

Identification of pathogen genomic differences that impact human immune response and disease during *Cryptococcus neoformans* infection

Aleeza C. Gerstein^{1,+}, Katrina M. Jackson¹, Tami R. McDonald^{1,#}, Yina Wang², Benjamin D. Lueck¹, Sara Bohjanen¹, Kyle D. Smith¹, Andrew Akampurira³, David B. Meya³, Chaoyang Xue², David R. Boulware⁴, and Kirsten Nielsen¹

¹ Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN

² Public Health Research Institute, Rutgers University, Newark, NJ

³ Infectious Diseases Institute and School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda

⁴ Department of Medicine, University of Minnesota, Minneapolis, MN

⁺ Currently at Departments of Microbiology and Statistics, University of Manitoba, Winnipeg, Canada

[#] Currently at Biology Department, St. Catherine University, St Paul, MN

Corresponding author:

Kirsten Nielsen, PhD
Department of Microbiology and Immunology
University of Minnesota
689 23rd Ave SE, Minneapolis, MN 55455
Email: knielsen@umn.edu
Phone: 612-625-4979

1 **Abstract**

2

3 Patient outcomes during infection are due to a complex interplay between the quality of medical
4 care, host immunity factors, and the infecting pathogen's characteristics. To probe the influence
5 of pathogen genotype on human immune response and disease, we examined *Cryptococcus*
6 *neoformans* isolates collected during the Cryptococcal Optimal ART Timing (COAT) trial in
7 Uganda. We measured human participants' immunologic phenotypes, meningitis disease
8 parameters, and survival. We compared this clinical data to whole genome sequences from 38 *C.*
9 *neoformans* isolates of the most frequently observed sequence type (ST) ST93 in our Ugandan
10 participant population, and an additional 18 strains from 9 other sequence types representing the
11 known genetic diversity within the Ugandan *Cryptococcus* clinical isolates. We focused our
12 analyses on 652 polymorphisms that: were variable among the ST93 genomes, were not in
13 centromeres or extreme telomeres, and were predicted to have a fitness effect. Logistic
14 regression and principal component analyses identified 40 candidate *Cryptococcus* genes and 3
15 hypothetical RNAs associated with human immunologic response or clinical parameters. We
16 infected mice with 17 available KN99α gene deletion strains for these candidate genes and found
17 that 35% (6/17) directly influenced murine survival. Four of the six gene deletions that impacted
18 murine survival were novel. Such bedside-to-bench translational research provides important
19 candidate genes for future studies on virulence-associated traits in human *Cryptococcus*
20 infections.

21 **Author Summary**

22

23 Even with the best available care, mortality rates in cryptococcal meningitis range from
24 20-60%. Disease is often due to infection by the fungus *Cryptococcus neoformans* and involves a
25 complex interaction between the human host and the fungal pathogen. Although previous studies
26 have suggested genetic differences in the pathogen impact human disease, it has proven quite
27 difficult to identify the specific *C. neoformans* genes that impact the outcome of the human
28 infection. Here, we take advantage of a Ugandan patient cohort infected with closely related *C.*
29 *neoformans* strains to examine to role of pathogen genetic variants on several human disease
30 characteristics. Using a pathogen whole genome sequencing approach, we showed that 40 *C.*
31 *neoformans* genes are associated with human disease. Surprisingly, many of these genes are
32 specific to *Cryptococcus* and have unknown functions. We also show deletion of these genes
33 alters disease in a mouse model of infection, confirming their role in disease. These findings are
34 particularly important because they are the first to identify *C. neoformans* genes associated with
35 human cryptococcal meningitis and lay the foundation for future studies that may lead to new
36 treatment strategies aimed at reducing patient mortality.

37

Introduction

38

39

Cryptococcus neoformans is the etiological agent of cryptococcal meningitis, the most common brain infection in Sub-Saharan Africa, which encompasses 15% of AIDS-related deaths [1]. As with all fungal pathogens, a major clinical concern is the small number of antifungal drug classes available (n=3) [2,3]. Researchers seek to identify the pathogen virulence factors that influence human health in order to develop novel drug targets to improve patient survival [4]. In addition to virulence factors that are common among all human pathogenic fungi, such as the ability to grow at 37°C, a number of *Cryptococcus*-specific virulence factors have been identified. The most well-studied include the polysaccharide capsule, the synthesis of melanin, and the secretion of extracellular enzymes such as phospholipases, laccase, and urease [5]. As we have previously discussed [6], there is not a clear quantitative association between *in vitro* virulence factor defects and clinical parameters of disease [7–13], thus studies clarifying this relationship are required.

50

51

Additional potential virulence targets have been identified through reverse genetic screens of the *C. neoformans* gene knockout collection [14]. A screen of 1201 knockout mutants from 1180 genes (20% of the protein coding genes) identified 164 mutants with reduced infectivity and 33 with increased infectivity in a screen for murine lung infectivity [7]. Deselarmos and colleagues [15] screened the same mutants for virulence in *Caenorhabditis elegans* and *Galleria mellonella* infection models and identified 12 mutants through a dual-species stepwise screening approach; all 12 also had attenuated virulence in a murine model (4 overlapped with those identified in the original murine lung screen). Many of the identified genes are associated with melanin production (which is not required for killing of *C. elegans*), thus the emerging picture is that genes that influence virulence are involved in multiple independent or parallel pathways such as melanization [15].

62

63

64

65

66

67

A complementary tactic to identify novel virulence factors is to use forward genetics, and look for association between strain background and virulence. *Cryptococcus* strains were originally classified by antigenic diversity, which led to differentiation into two species, *Cryptococcus neoformans* (var. *grubii* and var. *neoformans*, serotypes A and D, respectively) and *Cryptococcus gatti* (originally *C. bacillosporus*, serotypes B and C [16]). The phylogenetic relatedness among strains has been subjected to a series of discussions that first used PCR

68 fingerprinting and randomly amplified polymorphic DNA (RAPD) analysis [17] and then multi-
69 locus sequence typing (MLST) analysis [17] to classify strains based on sequence types (ST)
70 defined in an online database (<http://mlst.mycologylab.org>). These analyses have led to
71 competing species definition proposals. The first proposes classifying strains into seven species
72 (two from *C. neoformans* following the serotypes and five from *C. gattii*) [18,19]. However,
73 based on an analysis of 2600 strains, which revealed genetic diversity that is not-wholly captured
74 by the seven species proposal [20] the second wants to maintain two groups, delineated as the
75 “*C. neoformans* species complex” and the “*C. gattii* species complex” [21]. This “how do you
76 define a species?” should not be written off as a purely philosophical issue [58], as we seek to
77 discover whether there is a correlation between strain background and disease.

78 At a coarse level, there is a clear correlation between *Cryptococcus* variation and human
79 infectivity. *C. neoformans* var. *grubii* strains cause the majority of infections in
80 immunocompromised patients [22], while *C. gattii* is strongly implicated in cryptococcosis in
81 immunocompetent individuals [23]. A handful of studies have demonstrated that there is also
82 influence of phylogenetic relatedness on disease within var. *grubii* strains. The
83 PCR/AFLP/MLST analyses divided var. *grubii* strains into three groups, VNI, VNII, and VNB
84 strains. Beale and colleagues [10] found that among strains from South Africa, survival was
85 lower for eight patients infected with VNB strains compared to the more common VNI or VNII
86 strains (isolated from 175 and 47 patients, respectively). Similarly, Wiesner and colleagues [9]
87 used MLST to type 111 strains isolated from Ugandan patients with their first episode of
88 cryptococcal meningitis and conducted BURST clustering analysis to group strains with similar
89 ST type (all of which are in the VN1 clade). BURST group 3 had significantly improved survival
90 (62%) relative to BURST groups 1 and 2 (20% for both groups). Yet additional finer resolution
91 studies by Mukaremra and colleagues within individual MLST sequence types (ST) show that
92 there is also substantial variation in patient survival associated with individual strain differences
93 [24]. Interestingly, while the South African clinical strains exhibited diversity in ST type, the
94 Ugandan clinical strains were closely related, with ST93 strains accounting for approximately
95 60% of clinical isolates [9,10,24].

96 The overall picture that emerges from these studies is twofold. Strain background can
97 significantly influence human disease, and there is tremendous disparity in strain frequency;
98 some strain groups are much more common than others. ST93 is common in Uganda, but is also

99 the most frequently isolated ST strain from HIV-infected patients in Brazil (85% [25,26]) and
100 India (71% [27,28]). Sequence type prevalence also has a clear geographic component as
101 different ST groups are dominant in other well-sampled countries (e.g., China, Thailand,
102 Vietnam, Indonesia, Botswana, France [27–29]).

103 Here we sought to identify candidate genes associated with clinical phenotypes in human
104 subjects. We took advantage of the large number of patients in Uganda infected with closely
105 related ST93 strains and combined this with a powerful dataset collected during the Cryptococcal
106 Optimal ART Timing (COAT) trial in Uganda [30]. When participants enrolled in the trial,
107 strains were isolated and participant quantitative clinical and immunologic data were collected
108 prior to treatment [40]. We sequenced the whole genomes of 38 ST93 strains, half from
109 participants that survived the infection and half from participants that died, reasoning that
110 restricting our search to variants among closely related strains would reduce background genetic
111 noise. We conducted a series of statistical tests that identified 40 candidate genes and 3
112 hypothetical RNAs associated with clinical, immunologic, or *in vitro* phenotypes. We measured
113 the virulence of 17 available KN99α knockout mutants for these genes in mice and found that
114 35% (6/17) had a significant association with mouse survival. Pathogen whole genome
115 sequencing paired with statistical analyses of human clinical outcome data and *in vivo* virulence
116 tests thus provides a new method to empirically probe the relationship between pathogen
117 genotype and human clinical phenotype.

118

Results

119

120 We whole-genome sequenced 56 *C. neoformans* VNI strains isolated from HIV-infected,
121 ART-naive patients presenting with their first episode of cryptococcal meningitis at Mulago
122 Hospital, Kampala, Uganda. The majority of strains (n=38) were chosen from ST93 isolates (the
123 dominant genotype in Uganda [45]), collected as part of the Cryptococcal Optimal ART Timing
124 (COAT) trial, where an array of human immunologic phenotypes and disease parameters were
125 recorded for all participants. Approximately half of these strains were derived from participants
126 who survived the infection (n=21) and half from participants who died (n=17). The remaining 18
127 strains were chosen to represent the diversity of the clinical strains in Uganda for phylogenetic
128 purposes.

129

We identified 127344 SNPs and 15032 insertions/deletions (referred to as indels)
130 associated with 7561 genes (or predicted genes) among the 56 sequenced *C. neoformans* strains.
131 For ease of reference, we will refer to these SNPs, insertions, and deletions cumulatively as
132 "variants". Over three-quarters of the identified variants were non-coding variants not predicted
133 to change the amino acid sequence of a gene: synonymous changes within the gene (22%),
134 intergenic regions (3%), or designated as upstream or downstream of the associated gene (within
135 5kb of the nearest gene; 43% upstream, 10% downstream). The remaining (genic) variants are
136 associated with 5812 different genes. Nonsynonymous coding changes are the largest class
137 (90%) of these variants, with the remainder small insertion and deletion mutations.

138

The majority of genes have relatively few variants within the strain set, though 435 genes
139 have over 50 variants (Figure 1A). There was a significant relationship between the number of
140 variants and gene length (Pearson's correlation test, $t_{4254} = 33.001, p < 0.001, \text{cor} = 0.45$; Figure
141 1B), albeit with considerable variability around the line of best fit. The number of variants in
142 each sequenced genome was extremely similar among strains from the same sequence type
143 (Figure 1C), reflective of the phylogenetic distance from sequenced strains to the H99 reference
144 genome (Figure 2).

145

With this phylogenetic strain knowledge, we classified all variants into four categories: i)
146 "common" variants differentiating Ugandan clinical isolates from the reference H99 genome; ii)
147 "other" variants present only in non-ST93 genomes; iii) "allST93" variants present in all ST93
148 genomes but no other Ugandan ST genomes; iv) "someST93" variants present in some of the

149 ST93 genomes. For our study, we considered the most interesting variants to be the “allST93” or
150 “someST93” because these categories would potentially identify variants that could explain the
151 increased overall pathogenesis of ST93 in humans (category iii), and will allow us to identify
152 variants within ST93 associated with human clinical outcomes and phenotypes (category iv).

