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ABSTRACT

Noise in genomic sequencing data is known to have effects on various stages of genomic data analysis pipelines. Variant identification is an
important step of many of these pipelines, and is increasingly being used in clinical settings to aid medical practices. We propose a denoising
method, dubbed SAMDUDE, which operates on aligned genomic data in order to improve variant calling performance. Denoising human data
with SAMDUDE resulted in improved variant identification in both individual chromosome as well as whole genome sequencing (WGS) data
sets. In the WGS data set, denoising led to identification of almost 2,000 additional true variants, and elimination of over 1,500 erroneously
identified variants. In contrast, we found that denoising with other state-of-the-art denoisers significantly worsens variant calling performance.
SAMDUDE is written in Python and is freely available at https://github.com/ihwang/SAMDUDE.

Introduction
Sequencing data have expanded our understanding of genetic material and their role in biological processes, opened up new
areas of biological inquiry, and are guiding the trajectory of modern biomedical research1. Raw sequencing data are stored
in the FASTQ file format and converted to the SAM file format following alignment to a reference genome. Both file types
comprise sequences of nucleotide bases called “reads”, which are accompanied by sequences of quality scores that indicate the
sequencing machine’s confidence in the base calls making up the reads. However, the genomic sequencing process is imperfect
and can result in reads containing various types of noise including base substitutions, insertions, and deletions (INDELs).

Although noise characteristics vary across sequencing technologies, they are well characterized for some sequencing
platforms. For example, Illumina sequencing technology produces “short” reads on the order of hundreds of bases, with an
average substitution error rate of less than 1%, and insertion and deletion rates orders of magnitude lower2. Furthermore, these
errors were found to be correlated with position within the read, resulting in position-dependent noise characteristics. These
errors can affect downstream applications, with an important application being variant calling, or the identification of genetic
polymorphisms unique to individuals. Variant identification from WGS is increasingly being used to diagnose, gain biological
insight to, and design treatments in the clinical setting, especially in the field of rare genetic disease research3. Thus, accuracy
of variant identification is paramount.

Algorithms for removing noise, or denoisers, have been proposed for not only genomic sequencing data4, but also for other
biological methods relying on genomic sequencing, like ChiP-seq5. Denoisers for genomic sequencing data change individual
bases in reads while retaining the original quality scores. They are typically tested on simulated and real data sets in FASTQ
format, and have been shown to perform well on some of the early stages of genomic sequencing pipelines, such as correcting
base calling errors in the simulated data sets, increasing both breadth and depth of reads coverage during alignment6, or
improving de novo assembly of real data sets7. However, these analyses often do not extend to later steps in genomic sequence
analysis pipelines, and those that do focus on non-human data sets8. To our knowledge, none of these works examines the effect
that denoising might have on variant calling. The variant calling procedure is complex and relies on alignment information,
including quality scores which are a direct function of the analog signals used to determine the called base. In fact, a survey of
lossy quality score compressors has already shown that changing quality scores alone can sometimes have a beneficial effect on
variant calling9. This result shows that in a sense, lossy quality score compression denoises the genomic data, resulting in more
accurate variant calling. Taken together, the existing body of work on denoising and variant calling suggests that read denoising
procedures that leave quality scores unchanged may result in unexpected variant calls, and that effective read denoising must be
accompanied by quality score updates.

In this work, we propose a novel denoising method, SAMDUDE, which takes advantage of alignment information contained
in the SAM file in order to both denoise reads and update quality scores. We evaluate the effect of denoising on variant calling
by comparing variants identified in files before and after denoising by SAMDUDE. We also evaluate files that have been
denoised using other state-of-the-art denoisers that operate solely on reads in FASTQ files. This variant calling comparison
methodology has already been used to analyze the effect of lossy compression on quality scores beyond the early steps in a
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genomic sequencing pipeline9. To our knowledge, this is the first application of such a comparison methodology on denoised
genomic sequencing data, and provides a unique framework for directly evaluating the effect of denoising on sequencing data.
To highlight the potential utility of simultaneous base denoising and quality score updating in a clinical setting, we perform
denoising and variant calling comparisons on human data sets. We show that the simultaneous reads denoising and quality
score updating procedure either maintains or improves variant calling with respect to the original SAM file, while denoising
schemes that change only the reads result in degraded variant calling performance.

Survey of denoisers for genomic data
Current state-of-the-art denoisers perform denoising based on a variety of techniques including k-mer counting and statistical
error models, and target either substitution errors, insertion and deletion errors, or a combination of both4. We chose Musket10
and RACER11 to serve as benchmarks for SAMDUDE denoising performance, since both were touted for their ability to handle
human WGS sequencing data sets6. In addition to Musket and RACER, BFCounter12 and Lighter13 are also preferred in the
field for their memory efficiency and speed, respectively, and are thus the most likely to be used in practice. We omitted
comparisons with BLESS 214, another denoising tool especially popular for its speed, due to installation difficulties. Here, we
briefly describe the techniques underlying these four denoisers.

