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Abstract

The relationship between the brain’s structural wiring and the functional patterns of
neural activity is of fundamental interest in computational neuroscience. We examine a
hierarchical, linear graph spectral model of brain activity at mesoscopic and macroscopic
scales. The model formulation yields an elegant closed-form solution for the structure-
function problem, specified by the graph spectrum of the structural connectome’s
Laplacian, with simple, universal rules of dynamics specified by a minimal set of global
parameters. The resulting parsimonious and analytical solution stands in contrast to
complex numerical simulations of high dimensional coupled non-linear neural field
models. This spectral graph model accurately predicts spatial and spectral features of
neural oscillatory activity across the brain and was successful in simultaneously
reproducing empirically observed spatial and spectral patterns of alpha-band (8-12 Hz)
and beta-band (15-30Hz) activity estimated from source localized scalp magneto-
encephalography (MEG). This spectral graph model demonstrates that certain brain
oscillations are emergent properties of the graph structure of the structural connectome
and provides important insights towards understanding the fundamental relationship
between network topology and macroscopic whole-brain dynamics.
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Significance Statement

The relationship between the brain’s structural wiring and the functional patterns of
neural activity is of fundamental interest in computational neuroscience. We examine a
hierarchical, linear graph spectral model of brain activity at mesoscopic and macroscopic
scales. The model formulation yields an elegant closed-form solution for the structure-
function problem, specified by the graph spectrum of the structural connectome’s
Laplacian, with simple, universal rules of dynamics specified by a minimal set of global
parameters. This spectral graph model demonstrates that certain brain oscillations are
emergent properties of the graph structure of the structural connectome and provides
important insights towards understanding the fundamental relationship between
network topology and macroscopic whole-brain dynamics.
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Introduction

The Structure-Function Problem in Neuroscience

It is considered paradigmatic in neuroscience that the brain’s structure at various spatial
scales is critical for determining its function. In particular, the relationship between the
brain’s structural wiring and the functional patterns of neural activity is of fundamental
interest in computational neuroscience. Brain structure and function at the scale of
macroscopic networks, i.e. amongst identifiable grey matter (GM) regions and their long-
range connections through white matter (WM) fiber bundles, can be adequately
measured using current non-invasive measurement techniques. Fiber architecture can
be measured from diffusion tensor imaging (DTI) followed by tractography algorithms 1.2.
Similarly, brain function manifested in neural oscillations can be measured non-
invasively using magnetoencephalography (MEG) and reconstructed across whole-brain
networks. Does the brain’s white matter wiring structure constrain functional activity
patterns that arise on the macroscopic network or graph, whose nodes represent gray
matter regions, and whose edges have weights given by the structural connectivity (SC)
of white matter fibers between them? We address this critical open problem here, as the
structural and functional networks estimated at various scales are not trivially
predictable from each other 3.

Although numerical models of single neurons and local microscopic neuronal assemblies,
ranging from simple integrate-and-fire neurons to detailed multi-compartment and
multi-channel models 4-8 have been proposed, it is unclear if these models can explain
structure-function coupling at meso- or macroscopic scales. At one extreme, the Blue
Brain Project 910 seeks to model in detail all 10! neurons and all their connections in the
brain. Indeed spiking models linked up via specified synaptic connectivity and spike
timing dependent plasticity rules were found to produce regionally and spectrally
organized self-sustaining dynamics, as well as wave-like propagation similar to real fMRI
data 1. However, it is unclear whether such efforts will succeed in providing interpretable
models at whole-brain scale 12.

Therefore the traditional computational neuroscience paradigm at the microscopic scale
does not easily extend to whole-brain macroscopic phenomena, as large neuronal
ensembles exhibit emergent properties that can be unrelated to individual neuronal
behavior 13-18, and are instead largely governed by long-range connectivity 19-22. At this
scale, graph theory involving network statistics can phenomenologically capture
structure-function relationships 23-25, but do not explicitly embody any details about
neural physiology 1415, Strong correlations between functional and structural connections
have also been observed at this scale 326-32, and important graph properties are shared by
both SC and functional connectivity (FC) networks, such as small worldness, power-law
degree distribution, hierarchy, modularity, and highly connected hubs 2433,

A more detailed accounting of the structure-function relationship requires that we move
beyond statistical descriptions to mathematical ones, informed by computational models
of neural activity. Numerical simulations are available of mean field 173435 and neural
mass 2236 approximations of the dynamics of neuronal assemblies. By coupling many such
neural field or mass models (NMMs) using anatomic connectivity information, it is
possible to generate via large-scale stochastic simulations a rough picture of how the
network modulates local activity at the global scale to allow the emergence of coherent
functional networks 22. However, simulations are unable to give an analytical (i.e. closed
form) encapsulation of brain dynamics and present an interpretational challenge in that
behavior is only deducible indirectly from thousands of trial runs of time-consuming
simulations. Consequently, the essential minimal rules of organization and dynamics of
the brain remain unknown. Furthermore, due to their nonlinear and stochastic nature,
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model parameter inference is ill-posed, computationally demanding and manifest with
inherent identifiability issues 37.

How then do stereotyped spatiotemporal patterns emerge from the structural substrate
of the brain? How will disease processes perturb brain structure, thereby impacting its
function? While stochastic simulations are powerful and useful tools, they provide limited
neuroscientific insight, interpretability and predictive power, especially for the practical
task of inferring macroscopic functional connectivity from long-range anatomic
connectivity. Therefore, there is a need for more direct models of structural network-
induced neural activity patterns - a task for which existing numerical modeling
approaches, whether for single neurons, local assemblies, coupled neural masses or graph
theory, are not ideally suited. Here we use a spectral graph model to demonstrate that the
spatial distribution of certain brain oscillations are emergent properties of the spectral
graph structure of the structural connectome. Therefore, we also explore how the chosen
connectome alters the functional activity patterns they sustain.

A hierarchical, analytic, low-dimensional and linear spectral graph theoretic model
of brain oscillations

We present a linear graph model capable of reproducing empirical macroscopic spatial
and spectral properties of neural activity. We are interested specifically in the transfer
function (defined as the frequency-domain input-output relationship) induced by the
macroscopic structural connectome, rather than in the behavior of local neural masses.
Therefore we seek an explicit formulation of the frequency spectra induced by the graph,
using the eigen-decomposition of the structural graph Laplacian, borrowing heavily from
spectral graph theory used in diverse contexts including clustering, classification, and
machine learning 384 This theory conceptualizes brain oscillations as a linear
superposition of eigenmodes. These eigen-relationships arise naturally from a
biophysical abstraction of fine-scaled and complex brain activity into a simple linear
model of how mutual dynamic influences or perturbations can spread within the
underlying structural brain network, a notion that was advocated previously 304243, We
had previously reported that the brain network Laplacian can be decomposed into its
constituent “eigenmodes”, which play an important role in both healthy brain function
30,3144-46 and pathophysiology of disease 4447-49,

We show here that a graph-spectral decomposition is possible at all frequencies, ignoring
non-linearities that are operating at the local (node) level. Like previous NMMs, we lump
neural populations at each brain region into neural masses, but unlike them we use a
linearized (but frequency-rich) local model - see Figure 1A. The macroscopic
connectome imposes a linear and deterministic modulation of these local signals, which
can be captured by a network transfer function. The sequestration of local oscillatory
dynamics from the macroscopic network in this way enables the characterization of
whole brain dynamics deterministically in closed form in Fourier domain, via the eigen-
basis expansion of the network Laplacian. As far as we know, this is the first closed-form
analytical model of frequency-rich brain activity constrained by the structural
connectome.