153

154 *Common variants in ST93*

155 Variants that are in all ST93 strains and not the other sequenced strains (or the reference
156 genome) can potentially tell us something about what differentiates strains in ST93 from other
157 Ugandan strains. We identified 5110 variants common to all 38 ST93 genomes (4681 SNPs and
158 429 small indels). These variants were dispersed across the genome, associated with 2575 genes
159 and 140 hypothetical RNAs (Figure 3, Table S1). The majority of these genes have one or a
160 small number of variants, while a handful of genes had a very high number of variants (Table S2,
161 23 genes with at least 10 variants). The percentage of named genes in this set (8%, 2 of 24)
162 matches the full gene set (8%, 686 out of 8338). The number of genes with a description (i.e., not
163 “hypothetical protein” or “hypothetical RNA”) is actually lower in this gene set (33%) than the
164 whole gene set (49%).

165

166 *ST93 clade-specific variants*

167 Our primary aim was to identify the variants that are in some, but not all of the ST93
168 genomes, as these are the variants that can be used to examine genome associations with the
169 measured human clinical phenotypes. When we examine the phylogenetic tree of ST93 COAT
170 strains, we surprisingly identified a well-supported split between ST93 strains (Figure 2B), with
171 20 of the sequenced strains in one group (“clade A”), 16 strains in a second (“clade B”), and two
172 ST93 strains outside of the primary clades. We identified 97 variants that differentiate strains in
173 one clade from the other: 60 variants were unique to and in all clade A strains, and 37 variants
174 were unique to and in all clade B strains. Clade-specific variants were located throughout the
175 genome (Figure 4A) in 96 different genes. All except for one of the genes contained only a single
176 clade-associated variant. In clade B, CNAG_06422 contains two variants in the 5'UTR that are
177 three bases apart. An increased number of nonsynonymous and decreased downstream SNPs are
178 observed in clade A compared to clade B (Figure 4B). Twenty-seven clade-specific mutations
179 cause nonsynonymous amino acid changes (21 in clade A, 6 in clade B) and one small insertion

180 mutation is present in clade A (Table S3). Although the majority of these variants are in genes
181 that have not been characterized, four are in genes of known function: *LIV11* (CNAG_05422), a
182 virulence protein of unknown function, *HSX1* (CNAG_03772), a high-affinity glucose
183 transporter; *PTP2* (CNAG_05155), a protein tyrosine phosphatase; *SPT8* (CNAG_06597), and a
184 predicted saga histone acetyltransferase complex component.

185

186 *Variant association with human clinical, immunologic and in vitro phenotypes*

187 We next determined whether variants in the ST93 strains were associated with clinical
188 measures of disease, CSF cytokines levels, or with *in vitro* phenotypes [30,40], (Table 1, see
189 Methods for more details). We collectively refer to these three classes of phenotypes as
190 "quantitative infection phenotypes". We identified a significant correlation between the ST93
191 A/B clade with *in vitro* macrophage uptake rate and patient CSF interleukin (IL)-2 (non-
192 parametric Wilcoxon rank sum test; uptake $W = 226, p = 0.011$; IL2 $W = 66.5, p = 0.022$; Figure
193 4C). There was not a significant relationship between ST93 clade and the other quantitative
194 infection phenotypes (Figure S1A; non-significant t-test results in Table S4), nor between ST93
195 clade and survival (Figure S1B, Fisher-exact test, $p = 0.33$).

196 To examine associations between single variants and quantitative infection phenotypes
197 (our primary objective), we parsed the 5605 variants that were in some (but not all) of the ST93
198 genomes. We took two complementary approaches to look for phenotypic associations. Our first
199 tactic was to treat each measured phenotype as independent. For the second we used principal
200 components analysis (PCA) to distill the 30 measured phenotypes into a smaller number of
201 independent variables. Due to the nature of data collection for these types of phenotypic data,
202 some strains were missing data for some phenotypes (Table S5). The most consequential was
203 two strains missing data for all cytokine phenotypes.

204 For the first tactic we analyzed phenotypes in each class as independent datasets in a
205 logistic regression approach (Figure 5). For each, we removed variants that were in very few
206 (<4) strains, as well as those without a predicted function (i.e., synonymous and intergenic
207 variants), and those that mapped to either the centromeric or extreme telomeric regions. This left
208 us with 466 variants in 230 genes for the cytokine dataset and 652 variants in 328 genes for the
209 clinical and *in vitro* datasets. For each dataset we then conducted logistic regression analyses for
210 each variant against each phenotype and found that across all tests 207 variants from 115

211 different genes were significant for at least one phenotype. The majority (138 variants) were
212 significant for a single phenotype. To partially correct for false positives, we focused our further
213 analyses only on the variants that were significant for at least two phenotypes ("class **a**") or when
214 multiple significant variants were identified in the same gene ("class **b**"), or when the variant
215 fulfilled both criteria ("class **ab**"). This narrowed the list to 145 variants from 40 genes and 3
216 hypothetical RNAs, with 13 variants in class **a**, 36 variants in class **b**, and 96 variants in class **ab**
217 (Table 2, full information about significant variants including class in Table S6, full statistical
218 information for each significant variant and phenotype in Table S7).

219 Following the default parameters in SnpEff, we used a very broad definition for calling
220 variants upstream or downstream variants (+/- 5 kb). Over 80% of the significant variants were
221 either upstream or downstream of genes (86 variants upstream, 34 variants downstream), with
222 20% within 1 kb (Table S6). Of the remaining variants, 21 were nonsynonymous, while 4 were
223 indels. The majority of significant genes contained multiple significant variants (Table 2). In
224 some cases, different variants in the same gene influenced the same phenotype, generally
225 because the multiple significant variants are linked (e.g., three nonsynonymous variants in
226 CNAG_00014 with the majority of ST93 strains falling into two haplotypes; one upstream SNP
227 and two upstream insertions in CNAG_02112 with two haplotypes that influenced amphotericin
228 B resistance). In other cases, such as CNAG_07950, there were six different haplotypes and
229 three significant upstream variants that were associated with 8 unique phenotypes (IL8 was
230 associated with the two variants, while HIVrna, IL4, IL6, GMCSF, IFN γ , Fluconazole MIC, and
231 EFA were each associated with a single variant).

232 We also conducted PCA analysis as a second tactic to reduce the potential influence of
233 phenotypic correlation on the results (Figure 5). As PCA requires complete datasets, we used
234 data from the 27 phenotypes that had missing data from only three or fewer strains (i.e., we
235 excluded CrAg LFA titer, HIV RNA viral load, CSF protein, and CSF white cell data, Table S5)
236 and had to exclude 8 strains (UgCl212, UgCl332, UgCl357, UgCl422, UgCl447, UgCl461,
237 UgCl541, UgCl549, Table 1). The 'prcomp' function from the R programming language was
238 used to perform PCA on the two phenotypes which were scaled to have unit variance and shifted
239 to be zero centered. We continued with the first two principal components by comparing the
240 observed results to 20 datasets where the phenotypic data was randomized among strains (Figure
241 S2A). Logistic regression analysis was run for each of the 466 variants that passed filter against

242 PC1 and PC2. The PCA analysis yielded only 16 significant variants in 12 genes (Table 3). Only
243 one of these genes, CNAG_07727, was not identified in the first analysis, and twelve of these
244 variants were previously significant.

245 The majority of genes with a high number of significant variants were also genes with
246 high numbers of sequenced variants and potentially-significant variants (Figure 6). In addition to
247 variation among genes in regards to the number of significant variants within a gene ("sig
248 variants"; ranging from 1-34), there was also variation in the number of variants that were
249 identified within a strain ("sequenced variants"; range: 1-210) and the number of variants that
250 passed our filters ("potentially-significant variants": range: 1-32). This result highlights a
251 limitation of genetic association screens such as the one we performed. Without additional
252 biological validation it is difficult, if not impossible, to ascertain whether a given gene has many
253 significant variants because of strong selection acting on that gene (e.g., if a knockout phenotype
254 is beneficial there are many different positions that can reduce gene expression or protein levels)
255 or because of relaxed selection and chance (i.e., if there is relaxed selection then many variants
256 could be present, with statistical significance arising by chance). However, the fact that we do
257 see areas of discordance between all the sequenced variants, potentially significant variants, and
258 significant variants suggests many of our significant variants are not just a statistical artefact.

259

260 *In vivo virulence of identified genes*

261 Our goal was to identify pathogen variants that impact human clinical disease
262 phenotypes. Biological validation in humans is not possible. However, Mukaremra and
263 colleagues recently showed that the mouse inhalation model of cryptococcosis accurately
264 recapitulates human infections and can be used to dissect *C. neoformans* genetic factors that
265 influence human disease. [24]. Thus, as a first step to probe the biological significance of the
266 genes identified in our analyses, we tested the virulence of 17 available KN99 α deletion strains
267 in the inhalation mouse cryptococcosis model. Six (35%) of the tested deletion strains had a
268 significant virulence effect on mouse survival compared to the control KN99 α strain: three
269 strains had increased virulence (CNAG_02176, CNAG_06574, CNAG_06332) and three strains
270 had decreased virulence (CNAG_06986, CNAG_04922, CNAG_05662) (statistical results in
271 Table 4, significantly different strains in Figure 7, non-significant strains in Figure S3). Although
272 gene deletion mutants are only one way to biologically probe whether a candidate gene has a true

273 virulence phenotype, we did find that the number of significant variants in a gene (Table 2) was a
274 significant predictor of the deletion mutations having a virulence effect (linear model, $F_{1, 15} =$
275 8.493, $p = 0.011$).

276

277 *In vivo and in vitro analysis of *itr4Δ* and clinical strains*

278 The gene with the highest number of significant variants in our candidate gene list was
279 CNAG_05662 (*ITR4*), which has been reported as a member of the inositol transporter gene
280 family [59]. The *itr4Δ* mutant strain had reduced virulence in the mouse model whereas the
281 *itr4Δ:ITR4* complement strain had equivalent virulence to the laboratory reference background
282 strain KN99 α showing that the ITR4 deletion is responsible for the virulence defect in the *itr4Δ*
283 mutant (Figure 8A). In this lower inoculum experiment, three of the *itr4Δ* infected mice survived
284 until the experiment was ended on day 44 (Figure 8A). Terminal colony forming units (CFUs)
285 from the brain and lungs of the survivors showed complete fungal clearance in one mouse and a
286 low fungal burden in the lungs (2×10^2 CFUs) in the second mouse. The third mouse had $5.64 \times$
287 10^5 CFUs in the lungs and 1.35×10^4 CFUs in the brain. Evaluation of the fungal burden at seven
288 days post-infection showed more *itr4Δ* mutant CFUs in the lungs than KN99 α and *itr4Δ:ITR4*,
289 and no *itr4Δ* CFUs in the brain (Figure S4), suggesting the reduced pathogenesis observed in the
290 *itr4Δ* mutant is likely due to reduced growth in or delayed dissemination to the brain.

291 To further determine the role of the genetic variants in the biological function of *ITR4* -
292 KN99 α , *itr4Δ*, and three clinical strains (UgCl389, UgCl462, and UgCl443) were tested for
293 growth with inositol and inositol uptake. The variants associated with the *ITR4* locus in these
294 clinical strains are proximal to the coding region – both UgCl389 and UgCl462 have 11 single
295 nucleotide polymorphisms immediately downstream of the coding region whereas UgCl443
296 contains the H99 reference allele for *ITR4* (Figure 8B). All the clinical strains showed enhanced
297 growth with inositol compared to KN99 α , and similar to *itr4Δ* (Figure 8C). UgCl389 and
298 UgCl462 were also more efficient at inositol uptake, while UgCl443 was similar to KN99 α , and
299 *itr4Δ* had decreased inositol uptake (Figure 8D). Taken together, these data highlight the
300 complex nature of the multiple variants across the clinical strains. Due to differences in genetic
301 background between the clinical strains, interpretation of the impact of specific variants and/or
302 gene alleles is challenging.

