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ABSTRACT 44 

One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the 45 

facultative intracellular bacteria Piscirickettsia salmonis. Current treatments, such as 46 

antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic 47 

improvement by means of selection for resistance is proposed as a viable alternative for 48 

control. Genomic information can be used to identify the genomic regions associated with 49 

resistance and enhance the genetic evaluation methods to speed up the genetic improvement 50 

for the trait. The objectives of this study were to i) identify the genomic regions associated 51 

with resistance to P. salmonis; and ii) identify candidate genes associated with the trait. We 52 

experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 53 

57 K SNP array. Resistance to P. salmonis was defined as time to death (TD) and as binary 54 

survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 55 

± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for 56 

samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we 57 

identified four genomic regions explaining over 1% of the genetic variance for TD and three 58 

for BS. Interestingly, the same genomic region located on Omy27 was found to explain the 59 

highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, 60 

respectively). The identified SNP in this region is located within an exon of a gene related 61 

with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. 62 

Other important candidate genes identified are related with innate immune response and 63 

oxidative stress. The moderate heritability values estimated in the present study show it is 64 

possible to improve resistance to P. salmonis through artificial selection in the current 65 

rainbow trout population. Furthermore, our results suggest a polygenic genetic architecture 66 
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and provide novel insights into the candidate genes underpinning resistance to P. salmonis 67 

in O. mykiss. 68 

 69 

 70 

 71 

INTRODUCTION 72 

As in any intensive animal production system, infectious diseases are one of the main 73 

threats affecting the success and sustainability of aquaculture (Yáñez et al. 2014a). In the 74 

case of salmonid production, one of the major pathogens affecting productivity is the 75 

facultative intracellular bacteria Pisciricketssia salmonis, etiological agent of salmonid 76 

rickettsial syndrome (SRS). This bacterium was first identified in 1989 in Chile, in a farmed 77 

coho salmon (Oncorhynchus kisutch) population (Cvitanich et al. 1991). Since then, 78 

mortalities resulting from SRS have been also identified in Atlantic salmon (Salmo salar) 79 

and rainbow trout (Oncorhynchus mykiss) in several countries, such as Scotland, Ireland, 80 

Norway and Chile (Fryer and Hedrick 2003). In Chile, SRS was responsible for 20.7, 67.9 81 

and 92.6% of the mortalities associated with infectious diseases in S. salar, O. kisutch and 82 

O. mykiss, species respectively (Sernapesca 2018). To date, strategies for P. salmonis control 83 

and treatment are mainly based on vaccines and antibiotics. The effectiveness of both 84 

approaches has not been adequate (Rozas and Enríquez 2014). Therefore, it has been 85 

estimated that economic losses due SRS mortalities, reached up to US$450 million in Chile 86 

in 2012 (Camussetti et al. 2015). However, variables such as laboratory diagnosis screening 87 

expenses or loss of quality of the harvested fish and products were not considered, implying 88 

that the economic impact could be even higher. 89 
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Therefore, selective breeding could be a feasible alternative to enhance disease 90 

resistance; reducing mortality rates from P. salmonis, as well as improving animal health and 91 

productivity (Bishop and Woolliams 2014: Yáñez and Martínez 2010). However, the main 92 

requisite to include a trait into a genetic program is the presence of significant additive 93 

genetic variance within the population (Falconer and Mackay 1996). Previous studies 94 

estimated heritability values ranging from 0.11 to 0.41 for P. salmonis resistance in Atlantic 95 

salmon and coho salmon (Yáñez et al. 2013; Yáñez et al. 2016a; Barría et al. 2018). In the 96 

case of rainbow trout, Yoshida et al. (2018a) estimated heritabilities ranging from 0.39 to 97 

0.57 for resistance to P. salmonis using day of death and 0.54 to 0.62 for binary survival as 98 

trait definitions. Altogether, these results demonstrate the possibility of improving this trait 99 

by means of artificial selection in different salmonid species.  100 

The development of next generation sequencing technologies has facilitated the 101 

identification of thousands of single nucleotide polymorphisms (SNPs) segregating along the 102 

genome of several animals, including aquaculture species (Yáñez et al. 2015). Thus, using a 103 

genotyping by sequencing (GBS) approach in conjunction with genome-wide association 104 

studies, some authors evaluated genomic regions associated with resistance to bacterial 105 

infections in aquaculture species (Liu et al. 2015; Palti et al. 2015a; Palaiokostas et al. 2016; 106 

