

1 Knowledge and awareness of cervical cancer in Southwestern Ethiopia is lacking:
2 a descriptive analysis
3

4 **Short Title:** Decreased knowledge and awareness of cervical cancer in Southwest Ethiopia
5

6
7 Atif Saleem^{1*¶}, Alemayehu Bekele^{2¶}, Megan B. Fitzpatrick¹, Eiman A. Mahmoud³, Athena W.
8 Lin³, H. Eduardo Velasco³, Mona M. Rashed^{4¶}
9

10
11 ¹Department of Pathology, Stanford University Medical Center, Stanford, CA, USA

12 ²College of Medicine, Jimma University, Jimma, Ethiopia

13 ³Department of Basic Sciences, College of Osteopathic Medicine, Touro University, Vallejo, CA
14 USA

15 ⁴Department of Pathology, Affiliated to General Organization of Teaching Hospitals and
16 Institutes, Egypt

17

18

19 ***Corresponding Author:**

20 Email: asaleem@stanford.edu (AS)

21

22 [¶]These authors contributed equally to this work.

23

24 **Abstract:**

25 Purpose

26 Cervical cancer remains the second most common cancer and cancer-related death among
27 women in Ethiopia. This is the first study, to our knowledge, describing the demographic, and
28 clinicopathologic characteristics of cervical cancer cases in a mainly rural, Southwestern
29 Ethiopian population with a low literacy rate to provide data on the cervical cancer burden and
30 help guide future prevention and intervention efforts.

31

32 Methods

33 A descriptive analysis of 154 cervical cancer cases at the Jimma University Teaching Hospital in
34 Southwestern Ethiopia from January 2008 – December 2010 was performed. Demographic and
35 clinical characteristics were obtained from patient questionnaires and cervical punch biopsies
36 were histologically examined.

37

38 Results

39 Of the 154 participants with a histopathologic diagnosis of cervical cancer, 95.36% had not heard
40 of cervical cancer and 89.6% were locally advanced at the time of diagnosis. Moreover, 86.4%
41 of participants were illiterate, and 62% lived in a rural area.

42

43 Conclusion

44 A majority of the 154 women with cervical cancer studied at the Jimma University Teaching
45 Hospital in Southwestern Ethiopia were illiterate, had not heard of cervical cancer and had
46 advanced disease at the time of diagnosis. Given the low rates of literacy and knowledge

47 regarding cervical cancer in this population which has been shown to correlate with a decreased
48 odds of undergoing screening, future interventions to address the cervical cancer burden here
49 must include an effective educational component.

50

51 **Introduction:**

52 Cervical cancer pathology and demographic data is lacking from Southwestern Ethiopia.
53 The Jimma University Teaching Hospital (JUTH) is located in the city of Jimma which is 352
54 km southwest of Ethiopia's capital city Addis Ababa and is unique in that it acts as the only
55 teaching and referral hospital in the region, serving a population of 15 million people [1].
56 Moreover, Jimma is part of the Oromia state which has one of the highest poverty rates (74.9%
57 of the population) and lowest literacy rates in the country (36% of all residents, with 17% of the
58 female residents living in rural settings) [2-3]. Contributory data from this hospital is vital since
59 every year, an estimated 7,095 women are diagnosed with cervical cancer and 4,732 deaths are
60 due to the disease in Ethiopia - it is currently the second most common cause of female cancer
61 deaths in Ethiopia, after breast cancer.

62 Infection with high-risk human papillomavirus (HPV) is the necessary cause of >99% of
63 cervical cancer [4]. Other contributing factors include smoking, total fertility rate, and human
64 immunodeficiency virus (HIV) infection [5]. The knowledge about cervical cancer in Ethiopia
65 has been reported to range from 21.2% to 53.7%, with screening rates that ranged from 9.9% to
66 23.5%. Three of these four studies, however, took place in Northern Ethiopia [6-9]. Though there
67 is not yet an organized cervical cancer education or screening program in Ethiopia, the ongoing
68 dilemma remains how much the absence of such programs compared to a general lack of
69 education or negative attitude towards cervical cancer contribute to the disease burden. Aweke et

70 al. described that 34.8% of 583 survey respondents in Southern Ethiopia had a negative attitude
71 pertaining to cervical cancer [7].

