

1 **Single-step genome-wide association study for resistance to *Piscirickettsia salmonis* in**
2 **rainbow trout (*Oncorhynchus mykiss*)**

3 Rodrigo Marín-Nahuelpi*, ¶, Agustín Barría*, ¶, Pablo Cáceres*, María E. López*, 1, Liane N.
4 Bassini*, †, Jean P. Lhorente‡, José M. Yáñez*, §

5

6 * Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago,
7 Chile

8 † Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres
9 Bello, Santiago, Chile.

10 ‡ Benchmark Genetics Chile S.A., Puerto Montt, Chile

11 § Núcleo Milenio INVASAL Concepción, Chile

12

13 ORCID IDs: 0000-0002-6890-9144 (R.M.); 0000-0002-2813-4559 (A.B.); 0000-0003-1955-
14 214X (P.C.); 0000-0001-9272-0694 (ME.L); 0000-0003-2487-5058 (L.B.); 0000-0002-9157-
15 4231 (JP.L.); 0000-0002-6612-4087 (JM.Y.)

16 ¶ Both authors contributed equally to this work

17

18 1 Present address: Department of Animal Breeding and Genetics, Swedish University of
19 Agricultural Sciences, Uppsala, Sweden.

20

21

22

23

24 **GWAS for *Piscirickettsia salmonis* resistance in rainbow trout**

25

26 *Keywords:* GWAS; *Oncorhynchus mykiss*; disease resistance; heritability, SRS

27 Corresponding author: Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile,

28 Avenida Santa Rosa 11735, 8820808, La Pintana, Santiago, Chile

29 E-mail: jmayanez@uchile.cl

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ABSTRACT

45 One of the main pathogens affecting rainbow trout (*Oncorhynchus mykiss*) farming is the
46 facultative intracellular bacteria *Piscirickettsia salmonis*. Current treatments, such as
47 antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic
48 improvement by means of selection for resistance is proposed as a viable alternative for
49 control. Genomic information can be used to identify the genomic regions associated with
50 resistance and enhance the genetic evaluation methods to speed up the genetic improvement
51 for the trait. The objectives of this study were to i) identify the genomic regions associated
52 with resistance to *P. salmonis*; and ii) identify candidate genes associated with the trait. We
53 experimentally challenged 2,130 rainbow trout with *P. salmonis* and genotyped them with a
54 57 K SNP array. Resistance to *P. salmonis* was defined as time to death (TD) and as binary
55 survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34
56 ± 0.04 , respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for
57 samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we
58 identified four genomic regions explaining over 1% of the genetic variance for TD and three
59 for BS. Interestingly, the same genomic region located on *Omy27* was found to explain the
60 highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS,
61 respectively). The identified SNP in this region is located within an exon of a gene related
62 with actin cytoskeletal organization, a protein exploited by *P. salmonis* during infection.
63 Other important candidate genes identified are related with innate immune response and
64 oxidative stress. The moderate heritability values estimated in the present study show it is
65 possible to improve resistance to *P. salmonis* through artificial selection in the current
66 rainbow trout population. Furthermore, our results suggest a polygenic genetic architecture

67 and provide novel insights into the candidate genes underpinning resistance to *P. salmonis*
68 in *O. mykiss*.

69

70

71

72 INTRODUCTION

73 As in any intensive animal production system, infectious diseases are one of the main
74 threats affecting the success and sustainability of aquaculture (Yáñez *et al.* 2014a). In the
75 case of salmonid production, one of the major pathogens affecting productivity is the
76 facultative intracellular bacteria *Piscirickettsia salmonis*, etiological agent of salmonid
77 rickettsial syndrome (SRS). This bacterium was first identified in 1989 in Chile, in a farmed
78 coho salmon (*Oncorhynchus kisutch*) population (Cvitanich *et al.* 1991). Since then,
79 mortalities resulting from SRS have been also identified in Atlantic salmon (*Salmo salar*)
80 and rainbow trout (*Oncorhynchus mykiss*) in several countries, such as Scotland, Ireland,
81 Norway and Chile (Fryer and Hedrick 2003). In Chile, SRS was responsible for 20.7, 67.9
82 and 92.6% of the mortalities associated with infectious diseases in *S. salar*, *O. kisutch* and
83 *O. mykiss*, species respectively (Sernapesca 2018). To date, strategies for *P. salmonis* control
84 and treatment are mainly based on vaccines and antibiotics. The effectiveness of both
85 approaches has not been adequate (Rozas and Enríquez 2014). Therefore, it has been
86 estimated that economic losses due SRS mortalities, reached up to US\$450 million in Chile
87 in 2012 (Camussetti *et al.* 2015). However, variables such as laboratory diagnosis screening
88 expenses or loss of quality of the harvested fish and products were not considered, implying
89 that the economic impact could be even higher.

90 Therefore, selective breeding could be a feasible alternative to enhance disease
91 resistance; reducing mortality rates from *P. salmonis*, as well as improving animal health and
92 productivity (Bishop and Woolliams 2014; Yáñez and Martínez 2010). However, the main
93 requisite to include a trait into a genetic program is the presence of significant additive
94 genetic variance within the population (Falconer and Mackay 1996). Previous studies
95 estimated heritability values ranging from 0.11 to 0.41 for *P. salmonis* resistance in Atlantic
96 salmon and coho salmon (Yáñez *et al.* 2013; Yáñez *et al.* 2016a; Barría *et al.* 2018). In the
97 case of rainbow trout, Yoshida *et al.* (2018a) estimated heritabilities ranging from 0.39 to
98 0.57 for resistance to *P. salmonis* using day of death and 0.54 to 0.62 for binary survival as
99 trait definitions. Altogether, these results demonstrate the possibility of improving this trait
100 by means of artificial selection in different salmonid species.

