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Abstract	
	
The	 relationship	 between	 the	 brain’s	 structural	 wiring	 and	 the	 functional	 patterns	 of	
neural	activity	is	of	fundamental	interest	in	computational	neuroscience.	We	examine	a	
hierarchical,	linear	graph	spectral	model	of	brain	activity	at	mesoscopic	and	macroscopic	
scales.	The	model	formulation	yields	an	elegant	closed-form	solution	for	the	structure-
function	 problem,	 specified	 by	 the	 graph	 spectrum	 of	 the	 structural	 connectome’s	
Laplacian,	with	simple,	universal	rules	of	dynamics	specified	by	a	minimal	set	of	global	
parameters.	 The	 resulting	 parsimonious	 and	 analytical	 solution	 stands	 in	 contrast	 to	
complex	 numerical	 simulations	 of	 high	 dimensional	 coupled	 non-linear	 neural	 field	
models.	 This	 spectral	 graph	model	 accurately	 predicts	 spatial	 and	 spectral	 features	 of	
neural	 oscillatory	 activity	 across	 the	 brain	 and	 was	 successful	 in	 simultaneously	
reproducing	empirically	observed	spatial	and	spectral	patterns	of	alpha-band	(8-12	Hz)	
and	 beta-band	 (15-30Hz)	 activity	 estimated	 from	 source	 localized	 scalp	 magneto-
encephalography	 (MEG).	 This	 spectral	 graph	 model	 demonstrates	 that	 certain	 brain	
oscillations	are	emergent	properties	of	the	graph	structure	of	the	structural	connectome	
and	 provides	 important	 insights	 towards	 understanding	 the	 fundamental	 relationship	
between	network	topology	and	macroscopic	whole-brain	dynamics.		
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Significance	Statement	
	
The	 relationship	 between	 the	 brain’s	 structural	 wiring	 and	 the	 functional	 patterns	 of	
neural	activity	is	of	fundamental	interest	in	computational	neuroscience.	We	examine	a	
hierarchical,	linear	graph	spectral	model	of	brain	activity	at	mesoscopic	and	macroscopic	
scales.	The	model	formulation	yields	an	elegant	closed-form	solution	for	the	structure-
function	 problem,	 specified	 by	 the	 graph	 spectrum	 of	 the	 structural	 connectome’s	
Laplacian,	with	simple,	universal	rules	of	dynamics	specified	by	a	minimal	set	of	global	
parameters.	This	spectral	graph	model	demonstrates	that	certain	brain	oscillations	are	
emergent	properties	of	 the	graph	structure	of	 the	structural	connectome	and	provides	
important	 insights	 towards	 understanding	 the	 fundamental	 relationship	 between	
network	topology	and	macroscopic	whole-brain	dynamics.		
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Introduction	
	
The	Structure-Function	Problem	in	Neuroscience	

It	is	considered	paradigmatic	in	neuroscience	that	the	brain’s	structure	at	various	spatial	
scales	is	critical	for	determining	its	function.	In	particular,	the	relationship	between	the	
brain’s	structural	wiring	and	the	functional	patterns	of	neural	activity	is	of	fundamental	
interest	 in	 computational	 neuroscience.	 Brain	 structure	 and	 function	 at	 the	 scale	 of	
macroscopic	networks,	i.e.	amongst	identifiable	grey	matter	(GM)	regions	and	their	long-
range	 connections	 through	 white	 matter	 (WM)	 fiber	 bundles,	 can	 be	 adequately	
measured	using	current	non-invasive	measurement	techniques.	 	Fiber	architecture	can	
be	measured	from	diffusion	tensor	imaging	(DTI)	followed	by	tractography	algorithms	1,2.	
Similarly,	 brain	 function	 manifested	 in	 neural	 oscillations	 can	 be	 measured	 non-
invasively	using	magnetoencephalography	(MEG)	and	reconstructed	across	whole-brain	
networks.	Does	 the	brain’s	white	matter	wiring	 structure	 constrain	 functional	 activity	
patterns	that	arise	on	the	macroscopic	network	or	graph,	whose	nodes	represent	gray	
matter	regions,	and	whose	edges	have	weights	given	by	the	structural	connectivity	(SC)	
of	white	matter	fibers	between	them?	We	address	this	critical	open	problem	here,	as	the	
structural	 and	 functional	 networks	 estimated	 at	 various	 scales	 are	 not	 trivially	
predictable	from	each	other	3.	

Although	numerical	models	of	single	neurons	and	local	microscopic	neuronal	assemblies,	
ranging	 from	 simple	 integrate-and-fire	 neurons	 to	 detailed	 multi-compartment	 and	
multi-channel	models	 4–8	have	been	proposed,	 it	 is	unclear	 if	 these	models	can	explain	
structure-function	 coupling	 at	meso-	 or	macroscopic	 scales.	 At	 one	 extreme,	 the	 Blue	
Brain	Project	9,10	seeks	to	model	in	detail	all	10##	neurons	and	all	their	connections	in	the	
brain.	 Indeed	 spiking	 models	 linked	 up	 via	 specified	 synaptic	 connectivity	 and	 spike	
timing	 dependent	 plasticity	 rules	 were	 found	 to	 produce	 regionally	 and	 spectrally	
organized	self-sustaining	dynamics,	as	well	as	wave-like	propagation	similar	to	real	fMRI	
data	11.	However,	it	is	unclear	whether	such	efforts	will	succeed	in	providing	interpretable	
models	at	whole-brain	scale	12.		
	
Therefore	the	traditional	computational	neuroscience	paradigm	at	the	microscopic	scale	
does	 not	 easily	 extend	 to	 whole-brain	 macroscopic	 phenomena,	 as	 large	 neuronal	
ensembles	 exhibit	 emergent	 properties	 that	 can	 be	 unrelated	 to	 individual	 neuronal	
behavior	13–18,	and	are	instead	largely	governed	by	long-range	connectivity	19–22.	At	this	
scale,	 graph	 theory	 involving	 network	 statistics	 can	 phenomenologically	 capture	
structure-function	 relationships	 23–25,	 but	 do	 not	 explicitly	 embody	 any	 details	 about	
neural	physiology	14,15.	Strong	correlations	between	functional	and	structural	connections	
have	also	been	observed	at	this	scale	3,26–32,	and	important	graph	properties	are	shared	by	
both	SC	and	functional	connectivity	(FC)	networks,	such	as	small	worldness,	power-law	
degree	distribution,	hierarchy,	modularity,	and	highly	connected	hubs	24,33.	

A	more	detailed	accounting	of	the	structure-function	relationship	requires	that	we	move	
beyond	statistical	descriptions	to	mathematical	ones,	informed	by	computational	models	
of	 neural	 activity.	 Numerical	 simulations	 are	 available	 of	mean	 field	 17,34,35	 and	 neural	
mass	22,36	approximations	of	the	dynamics	of	neuronal	assemblies.	By	coupling	many	such	
neural	 field	 or	 mass	 models	 (NMMs)	 using	 anatomic	 connectivity	 information,	 it	 is	
possible	 to	 generate	 via	 large-scale	 stochastic	 simulations	 a	 rough	 picture	 of	 how	 the	
network	modulates	local	activity	at	the	global	scale	to	allow	the	emergence	of	coherent	
functional	networks	22.	However,	simulations	are	unable	to	give	an	analytical	(i.e.	closed	
form)	encapsulation	of	brain	dynamics	and	present	an	interpretational	challenge	in	that	
behavior	 is	 only	 deducible	 indirectly	 from	 thousands	 of	 trial	 runs	 of	 time-consuming	
simulations.	Consequently,	the	essential	minimal	rules	of	organization	and	dynamics	of	
the	brain	remain	unknown.	Furthermore,	due	to	their	nonlinear	and	stochastic	nature,	
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model	parameter	 inference	 is	 ill-posed,	computationally	demanding	and	manifest	with	
inherent	identifiability	issues	37.	

How	then	do	stereotyped	spatiotemporal	patterns	emerge	from	the	structural	substrate	
of	the	brain?	How	will	disease	processes	perturb	brain	structure,	thereby	impacting	its	
function?	While	stochastic	simulations	are	powerful	and	useful	tools,	they	provide	limited	
neuroscientific	insight,	interpretability	and	predictive	power,	especially	for	the	practical	
task	 of	 inferring	 macroscopic	 functional	 connectivity	 from	 long-range	 anatomic	
connectivity.	Therefore,	 there	 is	 a	need	 for	more	direct	models	of	 structural	network-
induced	 neural	 activity	 patterns	 –	 a	 task	 for	 which	 existing	 numerical	 modeling	
approaches,	whether	for	single	neurons,	local	assemblies,	coupled	neural	masses	or	graph	
theory,	are	not	ideally	suited.	Here	we	use	a	spectral	graph	model	to	demonstrate	that	the	
spatial	distribution	of	certain	brain	oscillations	are	emergent	properties	of	the	spectral	
graph	structure	of	the	structural	connectome.	Therefore,	we	also	explore	how	the	chosen	
connectome	alters	the	functional	activity	patterns	they	sustain.	

A	hierarchical,	analytic,	low-dimensional	and	linear	spectral	graph	theoretic	model	
of	brain	oscillations	
	
We	present	a	linear	graph	model	capable	of	reproducing	empirical	macroscopic	spatial	
and	spectral	properties	of	neural	activity.	We	are	 interested	specifically	 in	the	transfer	
function	 (defined	 as	 the	 frequency-domain	 input-output	 relationship)	 induced	 by	 the	
macroscopic	structural	connectome,	rather	than	in	the	behavior	of	local	neural	masses.	
Therefore	we	seek	an	explicit	formulation	of	the	frequency	spectra	induced	by	the	graph,	
using	the	eigen-decomposition	of	the	structural	graph	Laplacian,	borrowing	heavily	from	
spectral	graph	theory	used	in	diverse	contexts	including	clustering,	classification,	and	
machine	 learning	 38–41.	 This	 theory	 conceptualizes	 brain	 oscillations	 as	 a	 linear	
superposition	 of	 eigenmodes.	 These	 eigen-relationships	 arise	 naturally	 from	 a	
biophysical	 abstraction	 of	 fine-scaled	 and	 complex	 brain	 activity	 into	 a	 simple	 linear	
model	 of	 how	 mutual	 dynamic	 influences	 or	 perturbations	 can	 spread	 within	 the	
underlying	structural	brain	network,	a	notion	that	was	advocated	previously	30,42,43.	We	
had	previously	 reported	 that	 the	brain	network	Laplacian	 can	be	decomposed	 into	 its	
constituent	“eigenmodes”,	which	play	an	 important	role	 in	both	healthy	brain	 function	
30,31,44–46	and	pathophysiology	of	disease	44,47–49.		
	
We	show	here	that	a	graph-spectral	decomposition	is	possible	at	all	frequencies,	ignoring	
non-linearities	that	are	operating	at	the	local	(node)	level.	Like	previous	NMMs,	we	lump	
neural	populations	 at	 each	brain	 region	 into	neural	masses,	 but	unlike	 them	we	use	a	
linearized	 (but	 frequency-rich)	 local	 model	 –	 see	 Figure	 1A.	 The	 macroscopic	
connectome	imposes	a	linear	and	deterministic	modulation	of	these	local	signals,	which	
can	 be	 captured	 by	 a	 network	 transfer	 function.	 The	 sequestration	 of	 local	 oscillatory	
dynamics	 from	 the	 macroscopic	 network	 in	 this	 way	 enables	 the	 characterization	 of	
whole	brain	dynamics	deterministically	in	closed	form	in	Fourier	domain,	via	the	eigen-
basis	expansion	of	the	network	Laplacian.	As	far	as	we	know,	this	is	the	first	closed-form	
analytical	 model	 of	 frequency-rich	 brain	 activity	 constrained	 by	 the	 structural	
connectome.			
	
