

1 **Genotype 1 Japanese encephalitis virus predominates in nature in**
2 **China**

3 Nan Shao^{1 2 ¶}, Shihong Fu^{1 2 ¶}, Fan Li^{1 2}, Weijia Zhang^{1 2 3}, Qianying Wang^{1 2}, Wenwen Lei^{1 2}, Ying He^{1 2},
4 Yuxi Cao², Guodong Liang^{1 2}, Huanyu Wang^{1 2 *}

5

6 **1** Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral
7 Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's
8 Republic of China

9 **2** State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control
10 and Prevention, Beijing, People's Republic of China

11 **3** School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China

12

13 *Corresponding author

14 wanghy@ivdc.chinacdc.cn (WHY)

15 ¶These authors equally contributed to this work

16

17 **Data Availability Statement:** All relevant data are within the paper and its Supporting Information files.

18 **Funding:** This work was supported by grants from the National Key Research and Development Program
19 (2016YFD0500401); National Science and Technology Major Project (2018ZX10711001). Development
20 Grant of State Key Laboratory of Infectious Disease Prevention and Control (2015SKLID505).

21 **Competing Interests:** The authors have declared that no competing interests exist.

22

23

24

25

26

28 **Abstract**

29 **Introduction:** Japanese encephalitis virus (JEV), in the genus *Flavivirus*, family
30 *Flaviviridae*, is the leading cause of viral encephalitis in the Asian-Pacific region. JEV
31 has a wide range of vector hosts, including mosquitoes, swine, and wading birds. *Culex*
32 species, especially *Culex tritaeniorhynchus*, are the main vectors for JEV transmission.
33 JEV has been classified into five genotypes (G1–G5). JEV G1, G3, and G5 isolates
34 have been found in China.

35 **Methods:** More than 200,000 mosquitoes collected in 14 provinces in China from 2004
36 to 2016 were examined for JEV using a TaqMan real-time RT-PCR assay. The JEV
37 envelope (E) gene was sequenced from positive pools. The nucleic acid sequences were
38 analyzed and aligned using ClustalX ver. 2.0. Representative JEV envelope (E) gene
39 sequences were downloaded from GenBank and compared with the newly obtained JEV
40 sequences. MEGA 5.05 was used to generate a phylogenetic tree based on the JEV
41 sequences.

42 **Results:** More than 200,000 mosquitoes were divided into 3107 pools to test for JEV.
43 Of the pools, 9.04% (281/3107) were positive. The JEV obtained from mosquitoes
44 included three genotypes (G1, G3, and G5). JEV G1 was detected from different
45 provinces during 2004–2016. G1 was the dominant genotype circulating in nature,
46 comprising 98.93% (278/281). JEV G3 was detected in Yunnan and Chongqing
47 Provinces before 2010; JEV G5 was detected only in Tibet. No pools were positive for
48 JEV G2 and G4. *C. tritaeniorhynchus* was the major mosquito species and the principal
49 vector for transmitting JEV in China. The results of the TaqMan real-time RT-PCR
50 assay and phylogenetic analysis consistently indicated that all 50 newly identified JEV
51 sequences belonged to JEV G1.

52 **Conclusion:** G1 is the main genotype of JEV circulating in nature in China. Some G3
53 and G5 were found, but no G2 or G4.

54

55 **Author summary**

56 Japanese encephalitis virus (JEV) is a member of the genus *Flavivirus*, family
57 *Flaviviridae* and is the major pathogen agent of Japanese encephalitis (JE) in the
58 Asian-Pacific region. The fatality rate of JE is 20–30%. JEV consists of five genotypes
59 (G1-G5). The predominant genotype was G3 before the 20th century. G1 and G3
60 co-circulated in China at the end of the 20th and early 21st century. JEV G1 is the
61 youngest genotype and has gradually been found in many areas worldwide. Using a
62 sensitive TaqMan real-time RT-PCR assay, this study examined 3107 pools of
63 mosquito. The main genotype of Japanese encephalitis virus in China was G1, with
64 some G3 and G5, but no G2 or G4. *C. tritaeniorhynchus* was the major mosquito
65 species and the principal vector for transmitting JEV in China. TaqMan real-time
66 RT-PCR assay and phylogenetic analysis consistently indicated that all 50 newly
67 identified JEV sequences belonged to JEV G1.

68

69

70 **Keywords:** Japanese encephalitis virus, Genotype, Phylogenetic analysis

71

73 **Introduction**

74 Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is maintained in
75 nature in a zoonotic cycle involving mosquitoes (principally *Culex* species), pigs, water
76 birds, and bats [1-2]. Humans are dead-end hosts because when bitten by infected
77 mosquitoes, the viremia is transient and low-level [3-4]. JEV is the causative agent of
78 Japanese encephalitis (JE), which is prevalent in most Asian countries and parts of the
79 Western Pacific region, with two epidemiological models (epidemic or endemic) [5-6].
80 An estimated three billion people widely distributed in 24 countries live in areas with a
81 risk of JEV transmission [7-8]. JE has a fatality rate of 20–30% and 30–50% of the
82 survivors suffer irreversible neurological or psychiatric sequelae [9-10].

