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1 

Abstract 1 

 2 

Patient outcomes during infection are due to a complex interplay between the quality of medical 3 

care, host immunity factors, and the infecting pathogen’s characteristics.  To probe the influence 4 

of pathogen genotype on human immune response and disease, we examined Cryptococcus 5 

neoformans isolates collected during the Cryptococcal Optimal ART Timing (COAT) trial in 6 

Uganda. We measured human participants’ immunologic phenotypes, meningitis disease 7 

parameters, and survival. We compared this clinical data to whole genome sequences from 38 C. 8 

neoformans isolates of the most frequently observed sequence type (ST) ST93 in our Ugandan 9 

participant population, and an additional 18 strains from 9 other sequence types representing the 10 

known genetic diversity within the Ugandan Cryptococcus clinical isolates. We focused our 11 

analyses on 652 polymorphisms that: were variable among the ST93 genomes, were not in 12 

centromeres or extreme telomeres, and were predicted to have a fitness effect. Logistic 13 

regression and principal component analyses identified 40 candidate Cryptococcus genes and 3 14 

hypothetical RNAs associated with human immunologic response or clinical parameters. We 15 

infected mice with 17 available KN99α gene deletion strains for these candidate genes and found 16 

that 35% (6/17) directly influenced murine survival.  Four of the six gene deletions that impacted 17 

murine survival were novel. Such bedside-to-bench translational research provides important 18 

candidate genes for future studies on virulence-associated traits in human Cryptococcus 19 

infections.  20 
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2 

Author Summary 21 

 22 

Even with the best available care, mortality rates in cryptococcal meningitis range from 23 

20-60%. Disease is often due to infection by the fungus Cryptococcus neoformans and involves a 24 

complex interaction between the human host and the fungal pathogen. Although previous studies 25 

have suggested genetic differences in the pathogen impact human disease, it has proven quite 26 

difficult to identify the specific C. neoformans genes that impact the outcome of the human 27 

infection. Here, we take advantage of a Ugandan patient cohort infected with closely related C. 28 

neoformans strains to examine to role of pathogen genetic variants on several human disease 29 

characteristics. Using a pathogen whole genome sequencing approach, we showed that 40 C. 30 

neoformans genes are associated with human disease. Surprisingly, many of these genes are 31 

specific to Cryptococcus and have unknown functions. We also show deletion of these genes 32 

alters disease in a mouse model of infection, confirming their role in disease. These findings are 33 

particularly important because they are the first to identify C. neoformans genes associated with 34 

human cryptococcal meningitis and lay the foundation for future studies that may lead to new 35 

treatment strategies aimed at reducing patient mortality.  36 
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3 

Introduction 37 

 38 

Cryptococcus neoformans is the etiological agent of cryptococcal meningitis, the most 39 

common brain infection in Sub-Saharan Africa, which encompasses 15% of AIDS-related deaths 40 

[1]. As with all fungal pathogens, a major clinical concern is the small number of antifungal drug 41 

classes available (n=3) [2,3]. Researchers seek to identify the pathogen virulence factors that 42 

influence human health in order to develop novel drug targets to improve patient survival [4]. In 43 

addition to virulence factors that are common among all human pathogenic fungi, such as the 44 

ability to grow at 37°C, a number of Cryptococcus-specific virulence factors have been 45 

identified. The most well-studied include the polysaccharide capsule, the synthesis of melanin, 46 

and the secretion of extracellular enzymes such as phospholipases, laccase, and urease [5]. As we 47 

have previously discussed [6], there is not a clear quantitative association between in vitro 48 

virulence factor defects and clinical parameters of disease [7–13], thus studies clarifying this 49 

relationship are required. 50 

 Additional potential virulence targets have been identified through reverse genetic 51 

screens of the C. neoformans gene knockout collection [14]. A screen of 1201 knockout mutants 52 

from 1180 genes (20% of the protein coding genes) identified 164 mutants with reduced 53 

infectivity and 33 with increased infectivity in a screen for murine lung infectivity [7]. 54 

Deselarmos and colleagues [15] screened the same mutants for virulence in Caenorhabditis 55 

elegans and Galleria mellonella infection models and identified 12 mutants through a dual-56 

species stepwise screening approach; all 12 also had attenuated virulence in a murine model (4 57 

overlapped with those identified in the original murine lung screen). Many of the identified 58 

genes are associated with melanin production (which is not required for killing of C. elegans), 59 

thus the emerging picture is that genes that influence virulence are involved in multiple 60 

independent or parallel pathways such as melanization [15]. 61 

A complementary tactic to identify novel virulence factors is to use forward genetics, and 62 

look for association between strain background and virulence. Cryptococcus strains were 63 

originally classified by antigenic diversity, which led to differentiation into two species, 64 

Cryptococcus neoformans (var. grubii and var. neoformans, serotypes A and D, respectively) and 65 

Cryptococcus gatti (originally C. bacillosporuus, serotypes B and C [16]). The phylogenetic 66 

relatedness among strains has been subjected to a series of discussions that first used PCR 67 
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fingerprinting and randomly amplified polymorphic DNA (RAPD) analysis [17] and then multi-68 

locus sequence typing (MLST) analysis [17] to classify strains based on sequence types (ST) 69 

defined in an online database (http://mlst.mycologylab.org). These analyses have led to 70 

competing species definition proposals. The first proposes classifying strains into seven species 71 

(two from C. neoformans following the serotypes and five from C. gattii) [18,19]. However, 72 

based on an analysis of 2600 strains, which revealed genetic diversity that is not-wholly captured 73 

by the seven species proposal [20] the second wants to maintain two groups, delineated as the 74 

“C. neoformans species complex” and the “C. gattii species complex” [21]. This “how do you 75 

define a species?" should not be written off as a purely philosophical issue [58], as we seek to 76 

discover whether there is a correlation between strain background and disease. 77 

At a coarse level, there is a clear correlation between Cryptococcus variation and human 78 

infectivity. C. neoformans var. grubii strains cause the majority of infections in 79 

immunocompromised patients [22], while C. gattii is strongly implicated in cryptococcosis in 80 

immunocompetent individuals [23]. A handful of studies have demonstrated that there is also 81 

influence of phylogenetic relatedness on disease within var. grubii strains. The 82 

PCR/AFLP/MLST analyses divided var. grubii strains into three groups, VNI, VNII, and VNB 83 

strains. Beale and colleagues [10] found that among strains from South Africa, survival was 84 

lower for eight patients infected with VNB strains compared to the more common VNI or VNII 85 

strains (isolated from 175 and 47 patients, respectively). Similarly, Wiesner and colleagues [9] 86 

used MLST to type 111 strains isolated from Ugandan patients with their first episode of 87 

cryptococcal meningitis and conducted BURST clustering analysis to group strains with similar 88 

ST type (all of which are in the VN1 clade). BURST group 3 had significantly improved survival 89 

(62%) relative to BURST groups 1 and 2 (20% for both groups). Yet additional finer resolution 90 

studies by Mukaremera and colleagues within individual MLST sequence types (ST) show that 91 

there is also substantial variation in patient survival associated with individual strain differences 92 

[24]. Interestingly, while the South African clinical strains exhibited diversity in ST type, the 93 

Ugandan clinical strains were closely related, with ST93 strains accounting for approximately 94 

60% of clinical isolates [9,10,24].  95 

The overall picture that emerges from these studies is twofold. Strain background can 96 

significantly influence human disease, and there is tremendous disparity in strain frequency; 97 

some strain groups are much more common than others. ST93 is common in Uganda, but is also 98 
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the most frequently isolated ST strain from HIV-infected patients in Brazil (85% [25,26]) and 99 

India (71% [27,28]). Sequence type prevalence also has a clear geographic component as 100 

different ST groups are dominant in other well-sampled countries (e.g., China, Thailand, 101 

Vietnam, Indonesia, Botswana, France [27–29]).  102 

Here we sought to identify candidate genes associated with clinical phenotypes in human 103 

subjects. We took advantage of the large number of patients in Uganda infected with closely 104 

related ST93 strains and combined this with a powerful dataset collected during the Cryptococcal 105 

