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Abstract

Gene transcription profiles across tissues are largely defined by the activity of regulatory
elements, most of which correspond to regions of accessible chromatin. Regulatory
element activity is in turn modulated by genetic variation, resulting in variable
transcription rates across individuals. The interplay of these factors, however, is poorly
understood. Here we characterize expression and chromatin state dynamics across three
tissues—liver, lung, and kidney—in 47 strains of the Collaborative Cross (CC) mouse
population, examining the regulation of these dynamics by expression quantitative trait
loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent
across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected
were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL
for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging
overlapping measurements of gene expression and chromatin accessibility on the same
mice from multiple tissues, we used mediation analysis to identify chromatin and gene
expression intermediates of eQTL effects. Based on QTL and mediation analyses over
multiple tissues, we propose a causal model for the distal genetic regulation of Akr1e1, a
gene involved in glycogen metabolism, through the zinc finger transcription factor
Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of
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transcriptional and chromatin dynamics and their regulation over multiple tissues, as
well as the value of the CC and related genetic resource populations for identifying
specific regulatory mechanisms within cells and tissues.

Author summary

Genetic variation can drive alterations in gene expression levels and chromatin
accessibility, the latter of which defines gene regulatory elements genome-wide. The
same genetic variants may associate with both molecular events, and these may be
connected within the same causal path: a variant that reduces promoter region
chromatin accessibility, potentially by affecting transcription factor binding, may lead to
reduced expression of that gene. Moreover, these causal regulatory paths can differ
between tissues depending on functions and cellular activity specific to each tissue. We
identify cross-tissue and tissue-selective genetic regulators of gene expression and
chromatin accessibility in liver, lung, and kidney tissues using a panel of genetically
diverse inbred mouse strains. Further, we identify a number of candidate causal
mediators of the genetic regulation of gene expression, including a zinc finger protein
that helps silence the Akr1e1 gene. Our analyses are consistent with chromatin
accessibility playing a role in the regulation of transcription. Our study demonstrates
the power of genetically diverse, multi-parental mouse populations, such as the
Collaborative Cross, for large-scale studies of genetic drivers of gene regulation that
underlie complex phenotypes, as well as identifying causal intermediates that drive
variable activity of specific genes and pathways.

Introduction 1

Determining the mechanisms by which genetic variants drive molecular, cellular, and 2

physiological phenotypes has proved to be challenging [1]. These mechanisms can be 3

informed by genome-wide experiments that provide data on variations in molecular and 4

cellular states in genotyped individuals. Most examples of such data, though, are largely 5

observational, due in part to constraints of specific populations (e.g., humans), the 6

limitations of existing experimental technologies, and the challenge of coordinating large 7

numbers of experiments with multiple levels of data [2]. One approach to shed light on 8

these dynamics is to pair complementary datasets from the same individuals and 9

perform statistical mediation analysis (e.g., [3, 4]), which has increasingly been used in 10

genomics [6]. These analyses can identify putative causal relationships rather than 11

correlational interactions, providing meaningful and actionable targets in terms of 12

downstream applications in areas such as medicine and agriculture. 13

In human data, co-occurence of QTL across various multi-omic data has been used 14

to assess potentially related and connected biological processes; examples include gene 15

expression with chromatin accessibility [7] or regulatory elements [8], and ribosome 16

occupancy with protein abundances [9]. More formal integration through statistical 17

mediation analyses has also been used to investigate relationships between levels of 18

human biological data, such as distal genetic regulation through local gene 19

expression [10,11], and eQTL with regulatory elements [12–14] and physiological 20

phenotypes, such as cardiometabolic traits [15]. 21

Though genetic association studies of human populations have been highly 22

successful [16], animal models allow for more deliberate control of confounding sources 23

of variation, including experimental conditions and population structure, and as such 24

provide a potentially powerful basis for detecting associations and even causal linkages. 25

Towards this end, genetically-diverse mouse population resources have been established, 26
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including the Collaborative Cross (CC) [17–19] and the Diversity Outbred (DO) 27

population [20]. The CC and the DO are multiparental populations (MPP), derived 28

from the same eight founder strains (short names in parentheses): A/J (AJ), C57BL/6J 29

(B6), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/H1LtJ (NZO), CAST/EiJ 30

(CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB). The CC are recombinant inbred 31

strains and therefore replicable across and within studies; the DO are largely 32

heterozygous, outbred animals, bred with a random mating strategy that seeks to 33

maximize diversity. MPPs similar to the CC or DO have also been developed in other 34

species, including rats, Arabidopsis, Drosophila, and yeast, and the use of MPPs in 35

model organism research has accelerated significantly in recent years ( [21] and refs 36

therein). 37

As with humans, it is only recently that studies on MPPs have used mediation 38

analysis to connect genetic variants with different levels of genomic data. A 39

genome-wide mediation approach in 192 DO mice was used to link transcriptional and 40

post-translational regulation of protein levels [22]. CC mice were then used to confirm 41

results by showing correspondence with estimates of founder haplotype effects from each 42

of the related populations. More recently, mediation analysis was used to connect 43

chromatin accessibility with gene expression in embryonic stem cells derived from DO 44

mice [23]. The CC and DO, and MPPs more broadly, have well-characterized haplotype 45

structures that provide a unique opportunity for studying mediation at the haplotype 46

level. This is potentially advantageous because haplotypes can capture genetic variation 47

and its effects more comprehensively than can individual SNPs [24], the latter being the 48

predominant basis for comparable mediation analyses in humans. 49

Here we use a sample composed of a single male mouse from 47 CC strains to 50

investigate dynamics between gene expression and chromatin accessibility, as 51

determined by Assay for Transposase Accessible Chromatin sequencing (ATAC-seq), in 52

lung, liver, and kidney tissues. We detect QTL underlying gene expression and 53

chromatin accessibility variation across the strains and assess support for mediation of 54

the effect of eQTL through chromatin accessibility using a novel implementation of 55

previous methods used in the DO [22]. Additionally, we detect gene mediators of 56

distal-eQTL. These findings demonstrate the experimental power of the CC resource for 57

integrative analysis of multi-omic data to determine genetically-driven phenotype 58

variation, despite limited sample size, and provide support for continued use of the CC 59

in larger experiments going forward. 60

Results 61

Differential gene expression and chromatin accessibility 62

Gene expression and chromatin accessibility cluster by tissue 63

Gene expression and chromatin accessibility were measured with RNA-seq and 64

ATAC-seq assays, respectively, from whole lung, liver, and kidney tissues in one male 65

mouse from each of 47 CC strains (Fig 1). (The use of only male mice was due to 66

practical constraints; results for females may differ [22].) Each tissue has a distinct 67

function and we expected those differences to be reflected in the data. This was borne 68

out by principal components analysis (PCA) of each of the gene expression and 69

chromatin accessibility profiles, which showed that the samples clearly clustered by 70

tissue (S1 Fig). 71
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Fig 1. Diagram of the experiment and analyses. RNA-seq and ATAC-seq were
performed using liver, lung, and kidney tissues of males from 47 CC strains. Each CC
strain was derived from an inbreeding funnel, and thus represents a recombinant inbred
mosaic of the initial eight founder haplotypes. Differential analyses followed by pathway
enrichment analyses were performed to identify biological pathways enriched in
differentially expressed genes and accessible chromatin regions. QTL and mediation
analyses were performed to identify regions that causally regulate gene expression and
chromatin accessibility.

Differentially expressed genes strongly correspond with accessible 72

chromatin regions 73

Differential expression (DE) and differentially accessible region (DAR) analysis were 74

performed between the three tissues (S1 Table) and revealed between 3,564 - 5,709 DE 75

genes and 28,048 - 40,797 DARs (FWER ≤ 0.1). For both expression and chromatin 76

accessibility, liver and kidney tissues were the most similar, whereas lung and liver were 77

the most distinct, also seen in the PCA plots (S1 Fig). Pathway analyses showed many 78

between-tissue differences related to metabolic and immune-related pathways (FWER 79

≤ 0.1), reflecting the distinct demands of each tissue. Energy metabolism pathways 80

were more active in liver and kidney and immune-related pathways were more 81

pronounced in lung, as expected. We compared the concordance between DE genes and 82

DARs genome-wide and observed that most DE gene promoters do not show significant 83

differences in chromatin accessibility (S2 Fig). In cases with significant variability in 84

accessibility at the promoter of a DE gene, though, the vast majority agree in direction 85

(i.e., higher expression with greater accessibility). 86

QTL detection 87

Gene expression 88

The impact of genetic variation on gene expression was evaluated by eQTL mapping. 89

This was done at three levels of stringency and emphasis: 1) at the level of the local 90

region of a gene, defined as within 10Mb of the gene transcription start site (TSS), and 91

hereafter termed Analysis L; 2) at the level of the chromosome on which the gene is 92

located (Analysis C); and 3) at level of the genome (Analysis G) (details in Methods). 93

After filtering out lowly expressed genes, the number of genes examined in eQTL 94

mapping was 8401 for liver, 11357 for lung, and 10092 for kidney (UpSet plot [61] in S3 95

FigA). 96

Analysis L detected local-eQTL for 19.8% of genes tested in liver, 16.6% in lung, and 97

20.8% in kidney (S2 Table). Local-eQTL for most genes were observed in only one 98

tissue (S4 FigA). Analysis C, which was more stringent, additionally detected 99

intra-chromosomal distal-eQTL, while Analysis G, the most stringent, additionally 100

detected inter-chromosomal distal-eQTL (S2 Table). Genomic locations of eQTL 101

detected for each tissue, excluding the intra-chromosomal distal-eQTL detected by 102

Analysis C, are shown in Fig 2A[top]. See S5 Fig and S3 Table for eQTL counts with 103

FDR ≤ 0.2. 104

Chromatin accessibility 105

To determine genetic effects on chromatin structure, genomic regions were divided into 106