83 JEV has a single-stranded, positive-sense RNA genome that is approximately 11
84 kb in length. The viral genome contains three parts: 5'-end and 3'-end untranslated
85 regions and an open reading frame (ORF). The 5'-end untranslated region has a type I
86 cap structure with m7G(5')ppp(5')ApUp, but there is no poly(A) tail at the 3'-end. The
87 ORF encodes three structural proteins, the capsid (C), membrane (M), and envelope (E)
88 proteins, and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
89 NS5) [11-12].

90 JEV has been divided into five different genotypes based on the complete E gene
91 [13-14] and there are epidemic differences among the JEV genotypes. G1, G3, and G5
92 are mainly prevalent and distributed in Asia. G1 and G3 are found in most Asian
93 countries, while G5 is currently found only in Malaysia [15-16], China [17], and Korea
94 [18]. G2 has been isolated in South Korea, Southern Thailand, Malaysia, Indonesia,
95 Singapore, Papua New Guinea, and Northern Australia since 1951, while G4 has been
96 isolated only from Indonesia [16, 19]. The dominant genotype in Asia has gradually

97 shifted from G3 to G1 since the 1990s [20]. The distribution of G1 is widespread and
98 has diffused significantly faster between regions than G3 [21]. During 2002–2004, G1
99 and G3 co-circulated according to JEV surveillance of mosquitoes in China [22].
100 Previous studies have shown that JEV G1 was the youngest genotype [20, 23]. In this
101 study, we used a rapid, specific, and sensitive TaqMan real-time RT-PCR assay to
102 detect and differentiate JEV from mosquitoes collected from 14 provinces in China
103 during 2004–2016 to comprehensively examine the distribution of JEV.

104

105 **Methods**

106 *Mosquito collection*

107 Mosquitoes were collected from 14 provinces (Xinjiang, Qinghai, Yunnan, Tibet,
108 Sichuan, Chongqing, Shaanxi, Henan, Shanxi, Hunan, Hubei, Shanghai, Shandong, and
109 Liaoning) of China at different sites (all collection was done on public land) from 2004
110 to 2016. The mosquitoes were pooled by species (up to 100 mosquitoes per pool) for
111 each collection site. The mosquito pools collected in 2016 were added to 1.5 mL of
112 minimum essential medium (MEM; Gibco, Invitrogen, Carlsbad, CA, USA)
113 supplemented with 5% PS (1000 unit/mL penicillin and 100 µg/mL streptomycin;
114 Gibco, Invitrogen), 1% glutamine, and 0.12% NaHCO₃, and ground using TissueLyser
115 (QIAGEN, Hilden, Germany) [17]. The mosquito homogenates were centrifuged at
116 14,000 rpm/min for 30 min at 4°C and stored at –80°C for later use. The clarified
117 supernatant of the homogenates of mosquito pools collected between 2004 and 2015
118 were previously stored at –80°C.

119

120 *RNA extraction and virus detection*

121 Viral RNA was extracted from 140 μ L of clarified supernatant of the homogenates
122 using the QIAamp® Viral RNA Mini Kit (QIAGEN), according to the manufacturer's
123 specifications. TaqMan real-time RT-PCR was conducted using AgPath-ID™ One-step
124 RT-PCR Reagents (Applied Biosystems, Foster City, CA, USA) and performed on an
125 Mx3000P QPCR System (Stratagene, La Jolla, CA, USA). Each RT-PCR master mix
126 reaction used 12.5 μ L 2 \times RT-PCR buffer, 1 μ L forward and reverse primers (both 10
127 pmol/ μ L), 1 μ L TaqMan probe (5 pmol/ μ L), 1 μ L 25 \times RT-PCR Enzyme Mix, and 2 μ L
128 RNA template for a total volume of 25 μ L. qPCR was performed at 45°C for 10 min,
129 95°C for 10 min, and 40 cycles of 95°C for 15 s and 60°C for 1 min. The cut off cycle
130 threshold (Ct) value was set at 35. Six sets of primers and probes were used in the
131 TaqMan real-time RT-PCR detection system for detecting JEV, as described previously
132 [24].

133 The positive extraction control consisted of supernatant from JEV- infected BHK
134 cells. The JEV strains were GZ56 (HM366552), P3 (JEU47032), and XZ0934
135 (JF91589) for G1, G3, and G5, respectively. And the negative extraction control
136 consisted of supernatant from uninfected BHK cells. Double-distilled H₂O was used as
137 a no-template control.