Optimal ART Timing (COAT) trial in Uganda [30]. When participants enrolled in the trial, 106 

strains were isolated and participant quantitative clinical and immunologic data were collected 107 

prior to treatment [40]. We sequenced the whole genomes of 38 ST93 strains, half from 108 

participants that survived the infection and half from participants that died, reasoning that 109 

restricting our search to variants among closely related strains would reduce background genetic 110 

noise. We conducted a series of statistical tests that identified 40 candidate genes and 3 111 

hypothetical RNAs associated with clinical, immunologic, or in vitro phenotypes. We measured 112 

the virulence of 17 available KN99α knockout mutants for these genes in mice and found that 113 

35% (6/17) had a significant association with mouse survival. Pathogen whole genome 114 

sequencing paired with statistical analyses of human clinical outcome data and in vivo virulence 115 

tests thus provides a new method to empirically probe the relationship between pathogen 116 

genotype and human clinical phenotype.  117 
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Results 118 

 119 

We whole-genome sequenced 56 C. neoformans VNI strains isolated from HIV-infected, 120 

ART-naive patients presenting with their first episode of cryptococcal meningitis at Mulago 121 

Hospital, Kampala, Uganda. The majority of strains (n=38) were chosen from ST93 isolates (the 122 

dominant genotype in Uganda [45]), collected as part of the Cryptococcal Optimal ART Timing 123 

(COAT) trial, where an array of human immunologic phenotypes and disease parameters were 124 

recorded for all participants. Approximately half of these strains were derived from participants 125 

who survived the infection (n=21) and half from participants who died (n=17). The remaining 18 126 

strains were chosen to represent the diversity of the clinical strains in Uganda for phylogenetic 127 

purposes.  128 

We identified 127344 SNPs and 15032 insertions/deletions (referred to as indels) 129 

associated with 7561 genes (or predicted genes) among the 56 sequenced C. neoformans strains. 130 

For ease of reference, we will refer to these SNPs, insertions, and deletions cumulatively as 131 

“variants”. Over three-quarters of the identified variants were non-coding variants not predicted 132 

to change the amino acid sequence of a gene: synonymous changes within the gene (22%), 133 

intergenic regions (3%), or designated as upstream or downstream of the associated gene (within 134 

5kb of the nearest gene; 43% upstream, 10% downstream). The remaining (genic) variants are 135 

associated with 5812 different genes. Nonsynonymous coding changes are the largest class 136 

(90%) of these variants, with the remainder small insertion and deletion mutations.  137 

The majority of genes have relatively few variants within the strain set, though 435 genes 138 

have over 50 variants (Figure 1A). There was a significant relationship between the number of 139 

variants and gene length (Pearson's correlation test, t4254 = 33.001, p<0.001, cor = 0.45; Figure 140 

1B), albeit with considerable variability around the line of best fit. The number of variants in 141 

each sequenced genome was extremely similar among strains from the same sequence type 142 

(Figure 1C), reflective of the phylogenetic distance from sequenced strains to the H99 reference 143 

genome (Figure 2).  144 

With this phylogenetic strain knowledge, we classified all variants into four categories: i) 145 

"common" variants differentiating Ugandan clinical isolates from the reference H99 genome; ii) 146 

"other" variants present only in non-ST93 genomes; iii) "allST93" variants present in all ST93 147 

genomes but no other Ugandan ST genomes; iv) "someST93" variants present in some of the 148 
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ST93 genomes. For our study, we considered the most interesting variants to be the “allST93” or 149 

“someST93” because these categories would potentially identify variants that could explain the 150 

increased overall pathogenesis of ST93 in humans (category iii), and will allow us to identify 151 

variants within ST93 associated with human clinical outcomes and phenotypes (category iv).   152 

 153 

Common variants in ST93 154 

Variants that are in all ST93 strains and not the other sequenced strains (or the reference 155 

genome) can potentially tell us something about what differentiates strains in ST93 from other 156 

Ugandan strains. We identified 5110 variants common to all 38 ST93 genomes (4681 SNPs and 157 

429 small indels). These variants were dispersed across the genome, associated with 2575 genes 158 

and 140 hypothetical RNAs (Figure 3, Table S1). The majority of these genes have one or a 159 

small number of variants, while a handful of genes had a very high number of variants (Table S2, 160 

23 genes with at least 10 variants). The percentage of named genes in this set (8%, 2 of 24) 161 

matches the full gene set (8%, 686 out of 8338). The number of genes with a description (i.e., not 162 

"hypothetical protein" or "hypothetical RNA") is actually lower in this gene set (33%) than the 163 

whole gene set (49%).  164 

 165 

ST93 clade-specific variants 166 

Our primary aim was to identify the variants that are in some, but not all of the ST93 167 

genomes, as these are the variants that can be used to examine genome associations with the 168 

measured human clinical phenotypes. When we examine the phylogenetic tree of ST93 COAT 169 

strains, we surprisingly identified a well-supported split between ST93 strains (Figure 2B), with 170 

20 of the sequenced strains in one group (“clade A”), 16 strains in a second ("clade B"), and two 171 

ST93 strains outside of the primary clades. We identified 97 variants that differentiate strains in 172 

one clade from the other: 60 variants were unique to and in all clade A strains, and 37 variants 173 

were unique to and in all clade B strains. Clade-specific variants were located throughout the 174 

genome (Figure 4A) in 96 different genes. All except for one of the genes contained only a single 175 

clade-associated variant. In clade B, CNAG_06422 contains two variants in the 5'UTR that are 176 

three bases apart. An increased number of nonsynonymous and decreased downstream SNPs are 177 

observed in clade A compared to clade B (Figure 4B). Twenty-seven clade-specific mutations 178 

cause nonsynonymous amino acid changes (21 in clade A, 6 in clade B) and one small insertion 179 
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mutation is present in clade A (Table S3). Although the majority of these variants are in genes 180 

that have not been characterized, four are in genes of known function: LIV11 (CNAG_05422), a 181 

virulence protein of unknown function,  HSX1 (CNAG_03772), a high-affinity glucose 182 

transporter; PTP2 (CNAG_05155), a protein tyrosine phosphatase; SPT8 (CNAG_06597), and a 183 

predicted saga histone acetyltransferase complex component. 184 

 185 

Variant association with human clinical, immunologic and in vitro phenotypes 186 

We next determined whether variants in the ST93 strains were associated with clinical 187 

measures of disease, CSF cytokines levels, or with in vitro phenotypes [30,40], (Table 1, see 188 

Methods for more details). We collectively refer to these three classes of phenotypes as 189 

"quantitative infection phenotypes". We identified a significant correlation between the ST93 190 

A/B clade with in vitro macrophage uptake rate and patient CSF interleukin (IL)-2 (non-191 

parametric Wilcoxon rank sum test; uptake W = 226, p = 0.011; IL2 W = 66.5, p = 0.022; Figure 192 

4C). There was not a significant relationship between ST93 clade and the other quantitative 193 

infection phenotypes (Figure S1A; non-significant t-test results in Table S4), nor between ST93 194 

clade and survival (Figure S1B, Fisher-exact test, p = 0.33). 195 

To examine associations between single variants and quantitative infection phenotypes 196 

(our primary objective), we parsed the 5605 variants that were in some (but not all) of the ST93 197 

genomes. We took two complementary approaches to look for phenotypic associations. Our first 198 

tactic was to treat each measured phenotype as independent. For the second we used principal 199 

components analysis (PCA) to distill the 30 measured phenotypes into a smaller number of 200 

independent variables. Due to the nature of data collection for these types of phenotypic data, 201 

some strains were missing data for some phenotypes (Table S5). The most consequential was 202 

two strains missing data for all cytokine phenotypes.  203 

For the first tactic we analyzed phenotypes in each class as independent datasets in a 204 

logistic regression approach (Figure 5). For each, we removed variants that were in very few 205 

(<4) strains, as well as those without a predicted function (i.e., synonymous and intergenic 206 

variants), and those that mapped to either the centromeric or extreme telomeric regions. This left 207 

us with 466 variants in 230 genes for the cytokine dataset and 652 variants in 328 genes for the 208 

clinical and in vitro datasets. For each dataset we then conducted logistic regression analyses for 209 

each variant against each phenotype and found that across all tests 207 variants from 115 210 
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different genes were significant for at least one phenotype. The majority (138 variants) were 211 

significant for a single phenotype. To partially correct for false positives, we focused our further 212 

analyses only on the variants that were significant for at least two phenotypes ("class a") or when 213 

multiple significant variants were identified in the same gene ("class b"), or when the variant 214 

fulfilled both criteria ("class ab"). This narrowed the list to 145 variants from 40 genes and 3 215 

hypothetical RNAs, with 13 variants in class a, 36 variants in class b, and 96 variants in class ab 216 

