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Abstract

Gene transcription profiles across tissues are largely defined by the activity of regulatory
elements, most of which correspond to regions of accessible chromatin. Regulatory
element activity is in turn modulated by genetic variation, resulting in variable
transcription rates across individuals. The interplay of these factors, however, is poorly
understood. Here we characterize expression and chromatin state dynamics across three
tissues—liver, lung, and kidney—in 47 strains of the Collaborative Cross (CC) mouse
population, examining the regulation of these dynamics by expression quantitative trait
loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent
across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected
were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL
for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging
overlapping measurements of gene expression and chromatin accessibility on the same
mice from multiple tissues, we used mediation analysis to identify chromatin and gene
expression intermediates of eQTL effects. Based on QTL and mediation analyses over
multiple tissues, we propose a causal model for the distal genetic regulation of Akriel, a
gene involved in glycogen metabolism, through the zinc finger transcription factor
Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of
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transcriptional and chromatin dynamics and their regulation over multiple tissues, as
well as the value of the CC and related genetic resource populations for identifying
specific regulatory mechanisms within cells and tissues.

Author summary

Genetic variation can drive alterations in gene expression levels and chromatin
accessibility, the latter of which defines gene regulatory elements genome-wide. The
same genetic variants may associate with both molecular events, and these may be
connected within the same causal path: a variant that reduces promoter region
chromatin accessibility, potentially by affecting transcription factor binding, may lead to
reduced expression of that gene. Moreover, these causal regulatory paths can differ
between tissues depending on functions and cellular activity specific to each tissue. We
identify cross-tissue and tissue-selective genetic regulators of gene expression and
chromatin accessibility in liver, lung, and kidney tissues using a panel of genetically
diverse inbred mouse strains. Further, we identify a number of candidate causal
mediators of the genetic regulation of gene expression, including a zinc finger protein
that helps silence the Akriel gene. Our analyses are consistent with chromatin
accessibility playing a role in the regulation of transcription. Our study demonstrates
the power of genetically diverse, multi-parental mouse populations, such as the
Collaborative Cross, for large-scale studies of genetic drivers of gene regulation that
underlie complex phenotypes, as well as identifying causal intermediates that drive
variable activity of specific genes and pathways.

Introduction

Determining the mechanisms by which genetic variants drive molecular, cellular, and
physiological phenotypes has proved to be challenging [1]. These mechanisms can be
informed by genome-wide experiments that provide data on variations in molecular and
cellular states in genotyped individuals. Most examples of such data, though, are largely
observational, due in part to constraints of specific populations (e.g., humans), the
limitations of existing experimental technologies, and the challenge of coordinating large
numbers of experiments with multiple levels of data [2]. One approach to shed light on
these dynamics is to pair complementary datasets from the same individuals and
perform statistical mediation analysis (e.g., [3L/4]), which has increasingly been used in
genomics [6]. These analyses can identify putative causal relationships rather than
correlational interactions, providing meaningful and actionable targets in terms of
downstream applications in areas such as medicine and agriculture.

In human data, co-occurence of QTL across various multi-omic data has been used
to assess potentially related and connected biological processes; examples include gene
expression with chromatin accessibility [7] or regulatory elements [§], and ribosome
occupancy with protein abundances [9]. More formal integration through statistical
mediation analyses has also been used to investigate relationships between levels of
human biological data, such as distal genetic regulation through local gene
expression [10,/11], and eQTL with regulatory elements |12H14] and physiological
phenotypes, such as cardiometabolic traits [15].

Though genetic association studies of human populations have been highly
successful |16], animal models allow for more deliberate control of confounding sources
of variation, including experimental conditions and population structure, and as such

provide a potentially powerful basis for detecting associations and even causal linkages.

Towards this end, genetically-diverse mouse population resources have been established,

October 25, 2019

20

21

22

23

24

25

26


https://doi.org/10.1101/588723
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/588723; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

including the Collaborative Cross (CC) |17H19] and the Diversity Outbred (DO)
population [20]. The CC and the DO are multiparental populations (MPP), derived
from the same eight founder strains (short names in parentheses): A/J (AJ), C57BL/6J
(B6), 129S1/SvImJ (129), NOD/ShiLitJ (NOD), NZO/H1LtJ (NZO), CAST/EiJ
(CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB). The CC are recombinant inbred
strains and therefore replicable across and within studies; the DO are largely
heterozygous, outbred animals, bred with a random mating strategy that seeks to
maximize diversity. MPPs similar to the CC or DO have also been developed in other
species, including rats, Arabidopsis, Drosophila, and yeast, and the use of MPPs in
model organism research has accelerated significantly in recent years ( [21] and refs
therein).

As with humans, it is only recently that studies on MPPs have used mediation
analysis to connect genetic variants with different levels of genomic data. A
genome-wide mediation approach in 192 DO mice was used to link transcriptional and
post-translational regulation of protein levels [22]. CC mice were then used to confirm
results by showing correspondence with estimates of founder haplotype effects from each
of the related populations. More recently, mediation analysis was used to connect
chromatin accessibility with gene expression in embryonic stem cells derived from DO
mice [23]. The CC and DO, and MPPs more broadly, have well-characterized haplotype
structures that provide a unique opportunity for studying mediation at the haplotype
level. This is potentially advantageous because haplotypes can capture genetic variation
and its effects more comprehensively than can individual SNPs [24], the latter being the
predominant basis for comparable mediation analyses in humans.

Here we use a sample composed of a single male mouse from 47 CC strains to
investigate dynamics between gene expression and chromatin accessibility, as
determined by Assay for Transposase Accessible Chromatin sequencing (ATAC-seq), in
lung, liver, and kidney tissues. We detect QTL underlying gene expression and
chromatin accessibility variation across the strains and assess support for mediation of
the effect of eQTL through chromatin accessibility using a novel implementation of
previous methods used in the DO [22]. Additionally, we detect gene mediators of
distal-eQTL. These findings demonstrate the experimental power of the CC resource for
integrative analysis of multi-omic data to determine genetically-driven phenotype
variation, despite limited sample size, and provide support for continued use of the CC
in larger experiments going forward.

Results

Differential gene expression and chromatin accessibility
Gene expression and chromatin accessibility cluster by tissue

Gene expression and chromatin accessibility were measured with RNA-seq and
ATAC-seq assays, respectively, from whole lung, liver, and kidney tissues in one male
mouse from each of 47 CC strains (Fig|l)). (The use of only male mice was due to
practical constraints; results for females may differ [22].) Each tissue has a distinct
function and we expected those differences to be reflected in the data. This was borne
out by principal components analysis (PCA) of each of the gene expression and
chromatin accessibility profiles, which showed that the samples clearly clustered by

tissue (S1 Fig)).
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Fig 1. Diagram of the experiment and analyses. RNA-seq and ATAC-seq were
performed using liver, lung, and kidney tissues of males from 47 CC strains. Each CC
strain was derived from an inbreeding funnel, and thus represents a recombinant inbred
mosaic of the initial eight founder haplotypes. Differential analyses followed by pathway
enrichment analyses were performed to identify biological pathways enriched in
differentially expressed genes and accessible chromatin regions. QTL and mediation
analyses were performed to identify regions that causally regulate gene expression and
chromatin accessibility.

Differentially expressed genes strongly correspond with accessible
chromatin regions

Differential expression (DE) and differentially accessible region (DAR) analysis were
performed between the three tissues and revealed between 3,564 - 5,709 DE
genes and 28,048 - 40,797 DARs (FWER < 0.1). For both expression and chromatin
accessibility, liver and kidney tissues were the most similar, whereas lung and liver were
the most distinct, also seen in the PCA plots . Pathway analyses showed many
between-tissue differences related to metabolic and immune-related pathways (FWER
< 0.1), reflecting the distinct demands of each tissue. Energy metabolism pathways
were more active in liver and kidney and immune-related pathways were more
pronounced in lung, as expected. We compared the concordance between DE genes and
DARs genome-wide and observed that most DE gene promoters do not show significant
differences in chromatin accessibility . In cases with significant variability in
accessibility at the promoter of a DE gene, though, the vast majority agree in direction
(i.e., higher expression with greater accessibility).

QTL detection

Gene expression

The impact of genetic variation on gene expression was evaluated by eQTL mapping.
This was done at three levels of stringency and emphasis: 1) at the level of the local
region of a gene, defined as within 10Mb of the gene transcription start site (TSS), and
hereafter termed Analysis L; 2) at the level of the chromosome on which the gene is
located (Analysis C); and 3) at level of the genome (Analysis G) (details in Methods).
After filtering out lowly expressed genes, the number of genes examined in eQTL
ing was 8401 for liver, 11357 for lung, and 10092 for kidney (UpSet plot [61] in
FiglA).

Analysis L detected local-eQTL for 19.8% of genes tested in liver, 16.6% in lung, and
20.8% in kidney (S2 Table). Local-eQTL for most genes were observed in only one
tissue ((S4 FiglA). Analysis C, which was more stringent, additionally detected
intra-chromosomal distal-eQTL, while Analysis G, the most stringent, additionally
detected inter-chromosomal distal-eQTL . Genomic locations of eQTL
detected for each tissue, excluding the intra-chromosomal distal-eQTL detected by
Analysis C, are shown in Fig [JJA[top]. See[S5 Figl and [S3 Tabl¢ for eQTL counts with
FDR < 0.2.

