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Abstract

Obesity is a multifactorial disorder driven by sustained energy imbalance. The
hypothalamus is an important regulator of energy homeostasis and therefore likely
involved in obesity pathophysiology. Animal studies suggest that obesity-related diets
induce structural changes in the hypothalamus through inflammation-like processes.
Whether this translates to humans is however largely unknown. Therefore, we aimed
to assess obesity-related differences in hypothalamic macro- and microstructure
based on a multimodal approach using T1-weighted and diffusion-weighted magnetic
resonance imaging (MRI) acquired at 3 Tesla in a large well-characterized sample of
the Leipzig Research Center for Civilization Diseases (LIFE) cohort (n; = 338, 48%
females, age 21-78 years, BMI 18-43 kg/m?). We found that higher body mass index
(BMI) selectively predicted higher mean proton diffusivity (MD) within the
hypothalamus, indicative of compromised microstructure in the underlying tissue.
Results were independent from confounders and confirmed in another independent
sample (n, = 236). In addition, while hypothalamic volume was not associated with
obesity, we identified a sexual dimorphism and larger hypothalamic volumes in the
left compared to the right hemisphere. Using two large samples of the general
population, we showed that a higher BMI specifically relates to altered microstructure
in the hypothalamus, independent from confounders such as age, sex and obesity-
associated co-morbidities. This points to persisting microstructural changes in a key
regulatory area of energy homeostasis occurring with excessive weight. These
findings may help to better understand the pathomechanisms of obesity and other

eating-related disorders.
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Introduction

Obesity is associated with dysfunctions in central homeostatic regulation, which
might also play a pivotal role in its pathogenesis'?. Energy homeostasis (i.e. the
balance between food intake and energy expenditure) depends on signaling
pathways in the hypothalamus, a small diencephalic brain region comprised of
different sub-nuclei **. Here, distinct subpopulations of neurons integrate circulating
hormones that signal satiety (e.g. leptin, insulin) and hunger (e.g. ghrelin) °.

Animal models support the hypothesis that a high-fat diet (HFD) triggers an
inflammation-like response in the hypothalamus, which in turn impairs the sensing of
anorexigenic signals, thereby contributing to continuous food intake and weight gain
®7 For example, rodents fed a HFD showed increasing levels of proinflammatory
cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFa) in the
hypothalamus 8, even prior to substantial weight gain °. This immunologic response
was also accompanied by a rapid accumulation of microglia and recruitment of
astrocytes °. Additionally, hypothalamic neurons showed signs of toxic stress and

underwent apoptosis after HFD .

While some studies reported that this
inflammation-like response declined after several days of overnutrition, suggesting a
compensatory mechanism to prevent neurons from damage **, others showed that
gliosis and astrocytosis reoccurred after several weeks, pointing to prolonged
changes in hypothalamic tissue and microstructural properties in obese animals °.

Whether these neurobiological alterations shown in animal models of obesity also
contribute to the pathophysiology of obesity in humans is however largely unknown.
A post mortem analysis of obese and non-obese individuals reported that a higher
BMI correlated with alterations in hypothalamic glia cells, which exhibited increased

levels of dystrophy according to histological stainings *2

. Studies using in vivo
magnetic resonance imaging (MRI) linked volumetric changes in the hypothalamus to
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altered eating behavior within neurodegenerative and psychiatric disorders such as
frontotemporal dementia or schizophrenia ***°. Two studies provided initial evidence

for changes in hypothalamus T2-weighted magnetic resonance imaging (MRI)
signals in relation to obesity: Thaler et al. showed increased signal ratio in a circular
region-of-interest (ROI) in the left hypothalamus referenced to an amygdala-ROI in
12 obese compared to 11 non-obese participants®. Another study including 67
participants reported higher T2-relaxation times in obesity within a ROI in the left
mediobasal hypothalamus, and both studies proposed these measures as a marker
of hypothalamic gliosis in diet-induced obesity **°. However, sample sizes were small
and applying fixed ROIs could be misleading due to partial volume effects and the
heterogenous appearance of the hypothalamus. In addition, the direction of effects
was partly contradictory and a limited resolution and multiple sources of image
artifacts limit interpretability ***>*"~°,

In sum, animal experiments and first, but not all, human studies support the
hypothesis that central homeostatic changes reflected in compromised
(micro)structure of the hypothalamus are present in obesity. However, methodology
in the human studies remained unconvincing so far #?>%2. We therefore applied

