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Abstract 
Background​: The ability to model long-term functional outcomes after acute ischemic stroke 
(AIS) represents a major clinical challenge. One approach to potentially improve prediction 
modeling involves the analysis of connectomics. The field of connectomics represents the brain's 
connectivity as a graph, whose topological properties have helped uncover underlying 
mechanisms of brain function in health and disease. Specifically, we assessed the impact of 
stroke lesions on rich club (RC) organization, a high capacity backbone system of brain function.  
Methods​:  In a hospital-based cohort of 41 AIS patients, we investigated the effect of acute 
infarcts on the brain’s pre-stroke RC backbone and post-stroke functional connectomes with 
respect to post-stroke outcome. Functional connectomes were created utilizing three anatomical 
atlases and characteristic path-length (​L​) was calculated for each connectome. The number of RC 
regions (N ​RC​) affected were manually determined using each patient’s diffusion weighted image 
(DWI). We investigated differences in ​L​ with respect to outcome (modified Rankin Scale score 
(mRS); 90-days; poor: mRS>2) and the National Institutes of Health Stroke Scale (NIHSS; early: 
2-5 days; late: 90-day follow-up). Furthermore, we assessed the effect of including N​RC​ and ​L ​ in 
‘outcome’ models, using linear regression and assessing the explained variance (R​2​). 
Results​: Of 41 patients (mean age (range): 70 (45-89) years), 61% were male. There were 
differences in ​L​ between patients with good and poor outcome (mRS). Including NRC in the 
backward selection models of outcome, R​2​ increased between 1.3- and 2.6-fold beyond that of 
traditional markers (age and acute lesion volume) for NIHSS and mRS. 
Conclusion​: In this proof-of-concept study, we showed that information on network topology 
can be leveraged to improve modeling of post-stroke functional outcome. Future studies are 
warranted to validate this approach in larger prospective studies of outcome prediction in stroke. 
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Introduction 
Stroke is a leading cause of long-term adult disability​1​ with significant public health burden​2​. 
Importantly, the ability to individually prognosticate stroke outcomes in the acute setting remains 
challenging ​3​, due to the complex mechanisms of post-stroke recovery and the multitude of 
clinical and radiographic variables that differentially affect patient outcomes​4–6​.  
 
Magnetic resonance imaging (MRI) allows the mapping of anatomical regions and the pathways 
of their interconnections through diffusion weighted imaging (DWI) or functional co-activation 
through functional MRI (task-based or resting state (rsfMRI)), producing a comprehensive 
description of the brain's structural and/or functional connectivity. Connectomics involves 
conceptualizing the brain as a graph and allows the exploration of topological properties of brain 
connectivity with network theoretical measures​7​. This has led to fundamental insights into the 
brain’s organization​8–12​, resilience to injury​13–15​, and alterations due to disease​16–20​. Associations 
between structural features, such as white matter microstructural integrity, and functional 
post-stroke outcome have recently been established​21​. However, the effect of premorbid 
structural and/or functional brain connectivity organization on recovery after stroke and its role 
in resilience to damage is yet to be fully elucidated. 
 
A so-called rich club (RC) organization has been described in the human connectome​8,10​, 
comprising a set of regions which are thought to form an information backbone, crucial for brain 
function, and susceptible to disease​22​. Van den Heuvel and Sporns​8​ identified six bilateral regions 
belonging to the RC, three cortical (precuneus, superior frontal and parietal cortex) and three 
subcortical regions (putamen, hippocampus and thalamus), where RC regions are hubs that 
mediate long-distance connections between brain modules​23​. This demonstrated their critical role 
for information integration, adaptive behavior​24​ and cognitive tasks​25​. Targeted attacks on their 
connections can have a significant impact on global network efficiency​8​ and have been shown to 
lead to functional deficits in disorders like Alzheimer's disease​26​. Importantly, stroke location has 
been identified as an independent determinant of cognitive outcome​27,28​, in addition to widely 
accepted clinical factors, such as age​29​ and stroke lesion size​30,31​. Furthermore, a strong coupling 
between brain hubs, especially those lying in the cerebral cortex, and regional blood flow has 
been unveiled during rest as well as in response to task demands​32​. Consequently, the 
investigation of damage to RC regions in stroke patients is intriguing. The effect of focal injury 
caused by stroke on large-scale brain networks has been recently explored along with network 
alterations in brain tumor and traumatic brain injury​33​, however, without a clear mapping 
between the anatomical lesion site and its topological characteristics within the brain network. 
Functional connectivity has been previously explored in longitudinal studies of motor recovery 
after stroke​34,35​ and significant correlations between interhemispheric resting-state connections 
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and functional performance have been identified​36,37​. Nevertheless, the effect of focal ischemic 
stroke lesions on whole-brain functional organization estimated before and after stroke have not 
been investigated.  
 
