

1 **Gene content of the fish-hunting cone snail *Conus consors***

2 Reidar Andreson^{1,2,3}, Märt Roosaare¹, Lauris Kaplinski^{1,2}, Silja Laht^{1,2}, Triinu Kõressaar¹,
3 Maarja Lepamets¹, Age Brauer^{1,2}, Viktorija Kukuškina² and Maido Remm^{1,2}

4

5 1) Department of Bioinformatics, University of Tartu, Riia 23, EE-51010 Tartu, Estonia

6 2) Estonian Biocentre, Riia 23, EE-51010 Tartu, Estonia

7 3) Institute of Genomics, Riia 23, EE-51010 Tartu, Estonia

8

9 Corresponding author: Reidar Andreson

10 Email: reidar.andreson@ut.ee

11 Mailing address: 23 Riia str., EE-51010 Tartu, Estonia

12 Tel: +372-7374047

13

14

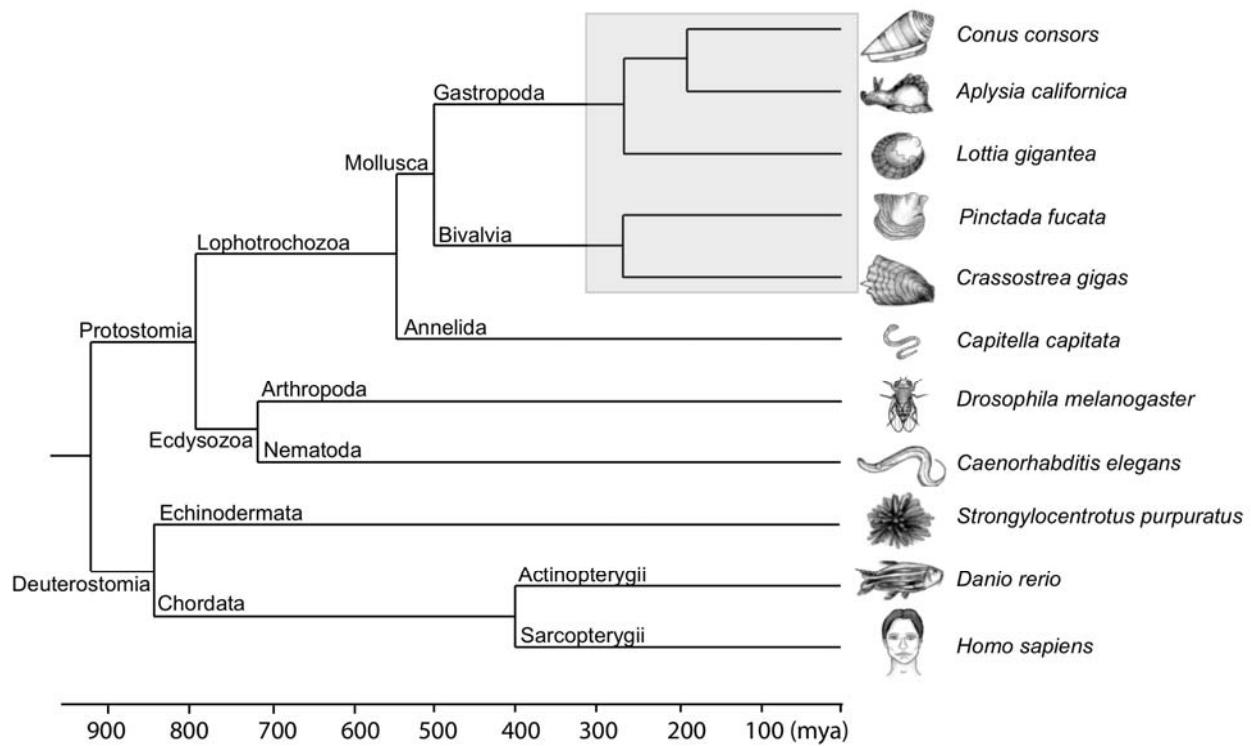
15 **Abstract**

16 **Background.** *Conus consors* is a fish-hunting cone snail that lives in the tropical waters of the
17 Indo-Pacific region. Cone snails have attracted scientific interest for the amazing potency of their
18 venom, which consists of a complex mixture of small proteins known as conopeptides, many of
19 which act as ion channel and receptor modulators with high selectivity.

20 **Results.** We have analysed publicly available transcriptomic sequences from 8 tissues of *Conus*
21 *consors* and complemented the transcriptome data with the data from genomic DNA reads. We
22 identified 17,715 full-length protein sequences from the transcriptome. In addition, we predicted
23 168 full-length or partial conopeptide sequences and characterized gene structures of several
24 conopeptide superfamilies.

25

26 **Introduction**


27 *Conus consors* is a marine gastropod of the species-rich and highly diverse Mollusca phylum and
28 we present the first extensive study of this organism from a genomic point of view. The first few
29 genomes from this phylum (California sea hare, pearl oyster, Pacific oyster, owl limpet, octopus,
30 and a freshwater snail) have only recently been sequenced (Takeuchi et al., 2012; Zhang et al.,
31 2012; Simakov et al., 2013; Albertin et al., 2015; Adema et al., 2017) The phylogenetic position
32 of *C. consors* is provided in Figure 1, which was constructed with particular reference to the
33 other mollusc species for which genomic data are available.

34 *C. consors* is a member of the *Conoidea* superfamily that consists of more than 700 species
35 worldwide (Puillandre et al., 2014; Lavergne et al., 2015; Gao et al., 2017). *C. consors* lives in
36 the tropical waters of the Indo-Pacific, inhabits sub-tidal coastlines, but is also found at depths of

37 up to 200 meters, where it buries itself under sand and silt for shelter

38 (<http://biology.burke.washington.edu/conus/>).

39

41 **Figure 1. Phylogenetic position of *C. cossors* in relation to some model organisms with**
42 **sequenced genomes.** The divergence times were obtained from the "Timetree of life" project
43 (Hedges et al., 2015). Phylogenetic relationships within the *Mollusca* phylum are based on
44 (Smith et al., 2011b) and (Kocot et al., 2011). The nodes included in the grey box are not time-
45 scaled.

46

47 The cone snails have attracted scientific interest because of their pharmacologically active
48 venom, which may provide leads in the search for novel drugs. The venom is a complex mixture

49 of small peptides, termed conopeptides, that primarily act as ion channel modulators (Han et al.,
50 2008; Favreau & Stöcklin, 2009; Lewis et al., 2012; Neves et al., 2015; Mir et al., 2016; Liu et
51 al., 2018). When *C. consors* injects a fish with its venom, the fish is paralyzed within a few
52 seconds and secured *via* a harpoon-like device. This “hook and line” strategy (Olivera, 1997) is
53 unique to cone snails and makes up for their inability to chase prey.

54 Previous peptidomic and proteomic studies have revealed that the venom of cone snails is a
55 complex mixture of several hundred peptides that shows both inter- and intra-species specific
56 variability (Biass et al., 2009; Dutertre et al., 2010, 2013, 2014; Abdel-Rahman et al., 2011; Fu et
57 al., 2018). Some variations in venom properties are linked to predation or defence stimuli
58 (Dutertre et al., 2014).