(Table 2, full information about significant variants including class in Table S6, full statistical 217 

information for each significant variant and phenotype in Table S7).  218 

Following the default parameters in SnpEff, we used a very broad definition for calling 219 

variants upstream or downstream variants (+/- 5 kb). Over 80% of the significant variants were 220 

either upstream or downstream of genes (86 variants upstream, 34 variants downstream), with 221 

20% within 1 kb (Table S6). Of the remaining variants, 21 were nonsynonymous, while 4 were 222 

indels. The majority of significant genes contained multiple significant variants (Table 2). In 223 

some cases, different variants in the same gene influenced the same phenotype, generally 224 

because the multiple significant variants are linked (e.g., three nonsynonymous variants in 225 

CNAG_00014 with the majority of ST93 strains falling into two haplotypes; one upstream SNP 226 

and two upstream insertions in CNAG_02112 with two haplotypes that influenced amphotericin 227 

B resistance). In other cases, such as CNAG_07950, there were six different haplotypes and 228 

three significant upstream variants that were associated with 8 unique phenotypes (IL8 was 229 

associated with the two variants, while HIVrna, IL4, IL6, GMCSF, IFNγ, Fluconazole MIC, and 230 

EFA were each associated with a single variant).  231 

We also conducted PCA analysis as a second tactic to reduce the potential influence of 232 

phenotypic correlation on the results (Figure 5). As PCA requires complete datasets, we used 233 

data from the 27 phenotypes that had missing data from only three or fewer strains (i.e., we 234 

excluded CrAg LFA titer, HIV RNA viral load, CSF protein,  and CSF white cell data, Table S5) 235 

and had to exclude 8 strains (UgCl212, UgCl332, UgCl357, UgCl422, UgCl447, UgCl461, 236 

UgCl541, UgCl549, Table 1). The 'prcomp' function from the R programming language was 237 

used to perform PCA on the two phenotypes which were scaled to have unit variance and shifted 238 

to be zero centered. We continued with the first two principal components by comparing the 239 

observed results to 20 datasets where the phenotypic data was randomized among strains (Figure 240 

S2A). Logistic regression analysis was run for each of the 466 variants that passed filter against 241 
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PC1 and PC2. The PCA analysis yielded only 16 significant variants in 12 genes (Table 3). Only 242 

one of these genes, CNAG_07727, was not identified in the first analysis, and twelve of these 243 

variants were previously significant.  244 

The majority of genes with a high number of significant variants were also genes with 245 

high numbers of sequenced variants and potentially-significant variants (Figure 6). In addition to 246 

variation among genes in regards to the number of significant variants within a gene ("sig 247 

variants"; ranging from 1-34), there was also variation in the number of variants that were 248 

identified within a strain ("sequenced variants"; range: 1-210) and the number of variants that 249 

passed our filters ("potentially-significant variants": range: 1-32). This result highlights a 250 

limitation of genetic association screens such as the one we performed. Without additional 251 

biological validation it is difficult, if not impossible, to ascertain whether a given gene has many 252 

significant variants because of strong selection acting on that gene (e.g., if a knockout phenotype 253 

is beneficial there are many different positions that can reduce gene expression or protein levels) 254 

or because of relaxed selection and chance (i.e., if there is relaxed selection then many variants 255 

could be present, with statistical significance arising by chance). However, the fact that we do 256 

see areas of discordance between all the sequenced variants, potentially significant variants, and 257 

significant variants suggests many of our significant variants are not just a statistical artefact. 258 

 259 

In vivo virulence of identified genes 260 

Our goal was to identify pathogen variants that impact human clinical disease 261 

phenotypes. Biological validation in humans is not possible. However, Mukaremera and 262 

colleagues recently showed that the mouse inhalation model of cryptococcosis accurately 263 

recapitulates human infections and can be used to dissect C. neoformans genetic factors that 264 

influence human disease. [24]. Thus, as a first step to probe the biological significance of the 265 

genes identified in our analyses, we tested the virulence of 17 available KN99α deletion strains 266 

in the inhalation mouse cryptococcosis model. Six (35%) of the tested deletion strains had a 267 

significant virulence effect on mouse survival compared to the control KN99α strain: three 268 

strains had increased virulence (CNAG_02176, CNAG_06574, CNAG_06332) and three strains 269 

had decreased virulence (CNAG_06986, CNAG_04922, CNAG_05662)  (statistical results in 270 

Table 4, significantly different strains in Figure 7, non-significant strains in Figure S3). Although 271 

gene deletion mutants are only one way to biologically probe whether a candidate gene has a true 272 
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virulence phenotype, we did find that the number of significant variants in a gene (Table 2) was a 273 

significant predictor of the deletion mutations having a virulence effect (linear model, F1, 15 =  274 

8.493, p = 0.011). 275 

 276 

In vivo and in vitro analysis of itr4𝛥𝛥 and clinical strains 277 

The gene with the highest number of significant variants in our candidate gene list was 278 

CNAG_05662 (ITR4), which has been reported as a member of the inositol transporter gene 279 

family [59]. The itr4Δ mutant strain had reduced virulence in the mouse model whereas the 280 

itr4Δ:ITR4 complement strain had equivalent virulence to the laboratory reference background 281 

strain KN99𝛼𝛼 showing that the ITR4 deletion is responsible for the virulence defect in the itr4𝛥𝛥 282 

mutant (Figure 8A). In this lower inoculum experiment, three of the itr4Δ infected mice survived 283 

until the experiment was ended on day 44 (Figure 8A).  Terminal colony forming units (CFUs) 284 

from the brain and lungs of the survivors showed complete fungal clearance in one mouse and a 285 

low fungal burden in the lungs (2 x 102 CFUs) in the second mouse.  The third mouse had 5.64 x 286 

105 CFUs in the lungs and 1.35 x 104 CFUs in the brain. Evaluation of the fungal burden at seven 287 

days post-infection showed more itr4𝛥𝛥 mutant CFUs in the lungs than KN99𝛼𝛼 and itr4Δ:ITR4, 288 

and no itr4𝛥𝛥 CFUs in the brain (Figure S4), suggesting the reduced pathogenesis observed in the 289 

itr4Δ mutant is likely due to reduced growth in or delayed dissemination to the brain. 290 

To further determine the role of the genetic variants in the biological function of ITR4 - 291 

KN99𝛼𝛼, itr4Δ, and three clinical strains (UgCl389, UgCl462, and UgCl443) were tested for 292 

growth with inositol and inositol uptake. The variants associated with the ITR4 locus in these 293 

clinical strains are proximal to the coding region – both UgCl389 and UgCl462 have 11 single 294 

nucleotide polymorphisms immediately downstream of the coding region whereas UgCl443 295 

contains the H99 reference allele for ITR4 (Figure 8B). All the clinical strains showed enhanced 296 

growth with inositol compared to KN99𝛼𝛼, and similar to itr4𝛥𝛥 (Figure 8C).  UgCl389 and 297 

UgCl462 were also more efficient at inositol uptake, while UgCl443 was similar to KN99𝛼𝛼, and 298 

itr4𝛥𝛥 had decreased inositol uptake (Figure 8D). Taken together, these data highlight the 299 

complex nature of the multiple variants across the clinical strains. Due to differences in genetic 300 

background between the clinical strains, interpretation of the impact of specific variants and/or 301 

gene alleles is challenging.  302 
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Discussion  303 

 304 

Virulence is a multifaceted phenotype, as many different pathogen and host 305 

characteristics will determine the severity of a given infection. Here we paired a powerful dataset 306 

from the Cryptococcal Optimal ART Timing (COAT) trial in Uganda with pathogen whole 307 

genome sequencing technology to identify candidate C. neoformans genes that were statistically 308 

associated with quantitative human infection phenotypes. The technique of using Genome-wide 309 

Association Studies (GWAS) to uncover genic variants linked to disease was developed fourteen 310 

years ago in the context of human disease genetics [46]. Here we looked for association between 311 

variants within 38 ST93 C. neoformans isolates from participants enrolled in the COAT trial 312 

with 30 measured clinical phenotypes, cytokines, and in vitro phenotypes. We took two 313 

complementary tactics to identify candidate genes. The first treated each measured phenotype as 314 

independent, yet only included genes that either have a variant significantly associated with 315 

multiple phenotypes (13 genes), genes with multiple significant variants (10 genes), or both (20 316 

genes). We also conducted a PCA analysis examining the first two principal components from a 317 