We	 applied	 this	 model	 to	 and	 validated	 its	 construct	 against	 measured	 source-
reconstructed	MEG	recordings	in	healthy	subjects	under	rest	and	eyes-closed.	The	model	
closely	matches	 empirical	 spatial	 and	 spectral	MEG	 patterns.	 In	 particular,	 the	model	
displays	 prominent	 alpha	 and	 beta	 peaks,	 and,	 intriguingly,	 the	 eigenmodes	
corresponding	 to	 the	 alpha	 oscillations	 have	 the	 same	 posterior-dominant	 spatial	
distribution	that	is	repeatedly	seen	in	eyes-closed	alpha	power	distributions.	In	contrast	
to	 existing	 less	 parsimonious	 models	 in	 the	 literature	 that	 invoke	 spatially-varying	
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parameters	or	local	rhythm	generators,	to	our	knowledge,	this	is	the	first	account	of	how	
the	spectral	graph	structure	of	the	structural	connectome	can	parsimoniously	explain	the	
spatial	power	distribution	of	alpha	and	beta	frequencies	over	the	entire	brain	measurable	
on	MEG.		
	
Methods	
	
Spectral	graph	model	development	
	
Notation.	In	our	notation,	vectors	and	matrices	are	represented	by	boldface,	and	scalars	
by	 normal	 font.	 We	 denote	 frequency	 of	 a	 signal,	 in	 Hertz,	 by	 symbol	 𝑓 ,	 and	 the	
corresponding	angular	frequency	as	𝜔 = 2𝜋𝑓.	The	connectivity	matrix	is	denoted	by	𝑪 =
𝑐+, ,	consisting	of	connectivity	strength	𝑐-+ 	between	any	two	pair	of	regions	𝑗, 𝑘.	
	
Model	summary:	Details	of	the	Spectral	Graph	model	is	described	in	detail	below.	There	
are	very	few	model	parameters,	seven	in	total:	𝜏2, 𝜏-, 𝜏3, 𝑣, 𝑔--, 𝑔2-, 𝛼,	which	are	all	global	
and	apply	at	every	node.	See	Table	1	for	their	meaning,	initial	value	and	range.	Note	that	
the	 entire	 model	 is	 based	 on	 a	 single	 equation	 of	 graph	 dynamics,	 Eq	 (1),	 which	 is	
repeatedly	applied	to	each	level	of	the	hierarchy.	Here	we	used	two	levels:	a	mesoscopic	
level	 where	 connectivity	 is	 all-to-all,	 and	 a	 macroscopic	 level,	 where	 connectivity	 is	
measured	 from	 fiber	 architecture.	 In	 theory,	 this	 template	 could	 be	 refined	 into	 finer	
levels,	 where	 neural	 responses	 become	 increasingly	 non-linear,	 and	 connectivity	
becomes	sparser	and	structured.	
	
Table	1:	SGM	parameters	values	and	limits	
Name	 Symbol	 Initial/default	

Value	
Lower/Upper	 bound	
for	optimization	

Excitatory	Time	constant	 𝜏2 	 12	ms	 [5ms,	20ms]	
Inhibitory	Time	constant	 𝜏- 	 3	ms	 [5ms,	20ms]	
Graph	Time	constant	 𝜏3 	 6	ms	 [5ms,	20ms]	
	
Excitatory	gain	 𝑔22 	 1	 n/a	
Inhibitory	gain	 𝑔-- 	 1	 [0.5,	5]	
Excitatory	gain	 𝑔2- 	 4		 [0.5,	5]	
	
Transmission	velocity		 𝑣	 5	m/s	 [5	m/s,	20	m/s]	
Long-range	 connectivity	
coupling	constant	

𝛼	 1	 [0.1,	1]	

	
	
Canonical	rate	model	over	a	graph.	We	use	a	canonical	rate	model	to	describe	neural	
activity	across	two	hierarchical	 levels	–	local	cortical	 levels	and	long-range	mesoscopic	
levels.	At	each	level	of	the	hierarchy	of	brain	circuits,	we	hypothesize	a	simple	linear	rate	
model	of	recurrent	reverberatory	activity	given	by		
	

𝑑𝑥2/- 𝑡
𝑑𝑡

= −
1
𝜏2/-

𝑓2/- 𝑡 ∗ 𝑥2/- 𝑡 + 	
1
𝜏2/-

𝑓2/- 𝑡 ∗ 𝑐+,𝑥2/- 𝑡 − 𝜏+,?

+,,
+ 𝑝2/- 𝑡 																		(1)	

where	𝑥2/- 𝑡 	is	 the	mean	signal	of	 the	excitatory/inhibitory	populations	and	𝑝2/-(𝑡)	is	
internal	noise	source	reflecting	local	cortical	column	computations	or	input.	The	transit	
of	 signals,	 from	 pre-synaptic	 membranes,	 through	 dendritic	 arbors	 and	 axonal	
projections,	 is	 sought	 to	 be	 captured	 into	 ensemble	 average	 neural	 impulse	 response	
functions	𝑓2 𝑡 = 	 C

DE
exp	(− C

DE
) 	and	𝑓- 𝑡 = 	 C

DI
exp	(− C

DI
) 	respectively.	 We	 disregard	 the	
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non-linearity	of	 the	neural	response,	hence	the	output	at	 the	terminal	to	a	presynaptic	
input	𝑢 𝑡 	is	the	simple	convolution	𝑥2 𝑡 = 𝑓2 𝑡 ∗ 𝑢 𝑡 .	The	neural	responses	𝑓2/- 𝑡 	are	
Gamma-shaped	responses	(Figure	1B)	parameterized	by	time	constants	 	𝜏2/- 	that	here	
represent	the	end	result	of	both	synaptic	membrane	capacitance	and	the	distribution	of	
dendritic/axonal	 delays	 introduced	 by	 the	 arborization.	 NMMs	 typically	 use	 a	 single	
classical	 exponential	 decay	 term	 for	 membrane	 capacitance	 only,	 since	 NMMs	 model	
highly	local	cell	assemblies	where	multisynaptic	connections	are	infrequent	and	axonal	
and	 dendritic	 transport	 delays	 are	 usually	 incorporated	 explicitly	 via	 connectivity	
weights	and	delays.	 Since	our	 lumped	model	was	designed	 for	 relatively	 large	 cortical	
regions,	 we	 employ	 the	 Gamma-shaped	 𝑓2/- 	to	 correctly	 capture	 not	 just	 classical	
membrane	capacitance	but	also	the	expected	diversity	of	dendritic	transport	delays.	The	
dynamics	 of	 the	 entire	 assembly	modeled	 via	 a	 self-decaying	 term	𝜏2/-

K𝒙
KC
∝ −𝑓2/- 𝑡 ∗

𝒙(𝑡),	typically	used	in	most	rate	or	NMM	models,	but	the	difference	here	is	that	we	chose	
to	apply	convolution	with	neural	response	𝑓2/- 𝑡 	within	the	decay	process.	We	believe	
this	is	necessary	to	ensure	that	the	dynamics	of	the	population	cannot	participate	in	the	
internal	recurrent	dynamics	of	the	region	until	the	signal	has	passed	through	one	instance	
of	the	neuronal	response.	Since	this	neural	response	is	meant	to	capture	a	distribution	of	
local	circuit	delays,	its	time	constants	𝜏2/-	are	purposefully	far	longer	(up	to	20ms)	than	
expected	 from	membrane	 capacitance	 alone.	 Studies	 of	 cortical	 lag	 times	using	paired	
electrode	 recordings	 between	 primary	 and	 higher	 cortices	 demonstrate	 this.	 A	 short	
visual	stimulus	causes	a	neural	response	in	the	ferret	V1	within	20ms	post-stimulus,	in	
the	primary	barrel	field	within	16-36ms,	and	the	entire	visual	cortex	becomes	engaged	
48-70ms	after	stimulus	6.	Brief	deflection	of	a	single	barrel	whisker	in	the	mouse	evokes	
a	somatotopically	mapped	cortical	depolarization	that	remains	localized	to	its	C2	barrel	
column	 only	 for	 a	 few	 milliseconds,	 thence	 rapidly	 spreading	 to	 a	 large	 part	 of	
sensorimotor	cortex	within	tens	of	milliseconds,	a	mechanism	considered	essential	 for	
the	integration	of	sensory	information	50,51.	Interestingly,	the	evoked	response	curve	in	S1	
from	the	50	study	had	a	prominent	Gamma	shape.	Of	note,	 the	duration	of	S1	response	
(~50ms)	was	considerably	longer	than	the	time	to	first	sensory	response	in	C2	(7.2ms)	50.	
Interestingly,	feedback	projections	from	higher	to	lower	areas	take	~50ms,	hence	have	a	
much	 slower	 apparent	 propagation	 velocity	 (0.15-0.25m/s)	 than	 what	 would	 be	
predicted	by	axonal	conduction	alone	(1-3m/s)	6.		
	
Individual	neural	elements	are	connected	to	each	other	via	connection	strengths	𝑐+, .	Let	
the	 cortico-cortical	 fiber	 conduction	 speed	be	𝑣 ,	which	here	 is	 assumed	 to	be	 a	 global	
constant	 independent	of	 the	pathway	under	question.	For	a	given	pathway	connecting	
regions	j	and	k	of	length	𝑑+, ,	the	conduction	delay	of	a	signal	propagating	from	region	j	to	

region	 k	 will	 be	 given	 by	 𝜏?+, =
KNO
?
.	 Hence	 signals	 from	 neighboring	 elements	 also	

participate	in	the	same	recurrent	dynamics,	giving	the	2nd	term	of	Eq	(1).	Equation	(1)	
will	serve	as	our	canonical	rate	model,	and	will	be	reproduced	at	all	levels	of	the	hierarchy,	
and	only	the	connectivity	strengths	will	vary	depending	on	the	level	of	hierarchy	we	are	
modeling,	as	explained	below.		
	
Local	 neural	 assemblies.	 The	 local	 connectivities	𝑐+,

PQRSP 	are	 assumed	 to	 be	 all-to-all,	
giving	 a	 complete	 graph.	 Further,	 the	 axonal	 delays	 𝜏+,? 	associated	 with	 purely	 local	
connections	were	already	incorporated	in	the	lumped	impulse	responses	𝑓2/-(𝑡).	Hence,	
we	assert:	

𝑐+,
PQRSP = 𝑐2/-, 𝜏+,? = 0, ∀	𝑗, 𝑘	

From	spectral	graph	theory,	a	complete	graph	has	all	equal	eigenvalues	which	allows	the	
local	 network	 to	be	 lumped	 into	 gain	 constants,	 and	 the	 summation	 removed.	 Indeed,	
rewriting	𝑥2/- 𝑡 	as	the	mean	signal	of	all	the	excitatory/inhibitory	cells	and	setting	the	
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gains	𝑔22 = 1 − 𝑐2𝑁2 	and	𝑔-- = 1 − 𝑐-𝑁- 	we	get		
	

𝑑𝑥2/- 𝑡
𝑑𝑡

= 	−
𝑔22/--
𝜏2/-

𝑓2/- 𝑡 ∗ 𝑥2/- 𝑡 + 𝑝2/- 𝑡 .																																																	 2 	

	

Given	the	Fourier	Transform	pairs	 K
KC

𝑗𝜔,	𝑓2/- 𝑡 𝐹2/- 𝜔 = 	
#/DE/I

X

+YZ#/DE/I	
X,	we	take	the	

Fourier	transform	of	Eq(1)	and	obtain	the	local	assembly’s	frequency	spectrum:	

		𝑋2/- 𝜔 =	 𝑗𝜔 +
𝑔22/--
𝜏2/-

𝐹2/- 𝜔 	
\#

𝑃2/- 𝜔 																																													(3)		

Writing	this	in	terms	of	transfer	functions	𝑋2 𝜔 = 𝐻2 𝜔 𝑃2(𝜔), 𝑋- 𝜔 = 𝐻- 𝜔 𝑃-(𝜔)	we	
get	the	lumped	local	system	illustrated	in	Figure	1A.	Finally,	we	must	also	account	for	
signals	that	alternate	between	the	two	populations,	which	is	given	by	the	transfer	function	

𝐻2- 𝜔 = 	𝐻2 𝜔 𝐻- 𝜔 /(1 + 𝑔2-𝐻2 𝜔 𝐻- 𝜔 )	
We	 fix	𝑔22 = 1 	without	 loss	 of	 generality,	 and	 let	 the	 other	 terms	𝑔--, 𝑔2- 	be	 model	
parameters	to	be	fitted.		Finally,	the	total	cortical	transfer	function	is	the	sum	

𝐻PQRSP 𝜔 = 	𝐻2 𝜔 + 𝐻- 𝜔 + 𝐻2- 𝜔 																																					(4)	
and	𝑋PQRSP 𝜔 = 	𝐻PQRSP 𝜔 𝑃 𝜔 	represents	 all	 neural	 activity	 in	 this	 region,	 whether	
from	excitatory	or	inhibitory	cells.	The	canonical	local	activity	is	therefore	defined	by	the	

Fourier	transform	pair:	𝑥PQRSP 𝑡 𝑋PQRSP 𝜔 .	
	