59 To gain insight into the complexity of *C. consors*, we analysed transcriptome and genome
60 sequences with the focus on gene content.

61

62 **Materials and Methods**

63 **Transcriptome assembly**

64 For assembly, we used publicly available sequencing reads generated by the CONCO consortium
65 (Project #PRJNA271554 at NCBI SRA database). The transcriptome assembly included three
66 steps: pre-processing of raw reads, separate assembly of tissue-specific transcriptomes from eight
67 different tissues (venom duct, salivary gland, nerve ganglion, osphradium, mantle, foot,
68 proboscis, and venom bulb) and combining transcriptomes into one non-redundant transcriptome
69 set.

70 For pre-processing we trimmed the low quality 3'-ends of Illumina paired-end reads with the
71 FASTQ Quality Trimmer from the FASTX Toolkit package version 0.0.13
72 (http://hannonlab.cshl.edu/fastx_toolkit/) using the quality cut-off (“-t”) at 30 and set the
73 minimum length of the reads (“-l”) at 50 bp. We cleaned the reads with DeconSeq 0.4.1
74 (Schmieder & Edwards, 2011) and almost 850 million reads remained (in total ~800 Gbps).

75 For assembly of the transcriptome, we used the Trinity assembler (version 2012-06-08)
76 (Grabherr et al., 2011) to create *de novo* transcripts for each sample with a minimum assembled
77 contig length (“--min_contig_length”) set to 201 nucleotides.

78 Finally, in order to obtain a non-redundant set of sequences, we clustered the transcripts with
79 CD-HIT-EST (Li & Godzik, 2006) using a sequence identity threshold (“-c”) of 0.98. The
80 clustered transcriptome set is called the TRINITY transcriptome.

81

82 **Genome assembly**

83 We have used publicly available sequencing reads generated by the CONCO consortium using a
84 Roche 454 Genome Sequencer and an Illumina/Solexa GAII (Project #PRJNA267645 at NCBI
85 SRA database). The average lengths of Roche 454 and Illumina reads were 354 bp and 104 bp,
86 respectively. Four different types of data were used for the genome assembly: Roche 454
87 shotgun-sequenced reads, artificial 454 reads from an Illumina preliminary assembly with
88 SOAPdenovo, six libraries of Illumina paired-end reads (300 bp and 600 bp insert sizes), and
89 three libraries of Illumina mate pair reads (1.2 kbp, 3 kbp, and 7 kbp insert sizes). Detailed
90 specifications for these libraries are provided in Supplemental Article S1.

91 During pre-processing, low quality 3' ends of Roche 454 and Illumina reads were trimmed with
92 the FASTQ Quality Trimmer. A quality cut-off ("‐t") was set to 30 and the minimum length of
93 the reads ("‐l") was set to 50 bp. Consequently, reads were cleaned of human and bacterial
94 contamination with DeconSeq 0.4.1. Identity ("‐i") and coverage ("‐c") cut-offs of 90% were
95 used when scanning reads against human genome NCBI GRCh37 patch release 8 and 2,370
96 different bacterial strains. For the third step, SeqClean (version 2011-02-22)
97 (<https://sourceforge.net/projects/seqclean/>) was used to remove any vector contaminations,
98 linkers or adapter sequences. Tool was executed with default parameters excepting a minimum
99 length of valid reads ("‐l 50"), trimming of polyA/T tails, and low-complexity screening was
100 disabled ("‐A ‐L"). Reads were scanned against UniVec database build 7.0
101 (<http://www.ncbi.nlm.nih.gov/tools/vecscren/univec/>) to remove any vector sequences.

102 Assembly included two distinct steps. At first, SOAPdenovo 2.04 (Luo et al., 2012) was used to
103 create the initial genome assembly with Illumina paired-end/mate-pair reads. The goal was to
104 create 454 "pseudo-reads" from the Illumina assembly as additional input data for Newbler.
105 SOAPdenovo was applied with a k-mer word size of 37. The SOAPdenovo assembly generated
106 many scaffolds that contained unresolved gaps (strings of "N"s). These scaffolds were split into
107 300 bp long sub-sequences with 200 bp overlaps to eliminate incorrect estimation of gap sizes
108 using EMBOSS splitter (Rice, Longden & Bleasby, 2000). As a second step, Newbler 2.7
109 (<https://sequencing.roche.com/>) was run with the parameters "‐large ‐rip ‐mi 98 ‐ml 100" to
110 assemble all three types of reads – 454 (maximum read length 1,892 bp), "pseudo" 454 (300 bp)
111 and Illumina (145 bp) – into one unique dataset. Contigs longer than 200 bp were reported in
112 final assembly.

113

114 **Discovery of full-length genes from the transcriptome**

115 We compiled a list of full-length genes from the TRINITY transcriptome using the following
116 criteria:

117 1. We selected transcripts that exhibit at least 95% of their length matched to the genome using a
118 BLASTN (version 2.2.22) (Altschul et al., 1997) alignment search. We performed unique
119 mapping by first finding pairwise alignments between a transcript and a genomic region where
120 the given alignment had the highest homology bitscore for both the transcript and genomic
121 regions (seeds). For each seed we added the alignments for which the same transcript had highest
122 alignment bitscore with the given genomic regions.

123 2. We annotated these transcripts using a BLASTX homology search against the UniRef100
124 database (Nov. 15, 2013) (Suzek et al., 2007). When homology to a given protein reached at
125 least 75%, we annotated the transcript with its putative corresponding protein. In cases where
126 there were multiple candidate proteins, we chose the one with highest cumulative alignment
127 bitscore.

128 3. The cumulative bitscore of all transcript alignments with a given protein had to be greater than
129 or equal to 100 bits.

130 4. All partial transcript homologies with a given protein had to be in the same translational
131 frame.

132 5. The Open Reading Frame (ORF) had to be in one single translational frame, i.e. both the start
133 and stop codons were present in the same frame.

134 6. The ORF start codon had to be located no more than 10 amino acids after the start of the first
135 alignment and the stop codon not more than 10 amino acids before the end of the last alignment.

136 In cases where all of these criteria were met, we assigned the protein from the UniRef100
137 database as the annotation of a given transcript and generated the predicted protein sequence
138 from the ORF.

139

140 **Annotation of conopeptides**

141 We used four approaches to annotate conopeptide sequences from the assembled genome: 1) a
142 BLAST search against the UniProtKB/Swiss-Prot database (release 2012_10) (The UniProt
143 Consortium, 2015); 2) a HMM search using software HMMER 3.0 (<http://hmmer.org/>) (Eddy,
144 2011) against conopeptide HMM profiles (Laht et al., 2012); 3) a BLAST search against peptide
145 sequences from *C. consors* venom proteomic data (Violette et al., 2012); and 4) a BLAST search
146 against conopeptide sequences predicted from the transcriptome data of *C. consors*. In all four
147 cases we applied an E-value cut-off of 10^{-5} . We ran the HMMER and BLAST searches with
148 default parameter values, except that we turned off the BLAST filtering option (-F F). We
149 discarded matches that covered less than 50% of the length of their respective HMM profiles.
150 We manually assessed the alignments and domain boundaries for all predictions.