23,24

advanced voxel-wise MRI techniques to determine whether larger hypothalamic

volume and higher hypothalamic mean diffusivity (MD), derived by diffusion tensor
imaging (DTI) and commonly interpreted as less intact cellular microstructure 2>2°,
are positively associated with obesity measured using BMI in a well-characterized
large population-based sample. We also explored whether hypothalamic MD was
linked to higher visceral adipose tissue volume (VAT), given the elevated
inflammatory risk profile of this body fat depot *’. We additionally implemented a

multi-atlas based label segmentation to validate our results in another independent

sample.
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Results

Hypothalamic volume

In a sample of 338 participants (48% females, aged 21-78 years, BMI range of 18-43
kg/m?), we delineated the left and right hypothalamus on T1-weighted anatomical
MRI using a state-of-the-art semi-automated segmentation algorithm resulting in

individual hypothalamic masks at the voxel-level (Fig. 1A, see Methods for details).
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Flgure 1: The hypothalamus on muItlmodal MRI. A: The bilateral hypothalamus
(right: red, left: orange) of a representative participant according to semi-automated
segmentation on anatomical images. B: Coregistration of the T1-weighted (T1w)-
derived hypothalamus mask to the mean diffusivity (MD) image derived by diffusion-
weighted imaging. Note the sparing of hypothalamus voxels which are affected by
partial volume effects on the MD image (arrows). Images are shown in radiological
convention.

On average, men showed 12.8% larger head-size adjusted whole hypothalamic

volumes than women (n; = 338; 48% females, aged 21-78 years, BMI range of 18-43
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kg/m?; Fig. 2). The difference was statistically significant (=-0.18, p < 0.001)
according to a multiple regression model which explained 21.8% of the variance
(Fs333 = 26.9, p < 0.001) and controlled for potential effects of age (no significant
contribution, p = 0.96), and rater (f3o,1=-0.56, p < 0.001, Bo2--0.33, p=0.001). Adding
BMI as additional predictor to the model did not improve the model fit (p = 0.58)
indicating that BMI was not associated with hypothalamic volume.

When investigating the hemispheres separately, we observed higher volume for the
left than for the right hypothalamus, an effect which was slightly less pronounced in
women and independent of age and rater (linear mixed effect model, side: =-40.9;
sex: B=-26.5; side-by-sex interaction: 3=1.98; p = 0.048; rater: B 1=-52.6/ o .=-39.3,

p<0.001; age:p = 0.48).
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Figure 2: Sex differences in hypothalamic volume. Analysis of hypothalamic
volume reveals bigger values for male than for female participants (p < 0.001).
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Obesity and hypothalamic microstructure

Next, we examined average MD within the individual’'s hypothalamus using DTI as a
sensitive measure of microstructural properties 2. A carefully designed processing
pipeline ensured that DTI-related distortions adjacent to the hypothalamus region did
not bias hypothalamic MD estimates (Fig. 1B, see Methods for details).

According to linear regression, BMI significantly predicted hypothalamic MD (B =
0.14, p = 0.008), showing that higher BMI was related to higher MD (Fig. 3A). The
regression model (Fs4 306 = 24.5, p < .001, R? = 0.23) adjusted for potential effects of
sex (B =-0.19, p < 0.001), age (B = 0.38, p < 0.001), and rater (n.s., p = 0.67). Men
had larger MD than women and higher age was linked to higher MD. Adding BMI as
predictor explained 1.5% more variance in hypothalamic MD than a model without
BMI (F1306 = 7.1, p = 0.008). To test the specificity of our findings, we added MD
within the hippocampus as another heterogenous subcortical structure to the model,
which did not attenuate the predictive association of BMI and hypothalamic MD. The
same was true when adding the volume of the 3rd ventricle or the hypothalamic

volume as covariate to the model, to account for partial volume effects.
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Figure 3: Obesity and hypothalamic microstructure. Higher body mass index
(BMI) significantly predicts higher hypothalamic mean diffusivity (MD), commonly
interpreted as less intact cellular microstructure, in a first (A, n; = 311, comparison to
age, sex-corrected model, F1306= 7.1, p = 0.008) and a second independent sample
(B, n; = 236, comparison to age, sex-corrected model, F; 23, = 4.2, p = 0.041). Line
indicates regression fit with 95% confidence interval.