Musket10 uses a k-mer spectrum approach in which reads that are suspected to be erroneous are changed until their k-mers
appear frequently in the entire data set. The k-mer spectrum is constructed using a parallelized master-slave model, resulting
in Musket’s highly competitive execution time and excellent parallel scalability. Denoising is performed using a multistage
workflow which begins with multiple iterations of two-sided conservative base correction. Two-sided conservative base
correction is followed by multiple iterations of one-sided aggressive correction and voting-based refinement. Musket is able to
denoise paired-end reads data sets simultaneously.

RACER11 uses a k-mer counting approach to denoise FASTA and FASTQ data. Its k-mer counting method retains k-mers
with counts above a given threshold, while correcting all other ones. RACER utilizes a unique and efficient hash table-based
data structure which makes it extremely space efficient. While RACER does not denoise both files in a paired-end reads data set
at the same time, each of the FASTQ files can be denoised independently and recombined in subsequent analysis steps. RACER
requires approximate genome size as a parameter.

BFCounter12 also uses a k-mer counting approach coupled with a Bloom filter in a two-pass denoising process. The use of
a Bloom filter results in reduced memory requirements of nearly 50% memory savings, as compared to popular k-mer counting
software. However, the two-pass implementation requires a significant amount of time for completing denoising, especially on
human WGS data. Like RACER, BFCounter requires approximate genome size as a parameter.

Unlike the previously mentioned denoisers, Lighter13 avoids k-mer counting and instead relies entirely on Bloom filters to
perform denoising. Compared with most denoising methods, Lighter is extremely fast and memory-efficient, but like RACER
and BFCounter it also requires an estimate of genome size as a parameter.

Results
To formulate the proposed denoising method, we assume a setting in which a genetic sample undergoes high-throughput shotgun
sequencing, producing a large number of short, overlapping reads of length on the order of hundreds of base pairs. The errors
introduced during the sequencing process are assumed to be primarily substitution errors, while INDELs are assumed to be
negligible. We also assume that a reference genome is available, and that the reads can be aligned to the reference.

Our proposed denoising method, SAMDUDE, is based on the Discrete Universal Denoiser (DUDE) algorithm proposed
in15. DUDE is a sliding-window discrete denoising scheme which is universally optimal in the limit of input sequence length
when applied to an unknown source with finite alphabet size corrupted by a known discrete memoryless channel. The universal
optimality of the DUDE guarantees that in the asymptotic limit of input sequence length it does as well as the best scheme of its
type, regardless of the characteristics of the underlying noise-free sequence. In brief: DUDE uses a two-pass procedure to first
infer statistics of the source sequence based on the noisy sequence, and to then denoise the noisy sequence using the inferred
statistics and the noise channel characteristics. The DUDE setting and algorithm is illsutrated in Figure 1.

In order to apply the DUDE-like denoising framework to the genomic sequencing setting, we make certain algorithm design
choices based on assumptions about the problem setting. While the universal denoising setting assumes a single noise-free
input sequence and a single noise-corrupted output sequence of equal length, in the high-throughput sequencing setting the
channel input is a single, noise-free sequence and the output are numerous overlapping, short, noisy sequences. The reads may
not necessarily all be of the same length, but are all assumed to be much shorter than the noise-free sequence length. Despite
the difference between these settings, the sequencing reads can be thought of as samples from a single noisy sequence that can
be inferred from the reads using alignment information. Under this assumption, we aggregate information from each read into
statistics about the inferred noisy sequence. The universal denoising setting also assumes that the noise channel is memoryless
and known, and corrupts sequences only with substitution errors. The error characteristics of sequencing technologies are
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Figure 1. Schematic of the DUDE setting and algorithm. A noise-free sequence, xn (gray bar), is corrupted by a noise channel
Π, producing noisy sequence zn with errors (red lines). In the first pass of DUDE, a sliding window (dashed rectangle) obtains
vectors of counts for contexts of length 2k. In the second pass, the counts vectors of each context, together with the channel
statistics, are used to denoise the central symbol of the context (small dashed rectangles).
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generally known, but in order to account for individual variations in performance from machine to machine and to avoid the
potentially confounding effects of difficult-to-sequence regions in the genome, we use alignment information in the SAM file to
generate our own estimate of the channel’s noise-injecting characteristics. We consider only the main mapping of the aligned
reads, disregarding any other mappings. Finally, while paired-end reads are acceptable inputs to the denoiser, the pairing
information is not used in the denoising process. The SAMDUDE denoising scheme is described in detail in the Methods
section.

