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Abstract

Patient outcomes during infection are due to a complex interplay between the quality of medical
care, host immunity factors, and the infecting pathogen’s characteristics. To probe the influence
of pathogen genotype on human immune response and disease, we examined Cryptococcus
neoformans isolates collected during the Cryptococcal Optimal ART Timing (COAT) trial in
Uganda. We measured human participants’ immunologic phenotypes, meningitis disease
parameters, and survival. We compared this clinical data to whole genome sequences from 38 C.
neoformans isolates of the most frequently observed sequence type (ST) ST93 in our Ugandan
participant population, and an additional 18 strains from 9 other sequence types representing the
known genetic diversity within the Ugandan Cryptococcus clinical isolates. We focused our
analyses on 652 polymorphisms that: were variable among the ST93 genomes, were not in
centromeres or extreme telomeres, and were predicted to have a fitness effect. Logistic
regression and principal component analyses identified 40 candidate Cryptococcus genes and 3
hypothetical RNAs associated with human immunologic response or clinical parameters. We
infected mice with 17 available KN99a gene deletion strains for these candidate genes and found
that 35% (6/17) directly influenced murine survival. Four of the six gene deletions that impacted
murine survival were novel. Such bedside-to-bench translational research provides important
candidate genes for future studies on virulence-associated traits in human Cryptococcus

infections.
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Author Summary

Even with the best available care, mortality rates in cryptococcal meningitis range from
20-60%. Disease is often due to infection by the fungus Cryptococcus neoformans and involves a
complex interaction between the human host and the fungal pathogen. Although previous studies
have suggested genetic differences in the pathogen impact human disease, it has proven quite
difficult to identify the specific C. neoformans genes that impact the outcome of the human
infection. Here, we take advantage of a Ugandan patient cohort infected with closely related C.
neoformans strains to examine to role of pathogen genetic variants on several human disease
characteristics. Using a pathogen whole genome sequencing approach, we showed that 40 C.
neoformans genes are associated with human disease. Surprisingly, many of these genes are
specific to Cryptococcus and have unknown functions. We also show deletion of these genes
alters disease in a mouse model of infection, confirming their role in disease. These findings are
particularly important because they are the first to identify C. neoformans genes associated with
human cryptococcal meningitis and lay the foundation for future studies that may lead to new
treatment strategies aimed at reducing patient mortality.
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Introduction

Cryptococcus neoformans is the etiological agent of cryptococcal meningitis, the most
common brain infection in Sub-Saharan Africa, which encompasses 15% of AIDS-related deaths
[1]. As with all fungal pathogens, a major clinical concern is the small number of antifungal drug
classes available (n=3) [2,3]. Researchers seek to identify the pathogen virulence factors that
influence human health in order to develop novel drug targets to improve patient survival [4]. In
addition to virulence factors that are common among all human pathogenic fungi, such as the
ability to grow at 37°C, a number of Cryptococcus-specific virulence factors have been
identified. The most well-studied include the polysaccharide capsule, the synthesis of melanin,
and the secretion of extracellular enzymes such as phospholipases, laccase, and urease [5]. As we
have previously discussed [6], there is not a clear quantitative association between in vitro
virulence factor defects and clinical parameters of disease [7-13], thus studies clarifying this
relationship are required.

Additional potential virulence targets have been identified through reverse genetic
screens of the C. neoformans gene knockout collection [14]. A screen of 1201 knockout mutants
from 1180 genes (20% of the protein coding genes) identified 164 mutants with reduced
infectivity and 33 with increased infectivity in a screen for murine lung infectivity [7].
Deselarmos and colleagues [15] screened the same mutants for virulence in Caenorhabditis
elegans and Galleria mellonella infection models and identified 12 mutants through a dual-
species stepwise screening approach; all 12 also had attenuated virulence in a murine model (4
overlapped with those identified in the original murine lung screen). Many of the identified
genes are associated with melanin production (which is not required for killing of C. elegans),
thus the emerging picture is that genes that influence virulence are involved in multiple
independent or parallel pathways such as melanization [15].

A complementary tactic to identify novel virulence factors is to use forward genetics, and
look for association between strain background and virulence. Cryptococcus strains were
originally classified by antigenic diversity, which led to differentiation into two species,
Cryptococcus neoformans (var. grubii and var. neoformans, serotypes A and D, respectively) and
Cryptococcus gatti (originally C. bacillosporuus, serotypes B and C [16]). The phylogenetic
relatedness among strains has been subjected to a series of discussions that first used PCR
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fingerprinting and randomly amplified polymorphic DNA (RAPD) analysis [17] and then multi-
locus sequence typing (MLST) analysis [17] to classify strains based on sequence types (ST)
defined in an online database (http://mlst.mycologylab.org). These analyses have led to
competing species definition proposals. The first proposes classifying strains into seven species
(two from C. neoformans following the serotypes and five from C. gattii) [18,19]. However,
based on an analysis of 2600 strains, which revealed genetic diversity that is not-wholly captured
by the seven species proposal [20] the second wants to maintain two groups, delineated as the
“C. neoformans species complex” and the “C. gattii species complex” [21]. This “how do you
define a species?" should not be written off as a purely philosophical issue [58], as we seek to
discover whether there is a correlation between strain background and disease.

At a coarse level, there is a clear correlation between Cryptococcus variation and human
infectivity. C. neoformans var. grubii strains cause the majority of infections in
immunocompromised patients [22], while C. gattii is strongly implicated in cryptococcosis in
immunocompetent individuals [23]. A handful of studies have demonstrated that there is also
influence of phylogenetic relatedness on disease within var. grubii strains. The
PCR/AFLP/MLST analyses divided var. grubii strains into three groups, VNI, VNII, and VNB
strains. Beale and colleagues [10] found that among strains from South Africa, survival was
lower for eight patients infected with VNB strains compared to the more common VNI or VNII
strains (isolated from 175 and 47 patients, respectively). Similarly, Wiesner and colleagues [9]
used MLST to type 111 strains isolated from Ugandan patients with their first episode of
cryptococcal meningitis and conducted BURST clustering analysis to group strains with similar
ST type (all of which are in the VN1 clade). BURST group 3 had significantly improved survival
(62%) relative to BURST groups 1 and 2 (20% for both groups). Yet additional finer resolution
studies by Mukaremera and colleagues within individual MLST sequence types (ST) show that
there is also substantial variation in patient survival associated with individual strain differences
[24]. Interestingly, while the South African clinical strains exhibited diversity in ST type, the
Ugandan clinical strains were closely related, with ST93 strains accounting for approximately
60% of clinical isolates [9,10,24].

The overall picture that emerges from these studies is twofold. Strain background can
significantly influence human disease, and there is tremendous disparity in strain frequency;

some strain groups are much more common than others. ST93 is common in Uganda, but is also
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99 the most frequently isolated ST strain from HIV-infected patients in Brazil (85% [25,26]) and
100 India (71% [27,28]). Sequence type prevalence also has a clear geographic component as
101 different ST groups are dominant in other well-sampled countries (e.g., China, Thailand,
102 Vietnam, Indonesia, Botswana, France [27-29]).
103 Here we sought to identify candidate genes associated with clinical phenotypes in human
104 subjects. We took advantage of the large number of patients in Uganda infected with closely
105 related ST93 strains and combined this with a powerful dataset collected during the Cryptococcal
106 Optimal ART Timing (COAT) trial in Uganda [30]. When participants enrolled in the trial,
107 strains were isolated and participant quantitative clinical and immunologic data were collected
108 prior to treatment [40]. We sequenced the whole genomes of 38 ST93 strains, half from
109 participants that survived the infection and half from participants that died, reasoning that
110 restricting our search to variants among closely related strains would reduce background genetic
111 noise. We conducted a series of statistical tests that identified 40 candidate genes and 3
112 hypothetical RNAs associated with clinical, immunologic, or in vitro phenotypes. We measured
113 the virulence of 17 available KN99a knockout mutants for these genes in mice and found that
114 35% (6/17) had a significant association with mouse survival. Pathogen whole genome
115 sequencing paired with statistical analyses of human clinical outcome data and in vivo virulence
116 tests thus provides a new method to empirically probe the relationship between pathogen
117 genotype and human clinical phenotype.
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118 Results

119

120 We whole-genome sequenced 56 C. neoformans VNI strains isolated from HIV-infected,
121 ART-naive patients presenting with their first episode of cryptococcal meningitis at Mulago

122 Hospital, Kampala, Uganda. The majority of strains (n=38) were chosen from ST93 isolates (the
123 dominant genotype in Uganda [45]), collected as part of the Cryptococcal Optimal ART Timing
124 (COAT) trial, where an array of human immunologic phenotypes and disease parameters were
125 recorded for all participants. Approximately half of these strains were derived from participants
126 who survived the infection (n=21) and half from participants who died (n=17). The remaining 18
127 strains were chosen to represent the diversity of the clinical strains in Uganda for phylogenetic
128 purposes.