303

Discussion

304

305

Virulence is a multifaceted phenotype, as many different pathogen and host characteristics will determine the severity of a given infection. Here we paired a powerful dataset from the Cryptococcal Optimal ART Timing (COAT) trial in Uganda with pathogen whole genome sequencing technology to identify candidate *C. neoformans* genes that were statistically associated with quantitative human infection phenotypes. The technique of using Genome-wide Association Studies (GWAS) to uncover genic variants linked to disease was developed fourteen years ago in the context of human disease genetics [46]. Here we looked for association between variants within 38 ST93 *C. neoformans* isolates from participants enrolled in the COAT trial with 30 measured clinical phenotypes, cytokines, and *in vitro* phenotypes. We took two complementary tactics to identify candidate genes. The first treated each measured phenotype as independent, yet only included genes that either have a variant significantly associated with multiple phenotypes (13 genes), genes with multiple significant variants (10 genes), or both (20 genes). We also conducted a PCA analysis examining the first two principal components from a PCA on the 27 phenotypes and 30 strains with sufficient data. The resultant reduction of power is unfortunate, but not surprising when dealing with human data, and the detrimental impacts of missing clinical data have been previously discussed [47], and indeed is why we took both tactics. The PCA analysis yielded a total of 12 genes, 11 that overlapped with those identified in the first analysis and one additional gene. Combined, we identified 40 candidate *C. neoformans* genes and three hypothetical RNAs associated with infection phenotypes among the ST93 strains.

325

The statistical analysis is blind to any prior knowledge of the genes, and thus does not depend on prior annotation. Accordingly, the majority of genes we identified have not yet been named and roughly half (19) are listed as "hypothetical proteins" on FungiDB. Interestingly, only two of these 19 genes are conserved among fungal taxa, and curating information about orthologues from FungiDB (<https://fungidb.org/fungidb/>) suggests that the majority of others are either unique to *C. neoformans* or only have orthologues in the very closely related species complex *C. gattii* (Table S8). This is consistent with the logic of Liu et al. [7], who purposefully targeted genes that did not have homologues in *Saccharomyces cerevisiae* during the

333 construction of the original H99 gene deletion collection [14] (an 1180 gene collection in *C.*
334 *neoformans* H99, which corresponds to ~20% of the protein coding genes).

335 We took advantage of the newer KN99 α gene deletion collection [48] and found that
336 35% (6/17) of the available gene knockouts had an effect on virulence in mice. The significant
337 genes with a virulence change in mice include two named genes *ITR4* (CNAG_05662) and *APP1*
338 (CNAG_06574) as well as three hypothetical proteins from closely related species
339 (CNAG_02176, CNAG_04922, CNAG_06332) and one hypothetical protein with broad
340 taxonomic distribution (CNAG_06968). *APP1* is a cytoplasmic protein involved in extracellular
341 secretion and reduced phagocytosis. The *app1* Δ mutant has previously been shown to have
342 decreased virulence in mice [49]. Interestingly, this is opposite from our mouse model that
343 showed increased virulence of the *app1* Δ mutant. This difference could be due to the differential
344 immune response in BALB/C (previous study, type 1 immune response) and C57Bl/6 mice
345 (current study, type 2 immune response) that likely gives a hint to the mechanism of *APP1* in
346 human disease.

347 Intriguingly, *ITR4* (synonym *PTP1*) was the top hit in a screen that identified genes that
348 were overexpressed in an intracellular environment (amoebae and murine macrophages)
349 compared to the lab medium YPD [50]. In that study, *itr4* Δ did not differ from wildtype in mice
350 or *Galleria mellonella* virulence assays [50], though these studies were performed in a different
351 genetic background from our KN99 α reference strain. Using gene complementation, we clearly
352 show the virulence defect in the *itr4* Δ mutant is due to deletion of the *ITR4* gene. However, our
353 analysis of differences in growth and uptake of inositol in clinical isolates with different variants
354 was less conclusive. All of the clinical strains appeared to be better adapted for growth and
355 uptake of inositol compared to the KN99 α reference strain. This is not surprising, given that the
356 clinical strains were isolated from the central nervous system, which is an inositol rich
357 environment. Because most of the *ITR4* gene variants are proximal to the coding region, these
358 alterations may change expression of the *ITR4* gene, or transcript/protein stability *in vivo*, rather
359 than abolish gene expression as occurs in the *itr4* Δ mutant. This could explain the difference
360 between *in vitro* inositol phenotypes we observed between our clinical isolates and the mutant. It
361 is also possible that the genetic background of the clinical isolates influences the function of the
362 different *ITR4* gene variants, as these genes are known to be part of larger inositol acquisition
363 and utilization pathways.

364 There was no clear relationship between genes that were identified in both of our
365 statistical analyses and the gene deletion virulence in mice (five genes were significant in both,
366 two with a significant gene deletion virulence effect, Table S8). We note, however, that although
367 there is a good link between strain survival in mice and human virulence [24], there are two
368 major limitations with interpretation and extrapolation of the virulence tests we performed in this
369 study. The first is that the phenotype of a gene knockout does not necessarily recapitulate the
370 effect of a natural point or indel mutation (e.g., [51–53]). Importantly, variants located upstream
371 of a gene were extremely prevalent in our dataset, suggesting that they would not be
372 phenocopied with a gene deletion if an increase in expression is required to influence the trait.
373 The second reason for pause is that the gene knockout collection is in the KN99 α genetic
374 background. It has previously been shown that although ST93 and KN99 α are both VNI strains,
375 they are phylogenetically quite distantly related [10]. We see this distance in our own dataset:
376 2941 variants were present in the closely related ST93 genomes we sequenced and over 40 000
377 variants were present across all the genomes compared to the H99 reference strain. Genetic
378 background is known to play a significant role on the effect of a mutation. A large study in
379 *Saccharomyces cerevisiae* recently found that 16–42% of deletion phenotypes changed between
380 pairs of strains, depending on the environment [54]. To fully probe the influence of the variants
381 and genes we identified in our screen these variants need to be studied in the ST93 background.
382 Given these limitations, we anticipate additional studies will uncover more genes from our study
383 with an impact on pathogenesis. It would also of course be of general interest to reconstruct a
384 knockout collection in a strain background more representative of typical clinical strains [14,28].

385 We purposefully chose to focus our study on strains from ST93, which was the most
386 prevalent ST group from strains we sampled from participants in the COAT trial (~63% of all
387 strains). ST did not significantly influence mortality (ST93: 22 patients died, 24 survived; non-
388 ST93: 9 patients died, 16 survived; fisher-exact test $p = 0.45$). ST93 was similarly the most
389 prevalent among advanced HIV patients in Brazil [25]. By contrast, ST93 isolates were less
390 common than ST5 isolates among immunocompetent patients in Vietnam, and non-ST5 strains
391 were associated with decreased mortality compared to ST5 [55]. Other studies have found no
392 ST93 isolates [56,57]. This picture of geography having a major impact on which group is most
393 prevalent begs the question of whether it is merely chance or the effect of selection that sorts
394 lineages geographically.

395 As additional 'genome enabled' clinical datasets are constructed, we can hope to gain a
396 clearer global picture about the link between broad and narrow genomic variability on clinical
397 outcome. Our narrow analysis in the ST93 strains was possible because of the large number of
398 patients infected with this sequence type in Uganda. Only as similar studies are performed in
399 patient populations throughout the world, with other dominant STs, or in the context of increased
400 genetic diversity, will we be able to determine how broadly applicable our study is to the global
401 population of *C. neoformans*.

402 Statistical association techniques using human clinical data, such as those employed here,
403 offer a complementary approach to genetic screens of mutant collections. They offer the benefit
404 of not having to choose a particular strain background to focus your efforts (typically the
405 reference strain), nor make decisions about which genes are likely to be the most important. For
406 example, the genes chosen for the initial *C. neoformans* knockout collection were biased not only
407 against genes with homologs in *S. cerevisiae*, but also against *C. neoformans*-specific genes [7].
408 There are also inherent biases to forward genetics methods. Here we only have the statistical
409 power to find association with common variants. The majority of variants we sampled among
410 our strains were singleton variants in only a single genome (Figure 1A), and some of these may
411 well have an extremely important influence on virulence that remains undetected in our current
412 analysis. Hence we have treated our pathogen GWAS analysis like a genetic screen, and the true
413 utility of this type of analysis is not seen in just one study in isolation of others. The power lies in
414 the opportunity to compare among studies of different types to find candidate genes or alleles to
415 focus our attention on.

416 Our analysis did not identify variants in many of the genes that were previously identified
417 through *in vitro* and in animal mutant screens as virulence factors in *C. neoformans*, such as
418 genes involved in capsule formation and melanin synthesis. There could be several reasons for
419 this result. Importantly, all of the ST93 strains analyzed were isolated from patients with
420 cryptococcal meningitis, thus all these strains by definition are capable of causing disease and in
421 our study the readout was not presence or absence of disease but rather the severity of disease.
422 Previous studies may have identified virulence factors involved in the early stages of infection
423 that impact the ability of *C. neoformans* to infect and then survive within the host, whereas our
424 study identified virulence factors that promote or inhibit the progression of disease. Second, our
425 analysis utilized human clinical data for association with genetic differences between strains

426 whereas previous studies utilized surrogates, either *in vitro* conditions or animal models. By
427 studying genetic differences in the context of human infection, we have the potential to not only
428 define genes that promote disease in humans but also the potential to define aspects of the host-
429 pathogen interaction that are specific to *C. neoformans* and the human host.

430

Methods

431

432

Ethics Statement

433

Animal experiments were done in accordance with the Animal Welfare Act, United States federal law, and NIH guidelines. Mice were handled in accordance with guidelines defined by the University of Minnesota Animal Care and Use Committee (IACUC) under protocol 1607-34001A. Participant data were collected as part of the COAT trial (clinicaltrials.gov:NCT01075152) [30,40]. All participants were enrolled in Uganda at Mulago Hospital, Makerere University, in Kampala. Written informed consent was obtained from all subjects or their proxy, and all data were de-identified. Institutional Review Board (IRB) approvals were obtained both at the University of Minnesota (0810M49622) and Makerere University.

442

443

Strain selection

444

We utilized *C. neoformans* isolates collected in Uganda as part of the Cryptococcal Optimal ART Timing (COAT) trial [30]. We focused primarily on 38 UgCl ("Ugandan Clinical") COAT strains that had previously been MLST genotyped as sequence type 93 (ST93), the most prevalent ST group in this collection of strains [31]. An additional 18 strains from ten MLST groups were also whole genome sequenced to represent strain diversity in Ugandan clinical isolates [9].

450

Clinical isolates were colony purified from the CSF of participants that presented at the clinic with their first episode of cryptococcal meningitis. The ST93 clinical isolate strains were purposefully chosen to represent strains from both participants who survived (n=21) and died (n = 17). As with the parent COAT trial, survival was decreased with early ART initiation, all putative ST93 clinical isolates used for these studies were from the standard-of-care (deferred ART treatment) arm of the clinical trial. Patient infection phenotypes (i.e., clinical and cytokine parameters, Table 1) were measured on the day patients were diagnosed with cryptococcal meningitis, prior to antifungal or ART treatment. Cytokine data was \log_2 transformed prior to analysis, as described previously [32].

459

460

461 *Library Preparation and Illumina Sequencing*

462 DNA was extracted using the CTAB DNA isolation method. Colony-purified cultures,
463 maintained as glycerol stocks at -80°C, were inoculated into 250mL yeast peptone dextrose agar
464 (YPD) in erlenmeyer flasks and grown overnight at 30°C with continuous shaking prior to DNA
465 isolation.

466 Strains were whole-genome sequenced in two sets. In the first set, genomic DNA
467 libraries from 16 strains were prepared by the Mayo Bioinformatics Core for 101bp paired-end
468 sequencing. The samples were combined into two pools (Pool A: UgCl001, UgCl018, UgCl021,
469 UgCl029, UgCl030, UgCl037, UgCl040, UgCl045, UgCl057, UgCl074, UgCl076, UgCl107;
470 Pool B: UgCl008, UgCl032, UgCl047, UgCl065, UgCl087, UgCl093). Each pool was sequenced
471 on a single lane of an Illumina HiSeq 20009.

