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Abstract

Background: The ability to model long-term functional outcomes after acute ischemic stroke
(AIS) represents a major clinical challenge. One approach to potentially improve prediction
modeling involves the analysis of connectomics. The field of connectomics represents the brain's
connectivity as a graph, whose topological properties have helped uncover underlying
mechanisms of brain function in health and disease. Specifically, we assessed the impact of
stroke lesions on rich club (RC) organization, a high capacity backbone system of brain function.
Methods: In a hospital-based cohort of 41 AIS patients, we investigated the effect of acute
infarcts on the brain’s pre-stroke RC backbone and post-stroke functional connectomes with
respect to post-stroke outcome. Functional connectomes were created utilizing three anatomical
atlases and characteristic path-length (L) was calculated for each connectome. The number of RC
regions (N;.) affected were manually determined using each patient’s diffusion weighted image
(DWI). We investigated differences in L with respect to outcome (modified Rankin Scale score
(mRS); 90-days; poor: mRS>2) and the National Institutes of Health Stroke Scale (NIHSS; early:
2-5 days; late: 90-day follow-up). Furthermore, we assessed the effect of including N, and L in
‘outcome’ models, using linear regression and assessing the explained variance (R?).

Results: Of 41 patients (mean age (range): 70 (45-89) years), 61% were male. There were
differences in L between patients with good and poor outcome (mRS). Including NRC in the
backward selection models of outcome, R? increased between 1.3- and 2.6-fold beyond that of
traditional markers (age and acute lesion volume) for NIHSS and mRS.

Conclusion: In this proof-of-concept study, we showed that information on network topology
can be leveraged to improve modeling of post-stroke functional outcome. Future studies are
warranted to validate this approach in larger prospective studies of outcome prediction in stroke.
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Introduction

Stroke is a leading cause of long-term adult disability' with significant public health burden®.
Importantly, the ability to individually prognosticate stroke outcomes in the acute setting remains
challenging®, due to the complex mechanisms of post-stroke recovery and the multitude of
clinical and radiographic variables that differentially affect patient outcomes**.

Magnetic resonance imaging (MRI) allows the mapping of anatomical regions and the pathways
of their interconnections through diffusion weighted imaging (DWTI) or functional co-activation
through functional MRI (task-based or resting state (rsfMRI)), producing a comprehensive
description of the brain's structural and/or functional connectivity. Connectomics involves
conceptualizing the brain as a graph and allows the exploration of topological properties of brain
connectivity with network theoretical measures’. This has led to fundamental insights into the

8-12 13713 "and alterations due to disease'* . Associations

brain’s organization® ', resilience to injury
between structural features, such as white matter microstructural integrity, and functional
post-stroke outcome have recently been established®'. However, the effect of premorbid
structural and/or functional brain connectivity organization on recovery after stroke and its role

in resilience to damage is yet to be fully elucidated.

A so-called rich club (RC) organization has been described in the human connectome®!?,
comprising a set of regions which are thought to form an information backbone, crucial for brain
function, and susceptible to disease*. Van den Heuvel and Sporns® identified six bilateral regions
belonging to the RC, three cortical (precuneus, superior frontal and parietal cortex) and three
subcortical regions (putamen, hippocampus and thalamus), where RC regions are hubs that
mediate long-distance connections between brain modules?. This demonstrated their critical role
for information integration, adaptive behavior* and cognitive tasks®. Targeted attacks on their
connections can have a significant impact on global network efficiency® and have been shown to
lead to functional deficits in disorders like Alzheimer's disease®®. Importantly, stroke location has

2728 in addition to widely

been identified as an independent determinant of cognitive outcome
accepted clinical factors, such as age® and stroke lesion size***!. Furthermore, a strong coupling
between brain hubs, especially those lying in the cerebral cortex, and regional blood flow has
been unveiled during rest as well as in response to task demands®. Consequently, the
investigation of damage to RC regions in stroke patients is intriguing. The effect of focal injury
caused by stroke on large-scale brain networks has been recently explored along with network
alterations in brain tumor and traumatic brain injury*’, however, without a clear mapping
between the anatomical lesion site and its topological characteristics within the brain network.
Functional connectivity has been previously explored in longitudinal studies of motor recovery

34,35

after stroke’*”> and significant correlations between interhemispheric resting-state connections
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and functional performance have been identified***’. Nevertheless, the effect of focal ischemic
stroke lesions on whole-brain functional organization estimated before and after stroke have not
been investigated.

