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Abstract

Background. Conus consorsis a fish-hunting cone snail that livesin the tropical waters of the
Indo-Pacific region. Cone snails have attracted scientific interest for the amazing potency of their
venom, which consists of a complex mixture of small proteins known as conopeptides, many of

which act asion channel and receptor modulators with high selectivity.

Results. We have analysed publicly available transcriptomic sequences from 8 tissues of Conus
consors and complemented the transcriptome data with the data from genomic DNA reads. We
identified 17,715 full-length protein sequences from the transcriptome. In addition, we predicted
168 full-length or partial conopeptide sequences and characterized gene structures of several

conopeptide superfamilies.

Introduction

Conus consors is a marine gastropod of the species-rich and highly diverse Mollusca phylum and
we present the first extensive study of this organism from a genomic point of view. Thefirst few
genomes from this phylum (California sea hare, pearl oyster, Pacific oyster, owl limpet, octopus,
and a freshwater snail) have only recently been sequenced (Takeuchi et al., 2012; Zhang et al.,
2012; Simakov et al., 2013; Albertin et al., 2015; Adema et al., 2017) The phylogenetic position
of C. consorsisprovided in Figure 1, which was constructed with particular reference to the

other mollusc species for which genomic data are available.

C. consorsis amember of the Conoidea superfamily that consists of more than 700 species
worldwide (Puillandre et al., 2014; Lavergne et al., 2015; Gao et al., 2017). C. consorslivesin

the tropical waters of the Indo-Pacific, inhabits sub-tidal coastlines, but is also found at depths of
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up to 200 meters, where it buriesitself under sand and silt for shelter

(http://biology.burke.washington.edu/conus/).
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Figure 1. Phylogenetic position of C. consorsin relation to some model organismswith
sequenced genomes. The divergence times were obtained from the "Timetree of life" project
(Hedges et al., 2015). Phylogenetic relationships within the Mollusca phylum are based on
(Smith et al., 2011b) and (Kocot et al., 2011). The nodes included in the grey box are not time-

scaled.

The cone snails have attracted scientific interest because of their pharmacologically active

venom, which may provide leadsin the search for novel drugs. The venom is a complex mixture
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of small peptides, termed conopeptides, that primarily act asion channel modulators (Han et al.,
2008; Favreau & Stocklin, 2009; Lewis et al., 2012; Neves et a., 2015; Mir et al., 2016; Liu et
al., 2018). When C. consorsinjects afish with its venom, the fish is paralyzed within a few
seconds and secured via a harpoon-like device. This“hook and line” strategy (Olivera, 1997) is

unique to cone snails and makes up for their inability to chase prey.

Previous peptidomic and proteomic studies have revealed that the venom of cone snailsisa
complex mixture of several hundred peptides that shows both inter- and intra-species specific
variability (Biass et a., 2009; Dutertre et al., 2010, 2013, 2014; Abdel-Rahman et al., 2011; Fu et
al., 2018). Some variations in venom properties are linked to predation or defence stimuli

(Dutertre et al., 2014).

To gain ingght into the complexity of C. consors, we analysed transcriptome and genome

sequences with the focus on gene content.

Materialsand M ethods

Transcriptome assembly

For assembly, we used publicly available sequencing reads generated by the CONCO consortium
(Project #PRINA271554 at NCBI SRA database). The transcriptome assembly included three
steps. pre-processing of raw reads, separate assembly of tissue-specific transcriptomes from eight
different tissues (venom duct, salivary gland, nerve ganglion, osphradium, mantle, foot,
proboscis, and venom bulb) and combining transcriptomes into one non-redundant transcriptome

Set.
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For pre-processing we trimmed the low quality 3'-ends of Illumina paired-end reads with the
FASTQ Quality Trimmer from the FASTX Toolkit package version 0.0.13

(http://hannonlab.cshl.edu/fastx_toolkit/) using the quality cut-off (“-t”) at 30 and set the

minimum length of the reads (“-I") at 50 bp. We cleaned the reads with DeconSeq 0.4.1

(Schmieder & Edwards, 2011) and almost 850 million reads remained (in total ~800 Gbps).

