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Abstract

Piscirickettsia salmonis is the etiological agent of Salmon Rickettsial Syndrome (SRS), and is
responsible for considerable economic losses in salmon aquaculture. The bacteria affect coho
salmon (CS) (Oncorhynchus kisutch), Atlantic salmon (AS) (Salmo salar) and rainbow trout
(RT) (Oncorhynchus mykiss) in several countries, including: Norway, Canada, Scotland,
Ireland and Chile. We used Bayesian genome-wide association (GWAS) analyses to
investigate the genetic architecture of resistance to P. salmonis in farmed populations of these
species. Resistance to SRS was defined as the number of days to death (DD) and as binary
survival (BS). A total of 828 CS, 2,130 RT and 2,601 AS individuals were phenotyped and
then genotyped using ddRAD sequencing, 57K SNP Affymetrix® Axiom® and 50K
Affymetrix® Axiom® SNP panels, respectively. Both trait of SRS resistance in CS and RT,
appeared to be under oligogenic control. In AS there was evidence of polygenic control of SRS
resistance. To identify candidate genes associated with resistance, we applied a comparative
genomics approach in which we systematically explored the complete set of genes adjacent to
SNPs which explained more than 1% of the genetic variance of resistance in each salmonid
species (533 genes in total). Thus, genes were classified based on the following criteria: 1)
shared function of their protein domains among species, ii) shared orthology among species,
ii1) proximity to the SNP explaining the highest proportion of the genetic variance and, iv)
presence in more than one genomic region explaining more than 1% of the genetic variance
within species. Our results allowed us to identify 120 candidate genes belonging to at least one
of the four criteria described above. Of these, 21 of them were part of at least two of the criteria
defined above and are suggested to be strong functional candidates influencing P. salmonis
resistance. These genes are related to diverse biological processes, such as: kinase activity,
GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation and

innate immune response, which seem essential in the host response against P. salmonis
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infection. These results provide fundamental knowledge on the potential functional genes

underpinning resistance against P. salmonis in three salmonid species.

Introduction

Infectious diseases are responsible for large economic losses in salmon farming.
Pisciricketssia salmonis, the causal agent of Salmon Rickettsial Syndrome (SRS), affects
several salmon species and is considered one of the major pathogens affecting the salmon
farming industry (Rozas and Enriquez, 2014). P. salmonis was identified in 1989 from farmed
coho salmon (Oncorhynchus kisutch) sampled in Chile (Cvitanich et al., 1991). Since then, P.
salmonis has been confirmed as the causative agent for clinical and chronic SRS in coho
salmon, Atlantic salmon (Sa/mo salar) and rainbow trout (Onchorhyncus mykiss) in several
countries, including: Norway, Canada, Scotland, Ireland and Chile (Fryer and Hedrick, 2003).
Current control protocols and treatments are based on antibiotics and vaccines. The
effectiveness of both strategies in field conditions is not optimal (Rozas and Enriquez, 2014).
From the total mortalities ascribed to infectious diseases in Chile, SRS is responsible for 18.3%,
92.6% and 67.9% in coho salmon, rainbow trout and Atlantic salmon, respectively (Sernapesca,
2018). These mortality rates, together with other factors such as antibiotic treatments and
vaccinations, have generated economic losses up to USD $ 450 million per year (Camusetti et
al., 2015).

A feasible and sustainable alternative to prevent disease outbreaks is genetic selection
for disease resistance (Bishop and Woolliams, 2014). The estimated levels heritability for
resistance to P. salmonis in coho salmon, Atlantic salmon and rainbow trout, range from 0.11
to 0.41 (Bangera et al., 2017; Barria et al., 2018a; Bassini et al., submitted; Correa et al., 2015;
Yanez et al., 2016; Yoshida et al., 2018a); demonstrating the feasibility of improving P.

salmonis resistance through artificial selection in farmed salmon species.
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82 Currently, the advancement of molecular technologies has allowed the generation of
83  dense marker panels for salmonid species (Houston et al., 2014; Macqueen et al., 2017; Palti
84 et al., 2015; Yanez et al., 2016). The use of genotypes from dense panels of SNP markers,
85  together with phenotypes for the traits of interest, assessed in a large number of individuals
86  could provide opportunities to discover the genetic architecture of complex traits. When genetic
87  markers are linked to a major effect quantitative trait loci (QTL), marker assisted selection
88  (MAS), could then be implemented into breeding programs. For instance, a QTL explaining
89  ~80% of the genetic variance for resistance to Infectious Pancreatic Necrosis Virus (IPNV),
90  has been identified in Scottish and Norwegian Atlantic salmon farmed populations (Houston
91 etal., 2008; Moen et al., 2009). To date, the number of IPN outbreaks has been significantly
92  reduced in Norwegian Atlantic salmon populations because of MAS for IPNV resistance
93  (Hjeltnes, 2018). Interestingly, Moen et al., (2015) mapped the QTL to a region containing an
94  epithelial cadherin (cdhl) gene encoding a protein that binds to IPNV, indicating that the
95  protein is part of the machinery used by the virus for host internalization.
96 P. salmonis resistance has been suggested to be polygenic, with many loci explaining
97 a small amount of the total genetic variance (Barria et al., 2018a; Correa et al., 2015),
98  suggesting that the implementation of genomic selection (GS) is the most appropriate strategy
99  to accelerate the genetic progress for this trait. Methods which can model all available SNPs
100  simultaneously, including Bayesian regression methods (Fernando & Garrick 2013), appear to
101  be better for estimating marker effects than conventional methods of modeling each SNP
102  individually, and therefore are becoming increasingly more popular for GWAS (Goddard et al.
103 2009).
104 Regarding that P. salmonis affects farmed populations of three phylogenetically related
105  salmonid species, including coho salmon, Atlantic salmon and rainbow trout, generating

106  mortalities in a similar manner and that genetic variation for P. sa/monis resistance has been
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107  already reported, we believe that exploring the genetic architecture of this trait simultaneously
108  in the three species can provide further insights into the biology of the differential response
109  against this intracellular bacteria among individuals. Thus, a comparative genomics approach
110  aiming at evaluating and comparing genomic regions involved in P. salmonis resistance in
111  coho salmon, Atlantic salmon and rainbow trout would help in narrowing down the list of
112 potential candidate genes associated with the trait for further functional validation in salmonid
113 species.

