], CFI= .995,

308 SRMR=.018, Yuan-Bentler scaling factor=.956) compared to the single-factor model

309 (x?A=20.661, dfA=2, AICA=17, p<0.001). It should be noted that, given the differences in
310 tasks measured between the samples, gf and working memory were assumed to be

311  measurements of the same latent factor, rather than separable factors. A similar competing
312  model where gf and working memory were modeled as separate constructs with working

313  memory loaded onto gf, similarly to the best-fitting model for the CALM sample (see Fig. 4),
314  showed comparable model fit and converging conclusions with further analyses. Overall,

315 these findings suggested, that for both the NKI and CALM samples, a two-factor model with
316  separate gc and gf factors provided a better account of individual differences in intelligence
317 than a single-factor model.

318
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319 3.2 Evidence of age differentiation between crystallized and fluid ability

320

321 We investigated the relationship between gc and gf in development to see whether
322  we could observe evidence for age differentiation as predicted by hypothesis 2. Age

323  differentiation (e.g. Hullr et al., 2011) would predict decreasing covariance between gc and
324  ¢f from childhood to adolescence. We fit a multigroup confirmatory factor analysis to assess
325 fit on our younger (N=279) and older (N=272) participant cohorts. The model had acceptable
326 fit (x? (48) =142.214, p<.001, RMSEA=.085 [.069 .102], CFI= .960, SRMR=.037, Yuan-

327  Bentler scaling factor= 1.019). However, a likelihood ratio test, showed that model fit did not
328 decrease significantly when imposing equal covariance between gc and gf in the younger
329  and older participant subgroups (x?A=0.323, dfA=1 AICA=2, p=0.57). This suggested no

330 evidence for age differentiation in the CALM sample. However, the lack of association could
331 be due to limitations of using median splits to investigate age differences when independent
332 (or latent in our case) variables are correlated (lacobucci et al., 2015). For instance, if the
333  age range of differences in behavioral associations between gc and df lies elsewhere, the
334  median split may not be sensitive enough to detect it. To test this explicitly, we next fit SEM
335 trees (Brandmaier et al., 2013) to the cognitive data.

336 We estimated SEM trees in the CALM sample by specifying the cognitive model with
337 age as a continuous covariate. We observed a SEM tree split at age 9.12, yielding two

338  groups (younger participants = 290, older participants = 261). This split was accompanied by
339 adecrease in the covariance between gc and gf, providing support for age differentiation
340 using a more exploratory approach to determine the optimal age split (SEM tree: 9.12 versus
341 median split: 8.91).

342 Next, as in the CALM cohort, we fit a multigroup model with younger (N=169) and
343  older (N=168) age groups in the NKI sample, which produced good fit (x? (24) =33.736,

344 p=.089, RMSEA=.047 [.000 .081], CFI=.991, SRMR=.035, Yuan-Bentler scaling

345 factor=.916). In contrast to CALM, imposing equality constraints on the covariance between
346  gc and gf across age groups revealed a lower gc-gf correlation for the older (.811) compared
347  to the younger participants cohort (1.008). This revealed significant difference in model fit
348  compared to the freely-estimated model (y?A=61.244, dfA=1 AICA=46, p<0.001). This

349  suggested evidence for age differentiation in the NKI sample using multigroup models.

350 In contrast to the multigroup model outcome, the NKI SEM tree model under identical
351  specifications as in CALM failed to produce an age split. A possible explanation is that to
352  penalize for multiple testing we relied on Bonferroni-corrected alpha thresholds for the SEM
353 tree. If, as seems to be the case here, the true split lies (almost) exactly on the median split,
354  then the SEM tree will have slightly less power than conventional multigroup models. These

355  differences between analyses methods suggested that the age differentiation observed here
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is likely modest in size. Taken together, we interpret our findings as evidence for a small,
age-specific but significant decrease in gc-gf covariance in both cohorts, which is compatible
with age differentiation such that, for younger participants, gc and gf factors are almost

indistinguishable, whereas for older participants a clearer separation emerges.