Barría et al. 2018). However, in salmonid species, the use of SNP panels has been the most 107 

used alternative for genotyping a high number of individuals with thousands of genetic 108 

variants simultaneously. This has been made simpler by the development of high density 109 

SNP arrays for Atlantic salmon (Houston et al. 2014; Yáñez et al. 2016b) and rainbow trout 110 

(Palti et al. 2015b). The use of these SNP panels have also allowed the comparison of the 111 

accuracy of estimated breeding values (EBV) using genomic selection to pedigree-based 112 

genetic evaluations for resistance to infectious diseases in Atlantic salmon (Ødegård et al. 113 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587535doi: bioRxiv preprint 

https://doi.org/10.1101/587535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

2014; Tsai et al. 2016; Bangera et al. 2017; Correa et al. 2017), coho salmon (Barría et al. 114 

2018) and rainbow trout (Vallejo et al. 2016; Vallejo et al. 2017a; Yoshida et al. 2018a; 115 

2018b). SNP arrays have also enabled the dissection of the genetic architecture of resistance 116 

to bacterial diseases in salmonids. For instance, genomic regions and candidate genes 117 

associated with resistance to P. salmonis in Atlantic and coho salmon (Correa et al. 2015; 118 

Barría et al. 2018), and bacterial cold water disease (BCWD) in rainbow trout (Vallejo et al. 119 

2017b) have been identified.  120 

To date there are no studies aimed at identifying genomic regions or candidate genes 121 

associated with resistance to P. salmonis in rainbow trout populations. Therefore, the main 122 

objectives of the current study were to i) identify genomic regions associated with resistance 123 

to P. salmonis in a farmed rainbow trout population, and ii) identify candidate genes 124 

associated with the trait. 125 

 126 

MATERIALS AND METHODS 127 

Population and experimental challenge 128 

The population used in this study was rainbow trout (Oncorhynchus mykiss) year-129 

class 2011 bloodstock, owned by Aguas Claras (Puerto Montt, Chile) and belonging to a 130 

genetic improvement program run by Aquainnovo (Puerto Montt, Chile). This population 131 

was artificially selected for growth, appearance-related traits and carcass quality for three 132 

generations. For a detailed description about rearing conditions and population management 133 

please see Flores-Mara et al. (2017), Rodríguez et al. (2018) and Neto et al. (2019) 134 

Fish from 105 full-sib families (48 half-sib families) with an average weight of 7.0 ± 135 

1.5 g, were PIT-tagged for individual traceability of families. After tagging, fish were 136 
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maintained in a single tank until they were transferred to Aquainnovo’s Aquaculture 137 

Technology Center Patagonia in August 2012. Fish were acclimated for 20 days in a 15m3 138 

tank, prior to experimental challenge. A random sample of fish were selected to evaluate the 139 

sanitary status of the population, i.e. qRT-PCR for Infectious Salmon Anemia virus (ISAV), 140 

Infectious Pancreatic Necrosis virus (IPNV), and Renibacterium salmoninarum, and culture 141 

for Flavobacterium spp. Later, a total of 2,130 juveniles (with an average of 23 individuals 142 

per family and ranging from 17 to 27 fish per family), were intraperitoneally (IP) injected 143 

with 0.2ml of a lethal dose (LD50) of the LF-89 strain of P. salmonis inoculum. Post injection, 144 

fish were equally distributed into three different tanks, considering similar family distribution 145 

into each replicate (with 5 to 9 fish per family in each tank). Environmental parameters were 146 

measured throughout the challenge and the experimental challenge continued until the 147 

mortality curve showed a plateau. Daily mortality was recorded, and body weight was 148 

measured for each fish at time of death or at the end of the experiment (FW). Surviving fish 149 

were euthanized and body weight was also recorded. Fin clips from all fish were sampled 150 

and stored in 95% ethanol at -80°C until they were genotyped. 151 

 152 

Genotyping 153 

The genomic DNA from the sampled fin clips was extracted using a commercial kit 154 