114 The aims of this study were i) to dissect the genetic architecture of resistance to P.
115 salmonis in coho salmon, Atlantic salmon and rainbow trout using SNP and phenotype data
116  modeled together using Bayesian GWAS approach, ii) to identify genomic regions involved in
117  P. salmonis resistance among the three salmonid species and iii) to identify candidate genes
118  associated with P. salmonis resistance through a comparative genomics analysis.

119

120  Material and methods

121  Challenge tests

122 A total of 2,606, 2,601 and 2,416 fish belonging to 107, 118 and 105 full-sib families
123 from coho salmon (CS), Atlantic salmon (AS) and rainbow trout (RT), respectively, were
124 independently challenged with an isolate of P. sa/monis (strain LF-89) (Mandakovic et al.,
125  2016) as described in Barria et al. (2018a), Bassini et al. (submitted) and Yafiez et al. (2013,
126 2014, 2016). Prior to the beginning of each experimental challenge, qPCR was performed in a
127  sub-sample of each population to confirm the absence of Flavobacterium spp, Infectious
128  Salmon Anemia Virus (ISAV) and IPNV. Subsequently, fish were intraperitoneally (IP)
129  injected with 0.2 ml of a LDso inoculum of P. salmonis. Post IP injection, infected fish were
130  equally distributed by family into three different test tanks. Each challenge was maintained

131  until mortalities returned to baseline levels. At the end of the challenges, all surviving fish were
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132 anesthetized and euthanized. A sample of caudal fin was taken from each survivor and dead
133 fish from each of the experimental challenges for DNA extraction. Body weight was measured
134 at the beginning of the challenge and at the time of death for each individual. The presence of
135  P. salmonis was confirmed in a random sample of dead fish through qRT-PCR and necropsy.
136 Each experimental challenge was performed at Aquainnovo’s Research Station, Xth Region,
137  Chile.

138

139  Genotyping

140 A total of 828 CS, 2,130 RT and 2,601 AS were genotyped using ddRAD, 57K SNP
141  Affymetrix® Axiom® and 50K Affymetrix® Axiom® SNP panels, respectively. Total DNA
142 was extracted using commercial kits following the manufacturer’s protocols. For CS, we used
143 the Wizard SV Genomic DNA purification System (Promega), while DNeasy Blood & Tissue
144  (Qiagen) was used for RT and AS.

145 For CS, ten double digest Rad-seq (ddRAD) libraries were prepared following the
146  protocol proposed by Peterson et al., (2012), and sequenced on an illumina Hiseq2500 (150 bp
147  single-end). Raw sequences were analyzed using STACKS v. 1.41 (Catchen et al., 2011, 2013).
148  Rad-tags which passed the process radtags quality control were aligned to the coho salmon
149  reference genome (GCF_002021735.1). Loci were built with pstacks setting a minimum depth
150  coverage of three. After catalog construction, rad-tags were matched using sstacks, and
151  followed by populations using default parameters. Quality control (QC) included the removal
152 of SNPs below the following thresholds: Hardy-Weinberg Equilbrium (HWE) p<1x10-6,
153 Minor Allele Frequency (MAF) < 0.05, and genotyping call rate < 0.80. Individuals with a call
154  rate below 0.70 were removed from the subsequent analysis. For a detailed protocol of library

155  construction and SNP identification see Barria et al. (2018a).
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156 RT individuals were genotyped using the commercial 57K Affymetrix® Axiom® SNP
157  array, developed by the National Center of Cool and Cold Water Aquaculture at the USDA
158  (Palti et al., 2015). SNPs were filtered with the following QC parameters: HWE p < 1x10-6,
159  MAF < 0.05, and SNP call rate < 0.95. Individuals with call rates lower than 0.95 were also
160  removed.

161 The 50K SNP Affymetrix® Axiom® array used to genotype AS, was developed by
162  Universidad de Chile and Aquainnovo (Correa et al., 2015; Yafiez et al., 2016). These markers
163 were selected from a 200K array, as described in detail in Correa et al. (2015). Genotypes were
164  quality-controlled using the following criteria: HWE p < 1x10-6, MAF < 0.05, SNP and
165  samples were discarded when the genotype rate was < 0.95.

