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ABSTRACT 31 

 32 

The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a 33 

variety of nuclear processes including transcriptional regulation, DNA replication, and DNA 34 
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damage repair. Aberrations in 3D chromatin conformation have been implicated in 35 

developmental abnormalities and cancer. Despite the importance of 3D chromatin conformation 36 

to cellular function and human health, little is known about how 3D chromatin conformation 37 

varies in the human population, or whether DNA sequence variation between individuals 38 

influences 3D chromatin conformation. To address these questions, we performed Hi-C on 39 

Lymphoblastoid Cell Lines (LCLs) from 20 individuals. We identified thousands of regions 40 

across the genome where 3D chromatin conformation varies between individuals and found that 41 

this conformational variation is often accompanied by variation in gene expression, histone 42 

modifications, and transcription factor (TF) binding. Moreover, we found that DNA sequence 43 

variation influences several features of 3D chromatin conformation including loop strength, 44 

contact insulation, contact directionality and density of local cis contacts. We mapped hundreds 45 

of Quantitative Trait Loci (QTLs) associated with 3D chromatin features and found evidence that 46 

some of these same variants are associated at modest levels with other molecular phenotypes 47 

as well as complex disease risk. Our results demonstrate that common DNA sequence variants 48 

can influence 3D chromatin conformation, pointing to a more pervasive role for 3D chromatin 49 

conformation in human phenotypic variation than previously recognized. 50 

 51 

INTRODUCTION 52 

  53 

3-dimensional (3D) organization of chromatin is essential for proper regulation of gene 54 

expression1-3, and plays an important role in other nuclear processes including DNA 55 

replication4,5, X chromosome inactivation6-9, and DNA repair10,11. Many recent insights about 3D 56 

chromatin conformation have been enabled by a suite of technologies based on Chromatin 57 

Conformation Capture (3C)12. A high-throughput version of 3C called “Hi-C” enables the 58 

mapping of 3D chromatin conformation at genome-wide scale13, and has revealed several key 59 

features of 3D chromatin conformation including: 1) compartments (often referred to as “A/B 60 

compartments”), which refer to the tendency of loci with similar transcriptional activity to 61 

physically segregate in 3D space13-15, 2) chromatin domains (often referred to as Topologically 62 

Associating Domains, or TADs) demarcated by sharp boundaries across which contacts are 63 

relatively infrequent16-18, 3) chromatin loops, which describe point-to-point interactions that occur 64 

more frequently than would be expected based on the linear distance between interacting loci, 65 

and often anchored by convergent CTCF motif pairs14, and 4) Frequently Interacting Regions 66 

(FIREs), which are regions of increased local interaction frequency enriched for tissue-specific 67 

genes and enhancers19,20. 68 
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Previous studies have used Hi-C to profile 3D chromatin conformation across different 69 

cell types14,16,21, different primary tissues19, different cell states22, and in response to different 70 

genetic and molecular perturbations23-27, producing a wealth of knowledge about key features of 71 

3D chromatin conformation. However, to our knowledge no study to date has measured 72 

variation in 3D chromatin conformation across more than a handful of unrelated individuals. 73 

Several observations demonstrate that at least in some cases DNA sequence variation between 74 

individuals can alter 3D chromatin organization with pathological consequences28. Pioneering 75 

work by Mundlos and colleagues described several cases in which rearrangements of TAD 76 

structure lead to gene dysregulation and consequent developmental malformations29,30. In 77 

cancer, somatic mutations and aberrant DNA methylation can disrupt TAD boundaries leading 78 

to dysregulation of proto-oncogenes31,32. Moreover, many genetic variants associated with 79 

human traits by GWAS occur in distal regulatory elements that loop to putative target gene 80 

promoters in 3D, and in some cases, the strength of these looping interactions has been shown 81 

to vary between alleles of the associated SNP33,34. Although these studies demonstrate that that 82 

both large effects as well as more subtle aberrations of 3D chromatin conformation are potential 83 

mechanisms of disease, population-level variation in 3D chromatin conformation more broadly 84 

has remained unexplored.  85 

In the present study, we set out to characterize inter-individual variation in 3D chromatin 86 

conformation by performing Hi-C on Lymphoblastoid Cell Lines (LCLs) derived from individuals 87 

whose genetic variation has been cataloged by the HapMap or 1000 Genomes Consortia35. 88 

LCLs have been used as a model system to study variation in several other molecular 89 

phenotypes including gene expression, histone modifications, transcription factor (TF) binding, 90 

and chromatin accessibility36-42. These previous efforts provide a rich context to explore variation 91 

in 3D chromatin conformation identified in this model system. Through integrative analyses, we 92 

found that inter-individual variation in 3D chromatin conformation occurs on many levels 93 

including compartments, TAD boundary strengths, FIREs, and looping interaction strengths. 94 

Moreover, we found that variation in 3D chromatin conformation coincides with variation in 95 

activity of the underlying genome sequence as evidenced by transcription, histone 96 

modifications, and TF binding. Although our sample size is small, we observe reproducible 97 

effects of DNA sequence variation on 3D chromatin conformation and identify hundreds of 98 

Quantitative Trait Loci (QTLs) associated with multiple features of 3D chromatin conformation. 99 

Our results demonstrate that variation in 3D chromatin conformation is readily detectable from 100 

Hi-C data, often overlaps with regions of transcriptomic and epigenomic variability, and is 101 

influenced in part by genetic variation that may contribute to disease risk.  102 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


4 
 

 103 

RESULTS 104 

 105 

Mapping 3D chromatin conformation across individuals 106 

 107 

To generate maps of 3D chromatin conformation suitable for comparison across 108 

individuals, we performed “dilution” Hi-C on LCLs derived from 13 Yoruban individuals (including 109 

one trio), one Puerto Rican trio, and one Han Chinese trio (19 individuals total; Supplemental 110 

Table 1). We also include published Hi-C data from one European LCL (GM12878) generated 111 

previously by our group using the same protocol43, for a total of 20 individuals from four different 112 

populations. Many of these same LCLs have been used in previous genomic studies38,40,42, 113 

allowing us to leverage multiple transcriptomic and epigenomic datasets in our analysis below 114 

(Supplemental Table 2). Importantly, 18 of these individuals have had their genetic variation 115 

cataloged by the 1000 Genomes Consortium35,44 (Supplemental Table 1), which allowed us to 116 

examine the influence of genetic variation on 3D chromatin conformation. Two replicates of Hi-C 117 

were performed on each LCL, with each replicate performed on cells grown independently in 118 

culture for at least two passages (Supplemental Table 3). 119 

All Hi-C data were processed using a uniform pipeline that incorporates the WASP 120 

approach40,45 to eliminate allelic mapping biases (see methods section 2a). For each sample, 121 

we mapped a series of well-established Hi-C-derived features including 40Kb resolution contact 122 

matrices, Directionality Index (DI)16, Insulation score (INS)7, and compartmentalization13 (Figure 123 

1a; Supplemental Figure 1a-c). Compartmentalization is measured by the first Principal 124 

Component (PC1) of Hi-C contact matrices, and thus we use the acronym “PC1” below to refer 125 

to this measure of compartmentalization. We also identified regions known as Frequently 126 

Interacting Regions (FIREs)19 and their corresponding “FIRE scores”, which measure how 127 

frequently a given region interacts with its neighboring regions (15~200kb). The concept of FIRE 128 

is based on the observation that the frequency of contacts at this distance is not evenly 129 

distributed across the genome, but rather, tends to peak in regions showing epigenomic 130 

signatures of transcriptional and regulatory activity (Supplemental Figure 2). As we have shown 131 

previously19,20, FIRE regions often overlap putative enhancer elements (Supplemental Figure 132 

1d-e). We did not call “chromatin loops” in this study because our data was not of sufficient 133 

resolution, but we use a set of loops called previously in the LCL GM1287814 to examine 134 

variation in loop strength among the LCLs in our study. Aggregate analysis shows that these 135 

published LCL loops are generally reproduced in our data (Supplemental Figure 3). 136 
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 137 

3D chromatin conformation variations between individuals 138 

 139 

After uniformly processing all Hi-C data (see methods section 2), we compared 140 

chromatin conformation across LCLs at the level of contact matrices and multiple derived 141 

features (PC1, DI, INS, and FIRE). From a genome-wide perspective, each of these 3D 142 

chromatin features shows a signature consistent with reproducible inter-individual variation 143 

whereby replicates from the same individual (i.e. same LCL) are more highly correlated than 144 

datasets from different individuals (PC1 p=2.4e-7, INS p=1.6e-7, DI p=3.3e-7, FIRE p=0.0157 145 

by Wilcoxon rank sum test; Figure 1b-d, Supplemental Figure 4a-f). The Hi-C data also cluster 146 

by population (Supplemental Figure 4f-g) consistent with an influence from genetic background, 147 

but we note that this population-level clustering can be caused by other factors such as batch of 148 

sample acquisition46.  149 

Despite generally high correlations of Hi-C data across individuals, we frequently 150 

observed regions where 3D chromatin conformation varies reproducibly between individuals 151 

(example shown in Figure 2a, Supplemental Figure 5a). To more systematically identify regions 152 

of variable 3D chromatin conformation, we used the “limma” package47 to identify regions where 153 

variation between individuals was more significant than variation between two replicates from 154 

the same individual. We applied this approach to DI, INS, FIRE, and PC1. For each metric, we 155 

first defined a set of testable 40kb bins across the genome by filtering out bins with low levels of 156 

signal across all individuals or near structural variants that can appear as aberrations in Hi-C 157 

maps48 (see methods section 4a). We then applied a False Discovery Rate (FDR) threshold of 158 

0.1 and merged neighboring variable bins, resulting in the identification of 2,318 variable DI 159 

regions, 2,485 variable INS regions, 1,996 variable FIRE regions, and 7,732 variable PC1 160 

regions (Figure 2b, Supplemental Table 4, Supplemental Figure 5b). We note that there is 161 

strong overlap between the variable DI, INS, FIRE, and PC1 regions detected across all 20 162 

LCLs and those detected using only the 11 unrelated YRI LCLs, which suggests that potential 163 

confounding effects of variation between different populations are not driving the identification of 164 

these variable regions (Supplemental Figure 5c). Although each metric has a unique set of 165 

testable bins, we found significant enrichment for bins that are variable in more than one metric 166 

(Figure 2c, Supplemental Figure 5d-e), indicating that the same regions often vary across 167 

multiple features of 3D chromatin conformation. 168 

We next used Fluorescent In Situ Hybridization (FISH) to examine whether variable 169 

regions detected by Hi-C are consistent with distance measurements from imaging data (Figure 170 
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2d-e). Focusing on a variable DI region on chromosome 15 (chr15:96720000-96920000; hg19), 171 

we performed FISH in LCLs from four individuals with different levels of DI at the variable region 172 

being evaluated (YRI-3, YRI-4, YRI-5, YRI-8).  We used three BAC probes that hybridize 173 

respectively to the variable DI region (“center”, probe covers chr15:96715965-96898793), a 174 

region approximately 668Kb upstream (“upstream”, probe covers chr15:95897555-96047720), 175 

or a region approximately 590Kb downstream (“downstream”, probe covers chr15:97488414-176 

97648104). We found that distances between the center probe and these flanking probes vary 177 

significantly between individuals with strong upstream contact bias as measured by DI (YRI-4, 178 

YRI-8) and individuals without this upstream contact bias (YRI-3, YRI-5)(Figure 2d-e, center-179 

upstream distance p=0.017, center-downstream distance p=1.7e-5 by Wilcoxon rank sum test). 180 

Moreover, we found that the center probe is closer to the upstream than the downstream probe 181 

in the two individuals with strong upstream DI signal at the central variable DI region (p=3.2e-3 182 

for YRI-3, p=1.5e-4 for YRI-5 by Wilcoxon rank sum test). However, this trend is reversed in 183 

individuals without upstream DI signal where the center probe is now closer to the downstream 184 

probe (p=0.021 for YRI-4, p=0.1 for YRI-8 by Wilcoxon rank sum test) (Supplemental Figure 185 

6a). 186 

We also sought to identify variable entries in the Hi-C contact matrix itself (“matrix cells”). 187 

To facilitate this search, we used a method called Bandwise Normalization and Batch Correction 188 

(BNBC) that we recently developed to normalize Hi-C data across individuals (Fletez-Brant et al. 189 

Pre-print: https://doi.org/10.1101/214361). BNBC takes contact distance into account as a co-190 

variate because batch effects in Hi-C data can be distance-dependent. To identify variable 191 

matrix cells, we performed a variance decomposition on Hi-C contact matrix cells which 192 

exhibited statistically-significant variability between individuals, resulting in a measure of 193 

biological variability for each bin in the contact matrix (see example in Figure 2a and 194 

Supplemental Figure 5a). To identify matrix cells with significant levels of biological variability, 195 

we estimated FDR using the IHW framework49 to include the distance between anchor bins as 196 

an informative covariate. At an FDR threshold of 0.1, we identified 115,817 matrix cells showing 197 

significant variability between samples (Supplemental Table 5). These variable bins are heavily 198 

skewed toward shorter contact distances (Figure 2f, Supplemental Figure 6b), likely due in part 199 

to higher read counts and thus increased power at these distances. We observed that the 200 

anchor regions of variable matrix cells overlap with variable regions of DI, INS, FIRE, and PC1 201 

more often than would be expected by chance (Figure 2g; Supplemental Figure 6c). We also 202 

observed that variable matrix cells tend to occur in groups (Figures 2a, 3a), suggesting that 203 

variation in 3D chromatin conformation often affects more than one adjacent genomic window. 204 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


7 
 

 205 

Coordinated variation of the 3D genome, epigenome, and transcriptome 206 

 207 

To investigate the relationship between variation in 3D chromatin conformation and gene 208 

regulation, we analyzed multiple published datasets including RNA-seq, ChIP-seq, and DNase-209 

seq data generated from some of the same LCLs in our study (Supplemental Table 2). 210 

Strikingly, for all external datasets examined here, we see an enrichment for regions at which 211 

3D chromatin conformation across individuals is correlated with measures of genome activity in 212 

the same 40Kb bin (see example in Figure 3a and Supplemental Figure 7a). To assign a level of 213 

statistical significance to these observations, we approximated the null distribution by randomly 214 

permuting the sample labels of external datasets, thus disrupting the link between Hi-C and 215 

ChIP/RNA/DNase-seq data from the same individual, but not changing the underlying data 216 

structure (see schematic in Supplemental Figure 7b). We used these permutations to calculate 217 

the bootstrap p-values in Figure 3b. Among variable PC1 regions, we observed a significant 218 

enrichment for regions at which PC1 values across individuals are positively correlated with 219 

histone modifications indicative of transcriptional activity including H3K27ac (bootstrap 220 

P<0.001), H3K4me1, and H3K4me3 (but notably less so with H3K27me3, which is marker of 221 

transcriptional repression) (bootstrap P<0.001 for all histone modifications, Figure 3b). The 222 

correlations between PC1 and marks of transcriptional activity occur in the expected direction -- 223 

i.e. higher PC1 values are associated with higher gene expression and more active histone 224 

modifications. Similar correlations were apparent in two distinct sets of ChIP-seq data generated 225 

by different groups40,42, and observed whether we use variable regions identified across all 20 226 

LCLs or only across the 11 unrelated YRI LCLs (Supplemental Figure 7c). 227 

The relationship between variation in 3D chromatin conformation and underlying 228 

genome activity extends beyond A/B compartmentalization. At variable FIRE regions, we found 229 

an abundance of regions where FIRE score is positively correlated with marks of cis-regulatory 230 

activity including H3K27ac and H3K4me1 (Bootstrap P<0.001; Figure 3b, Supplemental Figure 231 

9a), consistent with the previously reported relationship between FIREs and cis-regulatory 232 

activity19,20. DI and INS values at variable regions tend to be correlated histone modification 233 

levels as well as CTCF and Cohesin subunit SA1 binding (Bootstrap P<0.001; Figure 3b, 234 

Supplemental Figure 8a-b), which are known to influence these 3D chromatin features16,50,51. 235 

For INS, the relationship is directional such that higher CTCF/Cohesin binding corresponds to 236 

more contact insulation (i.e. lower INS score). However, at variable DI regions the correlations 237 

are not as clearly directional, reflecting current understanding that the direction of DI (i.e. 238 
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upstream vs downstream contact bias) is arbitrary relative to strength of CTCF/Cohesin binding. 239 

We performed similar analysis on variable cells in the contact matrix, and found that the 240 

interaction frequency in these matrix cells across individuals tends to be correlated with 241 

epigenetic or transcriptional properties of one or both corresponding “anchor” bins (Bootstrap 242 