472 In the second set, genomic DNA libraries from the 40 strains were prepared by the
473 University of Minnesota Genomics Center for 300bp paired-end sequencing with the Illumina
474 TruSeq DNA LT kit. The samples were combined into four pools; each pool was sequenced in a
475 single lane of an Illumina MiSeq (Pool1: UgCl212, UgCl230, UgCl236, UgCl243, UgCl247,
476 UgCl250, UgCl389, UgCl541, UgCl547, UgCl549; Pool2: UgCl252, UgCl255, UgCl262,
477 UgCl291, UgCl292, UgCl300, UgCl326, UgCl332, UgCl357, UgCl360; Pool3: UgCl362,
478 UgCl377, UgCl379, UgCl382, UgCl390, UgCl393, UgCl395, UgCl422, UgCl438, UgCl443;
479 Pool4: UgCl447, UgCl450, UgCl461, UgCl462, UgCl466, UgCl468, UgCl495, UgCl534,
480 UgCl535, UgCl538, UgCl546). In the second set of sequencing, the runs generated \gtrapprox 22 million
481 pass filter reads for pools 1 and 2 and \gtrapprox 17 million pass filter reads for pools 3 and 4. In all runs
482 >70% bases were above Q30. The average library insert size was 400-500bp.

483
484 *Variant calling*

485 Variant calling for each strain was adapted from the Genome Analysis Toolkit (GATK
486 v3.3.0) best practices [33–35]. For each strain the two paired-end fastq files were trimmed using
487 trimmomatic [36] and aligned to the *C. neoformans* H99 reference genome downloaded from
488 FungiDB (<http://fungidb.org/fungidb/>) on February 1, 2016 ("FungiDB-
489 26_Cneoformans_H99_Genome.fasta") with bwa mem [37]. The output (.SAM) files from all
490 other strains were converted to .BAM files and sorted, duplicates were marked and indexed and a
491 final index was built with picard tools (<http://broadinstitute.github.io/picard>). Variants were

492 called for each sample with GATK HaplotypeCaller run in GVCF mode for each strain (with
493 flags --genotyping_mode DISCOVERY --emitRefConfidence GVCF -variant_index_type
494 LINEAR -variant_index_parameter 128000 -ploidy 1) to obtain gVCF files. GATK
495 GenotypeGVCFs was then run to merge the 41 gVCF records. Variants were annotated with
496 SnpEff [38] followed by GATK VariantAnnotator. SNPs and INDELs were separated into two
497 tables from the single merged and annotated VCF file using GATK SelectVariants,
498 VariantFiltration and VariantsToTable. Coverage across chromosomes was determined using
499 GATK DepthOfCoverage on the sorted BAM files.

500

501 *Phylogenetic tree building*

502 SNPhylo [39], a pipeline designed to construct phylogenetic trees from SNP data, was
503 used to generate a PHYLIP file from the original VCF. SNPhylo reduces redundant SNP
504 information due to linkage disequilibrium. As we knew *a priori* that our ST93 samples are highly
505 related, we ran SNPhylo with the linkage disequilibrium flag set very high (0.99), which still
506 reduced the number of SNPs by ~94% on each chromosome. 7,383 markers were selected in
507 total. In SNPhylo, MUSCLE was used to perform multiple alignment and generate the PHYLIP
508 file.

509 Bootstrap analysis was conducted using RAxML. 20 maximum likelihood trees were
510 generated (-m ASC_GTRGAMMA --asc-corr=lewis) and support values from 100 bootstrap
511 replicates were determined for the best fit ML tree (-m ASC_GTRGAMMA --asc-corr=lewis -p
512 3 -b 12345 -#100). Bipartitions were then drawn on the best tree (-m ASC_GTRGAMMA --asc-
513 corr=lewis -p 3 -f b). This tree was read into R using the read.raxml command in the treeio
514 library. Further tree visualisations were created using ggtree.

515

516 *Clinical data*

517 Collection of clinical and immunological data were as described previously [30,40].
518 Clinical and immunological data used in this study are listed in Table 1. Briefly, clinical
519 parameters of disease were participant mortality due to cryptococcosis (days post initial
520 diagnosis), CD4+ T-cell count, cerebral spinal fluid (CSF) white blood cell count (WBC), serum
521 and CSF protein levels, HIV viral load, CSF *Cryptococcus* clearance rate of early fungicidal
522 activity (EFA), and lateral flow assay (LFA) measurement of cryptococcal antigen titer (Immy

523 Inc., Norman, Oklahoma). As immunological data, CSF levels of 19 cytokines and chemokines
524 (granulocyte colony-stimulating factor [G-CSF], granulocyte macrophage colony-stimulating
525 factor [GM-CSF], interferon- γ , tumor necrosis factor [TNF]- α , interleukin [IL]-1 β , IL-2, IL-4,
526 IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, MCP-1 [CCL2], macrophage inflammatory
527 protein [MIP]-1 α [CCL3], MIP-1 β [CCL4], VEGF) were analyzed. We refer to these cytokines
528 and chemokines collectively as "cytokines".

529 *In vitro* assays were also performed on the clinical isolates. Drug resistance assays for
530 fluconazole and amphotericin B were as described previously [31,41]. MH-S macrophage cell
531 cultures were used to determine *C. neoformans* cell uptake by macrophages. Briefly, 5×10^5 MH-
532 S cells per well were incubated at 37°C with 5% CO₂ for 2 hours in a 96-well culture plate to
533 allow adherence. *C. neoformans* cultures were grown overnight in Dulbecco's modified eagle
534 medium (DMEM) supplemented with 2% glucose, collected by centrifugation, washed, and
535 resuspended in 0.1% Uvitex solution for 10 minutes. Cells were then collected by centrifugation,
536 washed, and 5×10^5 cells and 4 μ g E1 anti-GXM antibody [42] were added to each well in the
537 MH-S culture plate. After two hours of co-incubation, the culture plate was centrifuged to collect
538 cells, spent media was decanted and cells were washed to remove extracellular *C. neoformans*
539 cells. Samples were then resuspended in 0.25% Trypsin in EDTA for 15 minutes to release the
540 adherent cells from the wells, fixed with 3.7% formaldehyde for 30 minutes on ice. Samples
541 were then stained with a second anti-GXM antibody (m18b7) conjugated to the AlexaFluor 488
542 fluorophore (1:2000) and PE-labelled CD45 (1:100) in PBS with 1 μ g/ml bovine serum albumin
543 (BSA) and 2 mM Tris-HCl. Cells were analyzed on a BD LSRII flow cytometer (BD Biosciences,
544 Inc) and data were analyzed using FlowJo software. Gating on Uvitex, CD45, and m18b7
545 allowed differentiation free *C. neoformans* cells (Uvitex+, CD45-), free macrophages (Uvitex-,
546 CD45+), macrophages with intracellular *C. neoformans* (Uvitex+, CD45+, m18b7-), and
547 macrophages with extracellular *C. neoformans* (Uvitex+, CD45+, m18b7+). To analyze cell wall
548 chitin content, *C. neoformans* cells were grown in DMEM supplemented with 2% glucose, 10%
549 FBS, 1% Pen-Strep, and beta-mercaptoethanol (1ml/1L) at 37°C overnight, and then fixed for 30
550 minutes in 3.7% formaldehyde. Cell concentration was adjusted to 1×10^6 cells/ml, stained with
551 1 μ g/ml calcofluor white (Sigma Aldrich) in PBS for 5 minutes at 25°C, then wash with PBS.
552 Median Calcofluor white fluorescence intensity was then determined for each strain by flow
553 cytometric analysis of the cell population on an LSR II Fortessa flow cytometer.

554 Biomarkers analyzed as continuous variables were \log_2 transformed for normalization,
555 analyzed, and then back-transformed to geometric mean values. All “mean” biomarker values are
556 geometric means. Low (“out of range”) measurements were set to half of the manufacturer's
557 listed assay limit of detection (LOD). CSF biomarkers with substantial proportions ($\geq 40\%$) of
558 undetectable values at diagnosis (IL-2, IL-1 β , IL-5, CCL22) were analyzed as categorical
559 variables: “detectable” (values greater than the LOD) versus “nondetectable (values lower than
560 the LOD). CSF white blood cell count (WBC) was analyzed as absolute values and also
561 classified as “normal” versus “elevated” (<5 vs ≥ 5 cells/ μ L, respectively).

562

563 *Survival Curves*

564 Survival curves were performed in three experiments. Experiment one (E1) tested the
565 virulence of KN99 α with the following genes deleted: CNAG_00363, CNAG_02176,
566 CNAG_04373, CNAG_04535, CNAG_04922, CNAG_05662, CNAG_05663, CNAG_05913,
567 CNAG_06169, CNAG_06332, CNAG_06574, CNAG_06704, CNAG_06876, and
568 CNAG_07837. For E1, five C57BL/6 mice per group were anesthetized by intraperitoneal
569 pentobarbital injection and inoculated intranasally with 5×10^4 cells suspended in 50 μ l PBS,
570 whereas E2 and E3 used five C57BL/6 mice per group were anesthetized and inoculated
571 intranasally with 1×10^4 cells suspended in 50 μ l PBS. Animals were monitored for morbidity
572 and sacrificed with carbon dioxide when endpoint criteria were reached. Endpoint criteria were
573 defined as 20% total body weight loss, loss of two grams of weight in two days, or symptoms of
574 neurological damage. On day 34, the remaining mouse was sacrificed. Lungs and brain were
575 removed and homogenized in 4 mL or 2 mL PBS, respectively. Serial dilutions of the lungs and
576 the entire homogenized brain were plated on YPD with chloramphenicol. CFUs were counted
577 after 48 hours.

578 Significance was determined using the *survfit* command from the R package *survival*
579 [43]. Kaplan-Meier estimators from each knockout strain were compared against the KN99 α
580 strain measured in the relevant experiment. P-values were obtained by comparing the two curves
581 using the G-rho family log-rank test [44], implemented with the *survdiff* function.

582

583

584

585 *ITR4 Survival Curve*

586 Ten C57BL/6 mice per group were anesthetized and inoculated intranasally with 1×10^3
587 KN99a, *itr4Δ*, or *itr4Δ:ITR4* cells suspended in 50 μ l PBS. Animals were treated as described
588 above. The *itr4Δ* that survived the infection initially showed early signs of disease (minor weight
589 loss, reduced activity) but regain weight at later timepoints. On day 44, the mice were sacrificed.
590 Lungs and brain were collected from each mouse to determine fungal burden, and processed as
591 described above.

592 For determination of CFUs at 7 days post-infection, 4 C57BL/6 mice per group were
593 anesthetized and inoculated intranasally with 1×10^3 KN99a, *itr4Δ*, or *itr4Δ:ITR4* cells
594 suspended in 50 μ l PBS. After seven days, the mice were sacrificed, and lungs and brain were
595 collected and processed as described above.

596

597 *Inositol Growth assays*

598 Yeast cells of *C. neoformans* wild type strain *KN99α*, *itr4Δ* mutant, and clinical strains
599 were cultured in YPD medium overnight. Concentrations of overnight cultures were determined
600 by measuring the optical density at 600 nm (OD₆₀₀) and adjusted to the same cell density. Serial
601 10-fold dilutions were prepared, and 5 μ l of each dilution was spotted on YNB plates with 1%
602 glucose, 1% inositol, or 1% glucose and 1% inositol. Plates were then incubated at 30°C or 37°C
603 for 48 h before photography. The assay was repeated at least three times with similar results.

604

605 *Inositol uptake assay*

606 The inositol uptake assay was performed following the previously published method [60].
607 In brief, the *Cryptococcus* strains were grown in YPD liquid cultures overnight at 30°C. Cells
608 were diluted in YPD to an OD₆₀₀ of 1.0, grown at 30°C, and collected at an OD₆₀₀ of 5.0 by
609 centrifugation at 2,600 x g for 5 min. Cells were then washed twice with PBS at 4°C and
610 resuspended in 2% glucose to a final concentration of 2 x 10⁸ cells/ml as determined by a
611 hemacytometer. For the uptake assay, the reaction mixture (200 μ l) contained 2% glucose, 40
612 mM citric acid-KH₂PO₄ (pH 5.5), 0.15 μ M myo-[2-³H]-inositol (1 μ Ci/ μ l; MP BioMedicals).
613 Additional 200 μ M unlabeled inositol (Sigma-Aldrich) was added to the reactions for
614 competition assays. Equal volumes of the reaction and cell mixtures (60 μ l each) were warmed to
615 30°C and mixed for the uptake assay, which was performed for 10 min at 30°C. As negative

616 controls, mixtures were kept at 0°C (on ice) during the 10-min incubation. Aliquots of 100 µl
617 were removed and transferred onto prewetted Metrcel filters (1.2 µm) on a vacuum manifold.
618 The filters were washed four times each with 2 ml of ice-cold water. The washed filters were
619 removed and added to liquid scintillation vials for measurements on a PerkinElmer TRI-CARB
620 2900TR scintillation counter.