3.3 Violation of metric invariance suggests differences in relationships among

cognitive abilities in childhood and adolescence

Finally, we more closely examined age-related differences in cognitive architecture
(e.g. factor loadings) by examining metric invariance (Putnick and Bornstein, 2016). Testing
this in the CALM sample as a two-group model by imposing equality constraints on the factor
loadings (fully constrained) showed that the freely-estimated model (no factor loading
constraints) outperformed the fully-constrained model (x?A=107.05, dfA=7, AICA=82,
p<0.001), indicating that metric invariance was violated. This violation of metric invariance
suggested that the relationship between the cognitive tests and latent variables was different
in the two age groups. Closer inspection suggested that the differences in loadings were not
uniform, but rather showed a more complex pattern of age-related differences (see Table 2
for more details). Some of the most pronounced differences include an increase of the
loading of matrix reasoning onto gf as well as increased loading of digit recall and dot matrix
onto working memory across age groups.

Similarly, in the NKI cohort, the freely-estimated model outperformed the constrained
model (x?°A=41.111, dfA=5, AICA=33, p<0.001), indicating that metric invariance was again
violated as in CALM. This suggests that the relationship between the cognitive tests and the
latent factors differed across age groups. The pattern of factor loadings differed in some
respects from CALM. For example, the loading of the N-back task onto gf showed the largest
difference across age groups in the NKI sample. However, as CALM did not include the N-
back task, we cannot directly interpret this as a difference between the cohorts. For detailed
comparisons among factor loadings between age groups in both samples, refer to Table 2.
The overall pattern in both samples suggested small and varied differences in the
relationship between the latent factors and observed scores. A plausible explanation is that
the same task draws on a different balance of skills as children differ in age and ability. Our
findings concerning the latent factors should be interpreted in this light as it seems likely that
in addition to age differentiation (and possibly dedifferentiation) effects, the nature of the

factors also differed slightly across the age range studied here.


https://doi.org/10.1101/593509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/593509; this version posted March 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Sample Relationship Younger Older

Participants Participants

CALM gc€=df .89 .93

gf>WM .96 .90

gfPMR .59 74

gf<>PPVT .75 .76

WM=DR .56 .68

WM=>BDR .76 .79

WM=>Dot .58 .67

WM=>MRX .59 .56

gc=>» gcV .89 .79

gc=2>NO .87 .87

gcV=>SWR .94 91

gcV=>Spell .87 91

NKI gc€=2>gfWM 1 .81

gc=>» gcV .96 .87

gfWM=>MR .69 .60

gfWM=>DR .38 54

gfWM=>BDR .50 .53

gfWM=>NB .55 .35

gc=2>NO .90 .76

gcV>SWR 93 .89

gcV=>Spell .97 .88

Table 2. Standardized Path Estimates for Cognitive Assessments in CALM & NKI
Rockland samples. Note that age groups were determined according to the median
split (CALM: 8.91 years, NKI: 11.38 years)

391
392 3.4 The neural architecture of gc and gf indicates unique contributions of multiple

393  white matter tracts to cognitive ability

394

395 We next focused on the white matter regression coefficients to inspect the neural
396 underpinnings of gc and gf. In line with hypothesis 3, we wanted to explore whether

397 individual white matter tracts made independent contributions to gc and gf. First, we

398 examined whether a single-factor model could account for covariance in white matter

399  microstructure across our ten tracts. If so, then scores on such a latent factor would

400 represent a parsimonious summary for neural integrity. However, this model showed poor fit
401 (x? (35) =124.810, p<.001, RMSEA=.132 [.107 .157], CFI= .938, SRMR=.039, Yuan-Bentler
402  scaling factor=1.114), suggesting separate influences from white matter regions in

403  supporting cognitive abilities. To examine whether the white matter tracts showed specific
404  and complementary associations with cognitive performance, we fit a MIMIC model. Doing

405  so, we observed that 5 out of the 10 tracts showed significant relations with gc and/or gf (Fig.
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406  4). Specifically, the anterior thalamic radiations, forceps major, and forceps minor had

407  moderate to strong associations with gc with similar relations seen for gf for the superior
408 longitudinal fasciculus, forceps major, and the cingulate gyrus. Interestingly, the forceps
409  minor exhibited a negative association with gf. This could be due to modeling several highly
410 correlated paths simultaneously since this relationship was not found when only the forceps
411  minor was modeled onto gc (standardized estimate=.426) and gf (standardized

412  estimate=.386, see Tu et al., 2008). Together, individual differences in white matter

413 microstructure explained 32.9% in crystallized and 33.6 % in fluid ability.