72

73 **Materials and methods:**

74 **Place of study**

75 The study took place at the Jimma University Teaching Hospital Departments of
76 Obstetrics and Gynecology and Medical Laboratory Sciences and Pathology in Southwestern
77 Ethiopia. This study was approved by the Touro University California Institutional Review
78 Board in the United States of America, by the Research and Publication Committee of the
79 Faculty of Medical Sciences at Jimma University, by the Jimma University Ethics Review
80 Committee and by the Jimma University Teaching Hospital Departments of Obstetrics and
81 Gynecology and Medical Laboratory Sciences and Pathology in Ethiopia.

82 **Study population**

83 The study population included non-pregnant women voluntarily attending the Jimma
84 University Teaching Hospital Department of Obstetrics and Gynecology outpatient clinic from
85 January 2008 – December 2010 who had evidence of cervical lesions on initial pelvic
86 examination. All of the participants voluntarily presented to the clinic and were willing to be
87 screened; data was collected only after full informed oral consent for participating in the study
88 was obtained.

89 **Screening procedure**

90 Data was collected by residents in the Department of Obstetrics and Gynecology who
91 were informed regarding the study parameters and were in charge of the outpatient service on a

92 rotation basis. All non-pregnant women with cervical lesions were invited to participate during
93 the study time period. The patients were informed about the indications, contraindications, and
94 alternative options of undergoing a cervical punch biopsy to recognize any cervical pathology.
95 Oral consent was obtained from each case before the interview, punch biopsy procedure and data
96 collection for participation in the study. Then each patient was interviewed using a standardized
97 questionnaire to extract information regarding additional clinical features, sociodemographic
98 characteristics, maternity history, and knowledge about cervical carcinoma, amongst others.
99 Questionnaires were collected weekly and checked for adequacy - those with inadequate data
100 (missing data or unrecognizable responses) were excluded. Pelvic examination was conducted to
101 characterize the cervical lesion(s) and determine the clinical stage. Thorough speculum
102 examination of the cervix was performed to describe any lesion(s) and subsequently a four
103 quadrant punch biopsy of the cervix was taken. The biopsy material was preserved in 10%
104 formaldehyde and submitted to the Department of Medical Laboratory Sciences and Pathology.

105 In the Department of Pathology the formalin fixed tissue was embedded in paraffin,
106 sections were cut and subsequently stained as described. From each case, four microscopic slides
107 were prepared – one remained in the Department of Pathology for clinical management and three
108 were used for the current study. The slide used for clinical management was stained with
109 hematoxylin and eosin (H&E) and diagnosed by a pathologist in the Department of Pathology
110 according to the World Health Organization histological classification of tumors of the uterine
111 cervix and this pathologic report was recorded and relayed to the physician specific to the case
112 for clinical care. The H&E study slides were identified by the biopsy and code number assigned
113 by the initial physician on the biopsy request sheet and questionnaire and were submitted for
114 diagnosis to a pathologist from Touro University California who was blinded regarding the case

115 for quality control. If there was disagreement in the reports between the slide used for clinical
116 management and the second observer report, the slide was given to a third pathologist and the
117 agreement of the two pathologists was taken as the gold standard report to be recorded.

118 **Data Analysis**

119 Data was initially entered into Microsoft Excel after which it was coded and analyzed
120 using STATA 15.0 software. Data cleaning was performed only in the form of eliminating
121 missing data so as to improve accuracy, and descriptive statistics were subsequently used to
122 summarize all variables.

123

124 **Results**

125 A total of 240 women presented with various gynecological complaints to the outpatient
126 clinic from January 2008 – December 2010. Eighty six women were excluded: 30 of these
127 women had a diagnosis other than cervical cancer such as cervicitis or a cervical polyp but their
128 remaining data was insufficient to analyze; the remaining 56 women were excluded due to an
129 uninterpretable or equivocal biopsy. This left 154 cases to be analyzed and their subjective and
130 objective clinical data is summarized in Tables 1 - 3.