In this study, we examine the functional network organization in AIS patients and the lesion
location in relation to network topography with respect to functional outcome. Here, we assessed
the impact of ischemic insults on brain regions that constitute the RC backbone, as well as
functional network topology at a global level on brain recovery, in a prospective, hospital-based
cohort. We hypothesize that models incorporating connectivity information, specifically the
characteristic path length in the acute phase and the number of RC regions affected by the stroke
lesion, will improve the prediction of a patient's functional outcome. Using multivariate linear
regression, we conclude that the connectivity metrics obtained early in the course of acute
ischemic stroke can be used to better understand the mechanisms underlying variability in
post-stroke functional outcomes.

Materials and Methods

Patient population

AIS patients were enrolled in the SALVO (Statins augment small vessel function and improve
stroke outcomes) study after admission to the Emergency Department at Massachusetts General
Hospital. The study was approved by the Institutional Review Board and all participants, or their
surrogates, gave written informed consent at the time of enrolment. AIS was defined as: (a) acute
onset of focal neurological symptoms consistent with cerebrovascular syndrome, (b) MRI
findings consistent with acute cerebral ischemia, and (c) no evidence of other neurological
disorders to explain the symptoms. Subjects with moderate to severe white matter hyperintensity
(WMH) burden defined as Fazekas®® grade >2 in any of the three categories (periventricular,
deep lesion extent and deep lesion count) were eligible for enrolment in this study. Participants
with medical contraindications to gadolinium-based contrast agents were excluded from this
study.

Clinical assessment

Upon admission to the hospital, the National Institutes of Health Stroke Scale score® (NIHSS; 0
(no symptoms) - 42) was recorded for each patient by a trained neurologist®. Utilizing NIHSS as
a pseudo outcome score, post-stroke functional outcome was assessed during two follow-up
assessments: (1) within 2-5 days after admission (average 2.6 days, “early” in-hospital
follow-up) and (2) at 90 days ("late” follow-up). Additionally, the modified Rankin Scale score®!
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(mRS; 0 (no symptoms) - 6 (death)) was recorded at late” follow-up to assess functional status
of the patients. mRS focuses on the assessment of functional independence (ability to return to
independent living, including ambulation without assistance), and is widely used in stroke
clinical trials based on its high utility and reliability*>**. In this study, mRS <2 was considered
'good' outcome (minor disability but patient is functionally independent), while mRS>2 was
considered 'poor' outcome (significant disability, loss of functional independence, including
death).

Data acquisition

Patients enrolled in the SALVO study underwent a research protocol MRI, including structural,
diffusion and functional imaging, in the hospital at 2-5 days after admission. A T1-weighted
image was acquired with the following parameters: in-plane resolution, 0.430 mm,; slice
thickness, 6mm; matrix size, 480x512; number of slices: 28. Gradient-echo echoplanar imaging
(EPI) data depicting blood oxygen level-dependent contrast at rest were also acquired at 3.0T in
Massachusetts General Hospital (Boston, USA). The rsfMRI data (N=33) consisted of 150
volumes with the following parameters: number of slices, 42 (interleaved); slice thickness, 3.51
mm; matrix size, 64x64; flip angle, 90°; repetition time (TR), 2400 ms; in-plane resolution,
3.437 mm. In the majority of subjects, DWI was performed using a 3T (Siemens Skyra) scanner
with the following parameters: numbers of slices, 160; slice thickness, Smm; TR, 5500 ms; TE,
99ms; in-plane resolution, 1.375mm. For five of the patients in this cohort 1.5T MRI was used
due to medical contraindications for 3T, such as the presence of a pacemaker.

Image processing

Both structural and functional images were preprocessed using the Configurable Pipeline for the
Analysis of Connectomes (CPAC)™®. First, bias field correction of the anatomical images was
performed*, followed by brain extraction employing a convolutional neural network®’.
Subsequently, the images were registered to the MNI (Montreal Neurological Institute)
anatomical template using non-linear registration (ANTs)*. Probability maps for grey matter,
white matter and cerebrospinal fluid (CSF) were generated using FSL FAST®.