We applied this model to and validated its construct against measured source-
reconstructed MEG recordings in healthy subjects under rest and eyes-closed. The model
closely matches empirical spatial and spectral MEG patterns. In particular, the model
displays prominent alpha and beta peaks, and, intriguingly, the eigenmodes
corresponding to the alpha oscillations have the same posterior-dominant spatial
distribution that is repeatedly seen in eyes-closed alpha power distributions. In contrast
to existing less parsimonious models in the literature that invoke spatially-varying
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parameters or local rhythm generators, to our knowledge, this is the first account of how
the spectral graph structure of the structural connectome can parsimoniously explain the
spatial power distribution of alpha and beta frequencies over the entire brain measurable
on MEG.

Methods
Spectral graph model development

Notation. In our notation, vectors and matrices are represented by boldface, and scalars
by normal font. We denote frequency of a signal, in Hertz, by symbol f, and the
corresponding angular frequency as w = 2rf. The connectivity matrix is denoted by C =
{cjk}, consisting of connectivity strength ¢;; between any two pair of regions j, k.

Model summary: Details of the Spectral Graph model is described in detail below. There
are very few model parameters, seven in total: 7, T;, T¢, v, gii, 9ei» @ Which are all global
and apply at every node. See Table 1 for their meaning, initial value and range. Note that
the entire model is based on a single equation of graph dynamics, Eq (1), which is
repeatedly applied to each level of the hierarchy. Here we used two levels: a mesoscopic
level where connectivity is all-to-all, and a macroscopic level, where connectivity is
measured from fiber architecture. In theory, this template could be refined into finer
levels, where neural responses become increasingly non-linear, and connectivity
becomes sparser and structured.

Table 1: SGM parameters values and limits

Name Symbol | Initial/default | Lower/Upper bound
Value for optimization
Excitatory Time constant 7, 12 ms [5ms, 20ms]
Inhibitory Time constant T; 3 ms [5ms, 20ms]
Graph Time constant T 6 ms [5ms, 20ms]
Excitatory gain Jee 1 n/a
Inhibitory gain Jii 1 [0.5, 5]
Excitatory gain Jei 4 [0.5, 5]
Transmission velocity v 5m/s [5m/s, 20 m/s]
Long-range connectivity a 1 [0.1, 1]
coupling constant

Canonical rate model over a graph. We use a canonical rate model to describe neural
activity across two hierarchical levels - local cortical levels and long-range mesoscopic
levels. At each level of the hierarchy of brain circuits, we hypothesize a simple linear rate
model of recurrent reverberatory activity given by

dxe ;i (t
dreyilt) = _ife/i(t) * Xesi(t) + Lfe/i(t) * Z Cinxesi(t = Tfi)
dt Te/i Te/i R
+ pesi(t) (1

where x,/;(t) is the mean signal of the excitatory/inhibitory populations and p;(t) is
internal noise source reflecting local cortical column computations or input. The transit
of signals, from pre-synaptic membranes, through dendritic arbors and axonal
projections, is sought to be captured into ensemble average neural impulse response

functions f,(t) = Tiexp (- TL) and f;(t) = %exp (- %) respectively. We disregard the
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non-linearity of the neural response, hence the output at the terminal to a presynaptic
input u(t) is the simple convolution x,(t) = f,(t) * u(t). The neural responses f, ;(t) are
Gamma-shaped responses (Figure 1B) parameterized by time constants 7./ that here
represent the end result of both synaptic membrane capacitance and the distribution of
dendritic/axonal delays introduced by the arborization. NMMs typically use a single
classical exponential decay term for membrane capacitance only, since NMMs model
highly local cell assemblies where multisynaptic connections are infrequent and axonal
and dendritic transport delays are usually incorporated explicitly via connectivity
weights and delays. Since our lumped model was designed for relatively large cortical
regions, we employ the Gamma-shaped f./ to correctly capture not just classical

membrane capacitance but also the expected diversity of dendritic transport delays. The
dynamics of the entire assembly modeled via a self-decaying term Te/i% X —foi(t) *

x(t), typically used in most rate or NMM models, but the difference here is that we chose
to apply convolution with neural response f;/;(t) within the decay process. We believe
this is necessary to ensure that the dynamics of the population cannot participate in the
internal recurrent dynamics of the region until the signal has passed through one instance
of the neuronal response. Since this neural response is meant to capture a distribution of
local circuit delays, its time constants 7, /; are purposefully far longer (up to 20ms) than
expected from membrane capacitance alone. Studies of cortical lag times using paired
electrode recordings between primary and higher cortices demonstrate this. A short
visual stimulus causes a neural response in the ferret V1 within 20ms post-stimulus, in
the primary barrel field within 16-36ms, and the entire visual cortex becomes engaged
48-70ms after stimulus ¢. Brief deflection of a single barrel whisker in the mouse evokes
a somatotopically mapped cortical depolarization that remains localized to its C2 barrel
column only for a few milliseconds, thence rapidly spreading to a large part of
sensorimotor cortex within tens of milliseconds, a mechanism considered essential for
the integration of sensory information 5051, Interestingly, the evoked response curve in S1
from the 50 study had a prominent Gamma shape. Of note, the duration of S1 response
(~50ms) was considerably longer than the time to first sensory response in C2 (7.2ms) 5.
Interestingly, feedback projections from higher to lower areas take ~50ms, hence have a
much slower apparent propagation velocity (0.15-0.25m/s) than what would be
predicted by axonal conduction alone (1-3m/s) 6.

Individual neural elements are connected to each other via connection strengths cj. Let

the cortico-cortical fiber conduction speed be v, which here is assumed to be a global
constant independent of the pathway under question. For a given pathway connecting
regions j and k of length dj;, the conduction delay of a signal propagating from region j to
region k will be given by 7%, = %. Hence signals from neighboring elements also

participate in the same recurrent dynamics, giving the 2nd term of Eq (1). Equation (1)
will serve as our canonical rate model, and will be reproduced at all levels of the hierarchy,
and only the connectivity strengths will vary depending on the level of hierarchy we are
modeling, as explained below.