131

132 **Table 1. Selected demographic and clinical features of 154 cervical cancer cases at the**
133 **Jimma University Teaching Hospital, Ethiopia from January 2008 – December 2010.**

Variable	Mean	Standard Deviation	Number Missing
Age	45.19	11.17	1 (0.6%)
Parity	6.27 (median = 6)	2.505 (IQR = 3)	3 (1.94%)

Lifetime number of sexual partners	2.909 (median = 1)	6.53 (IQR = 1)	0 (0%)
Age (in years) at first intercourse	15.83	2.08	16 (10.38%)
Age (in years) at first pregnancy	17.88	2.38	13 (8.44%)
Time (in months) of irregular vaginal bleeding	5.78 (median = 3)	8.10 (IQR = 5.42)	27 (17.53%)
Time (in months) of Post-Coital Bleeding	6.15 (median = 4)	5.56 (IQR = 7.62)	96 (62.33%)
Time (in months) of Vaginal Discharge	5.27 (median = 3)	5.18 (IQR = 5)	61 (39.61%)
Time (in months) of Pelvic Pain	4.96 (median = 3)	5.63 (IQR = 5)	69 (44.805%)

134 IQR: Interquartile range

135

136 **Table 2. Selected non-quantifiable demographic and clinical features of 154 cervical cancer**
 137 **cases at the Jimma University Teaching Hospital, Ethiopia from January 2008 – December**
 138 **2010.**

Category	N (%)	Missing (%)
Ethnicity		1 (0.6%)
Oromo	105 (68.6%)	

Amhara	20 (13.07%)	
Other ^a	28 (18.3%)	
Religion		4 (2.59%)
Muslim	101 (67.33%)	
Orthodox	41 (27.33%)	
Protestant	8 (5.33%)	
Marital Status		6 (3.89%)
Married	107 (72.29%)	
Widowed	22 (14.86%)	
Divorced	16 (10.81%)	
Single	3 (2.02%)	
Smoking		1 (0.6%)
No	151 (96.69%)	
Yes	2 (1.3%)	
Contraception ^b		4 (2.59%)
No	115 (76.66%)	
Yes	35 (23.33%)	
HIV Status (self-reported)		108 (72%)
Negative	42 (91.3%)	
Positive	4 (8.69%)	
Heard of Cervical Cancer		3 (1.94%)
No	144 (95.36%)	
Yes ^c	7 (4.63%)	

Partner Circumsized?		24 (15.58%)
Yes	120 (92.3%)	
No	10 (7.69%)	
Illiterate		
Yes	133 (86.4%)	
No	21 (13.6%)	
Lived in Rural Location		
Yes	95 (62%)	
No	59 (38%)	

139 ^aOther ethnicities included Shekicho, Gurage, Kulo, Yem, Kefa, Dawro, and Bench.

140 ^bAmongst those that admitted to using contraception, none practiced barrier contraception- only
141 oral contraceptive pills or injectable contraceptives were used.

142 ^cOut of those that have heard of cervical cancer, all denied knowing the cause of it.

143

144 **Table 3. Selected objective clinical features of 154 cervical cancer cases at the Jimma
145 University Teaching Hospital, Ethiopia from January 2008 – December 2010.**

Category	N (%)	Missing (%)
Cervical Lesion Appearance on Pelvic Exam		3 (1.94%)
Fungating	90 (59.6%)	
Diffuse/Infiltrating	33 (21.85%)	
Ulcerating	22 (14.56%)	
Polyp	6 (3.97%)	

Stage		4 (2.59%)
I	12 (8%)	
IIA	32 (21.33%)	
IIB	47 (31.33%)	
IIIA	33 (22%)	
IIIB	18 (12%)	
IVA	6 (4%)	
IVB	2 (1.33%)	
Cervical Carcinoma Subtype		0 (0%)
Keratinizing Squamous Cell Carcinoma	79 (51.29%)	
Large Cell Non-Keratinizing Squamous Cell Carcinoma	59 (38.31%)	
Small Cell Carcinoma	9 (5.84%)	
Adenocarcinoma	4 (2.59%)	
Basaloid Squamous Cell Carcinoma	2 (1.298%)	
Adenosquamous Carcinoma	1 (0.649%)	

146

147

148 **Discussion**

149 **Demographic and clinical features**

150 Cervical cancer is a unique cancer in that effective screening methods are known to
151 prevent disease and associated mortality. Knowledge about the disease and preventive options
152 are vital to effectively control the disease; however, we highlight in the current study that there is
153 a considerable lack of knowledge and awareness regarding cervical cancer which is the second
154 most common cause of cancer deaths in Ethiopia.