151

152 **Data availability**

153 Draft genome assembly of the cone snail can be retrieved from the GenBank database with
154 following assembly ID: GCA_004193615. Gene and protein sequences predicted from
155 transcriptome are included in Supplemental Data S4 (in FASTA format).

156

157 **Results and Discussion**

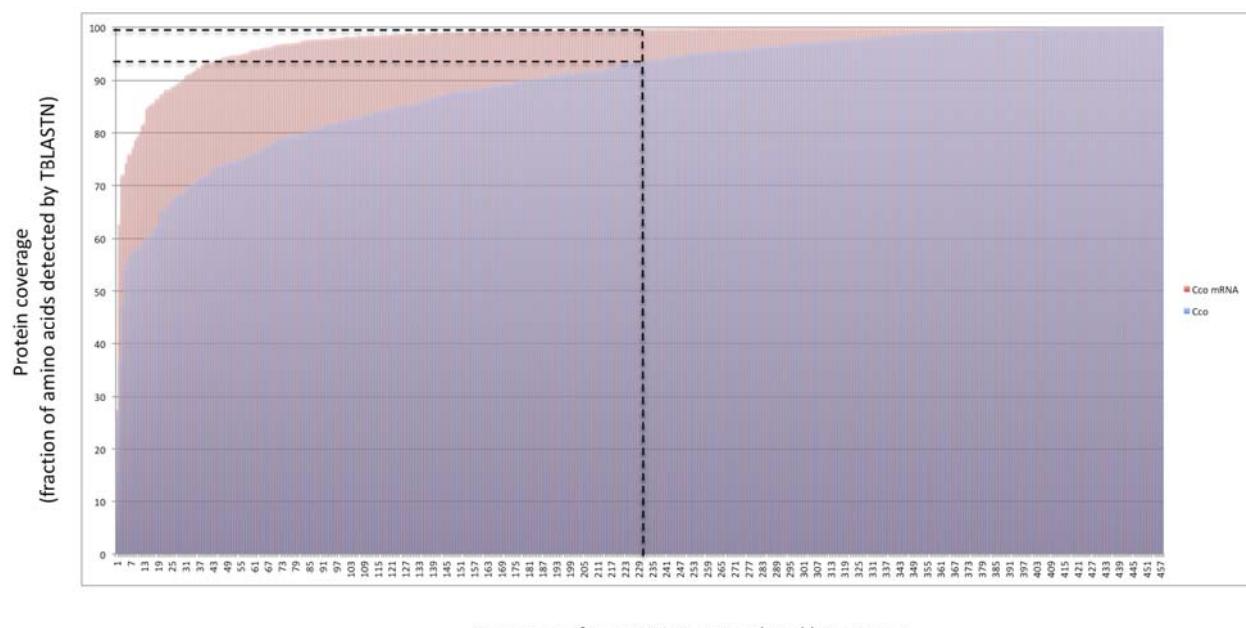
158 **Transcriptome and genome assembly**

159 Transcriptome assemblies were created with Trinity software using read libraries from eight
160 different tissues (venom duct, salivary gland, nerve ganglion, osphradium, mantle, foot,
161 proboscis, and venom bulb). The total number of transcripts (including isoforms) was 1,535,709
162 and ranged from 85,807 (“Foot” sample) to 240,307 (“Mantle” sample) and contained around
163 1,062 Gbp of sequence. The average length of the resulting transcripts for all samples was 692
164 bp, N50 = 2,452 bp, and the longest sequence was 29,867 bp. After clustering the results from
165 eight samples with CD-HIT-EST, the final dataset contains 587,852 transcripts (~324 Gbp in
166 total). The transcriptome data was used to compile a full-length gene list and to predict
167 conopeptide genes.

168 For genome assembly we used a strategy similar to the one employed to assemble the genome of
169 the fire ant *Solenopsis invicta* (Wurm et al., 2011). Briefly, this strategy consisted of two major
170 steps: (a) assembly of Illumina reads (9 libraries, overall 51 Gbp of raw data) into larger contigs
171 using SOAPdenovo software and (b) combining the resulting Illumina contigs and original
172 paired-end reads from the Illumina and unpaired reads from Roche 454 libraries (1 fragment
173 library, overall 6 Gbp of raw data) into a final assembly using the software Newbler
174 (Supplemental Article S1 Figure 1). The assembly of Illumina reads into longer artificial reads
175 was required because Newbler is not optimized to work with short Illumina reads. In step (b), the
176 original Illumina reads were also included to provide additional information about the distance
177 between paired reads.

178 The final assembly of *Conus consors* genomic reads resulted in a 2,049 Mbp sequence consisting
179 of 2,688,687 scaffolds and contigs with an N50 size of 1,128 bp. Newbler software is able to
180 estimate the size of the entire genome based on k-mer frequency distribution. *C. consors* genome
181 was estimated to be 3.025 Gbp, which is within the range of other cone snail genomes
182 (<http://genomesize.com/>). The genomic DNA resulting from this assembly is fragmentary;
183 nevertheless, the protein-coding exons are generally contiguous. Therefore, we were able to use
184 it as an additional source of information in gene prediction process and for characterization of
185 conopeptide gene structures.

186 The genome of *C. consors* is rich in repeats. Approximately 49% of the genome sequence
187 contains repeated sequences, half of which are low-complexity (mononucleotide, dinucleotide,
188 trinucleotide and tetranucleotide) repeat elements. Detailed analysis of repeat elements present in
189 the genome is shown in Supplemental Article S1.


190

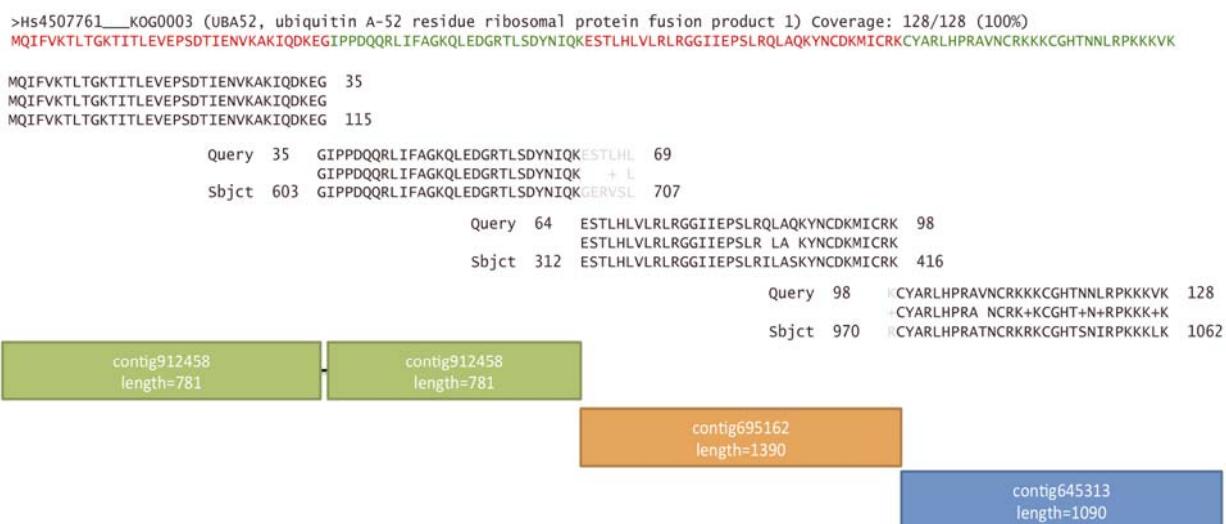
191 **Coverage of core genes in transcriptome and genome**