Chromatin accessibility

To determine genetic effects on chromatin structure, genomic regions were divided into
~300 base pair windows and analyses similar to eQTL were used to detect chromatin

accessibility QTL (cQTL). After filtering regions with low signal across most samples,
the number of chromatin regions tested were 11448 in liver, 24426 in lung, and 17918 in
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Fig 2. QTL mapping results and comparison of matched pairs from lung
and kidney. (A) Detected QTL are largely local for both gene expression and
chromatin accessibility. QTL detected through all analyses, excluding
intra-chromosomal distal-QTL detected through Analysis C, are included. The y-axis
represents the genomic position of the gene or chromatin site, and the x-axis represents
the genomic position of the QTL. Local-QTL appear as dots along the diagonal and
distal-QTL as off-diagonal dots. The gray dashed box highlights lung and kidney QTL
results, which are further explored in B-F. (B) Highly significant QTL map nearby the
gene TSSs and chromatin window midpoints. Results from Analysis G are shown here.
The red dashed line represents £ 10Mb from the trait genomic coordinate used to
classify a QTL as local or distal. See for all tissues as well as results from
Analysis C. (C) Local QTL have larger effect sizes than distal. Only results from
Analysis G are included here. See for all tissues and results from Analysis C. (D)
Consistent genetic regulation of gene expression and chromatin accessibility was
observed between lung and kidney tissue, based on an enrichment in positively
correlated founder haplotype effects for QTL paired across the two tissues. QTL from
all the Analyses were considered here. See for all tissue pairings. (E) QTL
observed in both lung and kidney that are highly correlated tend to map close to each
other, consistent with representing genetic variation active in both tissues. See
for all tissue pairings. (F) The effect sizes of QTL paired from lung and kidney are
significantly correlated. See for all tissue comparisons.

kidney. The overlap in chromatin windows tested across tissues is described in [S3 FigB.
The differences in genes and chromatin regions tested within each tissue likely reflects
both biological and technical factors that distinguish the tissue samples. Overall, there
were substantially fewer cQTL detected compared with eQTL for all tissues (Fig
P2JA[bottom]; [S4 Table] [S5 Table]). As with eQTL, cQTL were more likely to be local

than distal (66 - 94.1% local-cQTL for Analysis G; 75 - 90% local-cQTL for Analysis C).

Local-QTL have stronger effects than distal-QTL

For QTL detected on the same chromosome as the gene or chromatin region
(intra-chromosomal), the strongest associations were observed within 10Mb of the gene
TSS or chromatin window midpoint (Fig and . Intra-chromosomal
distal-QTL had reduced statistical significance, more consistent with inter-chromosomal
distal-QTL. This dynamic between local- and distal-QTL is also observed when using
the QTL effect size as a measure of strength, which is likely biased upward due to the
Beavis effect in 47 strains [46], shown in Fig[2C and

QTL driven by extreme effects of CAST and PWK

For all QTL we estimated the effects of the underlying (founder) haplotypes. Consistent
with previous studies (e.g., [42]), the CAST and PWK haplotypes had higher
magnitude effects compared with the classical inbred strains. This pattern was observed
for both local- and distal-eQTL ) and local-cQTL; the numbers of detected
distal-cQTL were too low to produce clear trends )

QTL paired across tissues and correlated haplotype effects

For a given trait, QTL from different tissues were paired if they co-localized to
approximately the same genomic region. In the case of local-QTL, both had to be
within the local window, defined as 10Mb up or downstream of the gene TSS or
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chromatin region midpoint; thus, the maximum possible distance between them was
20Mb. In the case of distal-eQTL, they had to be within 10Mb of each other.
Consistency between these cross-tissue QTL pairs was assessed by calculating the
correlation between their haplotype effects (FDR, < 0.1; Fig and , with
significant positive correlations implying that the paired QTL acted similarly and likely
represent multi-tissue QTL. For local-eQTL, we found significant haplotype effect
correlations between 346 of 761 possible pairs (45.5%) in liver/lung, 623 of 1206 (51.7%)
in liver /kidney, and 497 of 1025 (48.5%) in lung/kidney. For distal-eQTL, we found
significant correlations between 21 of 61 possible pairs (31.8%) in liver/lung, 34 of 120
(28.8%) in liver/kidney, and 16 of 59 (27.1 %) in lung/kidney. For cQTL, the vast
majority of correlated pairs were local, with 47 of 55 (85.5%) possible pairs in
liver/lung, 48 of 56 (85.7%) in liver/kidney, and 118 of 142 (83.1%) in lung/kidney
being significantly correlated. Only 4 distal-cQTL pairs were observed, all between lung
and kidney, with three of the four pairs possessing nominal correlation p-values < 0.05.
The effect sizes of paired QTL varied across tissues, though for any given tissue pairing,
the effect sizes were significantly correlated (least significant p-value =4.6 x 10~8; Fig
and . No significantly negatively correlated QTL pairs were detected after
accounting for multiple testing (FDR < 0.1).

Cozx7c: Consistent haplotype effects for multi-tissue local-eQTL

Cytochrome ¢ oxidase subunit 7C (Coz7c) is an example of a gene that possessed
local-eQTL with highly correlated effects in all three tissues (Fig ) The local-eQTL
consistently drove higher expression when the CAST haplotype was present,
intermediate expression with 129, NOD, and NZO haplotypes, and lower expression
with A/J, B6, PWK, and WSB haplotypes. Though the haplotype effects on relative
expression levels within each tissue were consistent, we noted that the expression level
was significantly higher in liver compared with both lung (¢ = 5.41 x 1078) and kidney
(¢ =6.25 x 10719). Ubiquitin C (Ubc) is another example of a gene with consistent

local-eQTL detected in all three tissues (S12 Figj).

Fig 3. Examples of genes with local-eQTL observed in all three tissues. (A)
Coz7c possesses local-eQTL with highly correlated haplotype effects across all three
tissues, supportive of shared causal origin. (B) Slc/4a3 has a more complicated pattern
of local-eQTL haplotype effects across the tissues, with correlated effects shared
between lung and kidney, and transgressive effects in the liver eQTL by comparison,
consistent with distinct casual variants comparing liver to lung and kidney. For both
genes, the expression data are plotted with bars representing the interquartile ranges of
likely founder haplotype pair (diplotype). Differential expression between tissues is
highlighted. The haplotype association for each tissue is also included near the gene
TSS with variant association overlaid. The most statistically rigorous method that
detected the QTL (Analysis L, C, or G) is also included. The red tick represents the
gene TSS, the black tick represents the variant association peak, and the colored tick
represents the haplotype association peak. Haplotype effects, estimated as constrained
best linear unbiased predictions (BLUPs).

Slc44a3 and Pik3c2g: Tissue-specific haplotype effects for local-eQTL

We found instances where haplotype effects across the three tissues were inconsistent,
referring to these as tissue-specific effects (within this subset of tissues). The strongest

support of tissue-specificity would be given by QTL pairs whose effects are uncorrelated.

For example, the solute carrier family 44, member 3 (Slc/4a8) gene has local-eQTL
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effects that are correlated in lung and kidney but anticorrelated liver (Fig ),
suggesting the liver eQTL could be transgressive [62] relative to the eQTL in lung and
kidney, whereby the effects of the haplotypes are reversed. For Sicj4a3, CAST, PWK,
and WSB haplotypes result in higher expression in liver but lower expression in lung
and kidney. The local-eQTL for Sic/4a8 were more similar in location in lung and
kidney whereas the liver eQTL was more distal to the gene TSS. Overall, the expression
data, estimated effects, and patterns of association are consistent with lung and kidney
sharing a causal local-eQTL that is distinct from the one in liver.

The CC founder strains all possess contributions from three mouse subspecies of M.
musculus: domesticus (dom), castaneus, (cast), and musculus (mus) [63]. Allele-specific
gene expression in mice descended from the CC founders often follow patterns that
matched the subspecies inheritance at the gene regions |64,/65]. We found that
phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 gamma (Pik3c2g), a
gene of interest for diabetes-related traits [66], had tissue-specific local-eQTL in all
three tissues that closely matched the subspecies inheritance at their specific genomic

coordinates. The local-eQTL in all three tissues were all pair-wise uncorrelated (Fig [4).

Further, expression of Pik3c2g varied at statistically significant levels for liver versus
lung (¢ = 3.12 x 10713) and lung versus kidney (¢ = 3.55 x 107%). In lung, the CAST
haplotype (cast subspecies lineage) resulted in higher expression, consistent with a cast
versus dom/mus allelic series. In kidney, the B6, 129, NZO, and WSB haplotypes (dom
subspecies) resulted in higher expression, whereas A/J and NOD (mus), CAST (cast),
and PWK (dom) haplotypes showed almost no expression, mostly consistent with a dom
versus cast/mus allelic series. The PWK founder appears inconsistent, but we note that
the QTL peak was in a small dom haplotype block interspersed within a broader mus
region. The expression level in kidney of Pik3c2g in PWK was low, similar to A/J and
NOD, suggesting that the causal variant may be located in the nearby region, where all
three have mus inheritance and, notably, where the peak variant association occurred.
In liver, the B6 haplotype resulted in lower expression compared with the other
haplotypes. Interestingly, the liver eQTL was in a region that contained a
recombination event between dom and mus, only present in B6, which may explain the
unique expression pattern.

Fig 4. Pik3c2g possesses tissue-specific local-eQTL. Local-eQTL for Pik3c2g
were detected in all three tissues in the 3Mb region surrounding its TSS. The genomes
of the CC founders can be simplified in terms of contributions from three subspecies
lineages of M. musculus: dom (blue), cast (yellow), and mus (red). The effects of each
local-eQTL matched the subspecies contributions near the eQTL coordinates, with low
expressing subspecies alleles colored teal and high expressing alleles colored salmon,
consistent with local-eQTL for Pik3c2g being distinct and tissue-specific. The gene
expression data are represented as interquartile range bars, categorized based on most
likely diplotype at the eQTL for each CC strain. Haplotype and variants associations
are included for each tissue, with the red tick representing the Pik3c2g TSS, black ticks
representing variant association peak, and colored ticks representing the haplotype
association peak. The most rigorous procedure to detect each QTL (Analysis L, C, or
G) is reported. Haplotype effects, estimated as constrained BLUPs, were consistent
with the expression data, and uncorrelated across the tissues.