P<0.001; Figure 3b, Supplemental Figure 9b). Importantly, for all types of variable regions 243 

examined here we found correlation with RNA-seq signal, indicating that at least at some 244 

regions, variation in 3D chromatin features accompanies variation in gene expression. 245 

We examined further whether 3D chromatin conformation at a given variable region 246 

tends to be correlated with only one epigenomic property, or with several properties 247 

simultaneously. We found that PC1, FIRE, INS, and DI values across individuals are often 248 

correlated with multiple features of active regions (e.g. H3K27ac, H3K4me1, RNA), and anti-249 

correlated with the repressive H3K27me3 histone modification (Figure 3c,d). For DI, where 250 

direction is not as clearly linked to magnitude of gene regulatory activity, we note a larger set of 251 

regions with anti-correlation to features of active regions (e.g. H3K27ac, H3K4me1, RNA) and 252 

positive correlation with H3K27me3 (Figure 3e,f). These results demonstrate that variation in 3D 253 

chromatin conformation is often accompanied by variation in transcriptional and regulatory 254 

activity of the same region. Moreover, the correlations between multiple molecular phenotypes 255 

at the same region suggest that shared mechanism(s) underlie variation in these phenotypes 256 

across individuals.  257 

 258 

Genetic loci influencing 3D chromatin conformation 259 

 260 

To examine genetic influence on 3D chromatin conformation we first considered genetic 261 

variants overlapping CTCF motifs at chromatin loop anchors14, because disruption of these 262 

CTCF motifs by genome engineering has been shown to alter chromatin looping23. Focusing on 263 

SNPs at variation-intolerant positions in anchor CTCF motifs (“anchor disrupting SNPs”, at 264 

sequence weight matrix positions where a single base has a probability of >0.75, Figure 4a), we 265 

observed a significant linear relationship between SNP genotype and the strength of 266 

corresponding loops (p=7.6e-5 by linear regression; Figure 4b,c). We also examined whether 267 

individuals heterozygous for anchor disrupting SNPs showed allelic imbalance in loop strength. 268 

To facilitate this analysis, we used the HaploSeq43 method to generate chromosome-span 269 

haplotype blocks for each LCL (Supplemental Table 6). Although few Hi-C read pairs overlap a 270 

SNP allowing haplotype assignment (mean 7.89% of usable reads per LCL), we do observe that 271 

the haplotype bearing the stronger motif allele tends to show more reads connecting the 272 
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corresponding loop anchors (p=5.9e-4 by one-sided t-test of mean > 0.5; Figure 4d). Our 273 

observation that CTCF motif SNPs can modulate 3D chromatin conformation is consistent with 274 

similar findings reported from ChIA-PET data52, and a recent report of haplotype-associate 275 

chromatin loop published while this manuscript was in preparation27. 276 

Motivated by these preliminary observations of genetic effects on 3D chromatin 277 

conformation, we next searched directly for QTLs associated with Hi-C derived features of 3D 278 

chromatin conformation. Power calculations indicated that, despite limited sample size, we were 279 

moderately powered to find QTLs with strong effect sizes using a linear mixed effect model 280 

(LMM) approach that takes advantage of the Hi-C replicates for each LCL (Supplemental Table 281 

7). Thus, we conducted a targeted search for QTLs associated with variation in FIRE, DI, INS, 282 

and contact frequency. We did not include PC1 in the QTL search because we reasoned that 283 

individual genetic variants would be more likely to have detectable effects on local chromatin 284 

conformation rather than large-scale features like compartmentalization. For this same reason, 285 

we used modified versions of DI and INS scores for the QTL search calculated with a window 286 

size of 200Kb upstream and downstream of the target bin, rather than the standard 2Mb window 287 

size for DI16 or 480Kb for INS47. We also limited our QTL searches to the 11 unrelated YRI 288 

individuals in our study (referred to below as the “discovery set”) to mitigate potential 289 

confounding differences between populations. 290 

For each 3D genome phenotype under study we identified a list of testable bins that 291 

showed appreciable levels of signal in at least one individual in our discovery set (see methods 292 

section 7 for full description of test bin and SNP selection). We also identified a set of test SNPs 293 

that includes at most one tag SNP among those in perfect LD in each 40Kb bin. Response 294 

variables (i.e. 3D chromatin phenotype values) were quantile normalized across the discovery 295 

set. For each testable bin, we measured the association of the given 3D chromatin phenotype 296 

with all test SNPs in that bin. In cases where multiple SNPs in the same bin were significantly 297 

associated with the phenotype we selected only the most significantly associated SNP per bin 298 

for our final QTL list. Ultimately, at an FDR of 0.2, we identified 387 FIRE-QTLs (i.e. testable 299 

bins in which FIRE score is associated with at least one SNPs in that bin; comprising 6.6% of 300 

tested bins), 545 DI-QTLs (4.2% of tested bins), and 911 INS-QTLs (12.0% of tested 301 

bins)(Figure 4e, Supplemental Figure 10a, Supplemental Table 8). For analysis of DI-QTLs, we 302 

separated the testable bins into those with upstream bias and those with downstream bias (see 303 

methods section 7d), because we observed a Simpson's paradox when we analyzed the 304 

genotype trend at all DI-QTL regions together (Supplemental figure 10b). 305 
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We also searched for QTLs associated directly with interaction frequency in individual 306 

contact matrix cells using an LMM approach like that described above for FIRE, DI, and INS. 307 

The large number of cells in a Hi-C contact matrix, together with limited sample size, made a 308 

true genome-wide QTL search unfeasible. However, power calculations indicated that if we 309 

limited our QTL search to a subset of cells in the matrix we could have moderate power to 310 

detect strong genetic signals (Supplemental Table 7). Thus, we limited our QTL search for 311 

contact matrix QTLs (“C-QTLs”) to matrix cells that showed significant biological variability in our 312 

samples, as described above. We tested for association in our discovery set between the 313 

BNBC-normalized interaction frequency in these variable matrix cells and the genotype of test 314 

SNPs in either of the two anchor bins. We selected at most one QTL SNP per matrix cell, using 315 

association p-value to prioritize, finally yielding 345 C-QTL SNPs associated with 463 matrix 316 

cells at an IHW-FDR threshold of 0.2 (Figure 4f, Supplemental Table 8). 317 

To evaluate the reproducibility of each of these QTLs sets (FIRE-QTLs, DI-QTLs, INS-318 

QTLs, and C-QTLs), we examined Hi-C data from 6 individuals who were not included in our 319 

discovery set (we refer to these 6 individuals our “validation set”; Supplemental  Table 1). These 320 

individuals represent four different populations (CEU, PUR, CHS, YRI), and they include a child 321 

of two individuals in the discovery set (YRI-13/NA19240 is child of YRI-11/NA19238 and YRI-322 

12/NA19239). In each case, we find a significant linear relationship in the validation set between 323 

QTL genotype and the corresponding 3D chromatin phenotype (p=1.8e-14 for FIRE-QTLs, 324 

p=2.5e-7 for DI-QTLs at positive DI bins, p=0.008 for DI-QTLs at negative DI bins, p=3e-4 for 325 

INS-QTLs, p=4.1e-9 for C-QTLs; Figure 4g). To provide an additional and more stringent 326 

estimate of the significance of these observations, we performed permutations by randomly 327 

selecting sets of test SNPs and measuring the linear relationship between genotype and 328 

phenotype in the validation set. In all cases, the observed relationship was also significant by 329 

this more conservative bootstrap approach (p<0.001 for FIRE-QTLs, p<0.001 for DI-QTLs at 330 

positive DI bins, p=0.041 for DI-QTLs at negative DI bins, p=0.005 for INS-QTLs, p=0.006 for C-331 

QTLs; Figure 4h). 332 

There is little direct overlap between our different QTL sets (Supplemental figure 10c), 333 

likely due to limited power and the fact that the testable bins were different for each metric. 334 

However, we observed genotype-dependent INS score at FIRE-QTLs and C-QTLs, and 335 

genotype-dependent FIRE score at INS-QTLs and DI-QTLs (Supplemental Figure 10d), which 336 

suggested that overlapping signal between different types of 3D chromatin QTLs in present 337 

below the level of test-wide significance. To more rigorously assess overlapping signal between 338 

our QTL sets we examined shared association below the threshold of multiple test correction, 339 
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inspired by similar approaches reported elsewhere53. Our underlying hypothesis is that genetic 340 

association studies of two different phenotypes “X” and “Y” with overlapping (or partially 341 

overlapping) genetic architecture may have few direct overlaps between significant hits due to 342 

limited power or differing study designs, but the shared signal should become apparent when 343 

the full range of association results are considered. To quantify this, we calculated the fraction 344 

of QTLs for a given phenotype X that exceed a nominal level of significance (p < 0.05) when 345 

tested for association with a different phenotype Y. We refer to this value as the “nominal 346 

fraction” below and in figure 4i. To test whether the nominal fraction of X-QTLs was significantly 347 

higher than would be expected by chance, we approximated the null distribution by calculating 348 

nominal fractions for 10,000 sets of SNPs selected randomly from among all X test SNPs. In 349 

almost all pairwise comparisons between 3D chromatin QTL types examined here, we find that 350 

the observed nominal fractions are significantly higher than would be expected in the absence 351 

of shared genetic architecture (Figure 4i,j). 352 

 353 

Contribution of 3D chromatin QTLs to molecular phenotypes and disease risk 354 

 355 

Given the correlation observed between 3D chromatin variation and epigenome 356 

variation, we next investigated whether 3D chromatin QTLs could modulate both the epigenome 357 

and 3D genome. Here, we made use of published ChIP-seq data for histone modifications 358 

(H3K4me1, H3K4me3, H3K27ac) in a large set of 65 YRI LCLs39, DNase-seq data from 59 YRI 359 

LCLs38, and CTCF ChIP-seq data from 15 CEU LCLs54. Notably, most individuals in these 360 

datasets were not included in our QTL discovery or validation sets (54/65 for histone 361 

modification ChIP-seq, 48/59 for DNase-seq, 15/15 for CTCF ChIP-seq). In many cases, we 362 

found a significant linear relationship between 3D chromatin QTL genotypes and these different 363 

epigenetic phenotypes (Figure 5a, Supplemental figure 11a). For example, at FIRE-QTLs, the 364 

high-FIRE allele is also associated with higher levels of active histone modifications and 365 

chromatin accessibility (Figure 5a). We note that although these associations are all significant 366 

by linear regression, only H3K27ac and H3K4me1 passed more conservative permutation 367 

testing in which the null distribution is approximated by selecting random SNPs from the full set 368 

of tested SNPs (Figure 5b). At C-QTLs, the high-contact alleles show higher levels of the 369 

enhancer-associated mark H3K4me1 in the two anchor bins that connect the corresponding 370 

matrix cell. Moreover, the nominal fraction of C-QTLs (i.e. fraction of c-QTLs with p<0.05) in a 371 

published set of H3K4me1-QTLs is significantly higher than expected in the absence of shared 372 

genetic association (p=6.9e-6 by chi square test, bootstrap p=0.028; Supplemental Figure 373 
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11b,d). At INS-QTLs, the slope of these genotype-phenotype relationships is inverted such that 374 

higher levels of histone modifications and chromatin accessibility are associated with the low 375 

INS score allele (i.e. more contact insulation), although only the association with chromatin 376 

accessibility is significant by both linear regression and permutation test (p=1.6e-40 by linear 377 

regression, bootstrap p=0.023; Supplemental Figure 11b,d). The genotype-phenotype 378 

relationships observed at DI-QTLs are not as clear as for other metrics (Figure 5b, 379 

Supplemental figure 11a), but this is expected because increased histone modifications or 380 

chromatin accessibility can influence DI in either direction, potentially confounding this type of 381 

aggregate analysis. Anecdotally, we do observe examples of individual DI-QTLs where 382 

genotype appears to correlate with epigenomic phenotype (Figure 5c).  383 

Finally, we sought to examine whether 3D chromatin QTLs might contribute risk for 384 

complex diseases. There are 44 direct overlaps between our 3D chromatin QTLs (or SNPs in 385 

perfect LD in the same 40Kb bin) and NHGRI-EBI GWAS catalog55 (Supplemental Table 9). 386 

However, the significance of these direct overlaps is hard to assess given the differences 387 

between the populations and study designs in question. Thus, here again we examined 388 

overlaps below the level of genome-wide significance by looking at nominal fractions to assess 389 

shared signal between association studies. We compiled full summary statistics for large GWAS 390 

(>50,000 individuals) of the related immune-relevant phenotypes Crohn’s Disease (CD), 391 

Ulcerative Colitis (UC), and Inflammatory Bowel Disease (IBD)56, as well as studies of the non-392 

immune phenotypes height57 and Body Mass Index (BMI)58. We observed striking enrichments 393 

for INS-QTLs among variants with nominal associations to UC and IBD risk (1.67- and 1.65-fold, 394 

respectively), and these enrichments are significant by both chi square and permutation tests 395 

(INS-QTL with UC chi square p=2.5e-16 and bootstrap p=0.024; INS-QTL with IBD chi square 396 

p=5.5e-17 and bootstrap p=0.018; Figure 5d,e). We also note a trend in which FIRE-QTLs show 397 

nominal association with UC and IBD (1.36- and 1.58-fold enrichment, respectively), although 398 

these observations fall just below the threshold of significance by the more stringent 399 

permutation test (FIRE-QTL with UC chi square p= 7.6e-6 and bootstrap p=0.090; FIRE-QTL 400 

with IBD chi square p= 4.2e-8 and bootstrap p=0.056; Figure 5d,f).  401 

  402 

DISCUSSION 403 

 404 

Our results provide the first systematic characterization of how chromatin conformation 405 

varies between unrelated individuals at the population level, and as a consequence of genetic 406 

variation. The most important finding of our study is that genetic variation influences multiple 407 
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features of 3D chromatin conformation, and does so to an extent that is detectable even with 408 

limited sample size and Hi-C resolution. To the best of our knowledge, this represents the first 409 

report of QTLs directly associated with 3D chromatin conformation. However, there are 410 

limitations to our QTL search that are important to note here. First, the small sample size means 411 

that our power to detect QTLs is limited, and in order to identify QTL sets that could be analyzed 412 

in aggregate we tolerated elevated type I error by using an FDR threshold of 0.2 (as done 413 

previously for molecular QTL studies with limited power40). Second, the limited resolution of our 414 

Hi-C data (40Kb) and extensive LD in our study population prevented us from identifying 415 

specific causal variant(s) for validation through genetic perturbation experiments. Nonetheless, 416 

we were able to validate the 3D chromatin QTL sets through aggregate analysis of Hi-C data 417 

from a small set of individuals who were not included in the QTL search, and with independently 418 

generated ChIP-seq and DNase-seq data from a larger set of individuals. Taken together, our 419 

results show that genetic variation influences several features of 3D chromatin conformation, 420 

which is an important step forward to evaluate the role of 3D chromatin conformation in 421 

mediating disease risk. 422 

Another key finding of our study is that regions which vary in 3D chromatin conformation 423 

across individuals also tend to vary in measures of transcriptional and regulatory activity. This 424 

supports the existence of shared mechanisms that underlie variation in 3D chromatin 425 

conformation, transcription, and epigenomic properties. We suspect that no single mechanism 426 

or causal hierarchy applies to all regions of the genome with variation in one or more of these 427 

properties. However, in at least some cases, this shared mechanism is likely genetic. This 428 

raises the question of whether 3D chromatin QTLs are fundamentally the same as QTLs 429 

previously described for other molecular phenotypes (e.g. eQTLs, dsQTLs, histoneQTLs; 430 

collectively referred to below as “molQTLs”), or represent a separate set of QTLs not detectable 431 

with other methods. This question is difficult to answer in the present study for two main 432 

reasons: 1) Our power is limited and thus we cannot say with confidence that a given SNP is not 433 

a 3D chromatin QTL. Many molQTL studies also have limited power and are thus prone to type 434 

II error. 2) Our QTL searches, like most molQTL studies, are not truly genome-wide because 435 

subsets of testable regions and testable SNPs are preselected to focus the search space. 436 