414 As in the CALM sample, the single-factor white matter model produced poor fit (x>
415  (35) =131.637, p<.001, RMSEA=.201 [.165 .238], CFI=.924, SRMR=.023, Yuan-Bentler
416  scaling factor=.950) in the NKI sample. Therefore, we fit a multi-tract MIMIC model. The
417  superior longitudinal fasciculus emerged as the only tract to significantly load onto gc or gf
418  (Fig. 4). This result was likely due to lower power associated with a small subset of

419 individuals with white matter data (N=65, see Discussion for further investigation). In NKI,
420 the same set of tracts explained 29.7% and 26.7% of the variance in gc and df, respectively,
421  vyielding similar joint effect sizes as in the CALM sample. Together, these findings

422  demonstrated generally similar associations between white matter microstructure and

423  cognitive abilities in the CALM and NKI samples. Therefore, it seems to be the case that, in
424  both typically and atypically (struggling learners) developing children and adolescents,

425 individual white matter tracts make distinct contributions to crystallized and fluid ability.
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Fig. 4. MIMIC models displaying standardized parameter estimates and regression coefficients for
all cognitive measures and white matter tracts for complete CALM and NKI Rockland samples. Note
that the greater than 1 standardized factor loadings in NKI may occur in the presence of highly-
correlated factors (Joreskog, 1999)

3.5 Support for a neurocognitive account of the age differentiation-dedifferentiation

hypothesis

Lastly, to address our fourth and final preregistered hypothesis, we examined
whether brain-behavior associations differed across the developmental age range. We
hypothesized that the relationship between the white matter tracts and cognitive abilities
would decrease across the age range, in support of the differentiation hypothesis. Using a
multigroup model, we compared the strength of brain-behavior relationships between
younger and older participants to test whether white matter contributions to gc and gf
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437  differed in development. Contrary to our prediction, we observed that, in the CALM sample,
438  afreely estimated model, where the brain-behavior relationships were allowed to vary across
439  age groups, did not outperform the constrained model (x> A= 12.16, dfA=10, AICA=9,

440 p=0.27). This suggested that the contributions of white matter tracts did not vary significantly
441  between age groups when examined using multigroup models.

442 As before, we estimated a SEM tree model. In contrast to the multigroup model, we
443  observed that multiple white matter tracts did differ in their associations with gc and/or gf.
444  These differences manifested in different ways for gc and gf. For example, the correlations
445  between the cingulum, superior longitudinal fasciculus, and forceps major and gf decreased
446  with increasing age, in line with age differentiation. On the other hand, the forceps major,
447  forceps minor and anterior thalamic radiations demonstrated a more complicated pattern
448  with each tract displaying two age splits. For the first split (around age 8), the regression

449  strength decreased before spiking again around age 11 (Table 3, also see Fuhrmann et al.,
450  2019). Given that all first splits showed a decrease between white matter and cognition, and
451  all second splits revealed an increase compared to the first, this suggests a non-monotonic
452  pattern of brain-behavior reorganization that cannot be fully captured by age differentiation
453  or dedifferentiation (Hartung et al., 2018) but may be in line with theories such as Interactive
454  Specialization (Johnson, 2011), which provides a range of mechanisms which may induce
455  age-varying brain-behavior strengths.

456 Lastly, we performed the same multigroup analysis for the NKI MIMIC model, but it
457  failed to converge or produce an age split, likely due to sparsity of the neural data (N=65).
458  Therefore, this analysis could not be used to replicate the cutoff age used for multigroup

459  analyses (11.38 years) based on the median split. Further inspection of the only significantly
460  associated tract, the superior longitudinal fasciculus, revealed the same trend for gc and gf
461  with decreased correlations with increasing age (Table 3). Overall, our findings suggest the
462  need for a neurocognitive account of age differentiation-dedifferentiation from childhood into
463  adolescence.

464

Relationship  Estimate  Age of Estimate  Age of Estimate

Before Split 1 After Split 2 After

Split Split Split

CALM gc€dgf .64 9.12 .59 NS NS
gf=»CING .29 7.38 .18 NS NS

of»SLF .38 7.38 .29 NS NS

gf=»FMaj .38 7.38 .26 NS NS

gc=2>FMaj 24 8.29 .04 10.79 42

gc=2ATR .30 7.62 .13 10.79 37

gc=>FMin -.34 7.62 -.52 10.79 -.25



https://doi.org/10.1101/593509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/593509; this version posted March 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

NKI | gc€gfwMm .96 NS NS NS NS
. gfPSLF 35 13.16 21 NS NS
| gCISLF 91 9.85 .69 NS NS

Table 3. SEM tree Results for CALM & NKI Rockland samples. Note: values listed represent
unstandardized estimates. NS= no split

465 4. Discussion

466

467 4.1 Summary of findings

468

469 In this prereqistered analysis, we examined the cognitive architecture as well as the

470  white matter substrates of fluid and crystallized intelligence in children and adolescents in
471  two developmental samples (CALM and NKI). Analyses in both samples indicated that

472 individual differences in intelligence were better captured by two separate but highly

473  correlated factors (gc and gf) of cognitive ability as opposed to a single global factor (g).