For the functional data, slice timing correction was first performed to account for the interleaved
acquisition, while geometrical displacements due to head movement were corrected with rigid
registration using the AFNI software (https://afni.nimh.nih.gov/). Brain extraction of the fMRI
data was performed using FSL's Brain Extraction Tool (BET)*’. The 150 functional images for
each patient were then affinely registered to the corresponding T1 image, transformed to the
MNI template, and underwent mean intensity normalization. Finally, nuisance signal regression
was performed for white matter, CSF and global mean, and the functional time series were
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band-pass filtered (0.01-0.1Hz) and scrubbed for extreme frame displacement (>3mm). The
structural and functional preprocessing steps are summarized in Figure 1.
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Figure 1: Overview of the processing pipeline. Each patient’s imaging data underwent (a)
anatomical processing, (b) functional processing, (c¢) spatial normalization to one of three atlases
(Harvard-Oxford, AAL, Destrieux), and (d) functional connectome creation.

Rich club region characterization

A study on structural connectivity subdivided the brain into 68 cortical and 14 subcortical
regions’! and identified those belonging to the RC®. These regions are characterized by high
connection strength, high betweenness centrality (centrality within a network with respect to its
influence on the transfer of information) and low path length (indicator of efficient information
transmission). This set comprises 6 bilateral regions, including the precuneus, the superior
frontal and parietal cortex, along with subcortical regions including putamen, hippocampus and
thalamus (see Figure 2A). An expert neurologist (M.R.E.), blinded to outcomes, manually
identified the number of RC regions affected by the lesion (Ny.) and outlined the acute infarct
lesions on the DWI image.

Network analysis of functional connectivity

Three anatomical atlases were used to define the regions of the connectome following
preprocessing of the fMRI images, allowing us to explore reproducibility of the findings across
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different brain parcellations. These included the Destrieux (148 regions)*, the Harvard-Oxford”',
and the AAL atlas (116 regions)™. For each atlas and each corresponding regions, mean time
series were calculated. Partial correlation between the time series was employed to estimate the
strength of the functional connections, yielding a weighted graph representation®. Global

efficiency of the networks was estimated via the characteristic path length, L;jiiht , which
corresponds to the average path length /(s) across all regions s’, calculated on a given atlas with a
given connectivity weight. In this study, we investigated retaining positive, negative and absolute
weights of the estimated networks, as there is no consensus with regards to which of these is

most discriminative.

Functional topology and outcome models

We first investigate the association between the number of RC regions affected by stroke (Ng)
and all outcome measures using the Spearman’s correlation coefficient. Additionally, we
assessed the differences in L with respect to NIHSS and mRS ('good' or 'poor' (mRS>2)) based
on Pearson’s correlation coefficient and Mann-Whitney-U tests, respectively.

Subsequently, we modeled functional outcome using linear regressions based on age, lesion
volume (DWIv), NIHSS at admission (NIHSS, ), pre-stroke mRS (mRS ), L and Ng. First, we
performed a univariate analysis between all independent variables and each outcome measure.

adm

For multivariate analysis, we defined the baseline model based on age, lesion volume (DWIv),

and early outcome measures (NIHSS,, or mRS__, for outcome models based on NIHSS and

mRS, respectively). In the outcome model, we flirther included N, and L. In addition, we
considered interactions between N and DWIv, due to the fact that larger lesions are likely to
affect more RC regions, as well as an interaction term between N, and L, as damage to RC
regions have been shown to disturb global network efficiency, and therefore L, more
significantly compared to other regions®. To reduce the statistical burden of the model, we
performed backward elimination, where variables with the highest p-value above 0.05 are
iteratively eliminated and the model is refit, until only significant terms remain. The outcome
models incorporate information related to both structural and functional connectivity, however,
as L is only available for patients with available fMRI data we remove it after backward
elimination to test the model in the larger cohort. The baseline and initial outcome models are

given in Table 1.
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Table 1: Summary of models investigated. Models have the form ‘response ~ terms’, where
response is the dependent variable and terms the series of independent variables utilized in the
model connected by ‘+’. Interaction terms between independent variables are indicated by “:’.