For assembly of the transcriptome, we used the Trinity assembler (version 2012-06-08)
(Grabherr et al., 2011) to create de novo transcripts for each sample with a minimum assembled

contig length (“--min_contig_length”) set to 201 nucleotides.

Finally, in order to obtain a non-redundant set of sequences, we clustered the transcripts with
CD-HIT-EST (Li & Godzik, 2006) using a sequence identity threshold (“-c”) of 0.98. The

clustered transcriptome set is called the TRINITY transcriptome.

Genome assembly

We have used publicly available sequencing reads generated by the CONCO consortium using a
Roche 454 Genome Sequencer and an Illumina/Solexa GAIl (Project #PRINA267645 at NCBI
SRA database). The average lengths of Roche 454 and Illumina reads were 354 bp and 104 bp,
respectively. Four different types of datawere used for the genome assembly: Roche 454
shotgun-sequenced reads, artificial 454 reads from an Illumina preliminary assembly with
SOAPdenovo, six libraries of Illumina paired-end reads (300 bp and 600 bp insert sizes), and
three libraries of 1llumina mate pair reads (1.2 kbp, 3 kbp, and 7 kbp insert sizes). Detailed

specifications for these libraries are provided in Supplemental Article S1.
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91  During pre-processing, low quality 3" ends of Roche 454 and Illumina reads were trimmed with
92 the FASTQ Quality Trimmer. A quality cut-off (“-t”) was set to 30 and the minimum length of
93 thereads (“-I”) was set to 50 bp. Consequently, reads were cleaned of human and bacterial

94  contamination with DeconSeq 0.4.1. Identity (“-i”) and coverage (“-c”) cut-offs of 90% were
95  used when scanning reads against human genome NCBI GRCh37 patch release 8 and 2,370

96 different bacterial strains. For the third step, SeqClean (version 2011-02-22)

97  (https.//sourceforge.net/proj ects/seqclean/) was used to remove any vector contaminations,

98 linkers or adapter sequences. Tool was executed with default parameters excepting a minimum
99 length of valid reads ("-I 50”), trimming of polyA/T tails, and low-complexity screening was
100 disabled ("-A -L"). Reads were scanned against UniVec database build 7.0

101 (http://www.nchi.nlm.nih.gov/tools/vecscreen/univec/) to remove any vector sequences.

102 Assembly included two distinct steps. At first, SOAPdenovo 2.04 (Luo et al., 2012) was used to
103  createtheinitial genome assembly with Illumina paired-end/mate-pair reads. The goal wasto
104  create 454 “pseudo-reads’ from the Illumina assembly as additional input data for Newbler.

105  SOAPdenovo was applied with ak-mer word size of 37. The SOAPdenovo assembly generated
106  many scaffolds that contained unresolved gaps (strings of “N”s). These scaffolds were split into
107 300 bp long sub-sequences with 200 bp overlaps to eliminate incorrect estimation of gap sizes
108  using EMBOSS splitter (Rice, Longden & Bleasby, 2000). As a second step, Newbler 2.7

109  (https.//sequencing.roche.com/) was run with the parameters “-large -rip -mi 98 -ml 100" to

110  assembleall three types of reads — 454 (maximum read length 1,892 bp), “pseudo” 454 (300 bp)
111 and lllumina (145 bp) — into one unique dataset. Contigs longer than 200 bp were reported in

112 final assembly.

113
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114  Discovery of full-length genesfrom the transcriptome
115  Wecompiled alist of full-length genes from the TRINITY transcriptome using the following

116  criteria

117 1. We sdlected transcripts that exhibit at least 95% of their length matched to the genome using a
118 BLASTN (version 2.2.22) (Altschul et al., 1997) alignment search. We performed unique

119  mapping by first finding pairwise alignments between a transcript and a genomic region where
120  thegiven alignment had the highest homology bitscore for both the transcript and genomic

121 regions (seeds). For each seed we added the alignments for which the same transcript had highest

122 alignment bitscore with the given genomic regions.