129 We identified 127344 SNPs and 15032 insertions/deletions (referred to as indels)

130 associated with 7561 genes (or predicted genes) among the 56 sequenced C. neoformans strains.
131 For ease of reference, we will refer to these SNPs, insertions, and deletions cumulatively as

132 “variants”. Over three-quarters of the identified variants were non-coding variants not predicted
133 to change the amino acid sequence of a gene: synonymous changes within the gene (22%),

134 intergenic regions (3%), or designated as upstream or downstream of the associated gene (within
135 5kb of the nearest gene; 43% upstream, 10% downstream). The remaining (genic) variants are
136 associated with 5812 different genes. Nonsynonymous coding changes are the largest class

137 (90%) of these variants, with the remainder small insertion and deletion mutations.

138 The majority of genes have relatively few variants within the strain set, though 435 genes
139 have over 50 variants (Figure 1A). There was a significant relationship between the number of
140 variants and gene length (Pearson's correlation test, tss4 = 33.001, p<0.001, cor = 0.45; Figure
141 1B), albeit with considerable variability around the line of best fit. The number of variants in
142 each sequenced genome was extremely similar among strains from the same sequence type

143 (Figure 1C), reflective of the phylogenetic distance from sequenced strains to the H99 reference
144 genome (Figure 2).

145 With this phylogenetic strain knowledge, we classified all variants into four categories: i)
146 "common" variants differentiating Ugandan clinical isolates from the reference H99 genome; ii)
147 "other" variants present only in non-ST93 genomes; iii) "allST93" variants present in all ST93
148 genomes but no other Ugandan ST genomes; iv) "someST93" variants present in some of the
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149 ST93 genomes. For our study, we considered the most interesting variants to be the “allST93” or
150 “someST93” because these categories would potentially identify variants that could explain the
151 increased overall pathogenesis of ST93 in humans (category iii), and will allow us to identify
152 variants within ST93 associated with human clinical outcomes and phenotypes (category iv).
153

154 Common variants in ST93

155 Variants that are in all ST93 strains and not the other sequenced strains (or the reference
156 genome) can potentially tell us something about what differentiates strains in ST93 from other
157 Ugandan strains. We identified 5110 variants common to all 38 ST93 genomes (4681 SNPs and
158 429 small indels). These variants were dispersed across the genome, associated with 2575 genes
159 and 140 hypothetical RNAs (Figure 3, Table S1). The majority of these genes have one or a

160 small number of variants, while a handful of genes had a very high number of variants (Table S2,
161 23 genes with at least 10 variants). The percentage of named genes in this set (8%, 2 of 24)

162 matches the full gene set (8%, 686 out of 8338). The number of genes with a description (i.e., not
163 "hypothetical protein” or "hypothetical RNA") is actually lower in this gene set (33%) than the
164 whole gene set (49%).

165

166 ST93 clade-specific variants

167 Our primary aim was to identify the variants that are in some, but not all of the ST93

168 genomes, as these are the variants that can be used to examine genome associations with the

169 measured human clinical phenotypes. When we examine the phylogenetic tree of ST93 COAT
170 strains, we surprisingly identified a well-supported split between ST93 strains (Figure 2B), with
171 20 of the sequenced strains in one group (“clade A”), 16 strains in a second (""clade B"), and two
172 ST93 strains outside of the primary clades. We identified 97 variants that differentiate strains in
173 one clade from the other: 60 variants were unique to and in all clade A strains, and 37 variants
174 were unique to and in all clade B strains. Clade-specific variants were located throughout the
175 genome (Figure 4A) in 96 different genes. All except for one of the genes contained only a single
176 clade-associated variant. In clade B, CNAG_06422 contains two variants in the 5’UTR that are
177 three bases apart. An increased number of nonsynonymous and decreased downstream SNPs are
178 observed in clade A compared to clade B (Figure 4B). Twenty-seven clade-specific mutations
179 cause nonsynonymous amino acid changes (21 in clade A, 6 in clade B) and one small insertion
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180 mutation is present in clade A (Table S3). Although the majority of these variants are in genes
181 that have not been characterized, four are in genes of known function: LIV11 (CNAG_05422), a
182 virulence protein of unknown function, HSX1 (CNAG_03772), a high-affinity glucose

183 transporter; PTP2 (CNAG_05155), a protein tyrosine phosphatase; SPT8 (CNAG_06597), and a
184 predicted saga histone acetyltransferase complex component.

185

186 Variant association with human clinical, immunologic and in vitro phenotypes

187 We next determined whether variants in the ST93 strains were associated with clinical
188 measures of disease, CSF cytokines levels, or with in vitro phenotypes [30,40], (Table 1, see
189 Methods for more details). We collectively refer to these three classes of phenotypes as

190 "quantitative infection phenotypes". We identified a significant correlation between the ST93
191 AJ/B clade with in vitro macrophage uptake rate and patient CSF interleukin (IL)-2 (non-

192 parametric Wilcoxon rank sum test; uptake W = 226, p = 0.011; IL2 W = 66.5, p = 0.022; Figure
193 4C). There was not a significant relationship between ST93 clade and the other quantitative

194 infection phenotypes (Figure S1A; non-significant t-test results in Table S4), nor between ST93
195 clade and survival (Figure S1B, Fisher-exact test, p = 0.33).

196 To examine associations between single variants and quantitative infection phenotypes
197 (our primary objective), we parsed the 5605 variants that were in some (but not all) of the ST93
198 genomes. We took two complementary approaches to look for phenotypic associations. Our first
199 tactic was to treat each measured phenotype as independent. For the second we used principal
200 components analysis (PCA) to distill the 30 measured phenotypes into a smaller number of

201 independent variables. Due to the nature of data collection for these types of phenotypic data,
202 some strains were missing data for some phenotypes (Table S5). The most consequential was
203 two strains missing data for all cytokine phenotypes.

204 For the first tactic we analyzed phenotypes in each class as independent datasets in a
205 logistic regression approach (Figure 5). For each, we removed variants that were in very few
206 (<4) strains, as well as those without a predicted function (i.e., synonymous and intergenic

207 variants), and those that mapped to either the centromeric or extreme telomeric regions. This left
208 us with 466 variants in 230 genes for the cytokine dataset and 652 variants in 328 genes for the
209 clinical and in vitro datasets. For each dataset we then conducted logistic regression analyses for
210 each variant against each phenotype and found that across all tests 207 variants from 115
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211 different genes were significant for at least one phenotype. The majority (138 variants) were

212 significant for a single phenotype. To partially correct for false positives, we focused our further
213 analyses only on the variants that were significant for at least two phenotypes (“class a") or when
214 multiple significant variants were identified in the same gene (“class b"), or when the variant
215 fulfilled both criteria (“class ab™). This narrowed the list to 145 variants from 40 genes and 3
216 hypothetical RNAs, with 13 variants in class a, 36 variants in class b, and 96 variants in class ab
217 (Table 2, full information about significant variants including class in Table S6, full statistical
218 information for each significant variant and phenotype in Table S7).