While all sequencing technologies inject all three types of errors, the noise channel model used in SAMDUDE is a
particularly accurate reflection of Illumina sequencing technologies. Furthermore, due to the importance of variant identification
in the clinical setting, we evaluated the effect of denoising on variant calling in human data sets. We tested SAMDUDE on
three different paired-end WGS data sets of the H. Sapiens individual NA12878. The data sets are: ERR262997 corresponding
to 30×-coverage, CEUTrio.HiSeq.WGS corresponding to 100×-coverage, and NA12878_V2.5_Robot_2 corresponding to
40×-coverage. For convenience, we refer to these data sets as 1, 2 and 3, respectively. Variant calls were compared against the
version 37 gold standard call set for individual NA12878 released by the National Institute of Standards and Technology’s
(NIST) Genome in a Bottle consortium (GIAB)16. While the GIAB gold standard call set is a fairly conservative estimate of the
individual NA12878 true variant call set, it is widely regarded by the field as the standard benchmark for evaluating sequence
analysis algorithms. Furthermore, there exist “gold standard” (consensus of polymorphisms) variant call sets for certain human
individuals, which can be used for an intuitive and direct method of assessing variant calling performance.

Denoising performance was evaluated with respect to variant calling of single nucleotide polymorphisms (SNPs). We first
analyzed the effect of denoising on variant calling performance for individual human chromosomes using SAMDUDE and other
state-of-the-art denoisers. We also compared the effect of denoising reads to the effect of lossy quality score compression. Lossy
quality score compressors were developed to decrease the size of SAM files while still maintaining variant calling performance.
Previous work showed that while quality score compressors effectively reduced SAM file size, they also sometimes had the
unintended effect of improving variant calling performance9. For this reason, the lossy quality score compressors serve as a
counterpoint to the SAMDUDE algorithm’s procedure of changing both reads and quality scores in tandem with the explicit
goal of improving variant calling performance. Finally, we analyzed the effect of SAMDUDE denoising on human WGS data.

Human chromosome denoising with SAMDUDE
For individual chromosome denoising experiments, we chose to use chromosomes 11 and 20. Chromosome 11 was chosen as
representative of the median chromosome length in the human genome, and chromosome 20 was chosen since it is frequently
used in genomic data tool assessment as representative of a small human chromosome9. The leftmost column of Figure 2 shows
that SAMDUDE can have varied effects across different data sets. For data set 1, denoising with SAMDUDE resulted in an
increase in T.P. variants called concomitant with a decrease in F.P. variants, resulting in a modest gain in F-score. Although
denoising resulted in a slight decrease of T.P. variants called in data set 2 relative to the original file, it also resulted in a very
large decrease in number of F.P. variants called, resulting in a large gain in F-score. In contrast, a handful of additional T.P. and
F.P. variants were called in data set 3, resulting in no change in F-score. Despite variation in results across data sets, the effect
of SAMDUDE denoising is consistent across chromosomes within a given data set.

While differences in performance across data sets seem to indicate inconsistency in the SAMDUDE denoising algorithm,
these results make sense in the context of coverage and initial data quality, which are summarized in Figure 3. The original
performance metrics for data set 3 are by far the highest. In contrast, while data set 2 also has a high initial sensitivity, its
relatively low precision leaves room for improvement in F-score. Data set 1 has the most room for improvement, with low initial
sensitivity, precision and F-score.

Because of SAMDUDE’s conservative behavior, it might be suspected that the gains from updating quality scores are
small compared to the effect of denoising bases in the reads. To test this hypothesis, we created partially-denoised SAM
files where the reads were those obtained from SAMDUDE denoising, but were paired with the original quality score strings.
These partially-denoised files were then analyzed using the same variant calling pipeline, and the results of this experiment are
summarized in Supplementary Table 1 (labeled Partial Denoising). For all data sets, partial denoising resulted in either no
change or an increase in F-score, even after GATK filtering. However, for data set 1 and 2 the gains were not as large as those
attained using SAMDUDE after GATK filtering of variant calls.

It might also be suspected that the same amount of random base changes would also result in improvements in variant calling.
To check this hypothesis, we ran the variant calling pipeline on the SAM files for chromosome 20 with bases changed at random
based on a uniform distribution over the possible nucleotide bases (see Supplementary Table 2). The results of this experiment
are summarized in Supplementary Table 1 (labeled Random noise). For all data sets, addition of random noise resulted in either
no change or a decrease in sensitivity, concurrent with a uniform increase in precision. Overall, the effect of random noise is an
increase in F-score for all raw variant calls, but a decrease in F-score for GATK-filtered variant calls in data sets 1 and 2.