101 The development of next generation sequencing technologies has facilitated the
102 identification of thousands of single nucleotide polymorphisms (SNPs) segregating along the
103 genome of several animals, including aquaculture species (Yáñez *et al.* 2015). Thus, using a
104 genotyping by sequencing (GBS) approach in conjunction with genome-wide association
105 studies, some authors evaluated genomic regions associated with resistance to bacterial
106 infections in aquaculture species (Liu *et al.* 2015; Palti *et al.* 2015a; Palaiokostas *et al.* 2016;
107 Barría *et al.* 2018). However, in salmonid species, the use of SNP panels has been the most
108 used alternative for genotyping a high number of individuals with thousands of genetic
109 variants simultaneously. This has been made simpler by the development of high density
110 SNP arrays for Atlantic salmon (Houston *et al.* 2014; Yáñez *et al.* 2016b) and rainbow trout
111 (Palti *et al.* 2015b). The use of these SNP panels have also allowed the comparison of the
112 accuracy of estimated breeding values (EBV) using genomic selection to pedigree-based
113 genetic evaluations for resistance to infectious diseases in Atlantic salmon (Ødegård *et al.*

114 2014; Tsai *et al.* 2016; Bangera *et al.* 2017; Correa *et al.* 2017), coho salmon (Barría *et al.*
115 2018) and rainbow trout (Vallejo *et al.* 2016; Vallejo *et al.* 2017a; Yoshida *et al.* 2018a;
116 2018b). SNP arrays have also enabled the dissection of the genetic architecture of resistance
117 to bacterial diseases in salmonids. For instance, genomic regions and candidate genes
118 associated with resistance to *P. salmonis* in Atlantic and coho salmon (Correa *et al.* 2015;
119 Barría *et al.* 2018), and bacterial cold water disease (BCWD) in rainbow trout (Vallejo *et al.*
120 2017b) have been identified.

121 To date there are no studies aimed at identifying genomic regions or candidate genes
122 associated with resistance to *P. salmonis* in rainbow trout populations. Therefore, the main
123 objectives of the current study were to i) identify genomic regions associated with resistance
124 to *P. salmonis* in a farmed rainbow trout population, and ii) identify candidate genes
125 associated with the trait.

126

127 MATERIALS AND METHODS

128 Population and experimental challenge

129 The population used in this study was rainbow trout (*Oncorhynchus mykiss*) year-
130 class 2011 bloodstock, owned by Aguas Claras (Puerto Montt, Chile) and belonging to a
131 genetic improvement program run by Aquainnovo (Puerto Montt, Chile). This population
132 was artificially selected for growth, appearance-related traits and carcass quality for three
133 generations. For a detailed description about rearing conditions and population management
134 please see Flores-Mara *et al.* (2017), Rodríguez *et al.* (2018) and Neto *et al.* (2019)

135 Fish from 105 full-sib families (48 half-sib families) with an average weight of 7.0 ±
136 1.5 g, were PIT-tagged for individual traceability of families. After tagging, fish were

137 maintained in a single tank until they were transferred to Aquainnovo's Aquaculture
138 Technology Center Patagonia in August 2012. Fish were acclimated for 20 days in a 15m³
139 tank, prior to experimental challenge. A random sample of fish were selected to evaluate the
140 sanitary status of the population, i.e. qRT-PCR for Infectious Salmon Anemia virus (ISAV),
141 Infectious Pancreatic Necrosis virus (IPNV), and *Renibacterium salmoninarum*, and culture
142 for *Flavobacterium spp*. Later, a total of 2,130 juveniles (with an average of 23 individuals
143 per family and ranging from 17 to 27 fish per family), were intraperitoneally (IP) injected
144 with 0.2ml of a lethal dose (LD₅₀) of the LF-89 strain of *P. salmonis* inoculum. Post injection,
145 fish were equally distributed into three different tanks, considering similar family distribution
146 into each replicate (with 5 to 9 fish per family in each tank). Environmental parameters were
147 measured throughout the challenge and the experimental challenge continued until the
148 mortality curve showed a plateau. Daily mortality was recorded, and body weight was
149 measured for each fish at time of death or at the end of the experiment (FW). Surviving fish
150 were euthanized and body weight was also recorded. Fin clips from all fish were sampled
151 and stored in 95% ethanol at -80°C until they were genotyped.

152

153 **Genotyping**

154 The genomic DNA from the sampled fin clips was extracted using a commercial kit
155 (DNeasy Blood & Tissue Kit, Qiagen), following the manufacturer's instructions.
156 Genotyping was performed using a commercial 57K SNP array (Affymetrix® Axiom®
157 myDesignTM SNP) developed by the National Center for Cool and Cold water Aquaculture
158 at USDA (Palti *et al.* 2015b).

159 Quality control (QC) was assessed through Affymetrix's Axiom Analysis Software,
160 using default settings. Then, a second QC using Plink software (Purcell *et al.* 2007), was

161 applied to remove SNPs with a genotype call rate lower than 0.90, minor allele frequency
162 (MAF) < 0.01 and deviated from Hardy-Weinberg Equilibrium ($p < 1 \times 10^{-6}$). Individuals with
163 a call rate lower than 0.90 were also removed from further analyses.

164

165 **Trait definition**

166 Resistance to *P. salmonis* was defined as time to death (TD), measured in days, with
167 values ranging from 1 until the end of challenge test. Additionally, resistance to *P. salmonis*
168 was also defined as binary survival (BS), with a value of 1 or 0 based on if the fish died or
169 survived until the end of the challenge.

170

171 **Genomic-Wide association study**

172 A single-step GWAS (ssGWAS) analysis was performed to identify genomic regions
173 associated with resistance to *P. salmonis*. This approach considered fish with both
174 phenotypes and genotypes and also individuals with phenotypes but no genotypes in the
175 analysis (Wang *et al.* 2012). The pedigree and genotypic data in ssGWAS are connected
176 through the H matrix. Thus, the H matrix combines both the pedigree and the genomic
177 relationship matrices (Aguilar *et al.* 2010). Thus, the inverse of the H matrix is:

178
$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

179 Where A^{-1} is the inverse of the numerator relationship matrix, considering all the phenotyped
180 animals, A_{22}^{-1} is the inverse of the pedigree-based relationship matrix considering only the
181 genotyped animals, and G^{-1} is the inverse genomic relationship matrix. The following model
182 was used for GWAS analysis:

183

$$y = \mathbf{X}\beta + \mathbf{Z}a + e$$

184 Where y is the vector of phenotypes (for TS and BS), β is the vector of fixed effects (tank as
185 factor and final body weight as a covariate), a is the vector of random effects, e is the vector
186 of residuals, and \mathbf{X} and \mathbf{Z} are the incidence matrices for fixed and random effects,
187 respectively. A linear model and a threshold model were used for TD and BS, respectively.
188 Both trait definitions were fitted using BLUPF90 statistical software (Misztal *et al.* 2016).
189 Thus, AIREML and THRGIBBS1F90 were used for TD and BS, respectively. For the latter,
190 a total of 200,000 Markov Chain Monte Carlo (MCMC) iterations were used, the first 20,000
191 were discarded as burn-in iterations and from the remaining 180,000 samples, we saved one
192 from every 50. Therefore, the analyses included 3,600 independent samples.
193 For TS and BS, the heritability was estimated as follows:

194

$$h^2 = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2}$$

195 Where σ_a^2 is the additive genetic variance estimated using the H matrix, and σ_e^2 is the residual
196 variance.

197 To identify genomic regions associated with each trait, we estimated the percentage
198 of the genetic variance (PGV) explained by windows of 20 adjacent SNPs. Then, if a 20 SNP
199 window explained more than 1% of the PGV, we considered that region as associated with
200 resistance to *P. salmonis*.

201

202 **Candidate genes**

203 The candidate genes were identified by searching 500kb up and downstream from the
204 SNP explaining the highest proportion of PGV within each associated window. For this
205 purpose, we used the last version of the *Oncorhynchus mykiss* reference genome
206 (GCA_002163495.1). The criteria for selecting candidate genes lies in the function of the
207 protein that encodes each gene found, mainly related to immune response, DNA repair, stress
208 response and similar pathways.

209

210 **Data availability**

211 The raw genotypes and phenotype data are available from the online repository
212 figshare (<https://figshare.com/s/221a39319b236d46f9fc>). Table S1 contains all genes located
213 within 1Mb window surrounding the SNPs explaining the highest proportion of genetic
214 variance and is available at 10.6084/m9.figshare.7883342.

215

216

217

218

219 RESULTS

220 **Descriptive statistics and heritabilities**

221 Summary statistics for resistance to *P. salmonis* measured as TD and as BS and for
222 FW are shown in Table 1. The first death was recorded on day 10 post intraperitoneal
223 injection; the last on day 32. Average TD was 23.26 ± 7.86 days. At the end of the
224 experimental challenge the proportion of non-survivor fish was 0.59 ± 0.49 . Cumulative

225 mortality among all 105 families ranged from 7.7 to 100%, indicating considerable
226 phenotypic variation for resistance to *P. salmonis* in the current rainbow trout population.
227 Cumulative mortality within each replicate tank was 59.4, 65.1 and 64.7%. Mortality peaked
228 on days 12, 15 and 19 post injection. Average final body weight was 173.80 ± 52.27 g. This
229 trait ranged considerably among challenged fish, with a minimum of 46.10g and maximum
230 448g.

231 Variance components for TD and BS are shown in Table 2. Significant heritability
232 values were estimated for both trait definitions. Thus, 0.48 ± 0.04 and 0.34 ± 0.04 were
233 estimated for TD and BS, respectively. Furthermore, a high genetic correlation was found
234 between both traits (-0.96 ± 0.01).

235

236 **Genome-wide association study**

237 From all genotyped animals, 2,047 passed quality control (representing 97.10% of the
238 total). A total of 26,068 SNPs remained in the set for further analyses (~ 64.68%). The Figure
239 1 shows the Manhattan plot for resistance to *P. salmonis* measured as TD and BS. We
240 identified four genomic regions associated with resistance as TD. These regions were located
241 on *Omy3*, *Omy14*, *Omy24* and *Omy27*. For BS, we identified three genomic regions
242 associated with the trait. These were found on *Omy5*, *Omy27* and *Omy30*. Interestingly, the
243 genomic region located on *Omy27* was found to be associated with resistance to *P. salmonis*
244 for both TD and BS. In both cases, this common genomic region explains the highest
245 proportion of genetic variance for each trait, with 2.4 and 1.5% for TD and BS, respectively.
246 The SNP explaining the highest proportion of the genetic variance (Affx-88923370) is the
247 same for both TD and BS (Table 3).

248 Using the *O. mykiss* reference genome (GCA_002163495) we identified candidate
249 genes associated with resistance to *P. salmonis*. Table 3 shows a summary of the genes
250 located proximate to the SNPs explaining the highest proportion of the genetic variance
251 within each genomic region.

252 Among the candidate genes flanking the most important SNP on *Omy3* for TD, we
253 found *Gluthatione S-transferease kappa 1* (*gstk1*) and *Interleukin-11* (*il11*). These genes are
254 involved in the response to oxidative stress and the immune response to bacterial infections,
255 respectively (Oruc *et al.* 2004; Wang *et al.* 2005). On *Omy14*, we found the *Toll-like receptor*
256 4 (*tlr4*) gene, which has been suggested to act as a bacteria sensor (Palti 2011). On *Omy24*,
257 we found *alpha-2-macroglobulin-like* (*a2m*), which is part of a broad-spectrum protease
258 inhibitor, and it has been suggested that plays a role in the defense against *Cryptobia*
259 *salmositica* on rainbow trout (Zuo and Woo 1997).

260 Also, we found *POU class 2 associating factor 1* (*pou2af1*), which has been described
261 as a coactivator of transcription factors that regulate Ig expression of B cells (Teitel 2003),
262 and *NF-kappa-B inhibitor zeta-like* (*nfkbiz*), a regulator of process like the pathogen
263 recognition, phagocytosis and production of cytokines by dendritic cells (Rozas-Serri *et al.*
264 2017).

265 For BS, on *Omy5* we found *fas ligand* (*faslg*), whose protein has been suggested as
266 an important mediator of anti-bacterial innate immune response, by inducing apoptosis of
267 target cells and recruiting phagocytic cells (Kaur *et al.* 2004). On the same chromosome we
268 found *Peroxiredoxin-6-like* (*prdx6*), one of the six different isoforms that conforms the
269 peroxiredoxins group, which are antioxidants proteins that protect cells from oxidative
270 damage and is likely to be involved in protective response against a bacterial infection in
271 *Scophthalmus maximus* (Zheng *et al.* 2010).