∼300 base pair windows and analyses similar to eQTL were used to detect chromatin 107

accessibility QTL (cQTL). After filtering regions with low signal across most samples, 108

the number of chromatin regions tested were 11448 in liver, 24426 in lung, and 17918 in 109
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Fig 2. QTL mapping results and comparison of matched pairs from lung
and kidney. (A) Detected QTL are largely local for both gene expression and
chromatin accessibility. QTL detected through all analyses, excluding
intra-chromosomal distal-QTL detected through Analysis C, are included. The y-axis
represents the genomic position of the gene or chromatin site, and the x-axis represents
the genomic position of the QTL. Local-QTL appear as dots along the diagonal and
distal-QTL as off-diagonal dots. The gray dashed box highlights lung and kidney QTL
results, which are further explored in B-F. (B) Highly significant QTL map nearby the
gene TSSs and chromatin window midpoints. Results from Analysis G are shown here.
The red dashed line represents ± 10Mb from the trait genomic coordinate used to
classify a QTL as local or distal. See S6 Fig for all tissues as well as results from
Analysis C. (C) Local QTL have larger effect sizes than distal. Only results from
Analysis G are included here. See S7 Fig for all tissues and results from Analysis C. (D)
Consistent genetic regulation of gene expression and chromatin accessibility was
observed between lung and kidney tissue, based on an enrichment in positively
correlated founder haplotype effects for QTL paired across the two tissues. QTL from
all the Analyses were considered here. See S10 Fig for all tissue pairings. (E) QTL
observed in both lung and kidney that are highly correlated tend to map close to each
other, consistent with representing genetic variation active in both tissues. See S11 Fig
for all tissue pairings. (F) The effect sizes of QTL paired from lung and kidney are
significantly correlated. See S9 Fig for all tissue comparisons.

kidney. The overlap in chromatin windows tested across tissues is described in S3 FigB. 110

The differences in genes and chromatin regions tested within each tissue likely reflects 111

both biological and technical factors that distinguish the tissue samples. Overall, there 112

were substantially fewer cQTL detected compared with eQTL for all tissues (Fig 113

2A[bottom]; S4 Table, S5 Table). As with eQTL, cQTL were more likely to be local 114

than distal (66 - 94.1% local-cQTL for Analysis G; 75 - 90% local-cQTL for Analysis C). 115

Local-QTL have stronger effects than distal-QTL 116

For QTL detected on the same chromosome as the gene or chromatin region 117

(intra-chromosomal), the strongest associations were observed within 10Mb of the gene 118

TSS or chromatin window midpoint (Fig 2B and S6 Fig). Intra-chromosomal 119

distal-QTL had reduced statistical significance, more consistent with inter-chromosomal 120

distal-QTL. This dynamic between local- and distal-QTL is also observed when using 121

the QTL effect size as a measure of strength, which is likely biased upward due to the 122

Beavis effect in 47 strains [46], shown in Fig 2C and S7 Fig. 123

QTL driven by extreme effects of CAST and PWK 124

For all QTL we estimated the effects of the underlying (founder) haplotypes. Consistent 125

with previous studies (e.g., [42]), the CAST and PWK haplotypes had higher 126

magnitude effects compared with the classical inbred strains. This pattern was observed 127

for both local- and distal-eQTL (S8 FigA) and local-cQTL; the numbers of detected 128

distal-cQTL were too low to produce clear trends (S8 FigB). 129

QTL paired across tissues and correlated haplotype effects 130

For a given trait, QTL from different tissues were paired if they co-localized to 131

approximately the same genomic region. In the case of local-QTL, both had to be 132

within the local window, defined as 10Mb up or downstream of the gene TSS or 133
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chromatin region midpoint; thus, the maximum possible distance between them was 134

20Mb. In the case of distal-eQTL, they had to be within 10Mb of each other. 135

Consistency between these cross-tissue QTL pairs was assessed by calculating the 136

correlation between their haplotype effects (FDR ≤ 0.1; Fig 2D and S10 Fig), with 137

significant positive correlations implying that the paired QTL acted similarly and likely 138

represent multi-tissue QTL. For local-eQTL, we found significant haplotype effect 139

correlations between 346 of 761 possible pairs (45.5%) in liver/lung, 623 of 1206 (51.7%) 140

in liver/kidney, and 497 of 1025 (48.5%) in lung/kidney. For distal-eQTL, we found 141

significant correlations between 21 of 61 possible pairs (31.8%) in liver/lung, 34 of 120 142

(28.8%) in liver/kidney, and 16 of 59 (27.1 %) in lung/kidney. For cQTL, the vast 143

majority of correlated pairs were local, with 47 of 55 (85.5%) possible pairs in 144

liver/lung, 48 of 56 (85.7%) in liver/kidney, and 118 of 142 (83.1%) in lung/kidney 145

being significantly correlated. Only 4 distal-cQTL pairs were observed, all between lung 146

and kidney, with three of the four pairs possessing nominal correlation p-values ≤ 0.05. 147

The effect sizes of paired QTL varied across tissues, though for any given tissue pairing, 148

the effect sizes were significantly correlated (least significant p-value =4.6× 10−8; Fig 149

2F and S9 Fig). No significantly negatively correlated QTL pairs were detected after 150

accounting for multiple testing (FDR ≤ 0.1). 151

Cox7c: Consistent haplotype effects for multi-tissue local-eQTL 152

Cytochrome c oxidase subunit 7C (Cox7c) is an example of a gene that possessed 153

local-eQTL with highly correlated effects in all three tissues (Fig 3A). The local-eQTL 154

consistently drove higher expression when the CAST haplotype was present, 155

intermediate expression with 129, NOD, and NZO haplotypes, and lower expression 156

with A/J, B6, PWK, and WSB haplotypes. Though the haplotype effects on relative 157

expression levels within each tissue were consistent, we noted that the expression level 158

was significantly higher in liver compared with both lung (q = 5.41× 10−18) and kidney 159

(q = 6.25× 10−19). Ubiquitin C (Ubc) is another example of a gene with consistent 160

local-eQTL detected in all three tissues (S12 Fig). 161

Fig 3. Examples of genes with local-eQTL observed in all three tissues. (A)
Cox7c possesses local-eQTL with highly correlated haplotype effects across all three
tissues, supportive of shared causal origin. (B) Slc44a3 has a more complicated pattern
of local-eQTL haplotype effects across the tissues, with correlated effects shared
between lung and kidney, and transgressive effects in the liver eQTL by comparison,
consistent with distinct casual variants comparing liver to lung and kidney. For both
genes, the expression data are plotted with bars representing the interquartile ranges of
likely founder haplotype pair (diplotype). Differential expression between tissues is
highlighted. The haplotype association for each tissue is also included near the gene
TSS with variant association overlaid. The most statistically rigorous method that
detected the QTL (Analysis L, C, or G) is also included. The red tick represents the
gene TSS, the black tick represents the variant association peak, and the colored tick
represents the haplotype association peak. Haplotype effects, estimated as constrained
best linear unbiased predictions (BLUPs).

Slc44a3 and Pik3c2g : Tissue-specific haplotype effects for local-eQTL 162

We found instances where haplotype effects across the three tissues were inconsistent, 163

referring to these as tissue-specific effects (within this subset of tissues). The strongest 164

support of tissue-specificity would be given by QTL pairs whose effects are uncorrelated. 165

For example, the solute carrier family 44, member 3 (Slc44a3 ) gene has local-eQTL 166
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effects that are correlated in lung and kidney but anticorrelated liver (Fig 3B), 167

suggesting the liver eQTL could be transgressive [62] relative to the eQTL in lung and 168

kidney, whereby the effects of the haplotypes are reversed. For Slc44a3, CAST, PWK, 169

and WSB haplotypes result in higher expression in liver but lower expression in lung 170

and kidney. The local-eQTL for Slc44a3 were more similar in location in lung and 171

kidney whereas the liver eQTL was more distal to the gene TSS. Overall, the expression 172

data, estimated effects, and patterns of association are consistent with lung and kidney 173

sharing a causal local-eQTL that is distinct from the one in liver. 174

The CC founder strains all possess contributions from three mouse subspecies of M. 175

musculus: domesticus (dom), castaneus, (cast), and musculus (mus) [63]. Allele-specific 176

gene expression in mice descended from the CC founders often follow patterns that 177

matched the subspecies inheritance at the gene regions [64,65]. We found that 178

phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 gamma (Pik3c2g), a 179

gene of interest for diabetes-related traits [66], had tissue-specific local-eQTL in all 180

three tissues that closely matched the subspecies inheritance at their specific genomic 181

coordinates. The local-eQTL in all three tissues were all pair-wise uncorrelated (Fig 4). 182

Further, expression of Pik3c2g varied at statistically significant levels for liver versus 183

lung (q = 3.12× 10−13) and lung versus kidney (q = 3.55× 10−6). In lung, the CAST 184

haplotype (cast subspecies lineage) resulted in higher expression, consistent with a cast 185

versus dom/mus allelic series. In kidney, the B6, 129, NZO, and WSB haplotypes (dom 186

subspecies) resulted in higher expression, whereas A/J and NOD (mus), CAST (cast), 187

and PWK (dom) haplotypes showed almost no expression, mostly consistent with a dom 188

versus cast/mus allelic series. The PWK founder appears inconsistent, but we note that 189

the QTL peak was in a small dom haplotype block interspersed within a broader mus 190

region. The expression level in kidney of Pik3c2g in PWK was low, similar to A/J and 191

NOD, suggesting that the causal variant may be located in the nearby region, where all 192

three have mus inheritance and, notably, where the peak variant association occurred. 193

In liver, the B6 haplotype resulted in lower expression compared with the other 194

haplotypes. Interestingly, the liver eQTL was in a region that contained a 195

recombination event between dom and mus, only present in B6, which may explain the 196

unique expression pattern. 197

Fig 4. Pik3c2g possesses tissue-specific local-eQTL. Local-eQTL for Pik3c2g
were detected in all three tissues in the 3Mb region surrounding its TSS. The genomes
of the CC founders can be simplified in terms of contributions from three subspecies
lineages of M. musculus: dom (blue), cast (yellow), and mus (red). The effects of each
local-eQTL matched the subspecies contributions near the eQTL coordinates, with low
expressing subspecies alleles colored teal and high expressing alleles colored salmon,
consistent with local-eQTL for Pik3c2g being distinct and tissue-specific. The gene
expression data are represented as interquartile range bars, categorized based on most
likely diplotype at the eQTL for each CC strain. Haplotype and variants associations
are included for each tissue, with the red tick representing the Pik3c2g TSS, black ticks
representing variant association peak, and colored ticks representing the haplotype
association peak. The most rigorous procedure to detect each QTL (Analysis L, C, or
G) is reported. Haplotype effects, estimated as constrained BLUPs, were consistent
with the expression data, and uncorrelated across the tissues.