138 *PCR amplification and DNA sequencing*

139 First strand cDNA was synthesized from JEV RNA from JEV-positive pools using
140 the PrimeScript™ One Step RT-PCR Kit ver. 2 (Dye Plus; TaKaRa, Dalian, Japan),
141 according to the manufacturer's instructions. Three pairs of primers were used to obtain
142 the complete E gene: primers JE-E1-F (5'-AYCCTGGYTAYGCTTCCT-3', 868–886)
143 and JE-E1-R (5'-GTTCA GTCCACTCCTTGGYTCACA-3', 1545–1568) for E1;

144 primers JE-E2-F (5'-TACWGTAACWCCMAATGCTC-3', 1478–1497) and JE-E2-R
145 (5'-CCAGCACCTTGAGTTRG-3', 2074–2091) for E2; and primers JE-E3-F
146 (5'-GCTGGTRACAGTRAACCCCTTCGT-3', 2036–2059) and JE-E3-R
147 (5'-TTCTTGTGATGTCAATGGC-3', 2490–2509) for E3. The amplified products
148 were visualized by agarose gel electrophoresis (1%) and positive PCR products were
149 sent to Sangon Biotech (Shanghai) for sequencing.

150

151 *Infection rate and positive pools*

152 The minimum infection rate (MIR) of *C. tritaeniorhynchus* was estimated using the
153 following formula: (number of JEV-positive pools / total number of mosquitoes tested)
154 × 1000 (<https://www.cdc.gov/westnile/resourcepages/mosqsurvsoft.html>).

155 Positive pools were estimated as follows: (number of JEV-positive pools by
156 TaqMan real-time PCR / total pools of mosquitoes tested) × 100 [25].

157

158 *Phylogenetic analysis*

159 To construct a phylogenetic tree, representative JEV sequences were downloaded
160 from GenBank. In addition, the E genes of newly sequenced JEV from mosquitoes in
161 China from 2004 to 2016 were included. All newly generated sequences were
162 assembled and manually adjusted using the SeqMan program of DNASTAR
163 (DNASTAR, Madison, WI, USA). The multiple sequence alignment of E gene
164 sequences was analyzed using ClustalX ver. 2.0 [26]. The maximum likelihood (ML)
165 method in MEGA 5.05 [27] was used to construct phylogenetic trees based on the E
166 gene. Tamura-Nei distances and the gamma distribution with invariant sites (G+I)
167 formed the best nucleotide substitution model as recommended by the models function

168 in MEGA. The robustness of the tree was evaluated using 1,000 bootstrap replications.

169 Murray Valley encephalitis virus (MVEV) strain MVE-1-51 was used as the outgroup.

170

171 **Results**

172 *Total positive rate*

173 A total of 209,297 mosquitoes representing five genera were collected from 14
174 provinces in China during 2004–2016 and formed 3107 pools (Figure 1). Of these, 281
175 pools (9.04%) from 12 provinces (except Qinghai and Xinjiang) were JEV-positive (Ct
176 < 35).

177

178 *Distribution of JEV genotypes in mosquitoes*

179 The JEV obtained from the mosquitoes in China included three genotypes (G1, G3,
180 and G5). The distribution of G1 has expanded continuously. JEV G1 was detected in
181 Sichuan and Henan provinces in 2004, followed by Shanghai and Yunnan in 2005, and
182 subsequently in other provinces. Moreover, of the 281 positive pools, 278 (98.9%)
183 pools were JEV G1. JEV G1 was detected in Yunnan, Sichuan, Chongqing, Shaanxi,
184 Henan, Hunan, Hubei, Shanxi, Shandong, Liaoning, and Shanghai Provinces and Tibet.
185 The proportions of positive pools in Henan in 2004, Yunnan in 2005, and Shandong in
186 2008 were above 30%, those for Shanghai in 2005, Hubei in 2010, Shanxi in 2012, and
187 Shandong in 2016 were above 20%, and those from Sichuan in 2004, Yunnan in 2009,
188 and Shaanxi in 2012 were above 15%; the others were less than 10% (Table 1).

189 The results indicated that the infection rate of mosquitoes in China by JEV G1 has
190 been high since 2004. JEV G3 was detected from mosquitoes collected in Yunnan in
191 2005 and Chongqing in 2008. However, no JEV G3 has been detected from mosquitoes

192 collected in these two regions or any other area since then. Moreover, JEV G5 was
193 detected only in Tibet in 2009. This pool positive for G5 was the same pools from
194 which the XZ0934 strain was isolated from Tibet in 2009. Although JEV is widely
195 distributed in nature in China, no JEV was detected in Qinghai or Xinjiang.

196

197 *Infection rate of C. tritaeniorhynchus*

198 More than 200,000 mosquitoes were collected, of which 44.71% were *C.*
199 *tritaeniorhynchus*. Of the JEV-positive pools, 82.56% (232/281) were *C.*
200 *tritaeniorhynchus*, indicating that *C. tritaeniorhynchus* is the major vector for JEV
201 transmission. No *C. tritaeniorhynchus* was collected in Xinjiang and Qinghai. The MIR
202 of *C. tritaeniorhynchus* ranged from 0.41 to 9.99 in different provinces and the highest
203 MIR value was found in Yunnan in 2005 (Table 2).