123 2. We annotated these transcripts using a BLASTX homology search against the UniRef100
124  database (Nov. 15, 2013) (Suzek et al., 2007). When homology to a given protein reached at
125  least 75%, we annotated the transcript with its putative corresponding protein. In cases where
126  there were multiple candidate proteins, we chose the one with highest cumulative alignment

127  bitscore.

128 3. The cumulative bitscore of all transcript alignments with a given protein had to be greater than

129  or equal to 100 bits.

130 4. All partial transcript homologies with a given protein had to be in the same translational

131  frame.

132 5. The Open Reading Frame (ORF) had to be in one single trandational frame, i.e. both the start

133 and stop codons were present in the same frame.
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134 6. The ORF start codon had to be located no more than 10 amino acids after the start of the first

135  aignment and the stop codon not more than 10 amino acids before the end of the last alignment.

136  Incaseswhere all of these criteriawere met, we assigned the protein from the UniRef100
137  database as the annotation of a given transcript and generated the predicted protein sequence

138  from the ORF.

139

140  Annotation of conopeptides
141  Weused four approaches to annotate conopeptide sequences from the assembled genome: 1) a
142  BLAST search against the UniProtK B/Swiss-Prot database (release 2012 _10) (The UniProt

143 Consortium, 2015); 2) aHMM search using software HMMER 3.0 (http://hmmer.org/) (Eddy,

144  2011) against conopeptide HMM profiles (Laht et al., 2012); 3) aBLAST search against peptide
145  sequences from C. consors venom proteomic data (Violette et al., 2012); and 4) aBLAST search
146  against conopeptide sequences predicted from the transcriptome data of C. consors. In all four
147  cases we applied an E-value cut-off of 10°. We ran the HMMER and BLAST searches with

148  default parameter values, except that we turned off the BLAST filtering option (-F F). We

149  discarded matches that covered less than 50% of the length of their respective HMM profiles.

150  We manually assessed the alignments and domain boundaries for all predictions.
151

152  Data availability

153  Draft genome assembly of the cone snail can be retrieved from the GenBank database with
154  following assembly ID: GCA _004193615. Gene and protein sequences predicted from

155  transcriptome are included in Supplemental Data $4 (in FASTA format).

8
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156

157 Results and Discussion

158  Transcriptome and genome assembly

159  Transcriptome assemblies were created with Trinity software using read libraries from eight

160  different tissues (venom duct, salivary gland, nerve ganglion, osphradium, mantle, foot,

161  proboscis, and venom bulb). The total number of transcripts (including isoforms) was 1,535,709
162  and ranged from 85,807 (“Foot” sample) to 240,307 (“Mantle’” sample) and contained around
163 1,062 Gbp of sequence. The average length of the resulting transcripts for all samples was 692
164  bp, N50 = 2,452 bp, and the longest sequence was 29,867 bp. After clustering the results from
165  eight sasmpleswith CD-HIT-EST, thefinal dataset contains 587,852 transcripts (~324 Gbp in
166  total). The transcriptome data was used to compile a full-length gene list and to predict

167  conopeptide genes.

168  For genome assembly we used a strategy similar to the one employed to assemble the genome of
169 thefireant Solenopsisinvicta (Wurm et al., 2011). Briefly, this strategy consisted of two major
170  steps: (a) assembly of IHluminareads (9 libraries, overall 51 Gbp of raw data) into larger contigs
171 using SOAPdenovo software and (b) combining the resulting Illumina contigs and original

172  paired-end reads from the [[lumina and unpaired reads from Roche 454 libraries (1 fragment

173 library, overall 6 Gbp of raw data) into afinal assembly using the software Newbler

174  (Supplemental Article S1 Figure 1). The assembly of Illuminareadsinto longer artificial reads
175  wasrequired because Newbler is not optimized to work with short Illuminareads. In step (b), the
176  origina Illuminareads were also included to provide additional information about the distance

