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Abstract

Specific insoluble protein aggregates are the hallmarks of many neurodegenerative
diseases’™. For example, cytoplasmic aggregates of the RNA-binding protein TDP-43
are observed in 97% of cases of Amyotrophic Lateral Sclerosis (ALS)*’. However, it is
still unclear for ALS and other diseases whether it is the insoluble aggregates or other
forms of the mutated proteins that cause these diseases that are actually toxic to cells®
13 Here we address this question for TDP-43 by systematically mutating™* the protein and
guantifying the effects on cellular toxicity. We generated >50,000 mutations in the
intrinsically disordered prion-like domain (PRD) and observed that changes in
hydrophobicity and aggregation potential are highly predictive of changes in toxicity.
Surprisingly, however, increased hydrophobicity and cytoplasmic aggregation actually
reduce cellular toxicity. Mutations have their strongest effects in a central region of the
PRD, with variants that increase toxicity promoting the formation of more dynamic liquid-
like condensates. The genetic interactions in double mutants reveal that specific
structures exist in this ‘unstructured’ region in vivo. Our results demonstrate that deep
mutagenesis is a powerful approach for probing the sequence-function relationships of
intrinsically disordered proteins as well as their in vivo structural conformations.
Moreover, we show that aggregation of TDP-43 is not harmful but actually protects cells,

most likely by titrating the protein away from a toxic liquid-like phase.
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Main text

The conversion of specific proteins into insoluble aggregates is a hallmark of many
neurodegenerative disorders, including Alzheimer’s, Parkinson’s, Huntington's, and
Amyotrophic Lateral Sclerosis (ALS) with dominantly inherited mutations in aggregate-
forming proteins causing rare familial forms of these diseases®*®'°. However, both in
humans and in animal models, there is often only a weak association between the

1617 " Indeed, many therapeutic

presence of aggregates and disease progression
approaches that reduce the formation of aggregates have failed at different stages of
development'®*®!° On the other hand, there is increasing evidence that alternative
protein assemblies generated during or in parallel to the aggregation process, may be
toxic®*?°, Despite evidence that cellular damage may be induced either before, after or
independent of the formation of insoluble aggregates, the latter are still widely assumed

to be pathogenic in many neurodegenerative diseases* .

For many proteins, aggregation depends critically on intrinsically disordered regions with
a low sequence complexity resembling that of infectious yeast prions. These prion-like
domains (PRDs) are also enriched in proteins that can form liquid-like cellular

23-25 \ith the PRDs necessary and sufficient for liquid-demixing®®%’. At least

condensates
in vitro, insoluble aggregates can nucleate from more liquid phases®~*°, leading to the
suggestion that liquid de-mixed states can mature into pathological aggregates®.
Disordered regions® and low complexity sequences® are also enriched in dosage-
sensitive proteins — those that are toxic when their concentration is increased. At least for
one model protein that has been tested, however, it is the formation of a concentration-
dependent liquid-like phase — not aggregation — that causes cellular toxicity**. Similarly,
the toxicity of two mutant forms of the prion Sup35 could be explained only on the basis

of their ability to populate a non-aggregate, liquid-like state®%,

Cytoplasmic aggregates of the RNA-binding protein TDP-43 are a hallmark of ALS,
present in 97% of post-mortem samples®’. TDP-43 aggregates are also present at
autopsy in nearly all cases of frontotemporal dementia (FTD) that lack tau-containing
inclusions (about half of all cases of FTD which is the second most common
dementia)®. TDP-43 aggregates are also a hallmark of inclusion body myopathy and a
secondary pathology in Alzheimer's, Parkinson’s, and Huntington’s disease®°.
However, TDP-43 aggregates are also observed — albeit at low frequency — in control
samples®® and, in vitro, TDP-43 can form both amyloid aggregates and liquid

17,42

condensates® . Mutations in TDP-43 cause ~5% of familial ALS cases’*?, with these
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mutations clustered in the PRD and reported to interfere with nuclear-cytoplasmic

16,43-48

transport, RNA processing, splicing, and protein translation However, despite

extensive investigation, the molecular form of the protein that causes cellular toxicity is

still unknown49,

We reasoned that systematic (‘deep’) mutagenesis could be an unbiased approach to
identify and investigate the toxic species of proteins*****'. A map of which amino acid
changes increase or decrease the toxicity of a protein to a cell should, if sufficiently
comprehensive, clarify both the properties of the protein and its in vivo structural
conformations associated with toxicity®?. The effects of a small number of mutations on
TDP-43 toxicity or aggregation have been previously reported'®®"***¢ However, on the
basis of a handful of mutations, the relationship between aggregation and toxicity is far

from clear.

We used error-prone oligonucleotide synthesis to comprehensively mutate the PRD of
TDP-43. We introduced the library into yeast cells, induced expression and used deep
sequencing before and after induction to quantify the relative effects of each variant on
growth in three biological replicates (Fig. 1a). After quality control and filtering (ED Fig.
la-c), the dataset quantifies the relative toxicity of 1,266 single and 56,730 double amino
acid (AA) changes in the PRD with high reproducibility (Fig. 1b, ED Fig. 1d,e). The
toxicity scores also correlate very well with the toxicity of the same variants re-tested in

the absence of competition (Fig. 1c).

The toxicity of both single and double mutants had a tri-modal distribution (Fig. 1d, ED
Fig. 2a-c), with 18,023 variants more toxic and 16,152 variants less toxic than wild-type
(WT) TDP-43 (t-test false discovery rate, FDR=0.05). The dataset therefore allows us to
investigate how mutations both increase and decrease toxicity. Very interestingly, all
recurrent familial ALS (fALS) TDP-43 mutations increase toxicity, with a strong bias
towards moderate effects (t-test p-value = 0.016) (ED Fig. 2d).