Akrlel and Per2: Consistent haplotype effects for multi-tissue
distal-eQTL

Haplotype effects that correlate across tissues can provide additional evidence for
distal-QTL, even those with marginal significance in any single tissue. For example, the
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aldo-keto reductase family 1, member E1 (Akriel; Fig ) gene is located on
chromosome 13 with no local-eQTL detected in any tissue. Distal-eQTL in all tissues
were detected for Akriel that localized to the same region on chromosome 4. The
haplotype effects of the distal-eQTL were all highly correlated, with A/J, B6, 129, and
CAST haplotypes corresponding to higher Akriel expression. Across tissues, expression
was significantly higher in liver and kidney compared with lung (¢ = 1.63 x 1071? and
q = 4.40 x 10734, respectively). Another example is the Period circadian clock 2 (Per2;
Fig ) gene, which possessed intra-chromosomal distal-eQTL approximately 100Mb
away from the TSS that were detected in all three tissues at a lenient chromosome-wide
significance (Analysis C; FDR < 0.2). The haplotype effects were significantly
correlated among the tissues, characterized by high expression with the NOD and PWK
haplotypes present. Together, these findings provide strong validation for the
distal-eQTL, which would commonly not be detected based on tissue-stratified analyses.
Other unique patterns of distal genetic regulation were detected, such as for ring finger
protein 13 gene (Rnf13) with distal-eQTL that varied across tissues, described in
g

Fig 5. Examples of genes with distal-eQTL effect patterns across tissues.
(A) Akrlel has highly significant distal-eQTL detected on chromosome 4 in all three
tissues with correlated haplotype effects. (B) Per2 has intra-chromosomal distal-eQTL
leniently detected 100Mb away from the TSS, also with highly correlated haplotype
effects across the tissues, providing further support that the distal-eQTL are not false
positives. Expression data are represented as interquartile ranges for most likely
diplotype, with differential expression noted when significant. Haplotype associations
for each tissue distal-eQTL combination are shown, with the most rigorous statistical
procedure for detection reported (Analysis L, C, or G). Red ticks signify the gene TSS
and black ticks represent that eQTL peak. Fit haplotype effects, estimated as BLUPs,
are included, along with the pairwise correlations of the eQTL.

Mediation of eQTL by chromatin

An advantage of measuring gene expression and chromatin accessibility in the same mice
and tissues is the subsequent ability to examine the relationships between genotype,
chromatin accessibility, and gene expression using integrative methods such as mediation
analysis. We considered two possible models for the mediation of eQTL effects and
assessed the evidence for each in our data. In the first model, proximal chromatin state
acts as a mediator of local-eQTL (Fig |§|A) That is, the local-eQTL for a gene affects
that gene’s expression by, at least in part, altering local chromatin accessibility. To test
for this, we used an approach adapted from studies in the DO [22] and applied it to

local-eQTL detected through Analysis L (see[S3 Appendix| for greater detail).

Fig 6. Simple mediation models for the genetic regulation of gene
expression. (A) Mediation of the local-eQTL through chromatin accessibility in the
region of the gene is consistent with genetic variation influencing the accessibility of
gene j to the transcriptional machinery. (B) Mediation of distal-eQTL through the
transcription of genes local to the QTL could be explained by transcription factor
activity.
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Ccdc137 and Hdhd3: Local-eQTL driven by local chromatin accessibility

Across the three tissues, between 13-42 local-eQTL showed evidence of mediation
through proximal accessible chromatin regions at genome-wide significance, and 35-106
at chromosome-wide significance . The coiled-coil domain containing 137 gene
(Ccdc137) is a strong example of this type of mediation. Fig|7|shows the genome scans
that identify both the local-eQTL for Ccdc137 and the cQTL near it. The significance
of the eQTL was sharply reduced when we conditioned on chromatin accessibility, and
the significance of the cQTL was stronger than the eQTL, as expected by the proposed
mediator model.

Fig 7. Ccdc137 local-eQTL is mediated by proximal chromatin accessibility.
Ccde137 expression and the chromatin accessibility in the proximal region were highly
correlated (r = 0.71). Genome scans for Ccdec137 expression (yellow), nearby chromatin
accessibility (blue), and chromatin mediation of the Ccdc137 local-eQTL (red) in lung
tissue. The local-eQTL and local-cQTL for the chromatin region at the TSS of Cecdc137
(red tick) are over-lapping, and have highly correlated haplotype effects (r = 0.98). The
steep drop in the statistical association with expression, represented as logP, at the
chromatin site in the mediation scan supports chromatin mediation of Cecdc187
expression, depicted as a simple graph [top right]. The QTL and mediation signals were
detected at genome-wide significance.

Establishing mediation requires more than mere co-localization of eQTL and cQTL.
For example, local-eQTL and co-localizing cQTL were identified for both haloacid
dehalogenase-like hydrolase domain containing 3 (Hdhd3) in liver (S14 FigA) and
acyl-Coenzyme A binding domain containing 4 (Acbd4) in kidney )
Comparing the statistical associations at the loci for eQTL and cQTL, and the
corresponding haplotype effects, however, showed better correspondence in the case of
Hdhd3 than for Acbdj: a strong mediation signal was detected for Hdhd3, indicated by
the decreased eQTL association when conditioning on the chromatin state, whereas
mediation was not detected for Abed/, consistent with expression and chromatin
accessibility having causally different origins.

Mediation of eQTL by expression

Mediation was also tested for distal-eQTL, detected through Analysis G, by evaluating
the expression of nearby genes as candidate mediators [59], as shown in Fig .

Zinc finger protein intermediates detected for Ccnyll

Eight genes were identified with mediated distal-eQTL (S7 Table). For example, the
distal-eQTL of cyclin Y-like 1 (Ccnyll) was mediated by the expression of zinc finger
protein 979 (Zfp979), a putative transcription factor . The haplotype effects at
the distal-eQTL of Ccnyll were highly correlated with those at the local-eQTL of
Zfp979, though with a reduction in overall strength, in accordance with the proposed
mediation model.

Mediation of eQTL by both expression and chromatin

The QTL and mediation results for all three tissues are depicted as circos plots [67] in
Fig[8l The local-QTL and chromatin mediators were distributed across the genome
unevenly, aggregating in pockets. In particular, a high concentration of cQTL and
chromatin mediation were detected in all three tissues along chromosome 17, which
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corresponds to the immune-related major histocompatibility (MHC) region in mouse.
Most of the chromatin-mediated genes in this region, however, are not histocompatibility
genes (Files S28 - S30). Patterns of distal-QTL and gene mediation vary across the
three tissues, though consistent regions are also observed, such as the Idd9 region on
chromosome 4 described in [68], which contains multiple zinc finger proteins (ZFPs) and
regulates genes such as Cenyll and Akriel, described in greater detail below.

Fig 8. Summaries of QTL and mediation analyses. Circos plots of eQTL
(yellow), cQTL (blue), and mediation (red) in lung, liver, and kidney. The two outer
rings of dots represent local-eQTL and local-cQTL detected by Analysis L. at
chromosome-wide significance, with red lines between connecting genes and chromatin
sites for which chromatin mediation was detected. The inner circle contains connections
representing distal-eQTL, distal-cQTL, and gene-gene mediation from Analysis G. Thick

lines represent QTL and mediators with permutation-based p-value (permP) < 1 x 107°.

The detected signals were primarily local, which also tended to be stronger than the
observed distal signals. Fewer QTL and mediators were detected in liver tissue. Genes
highlighted within the text, such as Akrilel, are indicated at their genomic coordinates.

Genetic regulation of Akriel expression by a zinc finger protein and
chromatin intermediates

As detailed above, Akrlel possessed a strong distal-eQTL in all three tissues located on
chromosome 4 in the region of 142.5 - 148.6Mb with significantly correlated haplotype
effects. Mediation analysis suggested this effect is mediated in lung through activity of
Zinc finger protein 985 (ZFP985), whose gene is also located on chromosome 4 at
147.6Mb .

ZFP985 possesses an N-terminal Kriippel-associated box (KRAB) domain,
representing a well-characterized class of transcriptional regulators in vertebrates [69)
that recruit histone deacetylases and methyltransferases, inducing a chromatin state
associated with regulatory silencing. Akriel and Zfp985 expression were negatively
correlated (r = —0.69), consistent with ZFP985 inhibiting Akrlel expression. This same
distal-eQTL and mediator relationship for Akriel was observed in kidney tissue from
193 DO mice . It was previously postulated that Akriel is distally regulated
by the reduced expression 2 (Rez2) gene, also a ZFP that contains a KRAB domain and
resides in the same region of chromosome 4 [70]. Our distal-eQTL overlap their Idd9.2
regulatory region, defined as spanning 145.5 - 148.57Mb, mapped with NOD mice
congenic with C57BL/10 (B10) [68]. The B10 haplotype was found to be protective
against development of diabetes, characteristic of NOD mice. AKR1el is involved in
glycogen metabolism and the Idd9 region harbors immune-related genes, suggesting
genes regulated by elements in the Idd9 region may be diabetes-related. Consistent
with these studies, CC strains with NOD inheritance at the distal-eQTL had low
expression of Akrlel, observed in all tissues. Genetic variation from B10 is not present
in the CC, but the closely related B6 founder had high expression of Akriel like B10.
NZO, PWK, and WSB haplotypes resulted in low Akriel expression, similar to NOD,
while A/J, 129, and CAST haplotypes joined B6 as driving high expression (Fig E[)
Variable expression of Zfp985 is a strong candidate for driving these effects on Akriel.