219 Following the default parameters in SnpEff, we used a very broad definition for calling
220 variants upstream or downstream variants (+/- 5 kb). Over 80% of the significant variants were
221 either upstream or downstream of genes (86 variants upstream, 34 variants downstream), with
222 20% within 1 kb (Table S6). Of the remaining variants, 21 were nonsynonymous, while 4 were
223 indels. The majority of significant genes contained multiple significant variants (Table 2). In
224 some cases, different variants in the same gene influenced the same phenotype, generally

225 because the multiple significant variants are linked (e.g., three nonsynonymous variants in

226 CNAG_00014 with the majority of ST93 strains falling into two haplotypes; one upstream SNP
227 and two upstream insertions in CNAG_02112 with two haplotypes that influenced amphotericin
228 B resistance). In other cases, such as CNAG_07950, there were six different haplotypes and

229 three significant upstream variants that were associated with 8 unique phenotypes (IL8 was

230 associated with the two variants, while HIVrna, 1L4, IL6, GMCSF, IFNy, Fluconazole MIC, and
231 EFA were each associated with a single variant).

232 We also conducted PCA analysis as a second tactic to reduce the potential influence of
233 phenotypic correlation on the results (Figure 5). As PCA requires complete datasets, we used
234 data from the 27 phenotypes that had missing data from only three or fewer strains (i.e., we

235 excluded CrAg LFA titer, HIV RNA viral load, CSF protein, and CSF white cell data, Table S5)
236 and had to exclude 8 strains (UgCl212, UgCI332, UgCI357, UgCl422, UgCl447, UgCl461,

237 UgCl541, UgCI549, Table 1). The 'prcomp’ function from the R programming language was
238 used to perform PCA on the two phenotypes which were scaled to have unit variance and shifted
239 to be zero centered. We continued with the first two principal components by comparing the

240 observed results to 20 datasets where the phenotypic data was randomized among strains (Figure
241 S2A). Logistic regression analysis was run for each of the 466 variants that passed filter against
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242 PC1 and PC2. The PCA analysis yielded only 16 significant variants in 12 genes (Table 3). Only
243 one of these genes, CNAG_07727, was not identified in the first analysis, and twelve of these
244 variants were previously significant.

245 The majority of genes with a high number of significant variants were also genes with
246 high numbers of sequenced variants and potentially-significant variants (Figure 6). In addition to
247 variation among genes in regards to the number of significant variants within a gene ("'sig

248 variants"; ranging from 1-34), there was also variation in the number of variants that were

249 identified within a strain ("sequenced variants"; range: 1-210) and the number of variants that
250 passed our filters ("potentially-significant variants": range: 1-32). This result highlights a

251 limitation of genetic association screens such as the one we performed. Without additional

252 biological validation it is difficult, if not impossible, to ascertain whether a given gene has many
253 significant variants because of strong selection acting on that gene (e.qg., if a knockout phenotype
254 is beneficial there are many different positions that can reduce gene expression or protein levels)
255 or because of relaxed selection and chance (i.e., if there is relaxed selection then many variants
256 could be present, with statistical significance arising by chance). However, the fact that we do
257 see areas of discordance between all the sequenced variants, potentially significant variants, and
258 significant variants suggests many of our significant variants are not just a statistical artefact.
259

260 In vivo virulence of identified genes

261 Our goal was to identify pathogen variants that impact human clinical disease

262 phenotypes. Biological validation in humans is not possible. However, Mukaremera and

263 colleagues recently showed that the mouse inhalation model of cryptococcosis accurately

264 recapitulates human infections and can be used to dissect C. neoformans genetic factors that

265 influence human disease. [24]. Thus, as a first step to probe the biological significance of the
266 genes identified in our analyses, we tested the virulence of 17 available KN99a deletion strains
267 in the inhalation mouse cryptococcosis model. Six (35%) of the tested deletion strains had a

268 significant virulence effect on mouse survival compared to the control KN99a strain: three

269 strains had increased virulence (CNAG_02176, CNAG_06574, CNAG_06332) and three strains
270 had decreased virulence (CNAG_06986, CNAG_04922, CNAG_05662) (statistical results in
271 Table 4, significantly different strains in Figure 7, non-significant strains in Figure S3). Although
272 gene deletion mutants are only one way to biologically probe whether a candidate gene has a true

10
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273 virulence phenotype, we did find that the number of significant variants in a gene (Table 2) was a
274 significant predictor of the deletion mutations having a virulence effect (linear model, F1, 15 =
275 8.493, p = 0.011).

276

277 In vivo and in vitro analysis of itr44 and clinical strains

278 The gene with the highest number of significant variants in our candidate gene list was
279 CNAG_05662 (ITR4), which has been reported as a member of the inositol transporter gene

280 family [59]. The itr44 mutant strain had reduced virulence in the mouse model whereas the

281 itr44:1TR4 complement strain had equivalent virulence to the laboratory reference background
282 strain KN99a showing that the ITR4 deletion is responsible for the virulence defect in the itr44
283 mutant (Figure 8A). In this lower inoculum experiment, three of the itr44 infected mice survived
284 until the experiment was ended on day 44 (Figure 8A). Terminal colony forming units (CFUSs)
285 from the brain and lungs of the survivors showed complete fungal clearance in one mouse and a
286 low fungal burden in the lungs (2 x 102 CFUSs) in the second mouse. The third mouse had 5.64 x
287 10° CFUs in the lungs and 1.35 x 10* CFUs in the brain. Evaluation of the fungal burden at seven
288 days post-infection showed more itr44 mutant CFUs in the lungs than KN99a and itrd4:1TR4,
289 and no itr44 CFUs in the brain (Figure S4), suggesting the reduced pathogenesis observed in the
290 itr44 mutant is likely due to reduced growth in or delayed dissemination to the brain.

291 To further determine the role of the genetic variants in the biological function of ITR4 -
292 KN99a«, itrd4, and three clinical strains (UgCI1389, UgCl462, and UgCl443) were tested for

293 growth with inositol and inositol uptake. The variants associated with the ITR4 locus in these
294 clinical strains are proximal to the coding region — both UgCI389 and UgCl462 have 11 single
295 nucleotide polymorphisms immediately downstream of the coding region whereas UgCl443

296 contains the H99 reference allele for ITR4 (Figure 8B). All the clinical strains showed enhanced
297 growth with inositol compared to KN99«, and similar to itr44 (Figure 8C). UgCI389 and

298 UgCl462 were also more efficient at inositol uptake, while UgCl443 was similar to KN99«, and
299 itr4A had decreased inositol uptake (Figure 8D). Taken together, these data highlight the

300 complex nature of the multiple variants across the clinical strains. Due to differences in genetic
301 background between the clinical strains, interpretation of the impact of specific variants and/or
302 gene alleles is challenging.

11
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303 Discussion

304

305 Virulence is a multifaceted phenotype, as many different pathogen and host

306 characteristics will determine the severity of a given infection. Here we paired a powerful dataset
307 from the Cryptococcal Optimal ART Timing (COAT) trial in Uganda with pathogen whole

308 genome sequencing technology to identify candidate C. neoformans genes that were statistically
309 associated with quantitative human infection phenotypes. The technique of using Genome-wide
310 Association Studies (GWAS) to uncover genic variants linked to disease was developed fourteen
311 years ago in the context of human disease genetics [46]. Here we looked for association between
312 variants within 38 ST93 C. neoformans isolates from participants enrolled in the COAT trial
313 with 30 measured clinical phenotypes, cytokines, and in vitro phenotypes. We took two

314 complementary tactics to identify candidate genes. The first treated each measured phenotype as
315 independent, yet only included genes that either have a variant significantly associated with

316 multiple phenotypes (13 genes), genes with multiple significant variants (10 genes), or both (20
317 genes). We also conducted a PCA analysis examining the first two principal components from a
318 PCA on the 27 phenotypes and 30 strains with sufficient data. The resultant reduction of power
319 is unfortunate, but not surprising when dealing with human data, and the detrimental impacts of
320 missing clinical data have been previously discussed [47], and indeed is why we took both

321 tactics. The PCA analysis yielded a total of 12 genes, 11 that overlapped with those identified in
322 the first analysis and one additional gene. Combined, we identified 40 candidate C. neoformans
323 genes and three hypothetical RNAs associated with infection phenotypes among the ST93

324 strains.