Akr1e1 and Per2 : Consistent haplotype effects for multi-tissue 198

distal-eQTL 199

Haplotype effects that correlate across tissues can provide additional evidence for 200

distal-QTL, even those with marginal significance in any single tissue. For example, the 201
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aldo-keto reductase family 1, member E1 (Akr1e1 ; Fig 5A) gene is located on 202

chromosome 13 with no local-eQTL detected in any tissue. Distal-eQTL in all tissues 203

were detected for Akr1e1 that localized to the same region on chromosome 4. The 204

haplotype effects of the distal-eQTL were all highly correlated, with A/J, B6, 129, and 205

CAST haplotypes corresponding to higher Akr1e1 expression. Across tissues, expression 206

was significantly higher in liver and kidney compared with lung (q = 1.63× 10−19 and 207

q = 4.40× 10−34, respectively). Another example is the Period circadian clock 2 (Per2 ; 208

Fig 5B) gene, which possessed intra-chromosomal distal-eQTL approximately 100Mb 209

away from the TSS that were detected in all three tissues at a lenient chromosome-wide 210

significance (Analysis C; FDR ≤ 0.2). The haplotype effects were significantly 211

correlated among the tissues, characterized by high expression with the NOD and PWK 212

haplotypes present. Together, these findings provide strong validation for the 213

distal-eQTL, which would commonly not be detected based on tissue-stratified analyses. 214

Other unique patterns of distal genetic regulation were detected, such as for ring finger 215

protein 13 gene (Rnf13 ) with distal-eQTL that varied across tissues, described in S13 216

Fig. 217

Fig 5. Examples of genes with distal-eQTL effect patterns across tissues.
(A) Akr1e1 has highly significant distal-eQTL detected on chromosome 4 in all three
tissues with correlated haplotype effects. (B) Per2 has intra-chromosomal distal-eQTL
leniently detected 100Mb away from the TSS, also with highly correlated haplotype
effects across the tissues, providing further support that the distal-eQTL are not false
positives. Expression data are represented as interquartile ranges for most likely
diplotype, with differential expression noted when significant. Haplotype associations
for each tissue distal-eQTL combination are shown, with the most rigorous statistical
procedure for detection reported (Analysis L, C, or G). Red ticks signify the gene TSS
and black ticks represent that eQTL peak. Fit haplotype effects, estimated as BLUPs,
are included, along with the pairwise correlations of the eQTL.

Mediation of eQTL by chromatin 218

An advantage of measuring gene expression and chromatin accessibility in the same mice 219

and tissues is the subsequent ability to examine the relationships between genotype, 220

chromatin accessibility, and gene expression using integrative methods such as mediation 221

analysis. We considered two possible models for the mediation of eQTL effects and 222

assessed the evidence for each in our data. In the first model, proximal chromatin state 223

acts as a mediator of local-eQTL (Fig 6A). That is, the local-eQTL for a gene affects 224

that gene’s expression by, at least in part, altering local chromatin accessibility. To test 225

for this, we used an approach adapted from studies in the DO [22] and applied it to 226

local-eQTL detected through Analysis L (see S3 Appendix for greater detail). 227

Fig 6. Simple mediation models for the genetic regulation of gene
expression. (A) Mediation of the local-eQTL through chromatin accessibility in the
region of the gene is consistent with genetic variation influencing the accessibility of
gene j to the transcriptional machinery. (B) Mediation of distal-eQTL through the
transcription of genes local to the QTL could be explained by transcription factor
activity.
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Ccdc137 and Hdhd3 : Local-eQTL driven by local chromatin accessibility 228

Across the three tissues, between 13-42 local-eQTL showed evidence of mediation 229

through proximal accessible chromatin regions at genome-wide significance, and 35-106 230

at chromosome-wide significance (S6 Table). The coiled-coil domain containing 137 gene 231

(Ccdc137 ) is a strong example of this type of mediation. Fig 7 shows the genome scans 232

that identify both the local-eQTL for Ccdc137 and the cQTL near it. The significance 233

of the eQTL was sharply reduced when we conditioned on chromatin accessibility, and 234

the significance of the cQTL was stronger than the eQTL, as expected by the proposed 235

mediator model. 236

Fig 7. Ccdc137 local-eQTL is mediated by proximal chromatin accessibility.
Ccdc137 expression and the chromatin accessibility in the proximal region were highly
correlated (r = 0.71). Genome scans for Ccdc137 expression (yellow), nearby chromatin
accessibility (blue), and chromatin mediation of the Ccdc137 local-eQTL (red) in lung
tissue. The local-eQTL and local-cQTL for the chromatin region at the TSS of Ccdc137
(red tick) are over-lapping, and have highly correlated haplotype effects (r = 0.98). The
steep drop in the statistical association with expression, represented as logP, at the
chromatin site in the mediation scan supports chromatin mediation of Ccdc137
expression, depicted as a simple graph [top right]. The QTL and mediation signals were
detected at genome-wide significance.

Establishing mediation requires more than mere co-localization of eQTL and cQTL. 237

For example, local-eQTL and co-localizing cQTL were identified for both haloacid 238

dehalogenase-like hydrolase domain containing 3 (Hdhd3 ) in liver (S14 FigA) and 239

acyl-Coenzyme A binding domain containing 4 (Acbd4 ) in kidney (S14 FigB). 240

Comparing the statistical associations at the loci for eQTL and cQTL, and the 241

corresponding haplotype effects, however, showed better correspondence in the case of 242

Hdhd3 than for Acbd4 : a strong mediation signal was detected for Hdhd3, indicated by 243

the decreased eQTL association when conditioning on the chromatin state, whereas 244

mediation was not detected for Abcd4, consistent with expression and chromatin 245

accessibility having causally different origins. 246

Mediation of eQTL by expression 247

Mediation was also tested for distal-eQTL, detected through Analysis G, by evaluating 248

the expression of nearby genes as candidate mediators [59], as shown in Fig 6B. 249

Zinc finger protein intermediates detected for Ccnyl1 250

Eight genes were identified with mediated distal-eQTL (S7 Table). For example, the 251

distal-eQTL of cyclin Y-like 1 (Ccnyl1 ) was mediated by the expression of zinc finger 252

protein 979 (Zfp979 ), a putative transcription factor (S15 Fig). The haplotype effects at 253

the distal-eQTL of Ccnyl1 were highly correlated with those at the local-eQTL of 254

Zfp979, though with a reduction in overall strength, in accordance with the proposed 255

mediation model. 256

Mediation of eQTL by both expression and chromatin 257

The QTL and mediation results for all three tissues are depicted as circos plots [67] in 258

Fig 8. The local-QTL and chromatin mediators were distributed across the genome 259

unevenly, aggregating in pockets. In particular, a high concentration of cQTL and 260

chromatin mediation were detected in all three tissues along chromosome 17, which 261
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corresponds to the immune-related major histocompatibility (MHC) region in mouse. 262

Most of the chromatin-mediated genes in this region, however, are not histocompatibility 263

genes (Files S28 - S30). Patterns of distal-QTL and gene mediation vary across the 264

three tissues, though consistent regions are also observed, such as the Idd9 region on 265

chromosome 4 described in [68], which contains multiple zinc finger proteins (ZFPs) and 266

regulates genes such as Ccnyl1 and Akr1e1, described in greater detail below. 267

Fig 8. Summaries of QTL and mediation analyses. Circos plots of eQTL
(yellow), cQTL (blue), and mediation (red) in lung, liver, and kidney. The two outer
rings of dots represent local-eQTL and local-cQTL detected by Analysis L at
chromosome-wide significance, with red lines between connecting genes and chromatin
sites for which chromatin mediation was detected. The inner circle contains connections
representing distal-eQTL, distal-cQTL, and gene-gene mediation from Analysis G. Thick
lines represent QTL and mediators with permutation-based p-value (permP) < 1× 10−5.
The detected signals were primarily local, which also tended to be stronger than the
observed distal signals. Fewer QTL and mediators were detected in liver tissue. Genes
highlighted within the text, such as Akr1e1, are indicated at their genomic coordinates.

Genetic regulation of Akr1e1 expression by a zinc finger protein and 268

chromatin intermediates 269

As detailed above, Akr1e1 possessed a strong distal-eQTL in all three tissues located on 270

chromosome 4 in the region of 142.5 - 148.6Mb with significantly correlated haplotype 271

effects. Mediation analysis suggested this effect is mediated in lung through activity of 272

Zinc finger protein 985 (ZFP985), whose gene is also located on chromosome 4 at 273

147.6Mb (S16 Fig). 274

ZFP985 possesses an N-terminal Krüppel-associated box (KRAB) domain, 275

representing a well-characterized class of transcriptional regulators in vertebrates [69] 276

that recruit histone deacetylases and methyltransferases, inducing a chromatin state 277

associated with regulatory silencing. Akr1e1 and Zfp985 expression were negatively 278

correlated (r = −0.69), consistent with ZFP985 inhibiting Akr1e1 expression. This same 279

distal-eQTL and mediator relationship for Akr1e1 was observed in kidney tissue from 280

193 DO mice (S17 Fig). It was previously postulated that Akr1e1 is distally regulated 281

by the reduced expression 2 (Rex2 ) gene, also a ZFP that contains a KRAB domain and 282

resides in the same region of chromosome 4 [70]. Our distal-eQTL overlap their Idd9.2 283

regulatory region, defined as spanning 145.5 - 148.57Mb, mapped with NOD mice 284

congenic with C57BL/10 (B10) [68]. The B10 haplotype was found to be protective 285

against development of diabetes, characteristic of NOD mice. AKR1e1 is involved in 286

glycogen metabolism and the Idd9 region harbors immune-related genes, suggesting 287

genes regulated by elements in the Idd9 region may be diabetes-related. Consistent 288

with these studies, CC strains with NOD inheritance at the distal-eQTL had low 289

expression of Akr1e1, observed in all tissues. Genetic variation from B10 is not present 290

in the CC, but the closely related B6 founder had high expression of Akr1e1 like B10. 291

NZO, PWK, and WSB haplotypes resulted in low Akr1e1 expression, similar to NOD, 292

while A/J, 129, and CAST haplotypes joined B6 as driving high expression (Fig 9). 293

Variable expression of Zfp985 is a strong candidate for driving these effects on Akr1e1. 294