474  Further analysis suggested that the covariance between these factors decreased slightly
475  from childhood to adolescence, in line with the age differentiation hypothesis of cognitive
476  abilities (Garrett, 1946; Hulur et al., 2011).

477 We observed multiple, partially independent contributions of specific tracts to

478 individual differences in gc and gf. The clearest associations were observed for the anterior
479  thalamic radiations, cingulum, forceps major, forceps minor, and superior longitudinal

480  fasciculus, all of which have been implicated to play a role in cognitive functioning in

481  childhood and adolescence (Krogsrud et al., 2018; Navas-Sanchez et al., 2014; Peters et al.,
482  2014; Tamnes et al., 2010; Urger et al., 2015; Vollmer et al., 2017). However, except for the
483  superior longitudinal fasciculus, these tracts were not significant in NKI Rockland sample. A
484  possible explanation for this is the difference in imaging sample size between the cohorts
485  (N=165 in the CALM sample versus N=65 in the NKI Rockland sample). This difference

486  implies sizeable differences in power (73.4% in CALM versus 36.2% in NKI, assuming a

487  standardized effect size of 0.2) to identify weaker individual pathways.

488 The most consistent association, observed in both samples, was between the

489  superior longitudinal fasciculus, a region known to be important for language and cognition,
490  which significantly contributed to cognitive ability in both CALM (gf only) and NKI (gc and gf).
491  The superior longitudinal fasciculus is a long myelinated bidirectional association fiber

492  pathway that runs from anterior to posterior cortical regions and through the major lobes of
493 each hemisphere (Kamali et al., 2014), and has been associated with memory, attention,
494  language, and executive function in childhood and adolescence in both healthy and atypical

495  populations (Frye et al., 2010; Urger et al., 2015). Therefore, given its widespread links
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throughout the brain, which include temporal and fronto-parietal regions, it is ho surprise that
it was found to be significantly related to both gc and gf in our samples.

Together, these results are in line with previous research relating fractional
anisotropy (FA) and cognitive ability. For instance, Peters et al., 2014 found that age-related
differences in cingulum FA mediated differences in executive functioning. Moreover, white
matter changes in the forceps major have been linked to higher performance on working
memory tasks (Krogsrud et al., 2018). The remaining tracts (superior longitudinal fasciculus
and anterior thalamic radiations) have also been positively correlated with verbal and non-
verbal cognitive performance in childhood and adolescence (Tamnes et al., 2010; Urger et
al., 2015). We also observed more surprising negative pathways, such as between gc and
the forceps minor in the CALM sample. However, closer inspection showed that the simple
association between forceps minor and gc was positive, suggesting the negative pathway is
likely the consequence of the simultaneous inclusion of collinear predictors (see Tu et al.,
2008).

Finally, using SEM trees (Brandmaier et al., 2013), we observed that white matter
contributions to gc and gf differed between participants of different ages. In CALM, the
contributions of the cingulum, superior longitudinal fasciculus, and forceps major weakened
with increasing age for gf. For gc, however, the forceps major and forceps minor, and the
anterior thalamic radiations exhibited a more complex pattern with each tract providing
significantly different effects on crystallized intelligence at two distinct time points in
development. In NKI, the superior longitudinal fasciculus became less associated with both
gc and gf. Considering that decreases in white matter relations to gc and gf occurred before
covariance decreases found between gc and gf suggest that differences in white matter
development may underlie subsequent individual differences in cognition. In a related project
(Fuhrmann et al., 2019, Table 6) we observed age-related differences in associations
despite focusing on different cognitive factors (processing speed and working memory).