Local neural assemblies. The local connectivities cjl,‘jcal are assumed to be all-to-all,

giving a complete graph. Further, the axonal delays r}’k associated with purely local
connections were already incorporated in the lumped impulse responses f,/;(t). Hence,
we assert:

leocal = Ce/i’ T]Vk = O,Vj,k
From spectral graph theory, a complete graph has all equal eigenvalues which allows the
local network to be lumped into gain constants, and the summation removed. Indeed,

rewriting x,/;(t) as the mean signal of all the excitatory/inhibitory cells and setting the


https://doi.org/10.1101/589176
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/589176; this version posted November 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

gains g, =1 —c,N, and g;; = 1 — ¢;N; we get

dxe/i(t) _ Yeeyii

dt fe/i(t) * xe/i(t) + pe/i(t)- )

Teyi

. . . d . /75
Given the Fourier Transform pairs — © jow, f,/i(t) © F,/i(w) = —————, we take the
at (jw+1/Tesi)
Fourier transform of Eq(1) and obtain the local assembly’s frequency spectrum:
-1
. Yeeyii
Xesi(w) = <J<U + ;e//,u Fe/i(w)> Peji(w) 3)
e/l

Writing this in terms of transfer functions X, (w) = H,(w)P,(w), X;(w) = H;(w)P;(w) we
get the lumped local system illustrated in Figure 1A. Finally, we must also account for
signals that alternate between the two populations, which is given by the transfer function
Hei(w) = He(w)H;(w)/(1 + geiHe(w)H;(w))
We fix g,., = 1 without loss of generality, and let the other terms g;;, g.; be model
parameters to be fitted. Finally, the total cortical transfer function is the sum
Hipeqi(@) = He(w) + Hi(w) + Hei(w) (4)
and X;,cq(w) = Hppeqi(w)P(w) represents all neural activity in this region, whether
from excitatory or inhibitory cells. The canonical local activity is therefore defined by the

Fourier transform pair: x;,04;(t) © Xjocar (@).
Macroscopic scale: signal evolution on the entire graph

We use the same canonical network dynamics as Eq (1), but now the inter-regional
connectivity cj is non-zero and given by the structural connectome. Similarly, axonal
conductance delays are determined by fiber length and conductance speed T]’-’k = d]-k/v.
Further, the external driving signals at each node is the local neural activity x;,¢q:(t)
defined above rather than a noise process p(t). In the interest of parsimony we set each
node of the macroscopic graph to have the same internal power spectrum X;,.4;(w) - i.e.
all regions are experiencing the same transfer function, driven by identically distributed
(but of course not identical) noise. At this scale, activity measured at graph nodes is no
longer excitatory or inhibitory, but mixed, and the corticocortical connections are all
between long, pyramidal excitatory-only cells. Thus, for the k-th node
PO L@ m®+ SAO D 6~ ) + Horara(®
TG TG -

Here we have introduced a global coupling constant «, similar to most connectivity-
coupled neural mass models, that seeks to control the relative weight given to long-range
afferents compared to local signals. We have also introduced a new time constant, 7,
which is an excitatory time constant and it may be the same as the previously used
constant 7,. However, we allow the possibility that the long-range projection neurons
might display a different capacitance and morphology compared to local circuits, hence
we have introduced 7, (subscript G is for “graph” or “global”).

Stacking all equations from all nodes and using vector valued signals x(t) = {x;(t)}, we

can write
d 1
Jccl(tt) = - f@x®)+ Tﬁfe(t) * C{x(t — )} + Xiocar () (5)
G G

where the braces {-} represent all elements of a matrix indexed by j, k.

We wish to evaluate the frequency spectrum of the above. In Fourier space, delays become

phases; hence we use the transform pairs %ijX(w) and x(t — 1) e X(w).

8


https://doi.org/10.1101/589176
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/589176; this version posted November 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Therefore, define a “complex connectivity matrix” at any given angular frequency w as
C'(w) = {cjk exp(—jw T”jk)}. We then define a normalized complex connectivity matrix
at frequency w as

1

deg) €@ (©)

C(w) = diag(

where the degree vector deg is defined as degy = X ; cji. Taking the Fourier transform
of Eq (5), we get

(J'wX(w) + %Fe(w) (1- aC(w))X(w)> = Hjpcai(w)P(w) ()

where we assumed identically distributed noise signals driving both the excitatory and
inhibitory local populations at each node, such that P, ; (w) = P; x(w) = Px(w) at the k-th
node. We then collected all nodes’ driving inputs in the vector P(w) = {Py(w), Vk}. Here,
we define the complex Laplacian matrix
L(w)=I-aC(w)

where I is the identity matrix of size NXN. This complex Laplacian will be evaluated via
the eigen-decomposition

L(w) = U(0)A(w)U(w)" (8)
where A(w) = diag([A1(w), ...,Ay(w)]) is a diagonal matrix consisting of the
eigenvalues of the complex Laplacian matrix of the connectivity graph €(w), at the
angular frequency w.
Hence

X(w) = (jwl'l'%Fe(w)AC(w)) Hipcar(@)P(w) )

where we invoke the eigen-decomposition of £(w), and that U(w)U(w)H = I.1t can then
be shown easily that

H
X@)= y —HE) @) ao)
T Jjo+z-Ai(@)F(w)

This is the steady state frequency response of the whole brain dynamics. In steady state,
we assume that each cortical region is driven by internal noise that spans all frequencies,
i.e. white noise. Hence, we assume that the driving function p(t) is an uncorrelared
Gaussian noise process, such that P(w) = I, where [ is a vector of ones. This asserts
identical cortical responses at each brain region.

Experimental Procedures

Study cohort. We acquired MEG, anatomical MRI, and diffusion MRI for 36 healthy adult
subjects (23 males, 13 females; 26 left-handed, 10 right-handed; mean age 21.75 years
(range: 7-51 years). All study procedures were approved by the institutional review
board at the University of California at San Francisco (UCSF) and are in accordance with
the ethics standards of the Helsinki Declaration of 1975 as revised in 2008.

MRL A 3 Tesla TIM Trio MR scanner (Siemens, Erlangen, Germany) was used to perform
MRI using a 32-channel phased-array radiofrequency head coil. High-resolution MRI of
each subject’s brain was collected using an axial 3D magnetization prepared rapid-
acquisition gradient-echo (MPRAGE) T1-weighted sequence (echo time [TE] = 1.64 ms,
repetition time [TR] = 2530 ms, TI = 1200 ms, flip angle of 7 degrees) with a 256-mm field
of view (FOV), and 160 1.0-mm contiguous partitions at a 256x256 matrix. Whole-brain


https://doi.org/10.1101/589176
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/589176; this version posted November 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

diffusion weighted images were collected at b = 1000s/mm? with 30 directions using 2-
mm voxel resolution in-plane and through-plane.

Magneto-encephalography (MEG) data. MEG recordings were acquired at UCSF using
a 275-channel CTF Omega 2000 whole-head MEG system from VSM MedTech (Coquitlam,
BC, Canada). All subjects were instructed to keep their eyes closed for five minutes while
their MEGs were recorded at a sampling frequency of 1200 Hz.

Data Processing

Region Parcellations. The T1-weighted images were parcellated into 68 cortical regions
and 18 subcortical regions using the using the Desikan-Killiany atlas available in the
FreeSurfer software 52. To do this, the subject specific T1-weighted images were back-
projected to the atlas using affine registration, as described in our previous studies 1853,

Structural Connectivity Networks. We constructed different structural connectivity
networks with the same Desikan-Killiany parcellations to access the capabilities of our
proposed model. Firstly, we obtained openly available diffusion MRI data from the MGH-
USC Human Connectome Project to create an average template connectome. As in our
previous studies 1853, subject specific structural connectivity was computed on diffusion
MRI data: Bedpostx was used to determine the orientation of brain fibers in conjunction
with FLIRT, as implemented in the FSL software 54 In order to determine the elements of
the adjacency matrix, we performed tractography using probtrackx2. We initiated 4000
streamlines from each seed voxel corresponding to a cortical or subcortical gray matter
structure and tracked how many of these streamlines reached a target gray matter
structure. The weighted connection between the two structures c; ;, was defined as the

number of streamlines initiated by voxels in region i that reach any voxel within region j,
streamlines

normalized by the sum of the source and target region volumes (¢; ; = Tv,) This
normalization prevents large brain regions from having high connectivity simply due to
having initiated or received many streamlines. Afterwards, connection strengths are
averaged between both directions (c¢; j and ¢;;) to form undirected edges. It is common in
neuroimaging literature to threshold connectivity to remove weakly connected edges, as
this can greatly influence the implied topology of the graph. In our work, we chose not to
apply further thresholding, as unlike conventional graph theoretic metrics, linear models
of spread and consequently network eigenmodes are relatively insensitive to implied
topology induced by presence (or lack) of weak nonzero connections. However, to
determine the geographic location of an edge, the top 95% of non-zero voxels by
streamline count were computed for both edge directions. The consensus edge was
defined as the union between both post-threshold sets.