Model name Model

Baseline Outcome ~ Age + DWIv

Initial model | Outcome ~ Age + DWIv + N, + L + DWIv: N + Np:L + early measure

) and without (R?) adjustment for
the number of independent variables. Furthermore, we report two information criteria, i.e.

All models are compared using explained variance with (R2aclj
Akaike information criterion (AIC)*® and Bayes information criterion (BIC)*’, where smaller
values correspond to better model fit. BIC, in addition to assessing the model fit, considers a
trade-off between model fit and complexity of the model, where more complex models are
penalized. All analyses were performed using the computing environment R>.

Results

Forty-four AIS patients were enrolled in this study. Three patients were subsequently excluded
because the MRI was not obtained. Of the remaining 41 patients, all had NIHSS at admission
and between 2-5 days, as well as mRS recorded. For 28 patients 90-day NIHSS score was also
available and fMRI data was collected for 33 patients. Table 2 summarizes the cohort
characteristics.
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Table 2: Study cohort characterization. The treatment category includes intravenous tPA or
endovascular thrombectomy. Patients with fMRI data available were not significantly different in

any of the characteristics (p>0.2). (sd: standard deviation; IQR: inter-quartile range)

Patients with
SALVO fMRI data
n 41 33
Nic (mean (sd)) 0.59 (0.81) 0.52 (0.80)
DWIv (mean (sd)) 9.13 (12.52) 9.54 (13.49)
Age (mean (sd)) 69.79 (9.70) 70.03 (10.21)
Sex (male; %) 25 (61.0) 20 (60.6)
mRS  (mean (sd)) 0.29 (0.75) 0.36 (0.82)
mRS (median (IQR); 1 N/A) 1(2) 1(2.25)
NIHSS,,,, (mean (sd); 1 N/A) 8.03 (5.54) 8.28 (5.85)
NIHSS,,,,, (mean (sd)) 4.85 (4.95) 5.12 (5.34)
NIHSS,,,, (mean (sd); 13 N/A) 1.32 (2.25) 1.29 (2.47)
Stroke location (left; %) 16 (39.0) 11 (33.3)
Treatment (%) 18 (43.9) 13 (39.4)
Ly, (mean (sd)) - 17.66 (1.01)
L;;» (mean (sd)) - 20.91 (1.61)
L (mean (sd)) - 15.21 (0.92)
L', (mean (sd)) - 17.57 (1.14)
L,,; (mean (sd)) - 20.39 (1.62)
L% (mean (sd)) - 14.98 (0.98)
L. (mean (sd)) - 20.12 (1.20)
L, (mean (sd)) - 24.13 (1.95)
L% (mean (sd)) - 17.62 (1.12)

Associations between functional outcome and network topology

Figure 2B characterizes outcomes in our cohort. In our analysis, we observed a positive
correlation between all outcome measures and N (Spearman's Rho r = 0.54, 0.58, and 0.58 for
NIHSS,_, ., NIHSS,  , and mRS, respectively (all p<0.001); see Figure 2B and C).

early? late>
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Figure 2: A. Visualisation of cortical (left) and subcortical (right) brain regions comprising the
RC backbone. B. Early (2-5 days; N=41; left) and late (90 day; N=28; right) follow-up NIHSS
score distribution for all AIS patients, stacked and color-coded by N,.. C. Pre-stroke (left) and
late (right) mRS assessment for all AIS patients, stacked and color-coded by N
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After constructing the functional connectivity networks using partial correlation, we explore the
L for positive weights (mean and standard deviation for all connectomes reported in Table 2;
analysis results using all weighting schemes are reported in Table A1l). Figure 3A illustrates a
positive correlation between the NIHSS_, and L with regions defined by the Harvard-Oxford,
AAL and Destrieux atlases (Pearson's correlation coefficient r=0.42 (p=0.01), r=0.38 (p=0.03),
and r=0.41 (p=0.02), respectively). Additionally, Figure 3B shows the differences in L for
patients with good and poor outcome at 90 days post-stroke as measured by mRS.