155 Knowledge about cervical cancer in Ethiopia has been reported to range from 21.2% to
156 53.7% [6-9], and Aweke et. Al described that 34.8% (n=583) of survey respondents in Southern
157 Ethiopia had a negative attitude pertaining to cervical cancer [7]. In our study a majority 144
158 women (95.36%) had not heard of cervical cancer compared to 138 out of 633 women (21.8%)
159 who had not heard of it in a study done in Gondar town, northwest Ethiopia in 2010 [6]. In that
160 cross-sectional survey, the literacy rate was 18.8%, whereas the rate was 86.4% in our current
161 study. Moreover, a majority of our study participants lived in rural areas (62%) where access to
162 television/radio and health professionals is limited- these were noted as the two most common
163 sources for hearing about cervical cancer in the aforementioned study. The lack of knowledge
164 regarding cervical cancer is of note since preventative efforts such as screening have been shown
165 to reduce the risk of cervical cancer compared to no screening [10]; furthermore, a single-visit
166 approach for cervical cancer screening in Ethiopia was described by Addis Tesfa in 2010 where
167 visual inspection of the cervix with acetic acid wash (VIA) with subsequent cryotherapy of
168 premalignant lesions was performed. One VIA at age 35 can reduce a woman's lifetime risk of
169 cervical cancer by 25% and if screened again at age 40 by 65% [11].

170 Cervical cancer educational strategies have been shown to improve screening in studies
171 which targeted rural populations of sub-Saharan Africa [12-14]. Erku et al. describe that the odds
172 of undergoing cervical cancer screening among women who had a comprehensive knowledge on

173 cervical cancer and screening were 2.02 times higher than those who did not in a northwest
174 Ethiopian population [8]. In this study, a majority (87.7%) of the respondents had heard of
175 cervical cancer. This is likely an overestimate since this study included a population of women
176 living with HIV/acquired immunodeficiency syndrome (AIDS) which may have an increased
177 level of awareness with more frequent healthcare visits.

178 In Ethiopia, currently there are approximately 25 cervical cancer screening centers that
179 are providing visual inspection with acetic acid (VIA), however there is low participation in the
180 community which is partly attributed to the lack of awareness regarding this disease [15].

181 Geremew et al describe that college and above educational status, knowing someone with
182 cervical cancer, and having knowledge of cervical cancer were positively associated with
183 favorable attitudes towards cervical cancer screening [16]; in the current study, a majority of the
184 patients were illiterate and had decreased knowledge regarding cervical cancer which may
185 explain the lack of screening in our specific population. The National Cancer Control Plan of
186 Ethiopia headed by the Federal Ministry of Health Ethiopia plans a nation-wide scale up of the
187 screening and treatment of cervical pre-cancerous lesions into over 800 health facilities [17]. The
188 mean age at diagnosis of cervical cancer in the United States has been shown to be 48 years and
189 in our study from Ethiopia it was 45 years [18]. Our study differs in that there is no data on prior
190 screening which may have decreased the age at diagnosis and if so, could be attributed to a
191 possible faster progression from HPV to cervical cancer secondary to HIV co-infection or other
192 synergistic risk factors, particularly in the absence of a cervical cancer screening program.

193 Established risk factors for most cervical cancer include: early onset of sexual activity, multiple
194 sexual partners immunosuppression, increasing parity, low socioeconomic status and oral
195 contraceptive use [5].