325 The statistical analysis is blind to any prior knowledge of the genes, and thus does not
326 depend on prior annotation. Accordingly, the majority of genes we identified have not yet been
327 named and roughly half (19) are listed as "hypothetical proteins” on FungiDB. Interestingly, only
328 two of these 19 genes are conserved among fungal taxa, and curating information about

329 orthologues from FungiDB (https://fungidb.org/fungidb/) suggests that the majority of others are
330 either unique to C. neoformans or only have orthologues in the very closely related species

331 complex C. gattii (Table S8). This is consistent with the logic of Liu et al. [7], who purposefully
332 targeted genes that did not have homologues in Saccharomyces cerevisiae during the
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333 construction of the original H99 gene deletion collection [14] (an 1180 gene collection in C.
334 neoformans H99, which corresponds to ~20% of the protein coding genes).

335 We took advantage of the newer KN99a gene deletion collection [48] and found that
336 35% (6/17) of the available gene knockouts had an effect on virulence in mice. The significant
337 genes with a virulence change in mice include two named genes ITR4 (CNAG_05662) and APP1
338 (CNAG_06574) as well as three hypothetical proteins from closely related species

339 (CNAG_02176, CNAG_04922, CNAG_06332) and one hypothetical protein with broad

340 taxonomic distribution (CNAG_06968). APP1 is a cytoplasmic protein involved in extracellular
341 secretion and reduced phagocytosis. The applA mutant has previously been shown to have

342 decreased virulence in mice [49]. Interestingly, this is opposite from our mouse model that

343 showed increased virulence of the applA mutant. This difference could be due to the differential
344 immune response in BALB/C (previous study, type 1 immune response) and C57BI/6 mice

345 (current study, type 2 immune response) that likely gives a hint to the mechanism of APP1 in
346 human disease.

347 Intriguingly, ITR4 (synonym PTP1) was the top hit in a screen that identified genes that
348 were overexpressed in an intracellular environment (amoebae and murine macrophages)

349 compared to the lab medium YPD [50]. In that study, itr4A did not differ from wildtype in mice
350 or Galleria mellonella virulence assays [50], though these studies were performed in a different
351 genetic background from our KN99« reference strain. Using gene complementation, we clearly
352 show the virulence defect in the itr4A mutant is due to deletion of the ITR4 gene. However, our
353 analysis of differences in growth and uptake of inositol in clinical isolates with different variants
354 was less conclusive. All of the clinical strains appeared to be better adapted for growth and

355 uptake of inositol compared to the KN99a reference strain. This is not surprising, given that the
356 clinical strains were isolated from the central nervous system, which is an inositol rich

357 environment. Because most of the ITR4 gene variants are proximal to the coding region, these
358 alterations may change expression of the ITR4 gene, or transcript/protein stability in vivo, rather
359 than abolish gene expression as occurs in the izr44 mutant. This could explain the difference
360 between in vitro inositol phenotypes we observed between our clinical isolates and the mutant. It
361 is also possible that the genetic background of the clinical isolates influences the function of the
362 different ITR4 gene variants, as these genes are known to be part of larger inositol acquisition
363 and utilization pathways.
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364 There was no clear relationship between genes that were identified in both of our

365 statistical analyses and the gene deletion virulence in mice (five genes were significant in both,
366 two with a significant gene deletion virulence effect, Table S8). We note, however, that although
367 there is a good link between strain survival in mice and human virulence [24], there are two

368 major limitations with interpretation and extrapolation of the virulence tests we performed in this
369 study. The first is that the phenotype of a gene knockout does not necessarily recapitulate the
370 effect of a natural point or indel mutation (e.g., [51-53]). Importantly, variants located upstream
371 of a gene were extremely prevalent in our dataset, suggesting that they would not be

372 phenocopied with a gene deletion if an increase in expression is required to influence the trait.
373 The second reason for pause is that the gene knockout collection is in the KN99a genetic

374 background. It has previously been shown that although ST93 and KN99« are both VNI strains,
375 they are phylogenetically quite distantly related [10]. We see this distance in our own dataset:
376 2941 variants were present in the closely related ST93 genomes we sequenced and over 40 000
377 variants were present across all the genomes compared to the H99 reference strain. Genetic

378 background is known to play a significant role on the effect of a mutation. A large study in

379 Saccharomyces cerevisiae recently found that 16-42% of deletion phenotypes changed between
380 pairs of strains, depending on the environment [54]. To fully probe the influence of the variants
381 and genes we identified in our screen these variants need to be studied in the ST93 background.
382 Given these limitations, we anticipate additional studies will uncover more genes from our study
383 with an impact on pathogenesis. It would also of course be of general interest to reconstruct a
384 knockout collection in a strain background more representative of typical clinical strains [14,28].
385 We purposefully chose to focus our study on strains from ST93, which was the most

386 prevalent ST group from strains we sampled from participants in the COAT trial (~63% of all
387 strains). ST did not significantly influence mortality (ST93: 22 patients died, 24 survived; non-
388 ST93: 9 patients died, 16 survived; fisher-exact test p = 0. 45). ST93 was similarly the most

389 prevalent among advanced HIV patients in Brazil [25]. By contrast, ST93 isolates were less

390 common than ST5 isolates among immunocompetent patients in Vietnam, and non-ST5 strains
391 were associated with decreased mortality compared to ST5 [55]. Other studies have found no
392 ST93 isolates [56,57]. This picture of geography having a major impact on which group is most
393 prevalent begs the question of whether it is merely chance or the effect of selection that sorts
394 lineages geographically.

14


https://doi.org/10.1101/592212
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/592212; this version posted March 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

395 As additional 'genome enabled' clinical datasets are constructed, we can hope to gain a
396 clearer global picture about the link between broad and narrow genomic variability on clinical
397 outcome. Our narrow analysis in the ST93 strains was possible because of the large number of
398 patients infected with this sequence type in Uganda. Only as similar studies are performed in
399 patient populations throughout the world, with other dominant STs, or in the context of increased
400 genetic diversity, will we be able to determine how broadly applicable our study is to the global
401 population of C. neoformans.

402 Statistical association techniques using human clinical data, such as those employed here,
403 offer a complementary approach to genetic screens of mutant collections. They offer the benefit
404 of not having to choose a particular strain background to focus your efforts (typically the

405 reference strain), nor make decisions about which genes are likely to be the most important. For
406 example, the genes chosen for the initial C. neoformans knockout collection were biased not only
407 against genes with homologs in S. cerevisiae, but also against C. neoformans-specific genes [7].
408 There are also inherent biases to forward genetics methods. Here we only have the statistical

409 power to find association with common variants. The majority of variants we sampled among
410 our strains were singleton variants in only a single genome (Figure 1A), and some of these may
411 well have an extremely important influence on virulence that remains undetected in our current
412 analysis. Hence we have treated our pathogen GWAS analysis like a genetic screen, and the true
413 utility of this type of analysis is not seen in just one study in isolation of others. The power lies in
414 the opportunity to compare among studies of different types to find candidate genes or alleles to
415 focus our attention on.