272 On *Omy29*, *MAPK12* was found; previous studies described that *MAPK12* is
273 involved on the signaling pathways responsible for TNF- α secretion from rainbow trout
274 macrophages, there for in innate immunity (Roher *et al.* 2011). *Glutaminase kidney isoform,*
275 *mitochondrial-like (gls)* was also found on *Omy29*, which family proteins, generally forms a
276 part of enzymes that plays a role in nucleotide, amino acid and urea biosynthesis (Kumada *et*
277 *al.* 1993).

278 On *Omy27* we found genes related with innate immune response regulation, *NF- κ B*
279 activation by *TNF α* , and some molecules related with metabolic process and apoptosis.
280 However, the SNP explaining the highest proportion of genetic variance is located within an
281 exon of the gene *Smoothelin protein 2 (Smtnl2)* which remains poorly characterized both in
282 humans and fishes, but it is believed that participates in actin cytoskeleton organization.

283 The complete list of genes located within the 1Mb window flanking the SNPs
284 explaining the highest proportion of genetic variance, within each genomic region associated
285 with resistance to *P. salmonis*, is shown in Table S1.

286

287 DISCUSSION

288 In the current study we show significant genetic variation for resistance to *P. salmonis*
289 in a farmed rainbow trout population. A moderate to high heritability was estimated for
290 resistance as TD (0.48) and BS (0.34). These estimates are higher than those reported in
291 previous studies carried out for resistance to other bacterial diseases in aquaculture species,
292 with heritabilities ranging from 0.22 to 0.38 (Ødegård *et al.* 2006; Palaiokostas *et al.* 2016;
293 Vallejo, *et al.* 2017b). In the case of *P. salmonis* resistance, several studies have evaluated
294 the presence of genetic variation in different salmonid species. Thus, similar estimates have

295 been shown for Atlantic salmon, when using pedigree or genomic data, with values ranging
296 from 0.19 to 0.39 (Yáñez *et al.* 2013; Yáñez, *et al.* 2014b; Correa *et al.* 2015; Bangera *et al.*
297 2017). In the case of coho salmon, heritability estimates range from 0.16 to 0.27 when
298 resistance is defined as a linear or binary trait (Yáñez, *et al.* 2016a; Barría, *et al.* 2018).

299 Recent studies in rainbow trout, using different pedigree and genome-based genetic
300 evaluation approaches, estimate heritabilities ranging from 0.39 to 0.57 for TD and from 0.54
301 to 0.62 for BS (Yoshida, *et al.* 2018a); values which are within the range of our estimations.
302 Moreover, our results suggest a higher effect of the additive genetic component on the
303 phenotypic variance for resistance to *P. salmonis* in rainbow trout when compared to *S. salar*
304 and *O. kisutch*, which would imply potentially faster genetic progress for the improvement
305 of resistance to *P. salmonis* by means of artificial selection in the rainbow trout population
306 used in the present study.

307 The effect of the genetic architecture of a trait (among other variables) on the accuracy
308 of breeding values obtained through genomic selection (GS) is widely known (Daetwyler *et*
309 *al.* 2008; Goddard 2009). Previous studies in salmonid species (Atlantic salmon and coho
310 salmon), suggest that resistance to *P. salmonis* is a polygenic trait (Correa *et al.* 2015; Barría,
311 *et al.* 2018). Based on the 26K SNPs which passed QC, our study similarly suggests a
312 polygenic nature for resistance to *P. salmonis* resistance in rainbow trout (*i.e.* no QTL
313 explaining $\geq 10\%$ of the genetic variance). Thus, it is expected that, when compared with a
314 pedigree-based Best Linear Unbiased Predictor (BLUP) method, a genomic BLUP approach
315 for GS would have an increase in accuracy of breeding values over a Bayesian approach
316 (Habier *et al.* 2007; Hayes *et al.* 2009) for the current rainbow trout population. Nonetheless,
317 as predicted by Yoshida, *et al.* (2018b) this was true only at low SNP densities (*i.e.* 0.5 to 10
318 K). When 20K and 27K were used, Bayes C outperformed GBLUP accuracies. The authors

319 suggested that this could be due to an oligogenic architecture of the resistance trait, or that
320 Bayes C had higher effectiveness in capturing the linkage disequilibrium between the SNPs
321 and a QTL when more SNPs were used.

322 Resistance to bacterial infections implies a modulation of the host immune response
323 to inhibit or reduce the replication rate of the pathogen (Doeschl-Wilson and Kyriazakis
324 2012). The infection process carried out by *P. salmonis* uses clathrin for internalization and
325 then the actin cytoskeleton for vacuole generation (Ramírez *et al.* 2015). Similar pathways
326 have been observed in other mammalian intracellular gram-negative bacteria (Manon *et al.*
327 2012; Valencia-gallardo *et al.* 2015). Within the region associated with TD on *Omy3* we
328 identified a gene coding for the receptor DC-SIGN related with the immune response and
329 expressed on macrophage and dendritic-cell surfaces (Ahmed *et al.* 2015). It has been
330 previously described that *Mycobacterium tuberculosis*, interferes with the Toll-like receptor
331 signaling by DC-SIGN, inhibiting interleukin-12 production (Gorvel *et al.* 2014), a
332 proinflammatory cytokine, which plays a key role in the performance of phagocytes in teleost
333 fish (Alvarez *et al.* 2016).

334 As mentioned before, endocytosis mediated by clathrin is the main pathway used by
335 *P. salmonis* for cell invasion. Clathrin recruits, among other cell components, AP-2; which
336 is regulated by NECAP-1 (Ritter *et al.* 2013), a gene flanking the SNP explaining the highest
337 proportion of genetic variance in *Omy3* for resistance measured as TD. Similarly, on this
338 chromosome we also found the gene *glutathione S-transferase kappa 1* (*gstk1*) (GTS), which
339 is member of the glutathione S-transferase family (GST), involved in cellular detoxification,
340 and expressed in cells to reduce oxidative stress-related damage (Morel and Aninat 2011), a
341 consequence of *P. salmonis* infection (Rozas and Enríquez 2014), and differentially
342 expressed in Atlantic salmon after *P. salmonis* exposure (Rise *et al.* 2004). A candidate gene

343 related to resistance as measured by BS, was found on *Omy5*, the *fas ligand* gene (*faslg*) is a
344 member of the TNF superfamily. The Fas/FasL pathway is essential for immune system
345 regulation, including apoptosis induced by T cell activation and by cytotoxic T lymphocytes
346 (Siegel *et al.* 2000).