Macroscopic	scale:	signal	evolution	on	the	entire	graph	
	
We	 use	 the	 same	 canonical	 network	 dynamics	 as	 Eq	 (1),	 but	 now	 the	 inter-regional	
connectivity	𝑐+, 	is	 non-zero	 and	 given	 by	 the	 structural	 connectome.	 Similarly,	 axonal	
conductance	delays	are	determined	by	fiber	length	and	conductance	speed	𝜏+,? = 𝑑+,/𝑣.	
Further,	 the	 external	 driving	 signals	 at	 each	 node	 is	 the	 local	 neural	 activity	𝑥PQRSP 𝑡 	
defined	above	rather	than	a	noise	process	𝑝(𝑡).	In	the	interest	of	parsimony	we	set	each	
node	of	the	macroscopic	graph	to	have	the	same	internal	power	spectrum	𝑋PQRSP(𝜔)	-	i.e.	
all	regions	are	experiencing	the	same	transfer	function,	driven	by	identically	distributed	
(but	of	course	not	identical)	noise.	At	this	scale,	activity	measured	at	graph	nodes	is	no	
longer	 excitatory	 or	 inhibitory,	 but	 mixed,	 and	 the	 corticocortical	 connections	 are	 all	
between	long,	pyramidal	excitatory-only	cells.	Thus,	for	the	k-th	node	

𝑑𝑥, 𝑡
𝑑𝑡

= −
1
𝜏3
𝑓2 𝑡 ∗ 𝑥, 𝑡 + 	

𝛼
𝜏3
𝑓2 𝑡 ∗ 𝑐+,𝑥+ 𝑡 − 𝜏+,?

+

+ 𝑥PQRSP,, 𝑡 	

Here	 we	 have	 introduced	 a	 global	 coupling	 constant	𝛼 ,	 similar	 to	 most	 connectivity-
coupled	neural	mass	models,	that	seeks	to	control	the	relative	weight	given	to	long-range	
afferents	 compared	 to	 local	 signals.	We	have	 also	 introduced	 a	new	 time	 constant,	𝜏3 ,	
which	 is	 an	 excitatory	 time	 constant	 and	 it	 may	 be	 the	 same	 as	 the	 previously	 used	
constant	𝜏2 .	 However,	we	 allow	 the	 possibility	 that	 the	 long-range	projection	neurons	
might	display	a	different	capacitance	and	morphology	compared	to	local	circuits,	hence	
we	have	introduced	𝜏3 	(subscript	G	is	for	“graph”	or	“global”).		
	
Stacking	all	equations	from	all	nodes	and	using	vector	valued	signals	𝒙 𝑡 = {𝑥, 𝑡 },	we	
can	write	

𝑑𝒙(𝑡)
𝑑𝑡

= −
1
𝜏3
𝑓2 𝑡 ∗ 𝒙 𝑡 + 	

𝛼
𝜏3
𝑓2 𝑡 ∗ 𝐶 𝒙 𝑡 − 𝜏+,? + 𝒙𝒍𝒐𝒄𝒂𝒍 𝑡 																						(5)	

where	the	braces	{⋅}	represent	all	elements	of	a	matrix	indexed	by	𝑗, 𝑘.		
	
We	wish	to	evaluate	the	frequency	spectrum	of	the	above.	In	Fourier	space,	delays	become	

phases;	 hence	 we	 use	 the	 transform	 pairs	 K𝒙
KC

𝑗𝜔𝑿 𝜔 	and	 𝒙 𝑡 − 𝜏 𝑒\+DY𝑿 𝜔 .	
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Therefore,	define	a	 “complex	connectivity	matrix”	at	any	given	angular	 frequency	𝜔	as	
𝑪∗ 𝜔 = 𝑐+, exp −𝑗𝜔	𝜏?+, .	We	then	define	a	normalized	complex	connectivity	matrix	
at	frequency	𝜔	as	

𝓒 𝜔 = 	𝑑𝑖𝑎𝑔
1

𝒅𝒆𝒈
𝑪∗ 𝜔 																						(6)	

	
where	the	degree	vector	𝒅𝒆𝒈	is	defined	as	𝑑𝑒𝑔, = 	 𝑐+,+ .	Taking	the	Fourier	transform	
of	Eq	(5),	we	get		
	

𝑗𝜔𝑿 𝜔 +
1
𝜏3
𝐹2 𝜔 	 𝑰 − 𝛼𝓒 𝜔 𝑿 𝜔 = 	𝐻PQRSP 𝜔 𝑷 𝜔 																									(7)	

where	we	assumed	identically	distributed	noise	signals	driving	both	the	excitatory	and	
inhibitory	local	populations	at	each	node,	such	that	𝑃2,, 𝜔 = 𝑃-,, 𝜔 = 𝑃, 𝜔 	at	the	k-th	
node.	We	then	collected	all	nodes’	driving	inputs	in	the	vector	𝑷 𝜔 = 	 𝑃, 𝜔 , ∀𝑘 .	Here,	
we	define	the	complex	Laplacian	matrix		

𝓛 𝜔 = 	𝑰 − 𝛼𝓒(𝜔)		
where	𝑰	is	the	identity	matrix	of	size	𝑁×𝑁.	This	complex	Laplacian	will	be	evaluated	via	
the	eigen-decomposition	

𝓛 𝜔 = 𝑼 𝜔 𝜦 𝜔 𝑼 𝜔 z																																		(8)	
where	 𝜦 𝜔 = 	𝑑𝑖𝑎𝑔([𝜆# 𝜔 , … , 𝜆�(𝜔)]) 	is	 a	 diagonal	 matrix	 consisting	 of	 the	
eigenvalues	 of	 the	 complex	 Laplacian	 matrix	 of	 the	 connectivity	 graph	𝓒 𝜔 ,	 at	 the	
angular	frequency	𝜔.		
Hence	

𝑿 𝜔 = 	 𝑗𝜔𝑰 +
1
𝜏3
𝐹2 𝜔 𝓛 𝜔

\#

𝐻PQRSP 𝜔 𝑷 𝜔 														(9)	

where	we	invoke	the	eigen-decomposition	of	𝓛 𝜔 ,	and	that	𝑼(𝜔)𝑼(𝜔)𝑯 = 𝑰.	It	can	then	
be	shown	easily	that		
	

𝑿 𝜔 = 	
𝒖𝒊(𝜔)𝒖𝒊𝑯(𝜔)

𝑗𝜔 + 1
𝜏3
𝜆-(𝜔)𝐹2 𝜔-

𝐻PQRSP 𝜔 𝑷 𝜔 															(10)	

This	is	the	steady	state	frequency	response	of	the	whole	brain	dynamics.	In	steady	state,	
we	assume	that	each	cortical	region	is	driven	by	internal	noise	that	spans	all	frequencies,	
i.e.	 white	 noise.	 Hence,	 we	 assume	 that	 the	 driving	 function	𝒑 𝑡 	 is	 an	 uncorrelared	
Gaussian	 noise	 process,	 such	 that	𝑷 𝜔 = 𝕝,	where	𝕝 	is	 a	 vector	 of	 ones.	 This	 asserts	
identical	cortical	responses	at	each	brain	region.		
	
Experimental	Procedures	
	
Study	cohort.	We	acquired	MEG,	anatomical	MRI,	and	diffusion	MRI	for	36	healthy	adult	
subjects	(23	males,	13	females;	26	left-handed,	10	right-handed;	mean	age	21.75	years	
(range:	 7-51	 years).	 All	 study	 procedures	 were	 approved	 by	 the	 institutional	 review	
board	at	the	University	of	California	at	San	Francisco	(UCSF)	and	are	in	accordance	with	
the	ethics	standards	of	the	Helsinki	Declaration	of	1975	as	revised	in	2008.		
	
MRI.	A	3	Tesla	TIM	Trio	MR	scanner	(Siemens,	Erlangen,	Germany)	was	used	to	perform	
MRI	using	a	32-channel	phased-array	radiofrequency	head	coil.	High-resolution	MRI	of	
each	 subject’s	 brain	 was	 collected	 using	 an	 axial	 3D	 magnetization	 prepared	 rapid-
acquisition	gradient-echo	(MPRAGE)	T1-weighted	sequence	(echo	time	[TE]	=	1.64	ms,	
repetition	time	[TR]	=	2530	ms,	TI	=	1200	ms,	flip	angle	of	7	degrees)	with	a	256-mm	field	
of	view	(FOV),	and	160	1.0-mm	contiguous	partitions	at	a	256×256	matrix.	Whole-brain	
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diffusion	weighted	images	were	collected	at	b	=	1000𝑠/𝑚𝑚�	with	30	directions	using	2-
mm	voxel	resolution	in-plane	and	through-plane.		
	
Magneto-encephalography	(MEG)	data.	MEG	recordings	were	acquired	at	UCSF	using	
a	275-channel	CTF	Omega	2000	whole-head	MEG	system	from	VSM	MedTech	(Coquitlam,	
BC,	Canada).	All	subjects	were	instructed	to	keep	their	eyes	closed	for	five	minutes	while	
their	MEGs	were	recorded	at	a	sampling	frequency	of	1200	Hz.		
	
Data	Processing	
	
Region	Parcellations.	The	T1-weighted	images	were	parcellated	into	68	cortical	regions	
and	 18	 subcortical	 regions	 using	 the	 using	 the	 Desikan-Killiany	 atlas	 available	 in	 the	
FreeSurfer	software	 52.	To	do	 this,	 the	subject	specific	T1-weighted	 images	were	back-
projected	to	the	atlas	using	affine	registration,	as	described	in	our	previous	studies	18,53.		
	