These selection criteria can differ widely between studies, making direct QTL-to-QTL 437 

comparisons challenging. The observation of genotype dependent epigenetic signal at 3D 438 

chromatin QTLs suggest that at least some 3D chromatin QTLs could also be detected as other 439 

types of molQTLs if those studies had sufficient statistical power. However, the limited overlap 440 

between 3D chromatin QTLs and published molQTLs (even when considering SNPs with only a 441 
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nominal level of significance) points to a lack of power in current studies, and suggests further 442 

that the QTLs with largest effects on 3D chromatin conformation are not necessarily the same 443 

as those with large effects on other molecular phenotypes, and vice versa. Therefore, it is likely 444 

that QTL studies directed toward different types of molecular phenotypes (including 3D 445 

chromatin features) are likely to be complimentary rather than redundant.  446 

Future studies with higher resolution Hi-C data and larger sample sizes will be important 447 

to identify functional variants modulating 3D chromatin conformation, and to further dissect the 448 

mechanistic relationships between genetics, 3D chromatin conformation, and other molecular 449 

phenotypes. We anticipate that these studies will continue to reveal cases in which perturbation 450 

of 3D chromatin conformation is a molecular mechanism through which disease-associated 451 

genetic variants confer disease risk. The present study provides initial discoveries of genetic 452 

influence on 3D chromatin conformation and an analytical framework and that we believe will 453 

facilitate future efforts to unravel the molecular basis of genetic disease risk. 454 

 455 
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 463 

FIGURE LEGENDS 464 

 465 

Figure 1. Biological variability in multiple aspects of 3D chromatin. (a) Browser view to 466 

illustrate the Hi-C-derived molecular phenotypes examined here: contact matrices, FIRE, DI, 467 

INS, and PC1 (chr8:125,040,000-132,560,000; hg19). Only 4 individuals shown here for 468 

illustrative purposes. The full set of individuals is shown in Supplemental Figure 1. (b) Boxplots 469 

show correlation between biological replicates from the same cell line (Individuals = “within”, N = 470 

20), and between replicates from different cell lines (Individuals = “between”, N = 760). 471 

Statistical significance calculated by two-sided Wilcoxon rank sum test. See Supplemental 472 

Figure 4a for schematic of shuffling strategy. These and all boxplots in this manuscript show 473 

median as a horizontal line, interquartile range (IQR) as a box, and the most extreme value 474 

within 1.5*IQR or -1.5*IQR as whiskers extending above or below the box, respectively.  (c) The 475 
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Pearson correlation coefficient between quantile normalized Hi-C matrix replicates from the 476 

same cell line or different cell lines is plotted as a function of genomic distance between anchor 477 

bins. Distances between 0.1-1Mb are highlighted in the magnified sub-panel to the right. (d) 478 

Significance of the difference between the “within” and “between” values in (c) was calculated at 479 

multiple points along the distance-correlation curve by two-sided Wilcoxon rank sum test. Note 480 

that the scale of contact distance here is linear. Yellow bars indicate significance exceeding a 481 

nominal p-value of 0.05 (dotted line).  482 

 483 

Figure 2. Variable regions of 3D chromatin conformation. (a) Example of a variable region 484 

(chr15:93,040,000-100,560,000; hg19). Triangular heatmaps from top to bottom: Four Hi-C 485 

contact heatmaps in red from individuals showing variable 3D chromatin architecture, a 486 

heatmap in blue showing the degree of variation measured across LCLs, and a heatmap in blue 487 

showing variable cells in the matrix at IHW-FDR < 0.1 (var=variable, ns=not significant). 488 

Standard tracks from top to bottom, and zoomed in more closely on the region of interest 489 

(chr15:95,482,152-98,025,591; hg19):  BAC probes used for FISH experiment in panels 2d-e, 490 

variable DI regions called using all 20 LCLs, variable DI regions called using just 11 YRI LCLs, 491 

twelve DI tracks from four different individuals. For each individual, DI tracks are shown from 492 

two biological replicates and from Hi-C data merged across both replicates. Note that two 493 

individuals have strong upstream contact skew in the boxed regions (YRI-4, YRI-8), while the 494 

other two individuals have weak or no upstream contact skew in that region (YRI-3, YRI-5). (b) 495 

The number of testable bins and significantly variable regions for each 3D chromatin phenotype 496 

examined here. (c) Significance of pairwise overlap between different sets of variable regions. P 497 

values calculated by chi square test. Additional details in methods and Supplemental Figures 5 498 

and 6. (d) Boxplots showing the distance between indicated probe sets in four different LCLs. 499 

Probe labels same as in panel (a). P values calculated by two-sided Wilcoxon rank sum test. 500 

Number of nuclei measured for each LCL and probe pair, from left to right, are: 140, 91, 111, 501 

70, 128, 124, 219, 70. (e) Representative images of nuclei corresponding to panel (d). (f) Blue 502 

line shows the fraction of variable matrix cells distributed across a range of interaction 503 

distances. Black shows the fraction of all matrix cells distributed across the same range of 504 

interaction distances. (g) Top panel shows the percentage of variable matrix cell anchor bins 505 

that overlap variable DI, FIRE, INS, or PC1 regions, respectably. The shade of blue is scaled 506 

with overlap percentage. Bottom panel shows the statistical significance of these overlaps as 507 

calculated by chi square test, and plotted with same color scale as (c).  508 

 509 
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Figure 3. Coordinated variation of the 3D genome, epigenome, and transcriptome. (a) 510 

Example of a variable region where 3D chromatin phenotypes are correlated with epigenomic 511 

and transcriptomic phenotypes (chr6:126,280,000-131,280,000; hg19). Six triangular heatmaps 512 

from top to bottom: Hi-C contact heatmaps from four individuals, variability matrix, and variable 513 

cells in the matrix (var=variable, ns=not significant). Standard tracks below show 3D chromatin, 514 

epigenomic, and transcriptomic properties from four individuals in zoomed in region 515 

(chr6:127,680,918-129,416,097; hg19). All ChIP-seq and RNA-seq data in the figure from 516 

Kasowski et al, 201342. (b) Density plots show the distribution of Spearman correlation 517 

coefficients at variable regions (see Figure 2b for numbers) between the epigenomic or 518 

transcriptomic phenotype indicated in the top margin of panel and the 3D chromatin phenotype 519 

indicated in the right margin of panel. Grey lines show the distributions from 100 random 520 

permutations (selected randomly from the 10,000 permutations performed) in which the sample 521 

labels were shuffled (see Supplemental Figure 7b). ***p<0.0001 by permutation test as 522 

described in methods section 4c, which applies to all observations in this panel except RNA-seq 523 

at INS regions (p=0.0018) and RNA-seq at FIRE regions (p=0.0096). (c) Heatmap showing 524 

Spearman correlation coefficients between PC1 and multiple epigenomic/transcriptomic 525 

phenotypes, arranged by k-means clustering (k=4). Tick marks to the right show boundaries 526 

between clusters. Each row (N=518) is one variable PC1 region, limited to the subset of variable 527 

PC1 regions that contain RNA-seq signal and at least one peak in at least one individual for 528 

each ChIP-seq target included here (H3K27ac, H3K4me1, H3K27me3, CTCF, Cohesin). (d) 529 

Similar to (c), showing correlations with FIRE at N=132 variable FIRE regions. (e) Similar to (c), 530 

showing correlations with DI N=265 variable DI regions. (f) Similar to (c), showing correlations 531 

with INS at N=154 variable INS regions. 532 

 533 

Figure 4. A genetic contribution to variations in 3D chromatin conformation. (a) A graphic 534 

representation of the CTCF Position Weight Matrix (PWM) is shown. Eight positions boxed by 535 

dashed lines have probability >0.75 for a single base. We refer to SNPs at these positions as 536 

“motif disrupting SNPs”. Alleles matching the consensus base in the motif are labeled “strong 537 

motif alleles (S)”, and alleles matching any other base are labeled “weak motif alleles (W)”. (b) 538 

Boxplot shows the distribution of interaction frequencies at loops with exactly one anchor 539 

containing a CTCF motif disrupting SNP (N=138), separated according to genotype. For each 540 

SNP, loop strengths are normalized to the mean value of the heterozygous genotype (WS). 541 

There is significant linear relationship between normalized loop strength and genotype by linear 542 

regression (p=7.6e-5). (c) Aggregate contact map shows the average difference in interaction 543 
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frequency per loop between SS and SW genotypes (top; N=117 SNPs), and between SW and 544 

WW genotypes (bottom; N=31 SNPs). The cross point of dotted lines indicates the 40Kb bin 545 

containing the loop being evaluated. (d) Histogram shows the allelic imbalance in reads 546 

connecting loop anchors on the S vs W haplotypes in WS heterozygotes (N=135 loops). The 547 

mean percentage of reads on the S haplotypes is significantly larger than 0.5 (p= 5.9e-4 by one-548 

sided t-test). (e) Line plots show the genotype-dependent signal of FIRE-QTL, INS-QTL and DI-549 

QTL using 11 independent YRI individuals. Each plot show the indicated phenotype as lines 550 

with light color, medium color and dark color representing average signal across LCLs with the 551 

low signal genotype, medium signal genotype, and high signal genotype, respectively. For DI-552 

QTL, we split all 40Kb QTL bin into two groups, based on either upstream DI bias (upper panel) 553 

or downstream DI bias (bottom panel). (f) For C-QTLs, an aggregate contact plot analogous to 554 

panel c is used to show the average difference in BNBC corrected interaction frequency (“Δ 555 

log(norm contacts)”) between the high and medium contact genotypes (top; N=138 556 

interactions), and between the genotypes medium and low genotypes (bottom; N=94 557 

interactions). The cross point of dotted lines indicates the 40Kb test bin in question. (g) Boxplots 558 

show the genotype-dependent signal at QTLs using additional 6 individuals as a validation set. 559 

In each boxplot, three boxes with light color, median color and dark color represent the average 560 

signal in the 40Kb QTL bin from individuals with the low signal genotype, medium signal 561 

genotype, and high signal genotype, respectively. (h) Results of permutation test to evaluate the 562 

statistical significance of results in (g). The solid vertical lines show the estimated linear 563 

regression slope values obtained from the validation set (N=6 individuals). The grey curves 564 

show the distributions of slope values obtained from 1,000 random permutations. 565 

Corresponding bootstrap p values indicated in the upper left corner of each subpanel. (i) Line 566 

plot shows the fraction of foreground SNPs with nominal significance in the background 567 

association study (“nominal fraction”). Red dashed lines show the values for all SNPs in a given 568 

background set, yellow diamonds show values for SNPs in a given foreground set, and open 569 

triangles show values for SNPs tested in the foreground QTL search. Black circles and lines 570 

indicate the median and middle 95% range, respectively, of 10,000 permutations in which SNPs 571 

were selected from the “foreground, tested” set. The number to the right of each line indicates 572 

the fraction of permutations with a value higher than observed for “foreground, QTL” set. (j) QQ 573 

Plot shows FIRE-QTL search results, including all SNPs tested for FIRE association (black 574 

points, N=128,137), and several subsets as follows: DI-QTL tested (light green, N=46,784), INS-575 

QTLs tested (light red; N=6,238), C-QTL tested (light blue; N=69,847), DI-QTLs (dark green, 576 

N=152), INS-QTLs (dark red, N=60), C-QTLs (dark blue, N=53). 577 
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 578 

Figure 5. Contribution of 3D chromatin QTLs to other molecular and organismal 579 

phenotypes. (a) Boxplots show signal for epigenetic phenotypes separated by genotype at 580 

FIRE-QTLs (top row), C-QTLs (middle row), and INS-QTLs (bottom row). Epigenetic signals 581 

averaged across all peaks in 40Kb bin. Linear regression p and beta values shown above each 582 

plot. P-value <0.05 in bold, others in italics. Yellow boxes highlight relationships that are 583 

significant by linear regression and in permutation testing as shown in (b). (b) Line plots shows 584 

beta values of linear relationships between QTL genotypes as indicated to the left and 585 

epigenetic phenotype indicated above each subpanel. Yellow diamonds show values for the 586 

true QTLs sets as shown in (a) and Supplemental figure 11a. Black circles and lines indicate the 587 

median and middle 95% range, respectively, of 1,000 permutations in which SNPs were 588 

selected from the “foreground, tested” set. The number to the right of each line indicates the 589 

fraction of permutations with abs(beta) higher than observed for the true QTL set. Yellow boxes 590 

highlight values < 0.05. (c) Genome browser view (chr2:201,222,342-201,386,844; hg19) 591 

showing examples of a DI-QTL (chr2:201333312) and FIRE-QTL (chr2:201254049). All signals 592 

plotted as a function of DI-QTL genotype (L=Low DI, M=medium DI, H=High DI). Grey boxes 593 

highlight region where epigenetic signals stratify by DI-QTL genotype. (d) Left subpanel shows 594 

the enrichment values for 3D QTL SNPs with nominal significance in the indicated GWAS study 595 

calculated as follows: (fraction of indicated 3D QTL SNPs with nominal significance in the 596 

indicated GWAS) / (fraction of SNPs tested in the indicated 3D QTL search with nominal 597 

significance in the indicated GWAS). Asterisks mark values with P<0.05 by chi-square test 598 

(middle panel), and permutation test (right panel). Right panel shows the proportion of 1000 599 

random subsets selected from the tested SNPs with enrichment values higher than the 600 

indicated true QTL set. Dotted lines mark p=0.05. (e) QQ plot shows the results of UC GWAS 601 

with all tested SNPs shows as black points, and two subsets as follows: SNPs also tested in our 602 

INS-QTL search (light red), and SNP called as INS-QTLs or in perfect LD with INS-QTLs in the 603 

same 40Kb bin (dark red). (f) QQ plot shows the results of IBD GWAS with all tested SNPs 604 

shows as black points, and two subsets as follows: SNPs also tested in our FIRE-QTL search 605 

(light green), and SNP called as FIRE-QTLs or in perfect LD with FIRE-QTLs in the same 40Kb 606 

bin (dark green). 607 

 608 

SUPPLEMENTAL FIGURE LEGENDS 609 

 610 
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Supplemental Figure 1. Hi-C derived molecular phenotypes measured across 20 LCLs. (a) 611 

Hi-C contact matrices show for all 20 LCLs. For comparison, we also show data from H1 human 612 

embryonic stem cells (H1-ES), and 4 lineages derived from H1 by in vitro differentiation21 (H1-613 

ME = Mesendodermal cells, H1-NPC = Neuronal precursor cells, H1-TR = Trophoblast-like cell, 614 

MSC = Mesenchymal stem cells). These H1-derived cell line represent different cell types from 615 

the same individual (i.e. same genetic background). The region shown here is the same as 616 

Figure 1a (chr8:125,040,000-132,560,000; hg19). (b) Same region as above, but showing PC1 617 

and FIRE values. ChIP-seq data for several histone modifications, CTCF, and Cohesin subunit 618 

SA1 are shown for one LCL (YRI-13, GM19240) as a reference for the epigenomic landscape42.  619 

(c) Same region as above, but showing DI and INS values. (d) Bar plots show the percentage of 620 

super-enhancers (left) or typical enhancers (right) in GM1287859 that overlap with 6,980 LCL 621 

FIRE bins (called as FIRE in at least one individual in our dataset) and 6,980 random 40kb bins. 622 

(e) Biological Process Gene Ontology terms associated with genes proximate to FIRE regions 623 

as defined by GREAT60.  624 

 625 

Supplemental Figure 2. FIRE measures density of local interactions. Illustrative example 626 

showing that overall density of Hi-C reads (all reads irrespective of location of interacting 627 

partner, all cis interactions, or all trans interactions) is highly consistent across the genome. 628 

However, interactions between partners separated by 15-200kb (“FIRE” distance) show 629 

enrichment in regions of the genome with marks of regulatory and transcription activity 630 

(H3K4me1, H3K4me3, H3K36me3 from ENCODE for CEU-1 / GM12878 shown for 631 

reference)61. ChromHMM functional annotations for CEU-1 / GM12878 are also shown62. pr-a = 632 

active promoter, pr-w = weak promoter, pr-i/p = inactive/poised promoter, en-s = strong 633 

enhancer, en-w/p = weak/poised, ins = insulator, tr-el/tr = transcriptional elongation or 634 

transcriptional transition, tr-w = weak transcribed, rep-p = polycomb-repressed, het/rep/cnv = 635 

heterochromatin, low signal, repetitive, or copy number variation. Top panel (a) shows the long 636 

arm of chr14 (chr14:24,406,737-104,693,368; hg19). Bottom panel (b) is a zoomed-in view of 637 

region boxed by dotted lines above (chr14:58,000,000-63,500,000; hg19). 638 

 639 

Supplemental Figure 3. Aggregate looping interactions in each sample. Aggregate plots 640 

show the interaction frequencies at GM12878 HiCCUPS loops from Rao et al 2014 in each 641 

sample examined here. All autosomal cis loops with anchor bins separated by more than 40kb 642 

are included here (N=8,893). The middle bin represents the interaction frequency between two 643 