MEG processing and source reconstruction. MEG recordings were down-sampled from
1200 Hz to 600 Hz, then digitally filtered to remove DC offset and any other noisy artifact
outside of the 1 to 160 Hz bandpass range. Since MEG data are in sensor space, meaning
they represent the signal observable from sensors placed outside the head, this data
needs to be “inverted” in order to infer the neuronal activity that has generated the
observed signal by solving the so-called inverse problem. Several effective methods exist
for performing source localization 55-57. Here we eschew the common technique of solving
for a small number of discrete dipole sources which is not fully appropriate in the context
of inferring resting state activity, since the latter is neither spatially sparse not localized.
Instead, we used adaptive spatial filtering algorithms from the NUTMEG software tool
written in house 58 in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United
States). To prepare for source localization, all MEG sensor locations were co-registered to
each subject’s anatomical MRI scans. The lead field (forward model) for each subject was
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calculated in NUTMEG using a multiple local-spheres head model (three-orientation lead
field) and an 8 mm voxel grid which generated more than 5000 dipole sources, all sources
were normalized to have a norm of 1. Finally, the MEG recordings were projected into
source space using a beamformer spatial filter. Source estimates tend to have a bias
towards superficial currents and the estimates are more error-prone when we approach
subcortical regions, therefore, only the sources belonging to the 68 cortical regions were
selected to be averaged around the centroid. Specifically, all dipole sources were labeled
based on the Desikan-Killiany parcellations, then sources within a 20 mm radial distance
to the centroid of each brain region were extracted, the average time course of each
region’s extracted sources served as empirical resting-state data for our proposed model.

Alternative benchmark model for comparison. In order to put the proposed model in
context, we also implemented for comparison a Wilson-Cowan neural mass mode] 17:3537,59
with similar dimensionality. Although NMMs like this can and have been implemented
with regionally varying local parameters, here we enforced uniform, regionally non-
varying local parameters, meaning all parcellated brain regions shared the same local and
global parameters. This is a fair comparison since the proposed model is also regionally
non-varying. The purpose of this exercise is to ascertain whether a non-regional NMM can
also predict spatial power variations purely as a consequence of network transmission,
like the proposed model, using the same model optimization procedure (see below). This
NMM incorporates a transmission velocity parameter that introduces a delay based on
fiber tract lengths extracted from diffusion MRI, but, unlike our model, does not seek to
explicitly evaluate a frequency response based on these delays.

Model Optimization

We computed maximum a posteriori estimates for parameters under a flat non-
informative prior. A simulated annealing optimization algorithm was used for estimation
and provided a set of optimized parameters {t,, T;, T¢, Jeir Jii» &, V}. We defined a data
likelihood or goodness of fit (GOF) as the Pearson correlation between empirical source
localized MEG power spectra and simulated model power spectra, averaged over all 68
regions of a subject’s brain. The proposed model has only seven global parameters as
compared to neural mass models with hundreds of parameters, and is available in closed-
form. To improve the odds that we capture the global minimum, we chose to implement
a probabilistic approach of simulated annealing ¢0. The algorithm samples a set of
parameters within a set of boundaries by generating an initial trial solution and choosing
the next solution from the current point by a probability distribution with a scale
depending on the current “temperature” parameter. While the algorithm always accepts
new trial points that map to cost-function values lower than the previous cost-function
evaluations, it will also accept solutions that have cost-function evaluations greater than
the previous one to move out of local minima. The acceptance probability function is

1/(1+ %), where T is the current temperature and A is the difference of the new

max(T)

minus old cost-function evaluations. The initial parameter values and boundary
constraints for each parameter are given in Supplementary Table 1. All simulated
annealing runs were allowed to iterate over the parameter space for a maximum of
N, %3000 iterations, where Ny is the number of parameters in the model. As a comparison,
we performed the same optimization procedure to a regionally non-varying Wilson-
Cowan neural mass model 3559, We have recently reported a similar simulated annealing
optimization procedure on this model 37.
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Results
Graph Laplacian eigenmodes mediate a diversity of frequency responses

First, we demonstrate the spectra produced by graph eigenmodes as per our theory.
Figure 1C shows the eigen-spectrum of the complex Laplacian, with eigenvalue
magnitude ranging from 0 to 1. The absolute value of eigenvalues of the complex
Laplacian £L(w) are plotted against the eigenvector index. Each dot represents one
eigenvalue A(w); its color represents the frequency w - low (blue) to high (yellow).
Clearly, these eigenvalues change somewhat by frequency. Small eigenvalues undergo a
larger shift due to frequency, while the large ones stay more stable and tightly clustered
around the nominal eigenvalue (i.e. at w = 0). Each eigenmode produces a frequency
response based on its frequency-dependent eigenvalue (Figure 1D, E). Figure 1D shows
the transit in the complex plane of a single eigenmode’s frequency response, starting at
low frequencies in the bottom right quadrant, and moving to the upper left quadrant at
high frequencies. The magnitude, given by distance from origin, suggests that most
eigenmodes have two prominentlobes, roughly corresponding to alpha and beta rhythms,
respectively. In contrast, the lowest few eigenmodes start off far from the origin,
indicative of a low-pass response. The magnitude of these complex-valued curves shown
in figure 1E reinforces these impressions, with clear alpha and beta peaks, as well as
slower rhythms of the lowest eigenmodes.

The spatial patterns of the first 5 eigenmodes of £L(w), evaluated at the alpha peak of 10
Hz, are shown in Figure 1F. Eigenmodes u;_4 produce posterior and temporal spatial
patterns, including many elements of the default mode network; u, resembles the
sensorimotor network; and u; the structural core of the human connectome. However,
these patterns are not exclusive and greatly depend on the frequency at which they are
evaluated, as well as the model parameters. Higher eigenmodes are especially sensitive
to axonal velocity and frequency (not shown here).

