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Bisulfite amplicon sequencing has become the primary choice
for single-base methylation quantification of multiple targets
in parallel. The main limitation of this technology is a
preferential amplification of an allele and strand in the PCR
due to methylation state. This effect, known as “PCR bias”,
causes inaccurate estimation of the methylation levels and
calibration methods based on standard controls have been
proposed to correct for it. Here, we present a Bayesian
calibration tool, MethylCal, which can analyse jointly all
CpGs within a DMR or CpG island, avoiding “one-at-a-time”
CpG calibration. This enables more precise modeling of
the methylation levels observed in the standard controls. It
also provides accurate predictions of the methylation levels
not considered in the controlled experiment, a feature that
is paramount in the derivation of the corrected methylation
degree. We tested the proposed method on eight independent
assays (two CpG islands and six imprinting DMRs) and
demonstrated its benefits, including the ability to detect outliers.
We also evaluated MethylCal’s calibration in two practical
cases, a clinical diagnostic test on 18 patients potentially
affected by Beckwith-Wiedemann syndrome, and 17 individuals
with celiac disease. The calibration of the methylation levels
obtained by MethylCal allows a clearer identification of patients
undergoing loss or gain of methylation in borderline cases
and could influence further clinical or treatment decisions.
MethylCal is availability as an R package on https://github.com/
lb664/MethylCal.
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Introduction

DNA methylation is an epigenetic mark associated with a
broad range of disorders including cancer (1), autoimmunity
(2), aging (3) and imprinting (4). This mechanism implies
the addition of a methyl group to the 5’-carbon of cytosine
in a CpG dinucleotide to form 5-methylcytosine (5-mC)
(5). Modifications in DNA methylation could affect gene

expression as reported in several types of diseases (6–9).
To validate epigenome associations, identify region of

interest or clinically relevant biomarkers and create new
diagnostic tests, it is crucial to develop fast, cheap and
accurate DNA methylation assays (10). In this sense, bisulfite
amplicon sequencing is an ideal choice for its capacity
to analyse multiple targets in parallel with high accuracy,
concordance and low cost (11). However, this method
critically requires the amplification of bisulfite converted
DNA for the discrimination between un-methylated and
methylated cytosines. The bisulfite conversion consists in
the modification of un-methylated cytosines on uracil (U)
maintaining methylated cytosines as cytosines (C). The result
of the conversion is a single strand fragmented DNA no
longer complemented. If there is a preferential amplification
of an allele and strand in the PCR, this effect is called
“PCR bias” (12). In order to obtain accurate results, it is
important to minimize its effect as much as possible. To this
end, investigators (13, 14) have proposed to redesign primers
by looking at strand-specific as well as bisulfite-specific
flanking primers, but this solution is expensive and time
consuming and might not solve the problem completely.
Instead, PCR bias can be calculated and corrected in silico
(12, 15) by using standard controls with known methylation
levels. Specifically, the best-fit hyperbolic (12) and cubic
polynomial (15) curve obtained from the apparent level of
methylation after PCR in standard controls is used to correct
the observed methylation levels in the case and control
samples.

In this work, we propose a new Bayesian calibration
method that overcomes the limitations of the existing tools.
In particular, our method analyses jointly all CpGs within
a CpG island (CGI) or a Differentially Methylated Region
(DMR), avoiding “one-at-a-time” CpG calibration or the
calibration of the average methylation level across CpGs that
neglects the variability across CpGs (15, 16). To test the
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CGI/DMR Position (hg19) Amplicon No. of Primer name Primer sequencessymbol length, bp CpGs

SDHC CpG:17 chr1:161283846-161284062 217 11 SDHC17_F 5’-TGYGAAGTTTTTAAGGAAGAATTTAAATAAG-3’
SDHC17_R 5’-RCTCAACTCTACCTAACTAATTTAC-3’

SDHC CpG:27 chr1:161284062-161284311 250 16 SDHC27_F 5’-GYGGAGAAGTTTTAGAGTTTTTTAAAGAG-3’
SDHC27_R 5’-AAACACAAAATAAACAATTATCAACAAAAC-3’

PLAGL1:alt-TSS-DMR chr6:144329490-144329722 232 28 PLAGL1_F 5’-GYGGTAGTTAAGAGGATGGTTG-3’
PLAGL1_R 5’-CCTAAACRACCTTAACTTTACCCC-3’

GRB10:alt-TSS-DMR chr7:50849242-50849440 198 8 GRB10_F 5’-AGATATTTAYGTTTTTTTTTATTGGGTTAGG-3’
GRB10_R 5’-AACAATCRAATCACCTATTCCAC-3’

MEST:alt-TSS-DMR chr7:130131671-130131913 242 5 MEST_F 5’-ATTAGGGGAGGGTTTTTGTAGTAG-3’
MEST_R 5’-ACCRCCATAACCACAAAAATAAAATAC-3’

H19/IGF2:IG-DMR chr11:2019495-2019709 214 12 H19_F 5’-GATTTTAYGTTTTTGGAGAGTAGGG-3’
H19_R 5’-AACATACRATCTTCAAACAAAAAAATAACC-3’

KCNQ1OT1:TSS-DMR chr11:2721402-2721616 214 17 KvDMR1_F 5’-ATGTTATTYGGGTTTAGATTGGTTTAG-3’
KvDMR1_R 5’-CACCCCRAAATAATAAACACATCAC-3’

MEG3:TSS-DMR chr14:101293752-101293975 223 11 MEG3_F 5’-TYGTTTATTTAAGAGGGAATAGTTTTGAG-3’
MEG3_R 5’-ACRATAACCCCTCACTAACCTTATC-3’

Table 1. Sequences of the PCR primers used in this study (TSS for transcription start site, IG for intergenic, and alt-TSS for alternative transcription start site). For easy of
notation, in the main text, tables and figures’ caption, and supplementary material, we refer only to the gene name instead of the CGI/DMR symbol.

proposed method, we designed eight independent assays in
two CGIs located on SDHC gene promoter and six imprinted
DMRs, see Table 1 for details. After genomic DNA bisulfite
conversion, each target region was amplified by specific
primers, and specific amplicons were sequenced on MiSeq.
Each assay was run on five standard controls with known
methylation percentages (0%, 25%, 50%, 75% and 100%) to
determine the specific calibration curve through MethylCal.
Compared to existing calibration tools (12, 15), our method is
able to capture with precision the variability of the apparent
level of methylation observed after amplification at different
actual methylation percentages. We demonstrate this feature
and the benefits of our method when deriving the calibration
curves in all the assays analysed.