416 Our analysis did not identify variants in many of the genes that were previously identified
417 through in vitro and in animal mutant screens as virulence factors in C. neoformans, such as

418 genes involved in capsule formation and melanin synthesis. There could be several reasons for
419 this result. Importantly, all of the ST93 strains analyzed were isolated from patients with

420 cryptococcal meningitis, thus all these strains by definition are capable of causing disease and in
421 our study the readout was not presence or absence of disease but rather the severity of disease.
422 Previous studies may have identified virulence factors involved in the early stages of infection
423 that impact the ability of C. neoformans to infect and then survive within the host, whereas our
424 study identified virulence factors that promote or inhibit the progression of disease. Second, our
425 analysis utilized human clinical data for association with genetic differences between strains
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426 whereas previous studies utilized surrogates, either in vitro conditions or animal models. By
427 studying genetic differences in the context of human infection, we have the potential to not only
428 define genes that promote disease in humans but also the potential to define aspects of the host-
429 pathogen interaction that are specific to C. neoformans and the human host.
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430 Methods

431

432 Ethics Statement

433 Animal experiments were done in accordance with the Animal Welfare Act, United
434 States federal law, and NIH guidelines. Mice were handled in accordance with guidelines

435 defined by the University of Minnesota Animal Care and Use Committee (IACUC) under

436 protocol 1607-34001A. Participant data were collected as part of the COAT trial

437 (clinicaltrials.gov:NCT01075152) [30,40]. All participants were enrolled in Uganda at Mulago
438 Hospital, Makerere University, in Kampala. Written informed consent was obtained from all
439 subjects or their proxy, and all data were de-identified. Institutional Review Board (IRB)

440 approvals were obtained both at the University of Minnesota (0810M49622) and Makerere
441 University.

442

443 Strain selection

444 We utilized C. neoformans isolates collected in Uganda as part of the Cryptococcal
445 Optimal ART Timing (COAT) trial [30]. We focused primarily on 38 UgClI ("Ugandan

446 Clinical™) COAT strains that had previously been MLST genotyped as sequence type 93 (ST93),
447 the most prevalent ST group in this collection of strains [31]. An additional 18 strains from ten
448 MLST groups were also whole genome sequenced to represent strain diversity in Ugandan
449 clinical isolates [9].

450 Clinical isolates were colony purified from the CSF of participants that presented at the
451 clinic with their first episode of cryptococcal meningitis. The ST93 clinical isolate strains were
452 purposefully chosen to represent strains from both participants who survived (n=21) and died (n
453 = 17). As with the parent COAT trial, survival was decreased with early ART initiation, all
454 putative ST93 clinical isolates used for these studies were from the standard-of-care (deferred
455 ART treatment) arm of the clinical trial. Patient infection phenotypes (i.e., clinical and cytokine
456 parameters, Table 1) were measured on the day patients were diagnosed with cryptococcal

457 meningitis, prior to antifungal or ART treatment. Cytokine data was log. transformed prior to
458 analysis, as described previously [32].

459

460
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461 Library Preparation and Illumina Sequencing

462 DNA was extracted using the CTAB DNA isolation method. Colony-purified cultures,
463 maintained as glycerol stocks at -80°C, were inoculated into 250mL yeast peptone dextrose agar
464 (YPD) in erlenmeyer flasks and grown overnight at 30°C with continuous shaking prior to DNA
465 isolation.

466 Strains were whole-genome sequenced in two sets. In the first set, genomic DNA

467 libraries from 16 strains were prepared by the Mayo Bioinformatics Core for 101bp paired-end
468 sequencing. The samples were combined into two pools (Pool A: UgCl001, UgCl018, UgCl021,
469 UgCl029, UgCl030, UgCl037, UgCl040, UgCl045, UgCIl057, UgCIl074, UgCI076, UgCI107;
470 Pool B: UgCl008, UgCl032, UgCl047, UgCl065, UgCl087, UgCl093). Each pool was sequenced
471 on a single lane of an Illumina HiSeq 200009.

472 In the second set, genomic DNA libraries from the 40 strains were prepared by the

473 University of Minnesota Genomics Center for 300bp paired-end sequencing with the Illumina
474 TruSeq DNA LT kit. The samples were combined into four pools; each pool was sequenced in a
475 single lane of an lllumina MiSeq (Pooll: UgCI212, UgCl230, UgCI236, UgCl243, UgCl247,
476 UgClI250, UgCl1389, UgCl541, UgClI547, UgCI549; Pool2: UgCl252, UgCI255, UgCIl262,

477 UgClI291, UgCl292, UgCI300, UgClI326, UgCI332, UgCI357, UgCI360; Pool3: UgCl362,

478 UgCI377, UgCI379, UgCl382, UgClI390, UgCI393, UgCI395, UgCl422, UgCl438, UgCl443;
479 Pool4: UgCl447, UgCl450, UgCl461, UgCl462, UgCl466, UgCl468, UgCl495, UgCl534,

480 UgCI535, UgCI538, UgCl546). In the second set of sequencing, the runs generated £22 million
481 pass filter reads for pools 1 and 2 and £ 17 million pass filter reads for pools 3 and 4. In all runs
482 >70% bases were above Q30. The average library insert size was 400-500bp.

483

484 Variant calling

485 Variant calling for each strain was adapted from the Genome Analysis Toolkit (GATK
486 v3.3.0) best practices [33-35]. For each strain the two paired-end fastq files were trimmed using
487 trimmomatic [36] and aligned to the C. neoformans H99 reference genome downloaded from
488 FungiDB (http://fungidb.org/fungidb/) on February 1, 2016 ("FungiDB-

489 26_Cneoformans_H99 Genome.fasta™) with bwa mem [37]. The output ((SAM) files from all
490 other strains were converted to .BAM files and sorted, duplicates were marked and indexed and a
491 final index was built with picard tools (http://broadinstitute.github.io/picard). Variants were
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492 called for each sample with GATK HaplotypeCaller run in GVCF mode for each strain (with
493 flags --genotyping_mode DISCOVERY --emitRefConfidence GVCF -variant_index_type

494 LINEAR -variant_index_parameter 128000 -ploidy 1) to obtain gVVCF files. GATK

495 GenotypeGVCFs was then run to merge the 41 gVVCF records. Variants were annotated with
496 SnpEff [38] followed by GATK VariantAnnotator. SNPs and INDELSs were separated into two
497 tables from the single merged and annotated VCF file using GATK SelectVariants,

498 VariantFiltration and VariantsToTable. Coverage across chromosomes was determined using
499 GATK DepthOfCoverage on the sorted BAM files.

500

501 Phylogenetic tree building

502 SNPhylo [39], a pipeline designed to construct phylogenetic trees from SNP data, was
503 used to generate a PHYLIP file from the original VCF. SNPhylo reduces redundant SNP

504 information due to linkage disequilibrium. As we knew a priori that our ST93 samples are highly
505 related, we ran SNPhylo with the linkage disequilibrium flag set very high (0.99), which still
506 reduced the number of SNPs by ~94% on each chromosome. 7,383 markers were selected in
507 total. In SNPhylo, MUSCLE was used to perform multiple alignment and generate the PHYLIP
508 file.

509 Bootstrap analysis was conducted using RAXML. 20 maximum likelihood trees were
510 generated (-m ASC_GTRGAMMA --asc-corr=lewis) and support values from 100 bootstrap
511 replicates were determined for the best fit ML tree (-m ASC_GTRGAMMA --asc-corr=lewis -p
512 3 -b 12345 -#100). Bipartitions were then drawn on the best tree (-m ASC_GTRGAMMA --asc-
513 corr=lewis -p 3 -f b). This tree was read into R using the read.raxml command in the treeio

514 library. Further tree visualisations were created using ggtree.

515

516 Clinical data

517 Collection of clinical and immunological data were as described previously [30,40].

518 Clinical and immunological data used in this study are listed in Table 1. Briefly, clinical

519 parameters of disease were participant mortality due to cryptococcosis (days post initial

520 diagnosis), CD4+ T-cell count, cerebral spinal fluid (CSF) white blood cell count (WBC), serum
521 and CSF protein levels, HIV viral load, CSF Cryptococcus clearance rate of early fungicidal
522 activity (EFA), and lateral flow assay (LFA) measurement of cryptococcal antigen titer (Immy
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523 Inc., Norman, Oklahoma). As immunological data, CSF levels of 19 cytokines and chemokines
524 (granulocyte colony-stimulating factor [G-CSF], granulocyte macrophage colony-stimulating
525 factor [GM-CSF], interferon-y, tumor necrosis factor [TNF]—a, interleukin [IL]-1p, IL-2, IL-4,
526 IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, MCP-1 [CCL2], macrophage inflammatory
527 protein [MIP]-1a [CCL3], MIP-1B [CCL4], VEGF) were analyzed. We refer to these cytokines
528 and chemokines collectively as "cytokines".