Additional sources of genetic regulation of Akriel were observed for kidney, where a
strong distal-cQTL for an accessible chromatin site corresponding to the promoter of
Akriel was detected in the Idd9.2 region on chromosome 4. Mediation analysis strongly
supported chromatin accessibility in this region mediating the distal-eQTL
(permP™ = 2.18 x 10~!3). The haplotype effects for the distal-cQTL were highly
correlated with the distal-eQTL effects (r = 0.92). The relative magnitudes of the QTL
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Fig 9. Mediation model for Akriel distal-eQTL. The genetic regulation of
Akrlel expression is reconstructed based on relationships observed across the three
tissues. Distal-eQTL were detected in all tissues at similar levels of significance. A
local-eQTL for Zfp985 that is proximal to the Akriel distal-eQTL was observed in
lung, and Zfp985 expression was detected as an anti-correlated mediator of the
distal-eQTL, consistent with ZFP985 suppressing Akriel expression. The chromatin
site proximal to the Akriel TSS has a distal-cQTL detected in kidney. Chromatin
accessibility at the site was found to be a significant mediator of Akriel expression.
Combining associations across tissues supports a biological model whereby ZFP985,
whose gene is expressed in mice with NOD, NZO, PWK, and WSB haplotypes, silences
Akriel through KRAB domain-induced chromatin remodeling. QTL and mediation
genome scans are included, along with sequence phenotypes as interquartile ranges
categorized according to most likely diplotype, and modeled haplotype effects fit as
BLUPs. The relative magnitudes of the QTL effect sizes and mediation scores are
consistent with the proposed model, with Zfp985 local-eQTL > distal-cQTL > Akriel
distal-eQTL, and chromatin mediation > mediation through Zfp985 expression.

effect sizes and mediation p-values (S18 Fig) support a causal model whereby increased
Zfp985 expression reduces expression of Akriel by altering chromatin accessibility near
the Akriel promoter (Fig[d).

Discussion

In this study we performed QTL and mediation analyses of gene expression and
chromatin accessibility data in liver, lung, and kidney tissue samples from 47 strains of
the CC. We examined correlations between haplotype effects of co-localizing QTL to
identify QTL that are likely functionally active in multiple tissues as well as QTL with
distinct activity across the three tissues, as is the case with the Pik3c2g gene,
potentially representing differing active genetic variants in the local region. We detected
extensive evidence of chromatin mediation of local-eQTL as well as gene expression
mediators underlying distal-eQTL. One unique example is the elucidation of the genetic
regulation of Akriel expression, a gene that plays a role in glycogen metabolism,
involving inhibition by expression of a distal zinc finger protein mediator that
contributes to reduced chromatin accessibility at the promoter of Akriel. These
findings highlight the ability of integrative QTL approaches such as mediation analysis
to identify interesting biological findings, including the ability to identify functional
candidates for further downstream analysis.

Fewer detected cQTL than eQTL

We found that the effect sizes of cQTL are on average lower than eQTL (see ,
as has been previously reported [22]. The reduced number of ¢cQTL compared with
eQTL is likely due to both technical and biological reasons. Technically, the RNA-seq
assay measures a distinct class of molecules (mMRNAs) that can be accurately extracted
from cells with the resulting sequence reads mapped to the transcriptome, which
encompasses < 5% of the genome. In contrast, the transposon incorporation event
central to ATAC-seq is enriched in, but not solely limited to, accessible chromatin.
Unlike the transcriptome, accessible chromatin can occur anywhere in the genome and
regions are defined empirically by the data. Thus, the signal from the assay is more
variable and noisy across samples, which impedes our ability to detect cQTL.
Biologically, if a variant affects the activity of a regulatory element that alters
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expression levels, it is expected that the mRNA levels in the sample will reflect this. By
contrast, even if a variant affects chromatin accessibility, it may do so in a manner that
is difficult to detect above the background noise of the assay. In recent studies of gene
expression and chromatin accessibility in the adult brain from same individuals,
2,154,331 cis-eQTL were found for 467 individuals |71], whereas only 6,200 cQTL were
detected, albeit for only 272 individuals [72]. While the reduced number of individuals
undoubtedly contributed to this lower number of detected cQTL, it is likely that
significantly fewer cQTL would be found in the same number of individuals.

Reduced cQTL and mediation signal in liver compared with
lung and kidney

Detecting QTL and mediation depends not only on sample size but also on biological
and technical factors that are difficult to quantify across the tissues. Although it is
possible that liver has fewer actual cQTL (and thus fewer chromatin mediators) than
lung and kidney, it is also possible that the signal quality of the ATAC-seq is lower for
this tissue, resulting in fewer detections due to increased technical noise. True biological
differences in the number of cQTL and mediator usage among the tissues would likely
reflect multi-level regulatory programs specific to each tissue, a complex subject
requiring more targeted experiments than used here.

Joint QTL analysis in multiple tissues

Multi-tissue QTL analyses are increasingly used in both humans, such as within the
GTEx project (e.g., [73l[74]), and in mice (e.g., |75L|76]). We believe our use of formal
statistical tests of the correlation coefficient between the haplotype effects of overlapping
QTL is novel in defining co-localizing QTL across tissues. This method allows us to
identify loci likely representing tissue-specific QTL with unique haplotype effects
patterns, as demonstrated for the gene Pik3c2g (Fig . This approach can also detect
consistent haplotype effects, as with the gene Per2 (Fig ), which possessed only
marginally significant distal-eQTL in the three tissues, suggesting jointly mapping QTL
across all tissues increases power. Formal joint analysis approaches have been proposed,
largely implemented for detecting SNP associations, including meta-analysis on
summary statistics (e.g., [76,/77]) and fully joint analysis, including Bayesian hierarchical
models [78] and mixed models [79]. Extending such methods to haplotype-based
analysis in MPPs poses some challenges, including how to best generalize methods to
more complex genetic models and for the CC with a limited number of unique genomes.
Nonetheless, when multiple levels of molecular traits are measured, joint analyses could
conceivably be incorporated into the mediation framework to improve detection power.

Correlated haplotype effects suggest subtle multi-allelic QTL

Haplotype-based association in MPP allows for the detection of multi-allelic QTL [65],
such as potentially observed within the kidney at the local-eQTL of Pik3c2g, where
mice with B6 contributions in the region have an intermediate level of expression. The
correlation coefficient between the haplotype effects for QTL pairs provides an
interesting summary, generally not possible in the simpler bi-allelic setting commonly
used in variant association analysis. The extent of the correlation between the
haplotype effects for QTL pairs of certain genes, such as Coz7c (Fig ) suggests that
these QTL are at least subtly multi-allelic. Correlated haplotype effects are consistent
with the genetic regulation, even local to the gene TSS, being potentially complex, likely
due to founder-specific modifiers.

October 25, 2019

12/B2

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376


https://doi.org/10.1101/588723
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/588723; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Correlated haplotype effects with differential expression across
tissues

We detected numerous eQTL pairs with correlated haplotype effects across tissues but
with significantly different magnitudes of overall expression—for example, Coz7c, Ubc,
Slcj4a3, and Akriel. We propose two potential explanations for this unique
co-occurrence. First, whole tissues differ in their cellular composition. It may be that
these genes are primarily expressed in a common cell type whose proportion varies
between the different tissue types, and that the observed differential expression reflects
this compositional variation. This hypothesis could be tested by follow-up single cell
experiments. Second, each tissue may have additional unique regulatory elements that
further modulate expression levels. Uncovering such elements would require in-depth
analysis of tissue-specific regulation.

Mediation analysis

The statistical methods underlying mediation analyses were largely developed in the
context of social sciences |3H5], and more recently extended to a genomics setting in
which there is generally less experimental control of the relationship between the
mediator and outcome. Our mediation analysis approach is adapted from previous
studies in DO mice [22}/23//59] but adds the use of QTL effect sizes to establish
consistency with the directionality of the relationships and the formal calculation of an
empirical mediation p-value through permutation. Related conditional regression
approaches were used in the incipient pre-CC lines [80,81]. Mediation results largely
reflect the correlations between the variables after adjusting for additional sources of
variation, such as covariates and batch effects. We further require the mediator QTL to
have a larger effect size than the outcome QTL in order to identify trios that are
consistent with the proposed causal models. It must be emphasized, however, that these
steps are not equivalent to experimentally controlling the directionality of the
relationship between a gene’s expression level and a putative mediator, nor is such
control feasible in a large-scale experiment. Variable measurement error on the mediator
and gene could flip the perceived directionality of the relationship, resulting in both
false positive and negative mediations. Alternatively, the relationships could be more
complex than the simple models used here, e.g. feedback between the mediator and
gene, which these procedures will not detect. Additionally, the causal mediator may not
be observed in the data, allowing for other candidates, correlated with the missing
causal element, to be incorrectly identified as mediators.

Despite these limitations, the mediation analysis used here provides specific causal
candidates for local-eQTL (mediated through chromatin) and distal-eQTL (mediated
through nearby genes). For example, we show strong evidence for ZFP985 mediating
the genetic regulation of Akrie! (Fig E[) Additional evidence suggests this is done by
ZFP985 contributing to reduced Akriel promoter activity. It is possible that Zfp985
expression is simply strongly correlated with the true mediator, and others have
alternatively proposed Rexz2 expression as a candidate [68], which we did not consider
due to low expression in all three tissues. Regardless of the identity of the true
mediator, our analysis shows strong evidence that it acts causally by reducing
chromatin accessibility near Akrlel.