Since the model relies on connectome topology, we demonstrate in Figure 2 that different
connectivity matrices produce different frequency responses: A) the individual's
structural connectivity matrix, B) HCP average template connectivity matrix, C) uniform
connectivity matrix of ones, D) a randomly generated matrix, E) and F) are randomly
generated matrices with 75% and 95% sparsity respectively. All modeled power spectra
show a broad alpha peak at around 10 Hz and a narrower beta peak at around 20 Hz. This
is expected, since these general spectral properties are governed by the local linearized
neural mass model. Although the alpha and beta peaks are innately present under default
parameters in Figure 1, once we optimize parameters, the peaks become stronger.
However, it is important to note that different eigenmodes accommodate a diversity of
frequency responses; for instance, the lowest eigenmodes show a low-frequency
response with no alpha peak whatsoever. In the frequency responses from biologically
realistic individual and HCP template connectomes, there is a diversity of spectral
responses amongst eigenmodes that is lacking in the response produced by the
unrealistic uniform and randomized matrices. As we will see below, graph topology is
critical to the power spectrum it induces, hence we explored whether and how sparsity
of random graphs mediates spectral power (Figure 2D-F). At incrementally increasing
sparsity levels, the diversity of spectral responses of different eigenmodes increases and
approaches that of realistic connectomes. Therefore, graph eigenmodes induce unique
and diverse frequency responses that depend on the topology of the graph.
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Spectral distribution of MEG power depends on model parameters but not
connectivity

Network eigenmodes exhibit strong spatial patterning in their frequency responses, even
with identical local oscillations (Figure 3). We evaluated the model spectral response
using the subject-specific C¢¥idual matrices of 4 representative subjects (Figure 3A).
The model power spectra strikingly resemble empirical MEG spectra, correctly displaying
both the alpha and beta peaks on average, and similar regional variability as in real data.

Regional averages of empirical and modeled power spectra of the entire group after full
parameter optimization over individual subjects are shown in Figure 3B. The model
closely replicates the observed power spectrum (red circles) equally well with both
cindwidual (hlack triangles) and Ct€™P!ate (purple triangles). Thus, in most cases we can
safely replace the subject-specific connectome with the template connectome. In contrast,
when non-optimized default parameters were used (dark green triangles), it resulted in
a bad fit, especially at high frequencies, suggesting that individualized parameter
optimization is essential to produce realistic spectra. We also examined the model
behavior for a random connectome (bright green triangles) or a distance-based
connectome (blue triangles) was chosen with identical sparsity to the actual connectome,
and found that with optimized parameters the average spectra could be accounted for by
these connectomes but as we show below these connectomes do not capture the
frequency spectra across individual subjects. We found maximum a posteriori estimates
for parameters under a flat non-informative prior. A simulated annealing optimization
algorithm was used for estimation and provided a set of optimized parameters {z,, 7;, T,
Jeir Jii» @, v}: (see Table 1).

Figure 4A shows violin plots of the optimized values, indicating that there is a large range
of individually optimal model parameters across subjects. The time constants t,, T;
showed tight clustering but the rest of the parameters showed high variability across
subjects. The optimal parameters are in a biologically plausible range, similar to values
reported in numerous neural mass models. The annealing algorithm aimed to maximize
a cost function proportional to the posterior likelihood of the model, and was quantified
by the Pearson’s correlation between MEG and modeled spectra (“Spectral correlation”).
The convergence plots shown in Figure 4B, one curve for each subject, indicates
substantial improvement in cost function from default choice as optimization proceeds.
The distribution of optimized spectral correlations is shown in 4C. Other model choices
were evaluated for comparison: SGM on random connectomes with and without a
distance effect described in Methods, and SGM applied with average optimal model
parameters instead of individually optimized ones. In order to test for significance,
Fisher’s R to z transform was applied, followed by a paired t-test for each subject between
the optimal SGM and other models. In each case the former was significantly better than
the latter (p < 0.001). We conclude that with the graph spectral model, the overall regional
spectra appear to be dependent both on global model parameters and on the actual
structural connectome. Performance is better for optimized parameters than with
average parameters.

As another benchmark for comparison, a non-linear neural mass model 3559 using our in-
house MATLAB implementation 37, was generally able to produce characteristic alpha and
beta frequency peaks (yellow) but this model does not resemble empirical wideband
spectra. Note that no regionally-varying NMM parameters were used in order to achieve
a proper comparison with our model, but both models were optimized with the same
algorithm. Nevertheless, these data confirm our intuition that the average spectral power
signal can be produced by almost any neural model, whereas its regional variations
around the canonical spectrum are presently being modeled via the connectome. Finally,
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no model is capable of reproducing higher frequencies in the higher beta and gamma
range seen in MEG, since by design and by biophysical intuition these frequencies arise
from local neural assemblies rather than from modulation by macroscopic networks.

Graph spectral model recapitulates the spatial distribution of MEG power

Next, we establish that the model can correctly reproduce region-specific spectra, even
though it uses identical local oscillations. We integrated the spectral area in the range 8-
12 Hz for alpha and 13-25 Hz for beta, of each brain region separately. We define “spatial
correlation” (as compared to spectral correlation above) as Pearson’s R between the
regional distribution of empirical MEG and model-predicted power within a given
frequency band.

A small number of eigenmodes capture spatial distributions of alpha and beta band
activity.

We noticed during our experimentation that only a few eigenmodes appear to contribute
substantially to observed MEG alpha and beta patterns. Hence we hypothesized that
spatial correlations could be improved by selecting a small subset of eigenmodes.
Therefore, we developed a sorting strategy whereby we first rank the eigenmodes in
descending order of spatial correlation for a given subject and given frequency band. Then
we perform summation over only these eigenmodes according to Eq (10), each time
incrementally adding a new eigenmode to the sum. The spatial correlation of these
“sorted-summed” eigenmodes against empirical alpha power are plotted in Figure 5C as
a function of increasing number of eigenmodes; one curve for each subject. The thick black
curve represents the average over all subjects. The spatial correlation initially increases
as we add more well-fitting eigenmodes, but peaks around, and begins declining
thereafter. Addition of the remaining eigenmodes only serves to reduce the spatial
correlation. This behavior is observed in almost all subjects we studied.

Examples of predicted alpha patterns: Figure 5 shows brain surface renderings of the
spatially distributed patterns of alpha band power for two representative subjects.
Regions are color coded as a heatmap of regional power scaled by mean power over all
regions. The observed MEG spatial distribution pattern of alpha band shows higher power
in posterior regions of the brain, as expected, with strong effect size in temporal, occipital
and medial posterior areas. This pattern is matched by one of the eigenmodes (#10,
shown in middle panel, giving R=0.65), and slightly better by a weighted combination of
2 eigenmodes (R=0.69). However, the model did not reproduce parietal and parieto-
occipital components seen in real data. The other subject produced similar results, but
with 6 eigenmodes. In this instance, the parietal component seen in real data were
reasonably reproduced by the model.

Examples of predicted beta patterns. Empirical beta power (Figure 6, left) is spread
throughout the cortex, especially frontal and premotor cortex. A combination of 4 and 6
best matching eigenmodes produced the best model match to the source localized pattern
of two representative subjects, respectively, with R = 0.55 and 0.48. Figure 6C shows how
the spatial correlation changes as more eigenmodes are used in the “sorted summed”
algorithm, analogous to that of alpha pattern. Here too a peak is achieved for a small
number of eigenmodes, typically under 10.

Anti-correlation between alpha and beta spatial patterns

First, we note that empirical alpha and beta spatial patterns are anti-correlated, which is
expected since alpha is known to be mainly posterior while beta is mainly frontal. Figure
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7A shows that the spatial correlations between the observed MEG alpha and beta band
patterns across has a mean correlation value around -0.4. We want to explore whether
this anti-correlation is reflected in the SGM model as well. We hypothesize that model
eigenmodes that resemble alpha will be anti-correlated to beta, and vice versa. This is
indeed the case, as shown in Figure 7B. Figure 7C shows a histogram of the correlation
between the alpha band and beta band spatial correlations across all subjects. This
histogram has a mode around -0.4 and mean at -0.24, which suggests that across all
subjects’ alpha and beta band spatial correlation curves for the eigenmodes are in turn
anti-correlated. Together, these results confirm that graph eigenmodes might be tuned to
specific frequencies, and their spatial patterns might govern the spatial presentation of
different brain rhythms.