PCA on the 27 phenotypes and 30 strains with sufficient data. The resultant reduction of power 318 

is unfortunate, but not surprising when dealing with human data, and the detrimental impacts of 319 

missing clinical data have been previously discussed [47], and indeed is why we took both 320 

tactics. The PCA analysis yielded a total of 12 genes, 11 that overlapped with those identified in 321 

the first analysis and one additional gene. Combined, we identified 40 candidate C. neoformans 322 

genes and three hypothetical RNAs associated with infection phenotypes among the ST93 323 

strains. 324 

The statistical analysis is blind to any prior knowledge of the genes, and thus does not 325 

depend on prior annotation. Accordingly, the majority of genes we identified have not yet been 326 

named and roughly half (19) are listed as "hypothetical proteins" on FungiDB. Interestingly, only 327 

two of these 19 genes are conserved among fungal taxa, and curating information about 328 

orthologues from FungiDB (https://fungidb.org/fungidb/) suggests that the majority of others are 329 

either unique to C. neoformans or only have orthologues in the very closely related species 330 

complex C. gattii (Table S8). This is consistent with the logic of Liu et al. [7], who purposefully 331 

targeted genes that did not have homologues in Saccharomyces cerevisiae during the 332 
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construction of the original H99 gene deletion collection [14] (an 1180 gene collection in C. 333 

neoformans H99, which corresponds to ~20% of the protein coding genes).   334 

We took advantage of the newer KN99𝛼𝛼 gene deletion collection [48] and found that 335 

35% (6/17) of the available gene knockouts had an effect on virulence in mice. The significant 336 

genes with a virulence change in mice include two named genes ITR4 (CNAG_05662) and APP1 337 

(CNAG_06574) as well as three hypothetical proteins from closely related species 338 

(CNAG_02176, CNAG_04922, CNAG_06332) and one hypothetical protein with broad 339 

taxonomic distribution (CNAG_06968). APP1 is a cytoplasmic protein involved in extracellular 340 

secretion and reduced phagocytosis. The app1Δ mutant has previously been shown to have 341 

decreased virulence in mice [49]. Interestingly, this is opposite from our mouse model that 342 

showed increased virulence of the app1Δ mutant. This difference could be due to the differential 343 

immune response in BALB/C (previous study, type 1 immune response) and C57Bl/6 mice 344 

(current study, type 2 immune response) that likely gives a hint to the mechanism of APP1 in 345 

human disease.  346 

Intriguingly, ITR4 (synonym PTP1) was the top hit in a screen that identified genes that 347 

were overexpressed in an intracellular environment (amoebae and murine macrophages) 348 

compared to the lab medium YPD [50]. In that study, itr4Δ did not differ from wildtype in mice 349 

or Galleria mellonella virulence assays [50], though these studies were performed in a different 350 

genetic background from our KN99𝛼𝛼 reference strain. Using gene complementation, we clearly 351 

show the virulence defect in the itr4Δ mutant is due to deletion of the ITR4 gene. However, our 352 

analysis of differences in growth and uptake of inositol in clinical isolates with different variants 353 

was less conclusive. All of the clinical strains appeared to be better adapted for growth and 354 

uptake of inositol compared to the KN99𝛼𝛼 reference strain. This is not surprising, given that the 355 

clinical strains were isolated from the central nervous system, which is an inositol rich 356 

environment. Because most of the ITR4 gene variants are proximal to the coding region, these 357 

alterations may change expression of the ITR4 gene, or transcript/protein stability in vivo, rather 358 

than abolish gene expression as occurs in the itr4Δ mutant. This could explain the difference 359 

between in vitro inositol phenotypes we observed between our clinical isolates and the mutant. It 360 

is also possible that the genetic background of the clinical isolates influences the function of the 361 

different ITR4 gene variants, as these genes are known to be part of larger inositol acquisition 362 

and utilization pathways. 363 
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There was no clear relationship between genes that were identified in both of our 364 

statistical analyses and the gene deletion virulence in mice (five genes were significant in both, 365 

two with a significant gene deletion virulence effect, Table S8). We note, however, that although 366 

there is a good link between strain survival in mice and human virulence [24], there are two 367 

major limitations with interpretation and extrapolation of the virulence tests we performed in this 368 

study. The first is that the phenotype of a gene knockout does not necessarily recapitulate the 369 

effect of a natural point or indel mutation (e.g., [51–53]). Importantly, variants located upstream 370 

of a gene were extremely prevalent in our dataset, suggesting that they would not be 371 

phenocopied with a gene deletion if an increase in expression is required to influence the trait. 372 

The second reason for pause is that the gene knockout collection is in the KN99𝛼𝛼 genetic 373 

background. It has previously been shown that although ST93 and KN99𝛼𝛼 are both VNI strains, 374 

they are phylogenetically quite distantly related [10]. We see this distance in our own dataset: 375 

2941 variants were present in the closely related ST93 genomes we sequenced and over 40 000 376 

variants were present across all the genomes compared to the H99 reference strain. Genetic 377 

background is known to play a significant role on the effect of a mutation. A large study in 378 

Saccharomyces cerevisiae recently found that 16-42% of deletion phenotypes changed between 379 

pairs of strains, depending on the environment [54]. To fully probe the influence of the variants 380 

and genes we identified in our screen these variants need to be studied in the ST93 background. 381 

Given these limitations, we anticipate additional studies will uncover more genes from our study 382 

with an impact on pathogenesis. It would also of course be of general interest to reconstruct a 383 

knockout collection in a strain background more representative of typical clinical strains [14,28].  384 

 We purposefully chose to focus our study on strains from ST93, which was the most 385 

prevalent ST group from strains we sampled from participants in the COAT trial (~63% of all 386 

strains). ST did not significantly influence mortality (ST93: 22 patients died, 24 survived; non-387 

ST93: 9 patients died, 16 survived; fisher-exact test p = 0. 45). ST93 was similarly the most 388 

prevalent among advanced HIV patients in Brazil [25]. By contrast, ST93 isolates were less 389 

common than ST5 isolates among immunocompetent patients in Vietnam, and non-ST5 strains 390 

were associated with decreased mortality compared to ST5 [55]. Other studies have found no 391 

ST93 isolates [56,57]. This picture of geography having a major impact on which group is most 392 

prevalent begs the question of whether it is merely chance or the effect of selection that sorts 393 

lineages geographically.  394 
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As additional 'genome enabled' clinical datasets are constructed, we can hope to gain a 395 

clearer global picture about the link between broad and narrow genomic variability on clinical 396 

outcome. Our narrow analysis in the ST93 strains was possible because of the large number of 397 

patients infected with this sequence type in Uganda. Only as similar studies are performed in 398 

patient populations throughout the world, with other dominant STs, or in the context of increased 399 

genetic diversity, will we be able to determine how broadly applicable our study is to the global 400 

population of C. neoformans. 401 

Statistical association techniques using human clinical data, such as those employed here, 402 

offer a complementary approach to genetic screens of mutant collections. They offer the benefit 403 

of not having to choose a particular strain background to focus your efforts (typically the 404 

reference strain), nor make decisions about which genes are likely to be the most important. For 405 

example, the genes chosen for the initial C. neoformans knockout collection were biased not only 406 

against genes with homologs in S. cerevisiae, but also against C. neoformans-specific genes [7]. 407 

There are also inherent biases to forward genetics methods. Here we only have the statistical 408 

power to find association with common variants. The majority of variants we sampled among 409 

our strains were singleton variants in only a single genome (Figure 1A), and some of these may 410 

well have an extremely important influence on virulence that remains undetected in our current 411 

analysis. Hence we have treated our pathogen GWAS analysis like a genetic screen, and the true 412 

utility of this type of analysis is not seen in just one study in isolation of others. The power lies in 413 

the opportunity to compare among studies of different types to find candidate genes or alleles to 414 

focus our attention on.  415 

Our analysis did not identify variants in many of the genes that were previously identified 416 

through in vitro and in animal mutant screens as virulence factors in C. neoformans, such as 417 

genes involved in capsule formation and melanin synthesis. There could be several reasons for 418 

this result. Importantly, all of the ST93 strains analyzed were isolated from patients with 419 

cryptococcal meningitis, thus all these strains by definition are capable of causing disease and in 420 

our study the readout was not presence or absence of disease but rather the severity of disease. 421 