166

167  Genome-wide association analysis

168 Resistance to SRS was defined as both the number of days to death (DD) post
169  experimental challenge and as binary survival (BS; 0 for surviving individuals at the end of the
170  experimental challenge and 1 for deceased fish). The GWAS analyses were performed using
171  the Bayes C method which assumes distributed mixture distribution for marker effects. All
172 model parameters are defined in the following equation:

173 y=Xb+Zu+Y 9,00, +e (EQ1)

174  where, y is the vector of phenotypic records (DD or BS); X and Z are the incidence matrix of
175  fixed effects and polygenic effect, respectively; b is the vector of fixed effects (tank and body
176  weight); u is the random vector of polygenic effects of all individuals in the pedigree; g; is the
177  vector of the genotypes for the i SNP for each animal; a; is the random allele substitution
178  effect of the i SNP; &; is an indicator variable (0, 1) sampled from a binomial distribution with

179  parameters determined such that  value of 0.99; and e is a vector of residual effects.
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180 The prior assumption is that SNP effects have independent and identical mixture
181  distributions, where each SNP has a point mass at zero (with probability m) and a univariate
182  Gaussian distribution (with probability 1- ) with a mean equal to zero and variance equal to
183 02, having in turn a scaled inverse y? prior, with v, = 4 and v, = 10 degrees of freedom (df)
184  and scale parameter, respectively (Fernando and Garrick, 2013). These hyperparameter values
185  were chosen based on previous studies (Peters et al., 2012; Santana et al., 2016; Wolc et al.,
186  2016; Yoshida et al., 2017, 2018a).

187 The analyses were performed using the GS3 software (Legarra et al., 2013). A total of
188 200,000 iterations in Gibbs sampling were used, with a burn-in period of 20,000 cycles and the
189  results were saved every 50 cycles. Convergence was assessed by visual inspection of trace
190  plots of the posterior density of genetic and residual variances.

191 The proportion of the genetic variance explained by each significant SNP was

192  calculated as:

193 Vg, = (22ee) (EQ2)

o

194  where p;and q; are the allele frequencies for the i-th SNP, a; is the estimated additive effect of
195  the i-th SNP on the phenotype and ;2 is the estimate of the polygenic variance (Lee et al.,
196  2013).

197 The association between the SNPs and the phenotypes was assessed using the
198  proportion of the genetic variance explained by each marker. To be inclusive regarding the
199  genomic regions to be compared across the three species, we selected each of the regions
200  explaining at least 1% of the genetic variance for the trait in each species.

201 The heritability values were calculated as:

202 h?2 =Y (EQ3)

Vaptoe
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203  where, V, is the total additive genetic variance, estimated as the sum of additive marker
204 (207mYp;q;) and the polygenic pedigree based (d;) additive genetic variance.

205

206  Comparative genomic analysis

207 Initially, sequence homology between chromosomes containing regions with SNPs
208  explaining more than 1% of the genetic variance were compared. Synteny among these
209  chromosomes was identified by using Symap (Soderlund et al. 2011). The relationship between
210  the chromosomes from CS, AS and RT and the association between SNPs and resistance to P.
211 salmonis (Manhattan plot) was plotted using Circos (Krzywinski 2009).

212 To identify candidate genes associated with P. salmonis resistance, we used a
213 comparative genomic analysis between coho salmon CS, AS and RT. For this, we mapped the
214  location of each SNP that explained 1% or more of the genetic variance for the trait on the
215 reference genome (NCBI RefSeq) of each species; CS (GCF_002021735.1), AS
216  (GCF_000233375.1, Lien et al., 2016) and RT (GCF_002163495.1, Pearse et al., bioRxiv).
217  Subsequently, we retrieved the sequences of all the genes (and their protein products) adjacent
218  to each SNP within a window of 1 Mb (500 Kb downstream and 500 Kb upstream to the
219  associated SNP). We then used this information to apply the following criteria in order to
220  classify and prioritize functional candidate genes by comparing the genomic regions involved

221  in P. salmonis defined as DD and BS within and among the three species:

222 1) The complete set of genes were identified and classified into homologous
223 superfamilies based on InterPro (Mitchell et al, 2019) protein domain signatures
224 using Blast2GO software version 5.2.5 (Go6tz et al, 2005) (referred to as: Group
225 A);

226 ii) Orthologous and paralogous genes among species were identified using the

227 ProteinOrtho tool (Lechner et al., 2011). Multi-directional alignments were
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228 performed using the full-length sequences among complete sets of proteins
229 encoded in each of the three species to obtain orthologous groups, with a 35%
230 threshold for identity and similarity (Group B);

231 iii) The complete set of genes within 1 Mb windows adjacent to SNPs explaining
232 the highest proportion of the genetic variation for each trait (leader SNP) were
233 recovered and classified as high priority genes (Group C); and

234 iv) The complete set of genes located at the intersection of more than one 1 Mb
235 windows within a species were also identified and considered as high priority
236 genes (Group D).

237

238  Results

239  Challenge test and genetic parameters

240  There was considerable phenotypic variation for P. sal/monis resistance across fish species
241  (Figure 1). The average cumulative mortality for different families ranged from 5% to 81%,
242 8.3% to 73.7% and 8% to 100% for CS, AS and RT, respectively. This result suggests that the
243 phenotypic variation for this trait could be related with the genetic background on each species.
244  Estimated heritabilities for P. salmonis resistance were significant for the three species,
245  indicating the feasibility to improve the trait by means of artificial selection (Table 1). The
246  genomic heritability values for DD were 0.32 for CS, 0.24 for AS and 0.48 for RT. When
247  resistance was defined as BS, genomic heritability estimates increased to 0.88, 0.32 and 0.64
248  for CS, AS and RT, respectively, representing moderate to high levels of genetic variation for
249  P. salmonis resistance.