Atlas: Harvard-Oxford Atlas: AAL Atlas: Destrieux
241Slope: 0.08 24{Slope: 0.08 241{Slope: 0.09
21 211 211
18 181 181
L — L — L e —
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Figure 3: A. Characteristic path length (L) for networks based on positive correlations and
NIHSS,,,, for all
atlases. C. L with respect to mRS scores (good outcome (mRS<2). Significance was determined
based on Mann-Whitney-U test (*: p<0.05).

for all atlases. B. L for networks based on positive correlations and NIHSS, .
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Outcome model based on connectivity measures

The results of the univariate analysis are shown in Table 3. All factors are significant for all
outcome measures, except for mRS  in case of the 90-day NIHSS score. Results for L
calculated on the other connectome weighting schemes are summarized in Table A2.

Table 3: Summary of univariate analysis for all variables used in the outcome models and L,
calculated on connectomes retaining positive weights for the Harvard-Oxford (HO), Automated
Anatomical Labeling (AAL), and Destrieux (DES) atlases. (*: p<0.05; **: p<0.01; ***:p<0.001)

NIHSS,,,,, p NIHSS,,.. p mRS p
age 0.071+0.011 e 0.019+0.006 o 0.023+0.003 e
DWIv 0.262+0.057 e 0.129+0.044 o 0.079+0.018 e
Nic 5.450+0.688 e 2.353+0.445 e 1.667+0.236 e
Lo 0.296+0.051 ok 0.075+0.031 * 0.092+0.014 ok
Ly 0.297+0.052 ok 0.076+0.031 * 0.093+0.014 ok
L, 0.260+0.045 o 0.066+0.027 * 0.081+0.012 ok
NIHSS, ;. 0.560+0.071 o 0.186+0.053 o 0.178+0.020 o

mRS 4.923+1.124 o 0.875+0.910 1.176+0.483 *

Utilizing the initial model in the multivariate analysis for NIHSS_, , and based on the backward
elimination, we removed DWIv (p=0.645) and age (p=0.326) from the baseline and DWIv:N
(p=0.838), DWIv (p=0.864), L (p=0.381), and NIHSS,,  (p=0.382) from the outcome model.
Similarly, we removed age (p=0.967) and NIHSS;  (p=0.176), and DWIv:N,. (p=0.893), L
(p=0.381), NIHSS,,, (p=0.298), and age (p=0.529) from the NIHSS . baseline and outcome
model, respectively. Finally, for mRS, we removed mRS . (p=0.374) and DWIv (p=0.108) from
the baseline, as well as DWIv (p=0.944), mRS__ (p=0.786), DWIv:N;. (p=0.581), and age
(p=0.391) from the outcome model. The assessment of the different linear regression models

pre

after backward elimination are summarized in Table 4.
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Table 4: Explained variance for early (2-5 days; top) and late (90-day; bottom) outcome models
for subjects with available fMRI data (N=33 and N=21, respectively). Results in parentheses
correspond to all available subjects (N=41 and N=28, respectively). Models were compared
based on their AIC and BIC values, where the lowest values identify the model that describes the
data best (bold).

NIHSS Model R? Rzadj AIC BIC
0.64 0.62 190.51 | 193.44
NIHSS, ..
(0.62) (0.61) |(233.98) | (237.36)
Early
Age+ N + L:N,. 0.81 0.79 173.55 | 179.42
Age + N 0.76 0.74 179.84 | 184.24
0.29 0.25 98.78 100.87
DWIlv
(0.25) (0.22) |(128.45) | (131.11)
Late
DWIv + N, + L:N,. 0.76 0.72 80.06 84.24
DWIv + Ni 0.66 0.62 85.26 88.39
0.56 0.54 117.44 | 120.37
Age
(0.57) (0.56) |(143.75) | (147.13)
mRS Nge + L+ L:Ngc 0.75 0.73 102.91 | 108.77
Nic 0.56 0.55 144.23 | 147.61

In all cases, models including connectivity information, i.e. Ny and L, resulted in higher
explained variance (both unadjusted and adjusted) and lower information criteria (AIC and BIC),
compared to all other models. Specifically, including both N, and L resulted in a 1.3-, 2.6-, and
carly? NIHSS,,., and

mRS, respectively. Importantly, models after removing L, and thereby extending it to the bigger

1.3-fold increase in explained variance over the baseline model for NIHSS

cohort where no fMRI data was available, perform similarly or outperform their corresponding
baseline models. Including treatment as a ‘nuisance’ variable in the models did not change
performance of any of the models (p>0.2).