Spatial correlation achieved by the spectral graph model is significantly higher
than alternative models

The distribution of peak spatial correlations in the alpha band, using optimized
parameters and individual connectomes of all subjects, is plotted in Figure 8A. For
comparison we show results for four models: a) spectral graph model (SGM) on subject
specific individual connectomes (Cind, black); b) SGM on random connectomes with 80%
sparsity comparable to individual connectomes (CRdm, blue); ¢) SGM on geodesic distance
based connectomes (CPst,green); and d) a Wilson-Cowan neural mass model (NMM) with
subject specific individual connectome (Clnd , pink). Analogous results for beta band
spatial correlations are contained in Figure 8B. Across all subjects the proposed model,
SGM on Clnd, gives excellent spatial correlations in alpha band (R distribution centered at
0.6) as well as in the beta band (R distribution centered at 0.5). For both alpha and beta
spatial distribution patterns, paired t-tests between SGM with Clnd and all other models
show that, the SGM with Clnd significantly outperformance all other models, as determined
by a paired t-test; p < 0.001 in each case, denoted by asterisk.

Alternate non-linear model. The Wilson-Cowan neural mass model did not succeed in
correctly predicting the spatial patterns of alpha or beta power, with poor correlations (r
centered at 0). This could be because in our implementation we enforced uniform local
parameters with no regional variability. However, this is the appropriate comparison,
since our proposed model also does not require regionally-varying parameters.
Interestingly, the random connectomes and geodesic distance based connectome also
appear to have some ability to capture these spatial patterns (r centered at 0.4 and 0.2
respectively), perhaps due to the implicit search for best performing eigenmodes, which
on average will give at least a few eigenmodes that look like MEG power purely by chance.

Collectively, we conclude that the graph model is able to fit both the spectral and spatial

features of empirical source localized MEG data, and that the optimal fits performed on
individual subjects occurs at widely varying subject-specific parameter choices.
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Discussion

The proposed hierarchical graph spectral model of neural oscillatory activity is a step
towards understanding the fundamental relationship between network topology and the
macroscopic whole-brain dynamics. The objective is not just to model brain activity
phenomenologically, but to analytically derive the mesoscopic laws that drive
macroscopic dynamics. This model of the structure-function relationship has the
following key distinguishing features: 1) Hierarchical: the model’s complexity depends on
the level of hierarchy being modeled: complex, non-linear and chaotic dynamics can be
accommodated at the local level, but linear graph model is sufficient at the macro-scale.
2) Graph-based: Macroscopic dynamics is mainly governed by the connectome, hence
linear approximations allow the steady-state frequency response to be specified by the
graph Laplacian eigen-decomposition, borrowing heavily from spectral graph theory 38-
41, 3) Analytic: The model is available in closed form, without the need for numerical
simulations. 4) Low-dimensional and parsimonious: Simple, global and universal rules
specified with a few parameters, all global and apply at every node, are able to achieve
sufficiently complex dynamics. The model is incredibly easy to evaluate, taking no more
than a few seconds per brain and to infer model parameters directly from a subject’s MEG
data. The optimized model matches observed MEG data quite well. No time-consuming
simulations of coupled neural masses or chaotic oscillators were needed; indeed, the
latter greatly underperformed our model. We report several novel findings with
potentially important implications, discussed below.

Recapitulating regional power spectra at all frequencies

Our main result is the robust demonstration of the model on 36 subjects’ MEG data. The
representative examples shown in Figures 3-6 indicate that the graph model recapitulates
the observed source localized MEG power spectra for the 68 parcellated brain regions,
correctly reproducing the prominent alpha and beta peaks. For each region, the model is
also correctly able to predict the full bandwidth power spectra, including what appears to
be an inverse power law fall-off over the entire frequency range of interest. However, this
aspect will be quantitatively characterized in future work.

Revealing sources of heterogeneity in brain activity patterns

The match between model and data is strongest when the model uses empirical
macroscopic connectomes obtained from healthy subjects’ diffusion weighted MRI scans,
followed by tractography. The use of “null” connectomes - uniform connectivity of ones
and randomized connectivity matrix, respectively, did far worse than actual human
connectomes (Figure 8), supporting the fact that the latter is the key mediator of real
brain activity. The match was not significantly different when using a template HCP
connectome versus the individual subject’'s own connectomes (Figures 3B, 4C),
suggesting that, for the purpose of capturing the gross topography of brain activity, it is
sufficient to use a template connectome, and disregard individual variability.

However, this does not mean that the model is incapable of capturing individual
variability: indeed, we designed a comprehensive parameter optimization algorithm on
individual subjects’ MEG data of a suitably defined cost function based on Pearson R
statistic as a way to capture all relevant spectral features. Using this fitting procedure, we
were able to obtain the range of optimally-fitted parameters across the entire study
cohort. As shown in Figure 44, the range is broad in most cases, implying that there is
significant inter-subject variability of model parameters, even if a template connectome
is used for all. We tested the possibility that a group-averaged parameter set might also
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succeed in matching real data on individuals. But as shown in Figures 3B and 4C, this was
found to be a poor choice, supporting the key role of individual variability of model
parameters (but not variability in the connectome).

Macroscopic brain rhythms are governed by the connectome

A predominant view assumes that different brain rhythms are produced by groups of
neurons with similar characteristic frequencies, which might synchronize and act as
“pacemakers.” How could this view explain why alpha and beta power are spatially
stereotyped across subjects, and why the alpha signal is especially prominent in posterior
areas? Although practically any computer model of cortical activity can be tuned, with
suitable parameter choice, to oscillate at alpha frequency, e.g. 516202261-63 none of them
are able to parsimoniously recapitulate the posterior origin of alpha. Thus the
prominence of posterior alpha might be explained by the hypothesized existence of alpha
generators in posterior areas. Indeed, most oscillator models of local dynamics are
capable of producing these rhythms at any desired frequency 563-66, and therefore it is
common to tweak their parameters to reproduce alpha rhythm. Local networks of
simulated multicompartmental neurons can produce oscillations in the range 8-20 Hz 5,
and, in a non-linear continuum theory, peaks at various frequencies in the range 2-16Hz
were obtained depending on the parameters 65. Specifically, the role of thalamus as
pacemaker has motivated thalamocortical models 1116 that are capable of resonances in
various ranges. Neural field models of the thalamocortical loop 16 can also predict slow-
wave and spindle oscillations in sleep, and alpha, beta, and higher-frequency oscillations
in the waking state. In these thalamocortical models, the posterior alpha can arise by
postulating a differential effect in weights of the posterior versus anterior thalamic
projections, e.g. 62. Ultimately, hypotheses requiring local rhythm generators suffer from
lack of parsimony and specificity: a separate pacemaker must be postulated for each
spectral peak at just the right location ¢7.