Previous studies may have identified virulence factors involved in the early stages of infection 422 

that impact the ability of C. neoformans to infect and then survive within the host, whereas our 423 

study identified virulence factors that promote or inhibit the progression of disease. Second, our 424 

analysis utilized human clinical data for association with genetic differences between strains 425 
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whereas previous studies utilized surrogates, either in vitro conditions or animal models. By 426 

studying genetic differences in the context of human infection, we have the potential to not only 427 

define genes that promote disease in humans but also the potential to define aspects of the host-428 

pathogen interaction that are specific to C. neoformans and the human host.  429 
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Methods 430 

  431 

Ethics Statement 432 

 Animal experiments were done in accordance with the Animal Welfare Act, United 433 

States federal law, and NIH guidelines. Mice were handled in accordance with guidelines 434 

defined by the University of Minnesota Animal Care and Use Committee (IACUC) under 435 

protocol 1607-34001A.  Participant data were collected as part of the COAT trial 436 

(clinicaltrials.gov:NCT01075152) [30,40]. All participants were enrolled in Uganda at Mulago 437 

Hospital, Makerere University, in Kampala. Written informed consent was obtained from all 438 

subjects or their proxy, and all data were de-identified. Institutional Review Board (IRB) 439 

approvals were obtained both at the University of Minnesota (0810M49622) and Makerere 440 

University. 441 

 442 

Strain selection 443 

We utilized C. neoformans isolates collected in Uganda as part of the Cryptococcal 444 

Optimal ART Timing (COAT) trial [30]. We focused primarily on 38 UgCl ("Ugandan 445 

Clinical") COAT strains that had previously been MLST genotyped as sequence type 93 (ST93), 446 

the most prevalent ST group in this collection of strains [31]. An additional 18 strains from ten 447 

MLST groups were also whole genome sequenced to represent strain diversity in Ugandan 448 

clinical isolates [9].  449 

Clinical isolates were colony purified from the CSF of participants that presented at the 450 

clinic with their first episode of cryptococcal meningitis. The ST93 clinical isolate strains were 451 

purposefully chosen to represent strains from both participants who survived (n=21) and died (n 452 

= 17). As with the parent COAT trial, survival was decreased with early ART initiation, all 453 

putative ST93 clinical isolates used for these studies were from the standard-of-care (deferred 454 

ART treatment) arm of the clinical trial. Patient infection phenotypes (i.e., clinical and cytokine 455 

parameters, Table 1) were measured on the day patients were diagnosed with cryptococcal 456 

meningitis, prior to antifungal or ART treatment. Cytokine data was log2 transformed prior to 457 

analysis, as described previously [32]. 458 

 459 

 460 
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Library Preparation and Illumina Sequencing 461 

DNA was extracted using the CTAB DNA isolation method. Colony-purified cultures, 462 

maintained as glycerol stocks at -80℃, were inoculated into 250mL yeast peptone dextrose agar 463 

(YPD) in erlenmeyer flasks and grown overnight at 30℃ with continuous shaking prior to DNA 464 

isolation.  465 

Strains were whole-genome sequenced in two sets. In the first set, genomic DNA 466 

libraries from 16 strains were prepared by the Mayo Bioinformatics Core for 101bp paired-end 467 

sequencing. The samples were combined into two pools (Pool A: UgCl001, UgCl018, UgCl021, 468 

UgCl029, UgCl030, UgCl037, UgCl040, UgCl045, UgCl057, UgCl074, UgCl076, UgCl107; 469 

Pool B: UgCl008, UgCl032, UgCl047, UgCl065, UgCl087, UgCl093). Each pool was sequenced 470 

on a single lane of an Illumina HiSeq 20009. 471 

In the second set, genomic DNA libraries from the 40 strains were prepared by the 472 

University of Minnesota Genomics Center for 300bp paired-end sequencing with the Illumina 473 

TruSeq DNA LT kit. The samples were combined into four pools; each pool was sequenced in a 474 

single lane of an Illumina MiSeq (Pool1: UgCl212, UgCl230, UgCl236, UgCl243, UgCl247, 475 

UgCl250, UgCl389, UgCl541, UgCl547, UgCl549; Pool2: UgCl252, UgCl255, UgCl262, 476 

UgCl291, UgCl292, UgCl300, UgCl326, UgCl332, UgCl357, UgCl360; Pool3: UgCl362, 477 

UgCl377, UgCl379, UgCl382, UgCl390, UgCl393, UgCl395, UgCl422, UgCl438, UgCl443; 478 

Pool4: UgCl447, UgCl450, UgCl461, UgCl462, UgCl466, UgCl468, UgCl495, UgCl534, 479 

UgCl535, UgCl538, UgCl546). In the second set of sequencing, the runs generated ⪆22 million 480 

pass filter reads for pools 1 and 2 and ⪆ 17 million pass filter reads for pools 3 and 4. In all runs 481 

>70% bases were above Q30. The average library insert size was 400-500bp. 482 

 483 

Variant calling 484 

Variant calling for each strain was adapted from the Genome Analysis Toolkit (GATK 485 

v3.3.0) best practices [33–35]. For each strain the two paired-end fastq files were trimmed using 486 

trimmomatic [36] and aligned to the C. neoformans H99 reference genome downloaded from 487 

FungiDB (http://fungidb.org/fungidb/) on February 1, 2016 ("FungiDB-488 

26_Cneoformans_H99_Genome.fasta") with bwa mem [37]. The output (.SAM) files from all 489 

other strains were converted to .BAM files and sorted, duplicates were marked and indexed and a 490 

final index was built with picard tools (http://broadinstitute.github.io/picard). Variants were 491 
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called for each sample with GATK HaplotypeCaller run in GVCF mode for each strain (with 492 

flags --genotyping_mode DISCOVERY --emitRefConfidence GVCF -variant_index_type 493 

LINEAR -variant_index_parameter 128000 -ploidy 1) to obtain gVCF files. GATK 494 

GenotypeGVCFs was then run to merge the 41 gVCF records. Variants were annotated with 495 

SnpEff [38] followed by GATK VariantAnnotator. SNPs and INDELs were separated into two 496 

tables from the single merged and annotated VCF file using GATK SelectVariants, 497 

VariantFiltration and VariantsToTable. Coverage across chromosomes was determined using 498 

GATK DepthOfCoverage on the sorted BAM files. 499 

 500 

Phylogenetic tree building 501 

SNPhylo [39], a pipeline designed to construct phylogenetic trees from SNP data, was 502 

used to generate a PHYLIP file from the original VCF. SNPhylo reduces redundant SNP 503 

information due to linkage disequilibrium. As we knew a priori that our ST93 samples are highly 504 

related, we ran SNPhylo with the linkage disequilibrium flag set very high (0.99), which still 505 

reduced the number of SNPs by ~94% on each chromosome. 7,383 markers were selected in 506 

total. In SNPhylo, MUSCLE was used to perform multiple alignment and generate the PHYLIP 507 

file.  508 

Bootstrap analysis was conducted using RAxML. 20 maximum likelihood trees were 509 

generated (-m ASC_GTRGAMMA --asc-corr=lewis) and support values from 100 bootstrap 510 

replicates were determined for the best fit ML tree (-m ASC_GTRGAMMA --asc-corr=lewis -p 511 

3 -b 12345 -#100). Bipartitions were then drawn on the best tree (-m ASC_GTRGAMMA --asc-512 

corr=lewis -p 3 -f b). This tree was read into R using the read.raxml command in the treeio 513 

library. Further tree visualisations were created using ggtree. 514 

 515 

Clinical data 516 

Collection of clinical and immunological data were as described previously [30,40]. 517 

Clinical and immunological data used in this study are listed in Table 1. Briefly, clinical 518 

parameters of disease were participant mortality due to cryptococcosis (days post initial 519 

diagnosis), CD4+ T-cell count, cerebral spinal fluid (CSF) white blood cell count (WBC), serum 520 

and CSF protein levels, HIV viral load, CSF Cryptococcus clearance rate of early fungicidal 521 

activity (EFA), and lateral flow assay (LFA) measurement of cryptococcal antigen titer (Immy 522 
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Inc., Norman, Oklahoma). As immunological data, CSF levels of 19 cytokines and chemokines 523 

(granulocyte colony-stimulating factor [G-CSF], granulocyte macrophage colony-stimulating 524 

factor [GM-CSF], interferon-γ, tumor necrosis factor [TNF]–α, interleukin [IL]–1β, IL-2, IL-4, 525 

IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, MCP-1 [CCL2], macrophage inflammatory 526 

protein [MIP]–1α [CCL3], MIP-1β [CCL4], VEGF) were analyzed. We refer to these cytokines 527 

and chemokines collectively as "cytokines".  528 

In vitro assays were also performed on the clinical isolates. Drug resistance assays for 529 

fluconazole and amphotericin B were as described previously [31,41]. MH-S macrophage cell 530 

cultures were used to determine C. neoformans cell uptake by macrophages. Briefly, 5x105 MH-531 

S cells per well were incubated at 37oC with 5% CO2 for 2 hours in a 96-well culture plate to 532 

allow adherence. C. neoformans cultures were grown overnight in Dulbecco’s modified eagle 533 

medium (DMEM) supplemented with 2% glucose, collected by centrifugation, washed, and 534 

resuspended in 0.1% Uvitex solution for 10 minutes. Cells were then collected by centrifugation, 535 

washed, and 5x105 cells and 4𝜇𝜇g E1 anti-GXM antibody [42] were added to each well in the 536 

MH-S culture plate. After two hours of co-incubation, the culture plate was centrifuged to collect 537 

cells, spent media was decanted and cells were washed to remove extracellular C. neoformans 538 

cells. Samples were then resuspended in 0.25% Trypsin in EDTA for 15 minutes to release the 539 

adherent cells from the wells, fixed with 3.7% formaldehyde for 30 minutes on ice. Samples 540 

were then stained with a second anti-GXM antibody (m18b7) conjugated to the AlexaFluor 488 541 

fluorophore (1:2000) and PE-labelled CD45 (1:100) in PBS with 1 𝜇𝜇g/ml bovine serum albumin 542 

(BSA and 2 mM Tris-HCl. Cells were analyzed on a BD LSRII flow cytometer (BD Biosciences, 543 

Inc) and data were analyzed using FlowJo software.  Gating on Uvitex, CD45, and m18b7 544 

allowed differentiation free C. neoformans cells (Uvitex+, CD45-), free macrophages (Uvitex-, 545 

CD45+), macrophages with intracellular C. neoformans (Uvitex+. CD45+, m18b7-), and 546 

macrophages with extracellular C. neoformans (Uvitex+, CD45+, m18b7+). To analyze cell wall 547 

chitin content, C. neoformans cells were grown in DMEM supplemented with 2% glucose, 10% 548 

FBS, 1% Pen-Strep, and beta-mercaptoethanol (1ml/1L) at 37oC overnight, and then fixed for 30 549 

minutes in 3.7% formaldehyde. Cell concentration was adjusted to 1x106 cells/ml, stained with 550 

1𝜇𝜇g/ml calcofluor white (Sigma Aldrich) in PBS for 5 minutes at 25oC, then wash with PBS. 551 

Median Calcofluor white fluorescence intensity was then determined for each strain by flow 552 

cytometric analysis of the cell population on an LSR II Fortessa flow cytometer.  553 
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Biomarkers analyzed as continuous variables were log2 transformed for normalization, 554 

analyzed, and then back-transformed to geometric mean values. All “mean” biomarker values are 555 

geometric means. Low (“out of range”) measurements were set to half of the manufacturer's 556 

listed assay limit of detection (LOD). CSF biomarkers with substantial proportions (≥40%) of 557 

undetectable values at diagnosis (IL-2, IL-1β, IL-5, CCL22) were analyzed as categorical 558 

variables: “detectable” (values greater than the LOD) versus “nondetectable (values lower than 559 

the LOD). CSF white blood cell count (WBC) was analyzed as absolute values and also 560 

classified as “normal” versus “elevated” (<5 vs ≥5 cells/µL, respectively).  561 

 562 

Survival Curves 563 

Survival curves were performed in three experiments.  Experiment one (E1) tested the 564 

virulence of KN99α with the following genes deleted: CNAG_00363, CNAG_02176, 565 

CNAG_04373, CNAG_04535, CNAG_04922, CNAG_05662, CNAG_05663,  CNAG_05913, 566 

CNAG_06169,  CNAG_06332, CNAG_06574, CNAG_06704, CNAG_06876, and 567 

CNAG_07837.  For E1, five C57BL/6 mice per group were anesthetized by intraperitoneal 568 

pentobarbital injection and inoculated intranasally with 5 × 104 cells suspended in 50 μl PBS, 569 

whereas E2 and E3 used five C57BL/6 mice per group were anesthetized and inoculated 570 

intranasally with 1 × 104 cells suspended in 50 μl PBS. Animals were monitored for morbidity 571 

and sacrificed with carbon dioxide when endpoint criteria were reached. Endpoint criteria were 572 

defined as 20% total body weight loss, loss of two grams of weight in two days, or symptoms of 573 

neurological damage. On day 34, the remaining mouse was sacrificed.  Lungs and brain were 574 

removed and homogenized in 4 mL or 2 mL PBS, respectively.  Serial dilutions of the lungs and 575 

the entire homogenized brain were plated on YPD with chloramphenicol.  CFUs were counted 576 

after 48 hours. 577 

Significance was determined using the survfit command from the R package survival 578 

[43]. Kaplan-Meier estimators from each knockout strain were compared against the KN99α 579 

strain measured in the relevant experiment. P-values were obtained by comparing the two curves 580 

using the G-rho family log-rank test [44], implemented with the survdiff function. 581 

 582 

 583 

 584 
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ITR4 Survival Curve 585 

Ten C57BL/6 mice per group were anesthetized and inoculated intranasally with 1 × 103 586 

KN99α, itr4Δ, or itr4Δ:ITR4 cells suspended in 50 μl PBS.  Animals were treated as described 587 

above. The itr4Δ that survived the infection initially showed early signs of disease (minor weight 588 

loss, reduced activity) but regain weight at later timepoints. On day 44, the mice were sacrificed.  589 

Lungs and brain were collected from each mouse to determine fungal burden, and processed as 590 

described above. 591 

For determination of CFUs at 7 days post-infection, 4 C57BL/6 mice per group were 592 

anesthetized and inoculated intranasally with 1 × 103 KN99α, itr4Δ, or itr4Δ:ITR4 cells 593 

suspended in 50 μl PBS.  After seven days, the mice were sacrificed, and lungs and brain were 594 

collected and processed as described above. 595 

 596 

Inositol Growth assays 597 

 Yeast cells of C. neoformans wild type strain KN99α, itr4∆ mutant, and clinical strains 598 

were cultured in YPD medium overnight. Concentrations of overnight cultures were determined 599 

by measuring the optical density at 600 nm (OD600) and adjusted to the same cell density. Serial 600 

10-fold dilutions were prepared, and 5 µl of each dilution was spotted on YNB plates with 1% 601 

glucose, 1% inositol, or 1% glucose and 1% inositol. Plates were then incubated at 30°C or 37°C 602 

for 48 h before photography. The assay was repeated at least three times with similar results.  603 

 604 

Inositol uptake assay 605 

The inositol uptake assay was performed following the previously published method [60]. 606 

In brief, the Cryptococcus strains were grown in YPD liquid cultures overnight at 30°C. Cells 607 

were diluted in YPD to an OD600 of 1.0, grown at 30°C, and collected at an OD600 of 5.0 by 608 

centrifugation at 2,600 x g for 5 min. Cells were then washed twice with PBS at 4°C and 609 

resuspended in 2% glucose to a final concentration of 2 x 108 cells/ml as determined by a 610 

hemacytometer. For the uptake assay, the reaction mixture (200 µl) contained 2% glucose, 40 611 

mM citric acid-KH2PO4 (pH 5.5), 0.15 µM myo-[2-3H]-inositol (1 µCi/µl; MP BioMedicals). 612 

Additional 200 µM unlabeled inositol (Sigma-Aldrich) was added to the reactions for 613 

competition assays. Equal volumes of the reaction and cell mixtures (60 µl each) were warmed to 614 

30°C and mixed for the uptake assay, which was performed for 10 min at 30°C. As negative 615 
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controls, mixtures were kept at 0°C (on ice) during the 10-min incubation. Aliquots of 100 µl 616 

were removed and transferred onto prewetted  Metricel filters (1.2 µm) on a vacuum manifold. 617 

The filters were washed four times each with 2 ml of ice-cold water. The washed filters were 618 

removed and added to liquid scintillation vials for measurements on a PerkinElmer TRI-CARB 619 

2900TR scintillation counter.  620 

 621 

Data Availability 622 

All data and scripts are available at GitHub at https://github.com/acgerstein/UgClGenomics  623 
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Table 1. Clinical Phenotypes measured 
from participants enrolled in the COAT 
trial and in vitro assays. 