Plotting the mean toxicity of all mutations at each position in the sequence reveals a 31
AA hotspot (312-342) where the effects of mutations are strongest (Fig. 1e). The
variance in toxicity per position is also the highest within this hotspot, with mutations both
strongly increasing and decreasing toxicity (Fig. 1e). A heatmap of the toxicity of all of the
single mutations also clearly reveals this hotspot, with most mutations of strong positive
or negative effect falling within this 31 AA window (Fig. 1f). Equally strikingly, mutations

to the same AA but in different positions within the hotspot often have very similar effects
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(Fig. 1f). In particular, mutations to charged and polar residues increase toxicity

throughout the hotspot and mutations to hydrophobic amino acids decrease toxicity (Fig.

1).

To more systematically identify features associated with changes in toxicity we made use
of all 53,468 variants carrying one or two AA substitutions. We used principal
components analysis (PCA) to reduce the redundancy in a list of over 350 AA
physicochemical properties (ED Fig. 3) and linear regression to quantify how well
changes in these physicochemical properties predict changes in the toxicity of TDP-43. A
principal component very strongly related to hydrophobicity is the most predictive feature
of toxicity, explaining 66% of the variance in toxicity of all 8,040 mutants within the 312-
342 hotspot and 51% of the variance in toxicity of all genotypes (Fig. 2a). With the same
approach we tested the performance of established predictors of protein aggregation,
intrinsic disorder and other properties. None of them are as predictive as hydrophobicity
(Fig. 2b, c). Importantly, after controlling for hydrophobicity, additional features such as
charge and aromaticity do not predict toxicity (Fig. 2d, e, ED Fig. 4a) with aggregation
potential accounting for an additional 4% of variance in the hotspot (Fig. 2f, ).

That increased hydrophobicity and aggregation potential are strongly associated with
reduced toxicity across >50,000 genotypes was unexpected given previous work that
reported an increased number of intracellular aggregates for a set of TDP-43 variants
toxic to yeast®® and the widely-held view that aggregation is harmful to cells**>**". We
therefore further investigated the effects of mutants that alter the hydrophobicity and
toxicity of TDP-43.

WT TDP-43 localizes to both the nucleus and to the cytoplasm of yeast cells®>*° (Fig.
3a). In the nucleus, TDP-43 is diffuse, but in the cytoplasm it forms puncta, consistent
with previous observations***®, We observed that cytoplasmic WT TDP-43 forms two
types of assemblies: small foci in the nuclear periphery and larger foci detached from the
nucleus (Fig. 3a-c). We found that mutations that decrease TDP-43 hydrophobicity and
increase TDP-43 toxicity increase the number of the small foci at the nuclear periphery
and reduce the number of large distal foci (Fig. 3b, c, f, ED Fig. 5a). In contrast,
mutations that increase hydrophobicity and reduce toxicity reduce the number of small
nucleus-associated foci and increase the number of large distal foci (Fig. 3b, c, f, ED Fig.
5a).
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We used fluorescence recovery after photobleaching (FRAP) to characterize the
dynamics of TDP-43 variants in the different foci. The large cytoplasmic foci formed by
non-toxic variants show little exchange of TDP-43 molecules with the soluble cytoplasmic
pool. In contrast, the small foci localized at the nuclear periphery can exchange more
protein with the cytoplasm, consistent with a more liquid-like state (Fig. 3d, €). Such
differences in dynamics have been previously described for distinct types of misfolded
protein compartments®. The large immobile TDP-43 foci are also brighter than the small
dynamic ones (Fig. 3g), similar to what has been observed for Huntingtin variants that
partition between immobile bright assemblies and liquid-like dimmer ones®. The non-
toxic TDP-43 variants also had a higher protein concentration quantified by Western
blotting (ED Fig. 5b).

Taken together, these results suggest that mutations that increase the hydrophobicity of
TDP-43 result in a re-localization of the protein away from small and dynamic, liquid-like
foci at the nuclear periphery to large and more solid aggregates in the cytoplasm. A

reduction in hydrophobicity has the opposite effect.

The hotspot region of the TDP-43 PRD (AA 312-342) contains a conserved region®’*®,
with hydrophobicity more similar to the globular domains of TDP-43 than to the
surrounding hydrophilic disordered regions (Fig. 4b). The hotspot is contained within a
region (311-360) that was previously shown to be sufficient for both in vitro aggregation
and the formation of cytoplasmic foci*’. Fragments from within this region have previously
been shown to have the potential to form different types of secondary structures in vitro.
More specifically, nuclear magnetic resonance (NMR) spectroscopy of the PRD revealed

37,38,49 and

that residues 321-342 can adopt an @-helical structure in certain conditions
four different 6-11 AA peptides from the region could form cross-B amyloid or amyloid-
like fibrils whose structures were determined by X-ray crystallography®. However, it is

unknown whether any of these structures exist in vivo for full length TDP-43.

We have shown recently that the pattern of genetic (epistatic) interactions between
mutations in a protein can determine the structure of that molecule when it is performing
the function that is being selected for®%. In particular, when a sequence forms an &-helix,
the side chains of residues separated by 3-4 AA are close in space and similarly oriented
so that mutations in these AA interact similarly with mutations in the rest of the protein.
In contrast, in a B-strand, the side chains of residues separated by 2 AA are close and

similarly oriented and so make similar genetic interactions with other mutations (Fig. 4a).
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We used 52,272 double mutants (excluding STOP codon variants) in our dataset to
identify pairs of mutations that genetically interact. We first identified pairs of mutations
that had unexpectedly high or low toxicity (<5" and >95" percentile of the expected
toxicity distribution, negative and positive epistasis for growth rate, respectively). We then
guantified the similarity of epistasis enrichment profiles between pairs of positions and
compared these patterns to those expected for B-helices and [-strands, scoring

significance by randomisation® (Fig. 4a).