(DNeasy Blood & Tissue Kit, Qiagen), following the manufacturer’s instructions. 155 

Genotyping was performed using a commercial 57K SNP array (Affymetrix® Axiom® 156 

myDesignTM SNP) developed by the National Center for Cool and Cold water Aquaculture 157 

at USDA (Palti et al. 2015b). 158 

Quality control (QC) was assessed through Affymetrix’s Axiom Analysis Software, 159 

using default settings. Then, a second QC using Plink software (Purcell et al. 2007), was 160 
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applied to remove SNPs with a genotype call rate lower than 0.90, minor allele frequency 161 

(MAF) < 0.01 and deviated from Hardy-Weinberg Equilibrium (p < 1x10-6). Individuals with 162 

a call rate lower than 0.90 were also removed from further analyses. 163 

 164 

Trait definition  165 

Resistance to P. salmonis was defined as time to death (TD), measured in days, with 166 

values ranging from 1 until the end of challenge test. Additionally, resistance to P. salmonis 167 

was also defined as binary survival (BS), with a value of 1 or 0 based on if the fish died or 168 

survived until the end of the challenge. 169 

 170 

Genomic-Wide association study 171 

A single-step GWAS (ssGWAS) analysis was performed to identify genomic regions 172 

associated with resistance to P. salmonis. This approach considered fish with both 173 

phenotypes and genotypes and also individuals with phenotypes but no genotypes in the 174 

analysis (Wang et al. 2012). The pedigree and genotypic data in ssGWAS are connected 175 

through the H matrix. Thus, the H matrix combines both the pedigree and the genomic 176 

relationship matrices (Aguilar et al. 2010). Thus, the inverse of the H matrix is:  177 

H	-1=A-1+ #
0 0
0 G-1-	A22

-1 $ 178 

Where 𝐴&' is the inverse of the numerator relationship matrix, considering all the phenotyped 179 

animals, 𝐴((&' is the inverse of the pedigree-based relationship matrix considering only the 180 

genotyped animals, and 𝐺&' is the inverse genomic relationship matrix. The following model 181 

was used for GWAS analysis: 182 
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𝑦 = 𝑿𝛽 + 𝒁𝑎 + 𝑒 183 

Where y is the vector of phenotypes (for TS and BS), 𝛽 is the vector of fixed effects (tank as 184 

factor and final body weight as a covariate), a is the vector of random effects, e is the vector 185 

of residuals, and X and Z are the incidence matrices for fixed and random effects, 186 

respectively. A linear model and a threshold model were used for TD and BS, respectively. 187 

Both trait definitions were fitted using BLUPF90 statistical software (Misztal et al. 2016). 188 

Thus, AIREML and THRGIBBS1F90 were used for TD and BS, respectively. For the latter, 189 

a total of 200,000 Markov Chain Monte Carlo (MCMC) iterations were used, the first 20,000 190 

were discarded as burn-in iterations and from the remaining 180,000 samples, we saved one 191 

from every 50. Therefore, the analyses included 3,600 independent samples. 192 

For TS and BS, the heritability was estimated as follows: 193 

ℎ( = 	
𝜎4(

𝜎4( +	𝜎5(
 194 

Where 𝜎4( is the additive genetic variance estimated using the H matrix, and 𝜎5( is the residual 195 

variance. 196 

To identify genomic regions associated with each trait, we estimated the percentage 197 

of the genetic variance (PGV) explained by windows of 20 adjacent SNPs. Then, if a 20 SNP 198 

window explained more than 1% of the PGV, we considered that region as associated with 199 

resistance to P. salmonis.  200 

 201 

Candidate genes 202 
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The candidate genes were identified by searching 500kb up and downstream from the 203 

SNP explaining the highest proportion of PGV within each associated window. For this 204 

purpose, we used the last version of the Oncorhynchus mykiss reference genome 205 