347 For both resistance trait definitions, the same chromosome and identical SNP was
348 identified as the marker explaining the highest genetic variation for resistance, which makes
349 this QTL as an interesting region in rainbow trout. Within this region we found the gene
350 *phosphatidylinositol transfer protein alpha* (*pitpna*), which belongs to the
351 phosphatidylinositol family (ptdlns) (Piscatelli *et al.* 2016), and is responsible for
352 phospholipid transfer between cellular membranes (Thornbrough *et al.* 2016), which in turn
353 are regulators of cell signal transduction, membrane trafficking and cytoskeleton
354 organization (Hilbi and Haas 2012). The latter process is affected by *P. salmonis* once inside
355 the macrophages (Ramírez *et al.* 2015). Similar to *P. salmonis*, *Legionella pneumophila* also
356 replicates inside macrophages, and manipulates the vesicle generation inside the cell by
357 joining with ptdlns 5 (Hilbi and Haas 2012).

358 Additionally, in this region we found the gene *nlr family card domain containing 3*
359 (*nlrc3*). Previously, Álvarez *et al.* (2017), described a higher differential expression of *nlrc3*
360 in rainbow trout in response to bacterial lipopolysaccharides (lps), specifically in the skin,
361 liver and gills. This pattern has also been observed in Atlantic salmon during an infection
362 with *P. salmonis* (Tacchi *et al.* 2011), and is therefore a likely mechanism used by this
363 bacteria to evade the immune response.

364 The gene *tapsain* (*tap*) is also involved in the immune response, transporting cytosolic
365 peptides generated by the proteasome to load on MHC class I (Prockro *et al.* 2005). On

366 *Omy27*, we found a gene that encodes a protein related to tapsain (TAPBPR), which
367 negatively regulates *tap*; generating a reduction in immune response efficiency (Boyle *et al.*
368 2013).

369 We expect that in the near future, the identification and validation of causative
370 mutations affecting some of the candidate genes presented here, by means of functional
371 studies, will provide a better understanding of resistance against this and other infectious
372 diseases in rainbow trout and other salmonid species. These studies will be facilitated through
373 international collaborative initiatives such as the Functional Annotation of All Salmonid
374 Genomes, FAASG (Macqueen *et al.* 2017).

375

376 CONCLUSIONS

377 To the best of our knowledge this is the first report identifying candidate genes related
378 to resistance to *P. salmonis* in a farmed rainbow trout population. Genes likely related with
379 resistance were identified close to SNPs explaining the highest proportion of genetic
380 variance. Furthermore, we identified the same genomic region associated with resistance
381 using both a linear and binary trait. Our results show that this trait is controlled by multiple
382 genes each with a small effect. Therefore, a genomic selection approach is suggested as the
383 best method to improve this trait by means of artificial selection.

384

385

386 ACKNOWLEDGMENTS

387 We would like to thank Aguas Claras S.A. for providing funding for the experimental
388 challenge and fish used in this study. This work was also partially funded by the grant

389 CORFO Innova-Chile (11IEI-12843) and FONDEF NEWTON-PICARTE (IT14I10100),
390 funded by CONICYT (Government of Chile) and the Newton Fund - The British Council
391 (Government of United Kingdom). JMY is supported by Núcleo Milenio INVASAL funded
392 by Chile's government program, Iniciativa Científica Milenio from Ministerio de Economía,
393 Fomento y Turismo.

394

395 AUTHORS' CONTRBUTIONS

396 RM-N assessed the GWAS analyses, genes identification and contributed with discussion.
397 AB wrote the initial version of the manuscript and contributed with discussion. PC
398 contributed with discussion. MEL contributed with initial analysis. LB performed DNA
399 extraction. JPL contributed with study design. JMY conceived and designed the study and
400 supervised the work of RM-N. All authors reviewed and approved the manuscript.

401

402 Animal ethics approval

403 Experimental challenge was approved by the Comité de Bioética Animal from University of
404 Chile (Certificate Number 17041-VET-UCH)

405

406 References

407 Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta *et al.*, 2010 Hot topic: A
408 unified approach to utilize phenotypic, full pedigree, and genomic information for
409 genetic evaluation of Holstein final score. *J. Dairy Sci.* 93: 743–752.

410 Ahmed, Z., T. Kawamura, S. Shimada, and V. Piguet, 2015 The Role of Human Dendritic
411 Cells in HIV-1 Infection. *J. Invest. Dermatol.* 135: 1225–1233.

412 Alvarez, C., F. A. Gomez, L. Mercado, R. Ramirez, and H. Marshall, 2016 *Piscirickettsia*

413 salmonis Imbalances the Innate Immune Response to Succeed in a Productive
414 Infection in a Salmonid Cell Line Model. PLoS One 11: 1–14.

415 Álvarez, C. A., F. Ramírez-cepeda, P. Santana, E. Torres, J. Cortés *et al.*, 2017 Insights into
416 the diversity of NOD-like receptors : Identification and expression analysis of NLRC3
417 , NLRC5 and NLRX1 in rainbow trout. Mol. Immunol. 87: 102–113.

418 Bangera, R., K. Correa, J. P. Lhorente, R. Figueroa, and J. M. Yáñez, 2017 Genomic
419 predictions can accelerate selection for resistance against *Piscirickettsia salmonis* in
420 Atlantic salmon (*Salmo salar*). BMC Genomics 18: 121.

421 Barría, A., K. A. Christensen, G. M. Yoshida, K. Correa, A. Jedlicki *et al.*, 2018 Genomic
422 predictions and genome-wide association study of resistance against *Piscirickettsia*
423 *salmonis* in coho salmon (*Oncorhynchus kisutch*) using ddRAD sequencing. G3
424 Genes Genomes Genet. 4231: g3.200053.2018.

425 Bishop, S. C., and J. A. Woolliams, 2014 Genomics and disease resistance studies in
426 livestock. Livest. Sci. 166: 190–198.

427 Boyle, L. H., C. Hermann, J. M. Boname, K. M. Porter, P. A. Patel *et al.*, 2013 Tapasin-
428 related protein TAPBPR is an additional component of the MHC class I presentation
429 pathway. Proc. Natl. Acad. Sci. 110: 3465–3470.