40kb bins containing loop anchor bins. The full submatrix extends 10 bins (400kb) upstream and 644 
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downstream of the interaction bin (x and y axis). The color scale indicates the average 645 

interaction frequency per loop from Hi-C contact matrices. 646 

 647 

Supplemental Figure 4. 3D chromatin variation among 20 LCLs and H1-derived lineages. 648 

(a) Graphical representation of the shuffling scheme used to assess biological variability in 649 

Figure 1b-d, and here in panels b-e. (b)-(e) Boxplots show Pearson correlation coefficient 650 

between biological replicates from the same cell line (Replicates = “True”), and between 651 

replicates from difference cell lines (Replicates = “Shuff”; short for “shuffled”). The set of cell 652 

lines considered is indicated below each box. LCL = 20 LCL cell lines (40 replicates); H1 = H1-653 

ES and the four derived lineages H1-ME, H1-NPC, H1-TB, H1-MSC (5 cell lines, 10 replicates); 654 

H1+LCL = 20 LCLs and 5 H1-derived lines considered together (50 replicates). All phenotypes 655 

examined here (DI, PC1, INS, or FIRE) show a signature of cell-type specificity whereby they 656 

are more similar across individuals when looking at the same (or highly similar) cell types (i.e. 657 

LCLs), relative to comparing across cell types within an individual (i.e. same genetic 658 

background, H1s). Statistical significance calculated by two-sided Wilcoxon rank sum test. (f) 659 

Dendrograms from hierarchical clustering of 40 Hi-C replicates based on one of four Hi-C-660 

derived phenotypes, as indicated above each dendrogram (DI, PC1, INS, or FIRE). In the most 661 

of cases, replicates from the same cell lines cluster together. (g) Principal Component Analysis 662 

of 20 LCLs using one of four Hi-C-derived phenotypes, as indicated above each plot. Each 663 

population in our study is represented by a different color as indicated in the color key to the 664 

right. Note that the LCLs tend to separate by population in each plot. 665 

 666 

Supplemental Figure 5. Characterization of variable regions of 3D chromatin 667 

conformation. (a) Same region as in Figure 2a (chr15:94,280,000-99,280,000), but showing 668 

reproducible variation in PC1, and full square matrices for contact matrix variability as opposed 669 

to the half-matrices shown in 2a. FISH probes used in Figure 2 are represented as grey boxes 670 

to the top and right of square heatmaps. (b) Similar to Figure 2b, but with additional data 671 

columns. The “merged regions” column shows the number of regions after merging variable 672 

bins that are immediately adjacent to each other. The empirical false positives and FDR 673 

columns show the number and percentage of false positive variable regions detected in 1000 674 

permutations with shuffled labels. (c) Venn diagrams showing the overlap of variable regions 675 

identified using either all 20 LCLs (“LCL20”) or only the 11 unrelated YRI LCLs (“YRI11”). Only 676 

bins tested for both LCL20 and YRI11 are included here. (d) Venn diagrams showing the 677 

number of variable bins for each phenotype or combination of phenotypes. The diagram on the 678 
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left includes bins that were testable for at least one of the four phenotypes. The diagram on the 679 

right only includes bins that were testable for all four phenotypes. (e) Mosaic plots show the 680 

significance of overlaps between variable regions in a pairwise fashion. P-values calculated by 681 

two-sided chi square test. 682 

 683 

Supplemental Figure 6. Additional characterization of variable regions of 3D chromatin 684 

conformation. (a) Same underlying FISH data as in Figure 2e, but here comparing the distance 685 

between U and C probes to the distance between C and D probes within the same LCL. P-686 

values calculated by two-sided Wilcoxon rank sum test. (b) As in Figure 2d, blue line shows the 687 

fraction of variable matrix cells distributed across a range of interaction distances. Black line 688 

shows the fraction of all matrix cells distributed across the same range of interaction distances. 689 

(c) Mosaic plots show the significance of overlap between variable regions and anchor bins of 690 

variable matrix cells. P-values calculated by two-sided chi square test. 691 

 692 

Supplemental Figure 7. Coordinated variation between 3D chromatin conformation and 693 

multiple molecular phenotypes. (a) Same region as in Figure 3a (chr6:126,280,000-694 

131,280,000; hg19), but showing additional individuals and additional data types as indicated.  695 

(b) Representation of permutation scheme used to calculate P-values in panels c as well as in 696 

Figure 3b and Supplemental Figures 8 and 9. (c) Density plots in the top left quadrant show 697 

Spearman correlation coefficients (SCC) between PC1 and molecular phenotypes as indicated 698 

in the top margin of panel. Density plots in the top right quadrant show the same underlying data 699 

but plotted as absolute SCC to highlight the shift of real correlations (red lines) towards one, 700 

relative to the permutated values (grey). We show both SCC and abs(SCC) because SCC is 701 

useful to observe bias toward positive or negative correlations, but the bootstrap p-values are 702 

calculated based on the abs(SCC) to reflect correlations that are more extreme (positive or 703 

negative) than expected based on approximation of the null hypothesis. For the top left and top 704 

right quadrants, the ChIP-seq and RNA-seq data in the figure from Kasowski et al, 201342 705 

(same as in Figure 3b), with the addition of histone modifications H3K4me1, H3K4me3, and 706 

H3K36me3, as well as DNase-seq data from Degner et al, 201238.  ChIP-seq, RNA-seq, and 707 

DNase-seq plots include eight, seven, and eleven individuals, respectively (i.e. all individuals for 708 

which both Hi-C and the data type in question are available). Bottom left quadrant shows SCC 709 

like above, but using variable regions called in only 11 individuals. Bottom right quadrant shows 710 

SCC using ChIP-seq data from McVicker et al, 201240. These plots include ten individuals for 711 
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which ChIP-seq and Hi-C data are available. In all cases, p-values are calculated as the number 712 

of permutations with a mean absolute SCC greater than the observed values.  713 

 714 

Supplemental Figure 8. Correlations between DI, INS and multiple molecular phenotypes. 715 

Similar schema to Figure 7c, but focusing on DI in (a), and INS in (b). 716 

 717 

Supplemental Figure 9. Correlations between FIRE, interaction frequency and multiple 718 

molecular phenotypes. Similar schema to Figure 7c, but focusing on FIRE in (a), and contact 719 

frequency (examining the anchor bins of variable matrix cells) in (b). 720 

 721 

Supplemental Figure 10. 3D chromatin QTLs. (a) QQ plots for each QTL search. In each QQ 722 

plot, the X-axis is the -log10 theoretical quantiles calculated from the uniform distribution. The Y-723 

axis is the -log10 p-value calculated from linear mixed effects model for each type of QTL 724 

search. The grey area represents the 5% - 95% confidence bands based on Beta distribution 725 

Beta(i, M-i+1), where i is the i th order statistics and M is the total number of tested SNPs. (b) 726 

Genotype trend for bins with positive DI (left), negative DI (right), and all QTLs (right). A 727 

Simpson’s paradox is observed when all bins are considered together. (c) Number of direct 728 

overlaps between QTL sets. (d)  Similar schema to Figure 4e, but showing FIRE, INS, DI score 729 

(indicated on the Y axis) as a function of genotype for each QTL set as indicated above each 730 

column. Grey boxes highlight the cases plotted in Figure 4e where the signal type and QTL set 731 

are the same. 732 

 733 

Supplemental Figure 11. Influence of 3D chromatin QTLs on epigenomic and disease 734 

phenotypes. (a) Similar schema to Figure 5a, but showing DI-QTLs in positive bins (top) and 735 

negative DI bins (bottom). (b) Left subpanel shows the enrichment for 3D QTL SNPs with 736 

nominal significance in the indicated epigenetic or eQTL study calculated as follows: (fraction of 737 

indicated 3D QTL SNPs with nominal significance in the indicated molQTL study) / (fraction of 738 

SNPs tested in the indicated 3D QTL search with nominal significance in the indicated molQTL 739 

study). Asterisks mark values with p<0.05 by chi-square test (middle panel), and permutation 740 

test (right panel). Right panel shows the proportion of 1,000 random subsets selected from the 741 

tested SNPs with enrichment values higher than the indicated true QTL set. Dotted lines mark 742 

p=0.05. (c) QQ plot shows the results of H3K4me1 QTL search from Grubert et al., with all 743 

tested SNPs shown as black points, and two subsets as follows: SNPs also tested in our C-QTL 744 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


23 
 

search (light blue), and SNP called as C-QTLs or in perfect LD with C-QTLs in the same 40Kb 745 

bin (dark blue).  746 

 747 

TABLES 748 

 749 

Supplemental Table 1. LCLs included in the study. 750 

Supplemental Table 2. Public datasets re-analyzed in this study. 751 

Supplemental Table 3. Hi-C mapping statistics. 752 

Supplemental Table 4. Regions showing evidence of biological variability in 3D chromatin 753 

conformation. 754 

Supplemental Table 5. Matrix cells showing evidence of biological variability. 755 

Supplemental Table 6. Summary of phasing results. 756 

Supplemental Table 7. Power calculations. 757 

Supplemental Table 8. 3D chromatin conformation QTLs. 758 

Supplemental Table 9. Overlaps between 3D chromatin QTL and GWAS catalog. 759 

 760 

METHODS 761 

 762 

1. Hi-C data generation. Hi-C was performed as previously described13. We note that all Hi-C 763 

experiments were performed using a “dilution” HindIII protocol, rather than the newer “in situ” 764 

version of the protocol, for consistency because data generation began before the invention of 765 

in situ Hi-C. In addition, the resolution of 40kb used here for most analysis was determined 766 

primarily by sequencing depth rather than choice of a restriction enzyme. Thus, even if a 4-767 

cutter like MboI had been used, the prohibitive cost of sequencing would have prevented us 768 

taking advantage of the additional possible resolution. 769 

 770 

2. Hi-C data processing.  771 

2.a. Alignment with WASP. Read ends were aligned to the hg19 reference genome using 772 

BWA-MEM63 v0.7.8 as single-end reads with the following parameters: -L 13,13. We used the 773 

WASP pipeline40,45 to control for potential allelic mapping biases, which some modifications to 774 

account for unique aspects of Hi-C data. BWA-MEM can produce split alignments where 775 

different parts of a read are aligned to different parts of the genome. This is critical for Hi-C data, 776 

because a read can span a Hi-C ligation junction between two interacting fragments. In the case 777 

of a split alignment, BWA-MEM will mark the higher-scoring alignment as the primary alignment. 778 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


24 
 

For Hi-C data this is not ideal – we want the five-prime-most alignment (before the ligation 779 

junction) to be the primary alignment. To account for this, we further processed the alignments 780 

from BWA-MEM to select the five-prime-most alignment in cases where one read was split. 781 

Reads without an alignment to the five-prime end of the read were filtered out, as were 782 

alignments with low mapping quality (<10). The WASP pipeline was then used to generate 783 

alternative reads by flipping the allele in reads overlapping SNPs, and these reads were then 784 

realigned using the same pipeline. As input to WASP, we included all SNPs and indels present 785 

in the PUR individuals in our set (HG00731, 732, 733), CHS individuals in 1000 genomes (we 786 

included all CHS to account for the fact that no 1000 genomes genotype calls were available for 787 

HG00514), YRI individuals in 1000 genomes (we included all YRI individuals to account for the 788 

fact that no 1000 genomes genotype calls were available for GM19193),  and the H1 cell line21 789 

(to facilitate uniform processing and comparisons between LCLs and H1-derived datasets). 790 

After alignment of the alternative reads, alignment of the original reads and alternative reads 791 

were compared by WASP, and only the original reads for which all alternative reads aligned at 792 

the same location with same CIGAR string were kept. Reads overlapping indels were removed. 793 

Reads were then re-paired, and only pairs in which both reads survived this filtering were kept. 794 

PCR duplicates were removed using Picard tool (http://broadinstitute.github.io/picard/) with 795 

default parameters. To ensure that our adapted WASP pipeline removed allelic mapping biases 796 

effectively, we simulated all possible 100bp single end reads spanning SNPs in our LCLs and 797 

aligned them back to the genome using our adapted WASP pipeline. We found no SNPs which 798 

depart from 50/50 mapping ration between reference and alternative allele in these simulations.  799 

We also took steps to remove any potential artifacts due to HindIII polymorphisms. Hi-C 800 

data was obtained by cutting the genome with HindIII, so we reasoned that SNPs or indels that 801 

disrupt existing HindIII sites or create novel HindIII sites could lead to differential cutting of two 802 

alleles and thus the appearance of differential contact frequency. To mitigate these potential 803 

artifacts, we identified all HindIII sites that would be disrupted or created by genetic variants 804 

present in our samples, and removed all reads within 1Kb of these polymorphisms in all 805 

individuals.  806 

2.b. Contact Matrix Calculations. Matrices were generated and normalized as previously 807 

described21,64. Briefly, intra-chromosomal read pairs were divided into 40Kb bin pairs based on 808 

five prime positions. The number of read pairs connecting each pair of 40Kb bins were tallied to 809 

produce contact matrices for each chromosome. Raw counts in the contact matrices were then 810 

normalized using HiCNorm64 to correct for known sources of bias in Hi-C contact matrices (GC 811 

content, mappability, fragment length). Bins that are unmappable (effective fragment length, GC 812 
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content or mappability is 0) were assigned NA values. These normalized matrices were further 813 

quantile normalized across samples to account for differing read depths and mitigate potential 814 

batch effects. One such quantile normalized matrix was generated for each chromosome in 815 

each replicate, as well as in each sample (replicates pooled together). We eliminated 816 

chromosomes X and Y from all downstream analyses due to the gender differences between 817 

our samples. 818 

2.c. PC1 Score. PC1 scores were computed using methods defined previously13. Briefly, 819 

quantile normalized matrices for each chromosome were transformed to Observed/Expected 820 

(O/E) matrices by dividing each entry in the matrix by the expected contact frequency between 821 

regions in that matrix at a given genomic distance. For a given matrix, the expected contact 822 

frequencies were computed by averaging contact frequencies at the same distance in that each 823 

matrix. The O/E matrices were further transformed to Pearson correlation matrices by the “cor” 824 

function in R and eigen vectors (principal components) were computed using the “cov” function 825 

in R. Generally, the first eigenvector (“PC1”) reflects A/B compartmentalization. However, for 826 

some chromosomes we have seen that the second eigenvector sometimes reflects 827 

compartmentalization, while the first eigenvector reflects other features like the two 828 

chromosome arms. To systematically account for this effect, we examined the first three 829 

eigenvectors for each chromosome in each replicate by correlating them with the gene density 830 

(compartmentalization is correlated with gene density, while other properties like chromosome 831 

arms generally are not). We required that PC1 show the highest correlation with gene density 832 

among the first three eigenvectors in every replicate. If this was not the case for a given 833 

chromosome, we eliminated that chromosome from all downstream analyses in all individuals to 834 

be conservative. Six chromosomes were eliminated in this way: chr1, chr9, chr14, chr19, chr21 835 

and chr22. For the chromosomes that passed this filter, the sign of the first eigenvector (which is 836 

arbitrary) was adjusted such that the correlation between PC1 and gene density is positive, and 837 

this positive PC1 values correspond to compartment A. Finally, PC1 tracks were manually 838 

inspected to ensure that they are consistent with expected checkerboard patterns of 839 

compartmentalization. 840 

2.d. Directionality Index. Directionality Index was computed as previously described16. Briefly, 841 

upstream and downstream contacts within 2Mb window for each 40Kb bin were counted, and 842 

chi-square statistics were calculated under equal assumption. The sign of the chi-square 843 

statistics was adjusted such that positive values represent upstream biases. For some bins, 844 

there are more than five NA bins within 2Mb window and DI for those bins are not calculated. As 845 
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noted in the main text, we made a slight variation of these DI scores for the QTL searches in 846 

which DI was recalculated using a window size of 200Kb to capture more local features.  847 