Structural	 Connectivity	 Networks.	We	 constructed	 different	 structural	 connectivity	
networks	with	the	same	Desikan-Killiany	parcellations	to	access	the	capabilities	of	our	
proposed	model.	Firstly,	we	obtained	openly	available	diffusion	MRI	data	from	the	MGH-
USC	Human	Connectome	Project	 to	 create	an	average	 template	 connectome.	As	 in	our	
previous	studies	18,53,	subject	specific	structural	connectivity	was	computed	on	diffusion	
MRI	data:	Bedpostx	was	used	to	determine	the	orientation	of	brain	fibers	in	conjunction	
with	FLIRT,	as	implemented	in	the	FSL	software	54.	In	order	to	determine	the	elements	of	
the	adjacency	matrix,	we	performed	tractography	using	probtrackx2.	We	initiated	4000	
streamlines	from	each	seed	voxel	corresponding	to	a	cortical	or	subcortical	gray	matter	
structure	 and	 tracked	 how	 many	 of	 these	 streamlines	 reached	 a	 target	 gray	 matter	
structure.	The	weighted	connection	between	the	two	structures	𝑐-,+ ,	was	defined	as	the	
number	of	streamlines	initiated	by	voxels	in	region	𝑖	that	reach	any	voxel	within	region	𝑗,	
normalized	by	the	sum	of	the	source	and	target	region	volumes	(𝑐-,+ =

�C�2S�P-�2�
?IZ?N

).	This	

normalization	prevents	large	brain	regions	from	having	high	connectivity	simply	due	to	
having	 initiated	 or	 received	 many	 streamlines.	 Afterwards,	 connection	 strengths	 are	
averaged	between	both	directions	(𝑐-,+ 	and	𝑐+,-)	to	form	undirected	edges.	It	is	common	in	
neuroimaging	literature	to	threshold	connectivity	to	remove	weakly	connected	edges,	as	
this	can	greatly	influence	the	implied	topology	of	the	graph.	In	our	work,	we	chose	not	to	
apply	further	thresholding,	as	unlike	conventional	graph	theoretic	metrics,	linear	models	
of	 spread	 and	 consequently	 network	 eigenmodes	 are	 relatively	 insensitive	 to	 implied	
topology	 induced	 by	 presence	 (or	 lack)	 of	 weak	 nonzero	 connections.	 However,	 to	
determine	 the	 geographic	 location	 of	 an	 edge,	 the	 top	 95%	 of	 non-zero	 voxels	 by	
streamline	 count	 were	 computed	 for	 both	 edge	 directions.	 The	 consensus	 edge	 was	
defined	as	the	union	between	both	post-threshold	sets.	
	
MEG	processing	and	source	reconstruction.	MEG	recordings	were	down-sampled	from	
1200	Hz	to	600	Hz,	then	digitally	filtered	to	remove	DC	offset	and	any	other	noisy	artifact	
outside	of	the	1	to	160	Hz	bandpass	range.	Since	MEG	data	are	in	sensor	space,	meaning	
they	 represent	 the	 signal	 observable	 from	 sensors	 placed	 outside	 the	 head,	 this	 data	
needs	 to	 be	 “inverted”	 in	 order	 to	 infer	 the	 neuronal	 activity	 that	 has	 generated	 the	
observed	signal	by	solving	the	so-called	inverse	problem.	Several	effective	methods	exist	
for	performing	source	localization	55–57.	Here	we	eschew	the	common	technique	of	solving	
for	a	small	number	of	discrete	dipole	sources	which	is	not	fully	appropriate	in	the	context	
of	inferring	resting	state	activity,	since	the	latter	is	neither	spatially	sparse	not	localized.	
Instead,	we	used	adaptive	 spatial	 filtering	algorithms	 from	 the	NUTMEG	software	 tool	
written	 in	 house	 58	 in	 MATLAB	 (The	 MathWorks,	 Inc.,	 Natick,	 Massachusetts,	 United	
States).	To	prepare	for	source	localization,	all	MEG	sensor	locations	were	co-registered	to	
each	subject’s	anatomical	MRI	scans.	The	lead	field	(forward	model)	for	each	subject	was	
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calculated	in	NUTMEG	using	a	multiple	local-spheres	head	model	(three-orientation	lead	
field)	and	an	8	mm	voxel	grid	which	generated	more	than	5000	dipole	sources,	all	sources	
were	normalized	to	have	a	norm	of	1.	Finally,	 the	MEG	recordings	were	projected	 into	
source	 space	 using	 a	 beamformer	 spatial	 filter.	 Source	 estimates	 tend	 to	 have	 a	 bias	
towards	superficial	currents	and	the	estimates	are	more	error-prone	when	we	approach	
subcortical	regions,	therefore,	only	the	sources	belonging	to	the	68	cortical	regions	were	
selected	to	be	averaged	around	the	centroid.	Specifically,	all	dipole	sources	were	labeled	
based	on	the	Desikan-Killiany	parcellations,	then	sources	within	a	20	mm	radial	distance	
to	 the	 centroid	 of	 each	 brain	 region	were	 extracted,	 the	 average	 time	 course	 of	 each	
region’s	extracted	sources	served	as	empirical	resting-state	data	for	our	proposed	model.	
	
	
Alternative	benchmark	model	for	comparison.	In	order	to	put	the	proposed	model	in	
context,	we	also	implemented	for	comparison	a	Wilson-Cowan	neural	mass	model	17,35,37,59	
with	similar	dimensionality.	Although	NMMs	 like	 this	can	and	have	been	 implemented	
with	 regionally	 varying	 local	 parameters,	 here	 we	 enforced	 uniform,	 regionally	 non-
varying	local	parameters,	meaning	all	parcellated	brain	regions	shared	the	same	local	and	
global	parameters.	This	is	a	fair	comparison	since	the	proposed	model	is	also	regionally	
non-varying.	The	purpose	of	this	exercise	is	to	ascertain	whether	a	non-regional	NMM	can	
also	predict	spatial	power	variations	purely	as	a	consequence	of	network	transmission,	
like	the	proposed	model,	using	the	same	model	optimization	procedure	(see	below).	This	
NMM	incorporates	a	transmission	velocity	parameter	that	 introduces	a	delay	based	on	
fiber	tract	lengths	extracted	from	diffusion	MRI,	but,	unlike	our	model,	does	not	seek	to	
explicitly	evaluate	a	frequency	response	based	on	these	delays.	
	
Model	Optimization		
	
We	 computed	 maximum	 a	 posteriori	 estimates	 for	 parameters	 under	 a	 flat	 non-
informative	prior.	A	simulated	annealing	optimization	algorithm	was	used	for	estimation	
and	provided	a	set	of	optimized	parameters	{𝜏2, 𝜏-, 𝜏R, 𝑔2-, 𝑔--, 𝛼, 𝜐}.	We	defined	a	data	
likelihood	or	goodness	of	fit	(GOF)	as	the	Pearson	correlation	between	empirical	source	
localized	MEG	power	spectra	and	simulated	model	power	spectra,	averaged	over	all	68	
regions	of	 a	 subject’s	brain.	The	proposed	model	has	only	 seven	global	parameters	 as	
compared	to	neural	mass	models	with	hundreds	of	parameters,	and	is	available	in	closed-
form.	To	improve	the	odds	that	we	capture	the	global	minimum,	we	chose	to	implement	
a	 probabilistic	 approach	 of	 simulated	 annealing	 60.	 The	 algorithm	 samples	 a	 set	 of	
parameters	within	a	set	of	boundaries	by	generating	an	initial	trial	solution	and	choosing	
the	 next	 solution	 from	 the	 current	 point	 by	 a	 probability	 distribution	 with	 a	 scale	
depending	on	the	current	“temperature”	parameter.	While	the	algorithm	always	accepts	
new	trial	points	that	map	to	cost-function	values	lower	than	the	previous	cost-function	
evaluations,	it	will	also	accept	solutions	that	have	cost-function	evaluations	greater	than	
the	 previous	 one	 to	move	 out	 of	 local	minima.	 The	 acceptance	 probability	 function	 is	
1/(1 + ∆

2��� � ),	where	T	 is	 the	current	 temperature	and	∆	 is	 the	difference	of	 the	new	
minus	 old	 cost-function	 evaluations.	 	 The	 initial	 parameter	 values	 and	 boundary	
constraints	 for	 each	 parameter	 are	 given	 in	 Supplementary	 Table	 1.	 All	 simulated	
annealing	 runs	 were	 allowed	 to	 iterate	 over	 the	 parameter	 space	 for	 a	 maximum	 of	
𝑁�×3000	iterations,	where	𝑁�	is	the	number	of	parameters	in	the	model.	As	a	comparison,	
we	 performed	 the	 same	 optimization	 procedure	 to	 a	 regionally	 non-varying	 Wilson-
Cowan	neural	mass	model	35,59.	We	have	recently	reported	a	similar	simulated	annealing	
optimization	procedure	on	this	model	37.	
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Results	
		
Graph	Laplacian	eigenmodes	mediate	a	diversity	of	frequency	responses	
	
First,	 we	 demonstrate	 the	 spectra	 produced	 by	 graph	 eigenmodes	 as	 per	 our	 theory.	
Figure	 1C	 shows	 the	 eigen-spectrum	 of	 the	 complex	 Laplacian,	 with	 eigenvalue	
magnitude	 ranging	 from	 0	 to	 1.	 The	 absolute	 value	 of	 eigenvalues	 of	 the	 complex	
Laplacian	 𝓛(𝜔) 	are	 plotted	 against	 the	 eigenvector	 index.	 Each	 dot	 represents	 one	
eigenvalue	𝜆(𝜔) ;	 its	 color	 represents	 the	 frequency	𝜔 	-	 low	 (blue)	 to	 high	 (yellow).	
Clearly,	these	eigenvalues	change	somewhat	by	frequency.	Small	eigenvalues	undergo	a	
larger	shift	due	to	frequency,	while	the	large	ones	stay	more	stable	and	tightly	clustered	
around	 the	 nominal	 eigenvalue	 (i.e.	 at	𝜔 = 0).	 Each	 eigenmode	 produces	 a	 frequency	
response	based	on	its	frequency-dependent	eigenvalue	(Figure	1D,	E).	Figure	1D	shows	
the	transit	in	the	complex	plane	of	a	single	eigenmode’s	frequency	response,	starting	at	
low	frequencies	in	the	bottom	right	quadrant,	and	moving	to	the	upper	left	quadrant	at	
high	 frequencies.	 The	 magnitude,	 given	 by	 distance	 from	 origin,	 suggests	 that	 most	
eigenmodes	have	two	prominent	lobes,	roughly	corresponding	to	alpha	and	beta	rhythms,	
respectively.	 In	 contrast,	 the	 lowest	 few	 eigenmodes	 start	 off	 far	 from	 the	 origin,	
indicative	of	a	low-pass	response.	The	magnitude	of	these	complex-valued	curves	shown	
in	 figure	1E	 reinforces	 these	 impressions,	with	 clear	 alpha	 and	 beta	 peaks,	 as	well	 as	
slower	rhythms	of	the	lowest	eigenmodes.		
	
The	spatial	patterns	of	the	first	5	eigenmodes	of	𝓛 𝜔 ,	evaluated	at	the	alpha	peak	of	10	
Hz,	 are	 shown	 in	Figure	1F.	 Eigenmodes	𝐮𝟏\𝟒 	produce	posterior	 and	 temporal	 spatial	
patterns,	 including	 many	 elements	 of	 the	 default	 mode	 network;	𝐮𝟒 	resembles	 the	
sensorimotor	network;	and	𝐮�	the	structural	core	of	the	human	connectome.	However,	
these	patterns	are	not	exclusive	and	greatly	depend	on	the	frequency	at	which	they	are	
evaluated,	as	well	as	the	model	parameters.	Higher	eigenmodes	are	especially	sensitive	
to	axonal	velocity	and	frequency	(not	shown	here).	
	