Confirmatory analysis

To validate our findings in an independent sample, we developed a novel multi-label
fusion atlas based on the initial segmentations that automatically generates individual
hypothalamic segmentations (Fig. 4; see Methods for details). Using this atlas-
approach in a second group of 236 participants confirmed a significant association
between higher BMI and higher hypothalamus MD in similar magnitude ( = 0.14, p =
0.04, Fig. 3B; regression model: F323; = 15.5, p < .001, R? = 0.41), adjusted for age
(B =0.37, p<0.001) and sex (B = -0.12, p = 0.04). Changes in F-values confirmed
that adding BMI increased the explained variance of hypothalamic MD significantly
by 1.5% (Fi232 = 4.2 p = 0.04). Similar to the initial sample, when adding
hippocampal MD and ventricular volume to the model, BMI remained a significant
predictor of hypothalamic MD. Furthermore, consideration of obesity-associated

biomarkers (systolic blood pressure and HOMA-IR) as possible confounders did also
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not attenuate the positive association between BMI and hypothalamic MD. We report
good to excellent reliability (ICC > 0.87) between the semi-automated and the fully-

automated segmentation procedures for hypothalamus MD.

A Registration B Propagation and fusion

Atlas images Target

Figure 4: Multi-atlas fusion segmentation for automated hypothalamus
segmentation. A: In the registration step both atlas and target images were non-
linearly registered to a template image. In this common space another non-linear
registration of atlas images to the target image was performed. B: In the label
propagation step all transformations were concatenated and the atlas hypothalami
were brought into the native space of the target image (upper images, yellow:
propagated label, red: manual label, orange: overlap). Fusion of the region of interest
was performed using STEPS (lower image, yellow: fused label, red: manual label,
orange: overlap see text for details).
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Exploratory analysis of visceral fat

To explore whether visceral obesity explained additional variance in hypothalamic
MD, we added log-transformed height-corrected VAT as an additional predictor into
the regression model (Fs30 = 19.8, p < .001, R? = 0.24). VAT was estimated from
T1-weighted abdominal MRI in a subset of the initial sample (n = 306, see Methods
for details). Controlling for the impact of age (B = 0.37, p < 0.001), sex (B =-0.17, p <
0.001), rater (p = 0.658) and BMI (p = 0.132), we did not find significant associations

for VAT (F1.300 = 0.5, p = 0.5) and average hypothalamic MD.
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Discussion

Using multimodal neuroimaging in two large samples of healthy adults, we showed
that higher BMI is associated with higher proton diffusivity in the hypothalamus,
indicating hypothalamic microstructural alterations in obesity. In parallel, while men
had higher hypothalamus volumes than women and the volume of the left
hemispheric hypothalamus was larger than the right, BMI was not associated with

hypothalamic volume.

Hypothalamic microstructure and obesity

Our findings provide evidence that higher BMI is associated with compromised
microstructure in the hypothalamus. While the effect size is to be considered small,
explaining 1.5% of the variance in hypothalamus MD, we confirmed our findings in
another large independent sample. Our results are in line with and extend previous
animal and human studies reporting obesity-related alterations in hypothalamic
microstructure assessed with T2-weighted imaging, though previous human studies
were based on limited sample sizes, suffered from two-dimensional assessments of
the hypothalamus and have used less established markers of microstructure
920222930 |n contrast, DTI-derived MD in grey matter regions, as used in the current
study, reflects the amount, density or integrity of neuronal membranes, dendrites,
axons, or glial compartments, that restrict water diffusion in the tissue in both animals

and humans 2>26:29

. Previous work showed that higher MD for example in the
hippocampus correlated with poorer memory function 2. This might indicate that
obesity-associated higher MD in the hypothalamus goes along with microstructural
changes that could lead to dysfunctional outcomes. We also found higher values of
hypothalamic MD in men than in women as well as an age-related increase in MD.

The latter is supported by a broad range of studies that consistently found positive
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associations between diffusion metrics (such as MD and FA) and age in various GM
structures, often in line with worse cognitive performance %,

Yet, despite of being able to detect alterations on a cellular level, DTI metrics such as
MD suffer from non-specificity and are confounded by tissue geometry. Accordingly,
MD has been linked to various neurological disorders as well as to unspecific
cerebral abnormalities such as edema, necrosis, demyelination or augmented
cellularity . Therefore, various underlying mechanisms might explain the obesity-
associated increases in hypothalamic MD in our study.

First, as discussed in the concept of hypothalamic inflammation, changes in MD
might be attributed to a sustained gliosis as a consequence of diet-induced obesity.
This is supported by findings in mice showing that microgliosis and astrocytosis
returned permanently in mice fed a HFD, although temporarily subsiding °. In
addition, another study suggested microglial responses due to ongoing malnutrition
in humans as they also detected signs of gliosis and microglial dystrophy in human
hypothalamus assessed by post mortem stereology **.