250

251  Genome-wide association analysis
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252 A total of 580 CS (9,389 SNPs), 2,383 AS (42,624 SNPs) and 1,929 RT (24,916 SNPs)
253  were retained after QC. For CS and RT we found relatively few SNPs explaining a moderate
254  to high percentage of genetic variance for P. sa/monis resistance. In contrast, for AS, a large
255  number of SNPs with small effect were found, and the percentage of genetic variance explained
256 by a single marker was not higher than 5% (Figure 2 and Supplementary Figure 1). While
257  there were multiple shared syntenic regions with associated SNPs (4 for DD, and 5 for BS) in
258  two species, there were no shared syntenic regions where all three species had common
259  associated SNPs (Figure 2). Figure 3 (and Supplementary Figure 2) highlights the different
260  genetic architecture for resistance to P. salmonis among the three salmonid species studied. For
261  CSand RT, both traits appear to have oligogenic control with few moderate to large effect loci,
262  and a large-unknown number of loci each having a small effect on the traits. For BS, the top
263 200 SNPs explained about 80% and 90% of the phenotypic variance in CS and RT,
264  respectively, while in AS they explained slightly more than 30%. For DD, the top ten SNPs
265  explained a 40%, 57% and 17% of the total genetic variance for P. salmonis resistance in CS,
266  RT and AS, respectively.

267

268  Comparative genomic analysis

269 We mapped the location of each SNP that explained 1% or more of the genetic variance
270  for both DD and BS, to the reference genome of CS, AS and RT, and searched for genes within
271  1Mb windows flanking each SNP. This search allowed us to identify 533 unique genes that
272  encoded 957 proteins. The complete list of genes and proteins can be found in the
273  Supplementary Table S1: Sheets 1 to 6.

274 To prioritize functional candidate genes, we annotated and classified the complete set
275  of encoded proteins in homologous superfamilies for each trait and species, based on InterPro

276  protein domain signatures. We identified 194 and 129 homologous superfamilies for DD and
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277  BS, respectively, 103 of which were shared between traits (Supplementary Table S1:
278  homologous superfamilies). The homologous superfamilies and the number of proteins
279  present in at least two salmonids species are shown in Figure 4. Remarkably, around 30% of
280  the proteins from genes present in regions associated with DD belong to five homologous
281  superfamilies (P-loop containing nucleoside triphosphate hydrolase, immunoglobulin-like
282 fold, zinc finger C2H2 superfamily, zinc finger, RING/FYVE/PHD-type and protein kinase-like
283  domain superfamily). A total of 30% of proteins from genes present in regions associated with
284  BS belong to only three homologous superfamilies (P-loop containing nucleoside triphosphate
285  hydrolase, immunoglobulin-like fold and immunoglobulin-like domain superfamily).
286  Interestingly, the P-loop containing nucleoside triphosphate hydrolase superfamily (also
287  known as P-loop NTPase) contained the largest group of proteins for both traits, and at least
288  one representative protein from each salmonid species belonged to this superfamily. Thirty-
289  one of the proteins identified in this study are part of this superfamily, including some GTPases,
290  kinesin and myosin proteins and ATP-dependent RNA helicases (Supplementary Table S1,
291  sheet: P-loop NTPases (Group_A)).

292 To complement these analyses, we looked for orthologous proteins through multi-
293  directional alignments using full-length sequences of the complete set of proteins for each
294 species (Group B). Only five groups of orthologous genes were identified in at least two
295  species, highlighting three non-receptor tyrosine-protein kinases (nr-TPK) with representative
296  genes in the three species for DD and in two species for BS. In addition, for DD, two ATP-
297  dependent RNA helicases (DDX) and two Ras-related proteins (RAB) were identified in CS
298  and RT, while two FYVE, RhoGEF/PH domain-containing proteins (FGD) were identified in
299  RT and AS. For BS, two fatty acid-binding proteins (L-FABP) and two ankyrin repeat domain-
300 containing proteins were identified in CS and RT (Supplementary Table S1, sheet:

301  Orthologous genes (Group_B)). The proteins nr-TPK, DDX and L-FABP are also encoded
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302 by genes adjacent to SNPs that explained the highest proportion for the genetic variance (leader
303  SNP) for both trait definitions (Group C).

304 Group C contained other genes (n=42) that encoded proteins such as myosin-IIIb
305 (MYO3B), ATP-dependent RNA helicase (TDRD9), kinesin protein (KIF15) and kinesin
306  protein (KIF2C) that are also included into the P-loop NTPases superfamily, as well as
307 members of the orthologous groups such as fatty acid-binding proteins (FABP). Other genes
308  encoding proteins classically associated to immune response such as tripartite motif-containing
309  protein 35 (TRIM35) and lysozyme C II (LYZ) are also part of this group. A complete list of
310  these genes and proteins is in Supplementary Table S1, sheet: Adjacent to leader SNP
311  (Group_C).

312 Group D was composed of genes (n=58) located adjacent to more than one SNP
313 simultaneously (within overlapped windows). Among them, we identified GTPase IMAP
314 family member 4 (GIMAP4), GTPase IMAP family member 8 (GIMAPS), NLR family CARD
315  domain-containing protein 3 (NLRC3), ADP-ribosylation factor protein 5B (ARL5B), voltage-
316  dependent L-type calcium channel subunit beta-2 (CACNB2) and heparan sulfate glucosamine
317  3-O-sulfotransferase 3A1 (HS3ST3A1), all of which are also P-loop NTPases. In addition, we
318  identified histidine triad nucleotide-binding protein 1 (HINT1), that is also adjacent to the
319  leader SNP for DD in AS, and other genes associated with immune response such as collectin-
320 12 (COL12), macrophage mannose receptor 1 (MRC1) and tapasin-related protein (TAPBPL).
321 A complete list of these genes and proteins can be found in Supplementary Table S1, sheet:
322  Genes overlapped windows (Group_ D). Additionally, the gene that codes for NACHT, LRR
323  and PYD domains-containing protein 12 (NLRP12) was found in groups A, C and D.