204

205 *Phylogenetic analysis of JEV*

206 The E fragments of all positive specimens were amplified by qPCR and 63 JEV G1
207 sequences were obtained. Thirteen sequences were excluded because they were found in
208 the same-pools in previous studies. The sequence alignment showed that these 13
209 sequences were identical to the published sequences. Therefore, 50 new E gene
210 sequences of JEV G1 were obtained.

211 A ML tree was constructed based on the complete E gene to establish the
212 phylogenetic relationships of JEV (G1–G5) strains downloaded from GenBank and the
213 50 new JEV sequences. MVEV strain MVE-1-51 was used as the outgroup. Figure 2
214 shows the phylogenetic tree constructed from the data in Table 3. The new JEV

215 sequences were dispersed in the two main G1 lineages. No obvious geographical
216 aggregation was observed for the JEV strains from China.

218 **Discussion**

219 The prevalence and distribution of JEV in nature in China involved G1, G3, and
220 G5. No G2 or G4 was found. All 50 JEV sequences newly identified in this study
221 belonged to G1 based on the phylogenetic analysis and TaqMan real-time RT-PCR
222 assay. Consistent with previous studies, *C. tritaeniorhynchus* was the most important
223 JEV-transmitting mosquito, which transmits the virus in a mosquito–pig cycle and
224 human infection [28]. No JEV was detected in Qinghai and Xinjiang Provinces.

225 Historically, cell cultures and traditional PCR are used to verify JEV. In this study,
226 we not only detected JEV but also distinguished the genotypes based on the established
227 TaqMan real-time RT-PCR assay. This method showed high specificity, sensitivity, and
228 reproducibility, and reflected the distribution of JEV reliably and accurately in mainland
229 China. In addition, two target fragment sequences of G3 were not obtained due to their
230 high Ct values with qPCR amplification.

231 Although the mosquitoes in this study were found in a wide range of geographical
232 areas in China over a long period, all of the obtained information was limited to
233 mosquitoes. Therefore, we need to obtain additional data from different hosts, such as
234 humans, pigs, and birds. Only comprehensive information can promote further
235 understanding of the distribution of JEV and changes in its genotypes. Some studies
236 have confirmed G5 in South Korea in recent years [18, 29]. Therefore, the potential
237 impact of JEV G5 from a neighboring country cannot be neglected.

238 Encephalitis caused by mosquito-borne JEV is serious. JE is classified as a Class B
239 infectious disease in China. Long-term passive surveillance data indicate that cases of
240 JE have been reported throughout mainland China, except Xinjiang, Qinghai, and Tibet
241 [30-31]. At present, there are no effective antiviral drugs against JE and vaccination is

242 regarded as the most economical and effective preventive method. Only four JE
243 vaccines have been approved by the World Health Organization: JEEV and JEEV
244 Pediatric in India, Live-SA14-14-2 in China, and IMOJEV.MD in Thailand. All of these
245 JE vaccines are based on JEV G3 strains. Some *in vitro* and *in vivo* studies have shown
246 that these JE vaccines derived from G3 strains do not provide adequate protection
247 against G5 [32-33] and have reduced neutralizing capacity against G1 [34].

248 Therefore, preventive strategies applied to disease control caused by JEV are
249 necessary. More detailed studies are needed to address selection pressure, antigenicity,
250 and the pathogenicity features of JEV following large-scale application of inactivated or
251 live attenuated vaccines derived from G3 strains. From a public health perspective, it
252 will also be important to prepare JEV vaccines against G1 and G3 simultaneously or
253 even against the potential threat from JEV G5 and emerging new genotypes.

254

255 **Author contribution:**

256 Huanyu Wang designed the study; Nan Shao, Shihong Fu, Fan Li, Weijia Zhang and
257 Qianying Wang performed the experiments; Nan Shao, Shihong Fu, Wenwen Lei and
258 Ying He performed mosquito collection; Yuxi Cao and Guodong Liang contributed to
259 drafting and editing the paper; all authors reviewed the manuscript.

260

261 **Conflict of interest:**

262 All authors declare that they have no competing conflicts of interests, no competing
263 financial interests

264

265 **Acknowledgments**

266 We are grateful to the people from the relevant Centers for Disease Control for
267 participating in sample collection.

269 **References**

270 [1] Solomon T. Flavivirus encephalitis. *N Engl J Med.* 2004;351: 370-378.

271 [2] Wang JL, Pan XL, Zhang HL, Fu SH, Wang HY, Tang Q, et al. Japanese
272 Encephalitis Viruses from Bats in Yunnan, China. *Emerg Infect Dis.* 2009;15: 939-942.