Additional sources of genetic regulation of Akr1e1 were observed for kidney, where a 295

strong distal-cQTL for an accessible chromatin site corresponding to the promoter of 296

Akr1e1 was detected in the Idd9.2 region on chromosome 4. Mediation analysis strongly 297

supported chromatin accessibility in this region mediating the distal-eQTL 298

(permPm = 2.18× 10−13). The haplotype effects for the distal-cQTL were highly 299

correlated with the distal-eQTL effects (r = 0.92). The relative magnitudes of the QTL 300
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Fig 9. Mediation model for Akr1e1 distal-eQTL. The genetic regulation of
Akr1e1 expression is reconstructed based on relationships observed across the three
tissues. Distal-eQTL were detected in all tissues at similar levels of significance. A
local-eQTL for Zfp985 that is proximal to the Akr1e1 distal-eQTL was observed in
lung, and Zfp985 expression was detected as an anti-correlated mediator of the
distal-eQTL, consistent with ZFP985 suppressing Akr1e1 expression. The chromatin
site proximal to the Akr1e1 TSS has a distal-cQTL detected in kidney. Chromatin
accessibility at the site was found to be a significant mediator of Akr1e1 expression.
Combining associations across tissues supports a biological model whereby ZFP985,
whose gene is expressed in mice with NOD, NZO, PWK, and WSB haplotypes, silences
Akr1e1 through KRAB domain-induced chromatin remodeling. QTL and mediation
genome scans are included, along with sequence phenotypes as interquartile ranges
categorized according to most likely diplotype, and modeled haplotype effects fit as
BLUPs. The relative magnitudes of the QTL effect sizes and mediation scores are
consistent with the proposed model, with Zfp985 local-eQTL > distal-cQTL > Akr1e1
distal-eQTL, and chromatin mediation > mediation through Zfp985 expression.

effect sizes and mediation p-values (S18 Fig) support a causal model whereby increased 301

Zfp985 expression reduces expression of Akr1e1 by altering chromatin accessibility near 302

the Akr1e1 promoter (Fig 9). 303

Discussion 304

In this study we performed QTL and mediation analyses of gene expression and 305

chromatin accessibility data in liver, lung, and kidney tissue samples from 47 strains of 306

the CC. We examined correlations between haplotype effects of co-localizing QTL to 307

identify QTL that are likely functionally active in multiple tissues as well as QTL with 308

distinct activity across the three tissues, as is the case with the Pik3c2g gene, 309

potentially representing differing active genetic variants in the local region. We detected 310

extensive evidence of chromatin mediation of local-eQTL as well as gene expression 311

mediators underlying distal-eQTL. One unique example is the elucidation of the genetic 312

regulation of Akr1e1 expression, a gene that plays a role in glycogen metabolism, 313

involving inhibition by expression of a distal zinc finger protein mediator that 314

contributes to reduced chromatin accessibility at the promoter of Akr1e1. These 315

findings highlight the ability of integrative QTL approaches such as mediation analysis 316

to identify interesting biological findings, including the ability to identify functional 317

candidates for further downstream analysis. 318

Fewer detected cQTL than eQTL 319

We found that the effect sizes of cQTL are on average lower than eQTL (see S19 Fig), 320

as has been previously reported [22]. The reduced number of cQTL compared with 321

eQTL is likely due to both technical and biological reasons. Technically, the RNA-seq 322

assay measures a distinct class of molecules (mRNAs) that can be accurately extracted 323

from cells with the resulting sequence reads mapped to the transcriptome, which 324

encompasses < 5% of the genome. In contrast, the transposon incorporation event 325

central to ATAC-seq is enriched in, but not solely limited to, accessible chromatin. 326

Unlike the transcriptome, accessible chromatin can occur anywhere in the genome and 327

regions are defined empirically by the data. Thus, the signal from the assay is more 328

variable and noisy across samples, which impedes our ability to detect cQTL. 329

Biologically, if a variant affects the activity of a regulatory element that alters 330
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expression levels, it is expected that the mRNA levels in the sample will reflect this. By 331

contrast, even if a variant affects chromatin accessibility, it may do so in a manner that 332

is difficult to detect above the background noise of the assay. In recent studies of gene 333

expression and chromatin accessibility in the adult brain from same individuals, 334

2,154,331 cis-eQTL were found for 467 individuals [71], whereas only 6,200 cQTL were 335

detected, albeit for only 272 individuals [72]. While the reduced number of individuals 336

undoubtedly contributed to this lower number of detected cQTL, it is likely that 337

significantly fewer cQTL would be found in the same number of individuals. 338

Reduced cQTL and mediation signal in liver compared with 339

lung and kidney 340

Detecting QTL and mediation depends not only on sample size but also on biological 341

and technical factors that are difficult to quantify across the tissues. Although it is 342

possible that liver has fewer actual cQTL (and thus fewer chromatin mediators) than 343

lung and kidney, it is also possible that the signal quality of the ATAC-seq is lower for 344

this tissue, resulting in fewer detections due to increased technical noise. True biological 345

differences in the number of cQTL and mediator usage among the tissues would likely 346

reflect multi-level regulatory programs specific to each tissue, a complex subject 347

requiring more targeted experiments than used here. 348

Joint QTL analysis in multiple tissues 349

Multi-tissue QTL analyses are increasingly used in both humans, such as within the 350

GTEx project (e.g., [73, 74]), and in mice (e.g., [75, 76]). We believe our use of formal 351

statistical tests of the correlation coefficient between the haplotype effects of overlapping 352

QTL is novel in defining co-localizing QTL across tissues. This method allows us to 353

identify loci likely representing tissue-specific QTL with unique haplotype effects 354

patterns, as demonstrated for the gene Pik3c2g (Fig 4). This approach can also detect 355

consistent haplotype effects, as with the gene Per2 (Fig 5B), which possessed only 356

marginally significant distal-eQTL in the three tissues, suggesting jointly mapping QTL 357

across all tissues increases power. Formal joint analysis approaches have been proposed, 358

largely implemented for detecting SNP associations, including meta-analysis on 359

summary statistics (e.g., [76,77]) and fully joint analysis, including Bayesian hierarchical 360

models [78] and mixed models [79]. Extending such methods to haplotype-based 361

analysis in MPPs poses some challenges, including how to best generalize methods to 362

more complex genetic models and for the CC with a limited number of unique genomes. 363

Nonetheless, when multiple levels of molecular traits are measured, joint analyses could 364

conceivably be incorporated into the mediation framework to improve detection power. 365

Correlated haplotype effects suggest subtle multi-allelic QTL 366

Haplotype-based association in MPP allows for the detection of multi-allelic QTL [65], 367

such as potentially observed within the kidney at the local-eQTL of Pik3c2g, where 368

mice with B6 contributions in the region have an intermediate level of expression. The 369

correlation coefficient between the haplotype effects for QTL pairs provides an 370

interesting summary, generally not possible in the simpler bi-allelic setting commonly 371

used in variant association analysis. The extent of the correlation between the 372

haplotype effects for QTL pairs of certain genes, such as Cox7c (Fig 3A) suggests that 373

these QTL are at least subtly multi-allelic. Correlated haplotype effects are consistent 374

with the genetic regulation, even local to the gene TSS, being potentially complex, likely 375

due to founder-specific modifiers. 376

October 25, 2019 12/32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/588723doi: bioRxiv preprint 

https://doi.org/10.1101/588723
http://creativecommons.org/licenses/by-nc-nd/4.0/


Correlated haplotype effects with differential expression across 377

tissues 378

We detected numerous eQTL pairs with correlated haplotype effects across tissues but 379

with significantly different magnitudes of overall expression—for example, Cox7c, Ubc, 380

Slc44a3, and Akr1e1. We propose two potential explanations for this unique 381

co-occurrence. First, whole tissues differ in their cellular composition. It may be that 382

these genes are primarily expressed in a common cell type whose proportion varies 383

between the different tissue types, and that the observed differential expression reflects 384

this compositional variation. This hypothesis could be tested by follow-up single cell 385

experiments. Second, each tissue may have additional unique regulatory elements that 386

further modulate expression levels. Uncovering such elements would require in-depth 387

analysis of tissue-specific regulation. 388

Mediation analysis 389

The statistical methods underlying mediation analyses were largely developed in the 390

context of social sciences [3–5], and more recently extended to a genomics setting in 391

which there is generally less experimental control of the relationship between the 392

mediator and outcome. Our mediation analysis approach is adapted from previous 393

studies in DO mice [22,23,59] but adds the use of QTL effect sizes to establish 394

consistency with the directionality of the relationships and the formal calculation of an 395

empirical mediation p-value through permutation. Related conditional regression 396

approaches were used in the incipient pre-CC lines [80,81]. Mediation results largely 397

reflect the correlations between the variables after adjusting for additional sources of 398

variation, such as covariates and batch effects. We further require the mediator QTL to 399

have a larger effect size than the outcome QTL in order to identify trios that are 400

consistent with the proposed causal models. It must be emphasized, however, that these 401

steps are not equivalent to experimentally controlling the directionality of the 402

relationship between a gene’s expression level and a putative mediator, nor is such 403

control feasible in a large-scale experiment. Variable measurement error on the mediator 404

and gene could flip the perceived directionality of the relationship, resulting in both 405

false positive and negative mediations. Alternatively, the relationships could be more 406

complex than the simple models used here, e.g. feedback between the mediator and 407

gene, which these procedures will not detect. Additionally, the causal mediator may not 408

be observed in the data, allowing for other candidates, correlated with the missing 409

causal element, to be incorrectly identified as mediators. 410

Despite these limitations, the mediation analysis used here provides specific causal 411

candidates for local-eQTL (mediated through chromatin) and distal-eQTL (mediated 412

through nearby genes). For example, we show strong evidence for ZFP985 mediating 413

the genetic regulation of Akr1e1 (Fig 9). Additional evidence suggests this is done by 414

ZFP985 contributing to reduced Akr1e1 promoter activity. It is possible that Zfp985 415

expression is simply strongly correlated with the true mediator, and others have 416

alternatively proposed Rex2 expression as a candidate [68], which we did not consider 417

due to low expression in all three tissues. Regardless of the identity of the true 418

mediator, our analysis shows strong evidence that it acts causally by reducing 419

chromatin accessibility near Akr1e1. 420

QTL mapping power and their effect size estimates 421

Our reduced sample size of 47 CC strains motivated our use of multiple scopes of 422

statistical significance, from testing for QTL locally to genome-wide. As expected, the 423

additional local-QTL detected by less stringent methods have smaller effect sizes 424
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(orange and purple dots for C and L, respectively; S19 Fig). Based on a recent 425

evaluation of QTL mapping power in the CC using simulation [46], this study had 426

approximately 80% power to detect genome-wide QTL with a 55% effect size or greater. 427