(GCA_002163495.1). The criteria for selecting candidate genes lies in the function of the 206 

protein that encodes each gene found, mainly related to immune response, DNA repair, stress 207 

response and similar pathways. 208 

 209 

Data availability 210 

The raw genotypes and phenotype data are available from the online repository 211 

figshare (https://figshare.com/s/221a39319b236d46f9fc). Table S1 contains all genes located 212 

within 1Mb window surrounding the SNPs explaining the highest proportion of genetic 213 

variance and is available at 10.6084/m9.figshare.7883342. 214 

 215 

 216 

 217 

 218 

RESULTS 219 

Descriptive statistics and heritabilities 220 

Summary statistics for resistance to P. salmonis measured as TD and as BS and for 221 

FW are shown in Table 1. The first death was recorded on day 10 post intraperitoneal 222 

injection; the last on day 32. Average TD was 23.26 ± 7.86 days. At the end of the 223 

experimental challenge the proportion of non-survivor fish was 0.59 ± 0.49. Cumulative 224 
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mortality among all 105 families ranged from 7.7 to 100%, indicating considerable 225 

phenotypic variation for resistance to P. salmonis in the current rainbow trout population. 226 

Cumulative mortality within each replicate tank was 59.4, 65.1 and 64.7%. Mortality peaked 227 

on days 12, 15 and 19 post injection. Average final body weight was 173.80 ± 52.27 g. This 228 

trait ranged considerably among challenged fish, with a minimum of 46.10g and maximum 229 

448g. 230 

Variance components for TD and BS are shown in Table 2. Significant heritability 231 

values were estimated for both trait definitions. Thus, 0.48 ± 0.04 and 0.34 ±	0.04 were 232 

estimated for TD and BS, respectively. Furthermore, a high genetic correlation was found 233 

between both traits (-0.96 ± 0.01). 234 

 235 

Genome-wide association study 236 

From all genotyped animals, 2,047 passed quality control (representing 97.10% of the 237 

total). A total of 26,068 SNPs remained in the set for further analyses (~ 64.68%). The Figure 238 

1 shows the Manhattan plot for resistance to P. salmonis measured as TD and BS. We 239 

identified four genomic regions associated with resistance as TD. These regions were located 240 

on Omy3, Omy14, Omy24 and Omy27. For BS, we identified three genomic regions 241 

associated with the trait. These were found on Omy5, Omy27 and Omy30. Interestingly, the 242 

genomic region located on Omy27 was found to be associated with resistance to P. salmonis 243 

for both TD and BS. In both cases, this common genomic region explains the highest 244 

proportion of genetic variance for each trait, with 2.4 and 1.5% for TD and BS, respectively. 245 

The SNP explaining the highest proportion of the genetic variance (Affx-88923370) is the 246 

same for both TD and BS (Table 3). 247 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587535doi: bioRxiv preprint 

https://doi.org/10.1101/587535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Using the O. mykiss reference genome (GCA_002163495) we identified candidate 248 

genes associated with resistance to P. salmonis. Table 3 shows a summary of the genes 249 

located proximate to the SNPs explaining the highest proportion of the genetic variance 250 

within each genomic region.  251 

Among the candidate genes flanking the most important SNP on Omy3 for TD, we 252 

found Gluthatione S-transferease kappa 1 (gstk1) and Interleukin-11 (il11). These genes are 253 

involved in the response to oxidative stress and the immune response to bacterial infections, 254 

respectively (Oruc et al. 2004; Wang et al. 2005). On Omy14, we found the Toll-like receptor 255 

4 (tlr4) gene, which has been suggested to act as a bacteria sensor (Palti 2011). On Omy24, 256 

we found alpha-2-macroglobulin-like (a2m), which is part of a broad-spectrum protease 257 

inhibitor, and it has been suggested that plays a role in the defense against Cryptobia 258 

salmositica on rainbow trout (Zuo and Woo 1997). 259 

Also, we found POU class 2 associating factor 1 (pou2af1), which has been described 260 

as a coactivator of transcription factors that regulate Ig expression of B cells (Teitell 2003), 261 

and NF-kappa-B inhibitor zeta-like (nfkbiz), a regulator of process like the pathogen 262 

recognition, phagocytosis and production of cytokines by dendritic cells (Rozas-Serri et al. 263 