192 To evaluate the completeness of our transcriptome and genome assemblies we calculated the
193 length coverage of core genes from the Core Eukaryotic Genes Mapping Approach (CEGMA)
194 dataset (Parra, Bradnam & Korf, 2007; Parra et al., 2009). This dataset consists of 458 core
195 proteins that are universally present in 6 eukaryotic species: *Homo sapiens*, *Drosophila*
196 *melanogaster*, *Arabidopsis thaliana*, *Caenorhabditis elegans*, *Saccharomyces cerevisiae* and
197 *Schizosaccharomyces pombe*. A similar method has previously been used to evaluate the quality
198 of two different ant genome assemblies (Smith et al. 2011; Wurm et al. 2011). Coverage
199 (fraction of amino acids detected by TBLASTN search using core protein dataset as a query) of

200 core genes in our transcriptome and genome data is shown in Figure 2. The median coverage of
201 core genes is 99.7% for transcriptome and 93.4% for the genome. Similar genome coverage was
202 observed for other mollusc genomes (Supplemental Article S1). One has to take into account that
203 TBLASTN is somewhat limited in finding short exons in genome, thus the coverage of core
204 genes measured from genome will always be lower than coverage in transcriptome. An
205 illustration of core gene alignment from *C. consors* genome is shown in Figure 3.

206

207 Core genes from CEGMA set, ordered by coverage


208 **Figure 2.** Coverage of 458 core proteins from the CEGMA dataset in *C. consors* transcriptome
209 and genome. Coverage is defined as fraction of amino acids detected by TBLASTN search using
210 core protein dataset as a query.

211 **Gene content of *C. consors***

212 We predicted full-length protein sequences from the transcriptome data using a reciprocal
213 homology search between the transcriptome and the UniRef100 protein database. The genome

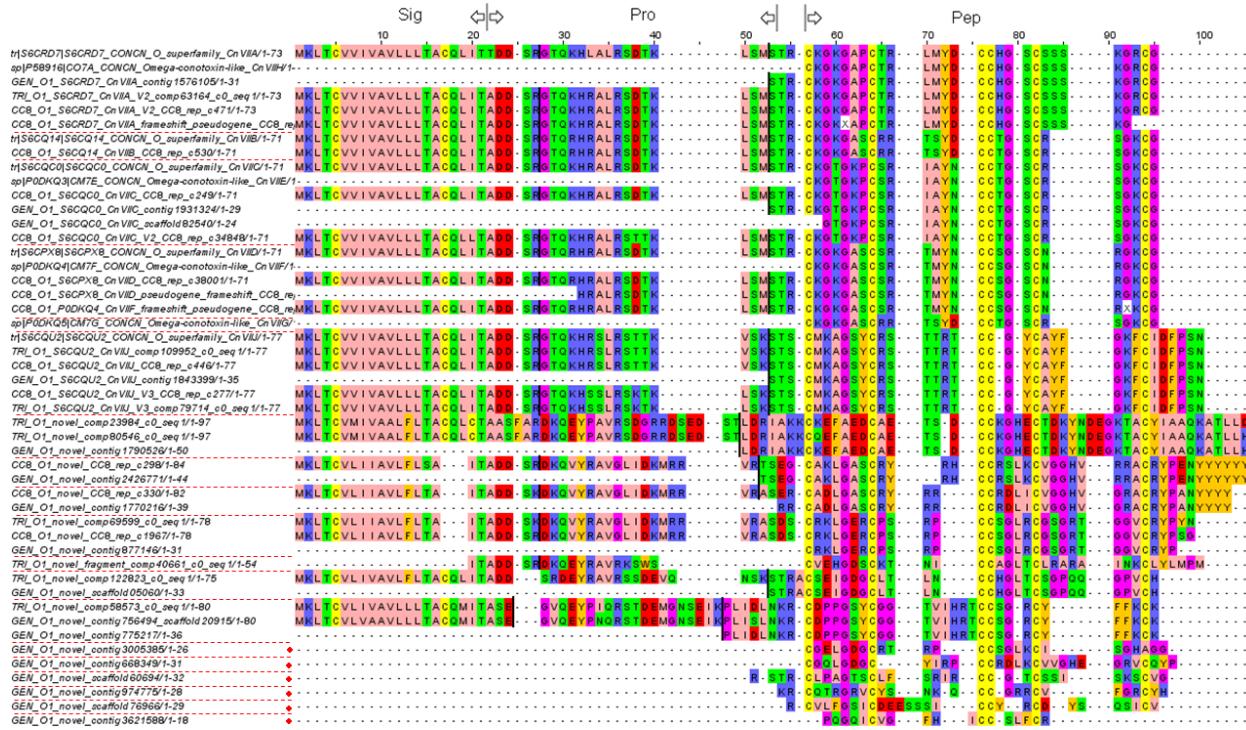
214 sequence was used to confirm the existence of genes predicted from transcriptome. We consider
215 the resulting 17,715 full-length proteins to be a reliable prediction of protein-coding sequences of
216 *C. consors*. The collection of mRNAs and translated protein sequences in FASTA format is
217 available in Supplemental Data S4. It has to be kept in mind that the actual number of protein-
218 coding genes is somewhat larger due to the fact that transcriptome analysis cannot reveal genes
219 that are expressed at low levels, in other tissues or just temporarily.

220

221

222 **Figure 3. Example of gene content in the genome.** TBLASTN against the genome using
223 CEGMA (core protein set present in all eukaryotes) protein Hs4507761 as a query. Red and
224 green text denote location of alternating exons in the human gene *UBA52*. Red orange and blue
225 boxes are matching regions from contigs or scaffolds of the *C. consors* genome. Alignment
226 between Hs4507761 and translated genomic DNA is shown in the middle.

227


228 We analysed the number of tRNA, rRNA and of other non-protein-coding genes using
229 tRNAscan-SE (Lowe & Eddy, 1997) and Infernal software (Nawrocki, Kolbe & Eddy, 2009).
230 We detected a total of 761 different tRNA genes in the *C. consors* genome, 2500 miRNA genes
231 and many other types of RNA genes. Detailed analysis of RNA genes present in the genome is
232 shown in Supplemental Article S1 and full list of detected RNA genes is shown in Supplemental
233 Article S1 Table 2.