273 [3] Solomon T. Control of Japanese encephalitis--within our grasp?. *N Engl J Med.*
274 2006;355: 869-871.

275 [4] Seo H, Kim HC, Klein TA, Ramey AM, Lee J, Kyung S, et al. Molecular Detection
276 and Genotyping of Japanese Encephalitis Virus in Mosquitoes during a 2010 Outbreak
277 in the Republic of Korea. *PLoS One.* 2013;8: e55165.

278 [5] Wang HY, Liang GD. Epidemiology of Japanese encephalitis: past, present, and
279 future prospects. *Ther Clin Risk Manag.* 2015;11: 435-448.

280 [6] Erlanger T E, Weiss S, Keiser J, Utzinger J, Wiedenmayer K. Past, Present, and
281 Future of Japanese Encephalitis. *Emerg Infect Dis.* 2009;15: 1-7.

282 [7] Heffelfinger JD, Li X, Batmunkh N, Grabovac V, Diorditsa S, Liyanage JB,
283 Pattamadilok S, et al. Japanese Encephalitis Surveillance and Immunization - Asia and
284 Western Pacific Regions, 2016. *MMWR. Morb Mortal Wkly Rep.* 2017;66: 579-583.

285 [8] Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, et al.
286 Estimated global incidence of Japanese encephalitis: a systematic review. *Bull World
287 Health Organ.* 2011;89: 766-774, 774A.

288 [9] Tom Solomon, Dung NM, Rachel Kneen, Mary Gainsborough, David W Vaughn,
289 Khanh VT. Japanese encephalitis. *J Neurol Neurosurg Psychiatry.* 2000;68: 405-415.

290 [10] Zhang JS, Zhao QM, Guo XF, Zuo SQ, Cheng JX, Jia N, et al. Isolation and
291 genetic characteristics of human genotype 1 Japanese encephalitis virus, China, 2009.
292 *PLoS One.* 2011;6: e16418.

293 [11] Sumiyoshi H, Mori C, Fuke I, Morita K, Kuhara S, Kondou J, et al. Complete
294 nucleotide sequence of the Japanese encephalitis virus genome RNA. *Virology*.
295 1987;161: 497-510.

296 [12] Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization,
297 expression, and replication. *Annu Rev Microbiol*. 1990;44: 649-688.

298 [13] Solomon T, Ni H, Beasley DW, Ekkelenkamp M, Cardosa MJ, Barrett AD. Origin
299 and evolution of Japanese encephalitis virus in southeast Asia. *J Virol*. 2003;77:
300 3091-3098.

301 [14] Uchil P D, Satchidanandam V. Phylogenetic analysis of Japanese encephalitis
302 virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and
303 multiple introductions of the virus into the Indian subcontinent. *Am J Trop Med Hyg*.
304 2001;65: 242-251.

305 [15] Hale JH, Lim KA, Chee PH. Japanese type B encephalitis in Malaya. *Ann Trop
306 Med Parasitol*. 1952;46: 220-226.

307 [16] Mohammed M A F, Galbraith SE, Radford AD, Dove W, Takasaki T, Kurane I, et
308 al. Molecular phylogenetic and evolutionary analyses of Muar strain of Japanese
309 encephalitis virus reveal it is the missing fifth genotype. *Infect Genet Evol*. 2011;11:
310 855-862.

311 [17] Li MH, Fu SH, Chen WX, Wang HY, Guo YH, Liu QY, et al. Genotype v
312 Japanese encephalitis virus is emerging. *PLoS Negl Trop Dis*. 2011;5: e1231.

313 [18] Takhampunya R, Kim H, Tippayachai B, Kengluecha A, Klein T A, Lee W, et al.
314 Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. *Virol J*.
315 2011;8: 449.

316 [19] Schuh AJ, Ward MJ, Brown A J L, Barrett A D T. Phylogeography of Japanese
317 encephalitis virus: genotype is associated with climate. PLoS Negl Trop Dis. 2013;7:
318 e2411.

319 [20] Pan XL, Liu H, Wang HY, Fu SH, Liu HZ, Zhang HL, et al. Emergence of
320 Genotype I of Japanese Encephalitis Virus as the Dominant Genotype in Asia. J Virol.
321 2011;85: 9847-9853.

322 [21] Pham TT, Meng S, Sun Y, Lv W, Bahl J. Inference of Japanese encephalitis virus
323 ecological and evolutionary dynamics from passive and active virus surveillance.
324 Virus Evol. 2016;2: w9.

325 [22] Wang HY, Takasaki T, Fu SH, Sun XH, Zhang HL, Wang ZX, et al. Molecular
326 epidemiological analysis of Japanese encephalitis virus in China. J Gen Virol. 2007;88:
327 885-894.