621

622 *Data Availability*

623 All data and scripts are available at GitHub at <https://github.com/acgerstein/UgClGenomics>

References

1. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. *Lancet Infect Dis.* 2017;17: 873–881.
2. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. *Cold Spring Harb Perspect Med.* 2014;5: a019752.
3. Butts A, Krysan DJ. Antifungal drug discovery: something old and something new. *PLoS Pathog.* 2012;8: e1002870.
4. Azevedo RVDM, Rizzo J, Rodrigues ML. Virulence Factors as Targets for Anticryptococcal Therapy. *J Fungi (Basel).* 2016;2. doi:10.3390/jof2040029
5. Brunke S, Mogavero S, Kasper L, Hube B. Virulence factors in fungal pathogens of man. *Curr Opin Microbiol.* 2016;32: 89–95.
6. Gerstein AC, Nielsen K. It's not all about us: evolution and maintenance of *Cryptococcus* virulence requires selection outside the human host. *Yeast.* 2017;34: 143–154.
7. Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen *Cryptococcus neoformans*. *Cell.* 2008;135: 174–188.
8. Shea JM, Kechichian TB, Luberto C, Del Poeta M. The Cryptococcal Enzyme Inositol Phosphosphingolipid-Phospholipase C Confers Resistance to the Antifungal Effects of Macrophages and Promotes Fungal Dissemination to the Central Nervous System. *Infect Immun.* 2006;74: 5977–5988.
9. Wiesner DL, Moskalenko O, Corcoran JM, McDonald T, Rolfes MA, Meya DB, et al. Cryptococcal genotype influences immunologic response and human clinical outcome after meningitis. *MBio.* 2012;3. doi:10.1128/mBio.00196-12
10. Beale MA, Sabiiti W, Robertson EJ, Fuentes-Cabrejo KM, O'Hanlon SJ, Jarvis JN, et al. Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in Cryptococcal Meningitis across Southern Africa. *PLoS Negl Trop Dis.* 2015;9: e0003847.
11. Tefsen B, Grijpstra J, Ordonez S, Lammers M, van Die I, de Cock H. Deletion of the CAP10 gene of *Cryptococcus neoformans* results in a pleiotropic phenotype with changes in expression of virulence factors. *Res Microbiol.* 2014;165: 399–410.
12. Griffiths EJ, Kretschmer M, Kronstad JW. Aimless mutants of *Cryptococcus neoformans*: failure to disseminate. *Fungal Biol Rev.* 2012;26: 61–72.
13. Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, et al. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. *J Clin Invest.* 2014;124: 2000–2008.

14. Motaung TE. *Cryptococcus neoformans* mutant screening: a genome-scale's worth of function discovery. *Fungal Biol Rev.* 2018;32: 181–203.
15. Desalermos A, Tan X, Rajamuthiah R, Arvanitis M, Wang Y, Li D, et al. A multi-host approach for the systematic analysis of virulence factors in *Cryptococcus neoformans*. *J Infect Dis.* 2015;211: 298–305.
16. Kwon-Chung KJ, Boekhout T, Fell JW, Diaz M. (1557) Proposal to Conserve the Name *Cryptococcus gattii* against *C. hondurianus* and *C. bacillisporus* (Basidiomycota, Hymenomycetes, Tremellomycetidae). *Taxon.* International Association for Plant Taxonomy (IAPT); 2002;51: 804–806.
17. Meyer W, Marszewska K, Amirmostofian M, Igreja RP, Hardtke C, Methling K, et al. Molecular typing of global isolates of *Cryptococcus neoformans* var. *neoformans* by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA—a pilot study to standardize techniques on which to base a detailed epidemiological survey. *Appl Theor Electrophor.* Wiley Online Library; 1999;20: 1790–1799.
18. Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, et al. Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the *Cryptococcus* Genus. *mSphere.* 2017;2. doi:10.1128/mSphere.00238-17
19. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the *Cryptococcus gattii/Cryptococcus neoformans* species complex. *Fungal Genet Biol.* 2015;78: 16–48.
20. Meyer W, Firacative C, Trilles L, Ferreira-Paim K, ISHAM Working Group for Genotyping of *C. neoformans* and *C. gattii*, abstr. MLST database for *Cryptococcus neoformans* and *C. gattii*. 19th ISHAM Congress. Melbourne, Australia, 4 to 8 May 2015.
21. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. *mSphere.* 2017;2. doi:10.1128/mSphere.00357-16
22. Desnos-Ollivier M, Patel S, Raoux-Barbot D, Heitman J, Dromer F, French Cryptococcosis Study Group. Cryptococcosis Serotypes Impact Outcome and Provide Evidence of *Cryptococcus neoformans* Speciation. *MBio.* 2015;6: e00311.
23. Dixit A, Carroll SF, Qureshi ST. *Cryptococcus gattii*: An Emerging Cause of Fungal Disease in North America. *Interdiscip Perspect Infect Dis.* 2009;2009: 840452.
24. Mukaremera L, MacDonald TR, Nielsen JN, Molenaar C, Akampulira A, Schutz C, Taseera K, Muzoora C, Meintjes G, Meya DB, Boulware DR, and Nielsen K. The mouse inhalation model of *Cryptococcus neoformans* infection recapitulates strain virulence in humans and shows closely related strains can possess differential virulence. *Infect Immun.* 2019;in press.
25. Andrade-Silva LE, Ferreira-Paim K, Ferreira TB, Vilas-Boas A, Mora DJ, Manzato VM, et

al. Genotypic analysis of clinical and environmental *Cryptococcus neoformans* isolates from Brazil reveals the presence of VNB isolates and a correlation with biological factors. *PLoS One*. 2018;13: e0193237.

26. Ferreira-Paim K, Andrade-Silva L, Fonseca FM, Ferreira TB, Mora DJ, Andrade-Silva J, et al. MLST-based population genetic analysis in a global context reveals clonality amongst *Cryptococcus neoformans* var. *grubii* VNI isolates from HIV patients in Southeastern Brazil. *PLoS Negl Trop Dis. Public Library of Science*; 2017;11: e0005223.

27. Khayhan K, Hagen F, Pan W, Simwami S, Fisher MC, Wahyuningsih R, et al. Geographically structured populations of *Cryptococcus neoformans* Variety *grubii* in Asia correlate with HIV status and show a clonal population structure. *PLoS One*. 2013;8: e72222.

28. Ashton PM, Thanh LT, Trieu PH, Van Anh D, Trinh NM, Beardsley J, et al. Genomics of *Cryptococcus neoformans* [Internet]. *bioRxiv*. 2018. p. 356816. doi:10.1101/356816

29. Desjardins CA, Giamberardino C, Sykes SM, Yu C-H, Tenor JL, Chen Y, et al. Population genomics and the evolution of virulence in the fungal pathogen *Cryptococcus neoformans*. *Genome Res*. 2017;27: 1207–1219.

30. Boulware DR, Meya DB, Muzoora C, Rolfs MA, Huppler Hullsieck K, Musubire A, et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. *N Engl J Med*. 2014;370: 2487–2498.

31. Smith KD, Achan B, Hullsieck KH, McDonald TR, Okagaki LH, Alhadab AA, et al. Increased Antifungal Drug Resistance in Clinical Isolates of *Cryptococcus neoformans* in Uganda. *Antimicrob Agents Chemother*. 2015;59: 7197–7204.

32. Boulware DR, Meya DB, Bergemann TL, Wiesner DL, Rhein J, Musubire A, et al. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. *PLoS Med*. 2010;7: e1000384.

33. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*. 2010;20: 1297–1303.

34. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*. 2011;43: 491–498.

35. Bateman A, Pearson WR, Stein LD, Stormo GD, Yates JR III, editors. *From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline*: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in Bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2002. pp. 11.10.1–11.10.33.

36. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*. 2014;30: 2114–2120.

37. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2010;26: 589–595.
38. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly*. 2012;6: 80–92.
39. Lee T-H, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. *BMC Genomics*. 2014;15: 162.
40. Scriven JE, Rhein J, Hullsiek KH, von Hohenberg M, Linder G, Rolfs MA, et al. Early ART After Cryptococcal Meningitis Is Associated With Cerebrospinal Fluid Pleocytosis and Macrophage Activation in a Multisite Randomized Trial. *J Infect Dis*. 2015;212: 769–778.
41. Nielsen K, Vedula P, Smith KD, Meya DB, Garvey EP, Hoekstra WJ, et al. Activity of VT-1129 against *Cryptococcus neoformans* clinical isolates with high fluconazole MICs. *Med Mycol*. 2017;55: 453–456.
42. Dromer F, Salamero J, Contrepois A, Carbon C, Yeni P. Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with *Cryptococcus neoformans* capsular polysaccharide. *Infect Immun*. 1987;55: 742–748.
43. Therneau TM. A Package for Survival Analysis in S [Internet]. 2015. Available: <https://CRAN.R-project.org/package=survival>
44. Harrington DP, Fleming TR. A Class of Rank Test Procedures for Censored Survival Data. *Biometrika*. [Oxford University Press, Biometrika Trust]; 1982;69: 553–566.
45. Ashton APM, Thanh LT, Trieu PH, Van Anh D, Trinh NM, Beardsley J. 1 Genomics of *Cryptococcus neoformans*. doi:10.1101/356816
46. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. *Nat Rev Genet*. 2005;6: 95–108.
47. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. *N Engl J Med*. 2012;367: 1355–1360.
48. Chun CD, Madhani HD. Chapter 33 - Applying Genetics and Molecular Biology to the Study of the Human Pathogen *Cryptococcus neoformans*. Elsevier Inc; 2010.
49. Luberto C, Martínez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P, Toffaletti DL, et al. Identification of App1 as a regulator of phagocytosis and virulence of *Cryptococcus neoformans*. *J Clin Invest*. 2003;112: 1080–1094.
50. Derengowski L da S, Paes HC, Albuquerque P, Tavares AHFP, Fernandes L, Silva-Pereira I, et al. The transcriptional response of *Cryptococcus neoformans* to ingestion by

Acanthamoeba castellanii and macrophages provides insights into the evolutionary adaptation to the mammalian host. *Eukaryot Cell*. 2013;12: 761–774.

51. Sareila O, Hagert C, Rantakari P, Poutanen M, Holmdahl R. Direct Comparison of a Natural Loss-Of-Function Single Nucleotide Polymorphism with a Targeted Deletion in the Ncf1 Gene Reveals Different Phenotypes. *PLoS One*. 2015;10: e0141974.
52. Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. *Nat Rev Genet*. 2017;18: 24–40.
53. Tamae C, Liu A, Kim K, Sitz D, Hong J, Becket E, et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of *Escherichia coli*. *J Bacteriol*. 2008;190: 5981–5988.
54. Galardini M, Busby BP, Vieitez C, Dunham AS, Typas A, Beltrao P. The impact of the genetic background on gene deletion phenotypes in *Saccharomyces cerevisiae* [Internet]. bioRxiv. 2018. p. 487439. doi:10.1101/487439
55. Day JN, Qihui S, Thanh LT, Trieu PH, Van AD, Thu NH, et al. Comparative genomics of *Cryptococcus neoformans* var. *grubii* associated with meningitis in HIV infected and uninfected patients in Vietnam. *PLoS Negl Trop Dis*. 2017;11: e0005628.
56. Fernandes KE, Brockway A, Haverkamp M, Cuomo CA, van Ogtrop F, Perfect JR, et al. Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus Isolates Obtained from Botswanan HIV/AIDS Patients. *MBio*. 2018;9. doi:10.1128/mBio.02016-18
57. Miglia KJ, Govender NP, Rossouw J, Meiring S, Mitchell TG, Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa. Analyses of pediatric isolates of *Cryptococcus neoformans* from South Africa. *J Clin Microbiol*. 2011;49: 307–314.
58. Ereshefsky M. Microbiology and the Species Problem. *Biology and Philosophy*. 2010; 25: 67-79.
59. Xue C, Liu L, Li W, Liu I, Kronstad JW, Seyfeng A, Heitman. Role of an expanded inositol transporter repertoire in *Cryptococcus neoformans* sexual reproduction and virulence. *MBio*. 2010; 1: e00084-10.
60. Wang Y, Liu T, Delmas G, Park S, Perlin D, Xue C. Two major inositol transporters and their role in cryptococcal virulence. *Euk. Cell*. 2011; 10: 618-628.