QTL mapping power and their effect size estimates

Our reduced sample size of 47 CC strains motivated our use of multiple scopes of
statistical significance, from testing for QTL locally to genome-wide. As expected, the
additional local-QTL detected by less stringent methods have smaller effect sizes
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(orange and purple dots for C and L, respectively; [S19 Fig)). Based on a recent
evaluation of QTL mapping power in the CC using simulation [46], this study had

approximately 80% power to detect genome-wide QTL with a 55% effect size or greater.

Effect size estimates for genome-wide QTL (green dots; are consistent with
this expectation, albeit potentially inflated due to the Beavis effect [82], and provide
interpretable point summaries for haplotype-based QTL mapping, analogous to minor
allele effect estimates in SNP-based studies. We calculated estimates of effect size in
two ways, one based on a fixed effect fitting of the QTL term and the other as a
random term [51]. Notably, a small number of the distal-eQTL had low random effect
size estimates compared with their fixed effects-based estimates, likely the
result of outliers with lowly-observed founder inheritance (e.g. rare allele) at the
putative QTL. Alternatively, a residual variation estimate, i.e. RSS, could be calculated
from the shrunken haplotype effects to identify likely false positives, but not be as
aggressively reduced as the variance component-based estimates, representing a middle
ground approach that was found to be effective [54]. We primarily reported fixed effects
estimates due to their consistency with reported expectations [46] for a study of this
size.

These QTL mapping results are largely consistent with the molecular traits with
detected QTL possessing primarily Mendelian genetic regulation (large effect sizes: >
60%). The relatively limited number of CC strains (< 70 strains) constrains our ability
to effectively map QTL for highly complex and polygenic traits. Nevertheless, this
study supports the value of CC strains for mapping QTL for simpler traits, such as
large effect molecular phenotypes, particularly when considering the further gains that
use of replicate observations per strain would yield (not used here). Additionally, joint
and/or comparative analyses with the DO and the founder strains can provide strong
confirmation of subtle findings in the CC.

Materials and methods

Animals

Adult male mice (8-12 weeks old) from 47 CC strains were acquired from the University
of North Carolina Systems Genetics Core (listed in and maintained on an
NTP 2000 wafer diet (Zeigler Brothers, Inc., Gardners, PA) and water ad libitum. The
housing room was maintained on a 12-h light-dark cycle. Our experimental design
sought to maximize the number of strains relative to within-strain replications based on
the power analysis for QTL mapping in mouse populations [25]; therefore, one mouse
was used per strain. Prior to sacrifice, mice were anesthetized with 100 mg/kg nembutal
though intraperitoneal injection. Lungs, liver and kidney tissues were collected, flash
frozen in liquid nitrogen, and stored at -80°C. These studies were approved by the
Institutional Animal Care and Use Committees (TACUC) at Texas A&M University and
the University of North Carolina. The experimental design and subsequent analyses
performed for this study are diagrammed in Fig [T}

mRNA sequencing and processing

Total RNA was isolated from flash-frozen tissue samples using a Qiagen miRNeasy Kit
(Valencia, CA) according to the manufacturer’s protocol. RNA purity and integrity
were evaluated using a Thermo Scientific Nanodrop 2000 (Waltham, MA) and an
Agilent 2100 Bioanalyzer (Santa Clara, CA), respectively. A minimum RNA integrity
value of 7.0 was required for RNA samples to be used for library preparation and
sequencing. Libraries for samples with a sufficient RNA integrity value were prepared
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using the Illumina TruSeq Total RNA Sample Prep Kit (Illumina, Inc., San Diego,
USA) with ribosomal depletion. Single-end (50 bp) sequencing was performed (Illumina
HiSeq 2500).

Sequencing reads were filtered (sequence quality score > 20 for > 90% of bases) and
adapter contamination was removed (TagDust). Reads were mapped to strain-specific
pseudo-genomes (Build37, http://csbio.unc.edu/CCstatus/index.py?run=Pseudo)
and psuedo-transcriptomes (C57BL/6J RefSeq annotations mapped to pseudo-genomes)
using RSEM with STAR (v2.5.3a). Uniquely aligned reads were used to quantify
expression as transcripts per million (TPM) values.

ATAC-seq processing

Flash frozen tissue samples were pulverized in liquid nitrogen using the BioPulverizer
(Biospec) to break open cells and allow even exposure of intact chromatin to Tnb
transposase [26]. Pulverized material was thawed in glycerol containing nuclear isolation
buffer to stabilize nuclear structure and then filtered through Miracloth (Calbiochem)
to remove large tissue debris. Nuclei were washed and directly used for treatment with
Tnb5 transposase. Paired-end (50 bp) sequencing was performed (Illumina HiSeq 2500).
Reads were similarly filtered as with RNA-seq. Reads were aligned to the
appropriate pseudo-genome using GSNAP (parameter set: -k 15, -m 1, -i 5,
—sampling=1, —trim-mismatch-score=0, —genome-unk-mismatch=1,
—query-unk-mismatch=1). Uniquely mapped reads were converted to mm9 (NCBI37)
mouse reference genome coordinates using the associated MOD files (UNC) to allow
comparison across strains. Reads overlapping regions in the mm9 blacklist (UCSC
Genome Browser) were removed. Exact sites of Tnb transposase insertion were
determined as the start position +5 bp for positive strand reads, and the end position -5

bp for negative strand reads [27]. Peaks were called using F-seq with default parameters.

A union set of the top 50,000 peaks (ranked by F-seq score) from each sample was
derived. Peaks were divided into overlapping 300 bp windows [28|. Per sample read
coverage of each window was calculated using coverageBed from BedTools [29].

Sequence trait filtering for QTL analysis

Trimmed mean of M-values (TMM) normalization (edgeR; [30]) was applied to TPM
values from read counts of genes and chromatin windows, respectively. Genes with
TMM-normalized TPM values < 1 and chromatin windows with normalized counts < 5
for > 50% of samples were excluded (as in |22]) in order to avoid the detection of QTL
that result from highly influential non-zero observations when most of the sample have
low to no expression. For each gene and chromatin window, we applied K-means
clustering with K = 2 to identify outcomes containing outlier observations that could
cause spurious, outlier-driven QTL calls. Any gene or chromatin window where the
smaller K-means cluster had a cardinality of 1 was removed.

CC strain genotypes and inferred haplotype mosaics

CC genomes are mosaics of the founder strain haplotypes. The founder haplotype
contributions for each CC strain was previously reconstructed by the UNC Systems
Genetics Core (http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs)
with a Hidden Markov Model [31] on genotype calls [MegaMUGA array [32]] from
multiple animals per strain, representing ancestors to the analyzed mice. Notably, QTL
mapping power is reduced at loci with segregating variants in these ancestors, and
where these specific animals likely differ [33]. To reduce the number of statistical tests,
adjacent genomic regions were merged through averaging if the founder mosaics for all
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mice were similar, defined as L2 distance < 10% of the maximum L2 distance (\/§ for a
probability vector). This reduced the number of tested loci from 77,592 to 14,191.

Differential expression and accessibility analyses

Read counts for each sample were converted to counts per million (CPM), followed by
TMM normalization (edgeR). For chromatin accessibility, windows in which > 70 % of
samples had a CPM < 1 were removed, requiring that samples from at least two of the
three tissues to have non-zero measurements in order to be considered for differential
analysis between tissues. Genes and chromatin windows with no or low counts across
sample libraries provide little evidence for detection of differential signal, thus removing
them reduces the multiple testing burden. Differentially expressed genes and accessible
chromatin windows were determined using limma [34], which fit a linear model of the
TMM-normalized CPM value as the response and fixed effect covariates of strain, batch,
and tissue (lung, liver, or kidney). To account for mean-variance relationships in gene
expression and chromatin accessibility data, precision weights were calculated using the
limma function voom and incorporated into the linear modeling procedure. The p-values
were adjusted using a false discovery rate (FDR) procedure [35], and differentially
expressed genes and accessible chromatin windows were called based on the ¢g-value <
0.01 and logs fold-change > 1. Adjacent significantly differential chromatin windows in
the same direction were merged with a p-value computed using Simes’ method [36], and
chromatin regions were re-evaluated for significance using the Simes p-values.

Gene set association analysis

Biological pathways enriched with differentially expressed genes or accessible chromatin
were identified with GSAASeqSP [37] with Reactome Pathway Database annotations
(July 24, 2015 release). A list of assayed genes were input to GSAASeqSP along with a
weight for each gene g, calculated as:

weight, = sign(A,) x (1 —g), (1)

where sign(A,) is the sign of the fold change in gene g expression, and g, is the
FDR-adjusted differential expression p-value. Pathways with gene sets of cardinality <
15 or > 500 were excluded.

For pathway analysis of differentially accessible chromatin near genes, each
chromatin region was mapped to a gene using GREAT v3.0.0 (basal plus extension
mode, 5 kb upstream, 1 kb downstream, and no distal extension). Weights were
calculated as with gene expression, but with sign(A,) representing the sign of the
fold-change in accessibility of the chromatin region with minimum FDR-~adjusted
p-value that is associated with gene g.

Haplotype-based QTL mapping

QTL analysis was performed for both gene expression and chromatin accessibility using
regression on the inferred founder haplotypes [38], a variant of Haley-Knott
regression [39,|40] commonly used for mapping in the CC [41-46] and other MPPs, such
as Drosophila |47].