196 A qualitative study of 198 patients with cervical cancer from Tikur Anbessa Hospital in
197 Addis Ababa, Ethiopia in 2013 [19] is compared to our study at JUTH in Table 4. The mean age
198 at first sexual intercourse in southwestern Ethiopia has previously been shown to be 17.07 years
199 (+/- 2.12) in a group of 405 young women where cervical lesions were not studied [20]. Our data
200 of cervical cancer cases shows the mean age at first sexual intercourse to be 15.83 years (+/-
201 2.08) and the mean age from the Tikbur Anbessa study is 16.5 years which may be explained by
202 the cultural practice of marriage at a younger age in these selected populations.

203

204 **Table 4. Comparison of data pertinent to selected risk factors for cervical cancer from**
205 **Jimma University Teaching Hospital in southwestern Ethiopia (January 2008 – December**
206 **2010) and Tikbur Anbessa Hospital in Addis Ababa, Ethiopia (April 2013) [19] from**
207 **women with a diagnosis of cervical cancer to that of representative women in Ethiopia**
208 **(where cervical lesions were not necessarily studied).**

Variable	Jimma University Teaching Hospital	Tikur Anbessa Hospital	Ethiopia (cervical lesions not studied)
Mean age (in years) at first sexual intercourse	15.83	16.5	17.07
Mean number of sexual partners	2.9	1.6 ^a	1.4
Parity	6.27	5.3	4.8

209 ^a(Out of 198 respondents, 52.3% responded 1, 33% responded 2 and 29% responded 3 or more).

210

211

212 Prior studies found that the mean number of sexual partners in Ethiopia for women is
213 approximately 1.5 (cervical lesions not specified) compared to our study which is 2.9 [21-22]
214 and an increased number of sexual partners raises the probability of becoming infected with
215 HPV. The total fertility rate is estimated to be 4.8 children per woman in Ethiopia (cervical
216 lesions not specified) compared to our study which is 6.27 per woman. The proposed mechanism
217 for higher parity as a risk factor for cervical cancer include increased estrogen exposure during
218 pregnancy, persistence of the transformation zone on the ectocervix in multiparous women, and
219 cervical tissue damage during vaginal deliveries [22].

220 Hormonal steroids (such as those in oral contraceptive pills) have been shown to activate
221 enhancer elements in the upstream regulatory region of the HPV type 16 viral genome which is
222 one proposed mechanism for the increased risk of cervical cancer [23]. Out of the 35 women
223 (23.33%) in our study used contraception, none practiced barrier contraception. The majority of
224 these 35 women (80%) used oral contraceptive pills which have been shown to increase the
225 cumulative incidence of invasive cervical cancer by age 50 from 7.3 to 8.3 per 1000 in
226 developing countries [24].

227 This study took place during the rapid expansion phase of HIV/AIDS services in Ethiopia
228 where the number of patients on antiretroviral therapy (ART) increased from 900 at the
229 beginning of 2005 to over 150,000 by June 2008 [25]. Despite this increase in ART use, the
230 frequency of cervical cancer cases in Ethiopia has increased from 2005 until present, with a
231 yearly increment from 1997-2012 except in 1999 and 2009 [26]. This increase may, however, be
232 attributed to increased awareness, screening and subsequent diagnosis. In our study, a majority of
233 women presented at stage IIB followed by stage IIIA at the time of diagnosis and the general

234 trends in Ethiopia at that time remained at presenting at stage IIIB being the most frequent, and
235 secondly stage IIB (Table 5).

236

237 **Table 5. Clinical stages of cervical carcinoma cases.**

Clinical Stage	N (%)
I	12 (8%)
IIA	32 (21.33%)
IIB	47 (31.33%)
IIIA	33 (22%)
IIIB	18 (12%)
IVA	6 (4%)
IVB	2 (1.33%)

238

239 **Histopathologic classification**

240 The majority of cervical cancers in the United States are squamous cell carcinoma (69%)
241 followed by adenocarcinoma (25%) [27]. Histopathologic subtype classification in a study of
242 598 cervical cancer cases in Nigeria and 2,930 cervical cancer cases in South Africa
243 demonstrated squamous cell carcinoma as the most common type as was shown in 92.3% and
244 greater than 80% of cases, respectively [28-29]. In the United States, other non-squamous
245 cervical cancers have been observed in the following frequencies: adenosquamous carcinomas
246 represent 20%-30% of all adenocarcinomas of the cervix and small cell carcinomas represent
247 0.5%-5% of all invasive cervical cancers. In our study, approximately 91% of the cervical cancer
248 cases were squamous cell carcinomas (including keratinizing, non-keratinizing and basaloid