Class n Phenotype Variable 
Clinical 38 CD4 T cell 
Clinical 35 CSF white cell 
Clinical 31 CSF protein 
Clinical 35 HIV viral load 
Clinical 37 CSF Clearance Rate (EFA) 
Clinical 30 CSF CrAg LFA titer 
Clinical 38 survival 

Cytokines 36 IL1-β 
Cytokines 36 IL-2 
Cytokines 36 IL-4 
Cytokines 36 IL-5 
Cytokines 36 IL-6 
Cytokines 36 IL-7 
Cytokines 36 IL-8  
Cytokines 36 IL-10 
Cytokines 36 IL-12 
Cytokines 36 IL-13 
Cytokines 36 IL-17 
Cytokines 36 G-CSF 
Cytokines 36 GM-CSF 
Cytokines 36 IFN-γ  
Cytokines 36 MCP-1 
Cytokines 36 TNF-α 
Cytokines 36 MIP-1β 

in vitro 38 macrophage uptake  
in vitro 38 macrophage adherence 
in vitro 37 cell wall chitin 
in vitro 37 absolute growth at 30°C  
in vitro 37 fluconazole MIC 
in vitro 37 amphotericin B MIC 
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Table 2. Significant variants from linear regression analysisa.  
Geneb Chr Variant Positions Effectc Classd Phenotypes 
00014 1 47564; 47575; 47671 ns b GCSF; GCSF; GMCSF 
00363 1 927896; 927901 ns b IL2; IL2 
07950 1 975152; 975212;  

975397 
up ab IL8, HIVrna; IL4, IL6, IL8, GMCSF, IFNγ, 

FLC; EFA 
06704 2 270700 up a IL2, LFA 
02798 3 750294 up a Protein, CD4, AMP 
05185 4 667433; 667446 up ab Survival, uptake; uptake 
06876 5 7093 down a IFNγ, MIP1β, TNFα 
01371 5 475470 up a MCP1, HIVrna 
01241 5 836479; 836697; 

836899 
up ab IL2; IL4, IL5, IL7, IL17, GMCSF, TNFα, 

chitin; IL5, IL12, IL13, IL17, GCSF, TNFα 
02475 6 221273; 221275; 

221282 
up ab IL7, growth; growth; growth 

02176 6 988405; 988733; 
988843; 989188; 
989334; 989490; 
989732; 990771; 
990777; 990851; 
990885; 991027 

down; ns; 
ns; ns; ns; 
ns; ns; ns;  
ns; ns; ns; 

up 

ab Chitin, SERT; IL1b, IL13, MCP1, MIP1β; 
MIP1β; IL12; AMP; HIVrna,  
SERT; IL2; IL10, MIP1β; MIP1β; 
IL10, MIP1β; SERT; IL13, TNFα, 
Survival 

02177 6 990701 up a IL1β, IL6, IL10 
02112 6 1160524; 1160528; 

1160532 
up b AMP; AMP; AMP 

06525 7 11056; 14006 ns ; up ab IL5, IL10; IL6,IL8 
12610* 7 49744 up a MCP1, uptake 
06574 7 164473; 164887; 

164926; 165027; 
165704; 165873;  
166309; 167135; 
167224; 167292; 
167370; 167687 

up ab HIVrna; IL2, TNFα; IL2, MIP1β; MIP1β; 
Survival, EFA; IL13; growth; IL13; 
GMCSF;  
IL1β, GCSF, MIP1β, uptake;  
CD4, uptake; protein 

05913 7 1205599; 1205600 up ab MIP1β, adherence; IL13, IL17, MIP1β, 
adherence 

05937 7 1263610; 1263646; 
1263647 

up ab Uptake, SERT; SERT; SERT 

07703 7 1341024 ns a IL6, IL8 
06968 8 1383765 indel a IL12, IL17 
04100 9 5213; 7729; 8171 up ab adherence, FLC, SERT; growth; EFA, 

SERT 
04102 9 10033 down a GMCSF, EFA 
04179 9 220963 up a EFA, SERT 
04373 9 705343; 706175 up ab IL8, EFA; survival 
04535 9 1115286 up a IL17,GCSF,LFA 
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07837 10 13558; 15288; 15302 up; down; 
down 

b IL2; WBCc; CD4 

04922 10 18908; 18915; 18933; 
18941; 18988; 18992; 

18997 

up b IL2; IL2; IL2; IL2; adherence; adherence; 
adherence 

08006 11 804710; 804742 up ab IL4, IL5, IL6, MIP1β, TNFα, adherence, 
chitin; IL4, IFNγ, MCP1, adherence 

01802 11 966644; 966669; 
966700 

up b WBC; IL2; IL7 

07026 12 11092; 11094; 11400; 
11406; 11407; 11410;  

11413 

up ab IL1β, IL13, survival, EFA; IL13, survival; 
IL1β, IL7, IL13; IL1β, IL7, IL13; IL1β, 
IL7, IL13; IL1β, IL7, IL13; IL1β 

05987 12 14009; 14035; 14125;  
14197; 14202; 15014 

ns; ns; 
indel; ns; 
indel; up 

ab IL2; IL2; chitin; EFA, adherence; EFA, 
adherence; adherence 

06169 12 502808; 502888; 
502890; 503049; 
503112; 503311;  
503313; 503321; 
503327; 503401  

down ab IL8; GMCSF, growth; IL6, IL8, GMCSF; 
GMCSF, HIVrna; HIVrna, WBC; GCSF; 
IL12, IL13, GCSF; IL12, IL13, GCSF, 
MIP1β; IL12, IL13, MIP1β; IL10, chitin  

06256 13 11118; 11130 up ab; b IFNγ, TNFα; TNFα 
13108* 13 128625; 128715; 

128729 
up ab IL13, GCSF; IL13, GCSF; IL13, GCSF 

06332 13 219021; 219311; 
219312 

up b adherence; EFA; EFA 

06422 13 436551; 436554 up b IL2; IL2 
06490 13 655915 indel a Protein, HIVrna, CD4 
05450 14 342562 ns a IL6, IL7, IL12, IL13, GCSF, MIP1β 
05661 14 908850; 908994; 

909011; 909638; 
910152; 910181 

up ab   IL8, GMCSF, IFNγ, MCP1; uptake, FLC; 
IL1β, IL8, MIP1β, uptake, FLC; adherence;  
uptake; IL1β, IL6, IFNγ, HIVrna 

05663 14 910323; 910328; 
910555 

down ab TNFα; IL1β, IL13, TNFα; survival 

05662 14 910742; 910822; 
910834; 910926; 
910939; 910964; 
910966; 910979; 
911099; 911129;  
911206; 911262;  
911292; 911308; 
911321; 911352 

down ab AMP; survival, FLC; survival; SERT; 
growth, SERT; survival, AMP; survival; 
survival, uptake; IL12, GMCSF, growth, 
TNFα, MCP1; IL12, IL13, IL17, MIP1β, 
TNFα, growth, FLC, AMP, SERT; IL8,  
MCP1, MIP1β; MCP1; IL2; adherence; 
IL5; MCP1 

13204* 14 924025; 924047; 
924049; 924050 

up b  GMCSF; IL13; IL13; IL13 

a Semicolons are used as separators between different variants. When only one effect is listed it 
is common among all variants in the gene.  
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bGene number corresponds to the CNAG number from the Cryptococcus neoformans H99 
reference genome on FungiDB. Hypothetical RNAs are indicated with an *. 

c Effect designates location or type of variant: up, upstream of the coding region; down, 
downstream of the coding region; ns, nonsynonymous change in the coding region; indel, 
small insertion or deletion. 