For a given trait—the expression of a gene or the accessibility of a chromatin
region—a genome scan was performed in which at each of the 14,191 loci spanning the
genome, we fit the linear model,

yi = p + batchy + QTL; +¢; (2)
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where y; is the trait level for individual 4, p is the intercept, batchy is a categorical fixed
effect covariate with five levels b = 1,... 5 representing five sequencing batches for both
gene expression and chromatin accessibility and where b[i] denotes the batch relevant to
i, £; ~ N(0,0?) is the residual noise, and QTL,; models the genetic effect at the locus,
namely that of the eQTL for expression or the cQTL for chromatin accessibility.
Specifically, the QTL term models the (additive) effects of alternate haplotype states
and is defined as QTL; = BTx;, where x; = (A3, xiws)T is a vector of
haplotype dosages (i.e., the posterior expected count, from 0 to 2, inferred by the
haplotype reconstruction) for the eight founder haplotypes, and B = (8ay,- - -, Swss
is a corresponding vector of fixed effects. Note that in fitting this term as a fixed effects
vector, the linear dependency among the dosages in x; results in at least one haplotype
effect being omitted to achieve identifiability; estimation of effects for all eight founders
is performed using a modification described below. Prior to model fitting, to avoid
sensitivity to non-normality and strong outliers, the response {y;}? ; was subject to a
rank inverse normal transformation (RINT). The fit of Eq [2f was compared with the fit
of the same model omitting the QTL term (the null model) by an F-test, leading to a
nominal p-value, reported as the logP = —log,,(p-value).

)T

QTL detection: local (L), chromosome-wide (C), and
genome-wide (G)

QTL detections were declared according to three distinct protocols of varying stringency
and emphasis. The first protocol, termed Analysis L, was concerned only with detection
of “local QTL”, that is, QTL located at or close to the relevant expressed gene or
accessible chromatin region. Here we define “local” as + 10Mb, as been done previously
in studies using DO mice [22|. Our intent is to capture QTL that likely act in cis on
gene expression and chromatin accessibility, which are expected to have strong effects,
while also recognizing the limitations of using haplotype blocks with median size of 16.3
Mb [19] and a small sample size. Fig suggest that 10Mb generally captures the
strongest QTL signals near the gene TSS and chromatin window midpoint. The second
protocol, Analysis C, broadened the search for QTL to anywhere on the chromosome on
which the trait is located; the greater number of loci considered meant that the criterion
used to call detected QTL for this protocol was more stringent than Analysis L. The
third protocol, Analysis G, further broadened the search to the entire genome with the
most stringent detection criterion. These protocols used two types of multiple test
correction: a permutation-based control of the family-wise error rate (FWER) and the
Benjamini-Hochberg False Discovery Rate (FDR; [35]). Below we describe in detail the
permutation procedure and then the three protocols.

Permutation-based error rate control: chromosome- and genome-wide

The FWER was controlled based on permutations specific to each trait. The sample
index was permuted 1,000 times and recorded, and then genome scans performed for
each trait, using the same permutation orderings. Given a trait, the maximum logP
from either the entire genome or the chromosome for each permutation was collected
and used to fit a null generalized extreme value distribution (GEV) in order to control
the genome- and chromosome-wide error rates, respectively [48]. Error rates were
controlled by calculating a p-value for each QTL based on the respective cumulative
density functions from the GEVs: permP = 1 — Fgy(logP), where Fory is the
cumulative density function of the GEV. We denote genome- and chromosome-wide
error rate controlling p-values as permP and permP respectively.

The appropriateness of permutation-derived thresholds [49] relies on the CC strains

being equally related, thus possessing little population structure and being exchangeable.
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This assumption was supported by simulations of the funnel breeding design [41]. More
recent simulations based on the observed CC strain genomes [46] found
non-exchangeable population structure for highly polygenic genetic architectures, albeit
at low levels. Nevertheless, we use permutations given that molecular traits often have
strong effect QTL that are detectable in the presence of subtle population structure.

Local analysis - Analysis L

Our detection criteria for local-QTL leverages our strong prior belief in local genetic
regulation. For a given trait, this local analysis involved examining QTL associations at
all loci within a 10Mb window of the gene T'SS or chromatin region midpoint. A QTL
was detected if the permP~ < 0.05. Notably, we can also check whether the
corresponding permPy < 0.05, as an additional characterization of statistical
significance of detected local-QTL.

Chromosome-wide analysis - Analysis C

Chromosome-wide analysis involved examining QTL associations at all loci on the
chromosome harboring the gene or chromatin region in question. The peak logP is input
into a chromosome-wide GEV, producing a permP, which are further subjected to
adjustment by FDR to account for multiple testing across the traits [50]. Compared
with Analysis L, this procedure is more stringent with respect to local-QTL because of
the additional FDR adjustment. In addition, it can detect distal-QTL outside the local
region of the trait. Note, since only the most significant QTL is recorded, this procedure
will disregard local-QTL if a stronger distal-QTL on the chromosome is observed.

Genome-wide analysis - Analysis G

The genome-wide analysis is largely equivalent to Analysis C but examines all genomic
loci, while an FDR adjustment is made to the genome-wide permP . Unlike Analysis C,
it incorporates additional scans conditioned on detected QTL to potentially identify
multiple QTL per trait (i.e. both local- and distal-QTL). Briefly, after a QTL is
detected, a subsequent scan (and permutations) is performed in which the previously
detected QTL is included in both the null and alternative models, allowing for
additional independent QTL to be detected with FDR control. See for
greater detail on this conditional scan procedure and a clear example in Fig
Notably, the local/distal status of the QTL does not factor into Analysis G.

Analyses L, C, and G should detect many of the same QTL, specifically strong
local-QTL. Collectively, they allow for efficient detection of QTL with varying degrees
of statistical support while strongly leveraging local status.

QTL effect size

The effect size of a detected QTL was defined as the R? attributable to the QTL term;
specifically, as 1 — RSSqrr1,/RSSo, where RSS = Y7 (y; — ¥;)? is the residual sum of
squares, i.e. the sum of squares around predicted value 7;, and RSSqrr, and RSSy
denote the RSS calculated for the QTL and null models respectively. We also calculated
a more conservative QTL effect size estimate with a QTL random effects model to
compare with the R? estimate.

Stable estimates of founder haplotype effects

The fixed effects QTL model used for mapping, though powerful for detecting
associations, is sub-optimal for providing stable estimates of the haplotype effects
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vector, B (calculated as (XTX) !XTy, where X is the full design matrix). This is
because, among other things, 1) the matrix of haplotype dosages that forms the design
matrix of {QTL,}7, in Eq[2} is multi-collinear, which leads to instability, and 2)
because the number of observations for some haplotypes will often be few, leading to
high estimator variance [24]. More stable estimates were therefore obtained using
shrinkage. At detected QTL, the model was refit with 3 modeled as a random effect,
B ~ N(0,I72%) [51], to give an 8-element vector of the best linear unbiased estimates
(BLUPs; [52]), B = (EAJ, e ,EWSB)T. These BLUPs, after being centered and scaled,
were then used for further comparison of QTL across tissues.

Comparing QTL effects across tissues

To summarize patterns of the genetic regulation of gene expression and chromatin
accessibility across tissues, we calculated correlations between the haplotype effects of
QTL that map to approximately the same genomic region of the genome for the same
traits but in different tissues. For cross-tissue pairs of local-QTL, we required that both
be detected within the 20Mb window around the gene TSS or the chromatin window
midpoint. For cross-tissue pairs of distal-QTL, the QTL positions had to be within
10Mb of each other. All detected QTL were considered, including QTL from Analyses G
and C controlled at FDR < 0.2, allowing for consistent signal across tissues to provide
further evidence of putative QTL with only marginal significance in a single tissue.
For a pair of matched QTL j and k from different tissues, we calculated the Pearson
correlation coefficient of the BLUP estimates of their haplotype effects,
Tik = cor(ﬁj, B}). Since each 3 is an 8-element vector, the corresponding r are

distributed such that rv/6(1 —72)~! ~ tg according to the null model of independent
variables. Testing alternative models of r;, > 0 and r;, < 0 produced two p-values per

pair of QTL. These were then subject to FDR control [35] to give two g-values, qlr=o

ij
and qz{jr<0}. These were then used to classify cross-tissue pairs of QTL as being

significantly correlated or anti-correlated, respectively.

Variant association

Variant association has been used previously in MPP (e.g., [53}/54]), and uses the same
underlying model as the haplotype-based mapping (Eq , with the QTL term now
representing imputed dosages of the minor allele. Variant association can more
powerfully detect QTL than haplotype mapping if the simpler variant model is closer to
the underlying biological mechanism [55], though it will struggle to detect multi-allelic
QTL.

Variant genotypes from mm10 (NCBI38) were obtained using the ISVdb [56] for the
CC strains, which were converted to mm9 coordinates with the liftOver tool [57).
Variants were filtered out if their minor allele frequencies < 0.1 or they were not
genotyped in one of the CC founder strains to avoid false signals. Tests of association at
individual SNPs (variant association) were performed within the local windows of genes
with local-QTL detected in more than one tissue. Genes with multiple tissue-selective
local-eQTL potentially reflect different functional variants, and could potentially have
less consistent patterns of variant association compared with variants that are
functionally active in multiple tissues.

Mediation analysis

Mediation analysis has recently been used with genomic data, including in humans
(e.g., |11L|15]) and rodents (e.g., [54L58]), to identify and refine potential intermediates of
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causal paths underlying phenotypes. We use a similar genome-wide mediation analysis
as used with the DO [22}[59] to detect mediators of eQTL effects on gene expression.