Table 1. Clinical Phenotypes measured from participants enrolled in the COAT trial and *in vitro* assays.

Class	n	Phenotype Variable
Clinical	38	CD4 T cell
Clinical	35	CSF white cell
Clinical	31	CSF protein
Clinical	35	HIV viral load
Clinical	37	CSF Clearance Rate (EFA)
Clinical	30	CSF CrAg LFA titer
Clinical	38	survival
Cytokines	36	IL1- β
Cytokines	36	IL-2
Cytokines	36	IL-4
Cytokines	36	IL-5
Cytokines	36	IL-6
Cytokines	36	IL-7
Cytokines	36	IL-8
Cytokines	36	IL-10
Cytokines	36	IL-12
Cytokines	36	IL-13
Cytokines	36	IL-17
Cytokines	36	G-CSF
Cytokines	36	GM-CSF
Cytokines	36	IFN- γ
Cytokines	36	MCP-1
Cytokines	36	TNF- α
Cytokines	36	MIP-1 β
<i>in vitro</i>	38	macrophage uptake
<i>in vitro</i>	38	macrophage adherence
<i>in vitro</i>	37	cell wall chitin
<i>in vitro</i>	37	absolute growth at 30°C
<i>in vitro</i>	37	fluconazole MIC
<i>in vitro</i>	37	amphotericin B MIC

Table 2. Significant variants from linear regression analysis^a.

Gene ^b	Chr	Variant Positions	Effect ^c	Class ^d	Phenotypes
00014	1	47564; 47575; 47671	ns	b	GCSF; GCSF; GMCSF
00363	1	927896; 927901	ns	b	IL2; IL2
07950	1	975152; 975212; 975397	up	ab	IL8, HIVrna; IL4, IL6, IL8, GMCSF, IFN γ , FLC; EFA
06704	2	270700	up	a	IL2, LFA
02798	3	750294	up	a	Protein, CD4, AMP
05185	4	667433; 667446	up	ab	Survival, uptake; uptake
06876	5	7093	down	a	IFN γ , MIP1 β , TNF α
01371	5	475470	up	a	MCP1, HIVrna
01241	5	836479; 836697; 836899	up	ab	IL2; IL4, IL5, IL7, IL17, GMCSF, TNF α , chitin; IL5, IL12, IL13, IL17, GCSF, TNF α
02475	6	221273; 221275; 221282	up	ab	IL7, growth; growth; growth
02176	6	988405; 988733; 988843; 989188; 989334; 989490; 989732; 990771; 990777; 990851; 990885; 991027	down; ns; ns; ns; ns; ns; ns; up	ab	Chitin, SERT; IL1b, IL13, MCP1, MIP1 β ; MIP1 β ; IL12; AMP; HIVrna, SERT; IL2; IL10, MIP1 β ; MIP1 β ; IL10, MIP1 β ; SERT; IL13, TNF α , Survival
02177	6	990701	up	a	IL1 β , IL6, IL10
02112	6	1160524; 1160528; 1160532	up	b	AMP; AMP; AMP
06525	7	11056; 14006	ns ; up	ab	IL5, IL10; IL6, IL8
12610*	7	49744	up	a	MCP1, uptake
06574	7	164473; 164887; 164926; 165027; 165704; 165873; 166309; 167135; 167224; 167292; 167370; 167687	up	ab	HIVrna; IL2, TNF α ; IL2, MIP1 β ; MIP1 β ; Survival, EFA; IL13; growth; IL13; GMCSF; IL1 β , GCSF, MIP1 β , uptake; CD4, uptake; protein
05913	7	1205599; 1205600	up	ab	MIP1 β , adherence; IL13, IL17, MIP1 β , adherence
05937	7	1263610; 1263646; 1263647	up	ab	Uptake, SERT; SERT; SERT
07703	7	1341024	ns	a	IL6, IL8
06968	8	1383765	indel	a	IL12, IL17
04100	9	5213; 7729; 8171	up	ab	adherence, FLC, SERT; growth; EFA, SERT
04102	9	10033	down	a	GMCSF, EFA
04179	9	220963	up	a	EFA, SERT
04373	9	705343; 706175	up	ab	IL8, EFA; survival
04535	9	1115286	up	a	IL17, GCSF, LFA

07837	10	13558; 15288; 15302	up; down; down	b	IL2; WBCc; CD4
04922	10	18908; 18915; 18933; 18941; 18988; 18992; 18997	up	b	IL2; IL2; IL2; IL2; adherence; adherence; adherence
08006	11	804710; 804742	up	ab	IL4, IL5, IL6, MIP1 β , TNF α , adherence, chitin; IL4, IFN γ , MCP1, adherence
01802	11	966644; 966669; 966700	up	b	WBC; IL2; IL7
07026	12	11092; 11094; 11400; 11406; 11407; 11410; 11413	up	ab	IL1 β , IL13, survival, EFA; IL13, survival; IL1 β , IL7, IL13; IL1 β , IL7, IL13; IL1 β , IL7, IL13; IL1 β , IL7, IL13; IL1 β
05987	12	14009; 14035; 14125; 14197; 14202; 15014	ns; ns; indel; ns; indel; up	ab	IL2; IL2; chitin; EFA, adherence; EFA, adherence; adherence
06169	12	502808; 502888; 502890; 503049; 503112; 503311; 503313; 503321; 503327; 503401	down	ab	IL8; GMCSF, growth; IL6, IL8, GMCSF; GMCSF, HIVrna; HIVrna, WBC; GCSF; IL12, IL13, GCSF; IL12, IL13, GCSF, MIP1 β ; IL12, IL13, MIP1 β ; IL10, chitin
06256	13	11118; 11130	up	ab; b	IFN γ , TNF α ; TNF α
13108*	13	128625; 128715; 128729	up	ab	IL13, GCSF; IL13, GCSF; IL13, GCSF
06332	13	219021; 219311; 219312	up	b	adherence; EFA; EFA
06422	13	436551; 436554	up	b	IL2; IL2
06490	13	655915	indel	a	Protein, HIVrna, CD4
05450	14	342562	ns	a	IL6, IL7, IL12, IL13, GCSF, MIP1 β
05661	14	908850; 908994; 909011; 909638; 910152; 910181	up	ab	IL8, GMCSF, IFN γ , MCP1; uptake, FLC; IL1 β , IL8, MIP1 β , uptake, FLC; adherence; uptake; IL1 β , IL6, IFN γ , HIVrna
05663	14	910323; 910328; 910555	down	ab	TNF α ; IL1 β , IL13, TNF α ; survival
05662	14	910742; 910822; 910834; 910926; 910939; 910964; 910966; 910979; 911099; 911129; 911206; 911262; 911292; 911308; 911321; 911352	down	ab	AMP; survival, FLC; survival; SERT; growth, SERT; survival, AMP; survival; survival, uptake; IL12, GMCSF, growth, TNF α , MCP1; IL12, IL13, IL17, MIP1 β , TNF α , growth, FLC, AMP, SERT; IL8, MCP1, MIP1 β ; MCP1; IL2; adherence; IL5; MCP1
13204*	14	924025; 924047; 924049; 924050	up	b	GMCSF; IL13; IL13; IL13

^a Semicolons are used as separators between different variants. When only one effect is listed it is common among all variants in the gene.

^bGene number corresponds to the CNAG number from the *Cryptococcus neoformans* H99 reference genome on FungiDB. Hypothetical RNAs are indicated with an *.

^cEffect designates location or type of variant: up, upstream of the coding region; down, downstream of the coding region; ns, nonsynonymous change in the coding region; indel, small insertion or deletion.

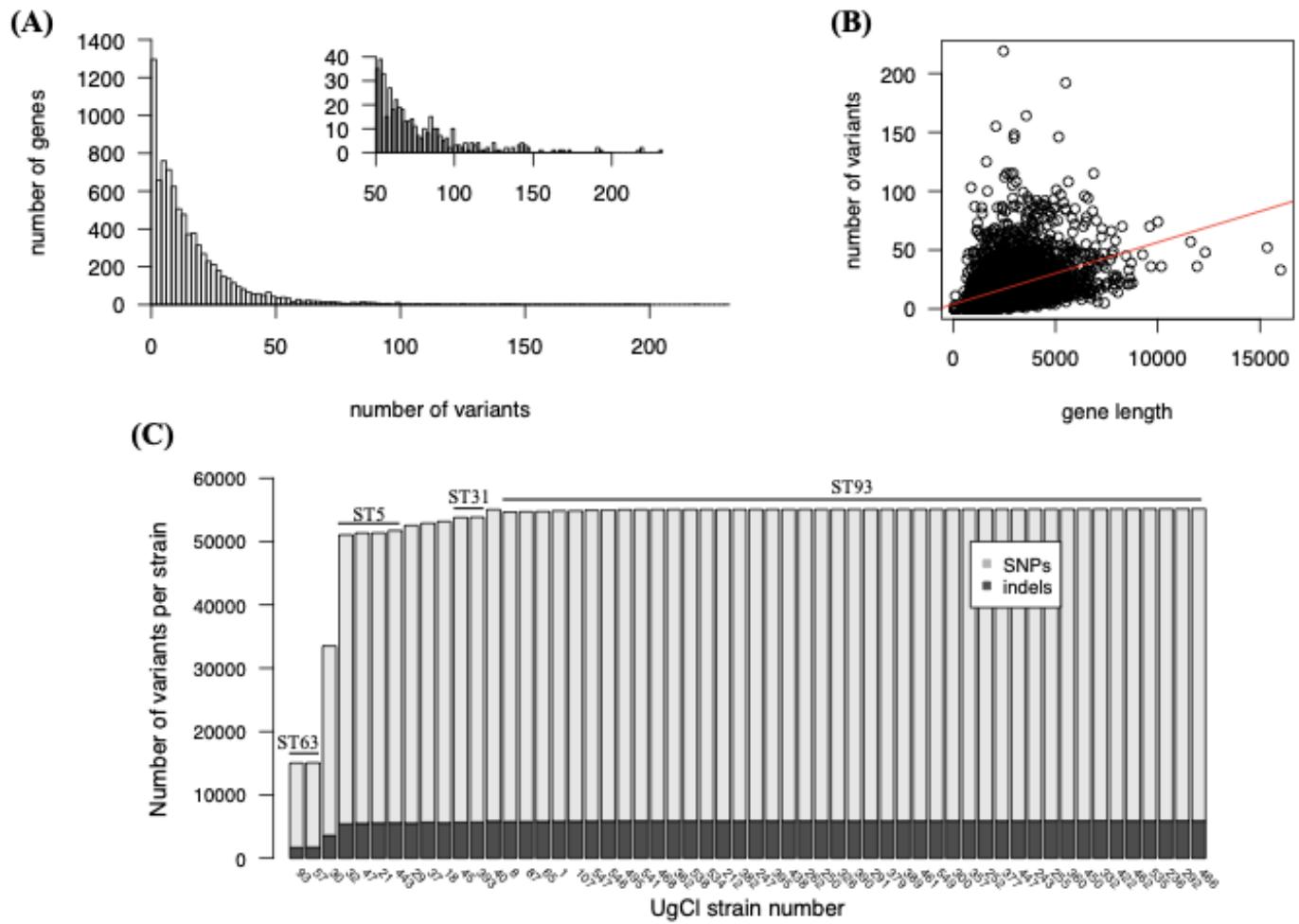

^dClass type designations: a, genes with one variant significant for at least two phenotypes; b, multiple variants in the same gene with at least one significant phenotype each; ab, both criteria are fulfilled.