328 [23] Gao X, Liu H, Li M, Fu S, Liang G. Insights into the evolutionary history of
329 Japanese encephalitis virus (JEV) based on whole-genome sequences comprising the
330 five genotypes. Virol J. 2015;12: 43.

331 [24] Shao N, Li F, Nie K, Fu SH, Zhang WJ, He Y, et al. TaqMan Real-time RT-PCR
332 Assay for Detecting and Differentiating Japanese Encephalitis Virus. Biomed Environ
333 Sci, 2018;31: 208-214.

334 [25] Chu H, Wu Z, Chen H, Li C, Guo X, Liu R, et al. Japanese Encephalitis Virus
335 Infection Rate and Detection of Genotype I From *Culex tritaeniorhynchus* Collected
336 From Jiangsu, China. Vector Borne Zoonotic Dis. 2017;17:503-509.

337 [26] Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H,
338 et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23: 2947-2948.

339 [27] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:
340 Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary
341 Distance, and Maximum Parsimony Methods. *Mol Biol Evol*. 2011;28: 2731-2739.

342 [28] Liang G, Li X, Gao X, Fu S, Wang H, Li M, et al. Arboviruses and their related
343 infections in China: A comprehensive field and laboratory investigation over the last 3
344 decades. *Rev Med Virol*. 2018;28: e1959.

345 [29] Kim H, Cha G, Jeong YE, Lee W, Chang KS, Roh JY, et al. Detection of Japanese
346 Encephalitis Virus Genotype V in *Culex orientalis* and *Culex pipiens* (Diptera:
347 Culicidae) in Korea. *PLoS One*. 2015;10: e116547.

348 [30] Wang H, Li Y, Liang X, Liang G. Japanese encephalitis in mainland china. *Jpn J
349 Infect Dis*. 2009;62: 331-336.

350 [31] Zheng Y, Li M, Wang H, Liang G. Japanese encephalitis and Japanese encephalitis
351 virus in mainland China. *Rev Med Virol*. 2012;22: 301-322.

352 [32] Cao L, Fu S, Gao X, Li M, Cui S, Li X, et al. Low Protective Efficacy of the
353 Current Japanese Encephalitis Vaccine against the Emerging Genotype 5 Japanese
354 Encephalitis Virus. *PLoS Negl Trop Dis*. 2016;10: e4686.

355 [33] Moi ML, Yagasaki K, Tajima S, Nakayama E, Takasaki T, Saito M, et al. In vitro
356 growth, pathogenicity and serological characteristics of the Japanese encephalitis virus
357 genotype V Muar strain. *J Gen Virol*. 2015;96: 2661-2669.

358 [34] Fan YC, Chen JM, Chiu HC, Chen YY, Lin JW, Shih CC, et al. Partially
359 neutralizing potency against emerging genotype I virus among children received
360 formalin-inactivated Japanese encephalitis virus vaccine. *PLoS Negl Trop Dis*. 2012;6:
361 e1834.

362

363 **Figure legends**

364 **Figure 1.** Geographical distribution of Japanese encephalitis virus (JEV) in mainland