2017). 264 

  For BS, on Omy5 we found fas ligand (faslg), whose protein has been suggested as 265 

an important mediator of anti-bacterial innate immune response, by inducing apoptosis of 266 

target cells and recruiting phagocytic cells (Kaur et al. 2004). On the same chromosome we 267 

found Peroxiredoxin-6-like (prdx6), one of the six different isoforms that conforms the 268 

peroxiredoxins group, which are antioxidants proteins that protect cells from oxidative 269 

damage and is likely to be involved in protective response against a bacterial infection in 270 

Scophthalmus maximus (Zheng et al. 2010).  271 
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 On Omy29, MAPK12 was found; previous studies described that MAPK12 is 272 

involved on the signaling pathways responsible for TNF-α secretion from rainbow trout 273 

macrophages, there for in innate immunity (Roher et al. 2011). Glutaminase kidney isoform, 274 

mitochondrial-like (gls) was also found on Omy29, which family proteins, generally forms a 275 

part of enzymes that plays a role in nucleotide, amino acid and urea biosynthesis (Kumada et 276 

al. 1993). 277 

On Omy27 we found genes related with innate immune response regulation, NF-kB 278 

activation by TNFa, and some molecules related with metabolic process and apoptosis. 279 

However, the SNP explaining the highest proportion of genetic variance is located within an 280 

exon of the gene Smoothelin protein 2 (Smtnl2) which remains poorly characterized both in 281 

humans and fishes, but it is believed that participates in actin cytoskeleton organization. 282 

The complete list of genes located within the 1Mb window flanking the SNPs 283 

explaining the highest proportion of genetic variance, within each genomic region associated 284 

with resistance to P. salmonis, is shown in Table S1. 285 

 286 

DISCUSSION 287 

In the current study we show significant genetic variation for resistance to P. salmonis 288 

in a farmed rainbow trout population. A moderate to high heritability was estimated for 289 

resistance as TD (0.48) and BS (0.34). These estimates are higher than those reported in 290 

previous studies carried out for resistance to other bacterial diseases in aquaculture species, 291 

with heritabilities ranging from  0.22 to 0.38 (Ødegård et al. 2006; Palaiokostas et al. 2016; 292 

Vallejo, et al. 2017b). In the case of P. salmonis resistance, several studies have evaluated 293 

the presence of genetic variation in different salmonid species. Thus, similar estimates have 294 
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been shown for Atlantic salmon, when using pedigree or genomic data, with values ranging 295 

from 0.19 to 0.39 (Yáñez et al. 2013; Yáñez, et al. 2014b; Correa et al. 2015; Bangera et al. 296 

2017). In the case of coho salmon, heritability estimates range from 0.16 to 0.27 when 297 

resistance is defined as a linear or binary trait (Yáñez, et al. 2016a; Barría, et al. 2018).  298 

Recent studies in rainbow trout, using different pedigree and genome-based genetic 299 

evaluation approaches, estimate heritabilities ranging from 0.39 to 0.57 for TD and from 0.54 300 

to 0.62 for BS (Yoshida, et al. 2018a); values which are within the range of our estimations. 301 

Moreover, our results suggest a higher effect of the additive genetic component on the 302 

phenotypic variance for resistance to P. salmonis in rainbow trout when compared to S. salar 303 

and O. kisutch, which would imply potentially faster genetic progress for the improvement 304 

of resistance to P. salmonis by means of artificial selection in the rainbow trout population 305 

used in the present study.  306 

The effect of the genetic architecture of a trait (among other variables) on the accuracy 307 

of breeding values obtained through genomic selection (GS) is widely known (Daetwyler et 308 

al. 2008; Goddard 2009). Previous studies in salmonid species (Atlantic salmon and coho 309 

salmon), suggest that resistance to P. salmonis is a polygenic trait (Correa et al. 2015; Barría, 310 

et al. 2018). Based on the 26K SNPs which passed QC, our study similarly suggests a 311 

polygenic nature for resistance to P. salmonis resistance in rainbow trout (i.e. no QTL 312 

explaining >= 10% of the genetic variance). Thus, it is expected that, when compared with a 313 

pedigree-based Best Linear Unbiased Predictor (BLUP) method, a genomic BLUP approach 314 

for GS would have an increase in accuracy of breeding values over a Bayesian approach 315 