In this study, we examine the functional network organization in AIS patients and the lesion 
location in relation to network topography with respect to functional outcome. Here, we assessed 
the impact of ischemic insults on brain regions that constitute the RC backbone, as well as 
functional network topology at a global level on brain recovery, in a prospective, hospital-based 
cohort. We hypothesize that models incorporating connectivity information, specifically the 
characteristic path length in the acute phase and the number of RC regions affected by the stroke 
lesion, will improve the prediction of a patient's functional outcome. Using multivariate linear 
regression, we conclude that the connectivity metrics obtained early in the course of acute 
ischemic stroke can be used to better understand the mechanisms underlying variability in 
post-stroke functional outcomes. 

Materials and Methods 

Patient population 
AIS patients were enrolled in the SALVO (Statins augment small vessel function and improve 
stroke outcomes) study after admission to the Emergency Department at Massachusetts General 
Hospital. The study was approved by the Institutional Review Board and all participants, or their 
surrogates, gave written informed consent at the time of enrolment. AIS was defined as: (a) acute 
onset of focal neurological symptoms consistent with cerebrovascular syndrome, (b) MRI 
findings consistent with acute cerebral ischemia, and (c) no evidence of other neurological 
disorders to explain the symptoms. Subjects with moderate to severe white matter hyperintensity 
(WMH) burden defined as Fazekas​38​ grade ≥2 in any of the three categories (periventricular, 
deep lesion extent and deep lesion count) were eligible for enrolment in this study. Participants 
with medical contraindications to gadolinium-based contrast agents were excluded from this 
study. 

Clinical assessment 
Upon admission to the hospital, the National Institutes of Health Stroke Scale score​39​ (NIHSS; 0 
(no symptoms) - 42) was recorded for each patient by a trained neurologist​40​. Utilizing NIHSS as 
a pseudo outcome score, post-stroke functional outcome was assessed during two follow-up 
assessments: (1) within 2-5 days after admission (average 2.6 days, ”early” in-hospital 
follow-up) and (2) at 90 days (”late” follow-up). Additionally, the modified Rankin Scale score​41 
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(mRS; 0 (no symptoms) - 6 (death)) was recorded at ”late” follow-up to assess functional status 
of the patients. mRS focuses on the assessment of functional independence (ability to return to 
independent living, including ambulation without assistance), and is widely used in stroke 
clinical trials based on its high utility and reliability​42–44​. In this study, mRS ≤2 was considered 
'good' outcome (minor disability but patient is functionally independent), while mRS>2 was 
considered 'poor' outcome (significant disability, loss of functional independence, including 
death). 

Data acquisition 
Patients enrolled in the SALVO study underwent a research protocol MRI, including structural, 
diffusion and functional imaging, in the hospital at 2-5 days after admission. A T1-weighted 
image was acquired with the following parameters: in-plane resolution, 0.430 mm; slice 
thickness, 6mm; matrix size, 480x512; number of slices: 28. Gradient-echo echoplanar imaging 
(EPI) data depicting blood oxygen level-dependent contrast at rest were also acquired at 3.0T in 
Massachusetts General Hospital (Boston, USA). The rsfMRI data (N=33) consisted of 150 
volumes with the following parameters: number of slices, 42 (interleaved); slice thickness, 3.51 
mm; matrix size, 64x64; flip angle, 90°; repetition time (TR), 2400 ms; in-plane resolution, 
3.437 mm. In the majority of subjects, DWI was performed using a 3T (Siemens Skyra) scanner 
with the following parameters: numbers of slices, 160; slice thickness, 5mm; TR, 5500 ms; TE, 
99ms; in-plane resolution, 1.375mm. For five of the patients in this cohort 1.5T MRI was used 
due to medical contraindications for 3T, such as the presence of a pacemaker.  

Image processing 
Both structural and functional images were preprocessed using the Configurable Pipeline for the 
Analysis of Connectomes (CPAC)​45​. First, bias field correction of the anatomical images was 
performed​46​, followed by brain extraction employing a convolutional neural network​47​. 
Subsequently, the images were registered to the MNI (Montreal Neurological Institute) 
anatomical template using non-linear registration (ANTs)​48​. Probability maps for grey matter, 
white matter and cerebrospinal fluid (CSF) were generated using FSL FAST​49​. 
 