When applied to a data set consisting of 18 patients
potentially affected by Beckwith-Wiedemann syndrome
(BWS) (17), the calibration curves obtained by our new
method permit a more precise correction of the observed
levels of methylation in two target regions (KCNQ1OT1
and H19/IGF2) with a clearer identification of patients
undergoing loss or gain of methylation. We also validated
MethylCal in a second data set regarding patients with celiac
disease (16, 18). Our method achieved better calibrations and
more reliable corrections of the methylation levels in three
target regions that have been associated with susceptibility
to celiac disease. These features are important in clinical
practice, since the accurate calibration of the methylation
levels obtained by more sophisticated statistical methods
could influence treatment decisions or further actions.

MATERIALS AND METHODS

Samples
For standard controls, we used Human methylated and
non-methylated DNA set from Zymo (Zymo, CA, USA).
The non-methylated DNA was purified from HCT116 DKO
cells knockout for both DNA methyltransferases DNMT1
(-/-) and DNMT3b (-/-). The methylated DNA was purified

from the same HCT116 DKO cells and was enzymatically
methylated by M.SssI methyltransferase. Five actual
methylation percentage (0%, 25%, 50%, 75% and 100%)
were prepared mixing different ratios of non-methylated
and methylated human control DNA (Zymo, CA, USA)
bisulphite converted (MethylEdge Bisulfite Conversion
System, Promega). Additionally, we collected DNA
from 18 potential BWS patients and 15 healthy controls.
Genomic DNA was extracted from peripheral blood using
Gentra Puregene Blood Kit (Qiagen) and DNA quality
was determined by Qubit 2.0 (Invitrogen, ThermoFisher).
Appropriate human subject approvals and written inform
consent were obtained from all participants. Bisulphite
conversion of genomic DNA was performed in all samples
at the same time with with MethylEdge Bisulfite Conversion
System from Promega.

PCR amplification

We designed eight assays to quantify the methylation level at
each CpG site in two CGIs located on SDHC gene promoter
and six imprinted DMRs, see Table 1 for details. For the
design of the primers we used Bisulfite Primer Seeker 12S
a tool developed by Zymo (http://bpsbackup.zymoresearch.
com/). The primers parameters were: 20-32 bp primer length,
150-220 bp product length, 55-57°C Tm, allowing 1 CpG in
the first 1/3 of primer, whereas the minimum number of CpGs
per product is 4. All designs were tested for primer dimers
by the Multiple Primer Analyzer software (ThermoFisher).
To allow sequencing through Nextera XT kit (Illumina), we
added overhangs sequences to each primer, forward overhang
5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’
and reverse overhang 5’-GTCTCGTGGGCTCGGAGATGTG
TATAAGAGACAG-3’. All standard controls were bisulfite
converted at the same time and eight specific PCRs were
run at the same time using the same standard controls. To
determine the conversion rate, we examined the conversion of
cytosines on thymidine in non-CpG sites in non-methylated
control DNA (0%) showing a conversion rate higher than
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98% (19, 20). The sequences of the PCR primers used are
listed in Table 1. The PCR reactions were carried out in 25
µl with ZymoTaq Premix (Zymo) using 1.2 µl of bisulphite
converted DNA. The amplification program was 95°C for
10 min, then 40 cycles at 95°C for 30 sec, 58°C for 40
seg and 72°C for 1 min, and elongation step at 72°C for
7 min. PCR products were purified with QIAquick PCR
Purification Kit (Qiagen). To attached dual indices and
Illumina sequencing adapters we performed a second PCR of
the purified products using Nextera XT index kit (Illumina)
following the recommendations of manufacturer’s. The
second PCR was purified with AMPure XP beads (Beckman
Coulter), quantified by Qubit 2.0 (Invitrogen) and normalized
to 4 nM.

Bisulphite sequencing
Fastq files obtained by MiSeq system (Illumina) were
trimmed with cutadapt software (http://cutadapt.readthedocs.
io/en/stable/) using quality (-q 30) and short reads (-m
50) parameters. Trimmed reads were aligned with bismark
software using human reference build hg19 (https://www.
bioinformatics.babraham.ac.uk/projects/bismark/). Finally,
to extract the methylation level per every single cytosine, we
used the tool bismark_methylation_extractor included in the
bismark package.

MethylCal
Model outline. MethylCal is a fully Bayesian mixed
additive regression model. It predicts the apparent level of
methylation observed after amplification based on the actual
methylation percentages (AMP), borrowing information
across all CpGs within a CGI or a DMR. MethylCal’s
regression model can be described as follows

yij = β0 +β1xij +β2x
2
ij +β3x

3
ij + REij + εij , (1)

where yij ∈ [0%,100%] is the apparent level of methylation
after PCR at the ith AMP (i= 1, . . . , l) and the jth CpG (j =
1, . . . ,m), xij is the ith AMP (x1j = 0% and xlj = 100%)
which is constant across CpGs (in our experimental design
0%, 25%, 50%, 75% and 100% actual methylation are the
same for all CpGs) and β0, . . . ,β3 are the coefficients of the
polynomial regression. Finally, εij ∼N(0,σ2).