249 subtypes), 5.84% were small cell carcinomas, 2.59% were adenocarcinomas, and 0.64% were
250 adenosquamous carcinomas. The squamous cell carcinoma frequency was similar to that
251 observed in prior studies; however, an increased frequency of small cell carcinomas over
252 adenocarcinomas was also noted in our study. It has been shown that the keratinizing squamous
253 cell carcinoma subtype is associated with a higher likelihood of advanced stage disease and a
254 lower overall 5-year survival [30] and in our study we observed a 51.29% frequency of this
255 subtype.

256 The HPV-18 genotype is more commonly associated with adenocarcinomas and small
257 cell carcinomas of the cervix; however, the cases in this study were not subtyped. Few studies
258 describing the high-risk HPV genotypes have been performed in Ethiopia out of which one study
259 of 98 women with cervical dysplasia in Jimma showed that HPV-18 was detected in 8.2% of the
260 67.1% of HPV DNA positive samples [31]. Based on other studies, HPV type 18 is detected in
261 18.2% of cervical cancer cases in Ethiopia [32].

262 A population based study from 1988-2004 of 6,853 women with squamous cell
263 carcinoma found that keratinizing squamous cell carcinoma of the cervix may be less
264 radiosensitive and associated with shorter overall survival than non-keratinizing squamous cell
265 carcinoma [30]. In our study, a majority of women presented with locally advanced cervical
266 cancer (89.6%, Table 1), whereas approximately 54.9-58.8% of patients were diagnosed at a late
267 stage in a California database from the United States [33], as a means of comparison to a high-
268 income country with an established screening program in place. We believe the majority of
269 women in our study presented with locally advanced lesions not entirely due to an intrinsic
270 pathogenetic difference, but because of lack of a cervical screening program in Ethiopia,

271 decreased knowledge about cervical cancer, inability to attend health clinics due to cost and
272 travel expenditure, and increased exposure to risk factors.

273

274 **Limitations, future directions and recommendations**

275 Our study did not perform laboratory confirmation of HPV or HIV infection, or test for
276 co-infections with other sexually transmitted infections. Recall bias may have affected the
277 demographic data since it was procured by a survey. Future directions include measuring
278 survival outcomes after intervention for cervical cancer and studying the effectiveness of cervical
279 cancer screening after education. Based on our data, in this specific population of Ethiopian
280 women we recommend promoting an educational initiative about cervical cancer among
281 Ethiopian women given that improved knowledge regarding the disease has been shown to
282 increase screening and decrease cervical cancer rates.

283

284 **Conclusions**

285 Most of the 154 women with cervical cancer studied at the JUTH in southwestern
286 Ethiopia were illiterate, had not heard of cervical cancer, had advanced disease at the time of
287 diagnosis and had histopathologically confirmed squamous cell carcinomas. The low rates of
288 literacy and knowledge regarding cervical cancer in this population were also associated with
289 lower screening rates. Future interventions to address the cervical cancer burden in Ethiopia
290 should include an effective educational component which has been shown to increase screening
291 rates and ultimately decrease the cervical cancer incidence.

292

293 Acknowledgements

294 We would like to acknowledge the Jimma University Teaching Hospital and the Global
295 Physicians Corps for their financial and technical support in this study, and to the Touro
296 University California Institutional Review Board in the United States of America, the Research
297 and Publication Committee of the Faculty of Medical Sciences at Jimma University, the Jimma
298 University Ethics Review Committee and the Jimma University Teaching Hospital Departments
299 of Obstetrics and Gynecology and Medical Laboratory Sciences and Pathology in Ethiopia for
300 their approval and permission to perform this study. We would also like to acknowledge all of
301 the physicians/trainees/staff who assisted in data collection and to all of the study participants
302 who provided this vital data in an overall effort to study and reduce the morbidity/mortality
303 attributed to cervical cancer.