Effect size estimates for genome-wide QTL (green dots; S19 Fig) are consistent with 428

this expectation, albeit potentially inflated due to the Beavis effect [82], and provide 429

interpretable point summaries for haplotype-based QTL mapping, analogous to minor 430

allele effect estimates in SNP-based studies. We calculated estimates of effect size in 431

two ways, one based on a fixed effect fitting of the QTL term and the other as a 432

random term [51]. Notably, a small number of the distal-eQTL had low random effect 433

size estimates (S20 Fig) compared with their fixed effects-based estimates, likely the 434

result of outliers with lowly-observed founder inheritance (e.g. rare allele) at the 435

putative QTL. Alternatively, a residual variation estimate, i.e. RSS, could be calculated 436

from the shrunken haplotype effects to identify likely false positives, but not be as 437

aggressively reduced as the variance component-based estimates, representing a middle 438

ground approach that was found to be effective [54]. We primarily reported fixed effects 439

estimates due to their consistency with reported expectations [46] for a study of this 440

size. 441

These QTL mapping results are largely consistent with the molecular traits with 442

detected QTL possessing primarily Mendelian genetic regulation (large effect sizes: > 443

60%). The relatively limited number of CC strains (< 70 strains) constrains our ability 444

to effectively map QTL for highly complex and polygenic traits. Nevertheless, this 445

study supports the value of CC strains for mapping QTL for simpler traits, such as 446

large effect molecular phenotypes, particularly when considering the further gains that 447

use of replicate observations per strain would yield (not used here). Additionally, joint 448

and/or comparative analyses with the DO and the founder strains can provide strong 449

confirmation of subtle findings in the CC. 450

Materials and methods 451

Animals 452

Adult male mice (8-12 weeks old) from 47 CC strains were acquired from the University 453

of North Carolina Systems Genetics Core (listed in S1 Appendix) and maintained on an 454

NTP 2000 wafer diet (Zeigler Brothers, Inc., Gardners, PA) and water ad libitum. The 455

housing room was maintained on a 12-h light-dark cycle. Our experimental design 456

sought to maximize the number of strains relative to within-strain replications based on 457

the power analysis for QTL mapping in mouse populations [25]; therefore, one mouse 458

was used per strain. Prior to sacrifice, mice were anesthetized with 100 mg/kg nembutal 459

though intraperitoneal injection. Lungs, liver and kidney tissues were collected, flash 460

frozen in liquid nitrogen, and stored at -80°C. These studies were approved by the 461

Institutional Animal Care and Use Committees (IACUC) at Texas A&M University and 462

the University of North Carolina. The experimental design and subsequent analyses 463

performed for this study are diagrammed in Fig 1. 464

mRNA sequencing and processing 465

Total RNA was isolated from flash-frozen tissue samples using a Qiagen miRNeasy Kit 466

(Valencia, CA) according to the manufacturer’s protocol. RNA purity and integrity 467

were evaluated using a Thermo Scientific Nanodrop 2000 (Waltham, MA) and an 468

Agilent 2100 Bioanalyzer (Santa Clara, CA), respectively. A minimum RNA integrity 469

value of 7.0 was required for RNA samples to be used for library preparation and 470

sequencing. Libraries for samples with a sufficient RNA integrity value were prepared 471
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using the Illumina TruSeq Total RNA Sample Prep Kit (Illumina, Inc., San Diego, 472

USA) with ribosomal depletion. Single-end (50 bp) sequencing was performed (Illumina 473

HiSeq 2500). 474

Sequencing reads were filtered (sequence quality score ≥ 20 for ≥ 90% of bases) and 475

adapter contamination was removed (TagDust). Reads were mapped to strain-specific 476

pseudo-genomes (Build37, http://csbio.unc.edu/CCstatus/index.py?run=Pseudo) 477

and psuedo-transcriptomes (C57BL/6J RefSeq annotations mapped to pseudo-genomes) 478

using RSEM with STAR (v2.5.3a). Uniquely aligned reads were used to quantify 479

expression as transcripts per million (TPM) values. 480

ATAC-seq processing 481

Flash frozen tissue samples were pulverized in liquid nitrogen using the BioPulverizer 482

(Biospec) to break open cells and allow even exposure of intact chromatin to Tn5 483

transposase [26]. Pulverized material was thawed in glycerol containing nuclear isolation 484

buffer to stabilize nuclear structure and then filtered through Miracloth (Calbiochem) 485

to remove large tissue debris. Nuclei were washed and directly used for treatment with 486

Tn5 transposase. Paired-end (50 bp) sequencing was performed (Illumina HiSeq 2500). 487

Reads were similarly filtered as with RNA-seq. Reads were aligned to the 488

appropriate pseudo-genome using GSNAP (parameter set: -k 15, -m 1, -i 5, 489

–sampling=1, –trim-mismatch-score=0, –genome-unk-mismatch=1, 490

–query-unk-mismatch=1). Uniquely mapped reads were converted to mm9 (NCBI37) 491

mouse reference genome coordinates using the associated MOD files (UNC) to allow 492

comparison across strains. Reads overlapping regions in the mm9 blacklist (UCSC 493

Genome Browser) were removed. Exact sites of Tn5 transposase insertion were 494

determined as the start position +5 bp for positive strand reads, and the end position -5 495

bp for negative strand reads [27]. Peaks were called using F-seq with default parameters. 496

A union set of the top 50,000 peaks (ranked by F-seq score) from each sample was 497

derived. Peaks were divided into overlapping 300 bp windows [28]. Per sample read 498

coverage of each window was calculated using coverageBed from BedTools [29]. 499

Sequence trait filtering for QTL analysis 500

Trimmed mean of M-values (TMM) normalization (edgeR; [30]) was applied to TPM 501

values from read counts of genes and chromatin windows, respectively. Genes with 502

TMM-normalized TPM values ≤ 1 and chromatin windows with normalized counts ≤ 5 503

for ≥ 50% of samples were excluded (as in [22]) in order to avoid the detection of QTL 504

that result from highly influential non-zero observations when most of the sample have 505

low to no expression. For each gene and chromatin window, we applied K-means 506

clustering with K = 2 to identify outcomes containing outlier observations that could 507

cause spurious, outlier-driven QTL calls. Any gene or chromatin window where the 508

smaller K-means cluster had a cardinality of 1 was removed. 509

CC strain genotypes and inferred haplotype mosaics 510

CC genomes are mosaics of the founder strain haplotypes. The founder haplotype 511

contributions for each CC strain was previously reconstructed by the UNC Systems 512

Genetics Core (http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs) 513

with a Hidden Markov Model [31] on genotype calls [MegaMUGA array [32]] from 514

multiple animals per strain, representing ancestors to the analyzed mice. Notably, QTL 515

mapping power is reduced at loci with segregating variants in these ancestors, and 516

where these specific animals likely differ [33]. To reduce the number of statistical tests, 517

adjacent genomic regions were merged through averaging if the founder mosaics for all 518
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mice were similar, defined as L2 distance ≤ 10% of the maximum L2 distance (
√

2 for a 519

probability vector). This reduced the number of tested loci from 77,592 to 14,191. 520

Differential expression and accessibility analyses 521

Read counts for each sample were converted to counts per million (CPM), followed by 522

TMM normalization (edgeR). For chromatin accessibility, windows in which > 70 % of 523

samples had a CPM ≤ 1 were removed, requiring that samples from at least two of the 524

three tissues to have non-zero measurements in order to be considered for differential 525

analysis between tissues. Genes and chromatin windows with no or low counts across 526

sample libraries provide little evidence for detection of differential signal, thus removing 527

them reduces the multiple testing burden. Differentially expressed genes and accessible 528

chromatin windows were determined using limma [34], which fit a linear model of the 529

TMM-normalized CPM value as the response and fixed effect covariates of strain, batch, 530

and tissue (lung, liver, or kidney). To account for mean-variance relationships in gene 531

expression and chromatin accessibility data, precision weights were calculated using the 532

limma function voom and incorporated into the linear modeling procedure. The p-values 533

were adjusted using a false discovery rate (FDR) procedure [35], and differentially 534

expressed genes and accessible chromatin windows were called based on the q-value ≤ 535

0.01 and log2 fold-change ≥ 1. Adjacent significantly differential chromatin windows in 536

the same direction were merged with a p-value computed using Simes’ method [36], and 537

chromatin regions were re-evaluated for significance using the Simes p-values. 538

Gene set association analysis 539

Biological pathways enriched with differentially expressed genes or accessible chromatin 540

were identified with GSAASeqSP [37] with Reactome Pathway Database annotations 541

(July 24, 2015 release). A list of assayed genes were input to GSAASeqSP along with a 542

weight for each gene g, calculated as: 543

weightg = sign(∆g)× (1− qg), (1)

where sign(∆g) is the sign of the fold change in gene g expression, and qg is the 544

FDR-adjusted differential expression p-value. Pathways with gene sets of cardinality < 545

15 or > 500 were excluded. 546

For pathway analysis of differentially accessible chromatin near genes, each 547

chromatin region was mapped to a gene using GREAT v3.0.0 (basal plus extension 548

mode, 5 kb upstream, 1 kb downstream, and no distal extension). Weights were 549

calculated as with gene expression, but with sign(∆g) representing the sign of the 550

fold-change in accessibility of the chromatin region with minimum FDR-adjusted 551

p-value that is associated with gene g. 552

Haplotype-based QTL mapping 553

QTL analysis was performed for both gene expression and chromatin accessibility using 554

regression on the inferred founder haplotypes [38], a variant of Haley-Knott 555

regression [39, 40] commonly used for mapping in the CC [41–46] and other MPPs, such 556

as Drosophila [47]. 557

For a given trait—the expression of a gene or the accessibility of a chromatin 558

region—a genome scan was performed in which at each of the 14,191 loci spanning the 559

genome, we fit the linear model, 560

yi = µ+ batchb[i] + QTLi + εi (2)
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where yi is the trait level for individual i, µ is the intercept, batchb is a categorical fixed 561

effect covariate with five levels b = 1, . . . , 5 representing five sequencing batches for both 562

gene expression and chromatin accessibility and where b[i] denotes the batch relevant to 563

i, εi ∼ N(0, σ2) is the residual noise, and QTLi models the genetic effect at the locus, 564

namely that of the eQTL for expression or the cQTL for chromatin accessibility. 565