MethylCal is based on Moskalev’s cubic polynomial
regression (CPR) (15) given its simplicity, flexibility and
effectiveness to calibrate methylation data. However, instead
of fitting a distinct CPR for each CpG, in (1) CpGs are
jointly analysed using all n = l×m observations at once.
The second key feature of our model is the inclusion of the
random-effects REij (i = 1, . . . , l, j = 1, . . . ,m) that capture
distinct effects at each AMP or CpG or a combination of
both. Depending on how REij is defined, different models
can be derived from (1). In the next section, we present
the specification of REij that we found useful in order to
model accurately the apparent level of methylation after PCR
in standard controls.
Random-effects specification. MethylCal includes four
regression models that differ by the specification of the

random-effects REij and the model that fits better the data is
selected by the Deviance Information Criterion (DIC) (21).
The regression models considered in MethylCal are

M1 : yij = β0 +β1xij +β2x
2
ij +β3x

3
ij+

+ AMPi+ εij , (2)

M2 : yij = β0 +β1xij +β2x
2
ij +β3x

3
ij+

+ AMPi+ CpGj + εij , (3)

M3 : yij = β0 +β1xij +β2x
2
ij +β3x

3
ij+

+ AMPi+µj + εij , (4)

M4 : yij = β0 +β1xij +β2x
2
ij +β3x

3
ij+

+ AMPi+ CpGj + CpG∗jxij + εij , (5)

Besides the fixed-effects polynomial regression terms,
in (2) the random-effects AMPi are introduced to model
the variability of the apparent level of methylation after
PCR at different AMPs not explained by the CPR. In
(3) the crossed random-effects (22) CpGj are added to
capture the heterogeneity of the apparent level of methylation
across CpGs. In (4) the latent Gaussian field (LGF)
µ = (µ, . . . ,µm)T (23) replaces the crossed random-effects
CpGj to model the dependence of the apparent levels of
methylation across CpGs. Finally, in (5) the random-slopes
(22) CpG∗j are added to model the larger (smaller) variability
of the apparent level of methylation after PCR across CpGs
at lower (higher) AMPs. The opposite scenario with a
smaller (larger) variability at lower (higher) AMPs is also
considered in (5). For identifiability conditions, in all models
considered, we assume that

∑
iAMPi = 0,

∑
jCpGj = 0

and
∑
jCpG∗j = 0. Supplementary Figure S.1 provides a

schematic representation of MethylCal’s regression models,
highlighting the role of the CPR, the crossed random-effects
AMPi and CpGj , the LGF µ and the combined effect
of the random-intercepts CpG and random-slopes CpG∗ in
predicting the apparent level of methylation after PCR.

Priors set-up. Since MethylCal is a fully Bayesian
model, a prior distribution is specified for each unknown
parameter. The fixed-effects regression coefficients
follow a non-informative normal prior distribution,
β1, . . . ,β4 ∼ N(0,103), whereas for the intercept an
improper prior distribution is used, π(β0) ∝ β−1

0 . The
crossed random-effects AMPi and CpGj follow a normal
distribution, AMPi|τ ∼ N(0, τ−1) and CpGj |υ ∼ N(0,υ−1)
with a non-informative prior precision τ ∼ Gam(1,0.1)
(E(τ) = 10 and Var(τ) = 100) and υ ∼ Gam(1,0.1). For
the LGF, we follow (24) and model µ as a Random Walk
of order 1 (RW1) (25), µj |µj−1,ρj ∼ N(µj−1,ρj),
where ρj = ρ|pj − pj−1| with ρ−1 ∼ Gam(1,0.1)
and pj and pj−1 the chromosomal position of two
consecutive CpGs (with p0 = 0). With this specification
the dependence between methylation levels depends on
the distance between the corresponding CpGs, i.e., the
closer the CpGs, the stronger the dependence. Finally,
for the random-intercepts/slopes model, we specify a
Normal-Wishard prior, (CpGj ,CpG∗j )|Σ∼N2(0,Σ−1), with

Ochoa et al. et al. | MethylCal: Bayesian calibration of methylation levels bioRχiv | 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587519doi: bioRxiv preprint 

http://cutadapt.readthedocs.io/en/stable/
http://cutadapt.readthedocs.io/en/stable/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://doi.org/10.1101/587519
http://creativecommons.org/licenses/by-nc-nd/4.0/


Σ ∼W2(r,R) (E(Σ−1) = R/(r− 3)). The default values
for the Wishart hyperparameters are r = 4 and R = I2. The
prior set-up is completed by the specification of a proper
but relatively uninformative prior on the error variance,
σ2 ∼ InvGam(10−10,0.001).
Advantages of the proposed model. MethylCal has several
advantages compared to existing calibration tools. First,
CpGs are jointly analysed using all n = l×m observations
at once, avoiding unrealistic assumptions of independence of
the methylation levels at nearby CpGs. Second, MethylCal
is more parsimonious with fewer parameters to estimate (five
for the main effects, including the error variance, and l+ 1,
l+m+ 2, and l+ 2m+ 4 random-effects coefficients for
model M1, M2-M3 and M4, respectively, in contrast to
5m coefficients required by Moskalev’s CPR, where m is the
number of CpGs in a DMR or CGI). Combined with a larger
sample size, it allows narrower coefficients credible intervals
and smaller prediction credible intervals, i.e., less model
uncertainty. Third, differently from a simple fixed-effects
model, the specification of different random effects allows
MethylCal to adequately account for the patterns of variances
and correlations of the methylation levels. While in
Moskalev’s method Var(Yij) = σ2

j is constant across AMPs,
MethylCal allows a more complex variance structure. In
modelM1, Var(Yij |σ2, τ) = σ2 + τ−1, where τ−1 models
the variability of the apparent level of methylation after
PCR across AMPs. In modelM2, Var(Yij |σ2, τ,υ) = σ2 +
τ−1 +υ−1 with υ−1 the additional variability of the apparent
level of methylation across CpGs, whereas in model M3,
the RW1 induces the autoregressive variance decomposition
Var(Yij |σ2, τ,ρ) = σ2 + τ−1 + ρ