2.e. Insulation Score. Insulation scores were computed as previously described16with some 848 

adjustments. Briefly, contacts linking upstream and downstream 400Kb windows for each 40Kb 849 

bin were calculated in the O/E matrices instead of raw matrices. We further divided the contact 850 

frequency by the average of upstream and downstream 400Kb windows, to account for 851 

differences in contact density across the chromosome. The Insulation Scores were then ranged 852 

from 0 to 1, representing absolute insulation and no insulation respectively. Insulation scores for 853 

bins, for which more than 50% cells in the 400Kb window as NA values, were not computed. For 854 

the QTL search, we also calculated insulation scores using 200Kb window. 855 

2.f. TADs Calling. TADs were called using the same approach as described previously16. DI 856 

values for each 40Kb bins were used to build a Hidden Markov Model and predict the probability 857 

being upstream bias, no bias, and downstream bias. Regions switching from upstream bias to 858 

downstream bias were called as boundaries. 859 

2.g. FIRE. We first calculated FIRE score for each of 20 individuals, as described in our 860 

previous study19. Specifically, we mapped the raw reads to the reference genome hg19 as 861 

described above. Next, we removed all intra-chromosomal reads within 15Kb, and created 40Kb 862 

raw Hi-C contact matrix for each individual for each autosome. For each 40Kb bin, we 863 

calculated the total number of intra-chromosomal reads in the distance range of 15-200Kb. We 864 

then filtered bins as follows, starting from 72,036 autosomal 40Kb bins: First, we removed 40Kb 865 

bins with zero effective fragment size, zero GC content, or zero mappability score64. Next, we 866 

filtered out 40Kb bins within 200Kb of the bins removed in the previous step. We further filtered 867 

out 40Kb bins overlapping with the chr6 MHC region (chr6:28,477,797-33,448,354; hg19), which 868 

has extremely high SNP density that can make it difficult to correct for allelic mapping artifacts. 869 

This left 64,222 40Kb bins for downstream analysis. Next, we applied HiCNormCis19 to remove 870 

systematic biases from local genomic features, including effective fragment size, GC content 871 

and mappability. The normalized total number of cis intra-chromosomal reads is defined as 872 

FIRE score. We further performed quantile normalization across multiple individuals using R 873 

package “preprocessCore”. The final FIRE score is log transformation log2(FIRE score + 1) and 874 

converted into a Z-score to create a mean of 0 and standard deviation of one. To identify 875 

significant FIRE bins in each individual, we used one-sided P-value < 0.05. Ultimately, merging 876 

across all individuals, we identified 6,980 40Kb bins which are FIRE bin in at least one of 12 YRI 877 

individuals. Consistent with our previous findings19, we observed significant enrichment of 878 

GM12878 typical enhancers and super enhancers among these 6,980 40Kb FIRE bins 879 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


27 
 

(Supplemental Figure 1d). GREAT analysis60 further showed immune-related biological 880 

pathways and disease ontologies are enriched in these 6,980 40Kb FIRE bins (Supplemental 881 

Figure 1e). 882 

 883 

3. Comparison of intra-individual vs inter-individual variation. To estimate variability 884 

between replicates, we computed Pearson correlation coefficient for all pairs of biological 885 

replicates for each score (DI, INS, FIRE and PC1). The pairs then can be divided into two 886 

groups based on whether they are from the same individuals as illustrated in Supplemental 887 

Figure 4c. We then tested if the distribution of Pearson correlation coefficients were different 888 

comparing two groups. Similar analysis was performed for contact matrices. For contact 889 

matrices, we calculated Pearson correlation coefficient for each distance and each chromosome 890 

separately as shown in Figure 1c. 891 

 892 

4. Variable regions. 893 

4.a. limma test for variable bins. To test regions that are variable across genomes, we applied 894 

limma47 with default parameters. First, values for each 40Kb bin in hg19 reference genome were 895 

calculated for each metrics tested (DI, FIRE, INS, PC1) as described above. DI, PC1, and INS 896 

scores were calculated based on contact matrices quantile normalized across 40 replicates. 897 

FIRE scores were calculated based on raw counts using HiCNormCis19 and then quantile 898 

normalized across 40 replicates. Second, we filtered out bins that are not testable. Specifically, 899 

FIRE scores were only tested for bins that are FIRE regions (p-value < 0.05) in any of 40 900 

replicates. DI scores were only tested for bins where strong biases are observed (abs(DI) > 901 

10.82757, which correspond to Chi-squared test p-value 0.001) in any of 40 replicates. INS 902 

scores were only tested for bins where strong insulation is observed (z-score transformed INS 903 

score < -1) in any of 40 replicates. No filterers were performed for PC1 scores. Third, we filtered 904 

out any bins that overlapping large SVs (> 10,000 bp) to avoid effect caused by SVs. 905 

Specifically, for FIRE, INS, and DI scores, bins that are within 200Kb, 400Kb, and 2Mb 906 

respectively upstream or downstream of large SVs were removed. For PC1 scores, bins 907 

overlapping large SVs were removed. Lastly, we applied limma standard model with individual 908 

as a fixed factor and eBayes correction. To estimate empirical false positive rate (FDR), we 909 

bootstrapped replicates to calculate the number of false positives in random background. 910 

Briefly, we random selected 40 or 22 replicates with replacement for LCL20 and YRI11 911 

respectively, and identified variable regions as mentioned above. We performed 1,000 912 
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permutations and calculated empirical FDR as the average positive hits in 1,000 permutations 913 

divided by number of hits in real data. 914 

4.b. Normalizing Hi-C contact matrices using BNBC normalization. To directly compare 915 

individual Hi-C contact matrix cells across samples, we sought to remove unwanted per-cell 916 

variation owing to date of processing or other unknown ‘batch’ effects. To this end we 917 

developed Bandwise Normalization and Batch effect Correction (BNBC), described and 918 

evaluated in a separate manuscript (preprint on bioRxiv 919 

https://www.biorxiv.org/content/10.1101/214361v1). A brief description follows. For each 920 

chromosome and for each strata of distance between loci (a matrix “band”, hence the term 921 

“bandwise”), we correct for unwanted variation by taking the log counts-per-million-transformed 922 

values of all samples and generating a matrix whose entries are the observations for that 923 

chromosome’s matrix band across all samples (columns indexes samples and rows indexes 924 

contact matrix cells with anchor bins separated by a fixed distance). We then quantile normalize 925 

this matrix and regress out the impact of known batches (here, date of processing) using 926 

ComBat65 (specifically we correct both mean and variance). This procedure essentially 927 

conditions on genomic distance. We correct the majority of each contact matrix for each 928 

chromosome for each sample: we correct all but the 8 most distal matrix bands, for which we 929 

set all values to 0. The choice of the last 8 bands is empirical and reflects the small number of 930 

observations in each band matrix. The procedure is implemented in the bnbc package available 931 

through Bioconductor (http://www.bioconductor.org/packages/bnbc). Correction of contact 932 

matrices was performed on replicate-level data using the following LCLs:  GM18486 (YRI-1), 933 

GM18505 (YRI-2), GM18507 (YRI-3), GM18508 (YRI-4), GM18516 (YRI-5), GM18522 (YRI-6), 934 

GM19099 (YRI-7), GM19141 (YRI-8), GM19204 (YRI-10), GM19238 (YRI-11), GM19239  (YRI-935 

12), GM19240 (YRI-13), HG00731 (PUR-1), HG00732 (PUR-2), HG00512 (CHS-1), HG00513 936 

(CHS-2). We note that NA19239 (YRI-12) replicate 1 and NA19240 (YRI-13) replicate 2 were 937 

excluded because the BNBC algorithm requires multiple samples from a given experimental 938 

batch to estimate batch effect parameters. 939 

4.c. Identifying biological variability in Hi-C contact matrices. To identify contacts with 940 

significant levels of between-individual variability we employed the following procedure, which 941 

mimics the analysis for INS, DI, FIRE and PC1, on contact matrices normalized by BNBC (see 942 

section 4b). For each contact matrix cell (representing loci separated by less than 28 Mb, this is 943 

a subset of the matrix cells normalized by BNBC) we used a linear model with individual 944 

modeled as a fixed factor, note we have 2 growth replicates for almost every individual. We 945 

used a parametric likelihood ratio test (equivalent to an F-test) to test whether there was 946 
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significant between-individual variation. We used the IHW framework49 with the distance 947 

between anchor bins as informative covariate, to increase power and estimate false discovery 948 

rate. We used a FDR of 10% as significance threshold, resulting in 115,817 contact matrix cells 949 

with significant biological variability across the autosomes. To estimate effect size (depicted in 950 

Figures 2a, 3a and Supplementary Figure S5) we used a linear mixed effect model with 951 

individual as random effect, to decompose the variance into between-individual variability 952 

(biological) and within-individual variability (technical). As the measure of biological variability in 953 

these figures, we used the estimated biological variance. For this analysis, all 16 samples we 954 

normalized using BNBC were used. 955 

4.d. Correlation with other datasets. To examine correlation between 3D genome 956 

organization and other genome features, we reidentified variable regions with the same pipeline 957 

mentioned above using only individuals of which data is available for other gnome features, and 958 

then computed Spearman correlation coefficient between 3D genome metrics (DI, INS, PC1, 959 

and FIRE) and other genome features (RNA-seq, ChIP-seq, and DNase-seq) for each 40Kb bin 960 

that is variable. Signals for each 40Kb bins were calculated by averaging signals for the bin. 961 

Specifically, signals for ChIP-seq were the average signal of all peaks with in the bin, signals for 962 

RNA-seq were the average FPKM of all genes in the bin, and DNase signals were simply 963 

average signal for each base pair in the bin. In some cases, serval consecutive bins were 964 

identified as variable. We only kept the bin with strongest signal for other genome features 965 

among consecutive bins. To generate random backgrounds, we permutated individual labels for 966 

the same set of bins and recomputed Spearman correlation coefficient. 10,000 such 967 

permutations were used to calculate the statistical significance of departure from the null 968 

hypothesis in which the median value of true correlation values and permutated correlation 969 

values are equal. Similar analysis was performed for variable matrix cells with the following 970 

modifications. First, we used the variable matrix cells in the preceding section 4c. Second, to 971 

correlate matrix-cell-level contacts with bin-level DNase and ChIP-seq signals, anchor bins of 972 

variable matrix cells were used. Since each anchor bin may belong to more than one matrix 973 

cells, we only used each bin once and selected the one with the highest Spearman correlation 974 

coefficient. Exactly same approach was performed during permutation to ensure a fair 975 

comparison. 976 

 977 

5. Phasing variants. Phasing of variants was performed based on HaploSeq pipeline43. Briefly, 978 

1) Variants were filtered to keep only bi-allelic SNPs heterozygous in a given individual; 2) 979 

Aligned Hi-C bam files were realigned and recalibrated using GATK 3.4.066 based on SNPs in 980 
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the individual; 3) Filtered SNPs and realigned bam files were then used as input to run 981 

HAPCUT67; 4) Results from HAPCUT were further filtered to keep only the largest haplotype 982 

block and combined with homozygous alt SNPs as input for imputation using Beagle 4.068 using 983 

1000 Genome Phase 3 data excluding individual to phase as reference panel; 5) Results from 984 

Beagle were then combined with results of HAPCUT by removing conflicting phased SNPs. For 985 

all auto chromosomes except 1 and 9 in 18 out 20 individuals, we were able to obtain a single 986 

haplotype block. For chromosome 1 and 9, two arms were phased separately because of large 987 

heterochromatin region surrounding centromere. X chromosome was only phased for female 988 

individuals. We excluded NA19193 and HG00514 from phasing because of the lack of available 989 

high quality of genotypes. We evaluated accuracy of phasing in three probands in trios 990 

(NA19240, NA12878, HG00733) and found phasing results are of very high accuracy 991 

(~97.71%). Specifically, we calculated accuracy as percentage of correctly phased variants 992 

among total phased variants. Only variants whose transmission from parents can be 993 

ambiguously identified were used in calculation of accuracy where at least on parent is 994 

homozygous. Detailed statistics for phasing are listed in Supplemental Table 6. 995 

6. CTCF motif variation and looping strength. GM12878 loops and motif positions were 996 

obtained from Rao et al 201414 997 

(GSE63525_GM12878_primary+replicate_HiCCUPS_looplist_with_motifs.txt.gz; N=9,448 998 

HiCCUPS loops). We limited our analysis to autosomal cis loops in which a CTCF motif in one 999 

of the anchor regions overlaps a SNP (N=572). To evaluate the impact of motif disruption, we 1000 

first identified eight “key” positions in the CTCF PWM (Jaspar MA0139.1)69 in which a single 1001 

base has higher than 0.75 probability. We refer to SNPs at these positions in motif occurrences 1002 

with one allele matching the high-probability base as “motif disrupting SNPs”. We refer to alleles 1003 

matching the consensus base in the motif as strong motif alleles (S), and alleles matching any 1004 

other base as weak motif alleles (W).  There are N=142 loops with a motif disrupting SNP in a 1005 

convergently-oriented CTCF motif, which refer to below as testable loops. For each testable 1006 

loop, we extracted the Hi-C interaction frequency in the loop bin from each LCL, and classified 1007 

as either “WW”, “SW”, or “SS” depending on the individual’s genotype at the corresponding 1008 

motif disrupting SNP. To enable aggregation of data across different SNPs, we set the mean 1009 

“SW” interaction frequency for each SNP to 1 and normalized all values for that SNP 1010 

accordingly. These values are plotted in Figure 4b. In addition, for each testable loop we 1011 

extracted a submatrix including the loop bin as well as 15 bins upstream and 15 bins 1012 

downstream. Submatrices with missing values were discarded. For each SNP, we calculated 1013 

the mean submatrix for each genotype, and then subtracted submatrices to calculate the 1014 
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difference in each matrix cell per “W” allele (i.e. SS-SW and SW-WW). These differences were 1015 

then averaged across all SNPs and plotted in Figure 4c. Submatrices with missing values were 1016 

discarded. For the allelic analysis in S/W heterozygous individuals, we used chromosome-span 1017 

phasing results (see methods section 4) to split the Hi-C reads from each chromosome in each 1018 

LCL into two separate haplotypes.  Specifically, we required at least one base pair overlap with 1019 

phased heterozygous SNPs with high base calling score (>13) and high mapping quality (>20). 1020 

Reads overlapping indels or containing SNPs from both haplotypes were not used. 1021 

Approximately 7.89% of Hi-C reads covered a heterozygous variant and could thus be assigned 1022 

to one of the two haplotypes. The accuracy of haplotype assignment was evaluated by fraction 1023 

of homologous-trans (h-trans) read, which contain SNPs from both haplotypes. On average 1024 

~1% reads were h-trans, suggesting high quality of the assignment. For each testable loop, we 1025 

defined 40Kb windows around the center of each loop anchor region and calculated the number 1026 

of reads connecting these two anchor windows (“loop reads”) on each haplotype. For each 1027 

heterozygous LCL, we then calculated the percentage of loop reads that occur on the haplotype 1028 

containing the S allele at the motif disrupting SNPs anchor. We required that at least 10 total 1029 

loop reads were present for a given loop in a given heterozygous LCL, leading to a total of 218 1030 

data points from 105 different loops for inclusion in Figure 4d.  1031 

 1032 

7. Identification of QTLs. 1033 

7.a. Testable bins. To identify testable bins for FIRE-QTL, DI-QTL, INS-QTL and C-QTL 1034 

searches, we began with 72,036 autosomal 40Kb bins based on reference genome hg19. We 1035 

eliminated “unreliable” bins with effective length, GC content, or mappability equal to zero70
, 1036 

resulting in 66,597 bins remaining. We further removed any 40Kb bins within 200Kb of an 1037 

unreliable bin, resulting in 64,337 40Kb bins. We also removed bins covering the chr6 MHC 1038 

locus (hg19: chr6:28,477,797-33,448,354, which is extremely polymorphic and may lead to 1039 

complex mapping artifacts that are difficult to correct. To eliminate false signals in Hi-C data that 1040 

could arise from large structural variations (SVs), we obtained SVs from the 1000 Genomes 1041 

consortium35 (ftp://ftp-1042 

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/ALL.wgs.integrated_sv_map_v1043 

2.20130502.svs.genotypes.vcf.gz) and removed bins which overlap one or more structural 1044 

variants previously annotated in these individuals (N=123,015 SVs), or within 200Kb of large 1045 

structural variations (>10Kb, N=1,253 SVs). These filtering steps yielded a set of 51,511 1046 

testable bins, which represent a common starting point for FIRE-QTL, DI-QTL, INS-QTL and C-1047 

QTL searches as described below.  1048 
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7.b. Testable SNPs.  We began with a list of 15,765,667 variants among all 20 LCL individuals 1049 

(Supplemental Table 3). We kept 14,177,284 variants among 11 unrelated YRI individuals, 1050 

removed all indels, HindIII site polymorphisms, multi-allelic SNPs, and SNPs with minor allele 1051 

frequency (MAF) < 5%. We also required that remaining SNPs were within the 51,511 testable 1052 

bins described above, and that both alleles were present in at least 2 individuals in the 1053 

discovery set individuals. (N=4,132,791 SNPs remaining). Finally, where multiple SNPs in the 1054 

same bin were in perfect LD among 11 unrelated YRI individuals, we selected one with the 1055 

smallest genomic position (to avoid the introduction of a random selection that would not be 1056 

perfectly reproducible), ultimately yielding 1,304,404 potentially testable SNPs that served as a 1057 

common input set to all QTL searches. 1058 

7.c. Power Calculations. To explore the power of our approach and data, we performed a 1059 