430 Camussetti, M., A. Gallardo, D. Aguilar, and J. Larenas, 2015 Análisis de los costos por la
431 utilización de quimioterápicos y vacunas en la salmonicultura. Salmonexpert 4: 46–49.

432 Correa, K., R. Bangera, R. Figueroa, J. P. Lhorente, and J. M. Yáñez, 2017 The use of
433 genomic information increases the accuracy of breeding value predictions for sea
434 louse (*Caligus rogercresseyi*) resistance in Atlantic salmon (*Salmo salar*). Genet. Sel.
435 Evol. 49: 15.

436 Correa, K., J. Lhorente, M. Lopez, L. Bassini, S. Naswa *et al.*, 2015 Genome-wide

437 association analysis reveals loci associated with resistance against *Piscirickettsia*
438 *salmonis* in two Atlantic salmon (*Salmo salar* L.) chromosomes. *BMC Genomics* 16:
439 854.

440 Cvitanich, J., O. Garate, and C. E. Smith, 1991 The isolation of a rickettsia-like organism
441 causing disease and mortality in Chilean salmonids and its confirmation by Koch's
442 postulate. *J. Fish Dis.* 14: 121–146.

443 Daetwyler, H. D., B. Villanueva, and J. A. Woolliams, 2008 Accuracy of Predicting the
444 Genetic Risk of Disease Using a Genome-Wide Approach. *PlosOne* 3:.

445 Doeschl-Wilson, A. B., and I. Kyriazakis, 2012 Should we aim for genetic improvement in
446 host resistance or tolerance to infectious pathogens? *Front. Genet.* 3: 1–2.

447 Falconer, D. S., and T. F. C. Mackay, 1996 *Quantitative Genetics*.

448 Flores-mara, R., F. H. Rodríguez, R. Bangera, J. P. Lhorente, R. Neira *et al.*, 2017
449 Resistance against infectious pancreatic necrosis exhibits significant genetic variation
450 and is not genetically correlated with harvest weight in rainbow trout (*Oncorhynchus*
451 *mykiss*). *Aquaculture* 479: 155–160.

452 Fryer, J. L., and R. P. Hedrick, 2003 *Piscirickettsia salmonis* : a Gram-negative intracellular
453 bacterial pathogen of fish. *J. Fish Dis.* 247: 251–262.

454 Goddard, M., 2009 Genomic selection: Prediction of accuracy and maximisation of long
455 term response. *Genetica* 136: 245–257.

456 Gorvel, L., J. Textoris, R. Banchereau, A. Ben Amara, W. Tantibhedhyangkul *et al.*, 2014
457 Intracellular Bacteria Interfere with Dendritic Cell Functions : Role of the Type I
458 Interferon Pathway. *PLoS One* 9: 1–11.

459 Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact of genetic relationship
460 information on genome-assisted breeding values. *Genetics* 177: 2389–2397.

461 Hayes, B. J., P. M. Visscher, and M. E. Goddard, 2009 Increased accuracy of artificial
462 selection by using the realized relationship matrix. *Genet. Res. (Camb)*. 91: 47–60.

463 Hilbi, H., and A. Haas, 2012 Secretive Bacterial Pathogens and the Secretory Pathway.
464 *Traffic* 13: 1187–1197.

465 Houston, R. D., J. B. Taggart, T. Cézard, M. Bekaert, N. R. Lowe *et al.*, 2014 Development
466 and validation of a high density SNP genotyping array for Atlantic salmon (*Salmo*
467 *salar*). *BMC Genomics* 15: 90.

468 Kaur, H., L. Jaso-Friedmann, and D. L. Evans, 2004 Single base oligodeoxyguanosine
469 upregulates Fas ligand release by nonspecific cytotoxic cells. *Developmental and*
470 *Comparative Immunology* 28: 571-579.

471 Kumada, Y., D. R. Benson, D. Hillemann, T. J. Hosted, D. A. Rochefort and C. J.
472 Thompson, 1993 Evolution of the glutamine synthetase gene, one of the oldest
473 existing and functioning genes. *Proc. Natl. Acad. Sci.* 90: 3009-3013.

474 Liu, S., R. L. Vallejo, Y. Palti, G. Gao, D. P. Marancik *et al.*, 2015 Identification of single
475 nucleotide polymorphism markers associated with bacterial cold water disease
476 resistance and spleen size in rainbow trout. *Front. Genet.* 6: 1–10.

477 Macqueen, D. J., C. R. Primmer, R. D. Houston, B. F. Nowak, L. Bernatchez *et al.*, 2017
478 Functional Annotation of All Salmonid Genomes (FAASG): an international
479 initiative supporting future salmonid research , conservation and aquaculture. *BMC*
480 *Genomics* 18: 1–9.

481 Manon, R., N. Abed, F. Namdari, I. Virlogeux-Payant, P. Velge *et al.*, 2012 The different
482 strategies used by *Salmonella* to invade host cells, pp. 339–364 in *Salmonella –*
483 *Distribution, Adaptation, Control Measures and Molecular Technologies*,.

484 Misztal, I., S. Tsuruta, D. Loureco, Y. Masuda, I. Aguilar *et al.*, 2016 Manual for

485 BLUPF90 family of programs. 125.

486 Morel, F., and C. Aninat, 2011 The glutathione transferase kappa family. *Drug Metab. Rev.*
487 43: 281–291.

488 Neto, R., G. M. Yoshida, J. Paul, L. José, and M. Yáñez, 2019 Genome-wide association
489 analysis for body weight identifies candidate genes related to development and
490 metabolism in rainbow trout (*Oncorhynchus mykiss*). *Mol. Genet. Genomics.*

491 Ødegård, J., T. Moen, N. Santi, S. A. Korsvoll, S. Kjøglum *et al.*, 2014 Genomic prediction
492 in an admixed population of Atlantic salmon (*Salmo salar*). *Front. Genet.* 5: 1–8.

493 Ødegård, J., I. Olesen, B. Gjerde, and G. Klemetsdal, 2006 Evaluation of statistical models
494 for genetic analysis of challenge test data on furunculosis resistance in Atlantic salmon
495 (*Salmo salar*): Prediction of field survival. *Aquaculture* 259: 116–123.