Together, these results support our claim that SAMDUDE is a conservative denoising method which will not adversely
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Figure 2. Denoising results for SAMDUDE (left column), Musket (second from left), RACER (center), BFCounter (second
from right), and Lighter (right) for chromosomes 11 (blue) and 20 (orange). Positive changes in T.P. and F indicate increases in
T.P. variants called and improvement of F-score, respectively. A negative change in F.P. indicates that fewer variants were
erroneously called. Raw (dark colors) and filtered (light colors) variant call values are shown.
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Figure 3. Statistics for variant call sets generated from the original data sets (blue, chromosome 11 and orange, chromosome
20). The statistics are: sensitivity (circles), precision (squares) and F-score (triangles). Statistics are grouped by variant call
type: raw (dark colors) and filtered (light colors).
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T.P. raw T.P. filtered F.P. raw F.P. filtered

SAMDUDE 1,954 1642 -1,509 -1,923
Musket -208,144 -215,524 324,957 305,362

Table 1. Results for raw and filtered variant calling on denoised data set 1 using SAMDUDE and Musket.

affect data sets that do not need denoising, while improving those that can benefit from denoising. Furthermore, SAMDUDE’s
performance is robust and consistent for both raw and filtered variant calls, unlike that of partial denoising and random noise
addition.

Comparison of SAMDUDE denoising with state-of-the-art genomic denoisers and quality score compressors
The effects of denoising by the state-of-the-art genomic denoisers Musket, RACER, BFCounter and Lighter are shown in the
center and right columns of Figure 2. In most cases, the denoisers resulted in significant decreases in the number of T.P. variants
called, with significant increases in the number of F.P. variants called, leading overall to significant decreases in F-score for
both the raw and GATK-filtered variants. The only exception is the denoising of data set 2 using BFCounter, which resulted in
a slight increase in T.P. variants called, slight decrease in F.P. variant called, and a corresponding slight increase in F-score.
However, this improvement in variant calling is not consistent, as denoising data sets 1 and 3 using BFCounter resulted in worse
F-scores. These changes show that although current state-of-the-art denoisers have been shown to improve early steps of the
genome analysis pipeline, their denoising choices tend to have adverse effects on variant calling.

The trends are consistent even when we consider different variant call filtering levels. Supplementary Figures 1-6 show the
variant calling precision as a function of sensitivity for different filtering criteria. We focus on the variant call filtering results for
data set 2 (Supplementary Figures 3 and 4) since for this data set SAMDUDE denoising resulted in the largest number of total
changes to the variant call set, and also in the largest change in F-score. We also focus on comparing sensitivity filtering for the
results of Musket and RACER due to their consistent denoising trends. To construct these curves, we set percentile thresholds
starting at the 10th and ending at the 90th percentile at increments of 10% for quality of depth (QD) of the raw variant calls. All
variants with QD below the threshold were filtered out, and the remaining variant calls were evaluated against the gold standard
call set. The top row of Supplementary Figure 4 shows that even under these filtering criteria, the curves corresponding to the
variant call sets of Musket- and RACER-denoised SAM files lie far below the others. In other words, for a given sensitivity
level, the variants called under Musket- and RACER-denoised SAM files have significantly worse precision than SAMDUDE.

In addition to variant call filtering results for call sets from SAMDUDE, Musket-, and RACER-denoised SAM files, the
bottom rows of Supplementary Figures 1-6 also show the filtered variant call set curves for the original call set, the call set
resulting from the addition of random noise to the reads, and two call sets resulting from lossy compression of the original file
using P-Block and R-Block with compression parameters 3 and 40, respectively. P-Block and R-Block are two state-of-the-art
lossy quality score compressors17 which have also been shown to improve variant calling performance. Another state-of-the-art
lossy compressor, QVZ18, has been omitted from the analysis since it is unable to compress SAM files with variable length
reads. Again we focus our discussion on data set 2 and observe that in Supplementary Figure 4 shows that the effect of lossy
compression on the variant call set is almost indistinguishable from that of SAMDUDE. However, the rightmost points in each
of the filtered variant call set curves show that SAMDUDE outperforms all other schemes when sensitivity and precision are
both high. SAMDUDE’s dominance, especially at high sensitivity levels for chromosome 11, makes sense since SAMDUDE’s
denoising performance improves as read coverage increases.