For the functional data, slice timing correction was first performed to account for the interleaved 
acquisition, while geometrical displacements due to head movement were corrected with rigid 
registration using the AFNI software (https://afni.nimh.nih.gov/). Brain extraction of the fMRI 
data was performed using FSL's Brain Extraction Tool (BET)​50​. The 150 functional images for 
each patient were then affinely registered to the corresponding T1 image, transformed to the 
MNI template, and underwent mean intensity normalization. Finally, nuisance signal regression 
was performed for white matter, CSF and global mean, and the functional time series were 
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band-pass filtered (0.01-0.1Hz) and scrubbed for extreme frame displacement (>3mm). The 
structural and functional preprocessing steps are summarized in Figure 1. 
 

 
Figure 1​: Overview of the processing pipeline. Each patient’s imaging data underwent (a) 
anatomical processing, (b) functional processing, (c) spatial normalization to one of three atlases 
(Harvard-Oxford, AAL, Destrieux), and (d) functional connectome creation. 

Rich club region characterization 
A study on structural connectivity subdivided the brain into 68 cortical and 14 subcortical 
regions​51​ and identified those belonging to the RC​8​. These regions are characterized by high 
connection strength, high betweenness centrality (centrality within a network with respect to its 
influence on the transfer of information) and low path length (indicator of efficient information 
transmission). This set comprises 6 bilateral regions, including the ​precuneus​, the ​superior 
frontal ​ and ​parietal cortex ​, along with subcortical regions including ​putamen​, ​hippocampus​ and 
thalamus​ (see Figure 2A). An expert neurologist (M.R.E.), blinded to outcomes, manually 
identified the number of RC regions affected by the lesion (N​RC​) and outlined the acute infarct 
lesions on the DWI image. 

Network analysis of functional connectivity 
Three anatomical atlases were used to define the regions of the connectome following 
preprocessing of the fMRI images, allowing us to explore reproducibility of the findings across 
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different brain parcellations. These included the Destrieux (148 regions)​52​, the Harvard-Oxford​51​, 
and the AAL atlas (116 regions)​53​. For each atlas and each corresponding regions, mean time 
series were calculated. Partial correlation between the time series was employed to estimate the 
strength of the functional connections, yielding a weighted graph representation​54​. Global 
efficiency of the networks was estimated via the characteristic path length, , whichLatlas

weight  
corresponds to the average path length ​l(s) ​ across all regions ​s​7​, calculated on a given atlas with a 
given connectivity weight. In this study, we investigated retaining positive, negative and absolute 
weights of the estimated networks, as there is no consensus with regards to which of these is 
most discriminative. 

Functional topology and outcome models 
We first investigate the association between the number of RC regions affected by stroke (N​RC​) 
and all outcome measures using the Spearman’s correlation coefficient. Additionally, we 
assessed the differences in ​L ​ with respect to NIHSS and mRS ('good' or 'poor' (mRS>2)) based 
on Pearson’s correlation coefficient and Mann-Whitney-U tests, respectively. 
 
Subsequently, we modeled functional outcome using linear regressions based on age, lesion 
volume (DWIv), NIHSS at admission (NIHSS ​adm​), pre-stroke mRS (mRS ​pre​), ​L​ and N ​RC​. First, we 
performed a univariate analysis between all independent variables and each outcome measure. 
For multivariate analysis, we defined the ​baseline model​ based on age, lesion volume (DWIv), 
and ​early outcome measures ​ (NIHSS​adm​ or mRS​pre​, for outcome models based on NIHSS and 
mRS, respectively). In the ​outcome model​, we further included N​RC​ and ​L ​. In addition, we 
considered interactions between N​RC​ and DWIv, due to the fact that larger lesions are likely to 
affect more RC regions, as well as an interaction term between N​RC​ and ​L ​, as damage to RC 
regions have been shown to disturb global network efficiency, and therefore ​L ​, more 
significantly compared to other regions​8​. To reduce the statistical burden of the model, we 
performed backward elimination, where variables with the highest p-value above 0.05 are 
iteratively eliminated and the model is refit, until only significant terms remain. The outcome 
models incorporate information related to both structural and functional connectivity, however, 
as ​L​ is only available for patients with available fMRI data we remove it after backward 
elimination to test the model in the larger cohort. The baseline and initial outcome models are 
given in Table 1.  
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Table 1​: Summary of models investigated. Models have the form ‘response ~ terms’, where 
response is the dependent variable and terms the series of independent variables utilized in the 
model connected by ‘+’. Interaction terms between independent variables are indicated by ‘:’. 