304

305 References

- 306 1. Jimma University Specialized Hospital: Historical Background:
307 <https://www.ju.edu.et/jimma-university-specialized-hospital-jush>. Cited 20 March 2019.
- 308 2. Oxford Poverty and Human Development Initiative (OPHI) www.ophi.org.uk. Oxford
309 Department of International Development. Queen Elizabeth House, University of Oxford.
310 OPHI Country Briefing 2017: Ethiopia. Global Multidimensional Poverty Index (MPI).
- 311 3. Adugna A. Oromiya: Demography and Health; 2017 [cited 2019 March 5]. Available from:
312 <http://www.ethiodemographyandhealth.org/Oromia.html>.
- 313 4. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human
314 papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol.
315 1999;189(1):12-9.
- 316 5. International Collaboration of Epidemiological Studies of Cervical Cancer. Comparison of
317 risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix:
318 collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma
319 and 1,374 women with adenocarcinoma from 12 epidemiological studies. Int J Cancer.
320 2007;120(4):885-91.

321 6. Getahun F, Mazengia F, Abuhay M, Birhanu Z. Comprehensive knowledge about cervical
322 cancer is low among women in Northwest Ethiopia. *BMC cancer*. 2013 Dec;13(1):2.

323 7. Aweke YH, Ayanto SY, Ersado TL. Knowledge, attitude and practice for cervical cancer
324 prevention and control among women of childbearing age in Hossana Town Hadiya zone,
325 Southern Ethiopia: Community-based cross-sectional study. *PLoS One*. 2017 Jul
326 25;12(7):e0181415.

327 8. Erku DA, Netere AK, Mersha AG, Abebe SA, Mekuria AB, Belachew SA. Comprehensive
328 knowledge and uptake of cervical cancer screening is low among women living with
329 HIV/AIDS in Northwest Ethiopia. *Gynecol Oncol Res Pract*. 2017 Dec 19;4:20.

330 9. Mitiku I, Tefera F. Knowledge about cervical cancer and associated factors among 15-49
331 year old women in Dessie Town, Northeast Ethiopia. *PLoS One*. 2016 Sep
332 30;11(9):e0163136.

333 10. Peirson L, Fitzpatrick-Lewis D, Ciliska D, Warren R. Screening for cervical cancer: a
334 systematic review and meta-analysis. *Systematic reviews*. 2013 Dec;2(1):35.

335 11. Tesfa A. Combating cervical cancer in Ethiopia. *Pathfinder International/Ethiopia*, 2010.

336 12. Abiodun OA, Olu-Abiodun OO, Sotunsa JO, Oluwole FA. Impact of health education
337 intervention on knowledge and perception of cervical cancer and cervical screening uptake
338 among adult women in rural communities in Nigeria. *BMC public health*. 2014
339 Dec;14(1):814.

340 13. Chigbu CO, Onyebuchi AK, Onyeka TC, Odugu BU, Dim CC. The impact of community
341 health educators on uptake of cervical and breast cancer prevention services in Nigeria.
342 *International Journal of Gynecology & Obstetrics*. 2017 Jun 1;137(3):319-24.

343 14. Johnson LG, Armstrong A, Joyce CM, Teitelman AM, Buttenheim AM. Implementation
344 strategies to improve cervical cancer prevention in sub-Saharan Africa: a systematic review.
345 *Implementation Science*. 2018 Dec;13(1):28.

346 15. Teame H, Addissie A, Ayele W, Hirpa S, Gebremariam A, Gebreheat G, et al. Factors
347 associated with cervical precancerous lesions among women screened for cervical cancer in
348 Addis Ababa, Ethiopia: A case control study. *PloS one*. 2018 Jan 19;13(1):e0191506.

349 16. Geremew AB, Gelagay AA, Azale T. Comprehensive knowledge on cervical cancer, attitude
350 towards its screening and associated factors among women aged 30–49 years in Finote Selam
351 town, northwest Ethiopia. *Reproductive health*. 2018 Dec;15(1):29.