∑j
h=1 |ph − ph−1|. In

modelM4, Var(Yij |σ2,Σ) = σ2 + τ−1 + Σ−1
11 +x2

ijΣ
−1
22 +

2xijΣ−1
12 with Σ−1

11 , Σ−1
22 and Σ−1

12 the elements of the
covariance matrix Σ−1. Finally, in contrast to Moskalev’
CPR, MethylCal is able to capture the dependence between
the observations and, in particular, the dependence of the
methylation levels across CpGs (26). For instance in model
M4, Cov(Yij ,Yi′j′ |σ2,Σ) = τ−1 + Σ−1

11 + xijxi′j′Σ−1
22 +

(xij + xi′j′)Σ−1
12 with Yij and Yi′j′ the observations from

two distinct AMPs and CpGs and with xij and xi′j′ the
corresponding actual methylation percentages.
Inference. Inference on MethylCal’s parameters is performed
using INLA R package (http://www.r-inla.org/). INLA
is a probabilistic language that performs approximate
Bayesian inference by means of integrated nested Laplace
approximations (27) and numerical integrations. The main
advantage of INLA is its simplicity since a known practical
impediment of Monte Carlo Markov chain methods in real
applications is the large computational burden. Instead,
INLA only requires the specification of the regression model,
similarly to other regression packages in R (https://www.
r-project.org/). A second advantage is its computational
speed since no sampling is required from the posterior
densities. This is particularly important in modelM3 since
LGF posterior inference is rather difficult using Monte Carlo
Markov chain.

Let β = (β0,β1,β2,β3), γ = (σ2, τ,υ,Σ) and µ be the

vector of the fixed effects, the vector of variance components
and the LGF, respectively. Integrating out the random-effects
AMPi, CpGj and CpG∗j , (2)-(5) can be rewritten in a more
compact formulation that encompasses all models considered

yij |β,γ,µ∼ π(yij |β,γ,µ), (6)

µ|ρ∼N(µ(ρ),Q−1(ρ)), (7)
β ∼ π(β), γ ∼ π(γ), ρ∼ π(ρ), (8)

where (6) is the observations equation, (7) is the latent
Gaussian field equation with mean µ(ρ) and sparse precision
matrix Q(ρ) and (8) are the parameters equations. INLA
inferential procedure for MethylCal’s models consists of
three steps:

1. Compute the approximation to the marginal posterior
π(β,γ,ρ|y) and by-product to π(β|y), π(γ|y) and
π(ρ|y);

2. Compute the approximation to π(µj |y,ρ);

3. Combine 1. and 2. above to compute π̂(µj |y) =∫
π̂(µj |y,ρ)π̂(ρ|y)dρ, where π̂(·) is the approximated

density.

Note that steps 2 and 3 are only required for model
M3. Despite the Laplace approximations and numerical
integrations, INLA provides results that are very close to
those obtained by exact MCMC methods. Details about
INLA procedure can be found in (28) and (23).

Given the additive structure of MethylCal, the predictive
values are derived straightforwardly. For example, in model
M3, E(Yij |xij) = E(β|y)xij + E(AMPi|y) + E(µj |y),
E(Yij |xij) ∈ [0%,100%], with xij = (1,x1

ij ,x
2
ij ,x

3
ij)T ,

E(β|y) the posterior mean of the fixed effects, E(AMPi|y)
the posterior mean of the random-effects AMP at the ith
level and E(µj |y) the posterior mean of the LGF at the jth
CpG. Similarly, qα(Yij |xij) = qα(β|y)xij+qα(AMPi|y)+
qα(µj |y), where qα(·) ∈ [0%,100%] is the α% quantile of
the posterior distribution.

Predictive measures
We compare the predictive ability of the MethylCal’s model
selected by the DIC with Moskalev’s CPR. In particular,
we report the following “in-sample” and “out-of-sample”
predictive measures:

• Residual Sum of Squares: RSS =
∑
ij{yij −

E(Yij |x)}2;

• Mean Squared Error of Prediction (29): MSEP =∑
ij{yij − E(Yij |x\(ij))}2/n, where E(Yij |x\(ij))

indicates the prediction of yij when the observation
corresponding to the ith AMP and jth CpG is
excluded from the regression. We also consider the
case E(Yij |xi\j) when the jth CpG is removed and
E(Yij |x\i,j) when the ith AMP is excluded from all
CpGs;
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• CV-index (30): CV = 1−MSEP/
∑
ij(yij− ȳi\j)2/n,

where ȳi\j = 1/(m− 1)
∑
i,j′ 6=j yij′ is the average

apparent level of methylation after PCR without the
measurement corresponding to the jth CpG. MSEP is
the Mean Squared Error of Prediction when x\(ij) or
xi\j are removed from the regression. The case x\i,j
is not considered.

The RSS ∈ [0,1] is a measure of “in-sample” fit and it is
well known that over-parameterized models achieve usually
better RSS. The MSEP ∈ [0,+∞) is instead a measure
of “out-of-sample” prediction based on leave-one-out
cross-validation. A model with lower MSEP should be
preferred since it predicts more accurately the apparent level
of methylation after PCR for unobserved values of the actual
methylation percentages, a feature that is important in the
derivation of the corrected methylation degree. Finally, the
CV-index ∈ (−∞,1] is similar to MSEP, but it aims at
comparing the “out-of-sample” prediction of the proposed
model with a simpler non-parametric model that predicts the
apparent level of methylation after PCR by using the average
value of all other observations. A negative CV-index is in
favour of a simpler non-parametric model versus a more
sophisticated parametric one.