Overall, our findings align with a neurocognitive interpretation of age differentiation-
dedifferentiation hypothesis, which would predict that cognitive abilities and their neural
substrates become more differentiated (less correlated) until the onset of maturity, followed
by an increase (dedifferentiation) in relation to each other until late adulthood (Hartung et al.,
2018). However, we note that the evidence for age differentiation-dedifferentiation was not

always robust across analyses methods or samples, suggesting only small effect sizes.

4.2 Limitations of the present study
First and foremost, all findings here were observed in cross-sectional samples. To
better understand effects such as age differentiation and dedifferentiation, future studies will

need to model age-related changes within the same individual. The complexity and expense
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of collecting such longitudinal data has long precluded such investigations, but new cohorts
such as the ABCD sample (Volkow et al., 2018) will allow us to model longitudinal changes
in the future. Secondly, although the majority of our findings are similar across our cohorts,
some differences were observed, particularly in white matter effects. This may reflect
statistical variability, differences in sample size and associated differences in power, or true
differences between samples. Moreover, the white matter differences observed could also
be due to the scans being obtained at different scanner sites, although this is unlikely to
have produced considerable differences for all raw images were processed using the same
pipeline, and previous work suggests that FA is quite a robust measure in multi-site
comparison (see Vollmar et al., 2010).

CALM consists of children with referrals for any difficulties related to learning,
attention or memory (Holmes et al., 2019). The NKI Rockland sample, in contrast, is a
United States population representative sample (Nooner et al., 2012). Both samples are
composed of large cohorts that underwent extensive phenotyping and population-specific
representative sampling. Therefore, we argue that our results generalize to ‘typical’ and

‘atypical’ samples of neurocognitive development.

4.3 Conclusions

The present analyses revealed that crystallized and fluid intelligence factors
explained a significant amount of variance in test performance in two large child and
adolescent samples. These results were found in both typically and atypically (struggling
learners) developing cohorts, demonstrating the generalized notion that cognitive ability is
better understood as a two-factor rather than a single-factor phenomenon in childhood and
adolescence. The addition of white matter microstructure indicated independent
contributions from specific white matter tracts known to be involved in cognitive ability.
Moreover, further analyses suggested that the associations between neural and behavioral
measures differed during development.

Overall, these results support a neurocognitive age differentiation-dedifferentiation
hypothesis of cognitive abilities whereby the relation between white matter and cognition
become more differentiated (less correlated) in pre-puberty and then dedifferentiate (become
more correlated) during early puberty. However, despite our use of novel and more sensitive
statistical methods (SEM trees), the samples used were cross-sectional and, therefore, are
not adequate to make causal claims about the neurocognitive dynamics of intelligence in
childhood and adolescence. Future studies should take this limitation into account when

designing experiments attempting to clarify such statements.
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Supplementary Material

Is the Peabody Picture Vocabulary Test a measure of fluid ability?

As a non-preregistered exploratory analysis, we more closely examined the cross-
loading of the Peabody Picture Vocabulary Test (PPVT). This task asks participants to select
the correct picture (out of four multiple-choice options) corresponding to the meaning of a
word spoken by an examiner (Dunn and Dunn, 2007). As discussed previously in the
Results section 3.1, modification indices suggested the PPVT should either be cross-loaded
or solely loaded onto gf. To better understand this cross-loading, we performed an
exploratory (i.e. not part of preregistration) analysis using SEM tree analysis. In this analysis,
we allowed the PPVT to load on both gc and gf, and examined whether using age as a
covariate yielded a developmental period where the associations between the latent factors
and the PPVT task differed. This generated an age split for gf at around age 9.5 whereby the
loading of the PPVT decreased (from 1 to .87, unstandardized estimate).

Conversely, for gc the loading remained the same (.12, unstandardized estimate).
This suggested the PPVT as commonly implemented behaved as a fluid, rather than a
crystallized, task, especially in younger participants of lower ability. Although purportedly a
test of crystallized knowledge, the implementation of the PPVT may very well rely on more
fluid, executive components including response selection and reasoning, especially in a
cohort of children and adolescents with comparatively low overall performance.

A likely explanation for this pattern is that, while PPVT draws on gc, the demanding
nature of the task may require more fluid, executive components in younger children,
especially in a cohort with comparatively low overall performance (e.g. CALM). Moreover,
the surprisingly strong (.83, standardized) association between gf and PPVT in the full
sample is similar to previous research in children (Naglieri, 1981) and adults (Bell et al.,

2001), although with small, typically developing samples using different statistical methods.
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