Human whole-genome denoising with SAMDUDE
Next, we evaluated the effect of denoising on variant calling for an entire WGS human data set. For this experiment, we used all
reads of data set 1, and the results are summarized in Table 1. After SAMDUDE denoising the raw variant call set included in
total 1,954 additional true positive variants. Furthermore, 1,509 false positive variants were eliminated relative to the original
set of variant calls. After the GATK pipeline, 1,642 of the additional true positive variants were validated, and the number of
additional false positive variant calls eliminated increased to 1,923. In contrast, raw variant calls based on the Musket-denoised
file resulted in 208,144 fewer true positive calls and 324,957 additional false positive calls relative to the original set of variant
calls. After the GATK pipeline, the number of true positive variant calls missed increased to 215,524 while the number of false
positive variant calls increased to 305,362. Variant calls from the RACER-denoised data set were unable to be validated against
the gold standard call set due to pipeline errors.
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Discussion
We have presented SAMDUDE, a denoising method that uses alignment information in SAM files and a statistical model of the
genomic data in order to improve variant calling. Because of the assumptions used by the denoising model, SAMDUDE’s
intended use is for improving the quality of short-reads sequencing reads obtained from healthy tissue.

Taken together with the initial data quality statistics in Figure 3, the range of improvements observed in Figure 2 imply that
SAMDUDE is a “conservative” denoising algorithm that makes few or no changes to the reads and quality scores when the
original data set is already of very high quality, but makes sound denoising choices resulting in variant calling improvements
when the original data set is of lesser quality. The quality of denoising performance also correlates with data coverage: data set
2 has the highest coverage and SAMDUDE denoising performance is the best on this set. Since SAMDUDE relies on empirical
estimates of k −mer distributions and the noise channel, the higher the coverage and the more accurate the empirical estimates,
resulting in better denoising performance. It is also notable that the trends in performance metric changes hold for both raw
variant and filtered variant calls, adding to our confidence in SAMDUDE as a conservative denoiser that integrates well with
existing recommended genomic data analysis pipelines.

The results of denoising aligned whole genome data are consistent with those observed for individual chromosomes. While
the relative number of true positive variants identified might seem relatively small, the extra information provided by each extra
variant could be invaluable. Single point mutations are responsible for numerous human diseases, and other diseases once
assumed to be caused by a single variant with large effect are now being understood to be the result of multiple monogenic
mutations, or of collections of rare variants in previously identified genes19–21. Perhaps more importantly, the elimination of
false positive variants is crucial to accurate diagnosis and appropriate treatment design22–24. Thus, in the clinical context the
implications of every additional true positive variant identified and each false positive variant eliminated are far larger than the
objective tally.

Our results emphasize that the quality score updating step of SAMDUDE is crucial to improving variant calling outcome,
and that denoising reads alone is insufficient for higher quality of variant calls. SAMDUDE was able to both identify thousands
of additional variants and eliminate a similar number of false positive variants from a single human whole-genome data set. In
contrast, state-of-the-art denoisers, which were designed to improve earlier steps in the sequencing pipeline and are limited to
changing information only in the reads and not quality scores, led to degraded variant calling performance. Our results also
highlight the importance of evaluating denoisers on the variant calling step of the genomic sequencing pipeline using real data
sets with gold standards.

As a proof-of-concept denoiser, SAMDUDE shows great promise in improving the accuracy of variant calling based on
individual sequencing data sets. Furthermore, these encouraging results motivate further experimentation of the parameters and
elements of the denoising procedure, including context length k, majority and confidence thresholds, quality score updating
rule, and a additional refinement of the implementation in order to reduce computational memory and time requirements. We
anticipate that the SAMDUDE denoising method will result in an efficient and powerful denoising software that will be a
valuable tool for researchers and clinicians alike.

Methods
Problem setting
We have the following problem setting: xn is the true genomic sequence of length n, and the sequencing procedure generates a
set of m noisy reads {z(1), z(2), . . ., z(m)} with components taking values in the set of all possible nucleotide bases. The reads are
accompanied by a set of quality score strings {q(1),q(2), . . .,q(m)} with components taking values in the set of ASCII characters
quantifying basecalling quality on a quality score scale. The denoiser has access to the reads and the quality score strings, as
well as to the alignment information of each of the reads to the reference sequence. Our goal is to both denoise the bases in
the reads and to update the corresponding quality scores in order to improve the accuracy of variant identification, while still
preserving polymorphisms that are unique to the individual. Note that in this setting, the true genome sequence xn is unknown.

In the given problem setting, we assume that for a particular location i in the reference genome, the majority of reads
covering that position will have base calls that agree. The minority of base calls that do not match with the majority are likely
to be errors. Under this assumption, the sequence estimate is obtained by recording the majority base, for some majority
threshold, for all reference genome positions covered by the reads. The noise statistics are represented by the noise channel
estimate Π̂ of size |A| × |B|. In our setting, the channel input is assumed to be the noise-free sequence taking values in alphabet
A = {A,C,G,T}, while the channel output is a tuple of the called based and the quality score associated with that base. Hence
the output alphabet is given by B =A×Q, where Q denotes the alphabet of the quality scores.