Model name Model 

Baseline Outcome ~ Age + DWIv 

Initial model Outcome ~ Age + DWIv + N​RC​ + L + DWIv: N​RC​ + N ​RC​:L + early measure 

 
All models are compared using explained variance with (R​2​adj​) and without (R​2​) adjustment for 
the number of independent variables. Furthermore, we report two information criteria, i.e. 
Akaike information criterion (AIC)​56​ and Bayes information criterion (BIC)​57​, where smaller 
values correspond to better model fit. BIC, in addition to assessing the model fit, considers a 
trade-off between model fit and complexity of the model, where more complex models are 
penalized. All analyses were performed using the computing environment R​55​. 

Results 
Forty-four AIS patients were enrolled in this study. Three patients were subsequently excluded 
because the MRI was not obtained. Of the remaining 41 patients, all had NIHSS at admission 
and between 2-5 days, as well as mRS recorded. For 28 patients 90-day NIHSS score was also 
available and fMRI data was collected for 33 patients. Table 2 summarizes the cohort 
characteristics. 
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Table 2​: Study cohort characterization. The treatment category includes intravenous tPA or 
endovascular thrombectomy. Patients with fMRI data available were not significantly different in 
any of the characteristics (p>0.2). (sd: standard deviation; IQR: inter-quartile range) 

 SALVO Patients with 
fMRI data 

n 41 33 
N​RC​ (mean (sd)) 0.59 (0.81) 0.52 (0.80) 

DWIv (mean (sd)) 9.13 (12.52) 9.54 (13.49) 
Age (mean (sd)) 69.79 (9.70) 70.03 (10.21) 
Sex (male; %) 25 (61.0) 20 (60.6) 

mRS​pre​ (mean (sd)) 0.29 (0.75) 0.36 (0.82) 
mRS (median (IQR); 1 N/A) 1 (2) 1 (2.25) 
NIHSS​adm​ (mean (sd); 1 N/A) 8.03 (5.54) 8.28 (5.85) 

NIHSS​early ​ (mean (sd)) 4.85 (4.95) 5.12 (5.34) 
NIHSS​late​ (mean (sd); 13 N/A) 1.32 (2.25) 1.29 (2.47) 

Stroke location (left; %) 16 (39.0) 11 (33.3) 
Treatment (%) 18 (43.9) 13 (39.4) 

 (mean (sd)) L+
HO  - 17.66 (1.01) 

 (mean (sd)) L−
HO  - 20.91 (1.61) 

 (mean (sd))Labs
HO  - 15.21 (0.92) 

 (mean (sd)) L+
AAL  - 17.57 (1.14) 

 (mean (sd)) L−
AAL  - 20.39 (1.62) 

 (mean (sd))Labs
AAL  - 14.98 (0.98) 

 (mean (sd)) L+
Des  - 20.12 (1.20) 

 (mean (sd)) L−
Des  - 24.13 (1.95) 

 (mean (sd))Labs
Des  - 17.62 (1.12) 

Associations between functional outcome and network topology 
Figure 2B characterizes outcomes in our cohort. In our analysis, we observed a positive 
correlation between all outcome measures and N​RC​ (Spearman's Rho r = 0.54, 0.58, and 0.58 for 
NIHSS​early​, NIHSS​late​, and mRS, respectively (all p<0.001); see Figure 2B and C).  
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Figure 2​: A. Visualisation of cortical (left) and subcortical (right) brain regions comprising the 
RC backbone. B. Early (2-5 days; N=41; left) and late (90 day; N=28; right) follow-up NIHSS 
score distribution for all AIS patients, stacked and color-coded by N​RC​. C. Pre-stroke (left) and 
late (right) mRS assessment  for all AIS patients, stacked and color-coded by N​RC​. 
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After constructing the functional connectivity networks using partial correlation, we explore the 
L​ for positive weights (mean and standard deviation for all connectomes reported in Table 2; 
analysis results using all weighting schemes are reported in Table A1). Figure 3A illustrates a 
positive correlation between the NIHSS​early​ and ​L ​ with regions defined by the Harvard-Oxford, 
AAL and Destrieux atlases (Pearson's correlation coefficient r=0.42 (p=0.01), r=0.38 (p=0.03), 
and r=0.41 (p=0.02), respectively). Additionally, Figure 3B shows the differences in ​L​ for 
patients with good and poor outcome at 90 days post-stroke as measured by mRS.  
 