An alternative view emerges from our results that macroscopic brain rhythms are
governed by the structural connectome. Even with global model parameters, using the
exact same local cortical dynamics captured by the local transfer function Hyy.q; (@),
driven by identically distributed random noise P(w), our model is capable of predicting
prominent spectral (Figures 3,4) and spatial (Figures 5,6) patterning that is quite realistic.
This is especially true in the lower frequency range: indeed, the model correctly predicts
not just the frequency spectra in alpha and beta ranges, but also their spatial patterns -
i.e. posterior alpha and distributed but roughly frontal beta. Although this is not definitive
proof, it raises the intriguing possibility that the macroscopic spatial distribution of the
spectra of brain signals does not require spatial heterogeneity of local signal sources, nor
regionally variable parameters. Rather, it implies that the most prominent patterning of
brain activity (especially alpha) may be governed by the topology of the macroscopic
network rather than by local, regionally-varying drivers. Nevertheless, a deeper
exploration is required of the topography of the dominant eigenmodes of our linear model,
in order to understand the spatial gradients postulated previously 1662,

Emergence of linearity from chaotic brain dynamics

The non-linear and chaotic dynamics of brain signals may at first appear to preclude
deterministic or analytic modeling of any kind. Yet, vast swathes of neuroscientific terrain
are surprisingly deterministic, reproducible and conserved across individuals and even
species. Brain rhythms generally fall within identical frequency bands and spatial maps
41633 Based on the hypothesis that the emergent behavior of long-range interactions can
be independent of detailed local dynamics of individual neurons 13-18, and may be largely
governed by long-range connectivity 19-22, we have reported here a minimal linear model

17


https://doi.org/10.1101/589176
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/589176; this version posted November 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of how the brain connectome serves as a spatial-spectral filter that modulates the
underlying non-linear signals emanating from local circuits. Nevertheless, we recognize
the limitations of a linear model and its inability to capture inherent non-linearities across
all levels in the system.

Relationship to other work

One can view the proposed generative model as a biophysical realization of a dynamic
causal model (DCM) 68-72 for whole brain electrophysiological activity but with very
different goals, model dimensionality and inference procedures.

First, the goal of many prior efforts using DCMs is to examine effective connectivity in
EEG, LFP and fMRI functional connectivity data, typically for smaller networks?273, or
dynamic effective connectivity74-76. Hence, they address the second order covariance
structures of brain activity. In particular, recent spectral DCM and regression DCM models
77-79 with local neural masses are formulated in the steady-state frequency-domain, and
the resulting whole-brain cross-spectra are evaluated. The goals of these models are to
derive model cross-spectra that define the effective connectivity in the frequency domain
and are compared with empirical cross-spectra. Based on second-order sufficient
statistics, these models attempt to derive effective connectivity from functional
connectivity data. These DCMs have so far only been applied to small networks or to BOLD
fMRI regime. In contrast, our goal is to examine the role of the eigenmodes of the
structural connectome and their influence on power spectral distributions in the full MEG
frequency range, and over the entire whole brain. In subsequent work, we intend to
extend our efforts to examining effective connectivity but such an effort currently remains
outside the scope of the work in this paper. Here, we focus on models that directly
estimate the first order effects of observed power spectra and its spatial distributions and
compare them with empirical MEG source reconstructions. Our primary motivation is to
examine whether spatial distribution of observed power spectra can arise from graph
structure of the connectome, hence our focus on the effects of model behavior as a
function of the underlying structural connectome - whether it is individualized, template-
based, uniform, random or distance based. DCM methods have not reported first order
regional power spectra as we do here, nor have they explored how the structural
connectome influences model spectral distributions.

Second, our model is more parsimonious compared to most of these above-mentioned
models which have many more degrees of freedom because they often allow for regions
and their interactions to have different parameters. Our model parameterization, with
only a few global parameters, lends itself to efficient computations over fine-scale whole-
brain parcellations, whereas most DCMs (with the exception of recent spectral and
regression DCMS 77-79) are suited for examining smaller networks but involve large
effective connectivity matrices and region-specific parameters. Furthermore, parameters
of our model remain grounded and interpretable in terms of the underlying biophysics,
i.e. time constants and conductivities. In contrast, spectral and regression DCM models of
cross-spectra have parameters that are abstract and do not have immediate biophysical
interpretation.

The third major difference is in the emphasis placed on Variational Bayesian inference in
DCM. Since our focus was on exploring model behavior over a small number of global
parameters and a set of structural connectomes (whether anatomic or random) of
identical sparsity and complexity, it was sufficient to use a maximum a posteriori (MAP)
estimation procedure for Bayesian inference of our global model parameters with flat
non-informative priors with pre-determined ranges based on biophysics. Like most DCM
efforts our model can be easily be extended to Variational Empirical Bayesian inference
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for parameter estimation, for instance to compute a full posterior of the structural
connectivity matrix. In such a formulation, we can assume that the observed structural
connectome will serve as the prior mean of the connectivity matrix. We reserve such
extensions to our future work with this spectral graph model.

Other limitations and extensions

The model currently examines resting-state activity, but future extensions will include
prediction of functional connectivity, task-induced modulations of neural oscillations and
causal modeling of external stimuli, e.g. transcranial magnetic and direct current
stimulation. The current implementation does not incorporate complex local dynamics,
but future work will explore using non-white internal noise and chaotic dynamics for local
assemblies. This may allow us to examine higher gamma frequencies. Although our model
incorporates latency information derived from path distances, we plan to explore path-
specific propagation velocities derived from white matter microstructural metrics such
as axon diameter distributions and myelin thickness. Future work will also examine the
specific topographic features of the structural connectome that may best describe
canonical neural activity spectra. Finally, we plan to examine the ability of the model to
predict time-varying structure-function relationships.

Potential applications

Mathematical encapsulation of the structure-function relationship can potentiate novel
approaches for mapping and monitoring brain diseases such as autism, schizophrenia,
epilepsy and dementia, since early functional changes are more readily and sensitively
measured using fMRI and MEG, compared to structural changes. Because of the
complementary sensitivity, temporal and spatial resolutions of diffusion MRI, MEG, EEG
and fMRI, combining these modalities may be able to reveal fine spatiotemporal
structures of neuronal activity that would otherwise remain undetected if using only one
modality. Current efforts at fusing multimodalities are interpretive, phenomenological or
statistical, with limited cognizance of underlying neuronal processes. Thus, the ability of
the presented model to quantitatively and parsimoniously capture the structure-function
relationship may be key to achieving true multi-modality integration.
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repository at https://github.com/Raj-Lab-UCSF/spectromes80. The code used to produce
basic figures can be run as interactive Jupyter notebooks via Binder8l. Some raw imaging
data, e.g. MRI scans and MEG recordings are not appropriate for public sharing and are
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too large to be saved in an online repository. However, they could be made available by
corresponding author upon reasonable request.
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Figure Legends