The typical size of Q is 42, which carries a significant computational burden due to the resulting size of A×Q. Hence, we
adopt the quality score binning method recommended by Illumina for reducing quality score resolution25. This method reduces
the original alphabet of quality scores from 42 to only 8 bins; hence, Q ∈ {bin1,bin2, ...,bin8}, with bin limits corresponding to
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those recommended by Illumina (see Supplementary Table 3). We consider this set of output tuples since certain sequencing
technologies, like the Illumina technologies, are known to produce reads with position-varying noise characteristics. Typically,
different noise characteristics would be characterized by different noise channels. By considering the nucleotide base with its
quality score, we can broadly account for various possible position-dependent trends in noise without setting hard boundaries
and limiting ourselves to particular assumptions about the noise characteristics. Details on the computation of Π̂ are given in
subsection Channel and sequence estimation.

The vector of counts m(lk,rk), of size |B|, records the number of times the subsequence lkbrk , comprising left and right
contexts lk and rk , is observed in the collection of reads, with lk,rk ∈ Ak , and b ∈ B. We limit the alphabet of the context toA
to ensure that each possible context is observed a significant number of times. Details on the computation of the counts vector
are given in subsection Counts vector acquisition.

Once the noise channel estimate Π̂ and vectors of counts m are acquired, SAMDUDE proceeds as follows. For ease of
exposition and with some abuse of notation, we denote an arbitrary read as z with ith component zi accompanied by quality
score qi . Subsequences of z are denoted as zba = (za, . . ., zb).

1. For each base zi and its associated quality score qi in read z, identify the length 2k context string zi−1
i−k zi+k

i+1 surrounding
position i, and the bin bini to which qi belongs.

2. Calculate the estimated probability of observing the left and right contexts zi−1
i−k and zi+k

i+1 in xn with different central
symbols belonging in A. The probability is distributed over all symbols in A and given by

q̂(zi−1
i−k, (zi,bini)), zi+ki+1 ) = π(zi,bini ) � [(Π̂Π̂T )−1Π̂m(zi−1

i−k, z
i+k
i+1 )], (1)

where Π̂ is the channel estimate matrix comprising column vectors {π1, π2, . . ., π |B |}, and � represents element-wise
multiplication for vectors (see15, Eq. (25)).

3. Replace zi with the base corresponding to the argument of the maximum of the distribution estimate, and update qi using
the maximum of the distribution estimate (see Section Quality score updating for details on the quality score update rule).

We devote the following subsections to detailed descriptions of the components of SAMDUDE: estimates of the channel
and true sequence, noise statistics, and vectors of counts for every possible context of size 2k observed in the collection of
reads. We also describe the quality score updating procedure, specify implementation details and describe the overall evaluation
pipeline workflow.

Channel and sequence estimation
To compute the channel estimate Π̂, we use alignment information from the SAM file to perform a sequence pileup at every
reference genome position by cataloging all reads at that position. At each position we assume that the majority base, for some
majority threshold tm ≥ 0.5, is the true base at that position. That is, the base in the pileup with normalized counts greater than
or equal to tm is declared to be the majority base. If there is no clear majority base, then we do not use information from that
position for channel estimation. This rule allows us to use the overwhelming majority of genomic positions in order to estimate
the channel characteristics. Additionally, the threshold ensures that information is not used from positions in the genome
that display heterozygosity, e.g., due to polyploidy of the organism being sequenced. This, in turn, prevents the conflation
of differences in reads overlapping heterozygous positions with noise, and precludes erroneous denoising of reads at those
positions. For each base in A we record the number of bases in an 4×32 conditional counts matrix

N =


n(A,bin1) |A . . . n(C,bin1) |A . . . n(C,bin8) |A
n(A,bin1) |T . . . n(C,bin1) |T . . . n(C,bin8) |T

...
. . .

...
. . .

...
n(A,bin1) |C . . . n(C,bin1) |C . . . . . . n(C,bin8) |C


,

where n(i1,i2) | j is the number of positions in all reads for which the read contains base i1 with accompanying quality score in bin
i2 at a position whose majority base is j. N is row-normalized to obtain Π̂

Π̂ =



n(A,bin1)|A∑
∀b∈B

nb |A . . .
n(C,bin1)|A∑
∀b∈B

nb |A . . .
n(C,bin8)|A∑
∀b∈B

nb |A

...
. . .

...
. . .