 
Figure 3​: A. Characteristic path length (​L​) for networks based on positive correlations and 
NIHSS​early​ for all atlases. B. ​L ​ for networks based on positive correlations and NIHSS​late​ for all 
atlases. C. ​L ​ with respect to mRS scores (good outcome (mRS≤2). Significance was determined 
based on Mann-Whitney-U test (*: p<0.05). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/590497doi: bioRxiv preprint 

https://doi.org/10.1101/590497
http://creativecommons.org/licenses/by/4.0/


AIS connectome measures improve outcome modeling -  12 

Outcome model based on connectivity measures 
The results of the univariate analysis are shown in Table 3. All factors are significant for all 
outcome measures, except for mRS​pre​ in case of the 90-day NIHSS score. Results for ​L 
calculated on the other connectome weighting schemes are summarized in Table A2. 
 
Table 3​: Summary of univariate analysis for all variables used in the outcome models and ​L ​, 
calculated on connectomes retaining positive weights for the Harvard-Oxford (HO), Automated 
Anatomical Labeling (AAL), and Destrieux (DES) atlases. (*: p<0.05; **: p<0.01; ***:p<0.001) 

 NIHSS​early p NIHSS​late p mRS p 
age 0.071±0.011 *** 0.019±0.006 ** 0.023±0.003 *** 

DWIv 0.262±0.057 *** 0.129±0.044 ** 0.079±0.018 *** 
N​RC 5.450±0.688 *** 2.353±0.445 *** 1.667±0.236 *** 

 L+
HO  0.296±0.051 *** 0.075±0.031 * 0.092±0.014 *** 

 L+
AAL  0.297±0.052 *** 0.076±0.031 * 0.093±0.014 *** 

 L+
Des  0.260±0.045 *** 0.066±0.027 * 0.081±0.012 *** 

NIHSS​adm 0.560±0.071 *** 0.186±0.053 ** 0.178±0.020 *** 
mRS​pre 4.923±1.124 *** 0.875±0.910  1.176±0.483 * 

    
Utilizing the initial model in the multivariate analysis for NIHSS​early​, and based on the backward 
elimination, we removed DWIv (p=0.645) and age (p=0.326) from the baseline and DWIv:N​RC 
(p=0.838), DWIv (p=0.864), ​L ​ (p=0.381), and NIHSS ​adm​ (p=0.382) from the outcome model. 
Similarly, we removed age (p=0.967) and NIHSS​adm​ (p=0.176), and DWIv:N ​RC​ (p=0.893), ​L 
(p=0.381), NIHSS​adm​ (p=0.298), and age (p=0.529) from the NIHSS ​late​ baseline and outcome 
model, respectively. Finally, for mRS, we removed mRS​pre​ (p=0.374) and DWIv (p=0.108) from 
the baseline, as well as DWIv (p=0.944), mRS​pre​ (p=0.786), DWIv:N ​RC​ (p=0.581), and age 
(p=0.391) from the outcome model. The assessment of the different linear regression models 
after backward elimination are summarized in Table 4.  
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Table 4​: Explained variance for early (2-5 days; top) and late (90-day; bottom) outcome models 
for subjects with available fMRI data (N=33 and N=21, respectively). Results in parentheses 
correspond to all available subjects (N=41 and N=28, respectively). Models were compared 
based on their AIC and BIC values, where the lowest values identify the model that describes the 
data best (bold). 

NIHSS Model R​2 R​2​adj AIC BIC 

Early 

NIHSS​adm 

0.64 0.62 190.51 193.44 

(0.62) (0.61) (233.98) (237.36) 

Age+ N​RC​ + L:N​RC 0.81 0.79 173.55 179.42 

Age + N​RC 
0.76 0.74 179.84 184.24 

Late 

DWIv 
0.29 0.25 98.78 100.87 

(0.25) (0.22) (128.45) (131.11) 

DWIv + N​RC​ + L:N​RC 0.76 0.72 80.06 84.24 

DWIv + N​RC 0.66 0.62 85.26 88.39 

 
mRS 

Age 
0.56 0.54 117.44 120.37 

(0.57) (0.56) (143.75) (147.13) 

N​RC​ + L + L:N​RC 0.75 0.73 102.91 108.77 

N​RC 0.56 0.55 144.23 147.61 

    
In all cases, models including connectivity information, i.e. N​RC​ and ​L ​, resulted in higher 
explained variance (both unadjusted and adjusted) and lower information criteria (AIC and BIC), 
compared to all other models. Specifically, including both N​RC​ and ​L ​ resulted in a 1.3-, 2.6-, and 
1.3-fold increase in explained variance over the baseline model for NIHSS​early​, NIHSS​late​, and 
mRS, respectively. Importantly, models after removing ​L ​, and thereby extending it to the bigger 
cohort where no fMRI data was available, perform similarly or outperform their corresponding 
baseline models. Including treatment as a ‘nuisance’ variable in the models did not change 
performance of any of the models (p>0.2). 