In our study, mediation describes when an eQTL (X) appears to act on its target
(Y) in whole or in part through a third variable (M), the mediator, which in this case is
a molecular trait. The molecular traits considered here are: a) chromatin accessibility,
in which case X serves also as a cQTL (Fig @A), and, in a separate analysis, b) the
expression of a second, distal, gene, in which case X serves also as a distal-eQTL (Fig
6B).
r Traditional mediation analysis 3] tests whether the data, for predefined X, Y and
M, are consistent with mediation, doing so in four steps. Steps (1) and (2) establish
positive associations X — Y and X — M; this corresponds to our requirement that
both the transcript Y and the candidate mediator M have a co-localizing QTL X. Step
(3) establishes mediation by testing for the conditional association M — Y| X; this
corresponds to testing whether the mediator explains variation in gene expression even
after controling for the QTL. Step (4) distinguishes “full mediation”, where mediation
explains the association between X and Y entirely, i.e., the QTL acts entirely through
the mediator, from “partial mediation”, where the QTL acts partly through the
mediator and partly directly (or through other unmodeled routes).

In our study, we use an empirical approximation of the above adapted to

genome-wide data, building on mediation analysis used in studies of DO mice [22}23}[59].

In outline: For a given eQTL, i.e., a QTL for which step (1) (X — Y') has been
established, we performed a genome-wide mediation scan. This mediation scan
consisted of testing step (4) (X — Y|M), that is, testing whether the eQTL association
was significantly reduced when adding the mediator as a covariate, for a large number of
“potential” mediators, namely all chromatin regions (or transcripts) genome-wide. Note
that most of these potential mediators would be formally ineligible under a traditional
analysis (i.e., X — M would not hold) but here helped to define a background (null)
level of association. The results of the mediation scan were then filtered to include only
results satisfying both of the following criteria: first, the mediator must posess a
co-localizing QTL, i.e., a QTL for which step (2) (X — M) does hold; second, the
association between QTL and mediator must be stronger than that between QTL and
transcript (X - M > X — M), this approximating step (3) (M — Y|X). We did not
attempt to distinguish between partial and full mediation since this distinction was too
easily obscured by noise.

The genome-wide mediation scan procedure in more detail was as follows. Consider
an eQTL that our previous genome scan has already shown to affect the expression of
gene j. Denote the expression level for j in individual i as yzG 7 and eQTL effect as

eQTLiGj (these respectively correspond to Y and X in the mediation description above).

Further, consider a proposed mediator k € K, where K is the set of all eligible chromatin
accessible sites or expressed genes, and let m;; be the value of that mediator for

individual 7. The mediation scan for a given gene/eQTL pair j proceeds by performing,
for each proposed mediator k € K, a model comparison between the alternative model,

Y =+ eQTLYT + myy, + batchy;) + €, (3)

and the null model,
yZGJ = u+m+ batchb[i] +é&;,

where other terms are as described for Eq[2} (Not, shown are additional covariates, such
as conditioned loci, which would be included in both the null and alternative models.)
The above model comparison can be seen as re-evaluating the significance of a given
eQTL association by conditioning on each proposed mediator in turn (i.e., testing

X = Y|M for each M). The resulting mediation scan, in contrast to the
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earlier-described genome scans, thus fixes the QTL location while testing across the
genome for candidate mediators.

In general, assuming most proposed mediators are null, the mediated logP should
fluctate around the original eQTL logP, since the model comparison will resemble the
original test of that locus in the genome scan. For mediators that possess some or all of
the information present in the eQTL, however, the mediated logP will drop relative to
the original logP, reflecting X — Y |M being less significant than X — Y. Empirical
significance of genome-wide mediation has previously been determined by comparing
the nominal mediator scores to the distribution of mediation scores genome-wide, the
latter effectively acting as a null distribution [22}23,59]. We instead determine a null
distribution explicitly by permutation, characterizing the distribution of the minimum
logP (as opposed to maximum logP for QTL scans) to estimate significance and set
false positive control (FWER). As with the QTL mapping procedures, we performed
mediation scans on 1,000 permutations, permuting the mediators rather than the
outcome, to characterize GEVs from the minimum logP, that is,
permP™ = Fgry(logP), at both chromosome- and genome-wide levels.

Detection of mediation is dependent on a number of assumptions about the
underlying variables, their relationships, and those relationships’ directionality [4].
Many of these cannot be controlled in a system as complex as chromatin accessibility
and transcriptional regulation in whole living organisms. Nevertheless, signals in the
data that are consistent with the mediation model represent candidate causal factors
that regulate gene expression. Though it is impossible to ensure that the direction of
causation is indeed M — Y, as assumed by the mediation analysis, we require
additional checks to formally declare mediation of an eQTL. The presence of the
relationship X — Y is already established in that mediation scans are only performed
for detected eQTL. In addition for any candidate mediator with a significant permP™,
we require detection of a mediator QTL: X — M. These requirements, as mentioned
earlier, are consistent with traditional mediation analysis. Finally, in an attempt to
identify mediator-to-gene relationships consistent with the proposed models, we require
that X — M is more significant than X — Y. Though this step cannot confirm the
directionality of the relationship between M and Y, as variable noise level between M
and Y could reduce the estimated effect size of their respective QTL, it will identify
candidate mediators that are consistent with the proposed models. Further details on
the mediation analysis are described in including the permutation
approach and the formal criterion by which mediation is declared for both chromatin
and gene mediators (Fig [6]).

Software

All statistical analyses were conducted with the R statistical programming language [60].

The R package miQTL was used for all the mapping and mediation analyses, and is
available on GitHub at https://github.com/gkeele/miqtll

Supporting information

S1 Fig. Principle components analysis identifies tissue type as key source
of variation for gene expression and chromatin accessibility. Molecular traits
for liver (purple), lung (green), and kidney (orange) tissue samples were derived from
RNA-seq and ATAC-seq data. Principal components (PC) 1 and 2 capture a majority
of the variation and show a greater amount of between tissue variability than within
tissue variability. (PDF)
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S2 Fig. Concordance between differentially expressed genes and
differentially accessible regions in between-tissue comparisons. Genes were
categorized by the direction of the difference in expression and chromatin accessibility
in their promoter regions. (PDF)

S3 Fig. Overlap across tissues of (A) genes and (B) chromatin windows
used for QTL analysis. Sequence traits were filtered to remove outcomes more likely
to cause spurious QTL signals. Genes with TPM < 1 and chromatin windows with
TMP < 5 for > 50% of samples were removed from analysis. After this filtering process,
lung had the greatest number of traits analyzed, for both genes and chromatin windows,
followed by kidney and then liver. (PDF)

S4 Fig. Overlap across tissues of (A) genes and (B) chromatin windows
with local-QTL detected. The majority of sequence traits with a local-QTL
detected were identified in only a single tissue. Kidney had the highest number of
local-eQTL, whereas lung had the highest number of local-cQTL. Liver had a relative
lack of local-cQTL, which may relate to its having the fewest chromatin windows
analyzed (S3 FigB). Results included local-QTL detected with Analysis G (FDR < 0.1),
Analysis C (FDR < 0.1), and Analysis L (genome-wide and chromosome-wide). (PDF)

S5 Fig. QTL mapping results using only Analysis G or Analysis C. QTL
map plots of (A) eQTL and (B) cQTL with FDR controlled at 0.1 and 0.2 for liver,
lung, and kidney. Detected QTL from Analysis G (multi-stage FDR) and Analysis C
(chromosome-wide FDR) are included. Analysis C, which uses FDR, control for
chromosome-wide significant QTL, produces a large number of intra-chromosomal
distal-QTL. The y-axis represents the genomic position of the gene or chromatin site,
and the x-axis represents the genomic position of the QTL. Local-QTL appear as dots
along the diagonal. (PDF)

S6 Fig. Highly significant QTL map nearby the gene TSS and chromatin
window midpoint. The permutation-based p-value (permP) from (A) Analysis G and
(B) Analysis C for eQTL and cQTL by their distance (Mb) from the gene TSS and the
midpoint of the chromatin site. Inter-chromosomal distal-QTL are not included. The
red dashed lines represent £10Mb of the gene TSS or the midpoint of the chromatin
site for classifying QTL as local or distal. Significant signals (yellow or blue), based on
FDR < 0.1, are largely local. Analysis C detects many more intra-chromosomal
distal-QTL. (PDF)

S7 Fig. QTL effect size by local/distal status. Each dot represents a QTL
detected through either (A) Analysis G or (B) Analysis C with FDR < 0.1. The three
horizontal bars represent the 25, 50" and 75" quantiles of QTL effect sizes for all
local-QTL per tissue. More local-eQTL are detected and have higher effects than
distal-QTL. Analysis C detects a large number of intra-chromosomal distal-QTL that
Analysis G does not, many of which have low effect sizes. Effect size estimates are
based on a fixed effects model. (PDF)

S8 Fig. CAST and PWK haploytpes have more extreme effects for (A)
eQTL and (B) cQTL compared with the other strains. Haplotype effects were
estimated as BLUPs, which are constrained and centered around 0. Each QTL is
represented by an 8-element effect vector. Founders with more extreme effects are
identified by comparing the absolute values of effects. Founder haploytpe effect trends
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for eQTL are similar to cQTL. The trends are unstable in distal-cQTL because so few
are identified. (PDF)

S9 Fig. Effect sizes between cross-tissue QTL pairs are lowly but
significantly correlated. Comparisons of QTL effects sizes between (liver/lung) are
in the left column, (liver/kidney) middle column, and (lung/kidney) right column.
eQTL are yellow and cQTL are blue. Local-eQTL are plotted in the top row,
distal-eQTL in the second row, local-cQTL in the third row, and distal-cQTL in the
bottom row, with only four pairs detected in (lung/kidney). (PDF)

S10 Fig. Consistent genetic regulation of gene expression and chromatin
accessibility observed across tissues. There was an excess of significant positively
correlated haplotype effects in QTL pairs across tissues for gene expression and
chromatin accessibility. Pairs of QTL observed in multiple tissues were defined for

local-eQTL (left column), distal-eQTL (middle column), and local-cQTL (right column).