234

235 **Conopeptide sequences**

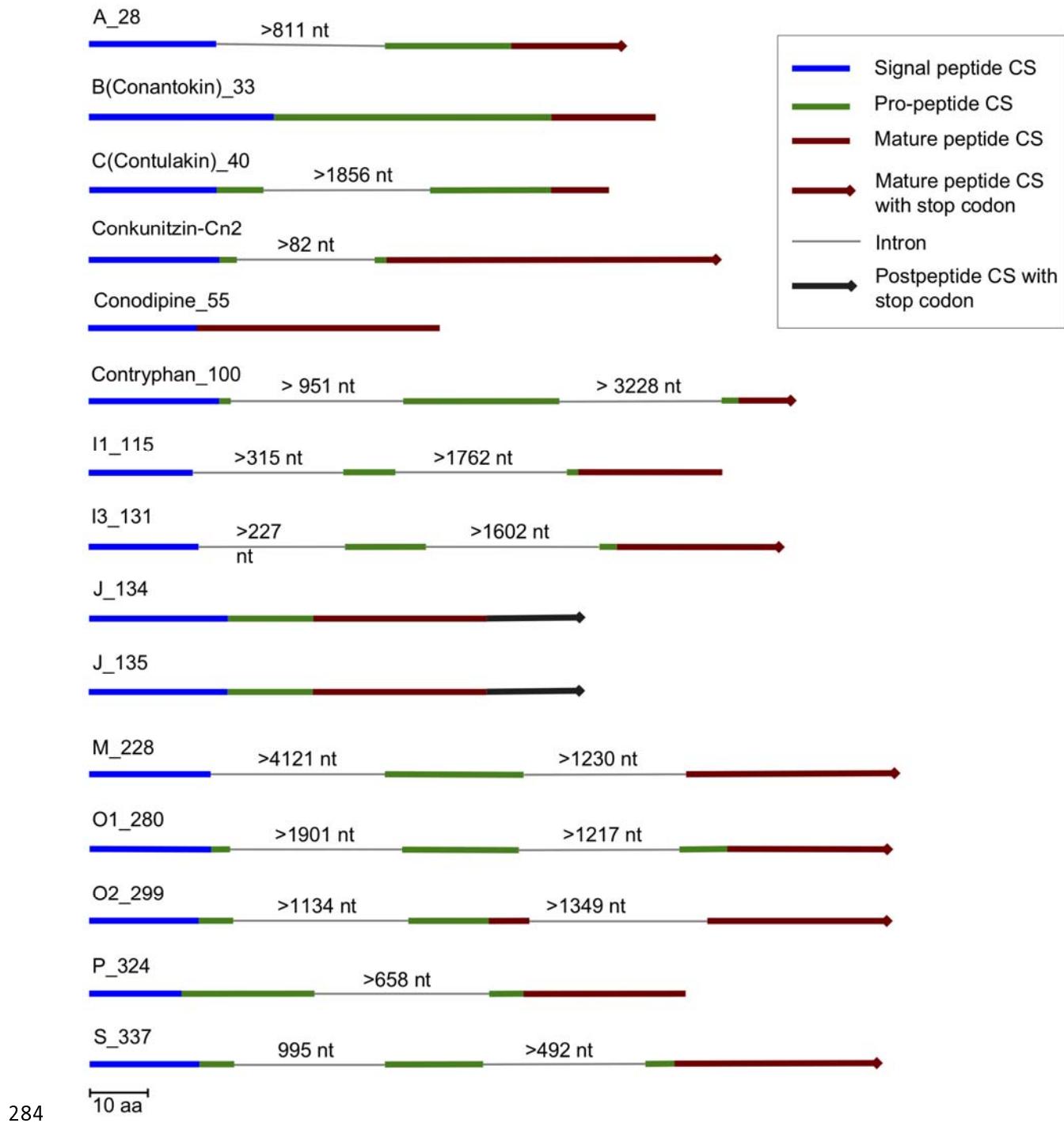
236 To identify conopeptide sequences in the transcriptome and genome of *C. consors*, we used
237 several sources of data with previously known conopeptide sequences or hidden Markov model
238 (HMM) profiles. Conopeptide sequences available in the UniProtKB/Swiss-Prot database (975
239 peptides from more than 30 different superfamilies), 64 conopeptide hidden Markov model
240 (HMM) profiles from 20 different superfamilies (Laht et al., 2012), 126 peptide sequences from
241 the *C. consors* proteome sequencing (Violette et al., 2012), and conopeptide precursor sequences
242 predicted from the transcriptome data (135 distinct precursor sequences from 23 different
243 superfamilies) were used. In addition to main transcriptome data we also used another dataset
244 (CC8 transcriptome), sequenced earlier. This additional transcriptome data originated from two
245 ESTs libraries constructed from venom duct and salivary gland tissues. The procedure for
246 obtaining CC8 transcriptome sequences is described in (Terrat et al., 2012). The genome
247 sequence was also checked for potential conopeptide genes in hope that it complements
248 transcriptome-based data.

249 To estimate the overall number of conopeptides encoded by *C. consors*, we aligned predicted
250 protein sequences obtained from the genome, transcriptome, and proteome into multiple
251 alignments (Supplemental Data S3.). Sequences from different datasets exhibit clear clusters
252 with slight variations between individual sequences. Closely related sequences were merged into
253 clusters if the difference between sequences did not exceed 4 amino acids and the overall number
254 of sequence clusters was counted. Example of multiple alignment of sequences from the O1-
255 superfamily is shown in Figure 4. This way we estimated that *C. consors* could have at least 168
256 conopeptides: 27 with previously known sequence and 141 novel sequences. In addition, we list
257 46 dubious sequences, which were only detected in the genome and did not have any closely
258 related sequence in databases. These might be products of pseudogenes, products of wrongly
259 predicted genes or peptides with other functions. However, it is not excluded that some of these
260 "dubious" clusters might represent novel conopeptides. The superfamilies M, O1, and A
261 comprise about 42% of all identified conopeptides in the *C. consors* (Table 1), which is in
262 concordance with previously published data (Puillandre et al., 2012).

263

264 **Figure 4. Example of conopeptide gene clusters.** A subset of O1 superfamily gene clusters is
265 shown. Red lines denote boundaries of gene clusters. Red dots indicate "dubious" genes, which
266 show some similarity with conopeptides, but are not counted as conopeptide genes.

267


268 **Table 1.** Number of conopeptide genes predicted from the *C. consors* genome and
269 transcriptomes, ordered by superfamilies.

Super-Family	Alignment	UniProt genes (present in our datasets)	Novel genes	Dubious genes	Total
A	A - CnI-like	5	0	0	5
	A - CcTx-like	2	10	0	12
	A - D4HPE6-like	1	3	8	12
B	B - Conantokin	0	2	1	3
	B - Linear conopeptide	1	1	0	2
C	C - Contulakin	0	2	3	5
	Conkunitzin	0	6	0	6
	ConoCAP	0	3	0	3
	Conodipine	1	3	2	6
	Conophysin	0	8	4	12
	Conoporin	1	13	0	14
I1	I1	0	5	0	5
I2	I2	0	3	0	3
I3	I3	0	2	1	3
J	J	0	4	1	5
K	K	0	3	2	5
M	M - CnIII-like	8	2	0	10
	M - Conomarphin-like	0	16	3	19
O1	O1 - CnVI-like	3	7	1	11
	O1 - CnVII-like	5	11	6	22
O2	O2	0	7	1	8
	O2 - Contryphan	0	1	3	4
O3	O3	0	7	2	9
P	P	0	5	1	6
S	S	0	9	1	10
T	T	0	7	5	12
V	V	0	1	1	2
TOTAL:		27	141	46	214

270

271 **Conopeptide genes in genome**

272 The majority of conopeptide superfamilies are known to contain introns that separate different
273 functional domains (Olivera et al., 1999). The genome sequence allows us to identify the
274 genomic structure of some conopeptide genes. Sequences that code for signal, propeptide, and
275 mature peptide domains were retrieved for 15 conopeptides from 14 superfamilies (Figure 5). It
276 is noteworthy that we can identify several different exon-intron organizations within the
277 conopeptide genes. The first exon of the most abundant type encodes for the complete signal
278 peptide sequence together with a variable length fragment of a pro-peptide, while the first exon
279 of genes encoding type A, I1, I3, and M conopeptides encode the entire signal sequence. Pro-
280 peptides appear to be encoded by one, two, or three different exons. Only conodipine genes are
281 devoid of pro-peptide sequences. Finally, in the unique case of J-conopeptides, their genes
282 appear to be made of a unique encoding exon containing, successively, a signal, an N-terminus
283 pro- and a mature peptide, followed by a C-terminus pro-sequence.