Discussion 
Functional outcomes vary significantly in the early and late phases of stroke recovery and are 
difficult to model at AIS onset. Using the acute stroke lesions visible on the admission DWI, we 
demonstrated the importance of the integrity of the RC backbone on functional outcomes after 
AIS, by means of N ​RC​, and its association with early and late functional outcome. Additionally, 
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we showed that the topology of functional networks (independent of anatomical atlas) 
significantly augments the accuracy of outcome models. 
 
Our results align with findings in the literature. Munsch et al.​27​ identified stroke location as an 
independent determinant of cognitive outcome as measured at 3 months post-stroke. Similar 
results were demonstrated by Wu et al.​28​, highlighting the importance of joint modelling of DWI 
volume and topography for stroke outcomes, while our approach also takes network topology 
into account. Other studies previously have indicated a correlation between network topology 
and stroke recovery. In their study, Wang et al.​56​ showed that stroke patients exhibit higher 
network segregation (measured as clustering coefficient​7​) compared to healthy controls and 
demonstrated an association with restoration of function. Cheng et al.​57​ investigated whole-brain 
functional network organization in a cohort of 12 stroke patients with motor deficits from 10 
days to 3 months post-stroke and showed decreased network integration, corresponding to higher 
characteristic path length, for patients with right-hemispheric stroke during an ipsilateral finger 
tapping task. This agrees with our results, where patients with poor outcome showed higher 
characteristic path length based on their rsfMRI data.  
 
Rich club regions comprise brain areas responsible for distributing a large fraction of the brain's 
neural communications. This underpins the importance of these regions for recovery after brain 
damage, as local disruptions to these central hubs of information flow most likely affect the brain 
more severely at a global level. The underlying physiological causes of this phenomenon can be 
explained by (1) the disproportionate impact of pathological attacks on brain hubs on the global 
efficiency of information processing​58​, (2)  the increased vulnerability of these regions to 
pathogenic factors, due to their topological centrality and high biological cost (manifested by 
their long-distance neuronal connections), and/or (3) the brain’s inability to compensate for 
damage or loss of these regions. The outcome model was further improved after introducing a 
measure of functional network efficiency (​L ​), which directly describes how focal lesions affect 
the brain network at a global level. After backward elimination in two of the three models only 
the interaction term between ​L ​ and N ​RC​ remained. This suggests that the importance of these 
regions for functional outcome increases, as efficiency of the brain network decreases (larger ​L​. 
In this case, ​L ​ after stroke might serve as a surrogate measure of ​L​ before the stroke and future 
studies are required to disentangle a causal relationship. However, information on ​L ​ before 
stroke are generally difficult to obtain. Regardless, comparing the associations between ​L​ and 
outcome highlights that a more intact and/or efficient network communication in the acute phase 
of stroke is associated with better outcome, indicated by a lower NIHSS and mRS score. While 
the mechanisms through which the brain's functional reorganization facilitates recovery after 
stroke and the causal relationship between the two variables are yet to be explored, our findings 
indicate that ​L ​, estimated from rsfMRI in the acute stroke phase, may be utilized as a determinant 
of functional recovery. Future studies may also investigate mRS and NIHSS in association with 
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task-specific networks, such as sensorimotor and frontoparietal control systems, to shed light on 
particular brain regions that are responsible for reorganizations in the connectome.  
 
In general, these results underscore the importance of efficient brain connectivity in functional 
recovery and resilience to brain damage after ischemic stroke. Our model accounts for some of 
the most commonly reported confounding factors that are available in the acute setting, i.e. age 
and lesion volume as measured on the acute DWI image. We found that, although N​RC​ is 
correlated with DWIv, the volume alone is not enough to explain the early and late outcomes as 
measured by the NIHSS score. Despite the positive correlation between these two measures 
(Spearman's Rho r=0.46), there are both large infarcts that do not affect any RC regions and 
small infarcts that involve one or two RC regions, demonstrating that a larger DWIv does not 
equal greater N​RC​. In future work, we aim to investigate whether the incorporation of structural 
connectivity measures could further improve the prediction accuracy of long-term functional 
outcome. As suggested by Carter et al.​36​, each behavioral deficit and its variability across stroke 
patients will likely be explained by a combination of structural variables (e.g. DWIv) and their 
interaction with measures of structural (e.g. integrity of white matter pathways), and functional 
connectivity. According to their study, stroke causes a change of 'functional state' in the 
spontaneous brain activity at rest, impacting the brain network during active behavior, further 
motivating our study in which we investigated resting state activity in isolation and its relation to 
behavioral deficits and outcome. This is further highlighted by the resulting models after 
backward elimination, where the models of NIHSS incorporate age or DWIv, as well as 
measures of structural (N​RC​) and functional (​L​) connectivity.  
 