Since	the	model	relies	on	connectome	topology,	we	demonstrate	in	Figure	2	that	different	
connectivity	 matrices	 produce	 different	 frequency	 responses:	 A)	 the	 individual’s	
structural	connectivity	matrix,	B)	HCP	average	template	connectivity	matrix,	C)	uniform	
connectivity	matrix	 of	 ones,	D)	 a	 randomly	 generated	matrix,	 E)	 and	 F)	 are	 randomly	
generated	matrices	with	75%	and	95%	sparsity	respectively.	All	modeled	power	spectra	
show	a	broad	alpha	peak	at	around	10	Hz	and	a	narrower	beta	peak	at	around	20	Hz.	This	
is	expected,	since	these	general	spectral	properties	are	governed	by	the	local	linearized	
neural	mass	model.	Although	the	alpha	and	beta	peaks	are	innately	present	under	default	
parameters	 in	 Figure	 1,	 once	 we	 optimize	 parameters,	 the	 peaks	 become	 stronger.	
However,	it	 is	important	to	note	that	different	eigenmodes	accommodate	a	diversity	of	
frequency	 responses;	 for	 instance,	 the	 lowest	 eigenmodes	 show	 a	 low-frequency	
response	with	no	alpha	peak	whatsoever.	In	the	frequency	responses	from	biologically	
realistic	 individual	 and	 HCP	 template	 connectomes,	 there	 is	 a	 diversity	 of	 spectral	
responses	 amongst	 eigenmodes	 that	 is	 lacking	 in	 the	 response	 produced	 by	 the	
unrealistic	uniform	and	 randomized	matrices.	As	we	will	 see	below,	graph	 topology	 is	
critical	to	the	power	spectrum	it	induces,	hence	we	explored	whether	and	how	sparsity	
of	random	graphs	mediates	spectral	power	(Figure	2D-F).	At	 incrementally	 increasing	
sparsity	levels,	the	diversity	of	spectral	responses	of	different	eigenmodes	increases	and	
approaches	 that	of	 realistic	 connectomes.	Therefore,	 graph	eigenmodes	 induce	unique	
and	diverse	frequency	responses	that	depend	on	the	topology	of	the	graph.		
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Spectral	 distribution	 of	 MEG	 power	 depends	 on	 model	 parameters	 but	 not	
connectivity	
	
Network	eigenmodes	exhibit	strong	spatial	patterning	in	their	frequency	responses,	even	
with	 identical	 local	 oscillations	 (Figure	3).	We	evaluated	 the	model	 spectral	 response	
using	the	subject-specific	𝐶-�K-?-K�SP 	matrices	of	4	representative	subjects	(Figure	3A).	
The	model	power	spectra	strikingly	resemble	empirical	MEG	spectra,	correctly	displaying	
both	the	alpha	and	beta	peaks	on	average,	and	similar	regional	variability	as	in	real	data.		
	
Regional	averages	of	empirical	and	modeled	power	spectra	of	the	entire	group	after	full	
parameter	 optimization	 over	 individual	 subjects	 are	 shown	 in	 Figure	 3B.	 The	model	
closely	 replicates	 the	 observed	 power	 spectrum	 (red	 circles)	 equally	 well	 with	 both	
𝐶-�K-?-K�SP 	(black	triangles)	and	𝐶C2��PSC2 	(purple	triangles).	Thus,	in	most	cases	we	can	
safely	replace	the	subject-specific	connectome	with	the	template	connectome.	In	contrast,	
when	non-optimized	default	parameters	were	used	(dark	green	triangles),	it	resulted	in	
a	 bad	 fit,	 especially	 at	 high	 frequencies,	 suggesting	 that	 individualized	 parameter	
optimization	 is	 essential	 to	 produce	 realistic	 spectra.	 We	 also	 examined	 the	 model	
behavior	 for	 a	 random	 connectome	 (bright	 green	 triangles)	 or	 a	 distance-based	
connectome	(blue	triangles)	was	chosen	with	identical	sparsity	to	the	actual	connectome,	
and	found	that	with	optimized	parameters	the	average	spectra	could	be	accounted	for	by	
these	 connectomes	 but	 as	 we	 show	 below	 these	 connectomes	 do	 not	 capture	 the	
frequency	spectra	across	individual	subjects.	We	found	maximum	a	posteriori	estimates	
for	parameters	under	a	 flat	non-informative	prior.	A	simulated	annealing	optimization	
algorithm	was	used	for	estimation	and	provided	a	set	of	optimized	parameters	{𝜏2, 𝜏-, 𝜏R,
𝑔2-, 𝑔--, 𝛼, 𝜐}:	(see	Table	1).		
	
Figure	4A	shows	violin	plots	of	the	optimized	values,	indicating	that	there	is	a	large	range	
of	 individually	 optimal	 model	 parameters	 across	 subjects.	 The	 time	 constants	 𝜏2, 𝜏- 	
showed	 tight	 clustering	 but	 the	 rest	 of	 the	 parameters	 showed	high	 variability	 across	
subjects.	The	optimal	parameters	are	in	a	biologically	plausible	range,	similar	to	values	
reported	in	numerous	neural	mass	models.	The	annealing	algorithm	aimed	to	maximize	
a	cost	function	proportional	to	the	posterior	likelihood	of	the	model,	and	was	quantified	
by	the	Pearson’s	correlation	between	MEG	and	modeled	spectra	(“Spectral	correlation”).	
The	 convergence	 plots	 shown	 in	 Figure	 4B,	 one	 curve	 for	 each	 subject,	 indicates	
substantial	improvement	in	cost	function	from	default	choice	as	optimization	proceeds.	
The	distribution	of	optimized	spectral	correlations	is	shown	in	4C.	Other	model	choices	
were	 evaluated	 for	 comparison:	 SGM	 on	 random	 connectomes	 with	 and	 without	 a	
distance	 effect	 described	 in	 Methods,	 and	 SGM	 applied	 with	 average	 optimal	 model	
parameters	 instead	 of	 individually	 optimized	 ones.	 In	 order	 to	 test	 for	 significance,	
Fisher’s	R	to	z	transform	was	applied,	followed	by	a	paired	t-test	for	each	subject	between	
the	optimal	SGM	and	other	models.	In	each	case	the	former	was	significantly	better	than	
the	latter	(p	<	0.001).	We	conclude	that	with	the	graph	spectral	model,	the	overall	regional	
spectra	 appear	 to	 be	 dependent	 both	 on	 global	 model	 parameters	 and	 on	 the	 actual	
structural	 connectome.	 Performance	 is	 better	 for	 optimized	 parameters	 than	 with	
average	parameters.		
	
As	another	benchmark	for	comparison,	a	non-linear	neural	mass	model	35,59	using	our	in-
house	MATLAB	implementation	37,	was	generally	able	to	produce	characteristic	alpha	and	
beta	 frequency	 peaks	 (yellow)	 but	 this	model	 does	 not	 resemble	 empirical	 wideband	
spectra.	Note	that	no	regionally-varying	NMM	parameters	were	used	in	order	to	achieve	
a	proper	 comparison	with	our	model,	 but	both	models	were	optimized	with	 the	 same	
algorithm.	Nevertheless,	these	data	confirm	our	intuition	that	the	average	spectral	power	
signal	 can	 be	 produced	 by	 almost	 any	 neural	 model,	 whereas	 its	 regional	 variations	
around	the	canonical	spectrum	are	presently	being	modeled	via	the	connectome.	Finally,	
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no	model	 is	 capable	 of	 reproducing	higher	 frequencies	 in	 the	 higher	 beta	 and	 gamma	
range	seen	in	MEG,	since	by	design	and	by	biophysical	intuition	these	frequencies	arise	
from	local	neural	assemblies	rather	than	from	modulation	by	macroscopic	networks.	
	
Graph	spectral	model	recapitulates	the	spatial	distribution	of	MEG	power	
	
Next,	we	establish	that	the	model	can	correctly	reproduce	region-specific	spectra,	even	
though	it	uses	identical	local	oscillations.	We	integrated	the	spectral	area	in	the	range	8-
12	Hz	for	alpha	and	13-25	Hz	for	beta,	of	each	brain	region	separately.	We	define	“spatial	
correlation”	 (as	 compared	 to	 spectral	 correlation	 above)	 as	 Pearson’s	 R	 between	 the	
regional	 distribution	 of	 empirical	 MEG	 and	 model-predicted	 power	 within	 a	 given	
frequency	band.	
	
A	small	number	of	eigenmodes	capture	spatial	distributions	of	alpha	and	beta	band	
activity.		
	
We	noticed	during	our	experimentation	that	only	a	few	eigenmodes	appear	to	contribute	
substantially	 to	 observed	 MEG	 alpha	 and	 beta	 patterns.	 Hence	 we	 hypothesized	 that	
spatial	 correlations	 could	 be	 improved	 by	 selecting	 a	 small	 subset	 of	 eigenmodes.	
Therefore,	we	 developed	 a	 sorting	 strategy	whereby	we	 first	 rank	 the	 eigenmodes	 in	
descending	order	of	spatial	correlation	for	a	given	subject	and	given	frequency	band.	Then	
we	 perform	 summation	 over	 only	 these	 eigenmodes	 according	 to	 Eq	 (10),	 each	 time	
incrementally	 adding	 a	 new	 eigenmode	 to	 the	 sum.	 The	 spatial	 correlation	 of	 these	
“sorted-summed”	eigenmodes	against	empirical	alpha	power	are	plotted	in	Figure	5C	as	
a	function	of	increasing	number	of	eigenmodes;	one	curve	for	each	subject.	The	thick	black	
curve	represents	the	average	over	all	subjects.	The	spatial	correlation	initially	increases	
as	 we	 add	 more	 well-fitting	 eigenmodes,	 but	 peaks	 around,	 and	 begins	 declining	
thereafter.	 Addition	 of	 the	 remaining	 eigenmodes	 only	 serves	 to	 reduce	 the	 spatial	
correlation.	This	behavior	is	observed	in	almost	all	subjects	we	studied.		
	
Examples	of	predicted	alpha	patterns:	Figure	5	shows	brain	surface	renderings	of	the	
spatially	 distributed	 patterns	 of	 alpha	 band	 power	 for	 two	 representative	 subjects.	
Regions	are	color	coded	as	a	heatmap	of	regional	power	scaled	by	mean	power	over	all	
regions.	The	observed	MEG	spatial	distribution	pattern	of	alpha	band	shows	higher	power	
in	posterior	regions	of	the	brain,	as	expected,	with	strong	effect	size	in	temporal,	occipital	
and	medial	 posterior	 areas.	 This	 pattern	 is	 matched	 by	 one	 of	 the	 eigenmodes	 (#10,	
shown	in	middle	panel,	giving	R=0.65),	and	slightly	better	by	a	weighted	combination	of	
2	 eigenmodes	 (R=0.69).	 However,	 the	 model	 did	 not	 reproduce	 parietal	 and	 parieto-
occipital	components	seen	in	real	data.	The	other	subject	produced	similar	results,	but	
with	 6	 eigenmodes.	 In	 this	 instance,	 the	 parietal	 component	 seen	 in	 real	 data	 were	
reasonably	reproduced	by	the	model.		
	
Examples	of	predicted	beta	patterns.	Empirical	beta	power	(Figure	6,	 left)	is	spread	
throughout	the	cortex,	especially	frontal	and	premotor	cortex.		A	combination	of	4	and	6	
best	matching	eigenmodes	produced	the	best	model	match	to	the	source	localized	pattern	
of	two	representative	subjects,	respectively,	with	R	=	0.55	and	0.48.	Figure	6C	shows	how	
the	 spatial	 correlation	 changes	 as	more	 eigenmodes	 are	 used	 in	 the	 “sorted	 summed”	
algorithm,	 analogous	 to	 that	 of	 alpha	 pattern.	Here	 too	 a	 peak	 is	 achieved	 for	 a	 small	
number	of	eigenmodes,	typically	under	10.		
	