284 **Figure 5. Conopeptide gene structures within the genome of *C. consors*.** Each sample
285 represents one conopeptide gene. The peptide coding sequences (CS) for signal, pro- and mature
286 peptides are represented by bold blue, green, and red lines. The length of each line is
287

288 proportional to the number of amino acids. The introns are represented as thin grey lines and the
289 length of the intron sequences is indicated in nucleotides above each line. The symbol '>'
290 indicates that this gene was not assembled into a single contig and that the intron length is
291 therefore not precisely known. Sequences of the conopeptide genes and additional information
292 are available in Supplementary Data S3.

293

294 **Conclusions**

295 The annotation of a fish-hunting cone snail *C. consors* genome and transcriptome gives us a
296 closer opportunity to peek into the complexity of its genes. The analysis of the combined eight
297 different transcriptomic and genomic datasets resulted 17,715 full-length protein sequences. In
298 addition, 168 conopeptide sequences were identified and in several cases the gene structures of
299 conopeptide superfamilies were characterized. We have found several gene coding clusters that
300 might represent novel conopeptides and are therefore good candidates for future studies.

301

302 **Supplemental information**

303 The following additional data are available with the online version of this paper. Supplemental
304 Article S1 contains a detailed description of all supplementary analysis and methods.
305 Supplemental Data S2 contains list of predicted RNA genes, clustered by RFam category.
306 Supplemental Data S3 contains alignments of conopeptides from each superfamily. Gene and
307 protein sequences predicted from transcriptome are included in Supplemental Data S4 as two
308 separate FASTA format files.

309

310 **Authors' contributions**

311 MRe and RA were responsible for drafting the manuscript. MRo, LK, SL, TK, AB, VK, RA and
312 MRe analyzed the sequencing data. All authors have read and approved the final manuscript.

313

314 **Acknowledgements**

315 Tõnu Margus and Aleksander Sudakov gave advice on construction of phylogenetic trees and
316 gene content analysis. We would like to thank Tim Stockwell, Philippe Favreau, Daniel Biass,
317 Yves Terrat and Dusan Kordis for valuable discussions during the initial survey of the genome
318 sequence data.

319

320 **Funding Statement**

321 AB, SL, RA, LK, MRo, ML, TK, VK and MRe were supported by the EU FP6 CONCO project,
322 SF0180026s09 and IUT34-11 from the Estonian Ministry of Education and Research and by the
323 EU ERDF grant No. 2014-2020.4.01.15-0012 (Estonian Center of Excellence in Genomics and
324 Translational Medicine). RA was also supported by the EU ERDF grant No. 2014-2020.4.01.16-
325 0125. The computational analysis was partly carried out on the High Performance Computing
326 Center of University of Tartu.

327

328 **References**

329 Abdel-Rahman MA., Abdel-Nabi IM., El-Naggar MS., Abbas OA., Strong PN. 2011.
330 Intraspecific variation in the venom of the vermivorous cone snail *Conus vexillum*.
331 *Comparative biochemistry and physiology. Toxicology & pharmacology* □: CBP 154:318–

332 25. DOI: 10.1016/j.cbpc.2011.06.019.

333 Adema CM., Hillier LW., Jones CS., Loker ES., Knight M., Minx P., Oliveira G., Raghavan N.,
334 Shedlock A., do Amaral LR., Arican-Goktas HD., Assis JG., Baba EH., Baron OL., Bayne
335 CJ., Bickham-Wright U., Biggar KK., Blouin M., Bonning BC., Botka C., Bridger JM.,
336 Buckley KM., Buddenborg SK., Lima Caldeira R., Carleton J., Carvalho OS., Castillo MG.,
337 Chalmers IW., Christensen M., Clifton S., Cosseau C., Coustau C., Cripps RM., Cuesta-
338 Astroz Y., Cummins SF., di Stephano L., Dingirard N., Duval D., Emrich S., Feschotte C.,
339 Feyereisen R., FitzGerald P., Fronick C., Fulton L., Galinier R., Gava SG., Geusz M., Geyer
340 KK., Giraldo-Calderón GI., de Souza Gomes M., Gordy MA., Gourbal B., Grunau C.,
341 Hanington PC., Hoffmann KF., Hughes D., Humphries J., Jackson DJ., Jannotti-Passos LK.,
342 de Jesus Jeremias W., Jobling S., Kamel B., Kapusta A., Kaur S., Koene JM., Kohn AB.,
343 Lawson D., Lawton SP., Liang D., Limpanont Y., Liu S., Lockyer AE., Lovato TL., Ludolf
344 F., Magrini V., McManus DP., Medina M., Misra M., Mitta G., Mkoji GM., Montague MJ.,
345 Montelongo C., Moroz LL., Munoz-Torres MC., Niazi U., Noble LR., Oliveira FS., Pais
346 FS., Papenfuss AT., Peace R., Pena JJ., Pila EA., Quelais T., Raney BJ., Rast JP., Rollinson
347 D., Rosse IC., Rotgans B., Routledge EJ., Ryan KM., Scholte LLS., Storey KB., Swain M.,
348 Tennessen JA., Tomlinson C., Trujillo DL., Volpi E V., Walker AJ., Wang T., Wannaporn
349 I., Warren WC., Wu X-J., Yoshino TP., Yusuf M., Zhang S-M., Zhao M., Wilson RK.
350 2017. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. *Nature*
351 *Communications* 8:15451. DOI: 10.1038/ncomms15451.

352 Albertin CB., Simakov O., Mitros T., Wang ZY., Pungor JR., Edsinger-Gonzales E., Brenner S.,
353 Ragsdale CW., Rokhsar DS. 2015. The octopus genome and the evolution of cephalopod
354 neural and morphological novelties. *Nature* 524:220–224. DOI: 10.1038/nature14668.

355 Altschul SF., Madden TL., Schäffer AA., Zhang J., Zhang Z., Miller W., Lipman DJ. 1997.
356 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
357 *Nucleic acids research* 25:3389–402.