Specifically, the QTL term models the (additive) effects of alternate haplotype states 566

and is defined as QTLi = βTxi, where xi = (xi,AJ, . . . , xi,WSB)T is a vector of 567

haplotype dosages (i.e., the posterior expected count, from 0 to 2, inferred by the 568

haplotype reconstruction) for the eight founder haplotypes, and β = (βAJ, . . . , βWSB)T 569

is a corresponding vector of fixed effects. Note that in fitting this term as a fixed effects 570

vector, the linear dependency among the dosages in xi results in at least one haplotype 571

effect being omitted to achieve identifiability; estimation of effects for all eight founders 572

is performed using a modification described below. Prior to model fitting, to avoid 573

sensitivity to non-normality and strong outliers, the response {yi}ni=1 was subject to a 574

rank inverse normal transformation (RINT). The fit of Eq 2 was compared with the fit 575

of the same model omitting the QTL term (the null model) by an F-test, leading to a 576

nominal p-value, reported as the logP = − log10(p-value). 577

QTL detection: local (L), chromosome-wide (C), and 578

genome-wide (G) 579

QTL detections were declared according to three distinct protocols of varying stringency 580

and emphasis. The first protocol, termed Analysis L, was concerned only with detection 581

of “local QTL”, that is, QTL located at or close to the relevant expressed gene or 582

accessible chromatin region. Here we define “local” as ± 10Mb, as been done previously 583

in studies using DO mice [22]. Our intent is to capture QTL that likely act in cis on 584

gene expression and chromatin accessibility, which are expected to have strong effects, 585

while also recognizing the limitations of using haplotype blocks with median size of 16.3 586

Mb [19] and a small sample size. Fig S6 Fig suggest that 10Mb generally captures the 587

strongest QTL signals near the gene TSS and chromatin window midpoint. The second 588

protocol, Analysis C, broadened the search for QTL to anywhere on the chromosome on 589

which the trait is located; the greater number of loci considered meant that the criterion 590

used to call detected QTL for this protocol was more stringent than Analysis L. The 591

third protocol, Analysis G, further broadened the search to the entire genome with the 592

most stringent detection criterion. These protocols used two types of multiple test 593

correction: a permutation-based control of the family-wise error rate (FWER) and the 594

Benjamini-Hochberg False Discovery Rate (FDR; [35]). Below we describe in detail the 595

permutation procedure and then the three protocols. 596

Permutation-based error rate control: chromosome- and genome-wide 597

The FWER was controlled based on permutations specific to each trait. The sample 598

index was permuted 1,000 times and recorded, and then genome scans performed for 599

each trait, using the same permutation orderings. Given a trait, the maximum logP 600

from either the entire genome or the chromosome for each permutation was collected 601

and used to fit a null generalized extreme value distribution (GEV) in order to control 602

the genome- and chromosome-wide error rates, respectively [48]. Error rates were 603

controlled by calculating a p-value for each QTL based on the respective cumulative 604

density functions from the GEVs: permP = 1− FGEV(logP), where FGEV is the 605

cumulative density function of the GEV. We denote genome- and chromosome-wide 606

error rate controlling p-values as permPG and permPC respectively. 607

The appropriateness of permutation-derived thresholds [49] relies on the CC strains 608

being equally related, thus possessing little population structure and being exchangeable. 609
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This assumption was supported by simulations of the funnel breeding design [41]. More 610

recent simulations based on the observed CC strain genomes [46] found 611

non-exchangeable population structure for highly polygenic genetic architectures, albeit 612

at low levels. Nevertheless, we use permutations given that molecular traits often have 613

strong effect QTL that are detectable in the presence of subtle population structure. 614

Local analysis - Analysis L 615

Our detection criteria for local-QTL leverages our strong prior belief in local genetic 616

regulation. For a given trait, this local analysis involved examining QTL associations at 617

all loci within a 10Mb window of the gene TSS or chromatin region midpoint. A QTL 618

was detected if the permPC < 0.05. Notably, we can also check whether the 619

corresponding permPG < 0.05, as an additional characterization of statistical 620

significance of detected local-QTL. 621

Chromosome-wide analysis - Analysis C 622

Chromosome-wide analysis involved examining QTL associations at all loci on the 623

chromosome harboring the gene or chromatin region in question. The peak logP is input 624

into a chromosome-wide GEV, producing a permPC, which are further subjected to 625

adjustment by FDR to account for multiple testing across the traits [50]. Compared 626

with Analysis L, this procedure is more stringent with respect to local-QTL because of 627

the additional FDR adjustment. In addition, it can detect distal-QTL outside the local 628

region of the trait. Note, since only the most significant QTL is recorded, this procedure 629

will disregard local-QTL if a stronger distal-QTL on the chromosome is observed. 630

Genome-wide analysis - Analysis G 631

The genome-wide analysis is largely equivalent to Analysis C but examines all genomic 632

loci, while an FDR adjustment is made to the genome-wide permPG. Unlike Analysis C, 633

it incorporates additional scans conditioned on detected QTL to potentially identify 634

multiple QTL per trait (i.e. both local- and distal-QTL). Briefly, after a QTL is 635

detected, a subsequent scan (and permutations) is performed in which the previously 636

detected QTL is included in both the null and alternative models, allowing for 637

additional independent QTL to be detected with FDR control. See S2 Appendix for 638

greater detail on this conditional scan procedure and a clear example in Fig S21 Fig. 639

Notably, the local/distal status of the QTL does not factor into Analysis G. 640

Analyses L, C, and G should detect many of the same QTL, specifically strong 641

local-QTL. Collectively, they allow for efficient detection of QTL with varying degrees 642

of statistical support while strongly leveraging local status. 643

QTL effect size 644

The effect size of a detected QTL was defined as the R2 attributable to the QTL term; 645

specifically, as 1− RSSQTL/RSS0, where RSS =
∑n

i=1(yi − ŷi)2 is the residual sum of 646

squares, i.e. the sum of squares around predicted value ŷi, and RSSQTL and RSS0 647

denote the RSS calculated for the QTL and null models respectively. We also calculated 648

a more conservative QTL effect size estimate with a QTL random effects model to 649

compare with the R2 estimate. 650

Stable estimates of founder haplotype effects 651

The fixed effects QTL model used for mapping, though powerful for detecting 652

associations, is sub-optimal for providing stable estimates of the haplotype effects 653
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vector, β (calculated as (XTX)−1XTy, where X is the full design matrix). This is 654

because, among other things, 1) the matrix of haplotype dosages that forms the design 655

matrix of {QTLi}ni=1 in Eq 2, is multi-collinear, which leads to instability, and 2) 656

because the number of observations for some haplotypes will often be few, leading to 657

high estimator variance [24]. More stable estimates were therefore obtained using 658

shrinkage. At detected QTL, the model was refit with β modeled as a random effect, 659

β ∼ N(0, Iτ2) [51], to give an 8-element vector of the best linear unbiased estimates 660

(BLUPs; [52]), β̃ = (β̃AJ, . . . , β̃WSB)T. These BLUPs, after being centered and scaled, 661

were then used for further comparison of QTL across tissues. 662

Comparing QTL effects across tissues 663

To summarize patterns of the genetic regulation of gene expression and chromatin 664

accessibility across tissues, we calculated correlations between the haplotype effects of 665

QTL that map to approximately the same genomic region of the genome for the same 666

traits but in different tissues. For cross-tissue pairs of local-QTL, we required that both 667

be detected within the 20Mb window around the gene TSS or the chromatin window 668

midpoint. For cross-tissue pairs of distal-QTL, the QTL positions had to be within 669

10Mb of each other. All detected QTL were considered, including QTL from Analyses G 670

and C controlled at FDR ≤ 0.2, allowing for consistent signal across tissues to provide 671

further evidence of putative QTL with only marginal significance in a single tissue. 672

For a pair of matched QTL j and k from different tissues, we calculated the Pearson 673

correlation coefficient of the BLUP estimates of their haplotype effects, 674

rjk = cor(β̃j , β̃k). Since each β̃ is an 8-element vector, the corresponding r are 675

distributed such that r
√

6(1− r2)−1 ∼ t6 according to the null model of independent 676

variables. Testing alternative models of rjk > 0 and rjk < 0 produced two p-values per 677

pair of QTL. These were then subject to FDR control [35] to give two q-values, q
{r>0}
ij 678

and q
{r<0}
ij . These were then used to classify cross-tissue pairs of QTL as being 679

significantly correlated or anti-correlated, respectively. 680

Variant association 681

Variant association has been used previously in MPP (e.g., [53,54]), and uses the same 682

underlying model as the haplotype-based mapping (Eq 2), with the QTL term now 683

representing imputed dosages of the minor allele. Variant association can more 684

powerfully detect QTL than haplotype mapping if the simpler variant model is closer to 685

the underlying biological mechanism [55], though it will struggle to detect multi-allelic 686

QTL. 687

Variant genotypes from mm10 (NCBI38) were obtained using the ISVdb [56] for the 688

CC strains, which were converted to mm9 coordinates with the liftOver tool [57]. 689

Variants were filtered out if their minor allele frequencies ≤ 0.1 or they were not 690

genotyped in one of the CC founder strains to avoid false signals. Tests of association at 691

individual SNPs (variant association) were performed within the local windows of genes 692

with local-QTL detected in more than one tissue. Genes with multiple tissue-selective 693

local-eQTL potentially reflect different functional variants, and could potentially have 694

less consistent patterns of variant association compared with variants that are 695

functionally active in multiple tissues. 696

Mediation analysis 697

Mediation analysis has recently been used with genomic data, including in humans 698

(e.g., [11,15]) and rodents (e.g., [54,58]), to identify and refine potential intermediates of 699
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causal paths underlying phenotypes. We use a similar genome-wide mediation analysis 700

as used with the DO [22,59] to detect mediators of eQTL effects on gene expression. 701

In our study, mediation describes when an eQTL (X) appears to act on its target 702