Discussion

Functional outcomes vary significantly in the early and late phases of stroke recovery and are
difficult to model at AIS onset. Using the acute stroke lesions visible on the admission DWI, we
demonstrated the importance of the integrity of the RC backbone on functional outcomes after
AIS, by means of N, and its association with early and late functional outcome. Additionally,
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we showed that the topology of functional networks (independent of anatomical atlas)
significantly augments the accuracy of outcome models.

Our results align with findings in the literature. Munsch et al.?” identified stroke location as an
independent determinant of cognitive outcome as measured at 3 months post-stroke. Similar

results were demonstrated by Wu et al.?®

, highlighting the importance of joint modelling of DWI
volume and topography for stroke outcomes, while our approach also takes network topology
into account. Other studies previously have indicated a correlation between network topology
and stroke recovery. In their study, Wang et al.’® showed that stroke patients exhibit higher
network segregation (measured as clustering coefficient’) compared to healthy controls and

demonstrated an association with restoration of function. Cheng et al.”’

investigated whole-brain
functional network organization in a cohort of 12 stroke patients with motor deficits from 10
days to 3 months post-stroke and showed decreased network integration, corresponding to higher
characteristic path length, for patients with right-hemispheric stroke during an ipsilateral finger
tapping task. This agrees with our results, where patients with poor outcome showed higher

characteristic path length based on their rsfMRI data.

Rich club regions comprise brain areas responsible for distributing a large fraction of the brain's
neural communications. This underpins the importance of these regions for recovery after brain
damage, as local disruptions to these central hubs of information flow most likely affect the brain
more severely at a global level. The underlying physiological causes of this phenomenon can be
explained by (1) the disproportionate impact of pathological attacks on brain hubs on the global
efficiency of information processing®, (2) the increased vulnerability of these regions to
pathogenic factors, due to their topological centrality and high biological cost (manifested by
their long-distance neuronal connections), and/or (3) the brain’s inability to compensate for
damage or loss of these regions. The outcome model was further improved after introducing a
measure of functional network efficiency (L), which directly describes how focal lesions affect
the brain network at a global level. After backward elimination in two of the three models only
the interaction term between L and N remained. This suggests that the importance of these
regions for functional outcome increases, as efficiency of the brain network decreases (larger L.
In this case, L after stroke might serve as a surrogate measure of L before the stroke and future
studies are required to disentangle a causal relationship. However, information on L before
stroke are generally difficult to obtain. Regardless, comparing the associations between L and
outcome highlights that a more intact and/or efficient network communication in the acute phase
of stroke is associated with better outcome, indicated by a lower NIHSS and mRS score. While
the mechanisms through which the brain's functional reorganization facilitates recovery after
stroke and the causal relationship between the two variables are yet to be explored, our findings
indicate that L, estimated from rsfMRI in the acute stroke phase, may be utilized as a determinant
of functional recovery. Future studies may also investigate mRS and NIHSS in association with
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task-specific networks, such as sensorimotor and frontoparietal control systems, to shed light on
particular brain regions that are responsible for reorganizations in the connectome.

In general, these results underscore the importance of efficient brain connectivity in functional
recovery and resilience to brain damage after ischemic stroke. Our model accounts for some of
the most commonly reported confounding factors that are available in the acute setting, i.e. age
and lesion volume as measured on the acute DWI image. We found that, although N is
correlated with DWIv, the volume alone is not enough to explain the early and late outcomes as
measured by the NIHSS score. Despite the positive correlation between these two measures
(Spearman's Rho r=0.46), there are both large infarcts that do not affect any RC regions and
small infarcts that involve one or two RC regions, demonstrating that a larger DWIv does not
equal greater Ny.. In future work, we aim to investigate whether the incorporation of structural
connectivity measures could further improve the prediction accuracy of long-term functional
outcome. As suggested by Carter et al.*, each behavioral deficit and its variability across stroke
patients will likely be explained by a combination of structural variables (e.g. DWIv) and their
interaction with measures of structural (e.g. integrity of white matter pathways), and functional
connectivity. According to their study, stroke causes a change of 'functional state' in the
spontaneous brain activity at rest, impacting the brain network during active behavior, further
motivating our study in which we investigated resting state activity in isolation and its relation to
behavioral deficits and outcome. This is further highlighted by the resulting models after
backward elimination, where the models of NIHSS incorporate age or DW1v, as well as
measures of structural (N,.) and functional (L) connectivity.