This revealed that the patterns of epistasis in our dataset are consistent with two
secondary structure elements forming inside the PRD in vivo: a B-strand at residues 311-
316 and an @-helix at residues 324-331 (Fig. 4c). The B-strand identified by the epistasis
analysis coincides with one of the peptides in the TDP-43 PRD that, in vitro, can form
cross-B structures®® typical of protein aggregates (Fig. 4d). The crystals of this specific
peptide consist of a non-conventional B-strand termed a low-complexity aromatic-rich
kinked segment (LARKS)®. In this in vitro structure, Phe 313 and Phe 316 face the same
side of the sheet, whereas in a canonical sheet the side chains of odd and even residues
face opposite sides. Strikingly, this non-canonical contact between Phe 313 and Phe
316 is also identified by the in vivo epistasis analysis, with a similarity in interaction profile
ranking amongst the top two residue pairs in this region. In addition, the contact between
Phe 316 and Ala 315, which again is compatible with a LARKS but not with a canonical
B-strand, has the highest predicted contact score among neighboring residues (Fig. 4d).
The predicted contact map built on the basis of in vivo epistatic interactions strikingly
matches the PDB structure for LARKS 312-317 (Fig. 4d, ED Fig. 6).

On the other hand, the genetic interactions of mutations in the 324-330 region match
those expected for an @-helix (Fig. 4e). This region is part of the portion (321-342) of
TDP-43 that can transiently and cooperatively fold into a B-helix in vitro®*®**®2, This helix
is stabilized by inter-molecular contacts and its self-interaction was proposed to seed
liquid-demixing in vitro. Amyloid fibrils can grow from the liquid de-mixed state and
circular dichroism spectroscopy revealed that the helix transitions to a B-sheet over time,
compatible with the process of aggregation®’®2. On the basis of epistasis, the top scoring
predicted contacts in this region are between residues separated by 3-4 AA such as Ala
324 and Ala 328, or Ala 325 and Ala 328, consistent with interactions between side

chains of an B-helix (Fig. 4e).

The pattern of in vivo epistatic interactions between mutations in TDP-43 therefore is

compatible with a model in which two of the secondary structures that have previously
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been observed in vitro for fragments of TDP-43 actually form in vivo in the full-length
protein. This indicates that the ‘unstructured’” PRD of TDP-43 is at least partially
structured in vivo. A parsimonious model based on previous in vitro work®’ is that the
helix forms first in the pathway of aggregation towards a B-rich species (Fig. 4Q).
Consistent with this, destabilizing mutations, such as any substitution of Phe 313 and
Phe 316 in the LARKS, or the introduction of proline into the 324-330 helix, increase
toxicity (Fig. 1f).

Taken together, by quantifying the effects of >50,000 mutants of TDP-43, we have
found that aggregation of TDP-43 is actually protective to yeast cells. We propose that
this is because aggregation titrates TDP-43 away from a toxic liquid-like phase at the
nuclear periphery (Fig. 4f). Liquid de-mixed TDP-43 was recently shown to recruit the
nuclear pore component Nup62 and the importin-BI transporter, resulting in nuclear
transport impairment®. That TDP-43 aggregates are protective rather than toxic is
consistent with previous work, including the rescue of toxicity by the accumulation of

RNA lariats that sequester TDP-43 into large aggregates®.

Mutations in TPD-43 had their strongest effects on toxicity within a hydrophobic region
where the patterns of genetic interactions are consistent with the in vivo formation of
two structural elements that have been shown to be important for the phase separation

and aggregation of fragments of TDP-43 in vitro®®49 %3 62,

More generally, our results show that deep mutagenesis is a powerful approach for
determining the sequence-function relationships of intrinsically disordered proteins,
including their in vivo structural conformations. The conformations of ‘unstructured’
proteins are notoriously difficult to study and the interactions between mutations in
double mutants provide a general method to probe the in vivo structures of these
proteins whenever a selection assay is available. We envisage that this approach can
be adopted to study the functions, toxicity, and in vivo structures of other intrinsically
disordered proteins, including the many other proteins implicated in neurodegenerative

diseases.

Our conclusions derived from deep mutagenesis of TDP-43 are also consistent with

observations for other ALS genes, including the reduced toxicity of SOD-1 variants that

11,64

increase aggregation They are also consistent with the increasing evidence that

insoluble aggregates are not pathogenic in multiple other neurodegenerative

4,65,66

diseases , and with the clinical failure of therapeutic approaches that reduce
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aggregation in vitro and in vivo?31967.68,

Indeed, if insoluble aggregates titrate
proteins away from alternative toxic phases, then promoting rather than alleviating

aggregation might be the appropriate therapeutic goal.
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Methods

Yeast Strains and Plasmids

Saccharomyces cerevisiae S288C BY4741 (MATa his3A1l leu2A0 metl15A0 ura3A0)
was used in all experiments. Plasmid pRS416 containing TDP-43 or TDP-43-YFP
under control of the Gall promoter was purchased from Addgene®™. Mutagenesis for
the characterization of TDP-43 variants was performed through PCR linearization with
specifically-designed primers (Supplementary Table 1, primers: BB_1 to BB_6). The
resulting products were then either treated with Dpnl or purified from a 1% agarose gel
with a QIAquick Gel Extraction Kit (Qiagen) and transformed into E.coli DH5a
competent cells (Invitrogen) for plasmid purification and validation through Sanger

sequencing.

Library construction

Two 186 nt oligonucleotides were purchased from TriLink. Each consisted of a ‘doped’
region of 126 nt, corresponding to TDP-43 AA 290-331 or AA 332-373, flanked by 30 nt
of the WT TDP-43 sequence on each side. Each position in the mutated area, was
doped with an error rate of 1.59%. The target frequency for each library was 27.0% for
single mutants and 27.3% for double mutants. With this approach, the WT sequence
was represented with a frequency of 13.3%. Each oligonucleotide was amplified by
PCR (Q5 High-Fidelity DNA Polymerase, NEB) for 15 cycles, purified using an E-gel
electrophoresis system (Agarose 2%) followed by column purification with a MinElute
PCR Purification Kit (Qiagen). In order to introduce the doped sequence in the full-
length TDP-43 sequence the purified oligonucleotide was cloned into 100 ug of
linearized pRS416 Gal TDP-43 by a Gibson approach (Supplementary Table 1,
primers BB_7 to BB_14). The product was then transformed into 10-beta
Electrocompetent E. coli (NEB), by electroporation in a Bio-Rad GenePulser machine
(2.0k V, 200 Q, 25 uF). Cells were recovered in SOC medium (NEB) for 30 min and
plated on LB with ampicillin. A total of ~2.7x10° transformants were estimated. The

plasmid library was purified with a GeneJET Plasmid Midiprep Kit (Thermo Scientific).