177  between paired reads.
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178  Thefinal assembly of Conus consors genomic reads resulted in a 2,049 Mbp sequence consisting
179  of 2,688,687 scaffolds and contigs with an N50 size of 1,128 bp. Newbler software is able to

180  estimate the size of the entire genome based on k-mer frequency distribution. C. consors genome
181  wasestimated to be 3.025 Gbp, which is within the range of other cone snail genomes

182  (http://genomesize.com/). The genomic DNA resulting from this assembly is fragmentary;

183  nevertheless, the protein-coding exons are generally contiguous. Therefore, we were able to use
184 it asan additional source of information in gene prediction process and for characterization of

185  conopeptide gene structures.

186  The genome of C. consorsisrich in repeats. Approximately 49% of the genome sequence
187  contains repeated sequences, half of which are low-complexity (mononucleotide, dinucleotide,
188 trinucleotide and tetranucleotide) repeat elements. Detailed analysis of repeat elements present in

189  thegenomeis shown in Supplemental Article S1.

190

191  Coverage of coregenesin transcriptome and genome

192  To evauate the completeness of our transcriptome and genome assemblies we calculated the
193  length coverage of core genes from the Core Eukaryotic Genes Mapping Approach (CEGMA)
194  dataset (Parra, Bradnam & Korf, 2007; Parra et al., 2009). This dataset consists of 458 core

195  proteinsthat are universally present in 6 eukaryotic species. Homo sapiens, Drosophila

196  melanogagter, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae and
197  Schizosaccharomyces pombe. A similar method has previously been used to evaluate the quality
198  of two different ant genome assemblies (Smith et al. 2011; Wurm et al. 2011). Coverage

199  (fraction of amino acids detected by TBLASTN search using core protein dataset as a query) of

10
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200  coregenesin our transcriptome and genome data is shown in Figure 2. The median coverage of
201  coregenesis 99.7% for transcriptome and 93.4% for the genome. Similar genome coverage was
202 observed for other mollusc genomes (Supplemental Article S1). One has to take into account that
203 TBLASTN issomewhat limited in finding short exons in genome, thus the coverage of core

204  genes measured from genome will always be lower than coverage in transcriptome. An

205 illustration of core gene alignment from C. consors genome is shown in Figure 3.

206

& Coo mANA
HCco

Protein coverage
(fraction of amino acids detected by TBLASTN)

207 Core genes from CEGMA set, ordered by coverage

208  Figure 2. Coverage of 458 core proteins from the CEGMA dataset in C. consors transcriptome
209  and genome. Coverage is defined as fraction of amino acids detected by TBLASTN search using

210  core protein dataset as a query.

211 Gene content of C. consors
212 We predicted full-length protein sequences from the transcriptome data using a reciprocal

213 homology search between the transcriptome and the UniRef100 protein database. The genome

11
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214  sequence was used to confirm the existence of genes predicted from transcriptome. We consider
215  theresulting 17,715 full-length proteins to be areliable prediction of protein-coding sequences of
216  C. consors. The callection of mMRNASs and translated protein sequences in FASTA format is

217  availablein Supplemental Data $4. It hasto be kept in mind that the actual number of protein-
218  coding genesis somewhat larger due to the fact that transcriptome analysis cannot reveal genes

219  that are expressed at low levels, in other tissues or just temporarily.

220

>H54507761___K0G0003 (uBa52, ubiquitin A-52 residue ribosomal protein fusion product 1) Coverage: 128/128 (100%)
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQORL IFAGKQLEDGRTLSDYNIQKESTLHLYLRLRGGIIEPSLRQLAQKYNCDKMICRKCYARLHPRAVNCRKKKCGHTNNLRPKKKVEK

1 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEG 35
MOIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEG
11 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEG 115