324 We identified several candidate genes associated with P. sa/monis resistance (n=120)
325  which were present in at least one of the groups described previously. These genes are

326  associated with the following biological processes: dependent on kinase activity, GTP
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327  hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics and inflammation. In
328  order to rank the genes, we scored them based on the counting of each of them across following
329  categories: i) species (CS, RT and AS); ii) trait definitions (DD and BS); and iii) groups (A, B,
330 C and D), thus the maximum score for one particular gene was equal to 9. The prioritized
331 functional candidate genes based on the score described above are shown in Table 2 and the
332  complete list of unique candidate genes (n=120) can be found in the Supplementary Table
333  S1. sheet: Candidate Genes.

334

335  Discussion

336 The comparative genomic strategy used in this study allowed us to identify groups of
337  homologous superfamilies and orthologous genes common to more than one species of
338  salmonids among genes adjacent to SNPs that explain more than 1% of the genetic variance
339  for P. salmonis resistance. To our knowledge, this is the first study which aims at identifying
340 and prioritizing functional candidate genes involved in the differential response against
341  bacterial infection by means of comparing results from genome-wide association mapping
342  across different phylogenetically related salmonid species.

343 Heritability estimates are in agreement with previous studies aimed to estimate levels
344  of genetic variation for resistance to bacterial diseases in salmonid species. For instance,
345  Vallejo et al., (2016; 2017) presented heritabilities ranging from 0.26 to 0.54 and from 0.31 to
346  0.48, for resistance to bacterial cold water disease in a farmed rainbow trout population. The
347  levels of genetic variation observed in the current study are consistent or somewhat higher than
348  previous estimates of heritabilities for resistance to P. salmonis, depending on the species and
349  the trait definition. For instance, previous heritability values for P. salmonis resistance,
350  estimated based on pedigree information reached a maximum of 0.16, 0.41, and 0.44, for CS,

351  AS and RT, respectively (Bassini et al., submitted; Yafiez et. al., 2013, 2014; 2016). When
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352 heritability for P. salmonis resistance was estimated based on genomic information, the
353  maximum values previously reported were 0.39, and 0.62, for AS and RT, respectively
354  (Bangera et al., 2017; Yoshida et al., 2018a).

355 Our results show evidence of alleles of medium to large effect involved in resistance to
356  P. salmonis in CS and RT. In contrast, for AS our results suggest that if alleles of large effect
357  do exist, they are at such low frequency that they individually explain a small proportion of the
358  variance for resistance to P. salmonis. The identification of genomic regions harboring
359  associated SNPs was based on GWAS using the Bayes C approach, which is more suitable for
360  oligogenic traits (Habier et al., 2011). In a few cases, the same SNP was significantly associated
361  with both trait definitions (DD and BS). This could be the result of pleiotropy, closely linked
362  genes (local linkage disequilibrium) or by a strong correlation between both traits. For example,
363  we observed the same SNP associated with DD and BS in CS (58185 41 and 24601 47) and
364  RT (AX-89926208 and AX-89966072) among the top ten SNPs explaining most of the genetic
365  variance for the trait.

366 Based on the linkage disequilibrium (LD) of the Atlantic salmon population, (measured
367  as r?), the number of SNPs used for AS (~ 43K) should be enough to cover the entire genome
368  (Barria et al., 2018b). There is a lack of studies aimed at evaluating the LD and population
369  structure of the current farmed rainbow trout population. Based on results from a different
370  rainbow trout farmed population, at least 20K SNPs are necessary to cover the whole genome
371  (Vallejo et al. 2018). If LD levels of the present rainbow trout population are similar to those
372 reported by Vallejo et al. (2018), the 23K SNPs used here will most likely cover the whole
373  genome. However, this is not the case for CS. Using a high density SNP array Rondeau et al.
374 (2018, in prep.) and Barria et al. (2018c), suggested that at least 74K SNPs are necessary for

375  whole-genome studies of the current coho salmon population. The small number of SNPs
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376  assayed in this study for CS (9,389), most likely affected the identification of markers with a
377  moderate to high effect on resistance to P. salmonis in this species.

378 While the complete set of proteins predicted from reference genomes of CS, RT and
379  AS consisted of 57,592, 58,925 and 97,738, respectively, the proteins neighboring SNPs
380  associated with resistance (range of 1Mb) represent less than 1% of the different proteomes.
381  The characterization of the complete set of proteins among species established that the most
382  prevalent homologous superfamily was the P-loop containing nucleoside triphosphate
383  hydrolase. However, since this superfamily contains proteins with at least 21 functions
384  (Shalaeva et al., 2018), it is possible that the high frequency of proteins identified from this
385  group was due to the overall high representation in salmonid genomes. For this reason, we
386  retrieved the sequences of 100 randomly selected proteins from the genomes of CS, RT and
387  AS, and classified them into subfamilies (Supplementary Figure S3). The results indicate that
388  P-loop NTPase is not the most prevalent in any of the salmonid species, which suggests that
389  this homologous superfamily is actually enriched in the regions analyzed and is not a
390  consequence of their high representation in CS, RT and AS genomes.