365 China.

366 The distribution of JEV was visualized by using the software ArcGIS 9.3(ESRI Inc.,

367 Redlands, CA, USA).

368 Abbreviations: AH, Anhui; BJ, Beijing; CQ, Chongqing; FJ, Fujian; GD, Guangdong;

369 GS, Gansu; GZ, Guizhou; GX, Guangxi; HuN, Hunan; HuB, Hubei; HN, Henan; HB,

370 Hebei; HaiN, Hainan; HLJ, Heilongjiang; IMG, Inner Mongolia; JL, Jilin; JS, Jiangsu;

371 LN, Liaoning; NX, Ningxia; QH, Qinghai; SC, Sichuan; SaX, Shaanxi; SX, Shanxi; SD,

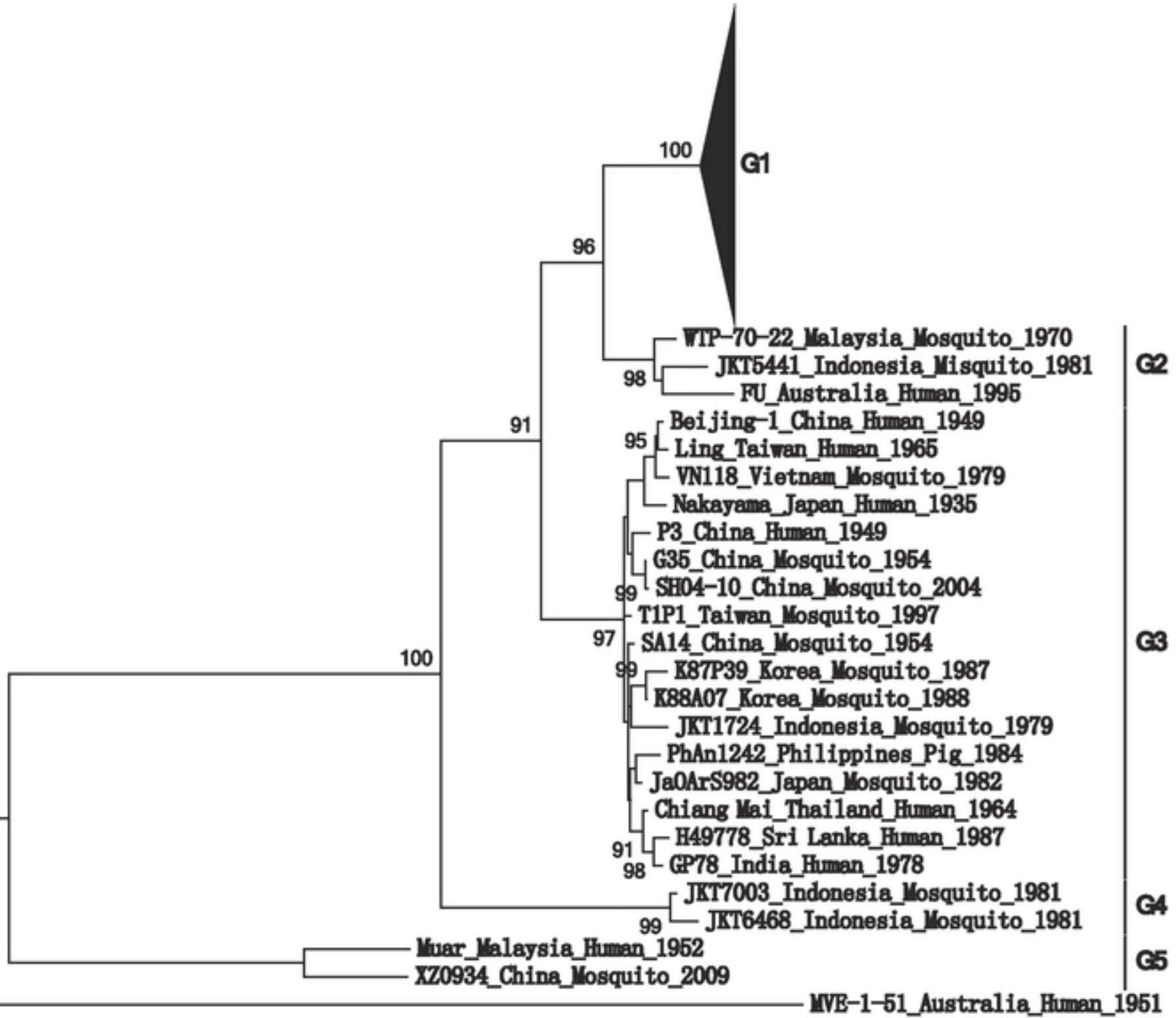
372 Shandong; SH, Shanghai; TJ, Tianjin; XJ, Xinjiang; XZ, Tibet; YN, Yunnan; ZJ,