Table 3. Significant variants from PCA analysis.

Gene	Chr	Position	Effect	PCA1 <i>p</i> value	PCA2 <i>p</i> value
CNAG_07950	1	975212	upstream	0.047	0.141
CNAG_01241	5	836697	upstream	0.04	0.505
CNAG_01241	5	836899	upstream	0.025	0.29
CNAG_02176	6	988733	stop gained	0.047	0.749
CNAG_02176	6	989490	ns	0.834	0.03
CNAG_02176	6	989960	ns	0.967	0.039
CNAG_07703	7	1341024	ns	0.031	0.289
CNAG_07727	8	818838	upstream	0.036	0.726
CNAG_08006	11	804710	UTR-5	0.048	0.312
CNAG_05987	12	19741	upstream	0.355	0.031
CNAG_06169	12	503321	UTR-3	0.048	0.795
CNAG_05450	14	342562	ns	0.024	0.142
CNAG_05661	14	908850	upstream	0.042	0.928
CNAG_05663	14	910328	downstream	0.042	0.12
CNAG_05662	14	911099	downstream	0.045	0.143
CNAG_05662	14	911129	downstream	0.048	0.046

Table 4. Survival curve statistical results.

Gene KO	X^2 statistic	
	(df = 1)	<i>p</i> value
CNAG_00363 (<i>tco6Δ</i>)	0.05	0.82
CNAG_02176	9	0.0027
CNAG_04373	3.07	0.08
CNAG_04535	2.79	0.095
CNAG_04922	9.97	0.0016
CNAG_05662 (<i>itr4Δ</i>)	6.22	0.013
CNAG_05663	0.61	0.43
CNAG_05913	0.07	0.79
CNAG_05937	0.09	0.77
CNAG_06169	0.13	0.72
CNAG_06332	4.05	0.044
CNAG_06490	1.02	0.31
CNAG_06574 (<i>app1Δ</i>)	9	0.0027
CNAG_06704	5.83	0.016
CNAG_06876	0.05	0.82
CNAG_06986	7	0.0082
CNAG_07703	0.05	0.31
CNAG_07837	1.8	0.18

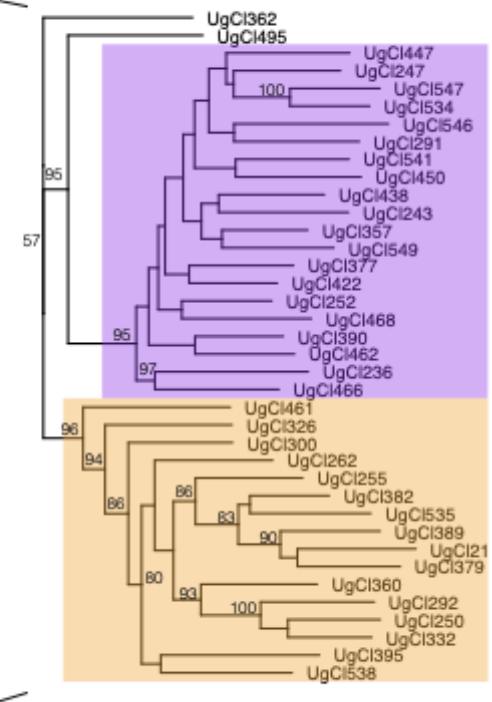
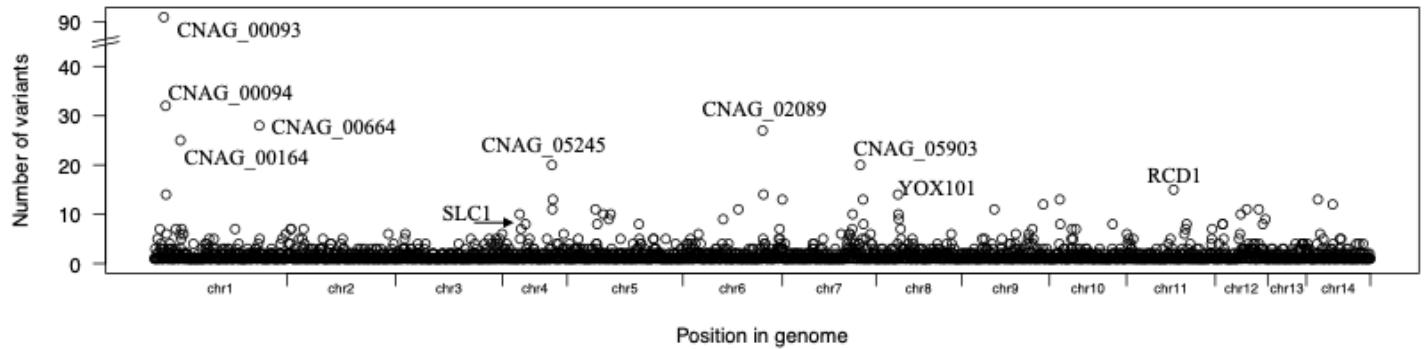


Figure 1. Variants identified among all strains. A) The number of variants per gene has a long right tail. The inset panel is the same data, zoomed for genes with at least 50 variants for visualization purposes. B) There is a significant and positive relationship between gene length and the number of variants per gene. C) The number of variants per strain matches the multi-locus sequence type (ST) among strains.


(A)

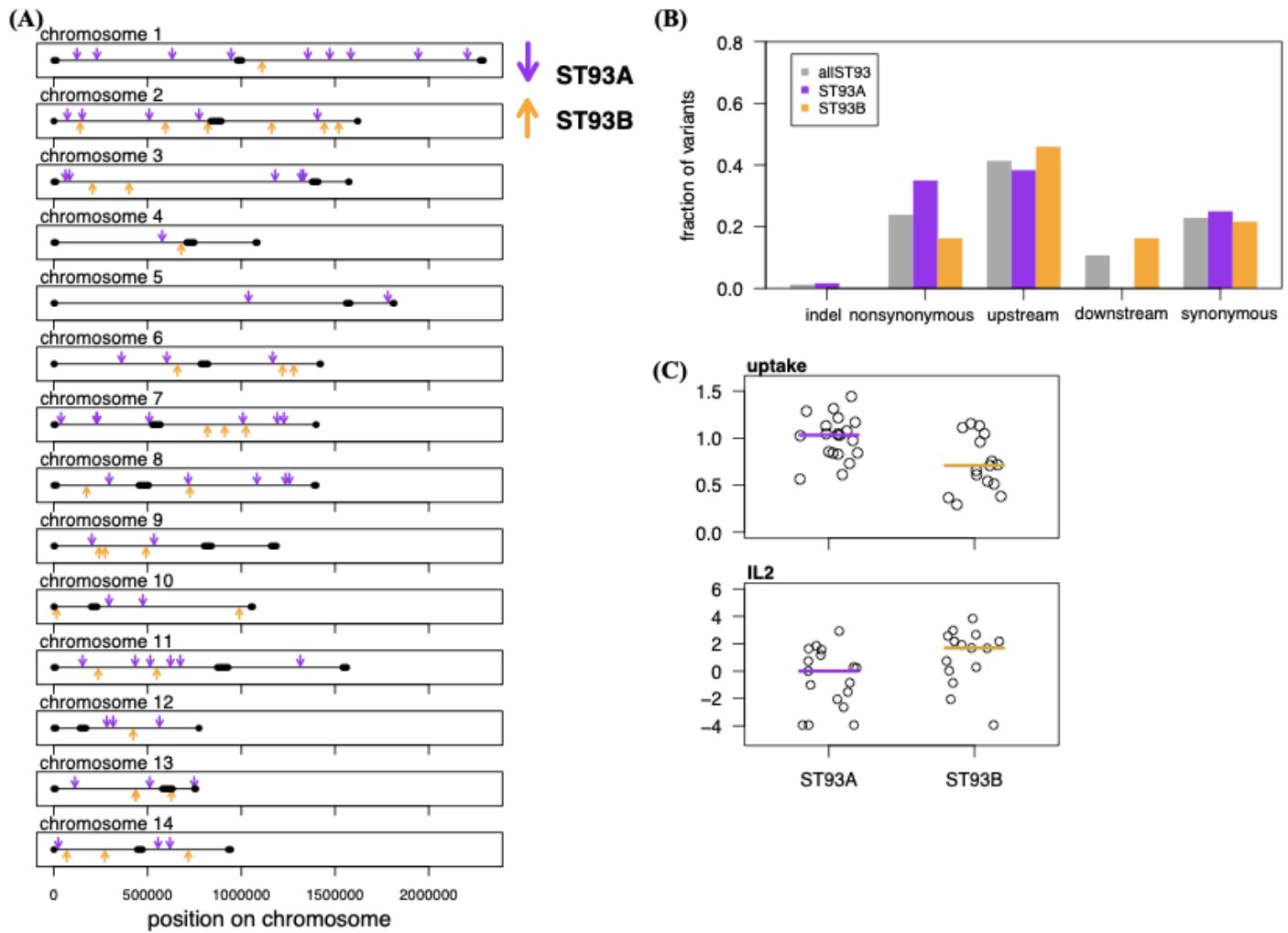

(B)

Figure 2. Phylogenetic analysis of all sequenced strains. A) The majority of ST93 strains fall into two well-supported clades, magnified in (B) for ease of viewing. ST93A (purple background) and ST93B (yellow background). Bootstrap values >50 are indicated with the numeric bootstrap value.

Figure 3. Variants that were common to all ST93 genomes are dispersed among 2715 genes and hypothetical RNAs. A small number of clustered genes have a large number of variants. In each cluster the gene with the highest number of variants is indicated. Genes with more than 20 variants and named genes are indicated. Table S2 lists all genes with 10 or more variants.

Figure 4. ST93A and ST93B clade-specific variants. A) Variants that are specific to the ST93A and ST93B clades are distributed across the genome. B) Upstream variants are the majority class found in all ST93 genomes (“ST93all”) and among the variants that are specific to either clade. By contrast, ST93A variants were more likely to be nonsynonymous and less likely to be downstream compared to ST93all or ST93B variants. C) IL2 cytokine levels in the CSF and *in vitro* macrophage uptake differed between ST93A and ST93B strains.

Logistic Regression Analysis

5603 variants in 38 ST93 genomes
30 quantitative infection phenotypes

Subtract non-effect variants:
1) < 4 strains
2) Synonymous or Intergenic
3) Centromeres or Telomeres

652 variants in 328 genes

Logistic Regression

207 significant variants in 115 genes

**138 variants significant for
only a single phenotype
(potential false positives)**

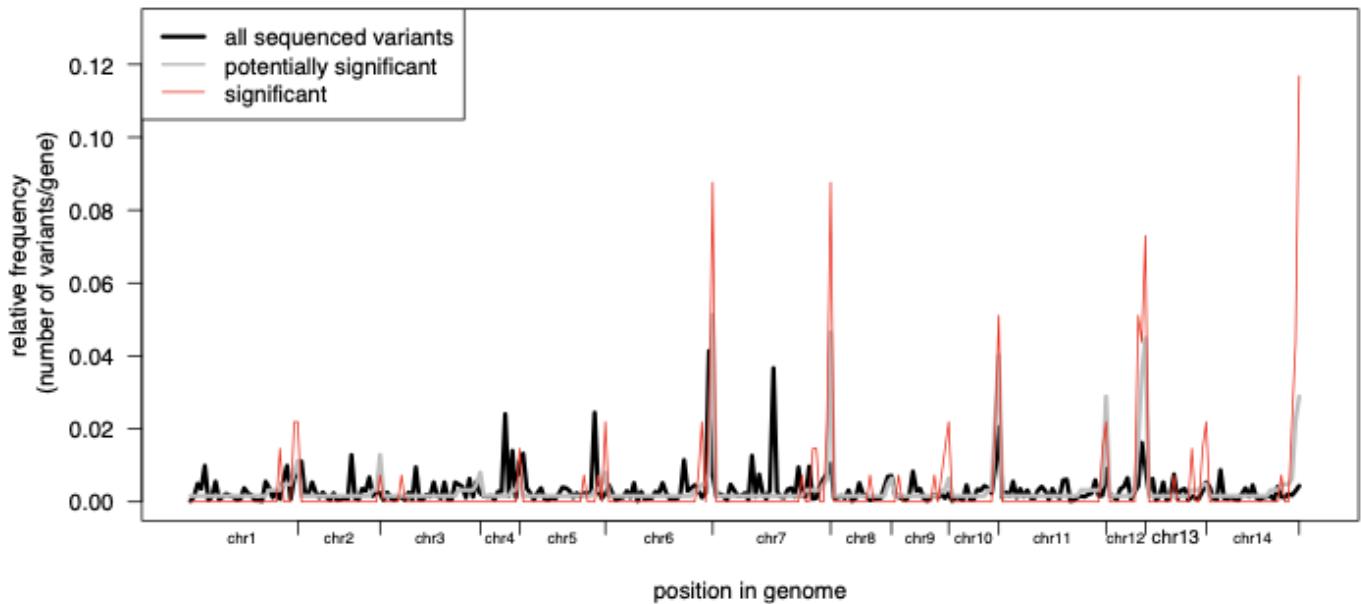
40 genes and 3 hypothetical RNAs with multiple “hits”:
a) Variants significant for multiple phenotypes (13)
b) Genes with multiple significant variants (10)
ab) Both criteria met (20)