391 When traits are polygenic in nature, the identification of genes underlying them is a
392  challenging task and often depends on previous knowledge of the function of genes adjacent
393  to the associated SNPs (Jiang et al., 2014; Bouwman et al., 2018; Robledo et al., 2019). Our
394  strategy was based on identifying orthologous proteins between the salmonid species and
395  families of homologous proteins in the complete set of proteins adjacent to all the SNPs that
396  explained more than 1% of the genetic variance, without searching for a specific function. The
397  identification of genes directly associated with the innate immune response, after applying all
398  the classification criteria, such as lysozyme C II, macrophage mannose receptor 1, collectin-12
399 and tapasin-related protein, suggests that our strategy was successful in finding strong

400  functional candidate genes involved in resistance to P. salmonis. Interestingly, around one
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401  hundred genes not classically associated with the immune system were also identified; from
402  which seventeen of them were part of at least two of the groups described previously and hence
403  are considered strong candidates for being responsible on trait variation (Table 2).

404 Previously, lysozymes have primarily been described as having a bacteriolytic activity
405  against gram-positive bacteria; however, the expression of lysozyme C II has been shown to
406  be induced in a resistant rainbow trout line in response to Flavobacterium psychrophilum
407  infection (Langevin et al., 2012) and in Atlantic salmon families in response to Piscirickettsia
408  salmonis infection (Pulgar et al., 2015), indicating that the transcriptional regulation of this
409  enzyme in salmonids responds to gram-negative bacterial infection. Macrophage mannose
410  receptor 1 and collectin-12 are membrane receptors which display several functions associated
411  with innate immunologic defense, particularly in the recognition of carbohydrate structures of
412  pathogens and as phagocytic receptors of bacteria, yeasts and other pathogenic microorganisms
413  (Harris et al., 1992; Ma et al., 2015). It has been reported that enhanced infection in human
414  phagocytes with Francisella tularensis, a bacterium phylogenetically related to P. salmonis, is
415  mediated by the macrophage mannose receptor (Schulert and Allen, 2006), while collectin-12
416 led to the activation of the alternative pathway of complement via association with properdin,
417  a key positive regulator of the pathway by increment of the half-life of the C3 and C5
418  convertases (Ma et al., 2015). Tapasin-related protein has been described as a second MHC
419  class I-dedicated chaperone, essential to providing specificity for T cell responses against
420  viruses and bacteria (Hermann et al., 2015) and the related protein tapasin has been shown to
421  be induced in monocyte/macrophage in rainbow trout by chum salmon reovirus infection
422 (Sever et al., 2014).

423 Another set of candidate genes for SRS resistance in the three salmonid species studied
424 are a cluster of cytosolic non-receptor tyrosine-protein kinases (nRTKs). These proteins are a

425  subgroup of the tyrosine kinase family, enzymes that phosphorylate tyrosine residues of
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426  proteins, and regulate many cellular functions, such as: cell growth and survival, apoptosis, cell
427  adhesion, cytoskeleton remodeling and differentiation (Neet and Hunter, 1996). Although these
428  genes are not classically related to the response to pathogens, it has been described that the
429  interaction of T- and B-cell antigen receptors with some non-receptor tyrosine protein kinases
430  is critical to the activation of lymphocytes by an antigen (Sefton and Taddie, 1994). Moreover,
431  some cellular signaling pathways are hijacked by intracellular pathogens (bacteria and viruses),
432  thus pathogens can subvert protein phosphorylation to control host immune responses and
433 facilitate invasion and dissemination. It has been described that some bacterial effectors are
434  injected into host cells through their secretion systems where they inhibit the Src kinase (a
435  subfamily of nRTKSs). In particular, the effector EspJ, an ADP-ribosyltransferase of the bacteria
436  Escherichia coli and Citrobacter rodentium, regulates multiple non-receptor tyrosine kinases
437  in vivo by ADP-ribosylation, demonstrating that part of its target protein repertoire involves
438  Src kinases such as YES1 and LYN, as well as the adapter SYK (Young et al., 2014; Pollard
439  etal., 2018), all of which were identified in this study in CS, RT and AS. Remarkably, among
440  the candidate genes we also identified the small GTPase ADP-ribosylation factor protein 5B
441  (ARLS5B), suggesting that an adequate regulation of the activity of nRTKs by ADP-ribosylation
442  could be critical to combat P. sa/monis infection.

443 Other orthologous candidate genes identified in this study encode for proteins RAB1
444  and RABI1S, both members of the GTPase superfamily. The GTPases are a large family of
445  hydrolase enzymes that bind and hydrolyze GTP and play an important role in signal
446  transduction, protein translation, control and cellular differentiation, intracellular transport of
447  vesicles and cytoskeletal reorganization, among other cellular processes (Bourne et al., 1991).
448  Specifically, the RAB GTPases constitute a subfamily of small GTPases known as master
449  regulators of intracellular membrane traffic (Stenmark, 2009). Since P. salmonis drives the

450  formation of host membrane-derived organelles, the development of these P. salmonis-
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451  containing vacuoles (PCVs) are dependent on the bacterium's ability to usurp the intracellular
452  membrane system of the fish. Interestingly, Legionella pneumophila, the closest phylogenetical
453 bacterium to P. salmonis, disturbs the intracellular vesicular trafficking of infected human cells
454 by recruiting the RABI to the cytosolic face of the Legionella-containing vacuole (LCV)
455  through the activity of its effector protein DRRA (Miiller et al., 2010), suggesting that P.
456  salmonis could use similar mechanisms for the formation and maintenance of its replicative
457  vacuole. Furthermore, two orthologous of FYVE, RhoGEF and PH domain-containing proteins
458  were identified in RT and AS. These proteins activate CDC42, a GTPase involved in the
459  organization of the actin cytoskeleton and with a role in early contractile events in phagocytes
460  (Ching et al., 2007). Since it has been described that the infective process of P. salmonis
461  depends on the exploitation of the actin monomers (Ramirez et al., 2015), the identification in
462  this study of candidate genes that encode for cytoskeletal motor proteins (two kinesins and a
463  myosin), highlights their relevance not only for the reorganization of the cytoskeleton, but also
464  for its motility and involvement in the development of the infection (Hoyt et al., 1997).
465 Remarkably, two other candidate proteins associated with SRS resistance are also members of
466  the GTPase superfamily, the GTPases of the immunity-associated proteins (GIMAPs) 4 and 8.
467  This is a family of proteins abundantly expressed in lymphocytes and whose function is to
468  contribute in the regulation of apoptosis and the maintenance of T-cell numbers in the organism
469  (Yano et al., 2014).