Anti-correlation	between	alpha	and	beta	spatial	patterns	
	
First,	we	note	that	empirical	alpha	and	beta	spatial	patterns	are	anti-correlated,	which	is	
expected	since	alpha	is	known	to	be	mainly	posterior	while	beta	is	mainly	frontal.	Figure	
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7A	shows	that	the	spatial	correlations	between	the	observed	MEG	alpha	and	beta	band	
patterns	across	has	a	mean	correlation	value	around	-0.4.	We	want	to	explore	whether	
this	anti-correlation	 is	 reflected	 in	 the	SGM	model	as	well.	We	hypothesize	 that	model	
eigenmodes	 that	resemble	alpha	will	be	anti-correlated	 to	beta,	and	vice	versa.	This	 is	
indeed	the	case,	as	shown	in	Figure	7B.	Figure	7C	shows	a	histogram	of	the	correlation	
between	 the	 alpha	 band	 and	 beta	 band	 spatial	 correlations	 across	 all	 subjects.	 This	
histogram	 has	 a	mode	 around	 -0.4	 and	mean	 at	 -0.24,	 which	 suggests	 that	 across	 all	
subjects’	alpha	and	beta	band	spatial	correlation	curves	for	the	eigenmodes	are	in	turn	
anti-correlated.	Together,	these	results	confirm	that	graph	eigenmodes	might	be	tuned	to	
specific	frequencies,	and	their	spatial	patterns	might	govern	the	spatial	presentation	of	
different	brain	rhythms.	
	
	
Spatial	 correlation	 achieved	 by	 the	 spectral	 graph	model	 is	 significantly	 higher	
than	alternative	models	
	
The	 distribution	 of	 peak	 spatial	 correlations	 in	 the	 alpha	 band,	 using	 optimized	
parameters	 and	 individual	 connectomes	 of	 all	 subjects,	 is	 plotted	 in	 Figure	 8A.	 For	
comparison	we	show	results	for	four	models:	a)	spectral	graph	model	(SGM)	on	subject	
specific	individual	connectomes	(CInd,	black);	b)	SGM	on	random	connectomes	with	80%	
sparsity	comparable	to	individual	connectomes	(CRdm	,	blue);	c)	SGM	on	geodesic	distance	
based	connectomes	(CDst	,green);	and	d)	a	Wilson-Cowan	neural	mass	model	(NMM)	with	
subject	 specific	 individual	 connectome	 (CInd	 ,	 pink).	 Analogous	 results	 for	 beta	 band	
spatial	correlations	are	contained	in	Figure	8B.	Across	all	subjects	the	proposed	model,	
SGM	on	CInd	,	gives	excellent	spatial	correlations	in	alpha	band	(R	distribution	centered	at	
0.6)	as	well	as	in	the	beta	band	(R	distribution	centered	at	0.5).	For	both	alpha	and	beta	
spatial	distribution	patterns,	paired	t-tests	between	SGM	with	CInd	and	all	other	models	
show	that,	the	SGM	with	CInd	significantly	outperformance	all	other	models,	as	determined	
by	a	paired	t-test;	p	<	0.001	in	each	case,	denoted	by	asterisk.		
	
Alternate	non-linear	model.	The	Wilson-Cowan	neural	mass	model	did	not	succeed	in	
correctly	predicting	the	spatial	patterns	of	alpha	or	beta	power,	with	poor	correlations	(r	
centered	at	0).	This	could	be	because	in	our	implementation	we	enforced	uniform	local	
parameters	with	 no	 regional	 variability.	However,	 this	 is	 the	 appropriate	 comparison,	
since	 our	 proposed	 model	 also	 does	 not	 require	 regionally-varying	 parameters.	
Interestingly,	 the	 random	 connectomes	 and	 geodesic	 distance	 based	 connectome	 also	
appear	to	have	some	ability	to	capture	these	spatial	patterns	(r	centered	at	0.4	and	0.2	
respectively),	perhaps	due	to	the	implicit	search	for	best	performing	eigenmodes,	which	
on	average	will	give	at	least	a	few	eigenmodes	that	look	like	MEG	power	purely	by	chance.		
	
Collectively,	we	conclude	that	the	graph	model	is	able	to	fit	both	the	spectral	and	spatial	
features	of	empirical	source	localized	MEG	data,	and	that	the	optimal	fits	performed	on	
individual	subjects	occurs	at	widely	varying	subject-specific	parameter	choices.		
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Discussion	

The	proposed	hierarchical	 graph	 spectral	model	of	neural	 oscillatory	 activity	 is	 a	 step	
towards	understanding	the	fundamental	relationship	between	network	topology	and	the	
macroscopic	 whole-brain	 dynamics.	 The	 objective	 is	 not	 just	 to	 model	 brain	 activity	
phenomenologically,	 but	 to	 analytically	 derive	 the	 mesoscopic	 laws	 that	 drive	
macroscopic	 dynamics.	 This	 model	 of	 the	 structure-function	 relationship	 has	 the	
following	key	distinguishing	features:	1)	Hierarchical:	the	model’s	complexity	depends	on	
the	level	of	hierarchy	being	modeled:	complex,	non-linear	and	chaotic	dynamics	can	be	
accommodated	at	the	local	level,	but	linear	graph	model	is	sufficient	at	the	macro-scale.	
2)	 Graph-based:	 Macroscopic	 dynamics	 is	mainly	 governed	 by	 the	 connectome,	 hence	
linear	approximations	allow	the	steady-state	frequency	response	to	be	specified	by	the	
graph	Laplacian	eigen-decomposition,	borrowing	heavily	from	spectral	graph	theory	38–
41.	3)	 Analytic:	 The	model	 is	 available	 in	 closed	 form,	without	 the	 need	 for	 numerical	
simulations.	 4)	 Low-dimensional	 and	 parsimonious:	 Simple,	 global	 and	 universal	 rules	
specified	with	a	few	parameters,	all	global	and	apply	at	every	node,	are	able	to	achieve	
sufficiently	complex	dynamics.	The	model	is	incredibly	easy	to	evaluate,	taking	no	more	
than	a	few	seconds	per	brain	and	to	infer	model	parameters	directly	from	a	subject’s	MEG	
data.	The	optimized	model	matches	observed	MEG	data	quite	well.	No	time-consuming	
simulations	 of	 coupled	 neural	masses	 or	 chaotic	 oscillators	 were	 needed;	 indeed,	 the	
latter	 greatly	 underperformed	 our	 model.	 We	 report	 several	 novel	 findings	 with	
potentially	important	implications,	discussed	below.		

Recapitulating	regional	power	spectra	at	all	frequencies	
	
Our	main	result	is	the	robust	demonstration	of	the	model	on	36	subjects’	MEG	data.	The	
representative	examples	shown	in	Figures	3-6	indicate	that	the	graph	model	recapitulates	
the	observed	source	localized	MEG	power	spectra	for	the	68	parcellated	brain	regions,	
correctly	reproducing	the	prominent	alpha	and	beta	peaks.	For	each	region,	the	model	is	
also	correctly	able	to	predict	the	full	bandwidth	power	spectra,	including	what	appears	to	
be	an	inverse	power	law	fall-off	over	the	entire	frequency	range	of	interest.	However,	this	
aspect	will	be	quantitatively	characterized	in	future	work.	
	
Revealing	sources	of	heterogeneity	in	brain	activity	patterns	
	
The	 match	 between	 model	 and	 data	 is	 strongest	 when	 the	 model	 uses	 empirical	
macroscopic	connectomes	obtained	from	healthy	subjects’	diffusion	weighted	MRI	scans,	
followed	by	tractography.	The	use	of	“null”	connectomes	-	uniform	connectivity	of	ones	
and	 randomized	 connectivity	 matrix,	 respectively,	 did	 far	 worse	 than	 actual	 human	
connectomes	 (Figure	8),	 supporting	 the	 fact	 that	 the	 latter	 is	 the	key	mediator	of	 real	
brain	 activity.	 The	 match	 was	 not	 significantly	 different	 when	 using	 a	 template	 HCP	
connectome	 versus	 the	 individual	 subject’s	 own	 connectomes	 (Figures	 3B,	 4C),	
suggesting	that,	for	the	purpose	of	capturing	the	gross	topography	of	brain	activity,	it	is	
sufficient	to	use	a	template	connectome,	and	disregard	individual	variability.		
	
However,	 this	 does	 not	 mean	 that	 the	 model	 is	 incapable	 of	 capturing	 individual	
variability:	indeed,	we	designed	a	comprehensive	parameter	optimization	algorithm	on	
individual	 subjects’	 MEG	 data	 of	 a	 suitably	 defined	 cost	 function	 based	 on	 Pearson	 R	
statistic	as	a	way	to	capture	all	relevant	spectral	features.	Using	this	fitting	procedure,	we	
were	 able	 to	 obtain	 the	 range	 of	 optimally-fitted	 parameters	 across	 the	 entire	 study	
cohort.	As	shown	in	Figure	4A,	the	range	is	broad	in	most	cases,	 implying	that	there	is	
significant	inter-subject	variability	of	model	parameters,	even	if	a	template	connectome	
is	used	for	all.	We	tested	the	possibility	that	a	group-averaged	parameter	set	might	also	
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succeed	in	matching	real	data	on	individuals.	But	as	shown	in	Figures	3B	and	4C,	this	was	
found	 to	 be	 a	 poor	 choice,	 supporting	 the	 key	 role	 of	 individual	 variability	 of	 model	
parameters	(but	not	variability	in	the	connectome).		
	
Macroscopic	brain	rhythms	are	governed	by	the	connectome	
	
A	 predominant	 view	assumes	 that	 different	 brain	 rhythms	 are	produced	by	 groups	of	
neurons	 with	 similar	 characteristic	 frequencies,	 which	 might	 synchronize	 and	 act	 as	
“pacemakers.”	 How	 could	 this	 view	 explain	 why	 alpha	 and	 beta	 power	 are	 spatially	
stereotyped	across	subjects,	and	why	the	alpha	signal	is	especially	prominent	in	posterior	
areas?	Although	practically	any	computer	model	of	cortical	activity	can	be	 tuned,	with	
suitable	parameter	choice,	to	oscillate	at	alpha	frequency,	e.g.	5,16,20,22,61–63,	none	of	them	
are	 able	 to	 parsimoniously	 recapitulate	 the	 posterior	 origin	 of	 alpha.	 Thus	 the	
prominence	of	posterior	alpha	might	be	explained	by	the	hypothesized	existence	of	alpha	
generators	 in	 posterior	 areas.	 Indeed,	 most	 oscillator	 models	 of	 local	 dynamics	 are	
capable	of	producing	these	rhythms	at	any	desired	 frequency	 5,63–66,	and	therefore	 it	 is	
common	 to	 tweak	 their	 parameters	 to	 reproduce	 alpha	 rhythm.	 Local	 networks	 of	
simulated	multicompartmental	neurons	can	produce	oscillations	in	the	range	8–20	Hz	5,	
and,	in	a	non-linear	continuum	theory,	peaks	at	various	frequencies	in	the	range	2–16Hz	
were	 obtained	 depending	 on	 the	 parameters	 65.	 Specifically,	 the	 role	 of	 thalamus	 as	
pacemaker	has	motivated	thalamocortical	models	11,16	that	are	capable	of	resonances	in	
various	ranges.	Neural	field	models	of	the	thalamocortical	loop	16	can	also	predict	slow-
wave	and	spindle	oscillations	in	sleep,	and	alpha,	beta,	and	higher-frequency	oscillations	
in	 the	waking	 state.	 In	 these	 thalamocortical	models,	 the	 posterior	 alpha	 can	 arise	 by	
postulating	 a	 differential	 effect	 in	 weights	 of	 the	 posterior	 versus	 anterior	 thalamic	
projections,	e.g.	62.	Ultimately,	hypotheses	requiring	local	rhythm	generators	suffer	from	
lack	 of	 parsimony	 and	 specificity:	 a	 separate	 pacemaker	must	 be	 postulated	 for	 each	
spectral	peak	at	just	the	right	location	67.		
	