Yeast Transformation and Selection experiments

Yeast cells were transformed with the TDP-43 doped plasmid in 4 independent

biological replicates for each library. One single colony was grown overnight in 30 ml

10
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YPDA medium at 30°C for each replica. Cells were diluted to 0.3 OD 600 nm in 175 ml
of YPDA and incubated for 4 h at 30°C. Cells were then harvested, washed, re-
suspended in 8.575 mL SORB (100 mM LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA, 1 M
sorbitol) and incubated for 30 min at room temperature. For the transformation, 10
mg/mL of salmon sperm DNA and 3.5 Big TDP-43 plasmid library were used. Cells
were mixed to 100 mM LiOAc, 10 mM Tris-HCI pH 8.0, 1 mM EDTA/NaOH pH 8.0 and
40% PEG 3350. Heat-shock was performed for 20 min at 42°C. YPD with 0.5 M
sorbitol was used to recover the cells, incubating them for 1 h at 30°C. After recovery,
cells were resuspended in SC-URA 2% raffinose medium, while an aliquote was plated

to calculate transformation efficiency.

After ~50 h of growth, cells were diluted in SC-URA 2% raffinose medium and grown
for 4.5 generations. At this stage, 400 mL of each replica were harvested, washed, split
into two tubes and frozen at -20°C for later extraction of input DNA. To induce plasmid
expression, for each replicate two cultures were diluted in SC-URA 2% galactose
medium. After 5-6 generations, 2X400 mL for each replicate were harvested to obtain

output pellets for DNA extraction.

DNA Extraction and Library Preparation

Input and Output pellets were resuspended in 1.5 mL extraction buffer (2% Triton-X,
1% SDS, 100 mM NaCl, 10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0). Two cycles of
freezing in an ethanol-ice bath and heating at 62°C were performed. Deproteinization
was performed using 25:24:1 phenol-chloroform-isoamyl alcohol and glass beads.
After centrifugation, the aqueous phase, containing the DNA, was recovered and
treated again with phenol-chloroform-isoamyl alcohol. The samples were incubated 30
min at -20°C with 1:10V 3M NaOAc and 2.2V 100% ethanol for DNA precipitation. At
this stage and after centrifugation for 30 min, the pellets were dried overnight at room
temperature. RNA was eliminated by incubation with RNAse 10 mg/mL for 30 min at
37°C. DNA purification was achieved with a QIAEX Il Gel Extraction Kit (Qiagen) and
DNA was eluted in 375 pL of elution buffer. DNA concentration was measured by g-
PCR, with primers annealing to the Ori site of the pRS416 plasmid (Supplementary
Table 1, primers BB_15, BB_16).

The TDP-43 library was then prepared for deep sequencing by PCR amplification in
two steps using Q5 High-Fidelity DNA Polymerase (NEB). In step 1, 300 million

plasmids were amplified for 15 cycles using frame-shifted adaptor primers with a partial

11
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homology to standard llumina sequencing primers (Supplementary Table 1, primers
BB_17 to BB_51). Samples were treated with ExoSAP (Affymetrix) and purified with
QIAEX 11 kit (Qiagen). PCR products from the first step were used as templates in the
second PCR step, where indexed Illumina primers (Supplementary Table 1, primers
TS HT _D7X 7 to TS HT_D7X_95) were used for a 10 cycles amplification. DNA
concentration was then quantified by means of a Quant-iT™ PicoGreen® dsDNA
Assay Kit (Promega). All replicates were pooled together in an equimolar ratio. Finally,
the pooled sequencing library was run on a 2% agarose gel, purified and sent for 125

bp paired-end lllumina sequencing at the CRG Genomics Unit.

Individual Growth Rate Measurements

Yeast cells expressing selected TDP-43 variants were grown overnight in SC-URA 2%
raffinose non-inducing medium and diluted to 0.2 OD 600 nm until exponential phase.
Then they were diluted to 0.1 OD 600 nm in SC-URA 2% galactose to asses growth in
inducing conditions. Growth was monitored by measuring OD 600 nm in a 96-well plate
at 10 min intervals inside an Infinite M200 PRO microplate reader (Tecan). Plates were
kept constantly shaking at 30°C. Growth curves were fitted in order to extrapolate
growth rates that correspond to the maximum sloped of the linear range of the LN(OD)

curve over time.

Equipment and Settings

Imaging was performed by using a Confocal TCS SP8 and a Confocal TCS SP5
(Leica) equipped with PMT detectors both for fluorescence and transmitted light
images. AOBS beam-splitter systems are in place on both instruments. 63X oil
immersion objectives and the LAS AF software were used for all imaging. YFP
fluorescence was excited with a 488 nm laser, while mCherry fluorescence with a 561
nm laser. Ranges for emission detection were 495-554 and 637-670 nm respectively.
Image depth is 8-bit in all cases and pixel size equals 120.4 nm. The LUT is linear and

covers the full range of the data.