470 Another group of orthologous genes code for ATP-dependent RNA helicases DDX24
471  in CS and DDX47 in RT for DD. The ATP-dependent RNA helicase DDX family, also known
472  as DEAD-box helicases, is required for different cellular processes such as transcription, pre-
473  mRNA processing, ribosome biogenesis, nuclear mRNA export, translation initiation, RNA
474  turnover and organelle function. The protein structure is very similar to viral RNA helicases

475 and to DNA helicases, which suggests that the fundamental activities of these enzymes are
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476  similar (Rocak and Linder, 2004). Viruses also utilize RNA helicases at various stages of their
477  life cycle. Many viruses carry their own helicases to assist with the synthesis of their genome,
478  but others synthesize their genome within the cell nucleus which tends to exploit cellular
479  helicases and thus do not encode their own. We also identified the ATP-dependent RNA
480  helicase TDRD9, which has not been directly implicated in infection, but was differentially
481  expressed in channel catfish (Ictalurus punctatus) in response to Aeromonas hydrophila
482  infection (Li et al., 2012). Mechanistic studies of RNA helicases will allow the determination
483  of the precise role of these helicases in the host/pathogen interaction.

484 The last group of orthologous genes identified code for two liver fatty acid binding
485  proteins (L-FABP) in CS and RT for BS. Liver fatty acid-binding proteins are abundant in
486  hepatocytes and are known to be associated with lipid metabolism. In addition, these proteins
487  are up-regulated in several types of cancer but their role in infection remains unclear (Ku et al.,
488  2016). Nevertheless, it has been recently reported that serum and urine L-FABP may be a new
489  diagnostic marker for liver damage in patients with both acute and chronic hepatitis C infection
490  (Cakir et al., 2017). Interestingly, in Atlantic salmon challenged with P. salmonis, L-FABP
491  was up-regulated in resistant families and simultaneously down-regulated in susceptible
492  families (Pulgar et al., 2015), suggesting a transcriptional regulation in response to P. salmonis
493  infection and a putative expression marker of resistance to SRS.

494 Genes coding NACHT, LRR and PYD domains-containing protein 12 (NLRP12);
495  NACHT, LRR and CARD domains-containing protein 3 (NLRC3); voltage-dependent L-type
496  calcium channel subunit beta-2 (CACNB2); heparan sulfate glucosamine 3-O-sulfotransferase
497  3A1 (HS3ST3A1) and histidine triad nucleotide-binding protein 1 (HINT1) were also selected
498  as candidate genes for SRS resistance. NLRP12 and NLRC3 are two cytosolic proteins that
499  share two functional domains (NACHT and LRR). NLRP12 was one of the best ranked genes,

500 adjacent to the leader SNP and adjacent to more than one SNP simultaneously for DD in AS.
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501  This protein functions as an attenuating factor of inflammation in monocytes, by negative
502  regulation of the NF-xB activation (Fata et al., 2013). In murine macrophages, a significant
503  expression increase has been shown in cells infected with the intracellular parasite Leishmania
504  major compared to non-infected macrophages (Fata et al., 2013). NLRC3 is also a negative
505  regulator of the innate immune response mediated by the inhibition of Toll-like receptor (TLR)-
506  dependent activation of the transcription factor NF-xB (Schneider et al., 2012). The presence
507  of these genes suggests that the control of the inflammatory reaction in response to P. salmonis
508 infection could be essential to combat SRS.

509 Finally, some members of heparan sulfate glucosamine 3-O-sulfotransferase (like
510 HS3ST3Al) have been shown to mediate the herpes simplex virus type-1 (HSV-1) entry and
511  spread in zebrafish (Antoine et al., 2014). Also, some members of CACNB2 changed their
512 expression levels in response to P. salmonis in multiples tissues of Atlantic salmon (Tacchi et
513  al, 2011), while HINT1 responds transcriptionally to Salmonella typhimurium and infectious
514  pancreatic necrosis virus (IPNV) infection in zebrafish and Atlantic salmon, respectively
515  (Stockhammer et al., 2010; Robledo et al., 2016).

516 To the best of our knowledge, this is the first time that functional candidate genes
517  underpinning resistance to P. salmonis are proposed based on a comparative genomics
518  approach comparing GWAS results for the same trait in different fish genus/species. We
519  hypothesize that variations in the sequences of these genes could play important roles in the
520  host response to P. salmonis infection, which could be tested through new genetic approaches
521  such as gene editing using CRISPR-Cas9, and utilized through genomic selection or more
522  traditional selection practices. All this information together can be used to generate better
523  control and treatment measures for one of the most important bacterial disease affecting salmon
524  aquaculture.