Second, hypothalamic inflammation in mice is also linked to a loss of hypothalamic
neurons that underwent apoptosis as a consequence of the HFD ™. Therefore, the
observed diffusion alteration might also be due to an enhanced amount of
extracellular fluid that is accompanied by the neuronal loss or the neuroinflammation
in general *.

Another possible explanation for the increase in MD addresses vessel integrity, as it
has been shown that HFD triggers hypothalamic angiopathy in mice with increased
vessel density and length 3*. Currently, new approaches are underway that aim to

disentangle the changes in diffusion metrics driven by blood perfusion originating

from the extracellular space *°.
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Taken together, MD was positively associated with BMI in two large samples. While
this suggests small, but reliable alterations in the hypothalamic microstructure in
obese humans, the underlying histological mechanisms remain elusive. We
encourage future studies to link our neuroimaging findings with advanced analysis at
the cellular level (e.g. post-mortem stereology) to further explore the underlying

mechanisms.

Hypothalamic volume

Our voxel-wise estimations of hypothalamic volume in a total of 338 participants,
which is the largest sample of hypothalamic volumes obtained by semi-automated
segmentation to date, adds to previous reports that whole hypothalamic volume
assessed by MRI techniques is around 1 cm?® [49]. Reliability analysis revealed
acceptable to excellent intra-rater and inter-rater reliabilities of hypothalamus volume
and spatial overlap of resulting masks using this method. This highlights the
sensitivity and specificity of our procedure and compares to previous high-quality
segmentation protocols implemented in smaller sample sizes *393¢,

We also found that hypothalamic volumes were higher for males compared to
females, irrespective of head size, age and BMI. This finding might be attributable to

37 and the neuroendocrine

known sex differences in metabolic dysregulation
regulation system *. Furthermore, we found a significant left-right asymmetry in
hypothalamic volume with higher volumes for the left than for the right hypothalamus,
which is in line with a previous publication that described a trend in the same
direction in a sample of 84 subjects ?*. Along these lines, some hypothalamic
functions have been described as lateralized to the left **. Recent studies also
suggest the hypothalamus to be involved in a lateralized brain circuit that mediates

feeding behavior and homeostatic regulation “°. Future studies need to explore
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whether these processes might also contribute to volumetric asymmetry in
hypothalamic volume.

We did not find a significant relationship between hypothalamic volume and BMI,
controlling for the impact of age, sex and the different raters. Although a wide range
of literature demonstrate that higher BMI is associated with lower GM volumes in
various brain regions *, evidence for significant changes in hypothalamic volumes
associated with obesity is less observed “***. Nevertheless, BMI has been shown to
be related to functional alterations in several brain circuits that involve the

hypothalamus *.

Interestingly, while age-related atrophy in various subcortical
structures is commonly observed *°, age was not related to hypothalamic volume in

the present cohort.

Limitations and strengths

Some limitations need to be taken into consideration. As our dataset is cross-
sectional, we cannot infer causality. Altered hypothalamic microstructure might be
attributable to both, prerequisite or consequence, of obesity. Furthermore, even if
referring to established concepts such as hypothalamic inflammation, knowledge
about the temporal dynamics of this inflammatory process is scarce or inconsistent
12 Also, hypothalamus physiological function is not restricted to energy metabolism
and homeostasis, and we were not able to dissect the hypothalamus in its sub-nuclei.
Thus, we cannot rule out whether the arcuate nucleus, although relatively large,
and/or other hypothalamus subnuclei, serving as main hubs in the control of fluid

balance, circadian rhythms or thermoregulation “°

, contributed to the average
hypothalamic MD signal. In addition, the usage of BMI to characterize obesity might
be too simplistic 2’. However, our results incorporating MRI-based measures of VAT,

indicative of visceral obesity, strongly indicate that VAT did not improve the model fit
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with regard to microstructural changes within the hypothalamus. Arguments for the
robustness and specificity of our findings stem from covariate adjustments for age,
sex and other potential confounders. Particularly, considering hippocampal MD,
HOMA-IR and systolic blood pressure in our statistical analysis did not attenuate the
association between obesity and hypothalamic MD in our validation sample.
Reliability analyses indicated good to excellent fits between the MD-methods used in
the two samples. Further strengths of our study include the large, well-characterized
population-based sample size, a thorough methodological design combining a semi-
automated segmentation algorithm with sensitive DTl metrics, along with

confirmation analysis in an independent sample.