In this analysis, we saw an increase in explained variance in the outcome model of early NIHSS,
where the model using age and connectome information outperform a model using the same
measure obtained 2-5 days earlier. While the connectome information remain in the model, age
loses its significance and DWIv becomes more important in the late NIHSS assessment. This
suggests that age plays an important role in compensating the acute effects of stroke, whereas the
effects of structural damage (DWIv) become more important for long-term outcome and
recovery. While rsfMRI data is often not available in the hyper-acute stage of stroke, we
removed L from our models, demonstrating a clinically relevant and easy to assess model. Even
without L, the presented outcome models demonstrate an increase in explained variance over
their corresponding baseline models, except for mRS. However, mRS is the only model not
containing either age or DWIv. Re-introducing age into the model, as it was the last parameter
removed during backward elimination, results in both age and N, being significant with
explained variance of R?*=0.66, showing similar improvement compared to the NTHSS based
models.
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There are limitations that need to be taken into consideration when interpreting these results.
First, regional delays have been identified in rstMRI fluctuations in stroke and cerebrovascular
disease patients (hemodynamic lag), which takes place due to vascular occlusion®. These delays
are measured by time shift analysis of regional BOLD time series with respect to a reference
signal. Approaches have been proposed to correct for such lags®, however, there is no consensus
on how to address this challenge. Importantly, the effect of hemodynamic lag and the subsequent
drop in estimated functional connectivity may be an integral part of the observed differences
between patients, and may be utilized to determine variations in outcome. Another limitation
results from potential registration errors, due to relatively low through-plane resolution of the
anatomical scans and the fact that the lesions were not masked out when registering the
anatomical scans to the MNI template. While registration errors increase noise in the analysis, it
is unlikely that this will cause a systematic error in our cohort of patients with right- (N=22)) and
left-hemispheric (N=11) strokes . Moreover, by using three atlases to investigate the functional
network topology and demonstrating consistent trends, our results are less prone to systematic
errors due to misalignment of boundaries between regions. In this study, a subset of patients
(N=5) had contraindication for 3T MRI acquisition and subsequently underwent 1.5T imaging.
However, studies suggest that there are no significant differences in the assessment of infarct
lesion volume between 1.5T and 3T systems in the hyperacute stage®'. Generally, this study
presents a proof-of-concept, due to the relatively small sample size. In particular, only few
subjects showed poor outcome, which can affect model fit, as these might be considered
‘outliers’. While the assumptions of the linear models, i.e. mean residual equals 0, no correlation
between residuals and dependent variables, positive variability, homoscedasticity, and no
multicollinearity (defined as variance inflation factors < 2), were fulfilled, we observed a
quantile-quantile plot corresponding to a heavy-tailed distribution of the standardized residuals.
cary” 15> NIHSS, >9,
and mRS of 5), thereby improving model fit, the results remained consistent and demonstrated an

However, after excluding subjects with ‘extreme’ outcome values (NIHSS Jate
increase in explained variance. Moreover, mRS is usually modeled using ordinal regressions,
requiring larger datasets than was available in this study. Considering the general agreement with
outcome models using NIHSS in terms of factors that are retained in the analysis, however, we
do not expect a significant change in retained factors, as using linear regression is more likely to
introduce more noise in the data.

Among the strengths of this study was the thoroughly ascertained and well-characterized
hospital-based dataset of patients with AIS and consecutive assessments of functional post-stroke
outcomes. These included consecutive outcome measurements of NIHSS, which is a fine-grained
measure for quantifying the impairment of stroke. Importantly, in combining N, and topological
information from functional connectivity profiles of patients, we were also able to interrogate
effects on both the structural (N.) and functional (L) brain networks, combining them into a
single, intuitive outcome model.
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Summary