An	 alternative	 view	 emerges	 from	 our	 results	 that	 macroscopic	 brain	 rhythms	 are	
governed	by	the	structural	connectome.	Even	with	global	model	parameters,	using	the	
exact	 same	 local	 cortical	 dynamics	 captured	 by	 the	 local	 transfer	 function	𝐻PQRSP(𝜔) ,	
driven	by	identically	distributed	random	noise	𝑷(𝜔),	our	model	is	capable	of	predicting	
prominent	spectral	(Figures	3,4)	and	spatial	(Figures	5,6)	patterning	that	is	quite	realistic.	
This	is	especially	true	in	the	lower	frequency	range:	indeed,	the	model	correctly	predicts	
not	just	the	frequency	spectra	in	alpha	and	beta	ranges,	but	also	their	spatial	patterns	–	
i.e.	posterior	alpha	and	distributed	but	roughly	frontal	beta.	Although	this	is	not	definitive	
proof,	it	raises	the	intriguing	possibility	that	the	macroscopic	spatial	distribution	of	the	
spectra	of	brain	signals	does	not	require	spatial	heterogeneity	of	local	signal	sources,	nor	
regionally	variable	parameters.	Rather,	it	implies	that	the	most	prominent	patterning	of	
brain	 activity	 (especially	 alpha)	 may	 be	 governed	 by	 the	 topology	 of	 the	 macroscopic	
network	 rather	 than	 by	 local,	 regionally-varying	 drivers.	 Nevertheless,	 a	 deeper	
exploration	is	required	of	the	topography	of	the	dominant	eigenmodes	of	our	linear	model,	
in	order	to	understand	the	spatial	gradients	postulated	previously	16,62.	
	
Emergence	of	linearity	from	chaotic	brain	dynamics	
	
The	 non-linear	 and	 chaotic	 dynamics	 of	 brain	 signals	may	 at	 first	 appear	 to	 preclude	
deterministic	or	analytic	modeling	of	any	kind.	Yet,	vast	swathes	of	neuroscientific	terrain	
are	surprisingly	deterministic,	reproducible	and	conserved	across	individuals	and	even	
species.	Brain	rhythms	generally	fall	within	identical	frequency	bands	and	spatial	maps	
4,16,33.	Based	on	the	hypothesis	that	the	emergent	behavior	of	long-range	interactions	can	
be	independent	of	detailed	local	dynamics	of	individual	neurons	13–18,	and	may	be	largely	
governed	by	long-range	connectivity	19–22,	we	have	reported	here	a	minimal	linear	model	
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of	 how	 the	 brain	 connectome	 serves	 as	 a	 spatial-spectral	 filter	 that	 modulates	 the	
underlying	non-linear	signals	emanating	from	local	circuits.	Nevertheless,	we	recognize	
the	limitations	of	a	linear	model	and	its	inability	to	capture	inherent	non-linearities	across	
all	levels	in	the	system.		
	
Relationship	to	other	work	

One	can	view	the	proposed	generative	model	as	a	biophysical	realization	of	a	dynamic	
causal	 model	 (DCM)	 68–72	 for	 whole	 brain	 electrophysiological	 activity	 	 but	 with	 very	
different	goals,	model	dimensionality	and	inference	procedures.		

First,	 the	goal	of	many	prior	efforts	using	DCMs	 is	 to	examine	effective	connectivity	 in	
EEG,	 LFP	 and	 fMRI	 functional	 connectivity	 data,	 typically	 for	 smaller	 networks72,73,	 or	
dynamic	 effective	 connectivity74–76.	 Hence,	 they	 address	 the	 second	 order	 covariance	
structures	of	brain	activity.	In	particular,	recent	spectral	DCM	and	regression	DCM	models	
77–79	with	local	neural	masses	are	formulated	in	the	steady-state	frequency-domain,	and	
the	resulting	whole-brain	cross-spectra	are	evaluated.	The	goals	of	these	models	are	to	
derive	model	cross-spectra	that	define	the	effective	connectivity	in	the	frequency	domain	
and	 are	 compared	 with	 empirical	 cross-spectra.	 Based	 on	 second-order	 sufficient	
statistics,	 these	 models	 attempt	 to	 derive	 effective	 connectivity	 from	 functional	
connectivity	data.	These	DCMs	have	so	far	only	been	applied	to	small	networks	or	to	BOLD	
fMRI	 regime.	 In	 contrast,	 our	 goal	 is	 to	 examine	 the	 role	 of	 the	 eigenmodes	 of	 the	
structural	connectome	and	their	influence	on	power	spectral	distributions	in	the	full	MEG	
frequency	 range,	 and	 over	 the	 entire	 whole	 brain.	 In	 subsequent	 work,	 we	 intend	 to	
extend	our	efforts	to	examining	effective	connectivity	but	such	an	effort	currently	remains	
outside	 the	 scope	 of	 the	 work	 in	 this	 paper.	 Here,	 we	 focus	 on	 models	 that	 directly	
estimate	the	first	order	effects	of	observed	power	spectra	and	its	spatial	distributions	and	
compare	them	with	empirical	MEG	source	reconstructions.	Our	primary	motivation	is	to	
examine	whether	 spatial	distribution	of	observed	power	 spectra	 can	arise	 from	graph	
structure	 of	 the	 connectome,	 hence	 our	 focus	 on	 the	 effects	 of	 model	 behavior	 as	 a	
function	of	the	underlying	structural	connectome	–	whether	it	is	individualized,	template-
based,	uniform,	random	or	distance	based.	DCM	methods	have	not	reported	first	order	
regional	 power	 spectra	 as	 we	 do	 here,	 nor	 have	 they	 explored	 how	 the	 structural	
connectome	influences	model	spectral	distributions.		

Second,	our	model	 is	more	parsimonious	compared	to	most	of	 these	above-mentioned	
models	which	have	many	more	degrees	of	freedom	because	they	often	allow	for	regions	
and	 their	 interactions	 to	have	different	parameters.	Our	model	parameterization,	with	
only	a	few	global	parameters,	lends	itself	to	efficient	computations	over	fine-scale	whole-
brain	 parcellations,	 whereas	 most	 DCMs	 (with	 the	 exception	 of	 recent	 spectral	 and	
regression	 DCMS	 77–79)	 are	 suited	 for	 examining	 smaller	 networks	 but	 involve	 large	
effective	connectivity	matrices	and	region-specific	parameters.	Furthermore,	parameters	
of	our	model	remain	grounded	and	interpretable	in	terms	of	the	underlying	biophysics,	
i.e.	time	constants	and	conductivities.		In	contrast,	spectral	and	regression	DCM	models	of	
cross-spectra	have	parameters	that	are	abstract	and	do	not	have	immediate	biophysical	
interpretation.	

The	third	major	difference	is	in	the	emphasis	placed	on	Variational	Bayesian	inference	in	
DCM.	Since	our	 focus	was	on	exploring	model	behavior	over	a	 small	number	of	global	
parameters	 and	 a	 set	 of	 structural	 connectomes	 (whether	 anatomic	 or	 random)	 of	
identical	sparsity	and	complexity,	it	was	sufficient	to	use	a	maximum	a	posteriori	(MAP)	
estimation	procedure	 for	Bayesian	 inference	of	 our	 global	model	parameters	with	 flat	
non-informative	priors	with	pre-determined	ranges	based	on	biophysics.	Like	most	DCM	
efforts	our	model	can	be	easily	be	extended	to	Variational	Empirical	Bayesian	inference	
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for	 parameter	 estimation,	 for	 instance	 to	 compute	 a	 full	 posterior	 of	 the	 structural	
connectivity	matrix.	In	such	a	formulation,	we	can	assume	that	the	observed	structural	
connectome	will	 serve	 as	 the	 prior	mean	 of	 the	 connectivity	matrix.	We	 reserve	 such	
extensions	to	our	future	work	with	this	spectral	graph	model.		

Other	limitations	and	extensions	

The	model	currently	examines	resting-state	activity,	but	 future	extensions	will	 include	
prediction	of	functional	connectivity,	task-induced	modulations	of	neural	oscillations	and	
causal	 modeling	 of	 external	 stimuli,	 e.g.	 transcranial	 magnetic	 and	 direct	 current	
stimulation.	The	current	implementation	does	not	incorporate	complex	local	dynamics,	
but	future	work	will	explore	using	non-white	internal	noise	and	chaotic	dynamics	for	local	
assemblies.	This	may	allow	us	to	examine	higher	gamma	frequencies.	Although	our	model	
incorporates	latency	information	derived	from	path	distances,	we	plan	to	explore	path-
specific	propagation	velocities	derived	from	white	matter	microstructural	metrics	such	
as	axon	diameter	distributions	and	myelin	thickness.	Future	work	will	also	examine	the	
specific	 topographic	 features	 of	 the	 structural	 connectome	 that	 may	 best	 describe	
canonical	neural	activity	spectra.	Finally,	we	plan	to	examine	the	ability	of	the	model	to	
predict	time-varying	structure-function	relationships.	

Potential	applications	

Mathematical	encapsulation	of	the	structure-function	relationship	can	potentiate	novel	
approaches	 for	mapping	and	monitoring	brain	diseases	such	as	autism,	 schizophrenia,	
epilepsy	and	dementia,	since	early	 functional	changes	are	more	readily	and	sensitively	
measured	 using	 fMRI	 and	 MEG,	 compared	 to	 structural	 changes.	 Because	 of	 the	
complementary	sensitivity,	temporal	and	spatial	resolutions	of	diffusion	MRI,	MEG,	EEG	
and	 fMRI,	 combining	 these	 modalities	 may	 be	 able	 to	 reveal	 fine	 spatiotemporal	
structures	of	neuronal	activity	that	would	otherwise	remain	undetected	if	using	only	one	
modality.	Current	efforts	at	fusing	multimodalities	are	interpretive,	phenomenological	or	
statistical,	with	limited	cognizance	of	underlying	neuronal	processes.	Thus,	the	ability	of	
the	presented	model	to	quantitatively	and	parsimoniously	capture	the	structure-function	
relationship	may	be	key	to	achieving	true	multi-modality	integration.		
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Figure	Legends	
	