Query 35 GIPPDOORLIFAGKQLEDGRTLSDYNIQK 69
GIPPDOORLIFAGKQLEDGRTLSDYNIQK
Sbjct 603 GIPPDQQRLIFAGKQLEDGRTLSDYNIQK 707

Query 64  ESTLHLVLRLRGGIIEPSLROLAQKYNCDKMICRK 98
ESTLHLVLRLRGGIIEPSLR LA KYNCDKMICRK
shjct 312 ESTLHLVLRLRGGIIEPSLRILASKYNCDKMICRK 416

query 98 CYARLHPRAVNCRKKKCGHTNNLRPKKKVE 128
CYARLHPRA NCRK+KCGHT+N+RPKKK+K
sbjct 970  CYARLHPRATNCRKRKCGHTSNIRPKKKLK 1062

221

222 Figure 3. Example of gene content in the genome. TBLASTN against the genome using

223 CEGMA (core protein set present in al eukaryotes) protein Hs4507761 as a query. Red and
224  green text denote location of alternating exonsin the human gene UBA52. Red orange and blue
225  boxes are matching regions from contigs or scaffolds of the C. consors genome. Alignment

226 between Hs4507761 and translated genomic DNA is shown in the middle.

227

12
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228  We anaysed the number of tRNA, rRNA and of other non-protein-coding genes using

229 tRNAScan-SE (Lowe & Eddy, 1997) and Infernal software (Nawrocki, Kolbe & Eddy, 2009).
230  Wedetected atotal of 761 different tRNA genesin the C. consors genome, 2500 miRNA genes
231 and many other types of RNA genes. Detailed analysis of RNA genes present in the genomeis
232 shown in Supplemental Article S1 and full list of detected RNA genesis shown in Supplemental

233  ArticleS1 Table 2.

234

235  Conopeptide sequences

236  Toidentify conopeptide sequences in the transcriptome and genome of C. consors, we used

237  several sources of datawith previously known conopeptide sequences or hidden Markov model
238  (HMM) profiles. Conopeptide sequences available in the UniProtK B/Swiss-Prot database (975
239  peptides from more than 30 different superfamilies), 64 conopeptide hidden Markov model

240  (HMM) profiles from 20 different superfamilies (Laht et al., 2012), 126 peptide sequences from
241 the C. consors proteome sequencing (Violette et al., 2012), and conopeptide precursor sequences
242  predicted from the transcriptome data (135 distinct precursor sequences from 23 different

243 superfamilies) were used. In addition to main transcriptome data we also used another dataset
244  (CC8 transcriptome), sequenced earlier. This additional transcriptome data originated from two
245  ESTslibraries constructed from venom duct and salivary gland tissues. The procedure for

246  obtaining CC8 transcriptome sequences is described in (Terrat et al., 2012). The genome

247  sequence was also checked for potential conopeptide genes in hope that it complements

248  transcriptome-based data.

13
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249  To estimate the overall number of conopeptides encoded by C. consors, we aligned predicted
250  protein sequences obtained from the genome, transcriptome, and proteome into multiple

251 alignments (Supplemental Data S3.). Sequences from different datasets exhibit clear clusters

252  with slight variations between individual sequences. Closely related sequences were merged into
253 clustersif the difference between sequences did not exceed 4 amino acids and the overall number
254  of sequence clusters was counted. Example of multiple alignment of sequences from the O1-

255  superfamily is shown in Figure 4. This way we estimated that C. consors could have at least 168
256  conopeptides: 27 with previously known sequence and 141 novel sequences. In addition, we list
257 46 dubious sequences, which were only detected in the genome and did not have any closely

258  related sequencein databases. These might be products of pseudogenes, products of wrongly

259  predicted genes or peptides with other functions. However, it is not excluded that some of these
260  "dubious’ clusters might represent novel conopeptides. The superfamiliesM, O1, and A

261  comprise about 42% of al identified conopeptidesin the C. consors (Table 1), whichisin

262  concordance with previously published data (Puillandre et al., 2012).

14
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264  Figure 4. Example of conopeptide gene clusters. A subset of O1 superfamily gene clustersis
265  shown. Red lines denote boundaries of gene clusters. Red dots indicate "dubious® genes, which

266 show some similarity with conopeptides, but are not counted as conopeptide genes.
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268  Table 1. Number of conopeptide genes predicted from the C. consors genome and
269  transcriptomes, ordered by superfamilies.