373 Zhejiang

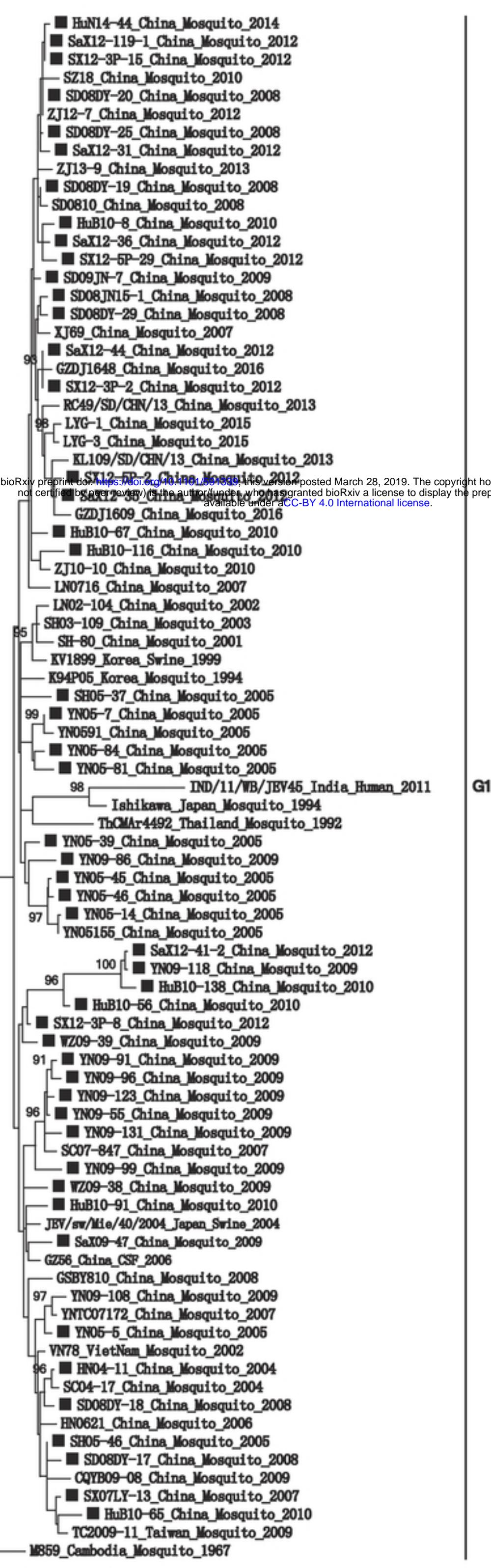
374

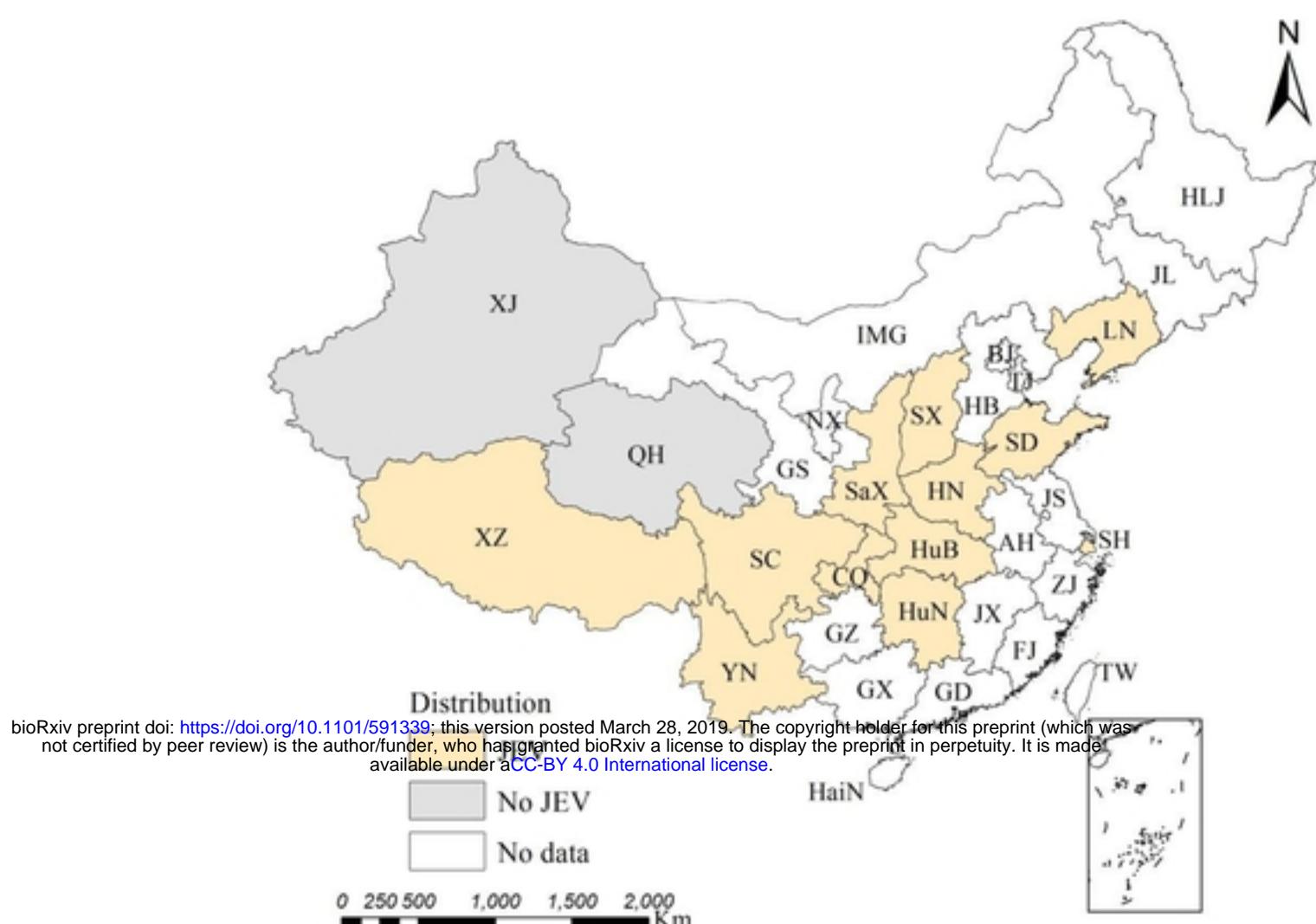
375 **Figure 2.** Phylogenetic analysis based on the envelope (E) gene of JEV. The newly

376 sequenced JEV sequences used in this study are marked with squares.


377

378 The English in this document has been checked by at least two professional editors,


379 both native speakers of English. For a certificate, please see:


380

381 <http://www.textcheck.com/certificate/l0Th6G>

0.1

Figure