Principal Component Analysis

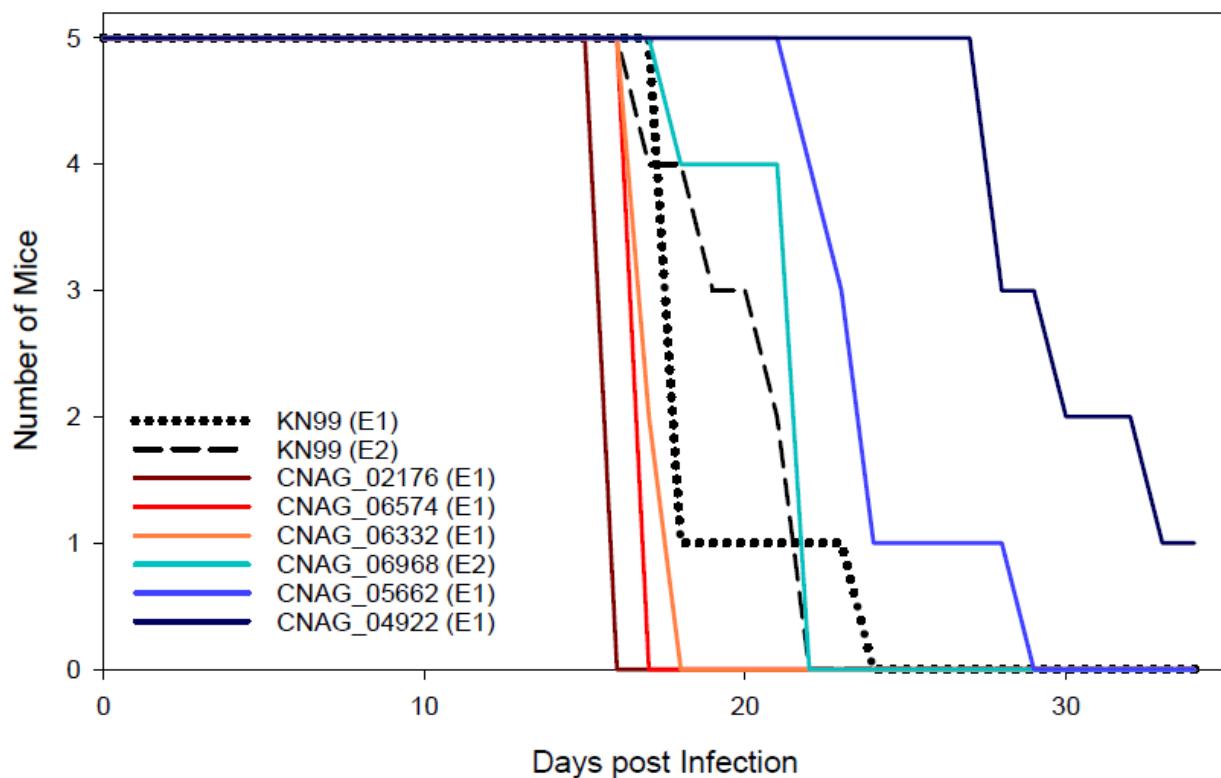
5603 variants in 38 ST93 genomes
30 quantitative infection phenotypes

Subtract missing data:
1) 8 strains due to missing
quantitative infection
phenotypes
2) 4 quantitative infection
phenotypes due to missing
strain data

30 ST93 genomes
26 quantitative infection phenotypes


PCA

466 variants in PC1 and PC2


Logistic Regression

16 significant variants in 12 genes

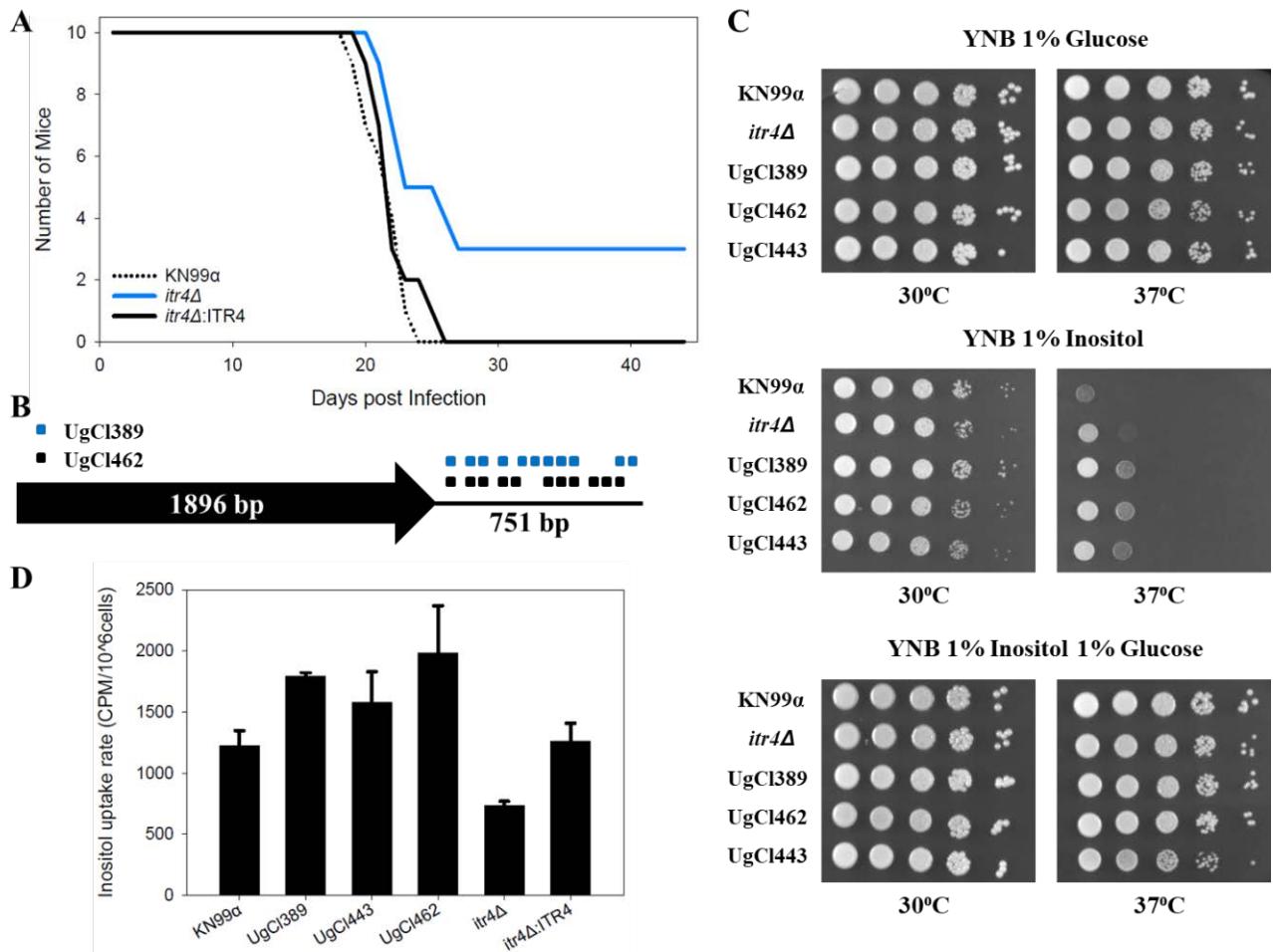

Figure 5. Flow chart for bioinformatic approaches used to identify *C. neoformans* genes associated with human infection. Two complementary approaches were used: logistic regression followed by cluster analysis and principal component analysis (PCA).

Figure 6. Comparison of variant frequency across the genome. The relative frequency of variants per gene for significant genes (red line) compared to all sequenced variants across all genomes (black line) and all variants within ST93 genomes (gray line). Only genes with at least one potentially significant variant are shown, hence the gray line does not reach 0. Discordance between the red compared to black and gray lines highlight areas with significant variants.

Figure 7. Deletion strain virulence in mice. Groups of five 6-8 week old C57Bl/6 mice were infected intranasally with 5×10^4 cells. Progression to severe morbidity was monitored for 35 days and mice were sacrificed when endpoint criteria were reached. Strains were tested in two separate experiments indicated as E1 or E2, respectively.

Figure 8: Analysis of *ITR4* through *in vivo* virulence and *in vitro* growth and inositol uptake. A) Groups of ten 6-8 week old C57Bl/6 mice were infected intranasally with 1×10^3 cells. Progression to severe morbidity was monitored for 44 days and mice were sacrificed when endpoint criteria were reached. B) Schematic diagram showing location of the variants in the UgCl389 and UgCl462 clinical isolates relative to the ITR4 coding region. UgCl443 has the H99 reference allele. C) Growth assay of *C. neoformans* wild type strain *KN99a*, *itr4Δ* mutant, and clinical strains on medium with different inositol levels. Yeast cells were cultured in YPD medium. Equal cell concentrations were spotted as 10-fold serial dilutions onto YNB plates made with 1% glucose, 1% inositol, or 1% glucose and 1% inositol. Plates were incubated at 30°C and growth was examined after 4 days. The assay was repeated three times with similar results. D) Inositol uptake analysis of *C. neoformans* strains. Yeast cells were mixed with 3H-labeled inositol and incubated at 30°C for 10 minutes in triplicate and repeated twice with similar patterns. Error bar indicates the standard deviation of the three replicates.

Supporting Information Legends

Supplemental Tables

Table S1. Genes, hypothetical RNAs, and intergenic regions with variants that are present in all ST93 genomes

Table S2. Genes with at least 10 variants present in all ST93 genomes

Table S3. ST93A and ST93B clade-specific variants

Table S4. Statistical analysis of ST93 clade-specific associations with quantitative infection phenotypes

Table S5. Phenotypes measured from patients enrolled in the COAT trial (clinical and cytokines) and *in vitro*.

Table S6. Significant variants in genes and hypothetical RNAs with quantitative infection phenotypes based on class designation

Table S7. Logistic regression analysis of all significant variants in genes and hypothetical RNAs associated with quantitative infection phenotypes

Table S8. The majority of genes associated with quantitative infection phenotypes are uncharacterized

Supplemental Figure Legends

Figure S1. Clade-specific differences in phenotype. Bar indicates median value.

Figure S2. PCA analysis. A) Each dashed line represents one of 20 randomized trials. B) There was no association between PC1 or PC2 and clade.

Figure S3. KN99 α deletion strain virulence in mice. Groups of five 6-8 week old C57Bl/6 mice were infected intranasally with 5×10^4 cells. Progression to severe morbidity was monitored for 35 days and mice were sacrificed when endpoint criteria were reached. Strains were tested in two separate experiments, E1 or E2, respectively. The deletions strains were compared against the KN99 α strain in the same experiment.

Figure S4. Growth at 7 days post-infection. Groups of four 6-8 week old C57Bl/6 mice were infected intranasally with 1×10^3 cells. Mice were sacrificed at 7 days post infection, lungs homogenized in 4 ml of PBS, and serial dilutions plated on YPD with chlamphenicol medium. Colony forming units were enumerated at 48 hours.