Figure 1: The Linearized Spectral Graph Model. A: Conventional neural mass models
typically instantiate a large assembly of excitatory and inhibitory neurons, which are
modeled as fully connected internally. External inputs and outputs are gated through the
excitatory neurons only, and inhibitory neurons are considered strictly local. The
proposed linear model condenses these local assemblies into lumped linear systems f, (t)
and f;(t), Gamma-shaped functions having time constants z, and t; - see panel B. The
recurrent architecture of the two pools within a local area is captured by the gain terms
Jeer Jiir Geir» indicating the loops created by recurrents within excitatory, inhibitory and
cross-populations. C: The absolute value of eigenvalues of the complex Laplacian L(w)
are plotted against the eigenvector index. Each dot represents one eigenvalue 1(w); its
color represents the frequency w - low (blue) to high (yellow). Clearly, these eigenvalues
change somewhat by frequency; small eigenvalues change more compared to large ones.
D: Frequency response of each eigenmode plotted on the complex plane with default
model parameters. Each curve represents the transit in the complex plane of a single
eigenmode’s frequency response, starting at low frequencies in the bottom right quadrant,
and moving characteristically to the upper left quadrant at high frequencies. The
magnitude of the response, given by the distance from the origin, suggests that most
eigenmodes have two prominentlobes, roughly corresponding to alpha and beta rhythms,
respectively. In contrast, the lowest few eigenmodes start off far from the origin,
indicative of a low-pass response. E: Magnitude of the frequency response of each
eigenmode reinforces these impressions more clearly. F: The spatial patterns of the top 5
eigenmodes of L(w), evaluated at the alpha frequency, 10 Hz. The first 4 eigenmodes u; —
u,, produce posterior and temporal spatial patterns, including many elements of the
default mode network; u,; resembles the sensorimotor network; and ug the
structural core of the human connectome. However, these patterns are not exclusive and
greatly depend on the frequency at which they are evaluated, as well as the model
parameters.

Figure 2: Spectral graph model predictions of MEG spectra for one representative
subject. Top - Observed MEG power spectrum for each of the 68 parcellated brain regions.
Average spectra for each brain region are shown in blue, and the average spectrum across
all brain regions is shown in thick black curve. The subsequent rows show each
eigenmode's spectral magnitude response with model parameters optimized to match the
observed spectrum (t, = 0.0073, 7; = 0.0085, t; = 0.0061, g,; = 2.9469 g;; = 4.4865,
v = 18.3071 and a = 0.4639). Left column shows each eigenmode’s frequency response
in a differently-colored curve, while the right column shows the same information as a
heatmap. A: Model using subject's individual structural connectivity matrix. B: Model
using a template structural connectivity matrix obtained by averaging structural
connectivity from 80 HCP subjects. C: Model using uniform connectivity matrix of ones. D:
Model using randomized connectivity matrix with no sparsity. E: Model using randomized
connectivity matrix with 75% sparsity. F: Model using randomized connectivity matrix
with 95% sparsity. In all cases the connectome modulates the spectral response in delta-
beta range, leaving the higher gamma frequencies unchanged. In general, the low
eigenmodes (u; — uyq) appear to modulate the lower frequency range, up to beta, and
may be considered responsible for the diversity of spectra observed in the model.

Figure 3: Spectral graph model accurately depicts MEG spectra across subjects. A:
The observed spectra and spectral graph model’s simulated spectra for four
representative subjects. Red and cyan curves illustrate source localized empirical
average spectra and region-wise spectra respectively, while black and blue curves
illustrate modeled average spectra and region-wise spectra respectively. B: Averaged
observed spectrum across subjects is shown in red. The average simulated model spectra
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summing the first two-third eigenmodes with optimized parameters for individual
subject’s connectome is shown in black. Model spectrum with optimized parameters and
the HCP template connectome is shown in purple. Model spectrum with average
parameter values and individual subject’s connectome is shown in golden green. Model
spectrum with optimized parameters and a connectome constructed by selecting 20% of
the highest geodesic distance between ROI pairs is shown in blue. Model spectrum with
optimized parameters and symmetric random connectomes with 80% sparsity is shown
in green. Finally, model power spectrum estimated by a neural mass model (NMM) with
each subject’s optimized global parameters and a HCP template connectome is shown in
pink.

Figure 4: Spectral graph model parameter optimization improves spectral fits. A:
Distribution of optimized model parameter values across all 36 subjects for the set of
parameters {t,, T;, Ts Jeir Jii» & v} are shown in violin plots with each dot
representing one subject. B. Performance of optimization algorithm. Spectral Pearson
correlation between model and source localized MEG spectra at each iteration. Each curve
shows the spectral correlation achieved by the model optimized for a single subject,
averaged over all regions, with increasing mean correlation values until the algorithm
convergence to a set of optimized parameters. C: Distribution of spectral correlations
between optimized model and observed spectra across subjects. Correlations with
optimized parameters are shown in the left three columns with individual connectomes
(black), symmetric random connectomes (blue) and geodesic distance-based
connectomes (green). Correlation with average parameter values and individual
connectomes are shown in golden green. Spectral correlations are highest for the SGM
model with optimized parameters and the individual subject specific connectome. Paired
t-test between the optimized SGM and other models was performed across all subjects,
and the former was found to give significantly higher spectral R compared to the latter (p
< 0.001 in each case, denoted by asterisk).

Figure 5: Alpha power spatial distribution depicted by specific spectral graph
model eigenmodes. A & B. The spatially distributed patterns of alpha band power for
two representative subjects are displayed in brain surface renderings. For each four brain
panels shown, the medial surface is rendered on the left column while the lateral surface
is rendered on the right, the left hemisphere rendering is shown on top while the right
hemisphere rendering is shown in the bottom row. Left column: The observed MEG
spatial distribution pattern for alpha band power showing higher power in posterior
regions of the brain. Middle column: Spatial distribution of the best matching eigenmode
from the spectral graph model. The spatial correlation values are shown on top. Right
column: Spatial distribution of the best cumulative combination of eigenmodes from the
spectral graph model. Spatial correlation values and the number of eigenmodes are
shown on top. C: Across subject distribution of the alpha band spatial correlation values
from spectral graph model simulations for the best fit eigenmodes and the cumulative
combination of an increasing number of eigenmodes. Individual subject specific alpha
band spatial correlation curves are shown in cyan (n = 36). Panels A and B correspond to
the subjects indicated by red and blue curves respectively. Black curve is the average
performance across all subjects.

Figure 6: Beta power spatial distributions depicted by specific spectral graph
model eigenmodes. Legend is identical to figure 5 but shown for beta power spatial
distributions.

Figure 7: Alpha and beta band spatial patterns are anti-correlated and this also
reflected in spectral graph model eigenmodes. A: Spatial correlations between the
observed MEG alpha and beta band patterns across subjects is shown as a violin plot and
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has a mean spatial correlation value -0.41. B. Scatter plot of alpha and beta power spatial
correlations for each eigenmodes from all subjects reveal a significant negative
correlation between the spatial distribution of alpha and beta band power (r=-0.255,p <
0.0001). C: Distribution of the correlation of eigenmode spatial correlation vectors.
Vectors of alpha and beta band spatial correlations were first computed for each
eigenmode, and a correlation between these vectors are computed for each subject.
Distribution of the correlation of eigenmode spatial correlations is negative with a mean
of -0.24.

Figure 8: Spatial correlation performance analysis of the spectral graph model.
Distribution of the best fit spatial correlations of the spectral graph model across all
subjects. A. Alpha band spatial correlations. B. Beta band spatial correlations. For both
panels, spatial correlations are shown for spectral graph model (SGM) with subject
specific individual connectomes (CInd, black), random connectomes with 80% sparsity
comparable to individual connectomes (CRdm , blue), geodesic distance based
connectomes (CPst ,green) and for a neural mass model (NMM) with subject specific
individual connectome (CInd, pink). For both alpha and beta spatial distribution patterns,
paired t-tests between SGM with CInd and all other models show that, the SGM with Cind
significantly outperformance all other models, as determined by a paired t-test; p < 0.001
in each case, denoted by asterisk.
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