In this analysis, we saw an increase in explained variance in the outcome model of early NIHSS, 
where the model using age and connectome information outperform a model using the same 
measure obtained 2-5 days earlier. While the connectome information remain in the model, age 
loses its significance and DWIv becomes more important in the late NIHSS assessment. This 
suggests that age plays an important role in compensating the acute effects of stroke, whereas the 
effects of structural damage (DWIv) become more important for long-term outcome and 
recovery. While rsfMRI data is often not available in the hyper-acute stage of stroke, we 
removed ​L ​ from our models, demonstrating a clinically relevant and easy to assess model. Even 
without ​L ​, the presented outcome models demonstrate an increase in explained variance over 
their corresponding baseline models, except for mRS. However, mRS is the only model not 
containing either age or DWIv. Re-introducing age into the model, as it was the last parameter 
removed during backward elimination, results in both age and N​RC​ being significant with 
explained variance of R​2​=0.66, showing similar improvement compared to the NIHSS based 
models. 
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There are limitations that need to be taken into consideration when interpreting these results. 
First, regional delays have been identified in rsfMRI fluctuations in stroke and cerebrovascular 
disease patients (hemodynamic lag), which takes place due to vascular occlusion​59​. These delays 
are measured by time shift analysis of regional BOLD time series with respect to a reference 
signal. Approaches have been proposed to correct for such lags​60​, however, there is no consensus 
on how to address this challenge. Importantly, the effect of hemodynamic lag and the subsequent 
drop in estimated functional connectivity may be an integral part of the observed differences 
between patients, and may be utilized to determine variations in outcome. Another limitation 
results from potential registration errors, due to relatively low through-plane resolution of the 
anatomical scans and the fact that the lesions were not masked out when registering the 
anatomical scans to the MNI template. While registration errors increase noise in the analysis, it 
is unlikely that this will cause a systematic error in our cohort of patients with right- (N=22)) and 
left-hemispheric (N=11) strokes . Moreover, by using three atlases to investigate the functional 
network topology and demonstrating consistent trends, our results are less prone to systematic 
errors due to misalignment of boundaries between regions. In this study, a subset of patients 
(N=5) had contraindication for 3T MRI acquisition and subsequently underwent 1.5T imaging. 
However, studies suggest that there are no significant differences in the assessment of infarct 
lesion volume between 1.5T and 3T systems in the hyperacute stage​61​. Generally, this study 
presents a proof-of-concept, due to the relatively small sample size. In particular, only few 
subjects showed poor outcome, which can affect model fit, as these might be considered 
‘outliers’. While the assumptions of the linear models, i.e. mean residual equals 0, no correlation 
between residuals and dependent variables, positive variability, homoscedasticity, and no 
multicollinearity (defined as variance inflation factors < 2), were fulfilled, we observed a 
quantile-quantile plot corresponding to a heavy-tailed distribution of the standardized residuals. 
However, after excluding subjects with ‘extreme’ outcome values (NIHSS​early​>15, NIHSS​late​>9, 
and mRS of 5), thereby improving model fit, the results remained consistent and demonstrated an 
increase in explained variance. Moreover, mRS is usually modeled using ordinal regressions, 
requiring larger datasets than was available in this study. Considering the general agreement with 
outcome models using NIHSS in terms of factors that are retained in the analysis, however, we 
do not expect a significant change in retained factors, as using linear regression is more likely to 
introduce more noise in the data.  
 