358 Biass D., Dutertre S., Gerbault A., Menou J-L., Offord R., Favreau P., Stöcklin R. 2009.
359 Comparative proteomic study of the venom of the piscivorous cone snail *Conus consors*.
360 *Journal of proteomics* 72:210–8. DOI: 10.1016/j.jprot.2009.01.019.

361 Dutertre S., Biass D., Stöcklin R., Favreau P. 2010. Dramatic intraspecimen variations within the
362 injected venom of *Conus consors*: an unsuspected contribution to venom diversity.
363 *Toxicon* : official journal of the International Society on Toxinology 55:1453–62. DOI:
364 10.1016/j.toxicon.2010.02.025.

365 Dutertre S., Jin A., Kaas Q., Jones A., Alewood PF., Lewis RJ. 2013. Deep venomics reveals the
366 mechanism for expanded peptide diversity in cone snail venom. *Molecular & cellular*
367 *proteomics* : MCP 12:312–29. DOI: 10.1074/mcp.M112.021469.

368 Dutertre S., Jin A-H., Vetter I., Hamilton B., Sunagar K., Lavergne V., Dutertre V., Fry BG.,
369 Antunes A., Venter DJ., Alewood PF., Lewis RJ. 2014. Evolution of separate predation-
370 and defence-evoked venoms in carnivorous cone snails. *Nature communications* 5:3521.
371 DOI: 10.1038/ncomms4521.

372 Eddy SR. 2011. Accelerated Profile HMM Searches. *PLoS computational biology* 7:e1002195.
373 DOI: 10.1371/journal.pcbi.1002195.

374 Favreau P., Stöcklin R. 2009. Marine snail venoms: use and trends in receptor and channel
375 neuropharmacology. *Current opinion in pharmacology* 9:594–601. DOI:
376 10.1016/j.coph.2009.05.006.

377 Fu Y., Li C., Dong S., Wu Y., Zhangsun D., Luo S. 2018. Discovery Methodology of Novel
378 Conotoxins from *Conus* Species. *Marine Drugs* 16:417. DOI: 10.3390/md16110417.

379 Gao B., Peng C., Yang J., Yi Y., Zhang J., Shi Q. 2017. Cone Snails: A Big Store of Conotoxins
380 for Novel Drug Discovery. *Toxins* 9:397. DOI: 10.3390/toxins9120397.

381 Grabherr MG., Haas BJ., Yassour M., Levin JZ., Thompson DA., Amit I., Adiconis X., Fan L.,
382 Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di
383 Palma F., Birren BW., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. 2011. Full-
384 length transcriptome assembly from RNA-Seq data without a reference genome. *Nature*
385 *biotechnology* 29:644–52. DOI: 10.1038/nbt.1883.

386 Han TS., Teichert RW., Olivera BM., Bulaj G. 2008. *Conus* venoms - a rich source of peptide-
387 based therapeutics. *Current pharmaceutical design* 14:2462–79.

388 Hedges SB., Marin J., Suleski M., Paymer M., Kumar S. 2015. Tree of life reveals clock-like
389 speciation and diversification. *Molecular Biology and Evolution*:msv037-. DOI:
390 10.1093/molbev/msv037.

391 Kocot KM., Cannon JT., Todt C., Citarella MR., Kohn AB., Meyer A., Santos SR., Schander C.,
392 Moroz LL., Lieb B., Halanych KM. 2011. Phylogenomics reveals deep molluscan
393 relationships. *Nature* 477:452–6. DOI: 10.1038/nature10382.

394 Laht S., Koua D., Kaplinski L., Lisacek F., Stöcklin R., Remm M. 2012. Identification and
395 classification of conopeptides using profile Hidden Markov Models. *Biochimica et*
396 *biophysica acta* 1824:488–92. DOI: 10.1016/j.bbapap.2011.12.004.

397 Lavergne V., Harliwong I., Jones A., Miller D., Taft RJ., Alewood PF. 2015. Optimized deep-
398 targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel
399 cysteine frameworks. *Proceedings of the National Academy of Sciences* 112:E3782–E3791.
400 DOI: 10.1073/pnas.1501334112.

401 Lewis RJ., Dutertre S., Vetter I., Christie MJ. 2012. Conus Venom Peptide Pharmacology.
402 *Pharmacological Reviews* 64:259–298. DOI: 10.1124/pr.111.005322.

403 Li W., Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein
404 or nucleotide sequences. *Bioinformatics (Oxford, England)* 22:1658–9. DOI:
405 10.1093/bioinformatics/btl158.

406 Liu Z., Bartels P., Sadeghi M., Du T., Dai Q., Zhu C., Yu S., Wang S., Dong M., Sun T., Guo J.,
407 Peng S., Jiang L., Adams DJ., Dai Q. 2018. A novel α -conopeptide Eu1.6 inhibits N-type
408 (CaV2.2) calcium channels and exhibits potent analgesic activity. *Scientific Reports* 8:1004.
409 DOI: 10.1038/s41598-017-18479-4.

410 Lowe TM., Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA
411 genes in genomic sequence. *Nucleic acids research* 25:955–64.

412 Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y., Tang J., Wu
413 G., Zhang H., Shi Y., Liu Y., Yu C., Wang B., Lu Y., Han C., Cheung DW., Yiu S-M.,
414 Peng S., Xiaoqian Z., Liu G., Liao X., Li Y., Yang H., Wang J., Lam T-W., Wang J. 2012.

415 SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.
416 *GigaScience* 1:18. DOI: 10.1186/2047-217X-1-18.

417 Mir R., Karim S., Amjad Kamal M., M. Wilson C., Mirza Z. 2016. Conotoxins: Structure,
418 Therapeutic Potential and Pharmacological Applications. *Current Pharmaceutical Design*
419 22:582–589. DOI: 10.2174/1381612822666151124234715.

420 Nawrocki EP., Kolbe DL., Eddy SR. 2009. Infernal 1.0: inference of RNA alignments.
421 *Bioinformatics (Oxford, England)* 25:1335–7. DOI: 10.1093/bioinformatics/btp157.

422 Neves JLB., Lin Z., Imperial JS., Antunes A., Vasconcelos V., Olivera BM., Schmidt EW. 2015.
423 Small Molecules in the Cone Snail Arsenal. *Organic Letters* 17:4933–4935. DOI:
424 10.1021/acs.orglett.5b02389.

425 Olivera BM. 1997. E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel
426 targets, and drug design: 50 million years of neuropharmacology. *Molecular biology of the*
427 *cell* 8:2101–9.

428 Olivera BM., Walker C., Cartier GE., Hooper D., Santos AD., Schoenfeld R., Shetty R., Watkins
429 M., Bandyopadhyay P., Hillyard DR. 1999. Speciation of cone snails and interspecific
430 hyperdivergence of their venom peptides. Potential evolutionary significance of introns.
431 *Annals of the New York Academy of Sciences* 870:223–37.

432 Parra G., Bradnam K., Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in
433 eukaryotic genomes. *Bioinformatics (Oxford, England)* 23:1061–7. DOI:
434 10.1093/bioinformatics/btm071.

435 Parra G., Bradnam K., Ning Z., Keane T., Korf I. 2009. Assessing the gene space in draft
436 genomes. *Nucleic acids research* 37:289–97. DOI: 10.1093/nar/gkn916.