Super - Alignment UniProt Novel Dubious Total

Family genes genes genes
(present
in our
datasets)
A A - Cnl-like 5 0 0 5
A - CcTx-like 2 10 0 12
A - DAHPEG- 1 3 8 12
like
B B - Conantokin 0 2 1 3
B - Linear 1 1 0 2
conopeptide
C C - Contulakin 0 2 3 5
Conkunitzin 0 6 0 6
ConoCAP 0 3 0 3
Conodipine 1 3 2 6
Conophysin 0 8 4 12
Conoporin 1 13 0 14
11 11 0 5 0 5
12 12 0 3 0 3
13 13 0 2 1 3
J J 0 4 1 5
K K 0 3 2 5
M M - Cnlll-like 8 2 0 10
M - 0 16 3 19
Conomarphin-
like
o1 Ol - CnVI-like 3 7 11
Ol1-CnVlII- 5 11 6 22
like
02 02 0 7 1 8
02 - 0 1 3 4
Contryphan
O3 O3 0 7 2 9
P P 0 5 1 6
S S 0 9 1 10
T T 0 7 5 12
Vv Vv 0 1 1 2
TOTAL: 27 141 46 214

270
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271 Conopeptide genesin genome

272  The mgority of conopeptide superfamilies are known to contain introns that separate different
273 functional domains (Oliveraet al., 1999). The genome sequence allows us to identify the

274  genomic structure of some conopeptide genes. Sequences that code for signal, propeptide, and
275  mature peptide domains were retrieved for 15 conopeptides from 14 superfamilies (Figure 5). It
276 isnoteworthy that we can identify several different exon-intron organizations within the

277  conopeptide genes. The first exon of the most abundant type encodes for the complete signal
278  peptide sequence together with avariable length fragment of a pro-peptide, while the first exon
279  of genesencoding type A, 11, 13, and M conopeptides encode the entire signal sequence. Pro-
280  peptides appear to be encoded by one, two, or three different exons. Only conodipine genes are
281  devoid of pro-peptide sequences. Findly, in the unique case of J-conopeptides, their genes

282 appear to be made of a unigue encoding exon containing, successively, asignal, an N-terminus

283  pro- and a mature peptide, followed by a C-terminus pro-sequence.
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285  Figure5. Conopeptide gene structureswithin the genome of C. consors. Each sample
286  represents one conopeptide gene. The peptide coding sequences (CS) for signal, pro- and mature

287  peptides are represented by bold blue, green, and red lines. The length of each lineis
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288  proportional to the number of amino acids. The introns are represented as thin grey lines and the
289  length of the intron sequencesisindicated in nucleotides above each line. The symbol >’

290 indicates that this gene was not assembled into a single contig and that theintron length is

291 therefore not precisely known. Sequences of the conopeptide genes and additional information

292  areavailable in Supplementary Data S3.

293

294  Conclusions

295  The annotation of afish-hunting cone snail C. consors genome and transcriptome gives us a
296  closer opportunity to peek into the complexity of its genes. The analysis of the combined eight
297  different transcriptomic and genomic datasets resulted 17,715 full-length protein sequences. In
298  addition, 168 conopeptide sequences were identified and in several cases the gene structures of
299  conopeptide superfamilies were characterized. We have found several gene coding clusters that

300  might represent novel conopeptides and are therefore good candidates for future studies.

301

302 Supplemental infor mation

303 Thefollowing additional data are available with the online version of this paper. Supplemental
304  Article S1 contains adetailed description of all supplementary analysis and methods.

305  Supplemental Data S2 contains list of predicted RNA genes, clustered by RFam category.

306 Supplemental Data S3 contains alignments of conopeptides from each superfamily. Gene and
307  protein sequences predicted from transcriptome are included in Supplemental Data $4 as two
308  separate FASTA format files.

309
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