529 In vitro assays were also performed on the clinical isolates. Drug resistance assays for
530 fluconazole and amphotericin B were as described previously [31,41]. MH-S macrophage cell
531 cultures were used to determine C. neoformans cell uptake by macrophages. Briefly, 5x10° MH-
532 S cells per well were incubated at 37°C with 5% CO for 2 hours in a 96-well culture plate to
533 allow adherence. C. neoformans cultures were grown overnight in Dulbecco’s modified eagle
534 medium (DMEM) supplemented with 2% glucose, collected by centrifugation, washed, and

535 resuspended in 0.1% Uvitex solution for 10 minutes. Cells were then collected by centrifugation,
536 washed, and 5x10° cells and 4ug E1 anti-GXM antibody [42] were added to each well in the

537 MH-S culture plate. After two hours of co-incubation, the culture plate was centrifuged to collect
538 cells, spent media was decanted and cells were washed to remove extracellular C. neoformans
539 cells. Samples were then resuspended in 0.25% Trypsin in EDTA for 15 minutes to release the
540 adherent cells from the wells, fixed with 3.7% formaldehyde for 30 minutes on ice. Samples

541 were then stained with a second anti-GXM antibody (m18b7) conjugated to the AlexaFluor 488
542 fluorophore (1:2000) and PE-labelled CD45 (1:100) in PBS with 1 ug/ml bovine serum albumin
543 (BSA and 2 mM Tris-HCI. Cells were analyzed on a BD LSRII flow cytometer (BD Biosciences,
544 Inc) and data were analyzed using FlowJo software. Gating on Uvitex, CD45, and m18b7

545 allowed differentiation free C. neoformans cells (Uvitex+, CD45-), free macrophages (Uvitex-,
546 CD45+), macrophages with intracellular C. neoformans (Uvitex+. CD45+, m18b7-), and

547 macrophages with extracellular C. neoformans (Uvitex+, CD45+, m18b7+). To analyze cell wall
548 chitin content, C. neoformans cells were grown in DMEM supplemented with 2% glucose, 10%
549 FBS, 1% Pen-Strep, and beta-mercaptoethanol (1ml/1L) at 37°C overnight, and then fixed for 30
550 minutes in 3.7% formaldehyde. Cell concentration was adjusted to 1x10° cells/ml, stained with
551 1ug/ml calcofluor white (Sigma Aldrich) in PBS for 5 minutes at 25°C, then wash with PBS.
552 Median Calcofluor white fluorescence intensity was then determined for each strain by flow
553 cytometric analysis of the cell population on an LSR Il Fortessa flow cytometer.
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554 Biomarkers analyzed as continuous variables were log. transformed for normalization,
555 analyzed, and then back-transformed to geometric mean values. All “mean” biomarker values are
556 geometric means. Low (“out of range”) measurements were set to half of the manufacturer's
557 listed assay limit of detection (LOD). CSF biomarkers with substantial proportions (>40%) of
558 undetectable values at diagnosis (IL-2, IL-1p, IL-5, CCL22) were analyzed as categorical

559 variables: “detectable” (values greater than the LOD) versus “nondetectable (values lower than
560 the LOD). CSF white blood cell count (WBC) was analyzed as absolute values and also

561 classified as “normal” versus “elevated” (<5 vs >5 cells/uL, respectively).

562

563 Survival Curves

564 Survival curves were performed in three experiments. Experiment one (E1) tested the
565 virulence of KN99a with the following genes deleted: CNAG 00363, CNAG 02176,

566 CNAG_04373, CNAG_04535, CNAG_04922, CNAG_05662, CNAG_05663, CNAG_05913,
567 CNAG_06169, CNAG_06332, CNAG_06574, CNAG_06704, CNAG_06876, and

568 CNAG_07837. For E1, five C57BL/6 mice per group were anesthetized by intraperitoneal

569 pentobarbital injection and inoculated intranasally with 5 x 10* cells suspended in 50 pl PBS,
570 whereas E2 and E3 used five C57BL/6 mice per group were anesthetized and inoculated

571 intranasally with 1 x 10* cells suspended in 50 pl PBS. Animals were monitored for morbidity
572 and sacrificed with carbon dioxide when endpoint criteria were reached. Endpoint criteria were
573 defined as 20% total body weight loss, loss of two grams of weight in two days, or symptoms of
574 neurological damage. On day 34, the remaining mouse was sacrificed. Lungs and brain were
575 removed and homogenized in 4 mL or 2 mL PBS, respectively. Serial dilutions of the lungs and
576 the entire homogenized brain were plated on YPD with chloramphenicol. CFUs were counted
577 after 48 hours.

578 Significance was determined using the survfit command from the R package survival
579 [43]. Kaplan-Meier estimators from each knockout strain were compared against the KN99a
580 strain measured in the relevant experiment. P-values were obtained by comparing the two curves
581 using the G-rho family log-rank test [44], implemented with the survdiff function.

582

583

584
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585 ITR4 Survival Curve

586 Ten C57BL/6 mice per group were anesthetized and inoculated intranasally with 1 x 103
587 KNO99a, itr44, or itr4A:ITR4 cells suspended in 50 pl PBS. Animals were treated as described
588 above. The itr44 that survived the infection initially showed early signs of disease (minor weight
589 loss, reduced activity) but regain weight at later timepoints. On day 44, the mice were sacrificed.
590 Lungs and brain were collected from each mouse to determine fungal burden, and processed as
591 described above.

592 For determination of CFUs at 7 days post-infection, 4 C57BL/6 mice per group were

593 anesthetized and inoculated intranasally with 1 x 103 KN99aq, itr44, or itr4A:ITR4 cells

594 suspended in 50 pul PBS. After seven days, the mice were sacrificed, and lungs and brain were
595 collected and processed as described above.

596

597 Inositol Growth assays

598 Yeast cells of C. neoformans wild type strain KN99¢, itr4A mutant, and clinical strains
599 were cultured in YPD medium overnight. Concentrations of overnight cultures were determined
600 by measuring the optical density at 600 nm (ODgp) and adjusted to the same cell density. Serial
601 10-fold dilutions were prepared, and 5 ul of each dilution was spotted on YNB plates with 1%
602 glucose, 1% inositol, or 1% glucose and 1% inositol. Plates were then incubated at 30°C or 37°C
603 for 48 h before photography. The assay was repeated at least three times with similar results.
604

605 Inositol uptake assay

606 The inositol uptake assay was performed following the previously published method [60].
607 In brief, the Cryptococcus strains were grown in YPD liquid cultures overnight at 30°C. Cells
608 were diluted in YPD toan OD600 of 1.0, grown at 30°C, and collected at an OD600 of 5.0 by
609 centrifugation at 2,600 x g for 5 min. Cells were then washed twice with PBS at 4°C and

610 resuspended in 2% glucose to a final concentration of 2 x 108 cells/ml as determined by a

611 hemacytometer. For the uptake assay, the reaction mixture (200 pl) contained 2% glucose, 40
612 mM citric acid-KH2PO4 (pH 5.5), 0.15 uM myo-[2-*H]-inositol (1 puCi/ul; MP BioMedicals).
613 Additional 200 uM unlabeled inositol (Sigma-Aldrich) was added to the reactions for

614 competition assays. Equal volumes of the reaction and cell mixtures (60 pl each) were warmed to
615 30°C and mixed for the uptake assay, which was performed for 10 min at 30°C. As negative
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controls, mixtures were kept at 0°C (on ice) during the 10-min incubation. Aliquots of 100 pl
were removed and transferred onto prewetted Metricel filters (1.2 um) on a vacuum manifold.
The filters were washed four times each with 2 ml of ice-cold water. The washed filters were
removed and added to liquid scintillation vials for measurements on a PerkinElmer TRI-CARB

2900TR scintillation counter.