...
n(A,bin1)|C∑
∀b∈B

nb |C . . .
n(C,bin1)|C∑
∀b∈B

nb |C . . .
n(C,bin8)|C∑
∀b∈B

nb |C


. (2)

The majority bases are recorded as the sequence estimate.
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Counts vector acquisition
The vectors of counts m(lk,rk) record all appearances of context lkrk surrounding a central symbol b, with lk,rk ∈ Ak and
b ∈ B. For each b appearing between the left and right context components lk and rk , respectively, we record the number of
times the sequence lkbrk appears in the collection of reads as the bth component of m(lk,rk):

m(lk,rk)[b] = |{z, i : k +1 ≤ i ≤ length(z)− k

∀zi+ki−k = lkbrk, z ∈ {z(1), z(2), . . ., z(m)}|.
(3)

For positions i < k +1 or i > length(z)− k, we employ information from the sequence estimate to acquire context counts. This
process is detailed in section SAMDUDE implementation details.

Position-based denoising rules
Denoising is performed at read positions where zi as well as the surrounding context string contain only bases inA = {A,T,G,C},
excluding symbols indicating ambiguity. We use this simple genomic alphabet in order to avoid basing denoising decisions on
non-uniquely identifiable context strings. We also set a quality score threshold above which denoising is not attempted. Initial
denoising experiments showed that bases changed under SAMDUDE are overwhelmingly those with a low quality score value
(see Supplementary Figure 7). Furthermore, we found that bases that have been assigned a high quality score during sequencing
are most likely not erroneous and may not benefit from denoising. With these considerations, we established a confidence
threshold tp; denoising is not attempted at read positions with quality scores corresponding to a probability above tp .

Quality score updating
The maximum of the conditional distribution estimate q̂ is used to update the quality score accompanying the denoised base.
The updating procedure depends on whether the base the denoiser selected matches the original base zi . If the maximum of q̂
corresponds to the same base as the original one, the quality score is adjusted as follows: convert the original quality score qi
into a confidence probability

pi = 1−10−qi/10, (4)

take the arithmetic mean of pi and the maximum of the estimated conditional probability q̂, denoted by pmax, and back-convert
the averaged probability into the updated quality score. In other words, the updated quality score is

q̃ = −10log
(
1− pi + pmax

2

)
,

when the denoiser does not recommend a different base. The updated quality score is re-inserted into the quality score string
after conversion to an ASCII character as per the sequencing machine’s quality score encoding method. For example, if the
sequencing machine encodes on a Phred+33 scale, the quality score string’s ith component is replaced with the ASCII character
for q̃+33. On the other hand, if the denoiser recommends a base change, qi is simply replaced with q̃ = −10log(1− pmax).
Again, the quality score string’s ith component is replaced with the appropriately encoded q̃.

This procedure was chosen in order to balance the denoiser’s conditional probability estimates with the original quality
scores, which reflect the sequencing machine’s confidence in the base calls. Since the original quality score is a function of the
original base call, if the denoiser agrees with the basecall, the denoiser’s probability estimate should be combined with the
sequencer’s quality score. However, if the denoiser decides on a different base, then the original quality score is unrelated to
the denoiser’s chosen base and we can disregard the original quality score in favor of the quality score converted from the
denoiser’s probability estimate.

SAMDUDE implementation details
The reads reported from a sequencing machine cannot always be mapped directly to the reference genome in their entirety, since
they may contain bases that are insertions relative to the reference genome, lack bases that correspond to deletions from the
reference genome, or contain stretches of bases at the beginning and end of the read that simply do not match the reference
genome. These inconsistencies relative to the reference genome are summarized by the sequence aligner in a CIGAR string
accompanying the read (https://samtools.github.io/hts-specs/SAMv1.eps). Additionally, large portions of the read
may be assigned very low quality scores, indicating entire regions of the read for which the sequencer has low confidence. One
strategy for dealing with these inconsistencies is to simply eliminate non-matching or low-quality bases, but this can lead to
loss of potentially valuable information. Instead, we retain this information and tailor our use of it to process the reads during
channel estimation, counts vector acquisition, and denoising.

9/12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/590372doi: bioRxiv preprint 

https://samtools.github.io/hts-specs/SAMv1.eps
https://doi.org/10.1101/590372
http://creativecommons.org/licenses/by-nc-nd/4.0/


j − k j − 1 j 

i1 k

Sequence estimate

Read

j − i + 1

(a) Position i in the read corresponds to position j in the sequence
estimate, and 1 ≤ i ≤ k. The left half of the context for that base is
padded with sequence estimate bases from positions j − k up to
j − i+1.

l

j − l + i + 1
j − l + i 

i

j 

l − k + 1

j + k

(b) Here, i ≥ l − k +1, where l is the length of the processed read.
The base at position i can now use positions j − l + i+1 up to j + k
of the sequence estimate as a right-hand context.

Figure 4. Reads are padded with bases taken from the sequence estimate during the context acquisition and denoising processes.

The channel estimation procedure relies on the creation of pileups at reference genome positions. As a result, this step
considers only bases that are mapped to the reference genome and relies on the CIGAR string information to accurately map
bases to reference genome positions. Bases that are designated in the CIGAR string as low-confidence and non-matching (i.e.,
"soft-clipped", or simply "clipped") or inserted relative to the reference genome are not considered during channel estimation.
When deletions are indicated in the CIGAR string, reference mapping positions are adjusted accordingly.