Fluorescence Microscopy and Image Analysis

Yeast cells expressing TDP-43 selected variants were grown in SC-URA 2% raffinose
non-inducing medium and then transferred to SC-URA 2% galactose medium to induce

protein expression for 8h. They were then imaged under a Confocal TCS SP8

12


https://doi.org/10.1101/592121
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/592121; this version posted March 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

microscope (Leica). Counting of foci was conducted both manually and by automated
pipelines using the CellProfiler software where quantification of fluorescent intensity
was tracked for each focus. The coordinates of the center of each focus and nucleus
were also derived from CellProfiler and used to calculate distances using a custom R
script (pipelines available at https://github.com/lehner-

lab/tardbpdms_cellprofiler_scripts ).

Fluorescence Recovery after Photobleaching (FRAP)

Yeast cells expressing TDP-43 selected variants were grown in SC-URA 2% raffinose
non-inducing medium and then transferred to SC-URA 2% galactose medium to induce
protein expression for 8h. The cells were immobilized to an 8-well cover slide by
Concanavalin-A-mediated cell adhesion. Cells were then imaged under a Confocal
TCS SP5 microscope (Leica) where bleaching was achieved with 488 Laser Power at
70% for three frames (1.3 s/frame) while fluorescence recovery was recorded for 50
frames. The curves were then fitted to a single exponential, following normalization,

with the EasyFrap package®.

Protein Extraction and Western Blotting

Single yeast colonies were grown overnight in non-inducing medium and then diluted
to 0.2 OD 600 nm in Galactose medium to induce protein expression for ~8 h. At this
stage, 6x10” cells were collected and re-suspended in 200 uL EtOH and 2.5 uL PMSF.
Samples were vortexed with glass beads for 15 min at 4°C and frozen overnight at -
80°C. The samples were dried in a speed vacuum for 20 min and resuspended in 200
uL solubilizing buffer (20mM Tris HCI pH 6.8,2% SDS). After boiling for 5 min, the
lysate fraction was run on a NUPAGE 4-12% Bis-Tris gels (Novex) and transferred to
PVDF membranes in an iBlot (Invitrogen). Membranes were blocked with 5% milk
powder in TBS-T and incubated overnight at 4°C with primary antibodies: anti-GFP
mouse antibody (Santa Cruz sc-9996) and anti-PGKD1 mouse antibody (Novex
459250) diluted 1:1,000 and 1:5,000 in 2.5% powder milk respectively. Secondary
antibody anti-proteinG was incubated for 1h at room temperature. Proteins were
detected with an enhanced chemi-luminescence system (Millipore Luminata) and

visualized using an Amersham Imager 600 (GE Healthcare).

Sequencing data pre-processing
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FastQ files from paired-end sequencing of replicate deep mutational scanning (DMS)
libraries before (‘input’) and after selection (‘output’) were processed using a custom
pipeline (https://github.com/lehner-lab/DiMSum, manuscript in prep.). DiMSum is an R
package that wraps common biological sequence processing tools including FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (for quality assessment),
cutadapt (for demultiplexing and constant region trimming), USEARCH"® (for paired-
end read alignment) and the FASTX-Toolkit (http://hannonlab.cshl.ed/fastx_toolkit/).

First, 5’ constant regions were trimmed, but read pairs were discarded if 5’ constant
regions contained more than 20% mismatches to the reference sequence. Read pairs
were aligned (reads that did not match the expected 126bp length were discarded) and
Phred base quality scores of aligned positions were calculated using USEARCH.
Reads that contained base calls with Phred scores below 30 (290-331 DMS library) or
below 25 (332-373 DMS library) were discarded. Approximately five and seven million
reads passed these filtering criteria in each sample corresponding to the 290-331 and
332-373 libraries respectively. Finally, unique variants were counted and merged into a
single table of variant counts (aggregated across technical output replicates) per DMS
library. One out of four input replicates (and all associated output samples) from each
DMS library were discarded due to considerably lower correlations with the other
replicates (ED Fig. 1a, b).

Variant toxicity and error estimates

All analyses of toxicity were performed on variants with a maximum of two AA

mutations, but no synonymous mutations in other codons. Firstly, sample-wise counts

for variants identical at the AA level were aggregated. For each replicate selection,

relative toxicity of variants was calculated from variant counts in input (innput) and
anu u
output (Fy,,,,..) Samples as Relative toxicity, = ESyr — ESy, where ES, = log =22t
Xinput

and ES, represents the WT enrichment score. Uncertainty of toxicity values was

estimated as a combination of expected Poisson error based on read counts and error

between replicate selections as ¢; = \/F Loy 4 4 ! + £2. Here,

Xinput Fxoutput FWTinput FWToutput

&, the error between replicate selections, is estimated from the variance of toxicity
estimates across replicates for variants whose expected count-based Poisson error
approaches zero. Toxicity estimates and associated errors per replicate selection were
also normalized by the replicate-specific number of cell doublings during selection to

yield relative growth rates per generation.
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In ‘doped’ variant libraries, individual double mutants are represented less frequently
than single mutants or the WT sequence and due to this under-representation toxic
double mutants (that are depleted due to slower growth during selection) are often not
observed in the output samples (ED Fig. 1c). To calculate toxicity estimates for such
double mutants and avoid skewed marginal toxicity distributions due to these drop-out
events, we used a Bayesian approach to estimate toxicity of double mutants based on
a prior, i.e. toxicity distributions of highly represented doubles that originate from single
mutants with similar toxicity estimates®’. These corrected toxicity estimates show
improved heteroscedasticity and reduced variance, especially for under-represented
double mutants (ED Fig. 1c).

Variant toxicity distributions were first normalized between replicate selections of the
same DMS library to have equal standard deviations. Then toxicity estimates of each
variant across replicate selections were merged by taking the error-weighted mean
across replicate selections. Finally, distributions of merged toxicity estimates from each
DMS library were centered on the error-weighted means of toxicity of single codon
synonymous (silent) variants in each DMS library and scaled such that the error-
weighted means of single STOP codon variants coincided for both DMS libraries (ED
Fig. 2a-c). Furthermore, we removed low confidence variants supported by an average

of less than ten input reads from all downstream analyses.