Figure	1:	The	Linearized	Spectral	Graph	Model.	A:	Conventional	neural	mass	models	
typically	 instantiate	 a	 large	 assembly	 of	 excitatory	 and	 inhibitory	 neurons,	 which	 are	
modeled	as	fully	connected	internally.	External	inputs	and	outputs	are	gated	through	the	
excitatory	 neurons	 only,	 and	 inhibitory	 neurons	 are	 considered	 strictly	 local.	 The	
proposed	linear	model	condenses	these	local	assemblies	into	lumped	linear	systems	𝑓2 𝑡 	
and	𝑓-(𝑡),	 Gamma-shaped	 functions	having	 time	 constants	𝜏2 	and	𝜏- 	–	 see	panel	B.	 The	
recurrent	architecture	of	the	two	pools	within	a	local	area	is	captured	by	the	gain	terms	
𝑔22, 𝑔--, 𝑔2- ,	 indicating	the	loops	created	by	recurrents	within	excitatory,	 inhibitory	and	
cross-populations.	C:	The	absolute	value	of	eigenvalues	of	 the	complex	Laplacian	𝓛(𝜔)	
are	plotted	against	the	eigenvector	index.	Each	dot	represents	one	eigenvalue	𝜆(𝜔);	 its	
color	represents	the	frequency	𝜔	-	low	(blue)	to	high	(yellow).	Clearly,	these	eigenvalues	
change	somewhat	by	frequency;	small	eigenvalues	change	more	compared	to	large	ones.	
D:	 Frequency	 response	 of	 each	 eigenmode	 plotted	 on	 the	 complex	 plane	with	 default	
model	 parameters.	 Each	 curve	 represents	 the	 transit	 in	 the	 complex	 plane	 of	 a	 single	
eigenmode’s	frequency	response,	starting	at	low	frequencies	in	the	bottom	right	quadrant,	
and	 moving	 characteristically	 to	 the	 upper	 left	 quadrant	 at	 high	 frequencies.	 The	
magnitude	 of	 the	 response,	 given	 by	 the	 distance	 from	 the	 origin,	 suggests	 that	most	
eigenmodes	have	two	prominent	lobes,	roughly	corresponding	to	alpha	and	beta	rhythms,	
respectively.	 In	 contrast,	 the	 lowest	 few	 eigenmodes	 start	 off	 far	 from	 the	 origin,	
indicative	 of	 a	 low-pass	 response.	 	 E:	 Magnitude	 of	 the	 frequency	 response	 of	 each	
eigenmode	reinforces	these	impressions	more	clearly.	F:	The	spatial	patterns	of	the	top	5	
eigenmodes	of	𝓛 𝜔 ,	evaluated	at	the	alpha	frequency,	10	Hz.	The	first	4	eigenmodes	𝐮# −
𝐮� ,	 produce	 posterior	 and	 temporal	 spatial	 patterns,	 including	many	 elements	 of	 the	
default	 mode	 network;	 𝐮𝟒 	resembles	 the	 sensorimotor	 network;	 and	 𝐮� 	the	
structural	core	of	the	human	connectome.	However,	these	patterns	are	not	exclusive	and	
greatly	 depend	 on	 the	 frequency	 at	 which	 they	 are	 evaluated,	 as	 well	 as	 the	 model	
parameters.		
	
Figure	2:	Spectral	graph	model	predictions	of	MEG	spectra	for	one	representative	
subject.	Top	–	Observed	MEG	power	spectrum	for	each	of	the	68	parcellated	brain	regions.	
Average	spectra	for	each	brain	region	are	shown	in	blue,	and	the	average	spectrum	across	
all	 brain	 regions	 is	 shown	 in	 thick	 black	 curve.	 The	 subsequent	 rows	 show	 each	
eigenmode's	spectral	magnitude	response	with	model	parameters	optimized	to	match	the	
observed	 spectrum	 (𝜏2 = 0.0073,	𝜏- = 0.0085,	𝜏3 = 0.0061,	𝑔2- = 2.9469	𝑔-- = 4.4865,	
𝜈 = 18.3071	and	𝛼 = 0.4639).	Left	column	shows	each	eigenmode’s	frequency	response	
in	a	differently-colored	curve,	while	the	right	column	shows	the	same	information	as	a	
heatmap.	A:	 Model	 using	 subject's	 individual	 structural	 connectivity	matrix.	B:	 Model	
using	 a	 template	 structural	 connectivity	 matrix	 obtained	 by	 averaging	 structural	
connectivity	from	80	HCP	subjects.	C:	Model	using	uniform	connectivity	matrix	of	ones.	D:	
Model	using	randomized	connectivity	matrix	with	no	sparsity.	E:	Model	using	randomized	
connectivity	matrix	with	75%	sparsity.	F:	Model	using	randomized	connectivity	matrix	
with	95%	sparsity.	In	all	cases	the	connectome	modulates	the	spectral	response	in	delta-
beta	 range,	 leaving	 the	 higher	 gamma	 frequencies	 unchanged.	 In	 general,	 the	 low	
eigenmodes	(𝐮𝟏 − 𝐮𝟐𝟎)	appear	to	modulate	the	 lower	frequency	range,	up	to	beta,	and	
may	be	considered	responsible	for	the	diversity	of	spectra	observed	in	the	model.	
	
Figure	3:	Spectral	graph	model	accurately	depicts	MEG	spectra	across	subjects.	A:	
The	 observed	 spectra	 and	 spectral	 graph	 model’s	 simulated	 spectra	 for	 four	
representative	 subjects.	 Red	 and	 cyan	 curves	 illustrate	 source	 localized	 empirical		
average	 spectra	 and	 region-wise	 spectra	 respectively,	 while	 black	 and	 blue	 curves	
illustrate	modeled	 average	 spectra	 and	 region-wise	 spectra	 respectively.	 B:	 Averaged	
observed	spectrum	across	subjects	is	shown	in	red.	The	average	simulated	model	spectra	
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summing	 the	 first	 two-third	 eigenmodes	 with	 optimized	 parameters	 for	 individual	
subject’s	connectome	is	shown	in	black.	Model	spectrum	with	optimized	parameters	and	
the	 HCP	 template	 connectome	 is	 shown	 in	 purple.	 Model	 spectrum	 with	 average	
parameter	values	and	individual	subject’s	connectome	is	shown	in	golden	green.	Model	
spectrum	with	optimized	parameters	and	a	connectome	constructed	by	selecting	20%	of	
the	highest	geodesic	distance	between	ROI	pairs	is	shown	in	blue.	Model	spectrum	with	
optimized	parameters	and	symmetric	random	connectomes	with	80%	sparsity	is	shown	
in	green.	Finally,	model	power	spectrum	estimated	by	a	neural	mass	model	(NMM)	with	
each	subject’s	optimized	global	parameters	and	a	HCP	template	connectome	is	shown	in	
pink.	
	
Figure	4:	Spectral	graph	model	parameter	optimization	improves	spectral	fits.	A:	
Distribution	of	 optimized	model	parameter	 values	 across	 all	 36	 subjects	 for	 the	 set	 of	
parameters	 𝜏2, 𝜏-, 𝜏R, 𝑔2-, 𝑔--, 𝛼, 𝜐 	are	 shown	 in	 violin	 plots	 with	 each	 dot	
representing	 one	 subject.	B.	 Performance	 of	 optimization	 algorithm.	 Spectral	 Pearson	
correlation	between	model	and	source	localized	MEG	spectra	at	each	iteration.	Each	curve	
shows	 the	 spectral	 correlation	 achieved	 by	 the	 model	 optimized	 for	 a	 single	 subject,	
averaged	over	all	 regions,	with	 increasing	mean	correlation	values	until	 the	algorithm	
convergence	 to	 a	 set	 of	 optimized	 parameters.	C:	Distribution	 of	 spectral	 correlations	
between	 optimized	 model	 and	 observed	 spectra	 across	 subjects.	 Correlations	 with	
optimized	parameters	are	shown	in	the	left	three	columns	with	individual	connectomes	
(black),	 symmetric	 random	 connectomes	 (blue)	 and	 geodesic	 distance-based	
connectomes	 (green).	 Correlation	 with	 average	 parameter	 values	 and	 individual	
connectomes	are	shown	in	golden	green.	Spectral	correlations	are	highest	 for	 the	SGM	
model	with	optimized	parameters	and	the	individual	subject	specific	connectome.	Paired	
t-test	between	the	optimized	SGM	and	other	models	was	performed	across	all	subjects,	
and	the	former	was	found	to	give	significantly	higher	spectral	R	compared	to	the	latter	(p	
<	0.001	in	each	case,	denoted	by	asterisk).		
		
Figure	 5:	 Alpha	 power	 spatial	 distribution	 depicted	 by	 specific	 spectral	 graph	
model	eigenmodes.	A	&	B.	The	spatially	distributed	patterns	of	alpha	band	power	for	
two	representative	subjects	are	displayed	in	brain	surface	renderings.	For	each	four	brain	
panels	shown,	the	medial	surface	is	rendered	on	the	left	column	while	the	lateral	surface	
is	rendered	on	the	right,	the	left	hemisphere	rendering	is	shown	on	top	while	the	right	
hemisphere	 rendering	 is	 shown	 in	 the	 bottom	 row.	Left	 column:	 The	 observed	MEG	
spatial	 distribution	 pattern	 for	 alpha	 band	 power	 showing	 higher	 power	 in	 posterior	
regions	of	the	brain.	Middle	column:	Spatial	distribution	of	the	best	matching	eigenmode	
from	the	spectral	graph	model.	The	spatial	correlation	values	are	shown	on	top.	Right	
column:	Spatial	distribution	of	the	best	cumulative	combination	of	eigenmodes	from	the	
spectral	 graph	 model.	 Spatial	 correlation	 values	 and	 the	 number	 of	 eigenmodes	 are	
shown	on	top.	C:	Across	subject	distribution	of	the	alpha	band	spatial	correlation	values	
from	spectral	graph	model	simulations	 for	 the	best	 fit	eigenmodes	and	 the	cumulative	
combination	 of	 an	 increasing	 number	 of	 eigenmodes.	 Individual	 subject	 specific	 alpha	
band	spatial	correlation	curves	are	shown	in	cyan	(n	=	36).	Panels	A	and	B	correspond	to	
the	 subjects	 indicated	by	 red	 and	blue	 curves	 respectively.	 Black	 curve	 is	 the	 average	
performance	across	all	subjects.	
	
Figure	 6:	 Beta	 power	 spatial	 distributions	 depicted	 by	 specific	 spectral	 graph	
model	 eigenmodes.	Legend	 is	 identical	 to	 figure	 5	 but	 shown	 for	 beta	 power	 spatial	
distributions.		
	
Figure	7:	Alpha	 and	beta	band	 spatial	 patterns	 are	 anti-correlated	 and	 this	 also	
reflected	 in	 spectral	 graph	model	 eigenmodes.	A:	 Spatial	 correlations	 between	 the	
observed	MEG	alpha	and	beta	band	patterns	across	subjects	is	shown	as	a	violin	plot	and	
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has	a	mean	spatial	correlation	value	-0.41.	B.	Scatter	plot	of	alpha	and	beta	power	spatial	
correlations	 for	 each	 eigenmodes	 from	 all	 subjects	 reveal	 a	 significant	 negative	
correlation	between	the	spatial	distribution	of	alpha	and	beta	band	power	(r=	-0.255,	𝑝 <
0.0001 ).	 C:	 Distribution	 of	 the	 correlation	 of	 eigenmode	 spatial	 correlation	 vectors.	
Vectors	 of	 alpha	 and	 beta	 band	 spatial	 correlations	 were	 first	 computed	 for	 each	
eigenmode,	 and	 a	 correlation	 between	 these	 vectors	 are	 computed	 for	 each	 subject.	
Distribution	of	the	correlation	of	eigenmode	spatial	correlations	is	negative	with	a	mean	
of	-0.24.		
	
Figure	 8:	 Spatial	 correlation	 performance	 analysis	 of	 the	 spectral	 graph	model.	
Distribution	 of	 the	 best	 fit	 spatial	 correlations	 of	 the	 spectral	 graph	model	 across	 all	
subjects.	A.	Alpha	band	spatial	correlations.	B.	Beta	band	spatial	correlations.	For	both	
panels,	 spatial	 correlations	 are	 shown	 for	 spectral	 graph	 model	 (SGM)	 with	 subject	
specific	 individual	 connectomes	 (CInd,	 black),	 random	 connectomes	with	 80%	 sparsity	
comparable	 to	 individual	 connectomes	 (CRdm	 ,	 blue),	 geodesic	 distance	 based	
connectomes	 (CDst	 ,green)	 and	 for	 a	 neural	 mass	 model	 (NMM)	 with	 subject	 specific	
individual	connectome	(CInd	,	pink).	For	both	alpha	and	beta	spatial	distribution	patterns,	
paired	t-tests	between	SGM	with	CInd	and	all	other	models	show	that,	the	SGM	with	CInd	
significantly	outperformance	all	other	models,	as	determined	by	a	paired	t-test;	p	<	0.001	
in	each	case,	denoted	by	asterisk.		
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