Conclusion

Using a novel multimodal MRI approach in two large samples of healthy adults of the
general population, we were able to demonstrate that a higher BMI specifically
relates to higher MD in the hypothalamus, independent from confounders such as
age, sex and obesity-associated co-morbidities. This finding thus points to persisting
microstructural alterations in a key regulatory area of energy homeostasis occurring
with excessive weight. The underlying mechanisms might include inflammatory
activity, neuronal degeneration or angiopathy in the hypothalamus due to obesity-
related overnutrition and metabolic alterations. Future studies need to test the
functional relevance of these microstructural changes, and if interventions aiming to

reduce obesity can effectively reverse the observed changes in hypothalamic MD.
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Material and Methods

Participants

Participants were recruited randomly as part of the MRI-subsample within the “Health
Study for the Leipzig Research Centre for Civilization Diseases” (LIFE-Adult) study *'.
The study was approved by the Ethics Committee of the University of Leipzig and all
participants gave informed written consent. In total, 2637 adults received brain MRI.
We selected participants without history of stroke, cancer, epilepsy, multiple sclerosis
and Parkinson's disease, neuroradiological findings of brain pathology or intake of
centrally active medication (n = 2095, for a flowchart, see Fig. 5). Further, only a
well-characterized subgroup with abdominal MRI to assess visceral adipose tissue
(VAT) was considered (n = 993). Out of these, two raters segmented 166 and 152
participants, respectively. For test-retest and interrater-reliability both raters
additionally segmented 20 participants twice. In total, bilateral hypothalami were
segmented in n = 338 participants (n1, for demographic characteristics, see Table 1).
Twenty-seven participants had to be removed from diffusion-weighted image analysis
due to incomplete or deficient imaging data. For confirmatory analyses, we
additionally examined another n = 236 of the pool of participants with additional
abdominal MRI using multi-atlas fusion segmentation (n,, see Fig. 5 and below for

details).
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MRI sample of
Stroke LIFE-Adult, n = 2637
Cancer
Sy Excluslon
Multiple Sclerosis
Parkinson‘s disease
Radiological ratings of brain n=2095
pathologies Excluslon Missing
Central active medicatian = abdaminal MRI

Eligible for hypothalamic
segmentation, n = 993

* : ) v
Rater 1 Both Raters Rater 2 Not segmented
n =166 n=20 n =152
i ! !
Semi-manual hypothalamic ’E@’mﬁ Multi-atlas fusion
segmentation, n = 338 segmentation, n = 236
Volumetric analysis Diffusivity analysis Diffusivity analysis
n, =338 n, =311 n,= 236

Figure 5: Flowchart of the study illustrating the exclusion criteria, the subsample
sizes and the different approaches of data analysis.

Table 1: Demographic characteristics of the semi-manual segmentation sample n;. Data is
given as mean = standard deviation (SD) and range (minimum — maximum).

n (females/males) 338 (162/176)

Age (years) 55.03 £12.36 (21 —78)

BMI (kg/m?) 26.41 +3.92 (17.68 — 43.09)
VAT? (cm®) 2355.92 +1421.42 (232.76 — 7584.29)

'n = 331 due to missing values of VAT.
BMI: body mass index, VAT: visceral adipose tissue

Anthropometry

Body weight was measured with a scale with a precision of 0.01kg and body height
was assessed using the means of a stadiometer to the nearest 0.1cm. BMI was

calculated as body weight [kg] divided by squared body height [m].


https://doi.org/10.1101/593004
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/593004; this version posted July 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Obesity-related biomarkers

We collected additional obesity-related biomarkers in a subset of participants.
Laboratory indicators of glucose metabolism (glucose and insulin) were obtained
after overnight fasting according to standard procedures %’ and used to calculate
insulin resistance with the homeostatic model assessment (HOMA-IR) “¢. Blood
pressure was measured with an automatic oscillometric blood pressure monitor

(OMRON 705IT, OMRON Medizintechnik Handelsgesellschaft mbH).

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) was performed on a 3T Magnetom Verio scanner
(Siemens, Erlangen, Germany, equipped with a 32-channel head array coil and

syngo MR B17 software).
Abdominal MRI acquisition and preprocessing:

MRI of the abdomen was performed using an axial T1-weighted fast spin-echo
technique with the following parameters: repetition time, 520 ms; echo time, 18 ms;
5-mm gap between slicefield of view, 500 mm 375 mm; final voxel size 1.6 1.6 5.0
mm?. Beginning 10 cm below the umbilicus, 5 slices were recorded from feet-to-head
direction with 5 cm table shift after each acquisition and finishing in the liver region *'.
Using a semi-automated segmentation algorithm implemented in ImageJ
(https://imagej.nih.gov/ij/download/), visceral adipose tissue (VAT) was obtained from
20 slices centered around the participant's umbilicus *°. For subsequent analysis, the

VAT volume was log-transformed and normalized by height.