Monte Carlo-based power calculation. Specifically, we varied four variables: (1) the minor allele 1060 

frequency of a variant; (2) the effect size of genotype (a fixed effect); (3) the variability between 1061 

subjects (a random effect); (4) the variability of the residuals. For contact QTLs, we also varied 1062 

the mean of the Hi-C contact frequency in question. For analyses reported, we fixed the number 1063 

of replicates-per-subject to be 2 (consistent with our study design). We explored a variety of 1064 

settings for these parameters to assess power as each variable changes (see Supplemental 1065 

Table 7). Each setting tested was chosen to reflect the distribution of observed values in our 1066 

real Hi-C data. For each configuration of parameters, we performed the following simulation: We 1067 

simulated genotypes by randomly sampling a set of alleles (one allele per subject) from a 1068 

binomial distribution parameterized by the number of subjects and the MAF; we repeated this 1069 

process twice and create per-subject genotypes by adding the results of the sampling of alleles. 1070 

We simulated per-subject random effects, and per-sample residuals. To obtain a given sample's 1071 

simulated Hi-C contact matrix value, we added the mean Hi-C contact matrix value to that 1072 

sample's simulated genotype (multiplied by the pre-specified effect size), the specific subject's 1073 

random intercept and the sample's random residual. After performing this for all samples, we 1074 

then fitted the same LMM model used in our QTL search. We repeated this simulation and 1075 

model fitting process 1,000 times and computed power as the fraction of times the null 1076 

hypothesis that the effect of genotype is equal to 0 is rejected at a nominal p-value of 0.05. 1077 

7.d. FIRE, DI, and INS QTL searches. 7.d.i. FIRE tested bins and SNPs. We limited our FIRE 1078 

QTL search to the subset of testable bins that were called as FIRE in at least one YRI LCL 1079 

(N=5,822 FIRE test bins), and the subset of testable SNPs therein (N=128,137 FIRE test 1080 

SNPs). 7.d.ii. INS tested bins and SNPs. For the INS-QTL search, we examined 328,530 test 1081 

SNPs with 12,976 variable INS bins (see methods section 4a). 7.d.iii. DI tested bins and 1082 
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SNPs. For the DI-QTL search, we examined 181,950 test SNPs with 7,590 variable DI bins 1083 

((see methods section 4a). For the DI-QTL search, we further classified each DI bin based on 1084 

which whether it showed stronger upstream or downstream bias, because we saw a Simpson’s 1085 

paradox when we considered them together (see discussion above, Supplemental Figure 10b). 1086 

This was done as follows: for each bin we evaluated the DI score in each of 11 unrelated YRIs 1087 

and identified the DI score among these individuals with the largest absolute value. We defined 1088 

a bin as “upstream DI bias” if the DI score with the highest absolute value was positive, or 1089 

“downstream DI bias”, if the DI score with the highest absolute value was negative. Only 1090 

37/7,590 bins (0.4%) had individuals with both positive and negative DI. 7.d.iv. LMM QTL 1091 

searches. For each test SNP, we identified the 40Kb bin it belongs to, and fitted a linear mixed 1092 

effect model, using FIRE, DI (200Kb window; see section 2d), or INS score (200Kb window; see 1093 

section 2e) in each biological replicate as the response variable and genotype of that testable 1094 

SNP as the explanatory variable. Since two biological replicates from the same individuals are 1095 

correlated included an individual-specific random effect to account for within-individual 1096 

correlation. We used the R package “nlme” and R function “gls” to fit the linear mixed effect 1097 

model. The quantile-quantile plots (QQplot) showed only minor genomic inflation (median p-1098 

value = 0.4821, lambda = 1.0864 for FIRE-QTLs; median p-value = 0.4864, lambda = 1.0649 for 1099 

upstream-biased DI-QTLs; median p-value = 0.4828, lambda = 1.0826 for downstream-biased 1100 

DI-QTLs; median p-value = 0.4865, lambda = 1.0646 for INS-QTLs). The linear mixed effect 1101 

model identified 476, 315, 315, and 1,092 SNPs with false discovery rate (FDR) less than 0.20 1102 

for FIRE, upstream-biased DI, downstream-biased DI and INS, respectively. When more than 1103 

one SNP in the same bin was identified, we selected the SNP with lowest p-value among them 1104 

to be included in the final QTL sets. After this filtering, we ended up with 387 candidate FIRE-1105 

QTLs, 268 candidate upstream-biased DI-QTLs, 277 downstream-biased DI-QTLs, and 911 1106 

candidate INS-QTLs. As a control for each of these QTL searches, we randomly shuffled the 1107 

score in question (i.e. FIRE, DI, or INS) among all 11 YRI individuals and performed QTL 1108 

searches on this permuted data. In each of these tests, we found no SNPs associated with the 1109 

permuted scores at FDR < 0.20.  1110 

7.e. C-QTL search. To find QTLs affecting Hi-C contact strength we first identified 115,187 Hi-C 1111 

contact matrix cells exhibiting substantial biological variability as described in section 4b, and 1112 

constrained our QTL search to these cells. We then intersected these contact cells with 1113 

1,304,404 testable SNPs by requiring a SNP to sit in one anchor bin of one of these variable 1114 

matrix cells. We also filtered out matrix cells to ensure both anchor bins of the matric cell are 1115 

among 51,511 testable bins. In total, we obtained 3,109,039 tests involving 687,655 SNPs and 1116 
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54,880 matrix cells on all 22 autosomes. For each test, we used the BNBC normalized data 1117 

described in section 4, but used only the 11 unrelated YRI individuals with genotypes available 1118 

and fit a linear mixed effect model in which genotype is a fixed effect and subject is a random 1119 

intercept. We then used “lmerTest” package in R to estimate p-values for the fixed effect of 1120 

genotype71. We used the IHW framework49 to estimate FDR, with the distance between anchor 1121 

bins as an informative covariate, and call any matrix cell with FDR < 0.2 as significant. We 1122 

further filtered significant tests by selecting the most significant SNPs per matrix cell and kept 1123 

the leftmost SNPs among SNPs in perfect LD in two anchor bins of the matrix cell. After filtering, 1124 

we ended up with 463 tests involving 345 SNPs and 463 matrix cells. To make the aggregate 1125 

contact plots in Figure 4g, we recoded the genotypes based on the direction of effect such that 1126 

0, 1, 2 refer to the genotypes containing 0, 1 or 2 alleles associated with the increased 1127 

phenotype, respectively. Next, to avoid aggregating the same submatrix multiple times, we 1128 

filtered by 1) selecting only the most significant matrix cell associated with each QTL, 2) 1129 

selecting only the most significant QTL associated with each anchor bin (in some cases the 1130 

same bin anchors multiple matrix cells associated with different QTL SNPs). This filtering left 1131 

165 unique matrix cell QTL interactions for plotting. For each matrix cell, we then extracted a 1132 

submatrix including 25 bins upstream and 25 bins downstream. Submatrices with missing 1133 

values were discarded. For each QTL, we then calculated the mean submatrix values for each 1134 

genotype, and then subtracted submatrices to calculate the difference in interaction frequency 1135 

between the 1 and 0 genotypes, and between the 1 and 2 genotypes. These differences were 1136 

then averaged across QTLs and plotted in Figure 4g 1137 

7.f. Validation of QTLs in additional individuals. Our validation set included six unrelated 1138 

individuals not included in the discovery set: NA12878, NA19240, HG00512, HG00513, 1139 

HG00731 and HG00732. For each QTL, we collected the genotype among six additional 1140 

individuals, and the corresponding FIRE, DI, or INS scores. Note that a small fraction of QTLs 1141 

have missing genotypes in these six individuals (coded as “-1”), and these missing data points 1142 

were eliminated from validation analysis. We examined the distributions of scores for each 1143 

genotype. For each QTL type (i.e. FIRE, DI, or INS), we found that the same direction of effect 1144 

observed in the discovery set is observed on average in the validation set. To assess the 1145 

significance of this observation, we approximated the null expectation as follows. For FIRE-1146 

QTLs, for example, we started from all 128,137 FIRE test SNPs and 5,822 FIRE test bins. Note 1147 

that in our discovery set, we identified 387 FIRE-QTLs, each in a different 40Kb bin. To create a 1148 

random control SNP group, we first randomly selected 387 40Kb bins from all 5,822 FIRE test 1149 

bins. Next, within each select bin, we randomly selected one SNP, and combined all these 387 1150 
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selected SNPs into a control SNP group.  We then tested their SNP effect on the six additional 1151 

individuals. We repeated such sampling with replacement 1,000 times, to create a null 1152 

distribution of positive and negative SNP effect, respectively. We performed the same type of 1153 

permutations for DI, INS. Similar analysis was performed for C-QTLs with a few modifications. 1154 

First, we only used replicates from NA19420, HG00512, HG00513, HG00731 and HG00732 as 1155 

explained in methods section 4. Second, 1,000 random permutations were performed by 1156 

sampling matrix cells instead of bins. Third, we used values of biological replicates separately 1157 

instead of as merged data because the BNBC normalization is performed at the level of 1158 

replicates. 1159 

7.g. Examining epigenetic variation at FIRE, DI, INS, and C-QTLs. To examine epigenetic 1160 

variation at 3D genome QTLs, we re-analyzed DNase-seq data from 59 LCLs38, histone 1161 

modification ChIP-Seq data (H3K27ac, H3K4me1 and H3K4me3) for 65 LCLs39, and CTCF 1162 

ChIP-seq data from 11 LCLs54. These data were re-mapped using the WASP pipeline to control 1163 

for allelic mapping artifacts and calculating the signal in 40kb bins as described above in section 1164 

3.b. We examined the effect of genotype at FIRE, DI, INS or C-QTLs on DNase-seq and ChIP-1165 

seq signal by linear regression. As a control, we randomly selected the matched number of 1166 

SNPs with the same approach described in section 7.f and re-did such validation analysis. We 1167 

repeated such random sample 1,000 times to create the empirical null distribution of no genetic 1168 

effect. For C-QTLs, we used the sum of epigenetic features in two anchor bins to calculate 1169 

correlation with contact frequency. 1170 

 1171 

8. Nominal fraction analyses. 1172 

8.a. Comparing between 3D chromatin QTL types. To compare between different 3D 1173 

chromatin QTLs, we took the raw test results for each QTL set and projected other 3D QTLs 1174 

into the test results. For example, in Figure 4j we selected subset of SNPs that are DI-QTLs and 1175 

plotted them (dark green dots) using p-values from FIRE-QTLs along with all tested in the FIRE-1176 

QTL search (black dots). We also used all tested SNPs in the DI-QTL search (light green dots) 1177 

as a control set. To assign significance to the overlap, we compared the fraction of SNPs with 1178 

nominal significance (p-value<0.05) in each set: 1) DI-QTL tested SNPs that were not significant 1179 

QTLs, and 2) DI-QTLs. We calculated p-values for this comparison by Chi-square test. To rule 1180 

out the effect of sampling bias when selecting a small number of SNPs, we also performed 1181 

permutation. In each permutation, we randomly selected the same number of SNPs as the real 1182 

QTL set (from the full set of tested SNPs) and calculated the fraction with nominal significance. 1183 

We then computed bootstrap p-values using 10,000 such permutations under the null 1184 
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hypothesis that the fraction of nominal significance is the same between QTLs and random 1185 

selected SNPs. For C-QTLs, one SNP may be tested against multiple matrix cells, so we only 1186 

keep the most significant p-value for each SNP to avoid biases towards SNPs with multiple 1187 

tests. 1188 

8.b. Comparing 3D chromatin QTLs to other molQTLs. Similar approaches were used to 1189 

assess overlap between 3D chromatin QTLs and other molQTLs. We obtained full test results 1190 

(all tested SNPs with the p-values) from previous molQTL studies and projected 3D chromatin 1191 

QTLs into those test results. We the calculated fraction of nominal significance and used chi-1192 

square test to evaluate significance between 3D-QTLs and non-3D-QTLs. Similarly, we 1193 

performed bootstrap to estimate significance empirically. One modification is that we extended 1194 

our QTL sets by incorporating all SNPs in perfect LD with the same 40Kb bin because we may 1195 

not use the same tagging SNP in our study as used in other studies. To ensure a fair 1196 

comparison, we performed the same extension for the control sets of all tested SNPs. 1197 

8.c. Comparing 3D chromatin QTLs to GWAS. Comparison with the GWAS results was 1198 

performed in the same manner as described above in 8.b. for other molQTLs. Instead of test 1199 

results for other molQTLs, we used summary statistics from previous GWAS.  1200 

 1201 

9. FISH. 1202 

9.a. Cell preparation for FISH. Approximately 100,000 cells were adhered to center of PDL-1203 

coated coverslips (Neuvitro, GG-22-15-PDL) by placing 100 uL of cells at 1 x 106 cells/mL. Cells 1204 

on coverslips were incubated for an hour at 37°C, carefully washed with PBS, and fixed with 4% 1205 

paraformaldehyde in 1X PBS for 10 mins. PFA was quenched with 0.1 M Tris-Cl, pH 7.4 for 10 1206 

mins, washed with PBS, and stored in 1X PBS at 4°C for up to 1 month.  1207 

9.b. BAC probe labeling and preparation. All BAC clones were ordered from the BACPAC 1208 

Resource Center at the Children's Hospital Oakland Research Institute: “U” probe is RP11-1209 

74P5, “C” probe is RP11-337N12, and “D” probe is RP11-248M23. BAC DNAs were labeled 1210 

with either Chromatide Alexa Fluor 488-5 dUTP (Invitrogen, C-11397) or Alexa Fluor 647-aha-1211 

dUTP (Invitrogen, A32764) using nick-translation kit (Roche, 10976776001), and incubated in 1212 

15°C for 4 hours. The nick-translation reaction was deactivated using 1 uL of 0.5 M EDTA, pH 1213 

8.0 and heated for 10 mins at 65°C. The probes were then purified using illustra ProbeQuant G-1214 

50 Micro Columns (GE Healthcare, 28903408) and eluted to a concentration of 20 ng/uL. 1215 

Probes were mixed with Human Cot-1 DNA (Invitrogen, 15279011) and salmon sperm 1216 

(Invitrogen, 15632011), and precipitated with 1/10th volume of 3M sodium acetate, pH 5.2 and 1217 

2.5 volume of absolute ethanol for at least 2 hours at -20°C. Probes were then spun down, 1218 
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washed with cold 70% ethanol, resuspended in formamide and 40% dextran sulfate in 8X SSC, 1219 

and incubated at 55°C.  1220 

9.c. Hybridization. Cells on coverslips were blocked with 5% BSA and 0.1% triton-X 100 in 1221 

PBS for 30 mins at 37°C, and washed twice with 0.1% triton-X 100 in PBS for 10 mins each with 1222 

gentle agitation at room temperature. Cells were permeabilized with 0.1% saponin and 0.1% 1223 

triton-X 100 in PBS for 10 mins at room temperature. Next, they were incubated in 20% glycerol 1224 

in PBS for 20 mins, freeze-thawed three times with liquid nitrogen, and incubated in 0.1M 1225 

hydrogen chloride at room temperature for 30 mins. Cells were further blocked for 1 hour at 1226 

37°C in 3% BSA and 100 ug/mL RNase A in PBS. Cells were permeabilized again with 0.5% 1227 

saponin and 0.5% triton-X 100 in PBS for 30 mins at room temperature. Lastly, they were rinsed 1228 

with 1X PBS and washed with 2X SSC for 5 mins. For hybridization of probes, the prepared 1229 

probes were denatured at 73°C for 5 mins in water bath. Cells were denatured in a two-step 1230 

process in a 73°C water bath: 2.5 mins in 70% formamide in 2X SSC and 1 min in 50% 1231 

formamide in 2X SSC. Denatured probes were transferred onto microscope slides, and 1232 

coverslips were placed on top with cell-side facing down. The coverslips were sealed with 1233 

rubber cement and incubated overnight at 37°C in a dark, humid chamber. Next day, coverslips 1234 

were carefully removed and transferred onto a 6-well plate. Cells were washed at 37°C with 1235 

gentle agitation, twice with 50% formamide in 2X SSC for 15 mins and three times with 2X SSC 1236 

for 5 mins. The cells were then stained with DAPI (Invitrogen, D1306), mounted on microscope 1237 

slides with ProLong Gold Antifade Mountant (Invitrogen, P36930), sealed with nail polish, and 1238 

imaged.  1239 

9.d. Microscope and analysis. Images were acquired with DeltaVision RT Deconvolution 1240 