Among the strengths of this study was the thoroughly ascertained and well-characterized 
hospital-based dataset of patients with AIS and consecutive assessments of functional post-stroke 
outcomes. These included consecutive outcome measurements of NIHSS, which is a fine-grained 
measure for quantifying the impairment of stroke. Importantly, in combining N​RC​ and topological 
information from functional connectivity profiles of patients, we were also able to interrogate 
effects on both the structural (N​RC​) and functional (​L​) brain networks, combining them into a 
single, intuitive outcome model.  
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Summary 
In conclusion, this is the first study exploring functional network and RC topology of brain 
connectivity in AIS patients, as well as their association with early and late post-stroke 
outcomes. Our findings highlight the impact of stroke location on functional recovery, as well as 
the importance of structural connectivity hubs and functional integration for efficient information 
transmission. The proposed model yields a 1.3-2.6-fold improvement in explained variance over 
the baseline model, improving our understanding of how stroke affects functional brain 
organization in the acute setting. 
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Table A1​: Summary of results for functional connectomes created retaining positive, negative, 
and absolute connectivity profiles for the Harvard-Oxford (HO), Automated Anatomical 
Labeling (AAL), and Destrieux (DES) atlases. Path-lengths ​L​ were calculated for each atlas and 
each connectome combination and assessed with respect to their Pearson’s correlation coefficient 
with early and late outcome, measured by NIHSS. Additionally, the explained variance with and 
without adjustment for number of independent variables (R​2​ and R​2​adj​), and the  Bayes 
information criterion (BIC) are reported for the outcome models in Table 4. 

Connectome 

Pearson’s 
Correlation  
Coefficient 
(L~NIHSS) 

L(mRS) 
 

(mean (std)) 

Outcome model after backward elimination 

NIHSS​early NIHSS​late mRS 

Atlas Weights Early Late good poor p R​2 R​2​adj BIC R​2 R​2​adj BIC R​2 R​2​adj BIC 

HO 

positive 0.42* 0.32 17.3 
(0.6) 

18.3 
(1.4) * 0.82 0.80 178.05 0.67 0.61 87.20 0.75 0.72 109.68 

negative 0.26 -0.03 20.5 
(1.0) 

21.8 
(2.3) - 0.81 0.79 179.79 0.67 0.61 87.47 0.73 0.70 111.86 

absolute 0.37* 0.15 14.9 
(0.6) 

15.8 
(1.3) * 0.82 0.80 178.54 0.66 0.60 87.69 0.74 0.71 110.56 

AAL 

 positive 0.38* 0.42 17.3 
(0.7) 

18.2 
(1.7) - 0.81 0.79 179.42 0.75 0.71 81.53 0.75 0.73 108.77 

negative 0.19 -0.08 20.1 
(1.2) 

21.1 
(2.3) - 0.79 0.76 183.33 0.66 0.60 87.67 0.73 0.70 111.57 

absolute 0.30 0.16 14.8 
(0.6) 

15.5 
(1.5) - 0.80 0.78 181.33 0.68 0.62 86.59 0.75 0.72 109.58 

DES 

positive 0.41* 0.25 19.8 
(0.7) 

20.8 
(1.8) * 0.81 0.79 179.57 0.66 0.60 87.61 0.74 0.71 110.20 

negative 0.32 -0.07 23.6 
(1.2) 

25.2 
(2.8) * 0.80 0.78 181.01 0.68 0.63 86.35 0.73 0.70 111.54 

absolute 0.39* 0.12 17.3 
(0.6) 

18.3 
(1.7) * 0.81 0.79 179.35 0.67 0.61 87.56 0.74 0.71 110.59 

 
 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/590497doi: bioRxiv preprint 

https://doi.org/10.1101/590497
http://creativecommons.org/licenses/by/4.0/


AIS connectome measures improve outcome modeling -  22 

Table A2​: Summary of univariate analysis results for all variables used in the outcome models.   
 
 NIHSS​early p NIHSS​late p mRS p 

age 0.071±0.011 *** 0.019±0.006 ** 0.023±0.003 *** 
DWIv 0.262±0.057 *** 0.129±0.044 ** 0.079±0.018 *** 
N​RC 5.450±0.688 *** 2.353±0.445 *** 1.667±0.236 *** 

NIHSS​adm 0.560±0.071 *** 0.186±0.053 ** 0.178±0.020 *** 
mRS​pre 4.923±1.124 *** 0.875±0.910  1.176±0.483 * 

L+
HO  0.296±0.051 *** 0.075±0.031 * 0.092±0.014 *** 

L−
HO  0.248±0.044 *** 0.063±0.027 * 0.078±0.012 *** 

Labs
HO  0.343±0.060 *** 0.087±0.036 * 0.107±0.016 *** 

L+
AAL  0.297±0.052 *** 0.076±0.031 * 0.093±0.014 *** 

L−
AAL  0.253±0.045 *** 0.063±0.027 * 0.079±0.012 *** 

Labs
AAL  0.347±0.061 *** 0.088±0.036 * 0.108±0.017 *** 

L+
Des  0.260±0.045 *** 0.066±0.027 * 0.081±0.012 *** 

L−
Des  0.216±0.038 *** 0.054±0.023 * 0.068±0.010 *** 

Labs
Des  0.297±0.051 *** 0.075±0.031 * 0.093±0.014 *** 
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