Head MRI acquisition and preprocessing:
Anatomical MRI was acquired using a T1l-weighted Magnetization prepared rapid

gradient echo (MPRAGE) pulse sequence with the following parameters: inversion
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time, 900 ms; repetition time, 2.3 ms; echo time, 2.98 ms; flip angle, 98;; image
matrix, 256 176 240; voxel size, 1x1x1 mm®.

Preprocessing of the anatomical T1-weighted data included skullstripping and
realignment to anterior and posterior commissure in Lipsia
(https://iwww.cbs.mpg.de/institute/software/lipsia/download). Then, tissue
segmentation was performed with the default settings using SPM12’'s New Segment
based on Matlab version 2017b.

Diffusion tensor imaging (DTI) was acquired with a twice-refocused echo planar
imaging sequence (EPI) with the following parameters: repetition time, 13800 ms;
echo time, 100 ms;; image matrix 128 128; 72 slices; voxel size 1.7 1.7 1.7mm?3; 60

directions with b-value 1000 s/mm?, and 7 volumes with b-value 0s/ mm?.

Preprocessing included denoising (MRtrix v3.0) of the raw data removal of
gibbs-ringing artifact from all bO images using the local subvoxel-shift method and
outlier replacement using the eddy tool in FSL 5.0.10 *°%, Subsequently, data was
corrected for head motion and linearly coregistered to the T1 image with Lipsia tools.
Finally, we applied tensor model fitting and generated mean diffusivity (MD) and

fractional anisotropy (FA) images.

Semi-automated segmentation of the hypothalamus

Based on previously established protocols for 3T MRI data ?*, we performed semi-
automated segmentation of the hypothalamus in MeVisLab 4.1. Briefly, a preoptic, an
intermediate-superior and —inferior as well as a posterior region of interest (ROI) was
manually pre-defined by two raters using the following landmarks: anterior
commissure, columna fornicis, interventricular foramen, mamillary bodies, zona
incerta and hypothalamic sulcus . Due to some false-positive segmentation results

of intraventricular voxels with the original approach, we adapted the medial
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landmarks according to Mai, Majtanik & Paxinos (2015). Next, grey matter tissue
probability masks were overlaid on each ROI and predefined grey matter thresholds
were used to define hypothalamus area. Then all slices were combined to generate a
three-dimensional volume of the hypothalamus (Fig. 2A). Subsequently, each rater
checked the results carefully in a triplanar view with regard to plausibility and
coherence to the predefined anatomical edges.

To perform intra- and interrater reliability analysis, we selected 20 additional
participants that were segmented twice by both raters. We ensured that reliability
subjects were comparable to the whole segmentation sample with respect to age,
sex and BMI. According to Shrout & Fleiss (1979) , intraclass correlation coefficients
(ICC) were calculated using model 1,1 and 3,1. We considered an ICCpr>rI0.9
excellent, 0.9@>AICCHEF0.8 good and 0.8@>AICCR>@0.7 acceptable *°. Additionally,
percentage of relative overlap between the two raters was assessed using Dice
similarity coefficient (DSC)°’. An overlap of 70, 80 or 90% (DSC = 0.7, 0.8, 0.9) was
regarded acceptable, good and excellent, respectively. All ICC and DSC values

showed acceptable to excellent agreements (Supplementary Tab. 1).

The segmentation procedure was conducted separately for left and right
hypothalamus and took between 30 and 45 minutes per brain. Hypothalamic volumes
were assessed by extracting the number of voxels for each side. Whole hypothalamic
volume was calculated by summing up volumes of left and right hypothalamus. As
subcortical volumes are trivially linked to total intracranial volume, hypothalamic

volume was adjusted using the following formula °%:
Hypothalamus volumeygjysieq; = Hypothalamus volume,q,, ; — B(I CVrqw,i — 1C Vmean)
where ICV is the total intracranial volume and g is the unstandardized slope of a

regression model between ICV and the whole hypothalamic volume across
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participants. As nonparametric Shapiro-Wilk test indicated a non-normal distribution

of the adjusted hypothalamic volumes, we log-transformed volumetric data.

For the statistical analysis, we considered rater as a variable with three levels: rater
1, rater 2 and “raterl/2”. For these 20 reliability subjects, we used the average of the

two measurements by the two raters.