Corrected methylation degree
Given an observed level of methylation, measured in an
individual (either in the case or in the control group) at
a particular CpG within DMR or a CGI, the corrected
methylation degree can be obtained. However, differently
from (12), where it can be calculated analytically by
inverting the equation that describes the calibration curve,
both Moskalev’s CPR and MethylCal require a numerical
procedure to perform the PCR-bias correction. In (15), the
corrected methylation degree is obtained by solving

x̂j = argmin
xj

(yobs
j − β̂jxj)2, (9)

where x̂j ∈ [0%,100%] is the corrected methylation degree,
yobs
j ∈ [0%,100%] is the observed level of methylation at

the jth CpG, β̂j = (β̂0j , β̂1j , β̂2j , β̂3j) is the maximum
likelihood solution of the CPR for the jth CpG based on
apparent level of methylation after PCR in the standard
controls and xj = (1,x1

j ,x
2
j ,x

3
j )T . The existence of

an unique solution depends on β̂j , but in the examples
considered Moskalev’s CPR is a strict increasing function.
Thus, the objective function (9) admits only one solution
which can be obtained by the R function optimize.

The derivation of the objective function for MethylCal’s
mixed additive regression model is slightly more complicated
since only few known values of the actual methylation
percentage are usually tested in a calibration experiment.
This is a typical problem in linear mixed models when
the predictions are made for new observations, as these
predictions are conditional on an unobserved level of the
random effect (31). To overcome this problem, we consider
ηi = E(AMPi|y) the posterior mean of the random-effects

AMP at the ith level. Note that ηi is also the predicted
value of the random-effects AMP at the same ith level of the
observation xij . A cubic spline interpolation is then fitted
on the posterior means ηi (i = 1, . . . , l) and, by doing so, a
new value η(xj) can be predicted for any value of the actual
methylation percentage xj ∈ [0%,100%], see Supplementary
Figure S.8 for illustrative examples of the cubic spline
interpolation of the posterior mean of the random-effects
AMP. Finally, for each CpG (j = 1, . . . ,m), the PCR-bias
corrected methylation degree x̂j ∈ [0%,100%] is the solution
of

x̂j = argmin
xj

[yobs
j −{E(β|y)xj +η(xj) +Cj}]2, (10)

where E(β|y) is the posterior mean of the fixed effects, η(xj)
is the cubic spline predicted value of the random-effects
AMP at the new observation xj , Cj = 0, Cj = E(CpGj |y),
Cj = E(µj |y) and Cj = E(CpGj |y)+E(CpG∗j |y)xj for
model M1, M2, M3 and M4, respectively. In (10) the
existence of an unique solution depends on the combined
effect of E(β|y), η(xj) andCj , but in the examples analysed,
MethylCal’s calibration curve is strictly increasing, allowing
for an unique solution. For each CpG, the numerical value
of x̂j is then obtained by using the R function optimize,
specifying (10) as the objective function.

RESULTS
The assays presented in Table 1 were analysed using
MethylCal and Moskale’s CPR. First, for each specific assay,
we derived the calibration curves using five standard controls
with known methylation percentages. Secondly, we checked
the goodness of fit of the calibration curves obtained by
MethylCal and compared the results with those obtained
by Moskalev’s CPR. Thirdly, we corrected the observed
methylation degree based on the estimated calibration curves
in two specific target regions (KCNQ1OT1 and H19/IGF2)
important for their BWS clinical diagnostic value and in three
target genes that have been associated with susceptibility to
celiac disease. The three steps are detailed below.

Derivation of the calibration curves
We obtained specific calibration curve for each assay
using the proposed method and compared the results with
Moskalev’s CPR. Figure 1 shows the level of methylation of
two assays KCNQ1OT1 (top panels) and H19/IGF2 (bottom
panels) predicted by Moskalev’s CPR, whereas Figure 2
shows the results obtained by MethylCal. Moskalev’s
CPR is an over-parameterized model: when the actual
methylation percentages (AMP) at 0%, 25%, 50%, 75% and
100% are used in the calibration experiment, the number of
estimated parameters for each CpG (four for the regression
coefficients and one for the residual variance) equals the
number of observations, leaving no degrees of freedom.
Thus, the 95% prediction confidence interval is extremely
wide, see Figures 1B-E, with a large uncertainty regarding
the estimated model. In contrast, Figures 2B-E highlight the
parsimony of MethylCal. Using all n = l×m observations
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Figure 1. Methylation level of two independent assays KCNQ1OT1 (top panels) and H19/IGF2 (bottom panels) calibrated by Moskalev’s cubic polynomial regression (CPR).
(A-D) The apparent level of methylation observed after amplification (y-axis) is plotted as a function of the actual methylation percentage (AMP) (x-axis). Circles depict
the apparent level of methylation after PCR for each CpG at different AMPs, whereas the red dotted lines show Moskalev’s CPR for each CpG. The grey dash-dotted line
represents an unbiased plot. (B-E) The apparent level of methylation observed after amplification (y-axis) is plotted (circles) as a function of the CpGs in the DMR (x-axis),
stratified by AMP (top figure box and the grey dot-dashed line). For each stratum, the red dotted line shows the level of methylation predicted by Moskalev’s CPR, whereas
the red dot-dashed lines depict the 95% prediction confidence interval. (C-F) The result of PCR-bias correction by using Moskalev’s CPR. The corrected methylation degree
(y-axis) is plotted as a function of the AMP (x-axis). The grey dash-dotted line represents an unbiased corrected plot.