Simple linear regression models to predict variant toxicity

We used simple linear regression to predict variant toxicity from (i) a collection of AA
property features, (ii) a panel of scores from aggregation/structure algorithms and (iii)

location with respect to the toxicity hotspot.

The AA property features were derived from a principal component analysis (PCA) of a
curated collection of numerical indices representing various physicochemical and
biochemical properties of AAs (http://www.genome.jp/aaindex/). From a total of 539
indices, we retained 379 high confidence indices with no missing values (including 5
additional indices absent from the original database; see Supplementary Table 2).
Results of PCA and selected variable loadings on the normalized matrix are shown in
ED Fig. 3. For single mutant variants, AA property feature values represent the

difference between the WT and mutant PC scores.
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Similarly, aggregation, disorder, structure and other feature values for single mutant
variants represent the difference between scores obtained using WT and single mutant
AA sequences. AGADIR, catGRANULE and Tango provide a single score per AA
sequence. Unless a single score per AA sequence was provided (i.e. AGADIR,
catGRANULE, Tango), individual residue-level scores were summed to obtain a score
per AA sequence (i.e. BetaTPred3, DISEMBL, IUPred2A, Waltz, ZipperDB,
Zyggregator). The entire PRD AA sequence was supplied to AGADIR and all unique
six-mers to ZipperDB. For the remainder, the full-length AA sequence was used.

Variants inside the hotspot were defined as those with mutant residue positions in the
range 312-342. Change in absolute charge (regardless of sign) is shown in Fig. 2d, e,
because this feature is more predictive of toxicity than change in charge itself (not
shown). For double mutant variants, we summed the feature values of the constituent
singles for both AA property and aggregation/structure algorithm features. Regression
models were built using either (i) all variants, restricting variants to those occurring
either (ii) inside or (iii) outside the toxicity hotspot (for double mutants both mutations
have to occur either inside or outside the hotspot region), or (iv) including a binary
location variable (0: one/all outside, 1: one inside, one outside, 2: one/all inside toxicity
hotspot) and a third term indicating the interaction between location and the AA

property or aggregation/structure algorithm feature.

Predicting secondary structure from epistasis

Epistasis is the non-independence of mutation effects, i.e. the toxicity of double
mutants is different from that expected given the toxicity of their constituent single
mutant variants. We have previously shown that epistasis between double mutants can
result from structural interactions within proteins and therefore can be used to infer
secondary and tertiary structural features®?. In brief, double mutants were classified as
epistatic if they had more extreme toxicity values (below 5" percentile or above 95
percentile) than other double mutants with similar single mutant toxicities, which was
estimated from non-parametric surface fits of double mutant toxicity as a function of a

two-dimensional single mutant toxicity space (Fig. 4a).

Double mutants close to the lower or upper measurement range limits (where the
power to detect significant epistasis is reduced) were excluded from epistasis
guantification. We calculated position-pair enrichments for epistatic double mutants

resulting in a pair-wise enrichment matrix. Diagonal entries on this matrix were imputed
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as column-wise mean enrichments. An epistasis correlation score matrix was then
derived from this enrichment matrix by calculating the partial correlation of epistasis
interaction profiles (columns of the enrichment matrix) between all pairs of positions.
The rationale for the correlation score is that structurally close positions within a protein
should have similar epistatic interactions with all other positions in the protein.
Calculating partial correlations additionally removes transitive interactions and was

found to be superior over epistasis enrichments in estimating secondary structures®?.

Secondary structure propensities were calculated by testing for agreement of epistasis
correlation score patterns with the stereotypical periodicities of an B-helix and B-strand,
using two-dimensional kernels at each position along the diagonal of the epistasis
correlation score matrix®?. Significance of secondary structure propensities was
assessed by comparison to propensities derived from 10* randomized epistasis

correlation score matrices.

Similarly, LARKS structure propensities were calculated using PDB-structure derived
contact matrices based on a minimal side-chain heavy atom distance of 4.5A (ED Fig.
6) for both WT (PDB entry: 5whn) and mutant sequences (PDB entries: 5whp and
5wkb). Contact matrix values were normalised to have zero sum. Association score
matrix values were normalised to have mean of zero and unit variance. Significance of
LARKS structure propensities was assessed by comparison to propensities derived
from 10* randomized epistasis correlation score matrices, where randomization was

restricted to within-LARKS interactions i.e. distances compatible with a six-mer.
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Figure Legends

Figure 1. Deep mutational scanning (DMS) of the prion-like domain (PRD) of TDP-
43. a Domain structure of TDP-43 and DMS experimental protocol: For each library, 3
independent selection experiments were performed. In each experiment one input culture
was split into two cultures for selection upon induction of TDP-43 expression (6 outputs
total). Relative toxicity of variants was calculated from changes of output to input
frequencies relative to WT. b Correlation of toxicity estimates between replicates 1 and 2
for single and double amino acid (AA) mutants shown separately for each library (290-
332; 332-373). The Pearson correlation coefficients (R) are indicated. Toxicity
correlations between all replicates are shown in ED Fig. 1d, e. ¢ Comparison of toxicity
from pooled selections and individually measured growth rates for selected variants.
Vertical and horizontal error bars indicate 95% confidence intervals of mean growth rates
and toxicity estimates respectively. Linear fits of the data are shown separately for each
library and Pearson correlation (R) after pooling data from both libraries is indicated. d
Toxicity distribution of single and double mutants, shown separately for each library
(colour key as in panel ¢). WT variant has toxicity of zero, mean toxicity of variants with
single STOP codon mutation is indicated by dashed vertical line. e Absolute toxicity of
single mutants stratified by position. Error bars indicate 95% confidence intervals of
mean (per-position) toxicity estimates. A local polynomial regression (loess) over toxicity
estimates of all single mutants is shown. The vertical dashed line indicates the boundary
between the two DMS libraries. The horizontal dashed line indicates the mean absolute
toxicity of all single mutants. The mutant effect “hotspot” (mean per-position |toxicity| >
mean [toxicity]) is highlighted in grey. f Heatmap showing single mutant toxicity
estimates. The vertical axis indicates the identity of the substituted (mutant) AA. Heatmap

cells of variants not present in the library are denoted by “-*.