Only four pairs of distal-cQTL were observed, all shared between lung and kidney. A
right-tailed test the correlation between haplotype effects (H4 : r > 0) was performed
for each QTL pair, producing p-values that were then FDR adjusted. Null simulations
of uncorrelated 8-element vector pairs for each class of QTL and pairwise tissue
comparison emphasize the observed enrichment in correlated haplotype effects between
QTL pairs. (PDF)

S11 Fig. Cross-tissue QTL pairs with highly correlated haplotype effects
map proximally to each other. Haplotype effects were estimated as constrained
BLUPs. Pairwise correlations of the 8-element effect vectors were calculated for QTL
pairs, and plotted again the distance between the QTL coordinates in Mb for
(liver/lung) in the left column, (liver/kidney) in the middle column, and (lung/kidney)
in the right column. Single eQTL and cQTL pairs are represented as a yellow and blue
dots, respectively. Local-eQTL are shown in the top row, distal-eQTL in the second row,
local-cQTL in the third row, and distal c-QTL in the bottom row, for which only four
pairs were detected in (lung/kidney). (PDF)

S12 Fig. The gene Ubc has consistent strong local-eQTL observed in the
three tissues. The local-eQTL consistently drove higher expression when the B6,
NOD, NZO, and WSB haploytpes were present. Expression levels in liver and lung were
found to be significantly different (¢ = 0.022). The estimated haplotype effects were
highly consistent with the expression data, represented as interquartile bars categorized
by most likely diplotype. The haplotype and variant associations in the eQTL regions
were similar across tissues, suggesting they may represent the same causal origin. The
red tick represents the Ubc TSS, the black tick represents the peak variant association,
and the colored ticks represent the peak haplotype association for each tissue. (PDF)

S13 Fig. The gene Rnf13 has unique patterns of genetic regulation across
tissues. A strong local-eQTL was detected in liver, and after conditioning on it, a
statistically significant distal-eQTL was detected (Analysis G) on chromosome 12,
largely driven by the B6 haplotype, distinct from the local-eQTL. The unique haplotype
effect patterns for each eQTL can be seen in both the expression data, represented by
interquartile bars for most likely diplotype, and the estimated effects. The red tick
marks the Rnf13 TSS and the black tick marks the location of distal-eQTL. Another
strong distal-eQTL was detected on the X chromosome in lung. (PDF)
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S14 Fig. Co-localizing eQTL and cQTL are not sufficient for statistical
mediation. The approach used to detect mediation through chromatin accessibility
requires that the eQTL and ¢cQTL co-localize (both within 10Mb of the gene TSS), as
well as possess similar haplotype effect patterns. Co-localizing cQTL are observed for
local-eQTL for both (A) Hdhd3 in liver and (B) Acbd4 in kidney. QTL and mediation
scans are shown, with chromosomes 4 and 11 blown up for Hdhd3 and Acbds,
respectively. The red ticks denote the TSS for both genes. The haplotype effects for the
eQTL and cQTL are highly correlated (r = 0.96) for Hdhd3, but not for Acbd/

(r = 0.55). Strong mediation of the Hdhd3 eQTL through chromatin is detected, but
not for Acbd4. The effect size of the co-localizing cQTL to Acbd4 is smaller than its
eQTL, also inconsistent with the relationship depicted in Fig 6A. (PDF)

S15 Fig. Mediation of Ccnyll distal-eQTL through Zfp979 expression.
Expression of Cenyll and Zfp979 are correlated (r = 0.72) in lung, which is also
observed in the expression data categorized by diplotype and the haplotype effects. The

distal-eQTL on chromosome 4 for Ccnyll corresponds closely to local-eQTL of Zfp979.

Cenyll is located on chromosome 1, indicated by the red tick. Zfp979 and Zfp985, both
zinc finger proteins likely with DNA binding properties, are identified as strong
candidate mediators of the distal-eQTL at genome-wide significance. The correlations,
magnitude of effects, and mediation are consistent with the simple relationship depicted
in the graph. The distal-eQTL and candidate mediators are located in a region of
interest that regulates Akrlel expression. (PDF)

S16 Fig. Mediation of Akriel distal-eQTL through Zfp985 expression.
Expression of Akriel and Zfp985 are anti-correlated (r = —0.69) in lung. This
relationship is also observed in the expression data with bars representing the
interquartile range, categorized by most likely diplotype, and the haplotype effects. The
QTL and mediation scans reveal that Akriel, with T'SS marked with a red tick on
chromosome 13, possesses a distal-eQTL on chromosome 4 that is nearby the strong
local-eQTL of Zfp985. The mediation scan identifies Zfp985 as a strong candidate
mediator consistent with the mediation model. A more complete picture of the genetic
regulation of Akriel expression is pieced together by looking across all three tissues and
includes a potential chromatin mediator (Fig 9). (PDF)

S17 Fig. Confirmation of Akriel distal-eQTL and mediation by Zfp985
in kidney tissue of Diversity Outbred mice. A genome-wide significant
distal-eQTL was detected for Akrie! in liver, lung (shown here), and kidney tissues
from 47 CC strains. In a larger sample of kidney tissue from outbred DO mice, the
same distal-eQTL and mediation relationship were observed. As expected, the larger
sample of the DO results in greater statistical significance, and confirms that the NOD
effect is more strongly negative than NZO, PWK, and WSB, which the haplotype
effects plots for the Zfp985 local-eQTL suggested. Notably, Zfp985 was not tested in
the CC kidney because of low expression levels, though the distal-eQTL for Akriel is
consistent with its activity, which is here confirmed in the DO. (PDF)

S18 Fig. Observed relationships across the three tissues related to the
genetic regulation of Akriel expression. The model for the distal genetic
regulation of Akriel expression, described in Fig 9, was reconstructed from these

observed relationships. Solid arrows were observed, whereas dashed arrows are assumed.

QTL effect sizes represent the proportion of variance explained by the QTL and
mediation p-values (permP) were defined using a permutation procedure. The assumed
relationships are supported by the presence of the distal-eQTL in all three tissues. The
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Zfp985 mediator relationship in kidney, though not observed in the CC, was observed in
the related DO population. (PDF)

S19 Fig. Local-QTL effect sizes by mapping analysis. Based on ranking
mapping analyses with respect to the extent of scope, local (L; magenta) to chromosome
(C; plum) to genome-wide (Gj; cyan), the greater the scope corresponded to reduced
power to detect QTL, shown in liver, lung, and kidney tissues for gene expression
(vellow line) and chromatin accessibility (blue line). Each dot represents a detected
local-QTL, colored according to the highest scope mapping procedure that detected it.
The three horizontal bars represent the 25, 50", and 75" quantiles of QTL effect
sizes for all local-QTL per tissue. Analysis G generally detects QTL with effect size >
60%, whereas Analyses C and L detect QTL effect sizes > 45%. Effect size estimates
correspond to a fixed effects model of the QTL. (PDF)

S20 Fig. Comparison of QTL effect sizes estimates from fixed effects and
random effects models. The effect size from the random effect fit is harshly

penalized compared with the fixed effect estimate, likely due to a sample size of 47 mice.

Notably, there are a number of distal-eQTL that are more harshly reduced by the
random effects model compared with the other QTL, likely representing signals

resulting from extreme observations or imbalances in founder contributions at the locus.

QTL detected by Analysis G (FDR < 0.1), C (FDR < 0.1), and L are shown. (PDF)

S21 Fig. Detection of local-eQTL after conditioning on distal-eQTL for
Gpn3. The multi-stage conditional regression approach of Analysis G allows for the
detection of multiple genome-wide significant QTL, which can be appropriately
incorporated into an FDR procedure across many outcomes. In this example in lung
tissue, the gene Gpnd initially has a strong distal-eQTL on chromosome 8 [top left].
Though a peak is detected near the TSS of Gpnd3, it does not meet genome-wide
significance. However, after conditioning on the distal-eQTL, the local-eQTL is detected
[bottom left]. Horizontal dashed lines represent empirical 95% significance thresholds
based on 1,000 permutations. (PDF)

S1 Appendix. CC strains used in study. (PDF)

S2 Appendix. Detailed description of conditional genome-wide scans
(Analysis G). (PDF)

S3 Appendix. Detailed description of mediation analysis. (PDF)

S1 Table. Number of differentially expressed genes and accessible
chromatin regions detected between liver, lung, and kidney tissues. (PDF)

S2 Table. Number of genes with eQTL detected in liver, lung, and kidney
tissues at FDR < 0.1. (PDF)

S3 Table. Number of genes with eQTL detected in liver, lung, and kidney
tissues at FDR < 0.2. (PDF)

S4 Table. Number of chromatin accessibility sites with cQTL detected in
liver, lung, and kidney tissues at FDR < 0.1. (PDF)
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S5 Table. Number of chromatin accessibility sites with cQTL detected in
liver, lung, and kidney tissues at FDR < 0.2. (PDF)

S6 Table. Number of genes with chromatin mediation of local-eQTL in
liver, lung, and kidney tissues. (PDF)

S7 Table. Genes with distal-eQTL with gene mediators detected in lung
and kidney tissues. (PDF)
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