at once, with less parameters to estimate and thus higher
degrees of freedom, the 95% prediction credible interval
are much smaller than Moskalev’s CPR. Moreover, using
MethylCal, the predicted level of methylation are very close
to the apparent level of methylation after PCR. This is
evident by looking at Figures 2A-D, where model M4 and
M3 were selected by the DIC for the assay KCNQ1OT1
and H19/IGF2. In both assays, MethylCal interpolates the
apparent level of methylation observed after amplification
remarkably well despite the fact that the data show a more
complex pattern than previously reported hyperbolic (12)
or cubic polynomial (15) shape when the apparent level
of methylation after PCR is plotted as a function of the
actual methylation percentage. In contrast, in Figures 1A-D,
Moskalev’s CPR is not able to interpolate the data with
the same precision, in particular for the inner values of the
AMPs (25%, 50%, 75%). Finally, Figures 1C-F and Figures
2C-F show the impact of the interpolation on the PCR-bias
correction. For each CpG-AMP combination, (9) and (10)
are used to correct the apparent level of methylation after
PCR. If the correction is perfect, the corrected methylation
degrees will coincide with the AMPs used in the calibration
experiment. Overall, MethylCal’s correction is more precise
than Moskalev’s adjustment due to its ability to interpolate
adequately the apparent level of methylation after PCR at

different AMPs.
By visual inspection of MethylCal’s results presented in

Figure 2F, some measurements seem less well calibrated at
75% actual methylation. A closer look at Figure 2E reveals
that the apparent level of methylation after PCR for CpG 12
is outside the posterior predictive interval [l,u] for outliers
detection with l = Q1− 1.5IQR and u = Q3 + 1.5IQR with
IQR = Q3−Q1 and Q3 and Q1 the 75th and 25th percentiles
of the posterior predictive density. A second CpG outside the
posterior predictive interval for outliers detection is present
also at 100% actual methylation although in this case, given
the shape of the PCR-bias correction curve, the impact on the
calibration is less pronounced. Under the fitted MethylCal’s
model, these observations can be either regarded as outliers,
and thus removed from the analysis, or the data generation
process, including biological and biochemical factors, should
be further investigated to understand the possible causes of
this unusual pattern. This conclusion highlights a further
feature of MethylCal, i.e., its ability to pinpoint specific
CpG-AMP combinations as potential outliers that do not fit
with the bulk of the data and need to be further checked.

The predicted level of methylation and the PCR-bias
correction for the rest of the assays analysed, two CGIs
(SDHC CpG:17 and SDHC CpG:27) located on SDHC
gene promoter and four imprinted DMRs (PLAGL1, GRB10,
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Figure 2. Methylation level of two independent assays KCNQ1OT1 (top panels) and H19/IGF2 (bottom panels) calibrated by MethylCal with modelM4 andM3 selected by
the DIC, respectively. (A-D) The apparent level of methylation observed after amplification (y-axis) is plotted as a function of the actual methylation percentage (AMP) (x-axis).
Circles depict the apparent level of methylation after PCR for each CpG at different AMPs, whereas the red dotted lines show MethylCal’s predicted level of methylation for
each CpG. Black dots highlight potential outliers. The grey dash-dotted line represents an unbiased plot. (B-E) The apparent level of methylation observed after amplification
(y-axis) is plotted (circles) as a function of the CpGs in the DMR (x-axis), stratified by AMP (top figure box and the grey dot-dashed line). For each stratum, the red dotted line
shows the level of methylation predicted by MethylCal, whereas the red dot-dashed lines depict the 95% prediction credible interval. (C-F) The result of PCR-bias correction
obtained by using MethylCal. The corrected methylation degree (y-axis) is plotted as a function of the AMP (x-axis). The grey dash-dotted line represents a unbiased
corrected plot.

MEST and MEG3) are shown in Supplementary Figures S.4
and S.5 for Moskalev’s CPR and in Supplementary Figures
S.6 and S.7 for MethylCal. The results are similar to those
presented in Figures 1 and 2 with larger prediction credible
intervals, less accurate predicted level of methylation and
worse corrected methylation degree when Moskalev’s CPR
is used. These conclusions are similar across different
assays, including the previously reported cubic polynomial
data shape as shown for the PLAGL1 assay in Supplementary
Figures S.4G and S.6G.

Finally, by visual inspection of the data, three CpGs
(21-23) were removed from the PLAGL1 assay since their
pattern was extremely different from other observations in
the same assay. While Moskalev’s CPR cannot impute
missing CpGs, MethylCal is able to impute them, see
Supplementary Figure S.6H, based on the fixed-effects terms
(which are common to all CpGs) and the posterior mean of
the random-effects AMP, see Supplementary Figure S.8C.

Goodness of fit
MethylCal’s superior performance compared to Moskalev’s
CPR is also apparent when the “in-sample” and
“out-of-sample” goodness-of-fit measures are considered.
Table 2 shows the predictive performance for two assays

tested, KCNQ1OT1 and H19/IGF2. The best MethylCal’s
model selected by the DIC performs better than Moskalev’s
CPR when the Residual Sum of Squares (RSS) is considered.
These results demonstrate that, although Moskalev’s CPR
is an over-parameterised model that should attain better
“in-sample” prediction, it is not suitable for calibration when
the data do not show previously reported hyperbolic or
cubic polynomial data shapes. The same conclusions can
be drawn for the other assays presented in Supplementary
Table S.1. MethylCal shows better predictive performance
in all assays tested and only marginally worst for the GRB10
assay. MethylCal performs better also in the PLAGL1 assay
which is the most favourable case for Moskalev’s CPR given
the cubic polynomial shape of the data.