Figure 2. Changes in hydrophobicity are highly predictive of TDP-43 cellular
toxicity. a Percentage variance of toxicity explained by linear regression models
predicting single and double mutant variant toxicity from changes in AA properties upon
mutation (PCs, principal components of a collection of AA physico-chemical properties).
Different regression models were built for different subsets of the data. Simple linear
regression models for all variants (blue) or only variants inside (red) or outside (yellow)
the hotspot region. And a regression model using all variants and including a binary
location variable (inside/outside hotspot) as well as an interaction term between binary
location variable and the indicated AA property feature (green). b Percentage variance of

toxicity explained by linear regression models predicting variant toxicity using scores from
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aggregation/structure algorithms (see Methods). Colour key shown in panel a. See also
ED Fig. 4. ¢ Toxicity of variants with single or double mutations within the hotspot region
as a function of hydrophobicity changes (PC1) induced by mutation. The Pearson
correlation (R) before binning is indicated. See also ED Fig. 7a. d Toxicity distributions of
single and double mutants stratified by the change in the number of aromatic
(H,F,W,Y,V) or charged residues (R,D,E,K) relative to the WT sequence. Horizontal axis
as in panel e. e Distribution of residual toxicity after controlling for the effect of
hydrophobicity and location on toxicity (green regression model in panel a) stratified by
the number of aromatic (H,F,W,Y,V) or charged (R,D,E,K) AAs. f Single and double
mutant variant toxicity as a function of changes in aggregation propensity (Zyggregator).
Only variants occurring within the toxicity hotspot are depicted. The Pearson correlation
(R) before binning is indicated. g Toxicity as a function of aggregation propensity after
controlling for hydrophobicity (red regression model in panel a). Only variants occurring
within the toxicity hotspot are depicted. The Pearson correlation (R) before binning is
indicated. See also ED Fig. 7b.

Figure 3 Mutations leading to formation of solid-like aggregates rescue toxicity.

a Representative fluorescence microscopy Images of yeast cells expressing indicated YFP-
tagged TDP-43 variants (W334K TDP-43 = toxic, A328V TDP-43 = non-toxic). H4-mCherry
marks nuclei (red). Contrast was enhanced equally for the green and red channels in all
images. b Percentage of cells with cytoplasmic foci (Cells scored: n[toxic]=219, n[WT]=30,
n[non-toxic]=213). Fisher's Exact test. ¢ Percentage of cells with cytoplasmic foci with size
over 5 pixels automatically detected by CellProfiler. Fisher's Exact test. (Cells scored:
ntoxic]=167, n[WT]=23, n[non-toxic]=167) d Percentage of cells with foci at the nuclear
periphery (Cells scored: n[toxic]=219, n[WT]=30, n[nhon-toxic]=213). Fisher's exact test. e
Distance of foci from nucleus center for toxic (red), non-toxic (blue), and WT (black) TDP-
43. Boxplots represent median values, interquartile ranges and Tukey whiskers with
individual data points superimposed. Kruskal Wallis with Dunn’s multiple comparisons test
(n = >20 foci / variant). f Average fluorescence intensity of foci localised closer (<15 pixels,
n=147) or further (> 15 pixels, n=138) from the nucleus. Boxplots represent median values,
interquartile ranges and Tukey whiskers with individual data points superimposed. Mann-
Whitney test. g Representative individual fluorescence recovery traces for variants reported
in panel e. Lines are the result of a single exponential fitting. h Mobile Fraction as
calculated by fitting FRAP traces for toxic (red), non-toxic (blue) and WT (black) TDP-43.
Each point results from fitting an individual trace. One-way ANOVA with Tukey’'s multiple
comparisons test.

Images were taken on cells growing from at least 3 independent starting colonies.
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*P <0.05, * P <0.01, ** P <0.001,”** P < 0.0001.

Figure 4. Correlated patterns of epistasis predict secondary structural elements
within the PRD of TDP-43. a Schematic representation of the computational strategy to
identify in vivo secondary structures. Double mutant variants are classified as epistatic if
they are more (95" percentile) or less (5™ percentile) toxic than other variants with similar
single mutant toxicities (top). A pair-wise interaction (PWI) matrix of epistasis correlation
scores is then constructed by quantifying the similarity of a pair of positions interactions
with all other mutated positions in the protein. The epistasis correlation scores along the
diagonal of the PWI matrix are then tested for agreement with the stereotypical
periodicity of B-helix and B-strand, using two-dimensional kernels (bottom), to calculate
the likelihood of adjacent positions forming secondary structures. b Local polynomial
regression (loess) of hydrophobicity (PC1) of the WT TDP-43 sequence with 95%
confidence interval. For reference, smoothed toxicity estimates in the mutated positions
within the PRD are shown. The Pearson correlation coefficient (R) between
hydrophobicity and mean toxicity effects of single mutants at each position before
smoothing is indicated. ¢ Secondary structure predictions from epistasis correlation
scores for @-helix and B-strand kernels based on the strategy described in panel a. Black
bars annotate previously described structural features: LARKS, low-complexity aromatic-
rich kinked segment (312-317)%*; Helix (321-330)%". The dashed horizontal line indicates
the nominal significance threshold P=0.05. d Epistatic interactions in region 312-317 are
consistent with positions of similar side-chain orientations interacting in a previously
reported in vitro LARKS structure. Epistasis correlation matrix and top seven epistasis
correlation score interactions annotated on the LARKS reference structure (monomer
from PDB entry 5whn). Dashed lines on structure connect interacting residues at minimal
distance between side chain heavy atoms. Side chain atoms are depicted in blue. e
Epistatic interactions in region 321-330 are consistent with positions of similar side-chain
orientations interacting in an B-helix. Epistasis correlation matrix and top seven epistasis
correlation score interactions annotated on the helix reference structure (monomer from
PDB entry 5whn). f Model of how AA changes determine toxicity of TDP-43: mutations
that promote formation of insoluble cytoplasmic aggregates decrease its toxicity, while
mutations that cause the protein to stall in a liquid de-mixed phase increase TDP-43
toxicity to the cell g Secondary structure elements, within the toxicity hotspot 312-342,
promote the aggregation process of TDP-43, with a transient helix forming on pathway to