(Y ) in whole or in part through a third variable (M), the mediator, which in this case is 703

a molecular trait. The molecular traits considered here are: a) chromatin accessibility, 704

in which case X serves also as a cQTL (Fig 6A); and, in a separate analysis, b) the 705

expression of a second, distal, gene, in which case X serves also as a distal-eQTL (Fig 706

6B). 707

Traditional mediation analysis [3] tests whether the data, for predefined X, Y and 708

M , are consistent with mediation, doing so in four steps. Steps (1) and (2) establish 709

positive associations X → Y and X →M ; this corresponds to our requirement that 710

both the transcript Y and the candidate mediator M have a co-localizing QTL X. Step 711

(3) establishes mediation by testing for the conditional association M → Y |X; this 712

corresponds to testing whether the mediator explains variation in gene expression even 713

after controling for the QTL. Step (4) distinguishes “full mediation”, where mediation 714

explains the association between X and Y entirely, i.e., the QTL acts entirely through 715

the mediator, from “partial mediation”, where the QTL acts partly through the 716

mediator and partly directly (or through other unmodeled routes). 717

In our study, we use an empirical approximation of the above adapted to 718

genome-wide data, building on mediation analysis used in studies of DO mice [22,23,59]. 719

In outline: For a given eQTL, i.e., a QTL for which step (1) (X → Y ) has been 720

established, we performed a genome-wide mediation scan. This mediation scan 721

consisted of testing step (4) (X → Y |M), that is, testing whether the eQTL association 722

was significantly reduced when adding the mediator as a covariate, for a large number of 723

“potential” mediators, namely all chromatin regions (or transcripts) genome-wide. Note 724

that most of these potential mediators would be formally ineligible under a traditional 725

analysis (i.e., X →M would not hold) but here helped to define a background (null) 726

level of association. The results of the mediation scan were then filtered to include only 727

results satisfying both of the following criteria: first, the mediator must posess a 728

co-localizing QTL, i.e., a QTL for which step (2) (X →M) does hold; second, the 729

association between QTL and mediator must be stronger than that between QTL and 730

transcript (X →M > X →M), this approximating step (3) (M → Y |X). We did not 731

attempt to distinguish between partial and full mediation since this distinction was too 732

easily obscured by noise. 733

The genome-wide mediation scan procedure in more detail was as follows. Consider 734

an eQTL that our previous genome scan has already shown to affect the expression of 735

gene j. Denote the expression level for j in individual i as y
Gj

i and eQTL effect as 736

eQTL
Gj

i (these respectively correspond to Y and X in the mediation description above). 737

Further, consider a proposed mediator k ∈ K, where K is the set of all eligible chromatin 738

accessible sites or expressed genes, and let mik be the value of that mediator for 739

individual i. The mediation scan for a given gene/eQTL pair j proceeds by performing, 740

for each proposed mediator k ∈ K, a model comparison between the alternative model, 741

y
Gj

i = µ+ eQTL
Gj

i +mik + batchb[i] + εi , (3)

and the null model, 742

y
Gj

i = µ+mik + batchb[i] + εi ,

where other terms are as described for Eq 2. (Not, shown are additional covariates, such 743

as conditioned loci, which would be included in both the null and alternative models.) 744

The above model comparison can be seen as re-evaluating the significance of a given 745

eQTL association by conditioning on each proposed mediator in turn (i.e., testing 746

X → Y |M for each M). The resulting mediation scan, in contrast to the 747
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earlier-described genome scans, thus fixes the QTL location while testing across the 748

genome for candidate mediators. 749

In general, assuming most proposed mediators are null, the mediated logP should 750

fluctate around the original eQTL logP, since the model comparison will resemble the 751

original test of that locus in the genome scan. For mediators that possess some or all of 752

the information present in the eQTL, however, the mediated logP will drop relative to 753

the original logP, reflecting X → Y |M being less significant than X → Y . Empirical 754

significance of genome-wide mediation has previously been determined by comparing 755

the nominal mediator scores to the distribution of mediation scores genome-wide, the 756

latter effectively acting as a null distribution [22,23,59]. We instead determine a null 757

distribution explicitly by permutation, characterizing the distribution of the minimum 758

logP (as opposed to maximum logP for QTL scans) to estimate significance and set 759

false positive control (FWER). As with the QTL mapping procedures, we performed 760

mediation scans on 1,000 permutations, permuting the mediators rather than the 761

outcome, to characterize GEVs from the minimum logP, that is, 762

permPm = FGEV(logP), at both chromosome- and genome-wide levels. 763

Detection of mediation is dependent on a number of assumptions about the 764

underlying variables, their relationships, and those relationships’ directionality [4]. 765

Many of these cannot be controlled in a system as complex as chromatin accessibility 766

and transcriptional regulation in whole living organisms. Nevertheless, signals in the 767

data that are consistent with the mediation model represent candidate causal factors 768

that regulate gene expression. Though it is impossible to ensure that the direction of 769

causation is indeed M → Y , as assumed by the mediation analysis, we require 770

additional checks to formally declare mediation of an eQTL. The presence of the 771

relationship X → Y is already established in that mediation scans are only performed 772

for detected eQTL. In addition for any candidate mediator with a significant permPm, 773

we require detection of a mediator QTL: X →M . These requirements, as mentioned 774

earlier, are consistent with traditional mediation analysis. Finally, in an attempt to 775

identify mediator-to-gene relationships consistent with the proposed models, we require 776

that X →M is more significant than X → Y . Though this step cannot confirm the 777

directionality of the relationship between M and Y , as variable noise level between M 778

and Y could reduce the estimated effect size of their respective QTL, it will identify 779

candidate mediators that are consistent with the proposed models. Further details on 780

the mediation analysis are described in S3 Appendix, including the permutation 781

approach and the formal criterion by which mediation is declared for both chromatin 782

and gene mediators (Fig 6). 783

Software 784

All statistical analyses were conducted with the R statistical programming language [60]. 785

The R package miQTL was used for all the mapping and mediation analyses, and is 786

available on GitHub at https://github.com/gkeele/miqtl. 787

Supporting information 788

S1 Fig. Principle components analysis identifies tissue type as key source 789

of variation for gene expression and chromatin accessibility. Molecular traits 790

for liver (purple), lung (green), and kidney (orange) tissue samples were derived from 791

RNA-seq and ATAC-seq data. Principal components (PC) 1 and 2 capture a majority 792

of the variation and show a greater amount of between tissue variability than within 793

tissue variability. (PDF) 794
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S2 Fig. Concordance between differentially expressed genes and 795

differentially accessible regions in between-tissue comparisons. Genes were 796

categorized by the direction of the difference in expression and chromatin accessibility 797

in their promoter regions. (PDF) 798

S3 Fig. Overlap across tissues of (A) genes and (B) chromatin windows 799

used for QTL analysis. Sequence traits were filtered to remove outcomes more likely 800

to cause spurious QTL signals. Genes with TPM ≤ 1 and chromatin windows with 801

TMP ≤ 5 for ≥ 50% of samples were removed from analysis. After this filtering process, 802

lung had the greatest number of traits analyzed, for both genes and chromatin windows, 803

followed by kidney and then liver. (PDF) 804

S4 Fig. Overlap across tissues of (A) genes and (B) chromatin windows 805

with local-QTL detected. The majority of sequence traits with a local-QTL 806

detected were identified in only a single tissue. Kidney had the highest number of 807

local-eQTL, whereas lung had the highest number of local-cQTL. Liver had a relative 808

lack of local-cQTL, which may relate to its having the fewest chromatin windows 809

analyzed (S3 FigB). Results included local-QTL detected with Analysis G (FDR ≤ 0.1), 810

Analysis C (FDR ≤ 0.1), and Analysis L (genome-wide and chromosome-wide). (PDF) 811

S5 Fig. QTL mapping results using only Analysis G or Analysis C. QTL 812

map plots of (A) eQTL and (B) cQTL with FDR controlled at 0.1 and 0.2 for liver, 813

lung, and kidney. Detected QTL from Analysis G (multi-stage FDR) and Analysis C 814

(chromosome-wide FDR) are included. Analysis C, which uses FDR control for 815

chromosome-wide significant QTL, produces a large number of intra-chromosomal 816

distal-QTL. The y-axis represents the genomic position of the gene or chromatin site, 817

and the x-axis represents the genomic position of the QTL. Local-QTL appear as dots 818

along the diagonal. (PDF) 819

S6 Fig. Highly significant QTL map nearby the gene TSS and chromatin 820

window midpoint. The permutation-based p-value (permP) from (A) Analysis G and 821

(B) Analysis C for eQTL and cQTL by their distance (Mb) from the gene TSS and the 822

midpoint of the chromatin site. Inter-chromosomal distal-QTL are not included. The 823

red dashed lines represent ±10Mb of the gene TSS or the midpoint of the chromatin 824

site for classifying QTL as local or distal. Significant signals (yellow or blue), based on 825

FDR ≤ 0.1, are largely local. Analysis C detects many more intra-chromosomal 826

distal-QTL. (PDF) 827

S7 Fig. QTL effect size by local/distal status. Each dot represents a QTL 828

detected through either (A) Analysis G or (B) Analysis C with FDR ≤ 0.1. The three 829

horizontal bars represent the 25th, 50th, and 75th quantiles of QTL effect sizes for all 830

local-QTL per tissue. More local-eQTL are detected and have higher effects than 831

distal-QTL. Analysis C detects a large number of intra-chromosomal distal-QTL that 832

Analysis G does not, many of which have low effect sizes. Effect size estimates are 833

based on a fixed effects model. (PDF) 834

S8 Fig. CAST and PWK haploytpes have more extreme effects for (A) 835

eQTL and (B) cQTL compared with the other strains. Haplotype effects were 836

estimated as BLUPs, which are constrained and centered around 0. Each QTL is 837

represented by an 8-element effect vector. Founders with more extreme effects are 838

identified by comparing the absolute values of effects. Founder haploytpe effect trends 839
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for eQTL are similar to cQTL. The trends are unstable in distal-cQTL because so few 840

are identified. (PDF) 841

S9 Fig. Effect sizes between cross-tissue QTL pairs are lowly but 842

significantly correlated. Comparisons of QTL effects sizes between (liver/lung) are 843

in the left column, (liver/kidney) middle column, and (lung/kidney) right column. 844

eQTL are yellow and cQTL are blue. Local-eQTL are plotted in the top row, 845

distal-eQTL in the second row, local-cQTL in the third row, and distal-cQTL in the 846

bottom row, with only four pairs detected in (lung/kidney). (PDF) 847

S10 Fig. Consistent genetic regulation of gene expression and chromatin 848

accessibility observed across tissues. There was an excess of significant positively 849

correlated haplotype effects in QTL pairs across tissues for gene expression and 850

chromatin accessibility. Pairs of QTL observed in multiple tissues were defined for 851

local-eQTL (left column), distal-eQTL (middle column), and local-cQTL (right column). 852