Our comparisons also consider the “out-of-sample”
prediction and three possible scenarios are examined. In
the first one, the cross-validation is performed by removing
a data point that corresponds to a specific CpG-AMP
combination. In the second scenario, each CpG is excluded
one-at-a-time, while in the last scenario each AMP is
removed separately in the cross-validation. Since Moskalev’s
method cannot predict the AMPs of the CpGs that have
been removed, in the second scenario the “out-of-sample”
prediction is obtained by averaging Moskalev’s predicted

Ochoa et al. et al. | MethylCal: Bayesian calibration of methylation levels bioRχiv | 7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587519doi: bioRxiv preprint 

https://doi.org/10.1101/587519
http://creativecommons.org/licenses/by-nc-nd/4.0/


Moskalev MethylCal

KCNQ1OT1

M1 M2 M3 M4

DIC – 173.55 172.46 167.87 164.68
RSS 474.48 33.19 27.31 27.67 17.09

CpGs & AMPs MSEP 450.86 42.85
CV-index -1,021.74 -0.15

CpGs MSEP 30.60 2.20
CV-index -12.88 0.00

AMPs MSEP 7,664.54 7607.29

H19/IGF2

DIC – 179.06 180.42 178.21 180.82
RSS 369.68 56.49 52.01 51.35 37.56

CpGs & AMPs MSEP 497.94 1.12
CV-index -443.57 0.00

CpGs MSEP 35.01 5.34
CV-index -5.25 0.05

AMPs MSEP 5,975.23 5,799.02

Table 2. Goodness-of-fit performance of MethylCal and Moskalev’s cubic polynomial regression (CPR) on two independent assays KCNQ1OT1 and H19/IGF2. For each
MethylCal’s model the Deviance Information Criterion (DIC) is calculated and for MethylCal’s models and Moskalev’s CPR also the Residual Sum of Squares (RSS). The
Mean Squared Error of Prediction (MSEP) and the CV-index are evaluated for the best MethylCal’s model (based on the DIC) and for Moskalev’s CPR when the leave-one-out
cross-validation is performed across (i) CpGs and actual methylation percentages (AMPs); (ii) CpGs; (iii) AMPs. For each predictive measure, the best result is highlighted in
bold.

values of the two flanking CpGs, each of them weighted
by the distance (in bp) between the excluded CpG and each
flanking CpG.

In all assays tested, the Mean Squared Error of Prediction
(MSEP) of the best identified MethylCal’s model is lower
than Moskalev’s CPR by several orders of magnitude
when the cross-validation is performed across CpG-AMP
combinations or across CpGs, see Table 2 and Supplementary
Table S.1. When the cross-validation is performed across
AMPs the difference between MethylCal and Moskalev’s
CPR is less evident. Since in this scenario an AMP
has been removed from all CpGs, MethylCal cannot
borrow information about the excluded AMP across CpGs.
Nonetheless, MethylCal has lower MSEP than Moskalev’s
method across all assays analysed, with a gain ranging
between 1% and 5%. The improvement for the GRB10
assay (around 43%) is particularly high since in this case the
exclusion of a calibration sample does not hurt the estimation
of the random-effects AMPi, see Supplementary Figure
S.8E. Taken together, these results suggest that MethylCal
should be also preferred when the number of calibration
samples is reduced from five to four.

We also evaluate MethylCal’s performance by using the
CV-index. Interestingly, the CV-index for Moskalev’s CPR is
always negative when a CpG-AMP combination is removed
in the cross-validation. Thus, a non-parametric model that
predicts the CpG-AMP combination by using the remaining
observations performs better than Moskalev’s CPR. This is
also true when a CpG is excluded in the cross-validation, but
the GRB10 assay. In contrast, when looking at the CV-index,
selected the best MethylCal’s model is always better than
Moskalev’s CPR and it has an inferior CV-index performance
only in one case (KCNQ1OT1 assay) in the prediction of the
CpG-AMP combination and another one (SDHC CpG:17) in
the CpG “out-of-sample” prediction.

Finally, Supplementary Table S.3 summarises

MethylCal’s goodness-of-fit measures across all assays tested
and compares them with Moskalev’s CPR. MethylCal’s best
model selected by the DIC performs always better than
Moskalev’s CPR in the “in-sample” prediction, but in a
single assay. In the “out-of-sample” prediction MethylCal’s
best model is always better than Moskalev’s CPR (with the
exception of the GRB10 assay) either considering the MSEP
or the CV-index measures. Moreover, MethylCal’s best
model has a non-negative CV-index in 14 out of 16 cases.

Application in clinical diagnostic of
Beckwith-Wiedemann syndrome

BWS is caused by genetic and epigenetic abnormalities
on chr11p15.5-–11p15.4 that produce an increment of
IGF2 growth factor levels and/or a reduction of CDKN1C
growth suppressor protein levels. The loss of methylation
of maternal KCNQ1OT1 and the gain of methylation of
maternal H19/IGF2 are the most frequent defects in BWS.
In addition, the frequency of mosaicism is high in BWS,
introducing the problem of borderline cases that are difficult
to diagnose.