Microscope at UC San Diego’s department of neuroscience (acquired with award NS047101). 1241 

Captured images were processed using the TANGO72 plugin in ImageJ for quantitative analysis. 1242 

Each FISH experiment contained two probes labeled with different color dyes (either U-C or C-1243 

D). We limited our analysis to nuclei containing 2 labeled foci for each color (4 total foci), 1244 

allowing us to more confidently distinguish foci in cis from those in trans. Distances were 1245 

measured from the center of one color focus to the center of the closest focus of the other color. 1246 

 1247 

10. Re-analysis of public datasets 1248 

10.a. Analysis of ChIP-seq data from Kasowski et al and McVicker et al. Raw fastq files 1249 

were downloaded from SRA database for each experiment (SRP030041 and SRP026077, 1250 

respectively). Reads were aligned to hg19 reference genome using BWA MEM (Kasowski) or 1251 

BWA ALN63 v0.7.8 (McVicker) with WASP pipeline45 to eliminate allelic mapping bias. Only 1252 
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reads with high mapping quality (>10) were kept. PCR duplicates were removed using Picard 1253 

tools v1.131 (http://broadinstitute.github.io/picard). MACS273 v2.2.1 was then used to call peaks 1254 

using corresponding input files. For CTCF and SA1, default parameters were used for MACS2. 1255 

For H3K27ac, H3K4me1, and H3K4me3, peak calling was done using “--nomodel” parameter 1256 

because we do not expect sharp peaks for histone modifications. For H3K27me3 and 1257 

H3K36me3, peak calling was done using “--nomodel --broad” parameter. Bigwig files were 1258 

generated by MACS2 using fold enrichment for viewing in genome browser. All Kasowski data 1259 

were processed in pair-end mode and both replicates were merged for analysis. All McVicker 1260 

data were processed in single-end mode, and the pooled input data were used for all samples 1261 

because there are no individual input files.  To compute signals in peaks, we used a set of 1262 

merged peaks across all individuals for each mark.  1263 

10.b. Analysis of RNA-seq data from Kasowski et al. Raw fastq files were downloaded from 1264 

SRA database (SRP030041). Reads were aligned to hg19 reference genome using STAR74 1265 

v2.4.2a with the WASP pipeline in pair-end mode to eliminate allelic mapping bias. Gencode75 1266 

v24 annotation was used to construct STAR index and computing FPKM. Only uniquely mapped 1267 

reads were kept. Cufflinks76 v2.2.1 was applied to compute FPKM values. Both replicates were 1268 

merged for analysis. 1269 

10.c. Analysis of DNase-seq data from Degner et al. Raw fastq files were downloaded from 1270 

SRA database for each experiment (SRP007821). Reads were aligned to hg19 reference 1271 

genome using BWA ALN with the WASP pipeline in single-end mode to eliminate allelic 1272 

mapping bias. Only reads with high mapping quality (>10) were kept. PCR duplicates were 1273 

removed using Picard tools. Bigwig files were generated using makeUCSCfile commands in 1274 

homer tools77 v4.9.1. 1275 

10.d. Analysis of ChIP-seq data from Ding et al. Raw fastq files were downloaded from SRA 1276 

database for each experiment (SRP004714). Reads were aligned to hg19 reference genome 1277 

using BWA MEM v0.7.8 with the WASP pipeline to eliminate allelic mapping bias. Only reads 1278 

with high mapping quality (>10) were kept. PCR duplicates were removed using Picard tools. 1279 

We performed quality control for CTCF ChIP-seq data by FRIP (Fraction of Reads In Peaks) 1280 

and used datasets with FRIP > 10. Bigwig files were generated using bamCoverage commands 1281 

in deepTools78 v2.3.3. To compute signals in peaks, we used the merged CTCF peaks from 1282 

Kasowski data.  1283 

10.e. Analysis of ChIP-seq data from Grubert et al. Bigwig files and peaks for H3K27ac, 1284 

H3K4me1 and H3K4me3 were downloaded from GEO database (GSE62742). Peaks for each 1285 

mark were merged and then used to compute the averaged signal. 1286 
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 1287 

DATA AVAILABILITY 1288 

  1289 

All raw sequencing data and many processed data files are available through NCBI's Gene 1290 

Expression Omnibus (GEO) (GSE128678), as well as through the 4D Nucleome data portal 1291 

(https://data.4dnucleome.org). Additional processed data not provided above in supplement, as 1292 

well as code, are available on the Ren lab’s website at 1293 

http://renlab.sdsc.edu/renlab_website//download/iqtl/, or by request.  1294 

 1295 

ACKNOWLEDGEMENTS 1296 

 1297 

This work was supported by NIH grant U54DK107977 to B.R. and M.H. D.U.G. was supported 1298 

by fellowships from the A.P. Giannini Foundation and the NIH Institutional Research and 1299 

Academic Career Development Awards (IRACDA) program. The authors would like to 1300 

acknowledge members of the Ren lab, and Dr. Graham McVicker for important discussions and 1301 

feedback during preparation of this manuscript. B.R. is co-founder and share holder 1302 

of Arima Genomics. A.D.S. is employee and share holder of Arima Genomics. 1303 

 1304 

REFERENCES 1305 

 1306 

1 Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and 1307 
pluripotency. Cell Stem Cell 14, 762-775, doi:10.1016/j.stem.2014.05.017 (2014). 1308 

2 Dekker, J. & Mirny, L. The 3D Genome as Moderator of Chromosomal Communication. 1309 
Cell 164, 1110-1121, doi:10.1016/j.cell.2016.02.007 (2016). 1310 

3 Bouwman, B. A. & de Laat, W. Getting the genome in shape: the formation of loops, 1311 
domains and compartments. Genome Biol 16, 154, doi:10.1186/s13059-015-0730-1 1312 
(2015). 1313 

4 Pope, B. D. et al. Topologically associating domains are stable units of replication-timing 1314 
regulation. Nature 515, 402-405, doi:10.1038/nature13986 (2014). 1315 

5 Dileep, V. et al. Topologically associating domains and their long-range contacts are 1316 
established during early G1 coincident with the establishment of the replication-timing 1317 
program. Genome Res 25, 1104-1113, doi:10.1101/gr.183699.114 (2015). 1318 

6 Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to 1319 
spread across the X-chromosome*. Science 341, 1237973, 1320 
doi:10.1126/science.1237973 (2013). 1321 

7 Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage 1322 
compensation. Nature 523, 240-244, doi:10.1038/nature14450 (2015). 1323 

8 Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. 1324 
Nature 535, 575-579, doi:10.1038/nature18589 (2016). 1325 

9 Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol 16, 1326 
152, doi:10.1186/s13059-015-0728-8 (2015). 1327 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


40 
 

10 Lukas, J., Lukas, C. & Bartek, J. More than just a focus: The chromatin response to DNA 1328 
damage and its role in genome integrity maintenance. Nat Cell Biol 13, 1161-1169, 1329 
doi:10.1038/ncb2344 (2011). 1330 

11 Marnef, A. & Legube, G. Organizing DNA repair in the nucleus: DSBs hit the road. Curr 1331 
Opin Cell Biol 46, 1-8, doi:10.1016/j.ceb.2016.12.003 (2017). 1332 

12 Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. 1333 
Science 295, 1306-1311, doi:10.1126/science.1067799 (2002). 1334 

13 Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals 1335 
folding principles of the human genome. Science 326, 289-293, 1336 
doi:10.1126/science.1181369 (2009). 1337 

14 Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals 1338 
principles of chromatin looping. Cell 159, 1665-1680, doi:10.1016/j.cell.2014.11.021 1339 
(2014). 1340 

15 Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol Cell 49, 773-782, 1341 
doi:10.1016/j.molcel.2013.02.011 (2013). 1342 

16 Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of 1343 
chromatin interactions. Nature 485, 376-380, doi:10.1038/nature11082 (2012). 1344 

17 Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin Domains: The Unit of Chromosome 1345 
Organization. Mol Cell 62, 668-680, doi:10.1016/j.molcel.2016.05.018 (2016). 1346 

18 Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation 1347 
centre. Nature 485, 381-385, doi:10.1038/nature11049 (2012). 1348 

19 Schmitt, A. D. et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active 1349 
Regions in the Human Genome. Cell Rep 17, 2042-2059, 1350 
doi:10.1016/j.celrep.2016.10.061 (2016). 1351 

20 Yan, J. et al. in Cell Res Vol. 28    387 (2018). 1352 
21 Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. 1353 

Nature 518, 331-336, doi:10.1038/nature14222 (2015). 1354 
22 Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948-953, 1355 

doi:10.1126/science.1236083 (2013). 1356 
23 Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain 1357 

formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112, E6456-1358 
6465, doi:10.1073/pnas.1518552112 (2015). 1359 

24 Rao, S. S. P. et al. Cohesin Loss Eliminates All Loop Domains. Cell 171, 305-320.e324, 1360 
doi:10.1016/j.cell.2017.09.026 (2017). 1361 

25 Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in 1362 
human cells. Nature 503, 290-294, doi:10.1038/nature12644 (2013). 1363 

26 Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters 1364 
higher-order genome architecture. Proc Natl Acad Sci U S A 113, E4504-4512, 1365 
doi:10.1073/pnas.1609643113 (2016). 1366 

27 Greenwald, W. W. et al. Subtle changes in chromatin loop contact propensity are 1367 
associated with differential gene regulation and expression. Nat Commun 10, 1054, 1368 
doi:10.1038/s41467-019-08940-5 (2019). 1369 

28 Krijger, P. H. & de Laat, W. Regulation of disease-associated gene expression in the 3D 1370 
genome. Nat Rev Mol Cell Biol 17, 771-782, doi:10.1038/nrm.2016.138 (2016). 1371 

29 Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic 1372 
rewiring of gene-enhancer interactions. Cell 161, 1012-1025, 1373 
doi:10.1016/j.cell.2015.04.004 (2015). 1374 

30 Franke, M. et al. Formation of new chromatin domains determines pathogenicity of 1375 
genomic duplications. Nature 538, 265-269, doi:10.1038/nature19800 (2016). 1376 

31 Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome 1377 
neighborhoods. Science 351, 1454-1458, doi:10.1126/science.aad9024 (2016). 1378 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


41 
 

32 Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant 1379 
gliomas. Nature 529, 110-114, doi:10.1038/nature16490 (2016). 1380 

33 Smemo, S. et al. Obesity-associated variants within FTO form long-range functional 1381 
connections with IRX3. Nature 507, 371-375, doi:10.1038/nature13138 (2014). 1382 

34 Visser, M., Kayser, M. & Palstra, R. J. HERC2 rs12913832 modulates human 1383 
pigmentation by attenuating chromatin-loop formation between a long-range enhancer 1384 
and the OCA2 promoter. Genome Res 22, 446-455, doi:10.1101/gr.128652.111 (2012). 1385 

35 Auton, A. et al. A global reference for human genetic variation. Nature 526, 68-74, 1386 
doi:10.1038/nature15393 (2015). 1387 

36 Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin 1388 
structure, and transcription. Science 342, 744-747, doi:10.1126/science.1242463 (2013). 1389 

37 Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional 1390 
variation in humans. Nature 501, 506-511, doi:10.1038/nature12531 (2013). 1391 

38 Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human 1392 
expression variation. Nature 482, 390-394, doi:10.1038/nature10808 (2012). 1393 

39 Grubert, F. et al. Genetic Control of Chromatin States in Humans Involves Local and 1394 
Distal Chromosomal Interactions. Cell 162, 1051-1065, doi:10.1016/j.cell.2015.07.048 1395 
(2015). 1396 

40 McVicker, G. et al. Identification of genetic variants that affect histone modifications in 1397 
human cells. Science 342, 747-749, doi:10.1126/science.1242429 (2013). 1398 

41 Banovich, N. E. et al. Methylation QTLs are associated with coordinated changes in 1399 
transcription factor binding, histone modifications, and gene expression levels. PLoS 1400 
Genet 10, e1004663, doi:10.1371/journal.pgen.1004663 (2014). 1401 

42 Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 1402 
750-752, doi:10.1126/science.1242510 (2013). 1403 

43 Selvaraj, S., J, R. D., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction 1404 
using proximity-ligation and shotgun sequencing. Nat Biotechnol 31, 1111-1118, 1405 
doi:10.1038/nbt.2728 (2013). 1406 

44 The International HapMap Project. Nature 426, 789-796, doi:10.1038/nature02168 1407 
(2003). 1408 

45 van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific 1409 
software for robust molecular quantitative trait locus discovery. Nat Methods 12, 1061-1410 
1063, doi:10.1038/nmeth.3582 (2015). 1411 

46 Stark, A. L. et al. Population differences in the rate of proliferation of international 1412 
HapMap cell lines. Am J Hum Genet 87, 829-833, doi:10.1016/j.ajhg.2010.10.018 1413 
(2010). 1414 

47 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing 1415 
and microarray studies. Nucleic Acids Res 43, e47, doi:10.1093/nar/gkv007 (2015). 1416 

48 Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer 1417 
genomes. Nat Genet 50, 1388-1398, doi:10.1038/s41588-018-0195-8 (2018). 1418 

49 Ignatiadis, N., Klaus, B., Zaugg, J. B. & Huber, W. Data-driven hypothesis weighting 1419 
increases detection power in genome-scale multiple testing. Nat Methods 13, 577-580, 1420 
doi:10.1038/nmeth.3885 (2016). 1421 

50 Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene 1422 
expression in human cells. Proc Natl Acad Sci U S A 111, 996-1001, 1423 
doi:10.1073/pnas.1317788111 (2014). 1424 

51 Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain 1425 
architecture. EMBO J 32, 3119-3129, doi:10.1038/emboj.2013.237 (2013). 1426 

52 Tang, Z. et al. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin 1427 
Topology for Transcription. Cell 163, 1611-1627, doi:10.1016/j.cell.2015.11.024 (2015). 1428 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


42 
 

53 Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. 1429 
Science 352, 600-604, doi:10.1126/science.aad9417 (2016). 1430 

54 Ding, Z. et al. Quantitative genetics of CTCF binding reveal local sequence effects and 1431 
different modes of X-chromosome association. PLoS Genet 10, e1004798, 1432 
doi:10.1371/journal.pgen.1004798 (2014). 1433 

55 Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association 1434 
studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005-1435 
d1012, doi:10.1093/nar/gky1120 (2019). 1436 

56 de Lange, K. M. et al. Genome-wide association study implicates immune activation of 1437 
multiple integrin genes in inflammatory bowel disease. Nat Genet 49, 256-261, 1438 
doi:10.1038/ng.3760 (2017). 1439 

57 Wood, A. R. et al. Defining the role of common variation in the genomic and biological 1440 
architecture of adult human height. Nat Genet 46, 1173-1186, doi:10.1038/ng.3097 1441 
(2014). 1442 

58 Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity 1443 
biology. Nature 518, 197-206, doi:10.1038/nature14177 (2015). 1444 

59 Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934-1445 
947, doi:10.1016/j.cell.2013.09.053 (2013). 1446 

60 McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. 1447 
Nat Biotechnol 28, 495-501, doi:10.1038/nbt.1630 (2010). 1448 

61 Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell 1449 
types. Nature 473, 43-49, doi:10.1038/nature09906 (2011). 1450 

62 Ernst, J. & Kellis, M. in Nat Methods Vol. 9    215-216 (2012). 1451 
63 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.  1452 

(2013). 1453 
64 Hu, M. et al. HiCNorm: removing biases in Hi-C data via Poisson regression. 1454 

Bioinformatics 28, 3131-3133, doi:10.1093/bioinformatics/bts570 (2012). 1455 
65 Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression 1456 

data using empirical Bayes methods. Biostatistics 8, 118-127, 1457 
doi:10.1093/biostatistics/kxj037 (2007). 1458 

66 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing 1459 
next-generation DNA sequencing data. Genome Res 20, 1297-1303, 1460 
doi:10.1101/gr.107524.110 (2010). 1461 

67 Bansal, V. & Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype 1462 
assembly problem. Bioinformatics 24, i153-159, doi:10.1093/bioinformatics/btn298 1463 
(2008). 1464 

68 Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-1465 
data inference for whole-genome association studies by use of localized haplotype 1466 
clustering. Am J Hum Genet 81, 1084-1097, doi:10.1086/521987 (2007). 1467 

69 Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W. W. & Lenhard, B. JASPAR: an 1468 
open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids 1469 
Res 32, D91-94, doi:10.1093/nar/gkh012 (2004). 1470 

70 Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic 1471 
biases to characterize global chromosomal architecture. Nat Genet 43, 1059-1065, 1472 
doi:10.1038/ng.947 (2011). 1473 