437 Puillandre N., Bouchet P., Duda TF., Kauferstein S., Kohn AJ., Olivera BM., Watkins M., Meyer
438 C. 2014. Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea).
439 *Molecular Phylogenetics and Evolution* 78:290–303. DOI: 10.1016/j.ympev.2014.05.023.

440 Puillandre N., Koua D., Favreau P., Olivera BM., Stöcklin R. 2012. Molecular phylogeny,
441 classification and evolution of conopeptides. *Journal of molecular evolution* 74:297–309.

442 DOI: 10.1007/s00239-012-9507-2.

443 Rice P., Longden I., Bleasby A. 2000. EMBOSS: the European Molecular Biology Open
444 Software Suite. *Trends in genetics* : *TIG* 16:276–7.

445 Schmieder R., Edwards R. 2011. Fast identification and removal of sequence contamination from
446 genomic and metagenomic datasets. *PLoS one* 6:e17288. DOI:
447 10.1371/journal.pone.0017288.

448 Simakov O., Marletaz F., Cho S-J., Edsinger-Gonzales E., Havlak P., Hellsten U., Kuo D-H.,
449 Larsson T., Lv J., Arendt D., Savage R., Osoegawa K., de Jong P., Grimwood J., Chapman
450 JA., Shapiro H., Aerts A., O'Neill RP., Terry AY., Boore JL., Grigoriev I V., Lindberg DR.,
451 Seaver EC., Weisblat DA., Putnam NH., Rokhsar DS. 2013. Insights into bilaterian
452 evolution from three spiralian genomes. *Nature* 493:526–31. DOI: 10.1038/nature11696.

453 Smith CR., Smith CD., Robertson HM., Helmkampf M., Zimin A., Yandell M., Holt C., Hu H.,
454 Abouheif E., Benton R., Cash E., Croset V., Currie CR., Elhaik E., Elsik CG., Favé M-J.,
455 Fernandes V., Gibson JD., Graur D., Gronenberg W., Grubbs KJ., Hagen DE., Viniegra
456 ASI., Johnson BR., Johnson RM., Khila A., Kim JW., Mathis KA., Munoz-Torres MC.,
457 Murphy MC., Mustard JA., Nakamura R., Niehuis O., Nigam S., Overson RP., Placek JE.,
458 Rajakumar R., Reese JT., Suen G., Tao S., Torres CW., Tsutsui ND., Viljakainen L.,
459 Wolschin F., Gadau J. 2011a. Draft genome of the red harvester ant *Pogonomyrmex*
460 *barbatus*. *Proceedings of the National Academy of Sciences of the United States of America*
461 108:5667–72. DOI: 10.1073/pnas.1007901108.

462 Smith SA., Wilson NG., Goetz FE., Feehery C., Andrade SCS., Rouse GW., Giribet G., Dunn
463 CW. 2011b. Resolving the evolutionary relationships of molluscs with phylogenomic tools.
464 *Nature* 480:364–367. DOI: 10.1038/nature10526.

465 Suzek BE., Huang H., McGarvey P., Mazumder R., Wu CH. 2007. UniRef: comprehensive and
466 non-redundant UniProt reference clusters. *Bioinformatics (Oxford, England)* 23:1282–8.
467 DOI: 10.1093/bioinformatics/btm098.

468 Takeuchi T., Kawashima T., Koyanagi R., Gyoja F., Tanaka M., Ikuta T., Shoguchi E., Fujiwara
469 M., Shizato C., Hisata K., Fujie M., Usami T., Nagai K., Maeyama K., Okamoto K., Aoki

470 H., Ishikawa T., Masaoka T., Fujiwara A., Endo K., Endo H., Nagasawa H., Kinoshita S.,
471 Asakawa S., Watabe S., Satoh N. 2012. Draft Genome of the Pearl Oyster *Pinctada fucata*:
472 A Platform for Understanding Bivalve Biology. *DNA Research* 19:117–130. DOI:
473 10.1093/dnares/dss005.

474 Terrat Y., Biass D., Dutertre S., Favreau P., Remm M., Stöcklin R., Piquemal D., Ducancel F.
475 2012. High-resolution picture of a venom gland transcriptome: case study with the marine
476 snail *Conus consors*. *Toxicon* □: *official journal of the International Society on Toxinology*
477 59:34–46. DOI: 10.1016/j.toxicon.2011.10.001.

478 The UniProt Consortium. 2015. UniProt: a hub for protein information. *Nucleic Acids Research*
479 43:D204-212. DOI: 10.1093/nar/gku989.

480 Violette A., Biass D., Dutertre S., Koua D., Piquemal D., Pierrat F., Stöcklin R., Favreau P.
481 2012. Large-scale discovery of conopeptides and conoproteins in the injectable venom of a
482 fish-hunting cone snail using a combined proteomic and transcriptomic approach. *Journal*
483 *of proteomics* 75:5215–25. DOI: 10.1016/j.jprot.2012.06.001.

484 Wurm Y., Wang J., Riba-Grognuz O., Corona M., Nygaard S., Hunt BG., Ingram KK., Falquet
485 L., Nipitwattanaphon M., Gotzek D., Dijkstra MB., Oettler J., Comtesse F., Shih C-J., Wu
486 W-J., Yang C-C., Thomas J., Beudoing E., Pradervand S., Flegel V., Cook ED., Fabbretti
487 R., Stockinger H., Long L., Farmerie WG., Oakey J., Boomsma JJ., Pamilo P., Yi S V.,
488 Heinze J., Goodisman MAD., Farinelli L., Harshman K., Hulo N., Cerutti L., Xenarios I.,
489 Shoemaker D., Keller L. 2011. The genome of the fire ant *Solenopsis invicta*. *Proceedings*
490 *of the National Academy of Sciences of the United States of America* 108:5679–84. DOI:
491 10.1073/pnas.1009690108.

492 Zhang G., Fang X., Guo X., Li L., Luo R., Xu F., Yang P., Zhang L., Wang X., Qi H., Xiong Z.,
493 Que H., Xie Y., Holland PWH., Paps J., Zhu Y., Wu F., Chen Y., Wang J., Peng C., Meng
494 J., Yang L., Liu J., Wen B., Zhang N., Huang Z., Zhu Q., Feng Y., Mount A., Hedgecock
495 D., Xu Z., Liu Y., Domazet-Lošo T., Du Y., Sun X., Zhang S., Liu B., Cheng P., Jiang X.,
496 Li J., Fan D., Wang W., Fu W., Wang T., Wang B., Zhang J., Peng Z., Li Y., Li N., Wang
497 J., Chen M., He Y., Tan F., Song X., Zheng Q., Huang R., Yang H., Du X., Chen L., Yang
498 M., Gaffney PM., Wang S., Luo L., She Z., Ming Y., Huang W., Zhang S., Huang B.,

499 Zhang Y., Qu T., Ni P., Miao G., Wang J., Wang Q., Steinberg CEW., Wang H., Li N.,
500 Qian L., Zhang G., Li Y., Yang H., Liu X., Wang J., Yin Y., Wang J. 2012. The oyster
501 genome reveals stress adaptation and complexity of shell formation. *Nature* 490:49–54.
502 DOI: 10.1038/nature11413.