The counts vectors are simply histograms of the central base appearing with context strings of length 2k. These context
strings are unique to the individual and should include bases that are inconsistent relative to the reference genome, since those
bases may be true polymorphisms. Thus, during counts vector acquisition the reads retain bases that are marked by the aligner
as insertions since those insertions may be inherent to the true sequence. However, as in the channel estimation process, bases
that are designated in the CIGAR string as clipped are omitted to avoid large sections of low-confidence base calls. In order to
maximize the number of context strings obtained from a processed read, we additionally pad the read with a header and footer
of length up to k if the read begins or ends, respectively, with bases that are mapped to the reference genome, i.e., not insertions.
The padding process, illustrated in Figure 4, allows the denoiser to obtain context information from up to 2k additional locations
in each read.

During the denoising process, we again require the context string of length 2k surrounding a given base. In this step, all
bases regardless of their categorization are utilized since bases in the reads that were designated as insertions or deletions
relative to the reference genome may very well be true polymorphisms, and soft-clipped regions may benefit from denoising.
When the read begins or ends in bases that can be mapped to the reference genome, the read is again padded with bases from the
sequence estimate using the same procedure described above in order to maximize the number of bases undergoing denoising.

Evaluation pipeline workflow
Evaluation criteria
To quantify denoiser performance, we used the common performance metrics of true positives (T.P.), false positives (F.P.), and
false negatives (F.N.). T.P. variants are the calls present in the gold standard call set, F.P. variants are the calls not present in the
gold standard call set, and F.N. variants are those present in the gold standard set but not called. To summarize the changes in
T.P., F.P. and F.N. variants identified, we used the following performance metrics: sensitivity (S), which measures the proportion
of all the variants that are correctly called (T.P./(T.P.+F.N.)), precision (P), which measures the proportion of called variants
that are true (T.P./(T.P.+F.P.)), and F-score (F), which is the harmonic mean of the sensitivity and precision (2(S×P)/(S+P)).

SAMDUDE parameters
For all denoising experiments, we used a single-sided context length of k = 7 (14 bases total in the double-sided context). This
context length was chosen for computational feasibility, but also maximizes the number of counts in each context histogram
without skewing the histograms towards a uniform distribution, which occurs when k is either too small or too large (see
Supplementary Tables 4 and 5). For sequence and channel estimation we used a majority threshold of tm = 0.9 for high
confidence in our estimate of the “true” genomic sequence, and also to definitively eliminate potentially confounding effects
at heterozygous genomic positions which might not have a clear majority base. Finally, based on experiments with different
quality value thresholds (see Supplementary Tables 5 and 6), we attempted denoising only at bases for which the sequencer’s
confidence probability p , Equation (4)) is less than a chosen confidence threshold tp = 0.9.

Denoising and variant calling pipeline
Individual chromosomes were extracted in binary SAM (BAM) file format from the aligned data sets and sorted using the
SAMtools utility26. For Musket and RACER denoising, copies of the sorted BAM file were converted from the BAM to FASTQ
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format via the biobambam2 BAM file processing toolkit27. BAM files for each chromosome were also converted to the SAM
format. The extracted SAM files were denoised using SAMDUDE.

The denoised FASTQ files were then aligned to a reference file using BWA-mem28, generating denoised SAM files. All
denoised SAM files then underwent SNP calling using the SNP calling pipeline recommended by the Broad Institute29–31,
and compared to the gold standard call set. We report results for both raw variants and variants filtered under the GATK
Best Practices-recommended variant filtering process. For more details regarding the variant calling, filtering and evaluation
pipelines, we refer the reader to the Variant calling pipeline section in the Supplementary data.

Computational requirements and machine specifications
We ran most experiments on a workstation computer with 12 Intel Xeon cores at 3.4 GHz and 32 GB of RAM, running Linux
Ubuntu 14.04.4. SAMDUDE denoising for the chromosome 11 file of data set 3 was run on a different workstation with 80 Intel
Deon cores at 2.2 GHz and 504 GB RAM, running CentOS 7.4.1708. Time and peak computational memory requirements for
denoising data sets 1, 2 and 3 using SAMDUDE, Musket and RACER are summarized in the Supplementary Table 7. In its
current manifestation, SAMDUDE generally uses about an order of magnitude more memory than Musket and RACER. This is
due to the large number of context histogram vectors that SAMDUDE acquires. SAMDUDE also generally requires about an
order of magnitude more runtime than Musket and RACER. This result is not surprising, given that SAMDUDE is currently
implemented in Python with no parallelization.
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