Data Availability
All data and scripts are available at GitHub at https://github.com/acgerstein/UgClGenomics
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Table 1. Clinical Phenotypes measured
from participants enrolled in the COAT
trial and in vitro assays.

Class n Phenotype Variable
Clinical | 38 CDAT cell
Clinical | 35 CSF white cell
Clinical | 31 CSF protein
Clinical | 35 HIV viral load
Clinical | 37 | CSF Clearance Rate (EFA)
Clinical | 30 CSF CrAg LFA titer
Clinical | 38 survival
Cytokines | 36 IL1-B
Cytokines | 36 IL-2
Cytokines | 36 IL-4
Cytokines| 36 IL-5
Cytokines | 36 IL-6
Cytokines | 36 IL-7
Cytokines | 36 IL-8
Cytokines | 36 IL-10
Cytokines | 36 IL-12
Cytokines| 36 IL-13
Cytokines | 36 IL-17
Cytokines | 36 G-CSF
Cytokines | 36 GM-CSF
Cytokines | 36 IFN-y
Cytokines | 36 MCP-1
Cytokines | 36 TNF-a
Cytokines | 36 MIP-1B
invitro | 38 macrophage uptake
invitro | 38 | macrophage adherence
invitro | 37 cell wall chitin
invitro | 37 | absolute growth at 30°C
invitro | 37 fluconazole MIC
invitro | 37 amphotericin B MIC
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Table 2. Significant variants from linear regression analysis®.
Gene® Chr Variant Positions  Effect® Class® Phenotypes

00014 1 47564; 47575; 47671 ns b GCSF; GCSF, GMCSF
00363 1 927896; 927901 ns b IL2;1L2
07950 1 975152; 975212, up ab IL8, HIVrna; IL4, IL6, IL8, GMCSF, IFNy,
975397 FLC; EFA
06704 2 270700 up a IL2, LFA
02798 3 750294 up a Protein, CD4, AMP
05185 4 667433; 667446 up ab Survival, uptake; uptake
06876 5 7093 down a IFNy, MIP1p, TNFa
01371 5 475470 up a MCP1, HIVrna
01241 5 836479; 836697 up ab 1L2;IL4,ILS, IL7, IL17, GMCSF, TNFa.,
836899 chitin; IL5, IL12, IL13, IL17, GCSF, TNFa
02475 6 221273; 221275; up ab IL7, growth; growth; growth
221282
02176 6 988405; 988733; down; ns; ab Chitin, SERT; IL1b, IL13, MCP1, MIP1p;
988843; 989188; ns; ns; ns; MIP1; IL12; AMP; HIVrna,
989334; 989490; ns; ns; ns; SERT; IL2; IL10, MIP1j3; MIP1p;
989732; 990771, ns; ns; ns; IL10, MIP1B; SERT; IL13, TNFa,
990777, 990851, up Survival
990885; 991027
02177 6 990701 up a IL1B, IL6,IL10
02112 6 1160524; 1160528; up b  AMP; AMP; AMP
1160532
06525 7 11056; 14006 ns;up ab IL5, 1L10; IL6,IL8
12610* 7 49744 up a MCP1, uptake
06574 7 164473; 164887, up ab HIVrna; IL2, TNFo; IL2, MIP1B; MIP16;
164926; 165027, Survival, EFA; IL13; growth; 1L13;
165704; 165873,; GMCSF,;
166309; 167135; IL1B, GCSF, MIP1, uptake;
167224; 167292; CD4, uptake; protein

167370; 167687
05913 7  1205599; 1205600 up ab MIPI1B, adherence; IL13, IL17, MIP1B,

adherence

05937 7 1263610; 1263646; up ab Uptake, SERT; SERT; SERT

1263647

07703 7 1341024 ns a IL6,IL8

06968 8 1383765 indel a IL12,1L17

04100 9  5213;7729; 8171 up ab adherence, FLC, SERT; growth; EFA,
SERT

04102 9 10033 down a GMCSF, EFA

04179 9 220963 up a EFA, SERT

04373 9 705343; 706175 up ab IL8, EFA,; survival

04535 9 1115286 up a IL17,GCSF,LFA
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07837 10 13558; 15288; 15302 up; down; b IL2; WBCc; CD4
down
04922 10 18908; 18915; 18933, up b IL2; IL2; IL2; IL2; adherence; adherence;
18941; 18988; 18992, adherence
18997
08006 11  804710; 804742 up ab IL4, IL5, IL6, MIP1B, TNFa, adherence,
chitin; L4, IFNy, MCP1, adherence
01802 11  966644; 966669; up b WBC;IL2; IL7
966700
07026 12 11092; 11094; 11400; up ab IL1B, IL13, survival, EFA; IL13, survival,
11406; 11407, 11410; IL1B, IL7, IL13; IL1B, IL7, IL13; IL1p,
11413 IL7, IL13; IL1B, IL7, IL13; IL1P
05987 12 14009; 14035; 14125; ns; ns; ab IL2; IL2; chitin; EFA, adherence; EFA,
14197; 14202; 15014 indel; ns; adherence; adherence
indel; up
06169 12  502808; 502888; down ab IL8; GMCSF, growth; IL6, IL8, GMCSF;
502890; 503049; GMCSF, HIVrna; HIVrna, WBC; GCSF;
503112; 503311; IL12, IL13, GCSF; IL12, I1L13, GCSF,
503313; 503321, MIP1; IL12, IL13, MIP1; IL10, chitin
503327; 503401
06256 13 11118; 11130 up ab; b IFNy, TNFa; TNFa
13108* 13  128625; 128715; up ab IL13, GCSF; IL13, GCSF; IL13, GCSF
128729
06332 13  219021; 219311; up b adherence; EFA; EFA
219312
06422 13  436551; 436554 up b IL2;IL2
06490 13 655915 indel a Protein, HIVra, CD4
05450 14 342562 ns a IL6,1L7, 1112, IL13, GCSF, MIP13
05661 14  908850; 908994, up ab 1L8, GMCSF, IFNy, MCP1; uptake, FLC;
909011; 909638; IL1B, IL8, MIP1, uptake, FLC; adherence;
910152; 910181 uptake; IL1B, IL6, IFNy, HIVrna
05663 14  910323; 910328; down ab TNFa; IL1p, IL13, TNFa; survival
910555
05662 14  910742;910822; down ab AMP; survival, FLC; survival; SERT;
910834, 910926; growth, SERT; survival, AMP; survival,
910939; 910964; survival, uptake; 1L12, GMCSF, growth,
910966; 910979; TNFa, MCP1; IL12, IL13, IL17, MIP1p,
911099; 911129; TNFa, growth, FLC, AMP, SERT; ILS,
911206; 911262; MCP1, MIP1B; MCP1; IL2; adherence;
911292; 911308; IL5; MCP1
911321; 911352
13204* 14  924025; 924047; up b GMCSF; IL13; I1L13; IL13

924049; 924050

& Semicolons are used as separators between different variants. When only one effect is listed it

is common among all variants in the gene.
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bGene number corresponds to the CNAG number from the Cryptococcus neoformans H99
reference genome on FungiDB. Hypothetical RNAs are indicated with an *.