In conclusion, this is the first study exploring functional network and RC topology of brain
connectivity in AIS patients, as well as their association with early and late post-stroke
outcomes. Our findings highlight the impact of stroke location on functional recovery, as well as
the importance of structural connectivity hubs and functional integration for efficient information
transmission. The proposed model yields a 1.3-2.6-fold improvement in explained variance over
the baseline model, improving our understanding of how stroke affects functional brain
organization in the acute setting.
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Table A1: Summary of results for functional connectomes created retaining positive, negative,
and absolute connectivity profiles for the Harvard-Oxford (HO), Automated Anatomical
Labeling (AAL), and Destrieux (DES) atlases. Path-lengths L were calculated for each atlas and
each connectome combination and assessed with respect to their Pearson’s correlation coefficient
with early and late outcome, measured by NIHSS. Additionally, the explained variance with and
without adjustment for number of independent variables (R? and Rzadj), and the Bayes
information criterion (BIC) are reported for the outcome models in Table 4.

Pearson’s Outcome model after backward elimination
. L(mRS)
Correlation
Connectome .
Coefficient (mean (std))
(L~NTHSS) NIHSS,,,,, NIHSS,,, mRS
Atlas | Weights | Early | Late | good | poor [p| R* | R’, BIC R’ | R, | BIC R’ R’ BIC
o 17.3 18.3
positive 0.42* | 0.32 0.6) (1.4) *10.82 | 0.80 | 178.05 0.67 | 0.61 | 87.20 | 0.75 | 0.72 109.68
. 20.5 21.8
HO negative 0.26 -0.03 (1.0) 23 |- 0.81 0.79 179.79 0.67 | 0.61 | 87.47 | 0.73 | 0.70 111.86
14.9 15.8
absolute 0.37* | 0.15 0.6) (13) *10.82 | 0.80 178.54 0.66 | 0.60 | 87.69 | 0.74 | 0.71 110.56
o 17.3 18.2
positive 0.38* | 0.42 - | 0.81 0.79 179.42 0.75 | 0.71 | 81.53 | 0.75 | 0.73 108.77
©.7) | (1.7
. 20.1 21.1
AAL negative 0.19 -0.08 (12) 23) - 1079 | 0.76 183.33 0.66 | 0.60 | 87.67 | 0.73 | 0.70 111.57
14.8 15.5
absolute 0.30 0.16 0.6) (1.5) -1 080 | 0.78 181.33 0.68 | 0.62 | 86.59 | 0.75 | 0.72 109.58
o 19.8 208 |
positive 0.41* | 0.25 0.81 0.79 179.57 0.66 | 0.60 | 87.61 0.74 | 0.71 110.20
(0.7) (1.8)
. 23.6 25.2
DES negative 0.32 -0.07 (12) 2.8) *10.80 | 0.78 181.01 0.68 | 0.63 | 86.35 | 0.73 | 0.70 111.54
17.3 18.3
absolute 0.39* | 0.12 0.6) a7 *10.81 0.79 179.35 0.67 | 0.61 | 87.56 | 0.74 | 0.71 110.59
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Table A2: Summary of univariate analysis results for all variables used in the outcome models.

NIHSS p NIHSS, . p mRS p
age 0.071+0.011 ok 0.019+0.006 o 0.023+0.003 ok
DWIv 0.262+0.057 ok 0.129+0.044 ox 0.079+0.018 ok
Nic 5.450+0.688 e 2.353+0.445 e 1.667+0.236 e
NIHSS,, [ 0.560+0.071 ok 0.186+0.053 o 0.178+0.020 ok

mRS | 4.923+1.124 ok 0.875+0.910 1.176+0.483 *
Lio 0.296+0.051 e 0.075+0.031 * 0.092+0.014 e
Lyo 0.248+0.044 ok 0.063+0.027 * 0.078+0.012 ek
L%’g 0.343+0.060 ok 0.087+0.036 * 0.107£0.016 ok
Ly 0.297+0.052 ok 0.076+0.031 * 0.093+0.014 ok
L 0.253+0.045 e 0.063+0.027 * 0.079+0.012 e
L 0.347+0.061 ok 0.088+0.036 * 0.108+0.017 ok
Ly, 0.260+0.045 o 0.066+0.027 * 0.081+0.012 o
Lp,, 0.216+0.038 ok 0.054+0.023 * 0.068+0.010 ok
Lj’)b; 0.297+0.051 . 0.075+0.031 * 0.093+0.014 .



https://doi.org/10.1101/590497
http://creativecommons.org/licenses/by/4.0/