525
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526  Conclusions

527  Although P. salmonis resistance has previously been described as polygenic trait, our
528  comparative genomics approach based on GWAS results for the same trait in different
529  salmonid species allowed us to identify around one hundred candidate genes that may explain
530 resistance to P. salmonis. Of these, 21 are suggested to be strong functional candidates
531 influencing the trait. These genes are associated with multiple biological processes, including:
532 dependent on kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal
533  dynamics, inflammation and the innate immune response. We hypothesize that variations in
534  the sequences of these genes could play an important role in the expression and/or activity of
535  their encoded proteins and consequently in the resistance to P. sa/monis. This information
536  could be used to generate better control and treatment measures, based on selective breeding
537  or new drug development, for one of the most important bacterial disease affecting salmon
538  aquaculture.

539
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600 Table 1. Estimates of total additive genetic variance (V',), residual variance (c2), heritability

601  (h?) and standard deviation (SD) for resistance against Piscirickettsia salmonis in three

602  salmonids species.

Species Days to death Binary survival

V', o? h? SD V', 02 h? SD

Coho salmon 2891 60.70 0.32 0.07 7.53 1.00 0.88 0.03

Rainbow trout 30.42 32.71 0.48 0.04 1.87 1.00 0.64 0.05

Atlantic salmon 16.52 53.17 0.24 0.04 0.47 1.00 0.32 0.05

603

604
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Table 2. Summary of candidate genes associated with P. salmonis resistance for coho salmon
(CS), rainbow trout (RT) and Atlantic salmon (AS) ranked by score, which is simply based on
the number of appearance of each gene across the following categories: i) species (CS, RT and

AS); ii) trait definitions (DD and BS); and iii) groups (A, B, C and D).

Gene Symbol Protein description Species Trait Group Score!
NRTPK non-receptor tyrosine-protein kinase (cytosolic) CS, RT and AS DD and BS B,Cand D 8
DDX ATP-dependent RNA helicase DDX CSand RT DD A,BandC 6
ARLS5B ADP-ribosylation factor protein 5B CS DD and BS Aand D 5
L-FABP fatty acid-binding protein, liver CSand RT BS BandC 5
GIMAP4 GTPase IMAP family member 4 RT DD and BS Aand D 5
HS3ST3A1 heparan sulfate glucosamine 3-O-sulfotransferase 3A1 AS DD and BS Aand D 5
KIF2C kinesin protein KIF2C RT DD and BS AandC 5
MYO3B myosin-IIIb CS DD and BS AandC 5
NLRP12 NACHT, LRR and PYD domains-containing protein 12 AS DD A,Cand D 5
RAB ras-related protein Rab CSand RT DD BandC 5
CACNB2 voltage-dependent L-type calcium channel subunit beta-2 CS DD and BS Aand D 5
TDRD9 ATP-dependent RNA helicase TDRD9 CS DD AandC 4
FGD FYVE, RhoGEF and PH domain-containing protein RT and AS DD B 4
GIMAP4 GTPase IMAP family member 8 RT DD Aand D 4
HINT1 histidine triad nucleotide-binding protein 1 AS DD CandD 4
KIF15 kinesin protein KIF15 CS DD AandC 4
NLRC3 NACHT, LRR And CARD Domains-Containing Protein 3 RT DD Aand D 4
COLEC12 collectin-12 CS BS D 3
LYZ2 lysozyme C II AS DD C 3
MRC1 macrophage mannose receptor 1 CS BS D 3
TAPBPR tapasin-related protein RT DD D 3

! The maximum score possible for one particular gene was equal to 9.
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896  Figure 1. Cumulative mortality by family after Piscirickettsia salmonis experimental infection
897  of coho salmon (CS), rainbow trout (RT) and Atlantic salmon (AS). For CS, RT and AS a total

898  of 107, 105 and 118 full-sib families were experimentally challenged.
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903

904  Figure 2. Circos plot for P. salmonis resistance as day of death (A) and as binary survival (B).
905  The inner ribbons mark syntenic regions between coho salmon (green) rainbow trout (red) and
906  Atlantic salmon (blue). Manhattan plots are showed on the outer ring, with significant

907  associations plotted in red (values >= 1).
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Figure 3. Cumulative percentage of the genetic variance explained (GEV) by the top 200
markers from Bayesian GWAS for resistance to P. salmonis measured as days to death (DD)

(A) and binary survival (BS) (B) in Coho salmon (CS), Rainbow trout (RT) and Atlantic

salmon (AS).
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922

923  Figure 4. Homologous superfamilies (InterPro) adjacent to the complete set of SNPs that
924 explain over 1% of the genetic variance of resistance to SRS measured as days to death (DD)
925  (A) and binary survival (BS) (B). Bars represent the abundance of genes in each homologous
926  superfamily present in at least two salmonids species. Coho salmon (CS), rainbow trout (RT)
927  and Atlantic salmon (AS).
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932  Figure S1. Manhattan plots for resistance to P. salmonis measured as day of death (DD) in
933 coho salmon (CS), rainbow trout (RT) and Atlantic salmon (AS). Y-axis represents percentage
934 of the genetic variance explained by each marker.
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938  Figure S2. Manhattan plots for resistance to P. salmonis measured as binary survival (BS) in
939  coho salmon (CS), rainbow trout (RT) and Atlantic salmon (AS). Y-axis represents percentage

940  of the genetic variance explained by each marker.
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Figure S3. Homologous superfamilies (InterPro) associated to 100 random selected proteins

from coho salmon (CS), rainbow trout (RT) and Atlantic salmon (AS) genomes.


https://doi.org/10.1101/589200
http://creativecommons.org/licenses/by-nc-nd/4.0/