Extraction of the hypothalamus mean diffusivity

Derived by DTI, we used MD as a sensitive measure of microstructural properties
2528 Briefly, MD reflects the overall amount of diffusion in a certain voxel, and we
averaged this measure in the hypothalamic ROI. A carefully designed processing
pipeline ensured that DTI-related distortions adjacent to the hypothalamus region did
not bias hypothalamic MD estimates (Fig. 2B). FA images of all subjects with
hypothalamic volumetry were coregistered to the respective anatomical images with
FSL’'s FLIRT using 6 degrees of freedom. Then, the registration matrix was used to
coregister the MD images to the anatomical space. 24 participants did not receive
diffusion weighted imaging or had incomplete data. Furthermore, coregistration failed

in 3 subjects, resulting in 311 participants eligible for MD analysis in sample n;.

Due to its small size, minor shifts or artifacts within the overlay of hypothalamus and
the MD mask might be detrimental for analysis, especially for hypothalamic and non-
hypothalamic voxels adjacent to the third ventricle (Fig. 2B). In order to avoid that
intraventricular voxels were regarded as hypothalamic tissue, further processing was
required to distinguish these voxels from those in hypothalamic tissue with regard to
MD. Consequently, we derived the average MD in the third ventricle based on the
automatic segmentation in FreeSurfer version 5.3.0. Suggesting that grey matter

(hypothalamus) MD is smaller than MD in cerebrospinal fluid (third ventricle) **,
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average MD of the whole third ventricle was chosen as a threshold for the
hypothalamic MD. Specifically, the MD value of each putative hypothalamic voxel
was compared to the average MD of the whole third ventricle. Unless MD of each
voxel was higher than the average MD of the third ventricle, this voxel was
considered hypothalamic. Results were manually crosschecked. Finally, average MD

of all voxels that were likely to be hypothalamic tissue was extracted.

Statistical analysis of hypothalamic volume and diffusivity

R version 3.2.3 was used to perform statistical analysis.

BMl-related differences in whole hypothalamic volume and MD were assessed by
two groups of regression models. For both hypothalamic volume and MD, we
compared the null model (including age, sex and rater as predictors) against a
regression model including BMI as an additional predictor. The difference between
the model was assessed using a F-test and a p-value < .05 was regarded as
statistically significant. To test the specificity of the finding and exclude confounding
of ventricular volume, we additionally tested a model including the MD of the

hippocampus and the ventricular volume as predictors .

Hemispheric and sex differences of hypothalamic volume were evaluated in a linear
mixed model which included a side-by-sex interaction, rater and age as predictors
and subject as a random factor. We report  estimates and p-values based on

likelihood ratio tests-based for the fixed main and interaction effects.
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Confirmatory analyses

Multi-atlas fusion segmentation

We aimed to confirm the above described MD-analyses in another independent
sample. Therefore, we implemented a fully automated multi-label fusion
hypothalamus segmentation procedure (Fig. 3). First, we created a study-specific
template. We used n = 150 randomly selected participants with manual
segmentations of the hypothalamus out of sample n;. This sub-sample did not differ
from the final sample (n; = 338) in age, sex, BMI or rater distribution (all p > 0.05)
(Supplementary Table 4).

To create the template, we applied the function buildtemplateparallel.sh implemented
in ANTS version 2.2.0 ®°. For more details on the code see publicly available scripts
(https://edmond.mpdl.mpg.de/imeji/collection/wLm6DPKVY7_ylzyz). We then
implemented a multi-atlas label fusion based on an intermediate template in nipype
(for details, see Supplementary information) %3,

Finally, we extracted the volume of the resulting hypothalamus segmentation and the

ventricle-thresholded average MD values. We validated this approach in two

samples.

First, we performed the multi-label fusion segmentation for each of the 44
participants from the template sample. We compared estimated hypothalamic
volumes and MD with the values derived from the manual segmentation using ICC
(model 3,1) and DSC. In this sample, three participants could not be included for the

analysis of MD due to deficient DTI preprocessing.

In the second validation, we aimed to test whether the automated segmentation
would perform equally well in participants who were not included into the template.
Therefore, we randomly selected 24 participants with manual segmentations who

were not part of the n = 150 template sample. The 44 participants from the first

Pae)
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sample were used as atlas inputs, and we again calculated DSC and ICC to compare
the manual and automated segmentation approaches.

After validation, we moved on to perform automated multi-atlas based segmentation
of the hypothalamus in another sample of participants from our cohort with complete
information on primary covariates, laboratory parameters, diffusion-weighted MRI etc.
(n2 = 236, see Fig. 1). Again, the 44 participants were used as atlas inputs.