B-rich aggregates.
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Extended Data Figure 1. Quality control and pre-processing of DMS datasets. a
Correlation of mutant variant counts between all input replicates in DMS library 290-331.
The Pearson correlation coefficients (R) are indicated in the upper matrix triangle.
Replicate selection 2 was removed from downstream analyses due to lower than average
correlation with other replicates b Correlation of mutant variant counts between all input
replicates in DMS library 332-373. Replicate selection 1 was removed from downstream
analyses due to lower than average correlation with other replicates. ¢ Comparison of
relative toxicity of single and double AA mutants and mean input read count for each
DMS library before and after Bayesian correction of double AA mutant toxicity estimates.
The vertical dashed line indicates the minimum mean input read count threshold (10) for
variants used in downstream analyses. d Correlation of toxicity estimates between all
retained replicates for single and double amino acid (AA) mutants from library 290-331.
The Pearson correlation coefficients (Corr) are indicated. e Similar to panel d except
showing results corresponding to retained replicates from library 331-373.

Extended Data Figure 2. Inter-library normalization of DMS datasets and toxicity of
human disease mutations. a Toxicity distributions of single codon synonymous (silent)
variants (top), single and double mutants (middle) and single STOP codon variants,
shown separately for each library (see color key) and before centering and scaling. b As
in panel a, but after inter-library normalization by centering on the error-weighted means
of toxicity of single codon synonymous (silent) variants. ¢ As in panel b, but after
additionally scaling such that the error-weighted means of single STOP codon variants
coincided. Mean toxicity of variants with single STOP codon mutation is indicated by
dashed vertical line. d Relative toxicities of classified human disease AA substitution
variants (colored dots; see key) below the relative toxicity distribution of all single and
double AA mutants assayed in this study. Disease variants observed in more than one
patient are classified as recurrent. e Table of all human disease AA substitution

mutations in TDP-43 used in panel d.

Extended Data Figure 3. Principle components analysis of amino acid
physicochemical properties. a Results of PCA of a curated collection of numerical
indices representing various physicochemical and biochemical properties of AAs (see
Methods). Biplot matrix indicating variable loadings of the top 5 PCs. Colors indicate text
matches to index descriptions (see color key). b Screeplot indicating percentage variance
explained by all PCs.
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Extended Data Figure 4. Linear regression models to predict mutant variant
toxicity. a Percentage variance of residual relative toxicity (after controlling for
hydrophobicity and location) explained by linear regression models predicting single and
double mutant variant toxicity from changes in AA properties upon mutation (left) and
using scores from aggregation/structure algorithms (right). Different regression models
were built for different subsets of the data. Simple linear regression models for all
variants (blue) or only variants inside (red) or outside (yellow) the hotspot region. And a
regression model using all variants and including a binary location variable
(inside/outside hotspot) as well as an interaction term between binary location variable
and the indicated AA property feature (green). b Percentage variance of relative toxicity
explained by linear regression models predicting single mutant variant toxicity from
changes in AA properties upon mutation (lefty and wusing scores from
aggregation/structure algorithms (right). ¢ Similar to panel b except showing results using
double mutant variants.

Extended Data Figure 5. Scoring of intracellular phenotypes and expression of
toxic and non-toxic mutants. a Scoring of intracellular phenotypes by automated foci
counting. Percentage of cells with foci at the nuclear periphery automatically scored by
CellProfiler. Fisher's Exact test. b Immunohistochemistry of toxic and non-toxic
mutants. Expression of different TDP-43 variants after 8h induction of protein
expression in Galactose was measured by Western Blotting. Phosphoglycerate Kinase

1 was used as a Loading Control.

Extended Data Figure 6. LARKS structure propensities. a Contact matrix based on a
minimal side-chain heavy atom distance of 4.5A derived from WT LARKS PDB structure
5whn. b Contact matrix derived from mutant LARKS PDB structure 5whp. ¢ Contact
matrix derived from mutant LARKS PDB structure 5wkb. d LARKS structure propensities
for PDB-structure derived contact matrices shown in panels a-c (see Methods). The
dashed vertical line indicates the start position of the LARKS (TDP-43 AA residue 312).

Extended Data Figure 7. Toxicity of variants as a function of hydrophobicity and
aggregation propensity. a Toxicity of variants with single (left) or double (right)
mutations occurring outside (top), inside (bottom) or in both locations (1 outside/1 inside)
w.r.t. the hotspot region (middle), as a function of hydrophobicity changes (PC1) induced
by mutation. The Pearson correlations (R) before binning are indicated. b Toxicity of
variants with single (left) or double (right) mutations occurring outside (top), inside

(bottom) or in both locations (1 outside/1 inside) w.r.t. the hotspot region (middle), as a
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function of changes in aggregation propensity (Zyggregator). The Pearson correlations

(R) before binning are indicated.

Data Availability Statement Raw sequencing data and the processed data table
(Supplementary Table 3) have been deposited in NCBI's Gene Expression Omnibus
and are accessible through the GEO Series accession number GSE128165
(https://Iwww.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE128165). All software code
and custom scripts are available on GitHub: https://github.com/lehner-lab/DiMSum for
raw read processing, https://github.com/lehner-lab/tardbpdms for all downstream
analyses and to produce all figures, and https://github.com/lehner-

lab/tardbpdms_cellprofiler_scripts for CellProfiler pipelines.
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