d Class type designations: a, genes with one variant significant for at least two phenotypes; b, 
multiple variants in the same gene with at least one significant phenotype each; ab, both 
criteria are fulfilled. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/592212doi: bioRxiv preprint 

https://doi.org/10.1101/592212
http://creativecommons.org/licenses/by/4.0/


33 

Table 3. Significant variants from PCA analysis. 
Gene Chr Position Effect PCA1 p value PCA2 p value 
CNAG_07950 1 975212 upstream 0.047 0.141 
CNAG_01241 5 836697 upstream 0.04 0.505 
CNAG_01241 5 836899 upstream 0.025 0.29 
CNAG_02176 6 988733 stop gained 0.047 0.749 
CNAG_02176 6 989490 ns 0.834 0.03 
CNAG_02176 6 989960 ns 0.967 0.039 
CNAG_07703 7 1341024 ns 0.031 0.289 
CNAG_07727 8 818838 upstream 0.036 0.726 
CNAG_08006 11 804710 UTR-5 0.048 0.312 
CNAG_05987 12 19741 upstream 0.355 0.031 
CNAG_06169 12 503321 UTR-3 0.048 0.795 
CNAG_05450 14 342562 ns 0.024 0.142 
CNAG_05661 14 908850 upstream 0.042 0.928 
CNAG_05663 14 910328 downstream 0.042 0.12 
CNAG_05662 14 911099 downstream 0.045 0.143 
CNAG_05662 14 911129 downstream 0.048 0.046 
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Table 4. Survival curve statistical results.  
 𝛸𝛸2 statistic  
Gene KO (df = 1) p value 
CNAG_00363 (tco6Δ) 0.05 0.82 
CNAG_02176 9 0.0027 
CNAG_04373 3.07 0.08 
CNAG_04535 2.79 0.095 
CNAG_04922 9.97 0.0016 
CNAG_05662 (itr4Δ) 6.22 0.013 
CNAG_05663 0.61 0.43 
CNAG_05913 0.07 0.79 
CNAG_05937 0.09 0.77 
CNAG_06169 0.13 0.72 
CNAG_06332 4.05 0.044 
CNAG_06490 1.02 0.31 
CNAG_06574 (app1Δ) 9 0.0027 
CNAG_06704 5.83 0.016 
CNAG_06876 0.05 0.82 
CNAG_06986 7 0.0082 
CNAG_07703 0.05 0.31 
CNAG_07837 1.8 0.18 
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Figure 1. Variants identified among all strains. A) The number of variants per gene has a long 

right tail. The inset panel is the same data, zoomed for genes with at least 50 variants for 

visualization purposes. B) There is a significant and positive relationship between gene length and 

the number of variants per gene. C) The number of variants per strain matches the multi-locus 

sequence type (ST) among strains.
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Figure 2. Phylogenetic analysis of all sequenced strains. A) The majority of ST93 strains fall 

into two well-supported clades, magnified in (B) for ease of viewing. ST93A (purple 

background) and ST93B (yellow background). Bootstrap values >50 are indiated with the 

numeric bootstrap value.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/592212doi: bioRxiv preprint 

https://doi.org/10.1101/592212
http://creativecommons.org/licenses/by/4.0/


Figure 3. Variants that were common to all ST93 genomes are dispersed among 2715 genes and 

hypothetical RNAs. A small number of clustered genes have a large number of variants. In each cluster 

the gene with the highest number of variants is indicated. Genes with more than 20 variants and named 

genes are indicated. Table S2 lists all genes with 10 or more variants.
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Figure 4. ST93A and ST93B clade-specific variants. A) Variants that are specific to the ST93A and 

ST93B clades are distributed across the genome. B) Upstream variants are the majority class found in 

all ST93 genomes (“ST93all”) and among the variants that are specific to either clade. By contrast, 

ST93A variants were more likely to be nonsynonymous and less likely to be downstream compared to 

ST93all or ST93B variants. C) IL2 cytokine levels in the CSF and in vitro macrophage uptake differed 

between ST93A and ST93B strains.
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Logistic Regression Analysis
5603 variants in 38 ST93 genomes

30 quantitative infection phenotypes

Subtract non-effect variants:
1)  < 4 strains
2)  Synonymous or Intergenic
3)  Centromeres or Telomeres

652 variants in 328 genes

Logistic Regression

207 significant variants in 115 genes

138 variants significant for 
only a single phenotype 
(potential false positives)

40 genes and 3 hypothetical RNAs with multiple “hits”:
a) Variants significant for multiple phenotypes (13)
b) Genes with multiple significant variants (10)
ab) Both criteria met (20)

Principal Component Analysis
5603 variants in 38 ST93 genomes

30 quantitative infection phenotypes

Subtract missing data:
1)  8 strains due to missing

quantitative infection
phenotypes

2)  4 quantitative infection 
phenotypes due to missing 
strain data

30 ST93 genomes
26 quantitative infection phenotypes

PCA

466 variants in PC1 and PC2

16 significant variants in 12 genes

Logistic Regression

Figure 5. Flow chart for bioinformatic approaches used to identify C. neoformans genes associated with 

human infection. Two complementary approaches were used: logistic regression followed by cluster analysis 

and principal component analysis (PCA).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/592212doi: bioRxiv preprint 

https://doi.org/10.1101/592212
http://creativecommons.org/licenses/by/4.0/


Figure 6. Comparison of variant frequency across the genome. The relative frequency of variants 

per gene for significant genes (red line) compared to all sequenced variants across all genomes 

(black line) and all variants within ST93 genomes (gray line). Only genes with at least one 

potentially significant variant are shown, hence the gray line does not reach 0. Discordance between 

the red compared to black and gray lines highlight areas with significant variants.
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Figure 7. Deletion strain virulence in mice. Groups of five 6-8 week old C57Bl/6 mice 

were infected intranasally with 5 X 104 cells. Progression to severe morbidity was 

monitored for 35 days and mice were sacrificed when endpoint criteria were reached. 

Strains were tested in two separate experiments indicated as E1 or E2, respectively. 
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Figure 8: Analysis of ITR4 through in vivo virulence and in vitro growth and inositol 

uptake. A) Groups of ten 6-8 week old C57Bl/6 mice were infected intranasally with 1 X 103

cells. Progression to severe morbidity was monitored for 44 days and mice were sacrificed 

when endpoint criteria were reached. B) Schematic diagram showing location of the variants in 

the UgCl389 and UgCl462 clinical isolates relative to the ITR4 coding region. UgCl443 has 

the H99 reference allele. C) Growth assay of C. neoformans wild type strain KN99α, itr4∆

mutant, and clinical strains on medium with different inositol levels. Yeast cells were cultured 

in YPD medium. Equal cell concentrations were spotted as 10-fold serial dilutions onto YNB 

plates made with 1% glucose, 1% inositol, or 1% glucose and 1% inositol. Plates were 

incubated at 30oC and growth was examined after 4 days. The assay was repeated three times 

with similar results. D) Inositol uptake analysis of C. neoformans strains. Yeast cells were 

mixed with 3H-labeled inositol and incubated at 30oC for 10 minutes in triplicate and repeated 

twice with similar patterns. Error bar indicates the standard deviation of the three replicates.
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Supporting Information Legends 

Supplemental Tables 

Table S1. Genes, hypothetical RNAs, and intergenic regions with variants that are present in all 

ST93 genomes 

Table S2. Genes with at least 10 variants present in all ST93 genomes 

Table S3. ST93A and ST93B clade-specific variants 

Table S4. Statistical analysis of ST93 clade-specific associations with quantitative infection 

phenotypes 

Table S5. Phenotypes measured from patients enrolled in the COAT trial (clinical and cytokines) 

and in vitro. 

Table S6. Significant variants in genes and hypothetical RNAs with quantitative infection 

phenotypes based on class designation 

Table S7. Logistic regression analysis of all significant variants in genes and hypothetical RNAs 

associated with quantitative infection phenotypes 

Table S8. The majority of genes associated with quantitative infection phenotypes are 

uncharacterized 
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Supplemental Figure Legends 

Figure S1. Clade-specific differences in phenotype. Bar indicates median value. 

 

Figure S2. PCA analysis. A) Each dashed line represents one of 20 randomized trials. B) There 

was no association between PC1 or PC2 and clade. 

 

Figure S3. KN99α deletion strain virulence in mice. Groups of five 6-8 week old C57Bl/6 

mice were infected intranasally with 5 X 104 cells. Progression to severe morbidity was 

monitored for 35 days and mice were sacrificed when endpoint criteria were reached. Strains 

were tested in two separate experiments, E1 or E2, respectively. The deletions strains were 

compared against the KN99α strain in the same experiment. 

 

Figure S4. Growth at 7 days post-infection. Groups of four 6-8 week old C57Bl/6 mice were 

infected intranasally with 1 X 103 cells. Mice were sacrificed at 7 days post infection, lungs 

homogenized in 4 ml of PBS, and serial dilutions plated on YPD with cholamphenicol medium. 

Colony forming units were enumerated at 48 hours. 
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