352 17. Federal Ministry of Health Ethiopia. *National Cancer Control Plan 2015/2016-2019/2020*.
353 Addis Ababa, Ethiopia: Federal Ministry of Health; 2015.

354 18. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics,
355 2012. *CA: a cancer journal for clinicians*. 2015 Mar;65(2):87-108.

356 19. Tadesse SK. Socio-economic and cultural vulnerabilities to cervical cancer and challenges
357 faced by patients attending care at Tikur Anbessa Hospital: a cross sectional and qualitative
358 study. *BMC women's health*. 2015 Dec;15(1):75.

359 20. Tilahun M, Ayele G. Factors associated with age at first sexual initiation among youths in
360 Gamo Gofa, south west Ethiopia: a cross sectional study. *BMC Public Health*. 2013
361 Dec;13(1):622.

362 21. CSA-Ethiopia IC. International: Ethiopia Demographic and Health Survey 2011. 2012.
363 Maryland, USA: Central Statistical Agency of Ethiopia and ICF International Addis Ababa,
364 Ethiopia and Calverton. 2011.

365 22. Jensen KE, Schmiedel S, Norrild B, Frederiksen K, Iftner T, Kjaer SK. Parity as a cofactor
366 for high-grade cervical disease among women with persistent human papillomavirus
367 infection: a 13-year follow-up. *British journal of cancer*. 2013 Jan;108(1):234.

368 23. Moodley M, Moodley J, Chetty R, Herrington CS. The role of steroid contraceptive
369 hormones in the pathogenesis of invasive cervical cancer: a review. *International Journal of*
370 *Gynecological Cancer*. 2003 Mar;13(2):103-10.

371 24. International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical cancer
372 and hormonal contraceptives: collaborative reanalysis of individual data for 16 573 women
373 with cervical cancer and 35 509 women without cervical cancer from 24 epidemiological
374 studies. *The Lancet*. 2007 Nov 10;370(9599):1609-21.

375 25. Assefa Y, Jerene D, Lulseged S, Ooms G, Van Damme W. Rapid scale-up of antiretroviral
376 treatment in Ethiopia: successes and system-wide effects. *PLoS medicine*. 2009 Apr
377 28;6(4):e1000056.

378 26. Abate SM. Trends of cervical cancer in Ethiopia. *Gynecol Obstet (Sunnyvale)*.
379 2015;5(103):2161-0932.

380 27. Rates RS. SEER cancer statistics review 1975-2004.

381 28. Olu-Eddo AN, Ekanem VJ, Umannah I, Onakevhor J. A 20 year histopathological study of
382 cancer of the cervix in Nigerians. *Nigerian quarterly journal of hospital medicine*.
383 2011;21(2):149-53.

384 29. Moodley M, Moodley K. Trends of histopathology of cervical cancer among women in
385 Durban, South Africa. *European journal of gynaecological oncology*. 2009;30(2):145-50.

386 30. Kumar S, Shah JP, Bryant CS, Imudia AN, Ali-Fehmi R, Malone JM Jr, et al. Prognostic
387 significance of keratinization in squamous cell cancer of uterine cervix: a population based
388 study. *Arch Gynecol Obstet*. 2009 Jul;280(1):25-32.

389 31. Bekele A, Baay M, Mekonnen Z, Suleman S, Chatterjee S. Human papillomavirus type
390 distribution among women with cervical pathology—a study over 4 years at Jimma Hospital,
391 southwest Ethiopia. *Tropical Medicine & International Health*. 2010 Aug;15(8):890-3.

392 32. Bruni L, Barrionuevo-Rosas L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, Bosch
393 FX, de Sanjosé S. ICO Information Centre on HPV and Cancer (HPV Information Centre).
394 Human Papillomavirus and Related Diseases in the World. Summary Report 7 October 2016.

395 33. Maguire FB, Chen Y, Morris CR, Parikh-Patel A, Kizer KW. Heat Maps: Trends in Late
396 Stage Diagnoses of Screenable Cancers in California Counties, 1988-2013. Sacramento, CA:
397 California Cancer Reporting and Epidemiologic Surveillance Program, Institute for
398 Population Health Improvement, University of California Davis, June 2016.