496 Oruc, E.O., Y. Sevgiler, and N. Uner, 2004 Tissue-specific oxidative stress response in fish
497 exposed to 2,4-D and azinphosmethyl. *Comparative Biochem. Physiol. Part C*, 137:
498 43–51.

499 Palaiokostas, C., S. Ferarreso, R. Franch, R. D. Houston, and L. Bargelloni, 2016 Genomic
500 prediction of resistance to pasteurellosis in gilthead sea bream (*Sparus aurata*) using
501 2b-RAD sequencing. *G3 Genes Genomes Genet.* X: 1–8.

502 Palti, Y., 2011 Toll-like receptors in bony fish : From genomics to function. *Dev. Comp.*
503 *Immunol.* 35: 1263–1272.

504 Palti, Y., G. Gao, S. Liu, M. P. Kent, S. Lien *et al.*, 2015b The development and
505 characterization of a 57K single nucleotide polymorphism array for rainbow trout.
506 *Mol. Ecol. Resour.* 15: 662–672.

507 Palti, Y., R. L. Vallejo, G. Gao, S. Liu, A. G. Hernandez *et al.*, 2015a Detection and
508 Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow

509 Trout Using Restriction-Site Associated DNA Sequencing. PLoS One 10: e0138435.

510 Piscatelli, H. L., M. Li, and D. Zhou, 2016 Dual 4- and 5-phosphatase activities regulate
511 SopB-dependent phosphoinositide dynamics to promote bacterial entry. Cell.
512 Microbiol. 18: 705–719.

513 Prock, E., G. Raghuraman, D. Wiley, M. Raghavan, and R. Gaudet, 2005 Identification of
514 domain boundaries within the N-termini of TAP1 and TAP2 and their importance in
515 tapasin binding and tapasin-mediated increase in peptide loading of MHC class I.
516 Immunol. Cell Biol. 83: 475–482.

517 Purcell, S., B. Neale, K. Todd-brown, L. Thomas, M. A. R. Ferreira *et al.*, 2007 PLINK : A
518 Tool Set for Whole-Genome Association and Population-Based Linkage Analyses.
519 Am. J. Hum. Genet. 81: 559–575.

520 Ramírez, R., F. A. Gómez, and S. H. Marshall, 2015 The infection process of *Piscirickettsia*
521 *salmonis* in fish macrophages is dependent upon interaction with host-cell clathrin and
522 actin. FEMS Microbiol. Lett. 362: 1–8.

523 Rise, M. L., S. R. M. Jones, G. D. Brown, K. R. von Schalburg, W. S. Davidson *et al.*, 2004
524 Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage
525 and hematopoietic kidney response to *Piscirickettsia salmonis* infection. Physiol.
526 Genomics 20: 21–35.

527 Ritter, B., S. Murphy, H. Dokainish, M. Girard, M. V Gudheti *et al.*, 2013 NECAP 1
528 Regulates AP-2 Interactions to Control Vesicle Size , Number , and Cargo During
529 Clathrin-Mediated Endocytosis. PLoS One 11: e1001670.

530 Rodríguez, F. H., G. Cáceres, J. P. Lhorente, S. Newman, R. Bangera *et al.*, 2018 Genetic ()
531 co) variation in skin pigmentation patterns and growth in rainbow trout. Animals 1–8.

532 Roher, N., A. Callol, J. V. Planas, F. W. Goetz and S. A. Mackenzie, 2011 Endotoxin

533 recognition in fish results in inflammatory cytokine secretion not gene expression.

534 Innate Immunity 17(1): 16-28.

535 Rozas, M., and R. Enríquez, 2014 Piscirickettsiosis and *Piscirickettsia salmonis* in fish: a
536 review. J. Fish Dis. 37: 163–188.

537 Rozas-Serri M., A. Peña, L. Maldonado, 2017 Transcriptomic profiles of post-smolt
538 Atlantic salmon challenged with *Piscirickettsia salmonis* reveal a strategy to evade the
539 adaptive immune response and modify cell-autonomous immunity. Developmental
540 and Comparative Immunology 81: 348-362.

541 Sernapesca, 2018 Informe Sanitario de Salmonicultura en Centros Marinos.

542 Siegel, R. M., F. K. Chan, H. J. Chun, and M. J. Lenardo, 2000 The multifaceted role of
543 Fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol. 1: 469–
544 474.

545 Tacchi, L., J. E. Bron, J. B. Taggart, C. J. Secombes, R. Bickerdike *et al.*, 2011 Multiple
546 tissue transcriptomic responses to *Piscirickettsia salmonis* in Atlantic salmon (*Salmo*
547 *salar*). Physiol. Genomics 43: 1241–1254.

548 Teitel, M. A., 2003 OCA-B regulation of B-cell development and function. Trends
549 Immunol. 24: 546–553.

550 Thornbrough, J. M., A. Gopinath, T. Hundley, and M. J. Worley, 2016 Human Genome-
551 Wide RNAi Screen for Host Factors That Facilitate *Salmonella* Invasion Reveals a
552 Role for Potassium Secretion in Promoting Internalization. PlosOne 11: e0166916.

553 Tsai, H.-Y., A. Hamilton, A. E. Tinch, D. R. Guy, J. E. Bron *et al.*, 2016 Genomic
554 prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet.
555 Sel. Evol. 48: 47.

556 Valencia-gallardo, C. M., N. Carayol, and G. T. Van Nhieu, 2015 Microreview

557 Cytoskeletal mechanics during *Shigella* invasion and dissemination in epithelial cells.

558 *Cell. Microbiol.* 17: 174–182.

559 Vallejo, R. L., T. D. Leeds, B. O. Fragomeni, G. Gao, A. G. Hernandez *et al.*, 2016

560 Evaluation of genome-enabled selection for bacterial cold water disease resistance

561 using progeny performance data in rainbow trout: Insights on genotyping methods and

562 genomic prediction models. *Front. Genet.* 7: 1–13.

563 Vallejo, R. L., T. D. Leeds, G. Gao, J. E. Parsons, K. E. Martin *et al.*, 2017a Genomic

564 selection models double the accuracy of predicted breeding values for bacterial cold

565 water disease resistance compared to a traditional pedigree-based model in rainbow

566 trout aquaculture. *Genet. Sel. Evol.* 49: 17.