¢ Effect designates location or type of variant: up, upstream of the coding region; down,
downstream of the coding region; ns, nonsynonymous change in the coding region; indel,
small insertion or deletion.

d Class type designations: a, genes with one variant significant for at least two phenotypes; b,
multiple variants in the same gene with at least one significant phenotype each; ab, both
criteria are fulfilled.
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Gene Chr  Position Effect PCAL p value PCA2 p value
CNAG_07950 1 975212 upstream 0.047 0.141
CNAG 01241 5 836697 upstream 0.04 0.505
CNAG_01241 5 836899 upstream 0.025 0.29
CNAG 02176 6 988733 stop gained 0.047 0.749
CNAG_02176 6 989490 ns 0.834 0.03
CNAG 02176 6 989960 ns 0.967 0.039
CNAG_07703 7 1341024 ns 0.031 0.289
CNAG 07727 8 818838 upstream 0.036 0.726
CNAG_08006 11 804710 UTR-5 0.048 0.312
CNAG_05987 12 19741 upstream 0.355 0.031
CNAG_06169 12 503321 UTR-3 0.048 0.795
CNAG 05450 14 342562 ns 0.024 0.142
CNAG_05661 14 908850 upstream 0.042 0.928
CNAG_05663 14 910328 downstream 0.042 0.12
CNAG 05662 14 911099 downstream 0.045 0.143
CNAG_05662 14 911129 downstream 0.048 0.046
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Table 4. Survival curve statistical results.

X2 statistic
Gene KO (df=1) p value
CNAG_00363 (tco64) 0.05 0.82
CNAG_02176 9 0.0027
CNAG_04373 3.07 0.08
CNAG_04535 2.79 0.095
CNAG_04922 9.97 0.0016
CNAG_05662 (itr44) 6.22 0.013
CNAG_05663 0.61 0.43
CNAG_05913 0.07 0.79
CNAG_05937 0.09 0.77
CNAG_06169 0.13 0.72
CNAG 06332 4.05 0.044
CNAG_06490 1.02 0.31
CNAG_06574 (appl4) 9 0.0027
CNAG_06704 5.83 0.016
CNAG_06876 0.05 0.82
CNAG_06986 7 0.0082
CNAG_07703 0.05 0.31
CNAG 07837 1.8 0.18
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Figure 1. Variants identified among all strains. A) The number of variants per gene has a long
right tail. The inset panel is the same data, zoomed for genes with at least 50 variants for
visualization purposes. B) There is a significant and positive relationship between gene length and
the number of variants per gene. C) The number of variants per strain matches the multi-locus

sequence type (ST) among strains.
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Figure 2. Phylogenetic analysis of all sequenced strains. A) The majority of ST93 strains fall
into two well-supported clades, magnified in (B) for ease of viewing. ST93A (purple
background) and ST93B (yellow background). Bootstrap values >50 are indiated with the

numeric bootstrap value.
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Figure 3. Variants that were common to all ST93 genomes are dispersed among 2715 genes and
hypothetical RNAs. A small number of clustered genes have a large number of variants. In each cluster
the gene with the highest number of variants is indicated. Genes with more than 20 variants and named

genes are indicated. Table S2 lists all genes with 10 or more variants.
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Figure 4. ST93A and ST93B clade-specific variants. A) Variants that are specific to the ST93A and
ST93B clades are distributed across the genome. B) Upstream variants are the majority class found in
all ST93 genomes (“ST93all”’) and among the variants that are specific to either clade. By contrast,
ST93A variants were more likely to be nonsynonymous and less likely to be downstream compared to
ST93all or ST93B variants. C) IL2 cytokine levels in the CSF and in vitro macrophage uptake differed
between ST93A and ST93B strains.
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Figure 5. Flow chart for bioinformatic approaches used to identify C. neoformans genes associated with
human infection. Two complementary approaches were used: logistic regression followed by cluster analysis

and principal component analysis (PCA).
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Figure 6. Comparison of variant frequency across the genome. The relative frequency of variants
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per gene for significant genes (red line) compared to all sequenced variants across all genomes

(black line) and all variants within ST93 genomes (gray line). Only genes with at least one

potentially significant variant are shown, hence the gray line does not reach 0. Discordance between

the red compared to black and gray lines highlight areas with significant variants.
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Figure 7. Deletion strain virulence in mice. Groups of five 6-8 week old C57BI/6 mice
were infected intranasally with 5 X 104 cells. Progression to severe morbidity was
monitored for 35 days and mice were sacrificed when endpoint criteria were reached.

Strains were tested in two separate experiments indicated as E1 or E2, respectively.


https://doi.org/10.1101/592212
http://creativecommons.org/licenses/by/4.0/

B

D

Number of Mice

UgCl462 [N TN T T UgC1389
S EE 88 SE8 B8
UgCl462
751 bp
UgCl443

YNB 1% Glucose

10 T C

KN99a
itr4A
UgCl389
UgCl462
UgCl443

30°C 37°C
YNB 1% Inositol

w— jtr4AITR4

0 10 20 30 40
Days post Infection
UsCI389 itr4A

KN99a

& 2500 30°C 37°C
@

Q

g 2000 - YNB 1% Inositol 1% Glucose
=

& — KN99a

2 ir44

©

% 1000 + UgClI389

a UeCl462

g 500 - s

g UgCl443

c

=S n 30°C 37°C

oR¢ og® N (XL L
@ (o R o

Figure 8: Analysis of ITR4 through in vivo virulence and in vitro growth and inositol
uptake. A) Groups of ten 6-8 week old C57BI/6 mice were infected intranasally with 1 X 103
cells. Progression to severe morbidity was monitored for 44 days and mice were sacrificed
when endpoint criteria were reached. B) Schematic diagram showing location of the variants in
the UgClI389 and UgCl462 clinical isolates relative to the ITR4 coding region. UgCl443 has
the HI9 reference allele. C) Growth assay of C. neoformans wild type strain KN99¢, itr4A
mutant, and clinical strains on medium with different inositol levels. Yeast cells were cultured
in YPD medium. Equal cell concentrations were spotted as 10-fold serial dilutions onto YNB
plates made with 1% glucose, 1% inositol, or 1% glucose and 1% inositol. Plates were
incubated at 30°C and growth was examined after 4 days. The assay was repeated three times
with similar results. D) Inositol uptake analysis of C. neoformans strains. Yeast cells were
mixed with 3H-labeled inositol and incubated at 30°C for 10 minutes in triplicate and repeated

twice with similar patterns. Error bar indicates the standard deviation of the three replicates.
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Supporting Information Legends
Supplemental Tables

Table S1. Genes, hypothetical RNAs, and intergenic regions with variants that are present in all

ST93 genomes
Table S2. Genes with at least 10 variants present in all ST93 genomes
Table S3. ST93A and ST93B clade-specific variants

Table S4. Statistical analysis of ST93 clade-specific associations with quantitative infection

phenotypes

Table S5. Phenotypes measured from patients enrolled in the COAT trial (clinical and cytokines)

and in vitro.

Table S6. Significant variants in genes and hypothetical RNAs with quantitative infection

phenotypes based on class designation

Table S7. Logistic regression analysis of all significant variants in genes and hypothetical RNAs

associated with quantitative infection phenotypes

Table S8. The majority of genes associated with quantitative infection phenotypes are

uncharacterized
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Supplemental Figure Legends

Figure S1. Clade-specific differences in phenotype. Bar indicates median value.

Figure S2. PCA analysis. A) Each dashed line represents one of 20 randomized trials. B) There

was no association between PC1 or PC2 and clade.

Figure S3. KN99¢ deletion strain virulence in mice. Groups of five 6-8 week old C57BI/6
mice were infected intranasally with 5 X 10 cells. Progression to severe morbidity was
monitored for 35 days and mice were sacrificed when endpoint criteria were reached. Strains
were tested in two separate experiments, E1 or E2, respectively. The deletions strains were

compared against the KN99a strain in the same experiment.

Figure S4. Growth at 7 days post-infection. Groups of four 6-8 week old C57BI/6 mice were
infected intranasally with 1 X 10° cells. Mice were sacrificed at 7 days post infection, lungs
homogenized in 4 ml of PBS, and serial dilutions plated on YPD with cholamphenicol medium.

Colony forming units were enumerated at 48 hours.
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