We extracted mean MD from the automatically segmented hypothalami and repeated
the multiple regression analysis with age, sex and BMI as predictors. Likewise, we
considered hippocampal MD and third ventricular volume as possible confounders.
Additionally, since this sample had complete measures of blood pressure, glucose
and insulin, we included HOMA-IR and systolic blood pressure into the regression

model.

Validation of the multi-atlas fusion segmentation

For both the template and the validation sample, we received low to acceptable ICCs
(model 3,1) for the volumetric agreement between automatically segmented and
manually segmented hypothalamus (Supplementary Table 2). Therefore, we
abstained from using volumetric values from this fully automated segmentation in
further analyses. Similar to the inter-rater comparison, the DSC between the
automatically and manually segmented hypothalami were good with average values
across participants of > 0.8 (Supplementary Table 2).

Regarding the MD, we observed good to excellent ICC between the values based on
automatically segmented and manually segmented hypothalamic (Supplementary
Table 3). In the validation sample 2 the ICC dropped slightly in the left compared to

the right hemisphere but remained in the good range (ICC = 0.87).
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Supplementary information

Details about the multi-atlas fusion segmentation

The algorithm included three main steps: First, the atlas images were non-linearly
coregistered to the study-specific template using antsRegistration. The registration
included a rigid-body transform, an affine transform and the non-linear ‘SyN’
registration step with four resolution levels. For exact settings of the parameters, see
publicly available scripts. With the same command, the target image was non-linearly
registered to the study-specific template. In a third step, an additional quick
registration between the atlas images and the target image in the template space
was performed. The quick registration used the same parameters as the full
registration, but it excluded the fourth resolution level (Fig. 4).

All transforms were concatenated and applied in a single registration step to the
hypothalami of the atlas images using antsApplyTransforms. This step yielded
multiple labels of the hypothalamus in the target native space.

To fuse these labels, we applied STEPS (Similarity and Truth Estimation for
Propagated Segmentations) implemented in NiftySeg (https://github.com/KCL-
BMEIS/NiftySegSTEPS) which generated one multi-atlas based hypothalamic

segmentation per target image.

Supplementary Table 1: Measures of intra-rater, inter-rater reliability and spatial overlap
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for left and right hypothalamus according to semi-automatted segmentation (n = 20)

Left Hypothalamus Right Hypothalamus
Icc® DsC Icc® DsSC
Rater
Rater 1 .73 .93 .82 .94
Rater 2 .95 .96 .89 .96
Rater 1 — Rater 2 .83 .88 .88 .89

ICC: Intra-class correlation coefficient, DSC: Dice similarity coefficient
#ICC (1,1) was used to assess agreement within each rater, whereas ICC (3,1) was used

to assess agreement between both raters

Supplementary Table 2: Inter-rater reliability and percentage of overlap for left and right
hypothalamic volume between the semi-automated segmentation sample and the two

different multi-label fusion segmentation samples.

Left Hypothalamus Right Hypothalamus
ICC? DSC ICC? DSC
Rater
Validation 1 (atlas) (n = 44) .62 .85 .55 .86
Validation 2 (n = 24) .67 .85 .73 .85

ICC: Intra-class correlation coefficient, DSC: Dice similarity coefficient
#1CC (3,1) was used to assess agreement between both approaches
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Supplementary Table 3: Inter-rater reliability and percentage of overlap for left and right
hypothalamic MD between the semi-automated segmentation sample and the two different

multi-label fusion segmentation samples.

Left Hypothalamus Right Hypothalamus

Icc? Icc?
Rater
Validation 1 (atlas) (n = 44) 0.97 0.98
Validation 2 (n = 24) 0.87 0.97

ICC: Intra-class correlation coefficient, DSC: Dice similarity coefficient

#ICC (3,1) was used to assess agreement between both approaches

Supplementary Table 4: Group characteristics of the samples used for multi-atlas fusion
segmentation. Data is given as mean * standard deviation and range (minimum -

maximum).

Semi- Study- Validation 1 Validation 2
automated specific (atlas)
template
n =338 n =150 n=44 n=24
Age (years) 55.0+12.4 55.1+12.4 56.3+10.8 59.2+£10.9
(21 -78) (21 -78) (34 -76) (40 - 78)
Sex (males/females) 176/162 76/74 24/20 15/9
Rater (1/2/both) 166/152/20 73/69/8 21/19/4 11/9/4
BMI (kg/m?) 26.4+3.9 26.6 +3.8 26.8+3.8 259+28
(18 —43) (18-37) (20 -37) (20 —30)

BMI: body mass index
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