Only four pairs of distal-cQTL were observed, all shared between lung and kidney. A 853

right-tailed test the correlation between haplotype effects (HA : r > 0) was performed 854

for each QTL pair, producing p-values that were then FDR adjusted. Null simulations 855

of uncorrelated 8-element vector pairs for each class of QTL and pairwise tissue 856

comparison emphasize the observed enrichment in correlated haplotype effects between 857

QTL pairs. (PDF) 858

S11 Fig. Cross-tissue QTL pairs with highly correlated haplotype effects 859

map proximally to each other. Haplotype effects were estimated as constrained 860

BLUPs. Pairwise correlations of the 8-element effect vectors were calculated for QTL 861

pairs, and plotted again the distance between the QTL coordinates in Mb for 862

(liver/lung) in the left column, (liver/kidney) in the middle column, and (lung/kidney) 863

in the right column. Single eQTL and cQTL pairs are represented as a yellow and blue 864

dots, respectively. Local-eQTL are shown in the top row, distal-eQTL in the second row, 865

local-cQTL in the third row, and distal c-QTL in the bottom row, for which only four 866

pairs were detected in (lung/kidney). (PDF) 867

S12 Fig. The gene Ubc has consistent strong local-eQTL observed in the 868

three tissues. The local-eQTL consistently drove higher expression when the B6, 869

NOD, NZO, and WSB haploytpes were present. Expression levels in liver and lung were 870

found to be significantly different (q = 0.022). The estimated haplotype effects were 871

highly consistent with the expression data, represented as interquartile bars categorized 872

by most likely diplotype. The haplotype and variant associations in the eQTL regions 873

were similar across tissues, suggesting they may represent the same causal origin. The 874

red tick represents the Ubc TSS, the black tick represents the peak variant association, 875

and the colored ticks represent the peak haplotype association for each tissue. (PDF) 876

S13 Fig. The gene Rnf13 has unique patterns of genetic regulation across 877

tissues. A strong local-eQTL was detected in liver, and after conditioning on it, a 878

statistically significant distal-eQTL was detected (Analysis G) on chromosome 12, 879

largely driven by the B6 haplotype, distinct from the local-eQTL. The unique haplotype 880

effect patterns for each eQTL can be seen in both the expression data, represented by 881

interquartile bars for most likely diplotype, and the estimated effects. The red tick 882

marks the Rnf13 TSS and the black tick marks the location of distal-eQTL. Another 883

strong distal-eQTL was detected on the X chromosome in lung. (PDF) 884
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S14 Fig. Co-localizing eQTL and cQTL are not sufficient for statistical 885

mediation. The approach used to detect mediation through chromatin accessibility 886

requires that the eQTL and cQTL co-localize (both within 10Mb of the gene TSS), as 887

well as possess similar haplotype effect patterns. Co-localizing cQTL are observed for 888

local-eQTL for both (A) Hdhd3 in liver and (B) Acbd4 in kidney. QTL and mediation 889

scans are shown, with chromosomes 4 and 11 blown up for Hdhd3 and Acbd4, 890

respectively. The red ticks denote the TSS for both genes. The haplotype effects for the 891

eQTL and cQTL are highly correlated (r = 0.96) for Hdhd3, but not for Acbd4 892

(r = 0.55). Strong mediation of the Hdhd3 eQTL through chromatin is detected, but 893

not for Acbd4. The effect size of the co-localizing cQTL to Acbd4 is smaller than its 894

eQTL, also inconsistent with the relationship depicted in Fig 6A. (PDF) 895

S15 Fig. Mediation of Ccnyl1 distal-eQTL through Zfp979 expression. 896

Expression of Ccnyl1 and Zfp979 are correlated (r = 0.72) in lung, which is also 897

observed in the expression data categorized by diplotype and the haplotype effects. The 898

distal-eQTL on chromosome 4 for Ccnyl1 corresponds closely to local-eQTL of Zfp979. 899

Ccnyl1 is located on chromosome 1, indicated by the red tick. Zfp979 and Zfp985, both 900

zinc finger proteins likely with DNA binding properties, are identified as strong 901

candidate mediators of the distal-eQTL at genome-wide significance. The correlations, 902

magnitude of effects, and mediation are consistent with the simple relationship depicted 903

in the graph. The distal-eQTL and candidate mediators are located in a region of 904

interest that regulates Akr1e1 expression. (PDF) 905

S16 Fig. Mediation of Akr1e1 distal-eQTL through Zfp985 expression. 906

Expression of Akr1e1 and Zfp985 are anti-correlated (r = −0.69) in lung. This 907

relationship is also observed in the expression data with bars representing the 908

interquartile range, categorized by most likely diplotype, and the haplotype effects. The 909

QTL and mediation scans reveal that Akr1e1, with TSS marked with a red tick on 910

chromosome 13, possesses a distal-eQTL on chromosome 4 that is nearby the strong 911

local-eQTL of Zfp985. The mediation scan identifies Zfp985 as a strong candidate 912

mediator consistent with the mediation model. A more complete picture of the genetic 913

regulation of Akr1e1 expression is pieced together by looking across all three tissues and 914

includes a potential chromatin mediator (Fig 9). (PDF) 915

S17 Fig. Confirmation of Akr1e1 distal-eQTL and mediation by Zfp985 916

in kidney tissue of Diversity Outbred mice. A genome-wide significant 917

distal-eQTL was detected for Akr1e1 in liver, lung (shown here), and kidney tissues 918

from 47 CC strains. In a larger sample of kidney tissue from outbred DO mice, the 919

same distal-eQTL and mediation relationship were observed. As expected, the larger 920

sample of the DO results in greater statistical significance, and confirms that the NOD 921

effect is more strongly negative than NZO, PWK, and WSB, which the haplotype 922

effects plots for the Zfp985 local-eQTL suggested. Notably, Zfp985 was not tested in 923

the CC kidney because of low expression levels, though the distal-eQTL for Akr1e1 is 924

consistent with its activity, which is here confirmed in the DO. (PDF) 925

S18 Fig. Observed relationships across the three tissues related to the 926

genetic regulation of Akr1e1 expression. The model for the distal genetic 927

regulation of Akr1e1 expression, described in Fig 9, was reconstructed from these 928

observed relationships. Solid arrows were observed, whereas dashed arrows are assumed. 929

QTL effect sizes represent the proportion of variance explained by the QTL and 930

mediation p-values (permP) were defined using a permutation procedure. The assumed 931

relationships are supported by the presence of the distal-eQTL in all three tissues. The 932
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Zfp985 mediator relationship in kidney, though not observed in the CC, was observed in 933

the related DO population. (PDF) 934

S19 Fig. Local-QTL effect sizes by mapping analysis. Based on ranking 935

mapping analyses with respect to the extent of scope, local (L; magenta) to chromosome 936

(C; plum) to genome-wide (G; cyan), the greater the scope corresponded to reduced 937

power to detect QTL, shown in liver, lung, and kidney tissues for gene expression 938

(yellow line) and chromatin accessibility (blue line). Each dot represents a detected 939

local-QTL, colored according to the highest scope mapping procedure that detected it. 940

The three horizontal bars represent the 25th, 50th, and 75th quantiles of QTL effect 941

sizes for all local-QTL per tissue. Analysis G generally detects QTL with effect size > 942

60%, whereas Analyses C and L detect QTL effect sizes > 45%. Effect size estimates 943

correspond to a fixed effects model of the QTL. (PDF) 944

S20 Fig. Comparison of QTL effect sizes estimates from fixed effects and 945

random effects models. The effect size from the random effect fit is harshly 946

penalized compared with the fixed effect estimate, likely due to a sample size of 47 mice. 947

Notably, there are a number of distal-eQTL that are more harshly reduced by the 948

random effects model compared with the other QTL, likely representing signals 949

resulting from extreme observations or imbalances in founder contributions at the locus. 950

QTL detected by Analysis G (FDR ≤ 0.1), C (FDR ≤ 0.1), and L are shown. (PDF) 951

S21 Fig. Detection of local-eQTL after conditioning on distal-eQTL for 952

Gpn3. The multi-stage conditional regression approach of Analysis G allows for the 953

detection of multiple genome-wide significant QTL, which can be appropriately 954

incorporated into an FDR procedure across many outcomes. In this example in lung 955

tissue, the gene Gpn3 initially has a strong distal-eQTL on chromosome 8 [top left]. 956

Though a peak is detected near the TSS of Gpn3, it does not meet genome-wide 957

significance. However, after conditioning on the distal-eQTL, the local-eQTL is detected 958

[bottom left]. Horizontal dashed lines represent empirical 95% significance thresholds 959

based on 1,000 permutations. (PDF) 960

S1 Appendix. CC strains used in study. (PDF) 961

S2 Appendix. Detailed description of conditional genome-wide scans 962

(Analysis G). (PDF) 963

S3 Appendix. Detailed description of mediation analysis. (PDF) 964

S1 Table. Number of differentially expressed genes and accessible 965

chromatin regions detected between liver, lung, and kidney tissues. (PDF) 966

S2 Table. Number of genes with eQTL detected in liver, lung, and kidney 967

tissues at FDR ≤ 0.1. (PDF) 968

S3 Table. Number of genes with eQTL detected in liver, lung, and kidney 969

tissues at FDR ≤ 0.2. (PDF) 970

S4 Table. Number of chromatin accessibility sites with cQTL detected in 971

liver, lung, and kidney tissues at FDR ≤ 0.1. (PDF) 972
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S5 Table. Number of chromatin accessibility sites with cQTL detected in 973

liver, lung, and kidney tissues at FDR ≤ 0.2. (PDF) 974

S6 Table. Number of genes with chromatin mediation of local-eQTL in 975

liver, lung, and kidney tissues. (PDF) 976

S7 Table. Genes with distal-eQTL with gene mediators detected in lung 977

and kidney tissues. (PDF) 978
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