(Habier et al. 2007; Hayes et al. 2009) for the current rainbow trout population. Nonetheless, 316 

as predicted by Yoshida, et al. (2018b) this was true only at low SNP densities (i.e. 0.5 to 10 317 

K). When 20K and 27K were used, Bayes C outperformed GBLUP accuracies. The authors 318 
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suggested that this could be due to an oligogenic architecture of the resistance trait, or that 319 

Bayes C had higher effectiveness in capturing the linkage disequilibrium between the SNPs 320 

and a QTL when more SNPs were used.  321 

Resistance to bacterial infections implies a modulation of the host immune response 322 

to inhibit or reduce the replication rate of the pathogen (Doeschl-Wilson and Kyriazakis 323 

2012). The infection process carried out by P. salmonis uses clathrin for internalization and 324 

then the actin cytoskeleton for vacuole generation (Ramírez et al. 2015). Similar pathways 325 

have been observed in other mammalian intracellular gram-negative bacteria (Manon et al. 326 

2012; Valencia-gallardo et al. 2015). Within the region associated with TD on Omy3 we 327 

identified a gene coding for the receptor DC-SIGN related with the immune response and 328 

expressed on macrophage and dendritic-cell surfaces (Ahmed et al. 2015). It has been 329 

previously described that Mycobacterium tuberculosis, interferes with the Toll-like receptor 330 

signaling by DC-SIGN, inhibiting interleukin-12 production (Gorvel et al. 2014), a 331 

proinflammatory cytokine, which plays a key role in the performance of phagocytes in teleost 332 

fish (Alvarez et al. 2016).  333 

 As mentioned before, endocytosis mediated by clathrin is the main pathway used by 334 

P. salmonis for cell invasion. Clathrin recruits, among other cell components, AP-2; which 335 

is regulated by NECAP-1 (Ritter et al. 2013), a gene flanking the SNP explaining the highest 336 

proportion of genetic variance in Omy3 for resistance measured as TD. Similarly, on this 337 

chromosome we also found the gene glutathione S-transferase kappa 1 (gstk1) (GTS), which 338 

is member of the glutathione S-transferase family (GST), involved in cellular detoxification, 339 

and expressed in cells to reduce oxidative stress-related damage (Morel and Aninat 2011), a 340 

consequence of P. salmonis infection (Rozas and Enríquez 2014), and differentially 341 

expressed in Atlantic salmon after P. salmonis exposure (Rise et al. 2004). A candidate gene 342 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587535doi: bioRxiv preprint 

https://doi.org/10.1101/587535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

related to resistance as measured by BS, was found on Omy5, the fas ligand gene (faslg) is a 343 

member of the TNF superfamily. The Fas/FasL pathway is essential for immune system 344 

regulation, including apoptosis induced by T cell activation and by cytotoxic T lymphocytes 345 

(Siegel et al. 2000). 346 

 For both resistance trait definitions, the same chromosome and identical SNP was 347 

identified as the marker explaining the highest genetic variation for resistance, which makes 348 

this QTL as an interesting region in rainbow trout. Within this region we found the gene 349 

phosphatidylinositol transfer protein alpha (pitpna), which belongs to the 350 

phosphatidylinositol family (ptdlns) (Piscatelli et al. 2016), and is responsible for 351 

phospholipid transfer between cellular membranes (Thornbrough et al. 2016), which in turn 352 

are regulators of cell signal transduction, membrane trafficking and cytoskeleton 353 

organization (Hilbi and Haas 2012). The latter process is affected by P. salmonis once inside 354 

the macrophages (Ramírez et al. 2015). Similar to P. salmonis, Legionella pneumophila also 355 

replicates inside macrophages, and manipulates the vesicle generation inside the cell by 356 

joining with ptdlns 5 (Hilbi and Haas 2012). 357 

 Additionally, in this region we found the gene nlr family card domain containing 3 358 