567 Vallejo, R., S. Liu, G. Gao, B. O. Fragomeni, A. G. Hernandez *et al.*, 2017b Similar genetic

568 architecture with shared and unique quantitative trait loci for bacterial cold water

569 disease resistance in two rainbow trout breeding populations. *Front. Genet.* 8: 1–15.

570 Wang, T., J. W. Holland, N. Bols, and C. J. Secombes, 2005 Cloning and expression of the

571 first nonmammalian interleukin-11 gene in rainbow trout *Oncorhynchus mykiss*.

572 *FEBS J.* 272(5): 1136–47.

573 Wang, H., I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir, 2012 Genome-wide

574 association mapping including phenotypes from relatives without genotypes. *Genet.*

575 *Res. (Camb).* 94: 73–83.

576 Yañez, J. M., R. Bangera, J. P. Lhorente, A. Barria, M. Oyarzun *et al.*, 2016 Negative

577 genetic correlation between resistance against *Piscirickettsia salmonis* and harvest

578 weight in coho salmon (*Oncorhynchus kisutch*). *Aquaculture* 459: 8–13.

579 Yañez, J. M., R. Bangera, J. P. Lhorente, M. Oyarzún, and R. Neira, 2013 Quantitative

580 genetic variation of resistance against *Piscirickettsia salmonis* in Atlantic salmon

581 (Salmo salar). *Aquaculture* 414–415: 155–159.

582 Yañez, J. M., R. D. Houston, and S. Newman, 2014 Genetics and genomics of disease
583 resistance in salmonid species. *Front. Genet.* 5: 1–13.

584 Yañez, J. M., J. P. Lhorente, L. N. Bassini, M. Oyarzún, R. Neira *et al.*, 2014 Genetic co-
585 variation between resistance against both *Caligus rogercresseyi* and *Piscirickettsia*
586 *salmonis*, and body weight in Atlantic salmon (Salmo salar). *Aquaculture* 433: 295–
587 298.

588 Yañez, J. M., and V. Martinez, 2010 Genetic factors involved in resistance to infectious
589 diseases in salmonids and their application in breeding programmes. *Arch. Med. Vet.*
590 42: 1–13.

591 Yañez, J. M., S. Naswa, M. E. Lopez, L. Bassini, K. Correa *et al.*, 2016 Genomewide
592 single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation
593 in wild and farmed American and European populations. *Mol. Ecol. Resour.* 16:
594 1002–1011.

595 Yáñez, J., S. Newman, and R. D. Houston, 2015 Genomics in aquaculture to better
596 understand species biology and accelerate genetic progress. *Front. Genet.* 6: 1–3.

597 Yoshida, G. M., R. Bangera, R. Carvalheiro, K. Correa, R. Figueroa *et al.*, 2018a Genomic
598 prediction accuracy for resistance against *Piscirickettsia salmonis* in farmed rainbow
599 trout. *G3 Genes Genomes Genet.* 8: 719–726.

600 Yoshida, G. M., R. Carvalheiro, F. H. Rodríguez, and J. P. Lhorente, 2018b Genomics
601 Single-step genomic evaluation improves accuracy of breeding value predictions for
602 resistance to infectious pancreatic necrosis virus in rainbow trout. *Genomics* 1–6.

603 Zheng, W., Y. Hu, M. Zhang, L. Sun, 2010 Analysis of the expression and antioxidative
604 property of a peroxiredoxin 6 from *Scophthalmus maximus*. *Fish & Shellfish*

605 Immunology 29: 305-311.

606 Zuo, W., and P. T. K. Woo, 1997 Natural anti-proteases in rainbow trout, *Oncorhynchus*
607 mykiss and brook charr, *Salvelinus fontinalis* and the in vitro neutralization of fish
608 alpha 2-macroglobulin by the metalloprotease from the pathogenic haemoflagellate,
609 *Cryptobia salmositica*. *Parasitology* 114: 375–81.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630 **Table 1.** Summary statistics for time to death (TD), binary survival (BS) and final weight
631 (FW) measured in 2,130 rainbow trout individuals.

Trait	Mean	SD	CV(%)	Min	Max
TD	23.26	7.86	33.27	10	32
BS	0.59	0.49	0.83	0	1
FW	173.80	52.27	30.07	46.10	448

632

633

634 **Table 2.** Genetic parameters and heritabilities for resistance to *Piscirickettsia salmonis* as
635 time to death (TD) and binary survival (BS).

Trait	σ_a^2 ^a	σ_e^2 ^b	h^2 (SD) ^c
TD	25.95	28.92	0.48(0.04)
BS	6.27x10 ⁻²	1.21x10 ⁻¹	0.34(0.04)

636 ^a Additive genetic variance

637 ^b Residual variance

638 ^c Heritability and standard deviation

639

640

641

642

643

644

645

646 **Table 3.** Top markers associated with *Piscirickettsia salmonis* resistance defined as TD and
647 BS in rainbow trout, using ssGWAS,

Ranking	Name	Chr ^a	Pos (Bp)	PGV ^b	Genes ^c
Time to death					
1	Affx-88923370	27	9998276	2.43	<i>usp2, nlrc3, tap, pitpna</i>
2	Affx-88916453	3	14818380	1.41	<i>stl2, aicda, il11, gstk1</i>
3	Affx-88922612	14	10975036	1.21	<i>tlr4, tax1bp1, satb1</i>
4	Affx-88927397	24	11828385	1.02	<i>a2m, pou2af1, nfkbiz</i>
Binary survival					
1	Affx-88923370	27	9998276	1.50	<i>usp2, nlrc3, tap, pitpna</i>
2	Affx-88951679	5	68055053	1.12	<i>faslg, prdx6, plpp6</i>
3	Affx-88908715	29	32519588	1.01	<i>mapk12, gls</i>

648 ^a Chromosome.


649 ^b Percentage of genetic variance.

650 ^c Summary of the genes located within 1Mb window.

651

652

653

654

655 **Figure 1.** Genomic association analysis for resistance to *Piscirickettsia salmonis* in
656 rainbow trout (*Oncorhynchus mykiss*). Resistance was defined as time to death (A) and as
657 binary survival (B).