71 Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in 1474 
Linear Mixed Effects Models. 82, 1475 
doi:https://www.jstatsoft.org/index.php/jss/article/view/v082i13 (2017). 1476 

72 Ollion, J., Cochennec, J., Loll, F., Escudé, C. & Boudier, T. in Bioinformatics Vol. 29    1477 
1840-1841 (2013). 1478 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


43 
 

73 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137, 1479 
doi:10.1186/gb-2008-9-9-r137 (2008). 1480 

74 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, 1481 
doi:10.1093/bioinformatics/bts635 (2013). 1482 

75 Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE 1483 
Project. Genome Res 22, 1760-1774, doi:10.1101/gr.135350.111 (2012). 1484 

76 Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals 1485 
unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 1486 
28, 511-515, doi:10.1038/nbt.1621 (2010). 1487 

77 Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime 1488 
cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-1489 
589, doi:10.1016/j.molcel.2010.05.004 (2010). 1490 

78 Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible 1491 
platform for exploring deep-sequencing data. Nucleic Acids Res 42, W187-191, 1492 
doi:10.1093/nar/gku365 (2014). 1493 

 1494 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


a
GM18486

(YRI-1)

GM18505
(YRI-2)

GM18507
(YRI-3)

GM18508
(YRI-4)

RefSeq
LCL H3K27ac

3.0

0.5
3.0

0.5
3.0

0.5
3.0

0.5

YRI-1

YRI-2

YRI-3

YRI-4

FI
R

E

30

-30

30

-30
30

-30
30

-30

YRI-1

YRI-2

YRI-3

YRI-4

D
I

2.0

0.5

2.0

0.5
2.0

0.5

2.0

0.5

YRI-1

YRI-2

YRI-3

YRI-4

IN
S

0.05

-0.05
0.05

-0.05
0.05

-0.05
0.05

-0.05

YRI-1

YRI-2

YRI-3

YRI-4

PC
1

2Mb

75

0

90

0

74

0

88

0

b

c

d

0.85

0.90

0.95

1.00

Pe
ar

so
n 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Individuals:

p=2.42e−07

w
ith

in

be
tw

ee
n

PC1
p=1.63e−07

w
ith

in

be
tw

ee
n

INS
p=3.3e−07

w
ith

in

be
tw

ee
n

DI
p=0.0157

w
ith

in

be
tw

ee
n

FIRE

contact distance (Mb, log10 scale)

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
contact distance (Mb)

−l
og

10
(p

)
w

ith
in

 v
s 

be
tw

ee
n 

in
dv

s
Pe

ar
so

n 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

be
tw

ee
n 

H
i-C

 m
at

ric
es

0.2

0.4

0.6

0.8

0.1 1.0 10.0

within
between

Individuals:

0.1 1.0
0.6

0.8

chr8:125,040,000-132,560,000

Figure 1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
is

ta
nc

e 
(µ

M
)

p=0.017 p=1.7e-5

Center to Upstream

YRI-3
YRI-5

YRI-4
YRI-8

YRI-3
YRI-5

YRI-4
YRI-8

Center to Downstream

b

e

Low

Low

High

High

Upsteam Center

YR
I-3

YR
I-4

Center Downstream upstream
contact
skew

High

Low

Metric
Testable

bins
Variable regions

(FDR 0.1)

DI
FIRE
INS
PC1

17,178
7,276

15,387
52,328

2,318
1,993
2,485
7,732

d

FIRE

PC1

INS

DI FIRE PC1c

ns
2

14

-log10(p)

GM19141
(YRI-8)

33

0

GM18507
(YRI-3)

32

0

GM18516
(YRI-5)

40

0

GM18508
(YRI-4)

43

0

1Mb

1 Mb

Upsteam
(U)

Center 
(C)

Downstream
(D)BAC Probes

Zoom in

Rep1
Rep2

Merge

30
-30
30

-30
30

-30

YR
I-3

Rep1
Rep2

Merge

30
-30
30

-30
30

-30

YR
I-5

Rep1
Rep2

Merge

30
-30
30

-30
30

-30

YR
I-4

Rep1
Rep2

Merge

30
-30
30

-30
30

-30

YR
I-8

Variable DI,
11 YRI LCLs

Variable DI,
20 LCLs

upstream
contact
skew

NR2F2-AS1
NR2F2-AS1
NR2F2-AS1

NR2F2
NR2F2
NR2F2

MIR1469
NR2F2

SPATA8-AS1
SPATA8-AS1

SPATA8
SPATA8
SPATA8
SPATA8

LINC02254LINC01197
LINC00924
LINC00924

RefSeq
genes

Biological
variability

0.184

0.000

Variable cells
(IHW-FDR < 0.1)

var
ns

2e-16 2e-16

2e-16

6e-10

8e-14 1e-2

f

fr
ac

tio
n 

of
 m

at
rix

ce
lls

 (l
og

2)

interaction
distance (Mb)

0 1 2 3 4 5

-5

-12

all 
matrix
cells

variable
matrix
cells

g
variable matrix cell anchor bins

overlap

p-value

DI FIRE PC1INS
variable regions

32%5%11%6%

2e-16 2e-162e-161e-10

chr15:93,040,000-100,560,000

Figure 2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


a b

de
ns

ity
 (s

ca
le

 0
-1

)

***p<0.0001
spearman correlation coefficient

RNAH3K27ac H3K27me3CTCFCohesin (SA1)

Observed
Permutations (100 shown)

PC
1

FIR
E

D
I

IN
S

epigenomic or transcriptomic phenotype
3D

 chrom
atin phenotype 

c

500Kb

Zoom in

SOGA3

KIAA0408

C6orf58

THEMIS

LOC101928140
PTPRK

LAMA2

250Kb

79

0
GM18505

(YRI-2)

GM19240
(YRI-13)

82

0

GM19239
(YRI-12)

77

0

GM19238
(YRI-11)

64

0

20 LCLs
11 YRIs

Var
PC1

YRI-2
YRI-13

PC
1

(-0
.0

3,
 0

.0
3)

YRI-12
YRI-11

YRI-2
YRI-13

R
N

A
(0

.5
, 0

, 0
.5

)

YRI-12

YRI-11

+
-

+
-

+
-

+
-

YRI-2
YRI-13

H
3K

4m
e1

(0
, 2

0)

YRI-12
YRI-11

RefSeq
genes

20 LCLs
11 YRIs

Var
DI

D
I

(-6
0,

 6
0)

YRI-2
YRI-13
YRI-12
YRI-11

20 LCLs
11 YRIs

Var
FIRE

FI
R

E
(0

.7
, 2

.0
) YRI-2

YRI-13
YRI-12
YRI-11

YRI-2
YRI-13

H
3K

27
ac

(0
, 2

0)

YRI-12
YRI-11
YRI-2

YRI-13

C
TC

F
(0

, 2
0)

YRI-12
YRI-11

YRI-2
YRI-13

SA
1

(0
, 2

0)

YRI-12
YRI-11

Biological
variability

Variable cells
(IHW-FDR < 0.1)

0.187

0.000

var
ns

interaction
frequency

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0
***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

*p<0.01

−1.0

−0.5

0.0

0.5

1.0

RN
A

H3
K2

7a
c

H3
K4

m
e1

CT
CF

Co
he

sin

H3
K2

7m
e3

Va
ria

bl
e 

PC
1 

re
gi

on
s

d
RN

A
H3

K2
7a

c
H3

K4
m

e1
CT

CF
Co

he
sin

H3
K2

7m
e3

Va
ria

bl
e 

FI
R

E 
re

gi
on

s

RN
A

H3
K2

7a
c

H3
K4

m
e1

CT
CF

Co
he

sin

H3
K2

7m
e3

Va
ria

bl
e 

D
I r

eg
io

ns

e f

RN
A

H3
K2

7a
c

H3
K4

m
e1

CT
CF

Co
he

sin

H3
K2

7m
e3

Va
ria

bl
e 

IN
S 

re
gi

on
s

C
orrelation w

ith 3D
 chrom

atin
phenotype across individuals

chr6:126,280,000-131,280,000

Figure 3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


Q
TL

 id
en

tif
ic

at
io

n 
in

 
di

sc
ov

er
y 

se
t

C
on

si
st

en
t d

ire
ct

io
n

in
 v

al
id

at
io

n 
se

t
B

oo
ts

tr
ap

 s
ig

ni
fic

an
ce

of
 v

al
id

at
io

n

beta

D
en

si
ty

p<0.001
1000 permutations

N=387 FIRE-QTLs (FDR<0.2) N=545 DI-QTLs (FDR<0.2) N=911 INS-QTLs (FDR<0.2)e

h

a b

g

C
TC

F 
PW

M
Strong motif alleles (S)

Weak motif alleles (W)

SNPs in loop anchor CTCF motifs

0.25

1.00

1.75

no
rm

al
iz

ed
 lo

op
 s

tr
en

gt
h

WWSWSS

p=7.6e-5

genotype

c d

0

50

100

%
 lo

op
 re

ad
s 

on
 S

 h
ap

lo
ty

pe

1 19

N=345 c-QTLs (FDR<0.2)

p=5.9e-4

0 15

genotype comparison

SS - SW
W

W
 - SW

Δ con-
tacts
+1

-1

40Kb
x

40Kb

0.
8

1.
2

IN
S 

sc
or

e

QTL
40Kb bin

-2Mb +2Mb

1.
1

1.
6

QTL
40Kb bin

+2Mb-2Mb

FI
R

E 
sc

or
e

−2
0

20
0

0
D

I s
co

re

QTL
40Kb bin

-2Mb +2Mb

beta=0.08, p=1.8e-14

L M H
genotype

1.0

2.5

FI
R

E 
sc

or
e

beta=0.008, p=3.0e-4

0.5

1.1

L M H
genotype

IN
S 

sc
or

e

−0.1 0.0 0.1

0

25

pos bins
neg bins

0

40

L M H

-40

0

D
I s

co
re

beta=3.2, p=2.5e-7  (pos)
beta=1.3, p=0.008  (neg)

genotype

pos bins
neg bins

real
slope

p=0.005

−0.01 0.0 0.01

0

25

beta

D
en

si
ty

0.0

0.5

−2 0 2

0.0

0.5

beta

p<0.001

p=0.041D
en

si
ty

pos bins
neg bins

beta=0.13, p=4.1e-9

−1

0

3

lo
g(

no
rm

 c
on

ta
ct

s)

L M H
genotype

0

10

−0.1 0.0 0.1

D
en

si
ty

beta

p=0.006

QTL
genotype:

low
FIRE

mid
FIRE

high
FIRE

low
DI

mid
DI

high
DI

low
INS

mid
INS

high
INS

+0
.1

0
-0

.1
0

+0
.0

2
-0

.0
2 Δ

 lo
g(

no
rm

 c
on

ta
ct

s)
lo

w
 - 

m
id

 g
en

ot
yp

e
hi

gh
 - 

m
id

 g
en

ot
yp

e

40Kb
x

40Kb

i j

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0
Expected(-log10p FIRE association)

O
bs

er
ve

d(
-lo

g1
0p

 F
IR

E 
as

so
ci

at
io

n)

0.0
0.0

FIRE-QTL search p-values
SNP set

Tested for INS
association 

Tested for DI
association 

Tested for contact
association 

DI−QTLs
INS−QTLs
Contact−QTLs

Tested for FIRE
association 0.0018

<0.001
<0.001

0.0158
0.0001
0.2155

<0.001
<0.001
0.021

0.0001
0.027
0.0038

0.0 0.1 0.2 0.3 0.4
nominal fractionback-

ground
foreground

FI
R

E
D

I
IN

S
C

on
ta

ct

DI−QTLs

INS−QTLs
FIRE−QTLs

DI−QTLs
INS−QTLs

C−QTLs

INS−QTLs

C−QTLs
FIRE−QTLs

C−QTLs

FIRE−QTLs

DI−QTLs

bootstrap p
(proportion of random sets with higher 
nominal fraction than foreground QTLs)

background

foreground,
QTLs

foreground,
all tested

10,000 random
sets from

“foreground,
all tested”

middle 95%

Key:

f

Figure 4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/


a
H3K27ac H3K4me3 H3K4me1

N=65 YRI LCLs: Grubert et al., 2015

CTCF
N=15 CEU LCLs:
Ding et al., 2014

DNase
N=59 YRI LCLs:

Degner et al., 2012

H
3K

27
ac

0

60

H
3K

4m
e3

0

80
60

H
3K

4m
e1

0

beta = 3.2
p = 1.6e-83

beta = 2.5
p = 5.5e-27

beta = 2.6
p = 7.6e-113

C
TC

F

25

0

beta = 0.3
p = 0.063

D
N

as
e

1

0

beta = 0.01
p =4 .1e-12

FIRE-QTL Genotypes: Low FIRE (L) Mid FIRE (M) High FIRE (H)

L M H L M H L M H L M HL M H

40

H
3K

27
ac

100

H
3K

4m
e3

40

H
3K

4m
e1

beta = -0.9
p = 6.4e-18

beta = -1.5
p = 2.0e-14

beta = -0.2
p = 8.2e-5

C
TC

F

30

0

beta = -0.2
p = 0.069

1.4

D
N

as
e

0

beta = -0.02
p = 1.6e-40

INS-QTL Genotypes: Low INS (L) Mid INS (M) High INS (H)

L M H L M H L M H L M HL M H

000

70

H
3K

27
ac

60

H
3K

4m
e3

70

H
3K

4m
e1

30

C
TC

F

1.5

D
N

as
e

C-QTL Genotypes: Low Contact (L) Mid Contact (M) High Contact (H)

L M H L M H L M H L M HL M H

beta = 1.8
p = 5.5e-17

beta = 0.5
p = 0.10

beta = 2.1
p = 4.9e-41

beta = -0.4
p = 0.128

beta = 0.02
p = 1.6e-16

0 0 0 0 0

0.131

0.001
0.137

0.791

0.811

−2.5 0.0 2.5

FIRE
IS

DI (pos)
DI (neg)
Contact

H3K27ac

0.805

0.088

0.286

0.899

0.212

−5 0 5

FIRE
IS

DI (pos)
DI (neg)
Contact

H3K4me3

beta

0.604

0.544

0.472

0.072

0.168

−2.5 0.0 2.5

FIRE
IS

DI (pos)
DI (neg)
Contact

CTCF

0.131

0.214

0.023

0.209

0.682

−0.04 0.00 0.04

FIRE
IS

DI (pos)
DI (neg)
Contact

DNase

Q
TL

 g
en

ot
yp

e
bootstrap p

0.011

0.519

0.116

0.259

−1 0 2

<0.001FIRE
IS

DI (pos)
DI (neg)
Contact

H3K4me1

b

d

0.4 1.0 1.6 0 2 4 6 8 10 12 14 0.0 0.5 1.0 1.5

3D-QTL
type

FIRE
INS

DI
Contact

FIRE
INS

DI
Contact

FIRE
INS

DI
Contact

FIRE
INS

DI
Contact

FIRE
INS

DI
Contact

Crohn’s
Disease

Ulcerative
Colitis

Inflammatory
Bowel Disease

Height
(Wood et al. 2014)

BMI
(Locke et al. 2015)

GWAS

de
La

ng
e 

et
 a

l. 
20

17

*

*

enrichment for nominal hits
(3D-QTLs / 3D all tested SNPs)

-log10(chi-square p) -log10(bootstrap p)
(1000 random sets of tested SNPs)

3D-QTL
SNPs:

1000 random sets 
of 3D tested SNPs:

median

middle 95%

c

e

1

2

3

4

5

0.5 1.0 1.5
0

0 2.0

6
Inflammatory Bowel Disease (IBD)

O
bs

er
ve

d(
-lo

g1
0p

)

Expected(-log10p)

IBD GWAS
FIRE-QTLs
FIRE tested

1

2

3

4

5

0.5 1.0 1.5
0

0 2.0

6
Ulcerative Colitis (UC)

Expected(-log10p)

UC GWAS
INS-QTLs
INS tested

O
bs

er
ve

d(
-lo

g1
0p

)

DI-QTLFIRE-QTL

5

-60
2

1
1.3

0.6
25

0
25

0
25

0
25

0
25

0
7.5

0
7.5

0
7.5

0

DI
L
M
H

FIRE

INS

H3K27ac

H3K4me1

H3K4me3

CTCF

SA1

H3K27me3

H3K36me3

RNA (+)

G
ru

be
rt

 e
t a

l.,
 2

01
5

K
as

ow
ki

 e
t a

l.,
 2

01
3

50Kb KCTD18SPATS2L

f

Figure 5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592741doi: bioRxiv preprint 

https://doi.org/10.1101/592741
http://creativecommons.org/licenses/by/4.0/