(nlrc3). Previously, Álvarez et al. (2017),  described a higher differential expression of nlrc3 359 

in rainbow trout in response to bacterial lipopolysaccharides (lps), specifically in the skin, 360 

liver and gills. This pattern has also been observed in Atlantic salmon during an infection 361 

with P. salmonis (Tacchi et al. 2011), and is therefore a likely mechanism used by this 362 

bacteria to evade the immune response. 363 

 The gene tapsain (tap) is also involved in the immune response, transporting cytosolic 364 

peptides generated by the proteasome to load on MHC class I (Procko et al. 2005). On 365 
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Omy27, we found a gene that encodes a protein related to tapsain (TAPBPR), which 366 

negatively regulates tap; generating a reduction in immune response efficiency (Boyle et al. 367 

2013). 368 

We expect that in the near future, the identification and validation of causative 369 

mutations affecting some of the candidate genes presented here, by means of functional 370 

studies, will provide a better understanding of resistance against this and other infectious 371 

diseases in rainbow trout and other salmonid species. These studies will be facilitated through 372 

international collaborative initiatives such as the Functional Annotation of All Salmonid 373 

Genomes, FAASG (Macqueen et al. 2017). 374 

 375 

CONCLUSIONS 376 

To the best of our knowledge this is the first report identifying candidate genes related 377 

to resistance to P. salmonis in a farmed rainbow trout population. Genes likely related with 378 

resistance were identified close to SNPs explaining the highest proportion of genetic 379 

variance. Furthermore, we identified the same genomic region associated with resistance 380 

using both a linear and binary trait.  Our results show that this trait is controlled by multiple 381 

genes each with a small effect. Therefore, a genomic selection approach is suggested as the 382 

best method to improve this trait by means of artificial selection. 383 

 384 
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Table 1. Summary statistics for time to death (TD), binary survival (BS) and final weight 630 

(FW) measured in 2,130 rainbow trout individuals. 631 

Trait Mean SD CV(%) Min Max 

TD 23.26 7.86 33.27 10 32 

BS 0.59 0.49 0.83 0 1 

FW 173.80 52.27 30.07 46.10 448 

 632 

 633 

Table 2. Genetic parameters and heritabilities for resistance to Piscirickettsia salmonis as 634 

time to death (TD) and binary survival (BS). 635 

Trait 𝝈𝒂𝟐a 𝝈𝒆𝟐b 𝒉𝟐(SD)c 

TD 25.95 28.92 0.48(0.04) 

BS 6.27x10-2 1.21x10-1 0.34(0.04) 

a Additive genetic variance 636 

b Residual variance 637 

c Heritability and standard deviation 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 
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Table 3. Top markers associated with Piscirickettsia salmonis resistance defined as TD and 646 

BS in rainbow trout, using ssGWAS, 647 

Ranking Name Chra Pos (Bp) PGVb Genesc 
Time to death 

1 Affx-88923370 27 9998276 2.43 usp2, nlrc3, tap, pitpna 
2 Affx-88916453 3 14818380 1.41 stl2, aicda, il11, gstk1 
3 Affx-88922612 14 10975036 1.21 tlr4, tax1bp1, satb1 
4 Affx-88927397 24 11828385 1.02 a2m, pou2af1, nfkbiz 

Binary survival 

1 Affx-88923370 27 9998276 1.50 usp2, nlrc3, tap, pitpna 

2 Affx-88951679 5 68055053 1.12 faslg, prdx6, plpp6 
3 Affx-88908715 29 32519588 1.01 mapk12, gls 

a Chromosome. 648 

b Percentage of genetic variance. 649 

c Summary of the genes located within 1Mb window. 650 

 651 

 652 

 653 
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 654 

Figure 1. Genomic association analysis for resistance to Piscirickettsia salmonis in 655 

rainbow trout (Oncorhynchus mykiss). Resistance was defined as time to death (A) and as 656 

binary survival (B).  657 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587535doi: bioRxiv preprint 

https://doi.org/10.1101/587535
http://creativecommons.org/licenses/by-nc-nd/4.0/