The observed methylation levels of 15 healthy controls
and 18 potential BWS patients were corrected using the
calibration curves obtained by MethylCal and Moskalev’s
CPR in the KCNQ1OT1 and H19/IGF2 assays. Patients
with an average corrected methylation level below a 3SD
confidence interval were considered to undergo loss of
methylation and those with a level above the 3SD confidence
interval were considered to experience gain of methylation,
see Figures 3A-B and 4A-B for the assays KCNQ1OT1 and
H19/IGF2, respectively, using Moskalev’s CPR (left panels)
and MethylCal (right panels). To avoid false positives,
in clinical practice a ±3SD confidence interval is usually
chosen since it guarantees low type-I error (α =0.0027).
Moreover, the confidence interval should be large enough to
contain the control samples’ corrected methylation degrees
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Figure 3. Corrected methylation degree of the KCNQ1OT1 assay using Moskalev’s cubic polynomial regression (left panels) and MethylCal (right panels) for healthy controls
(top panels) and patients potentially affected by Beckwith-Wiedemann syndrome (bottom panels). (A-B) For each healthy control (x-axis), the boxplot depicts the range and
the median of the corrected methylation degree (y-axis) across CpGs. The dashed-dotted grey lines show the ±3SD confidence interval centered around the overall mean
(see main text for details). (C-D) For each patient (x-axis), the boxplot depicts the range and the mean (circle) of the corrected methylation degree (y-axis) across CpGs while
the dashed-dotted grey lines show the healthy controls’ confidence interval. Top red triangles indicate patients classified as having undergone loss or gain of methylation if
their average (across CpGs) corrected methylation degree is outside the healthy controls’ confidence interval. Bold font (x-axis) indicates patients’ classification described in
the main text.

across all CpGs.

Figures 3A-B present the results of the corrected
methylation degree for the KCNQ1OT1 assay in the
healthy control group. MethylCal has a larger confidence
interval (28.012-86.71) compared to that obtained by using
Moskalev’s CPR (37.26-81.73). This is due to the effect
of the calibration curve estimated by Moskalev’s CPR
that shrinks the corrected methylation degrees for observed
methylation levels greater than 50%, while the opposite
happens for observed methylation levels lower than 50%,
see Figure 1C. The joint effect of a larger healthy controls’
confidence interval and a more accurate calibration of
the methylation degree in the patients group permit to
reclassify patients B5B37 as normal methylated in contrast
to Moskalev’s CPR that classifies the same patient as having
undergone loss of methylation, see Figures 3C-D. Moreover,
with MethylCal, patients B5B38 and B5C41 are well within
the healthy controls’ confidence interval (including the range
of the corrected methylation degree across CpGs) with less
uncertainty about their classification.

Figures 4C-D show the results of a second assay,
H19/IGF2, used in the classification of patients. While both

methods detected gain of methylation in patients B5A42
and B5B38, and thus affected by BWS, patient B5B37 is
also identified as having undergone gain of methylation by
MethylCal. However, in contrast to the KCNQ1OT1 assay,
in the H19/IGF2 assay there is more uncertainty regarding
the classification: for both patients B5B37 and B5B38,
the range of the corrected methylation degree across CpGs
intersects the upper bound of the healthy controls’ confidence
interval, while normal-classified methylated patients B5C01
and B5C06 show the same uncertainty at the bottom of the
confidence interval.

Finally, patients’ classification depends upon the choice
of the length of the healthy controls’ confidence interval.
However, when a less conservative test is chosen (α= 0.01),
MethylCal’s results do not change. This is not true when
Moskalev’s CPR is employed as shown in Supplementary
Figure S.11. This is due to Moskalev’s less precise
calibration curve and its shrinkage effect on the corrected
methylation degrees for which a small difference in the
level of significance has a large impact on the patients’
classification.
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Figure 4. Corrected methylation degree of the H19/IGF2 assay using Moskalev’s cubic polynomial regression (left panels) and MethylCal (right panels) for healthy controls
(top panels) and patients potentially affected by Beckwith-Wiedemann syndrome (bottom panels). (A-B) For each healthy control (x-axis), the boxplot depicts the range and
the median of the corrected methylation degree (y-axis) across CpGs. The dashed-dotted grey lines show the ±3SD confidence interval centered around the overall mean
(see main text for details). (C-D) For each patient (x-axis), the boxplot depicts the range and the mean (circle) of the corrected methylation degree (y-axis) across CpGs while
the dashed-dotted grey lines show the healthy controls’ confidence interval. Top red triangles indicate patients classified as having undergone loss or gain of methylation if
their average (across CpGs) corrected methylation degree is outside the healthy controls’ confidence interval. Bold font (x-axis) indicates patients’ classification described in
the main text.

Application in clinical diagnostic of celiac patients

We applied MethylCal in a second data set containing human
genomic control DNA measured at eight distinct AMPs (0%,
12.5%, 25%, 37.5%, 50%, 62.5%, 87.5% and 100%) in
eight NFkB-related and Toll-like receptor genes (16). It
also contains the uncorrected methylation levels on the same
target regions of 13 controls and 17 celiac patients at the time
of diagnosis with patient data pyrosequenced in three runs
(18). In our analysis we focused on NFKBIA gene, as well
as on RELA and TNFAIP3 genes that, similarly to NFKBIA,
have been associated with susceptibility to celiac disease.

Figure 5 shows the calibration curves of the NFKBIA
assay and the corrected methylation degrees in celiac patients
using Moskalev’s CPR (left panels) and MethylCal (right
panels). Our method confirms its ability to automatically
detect outliers. For example, in Figures 5 B-D, several
methylation levels in CpG 5 are detected as outliers (black
dots) since they show an apparent level of methylation at
37.5%, 50% and 62.5% actual methylation that is lower
than at 25%. Similarly, there is an outlier in CpG 3
where the apparent level of methylation at 50% actual
methylation is as high as at 62.5%. Outliers were also

detected between 37.5% and 62.5% actual methylation in
the RELA and TNFAIP3 assays, see Figures S.12B-D and
S.13B-D, respectively. Rather than relying on a difficult
visual inspection of the data, MethylCal identifies specific
CpG-AMP combinations that do not fit with the bulk of the
data and it accounts for them when it derives the calibration
curves. See also Supplementary Table S.3 for the comparison
of the goodness of fit between MethylCal and Moskalev’s
CPR on the NFKBIA, RELA and TNFAIP3 assays and the
overall better performance of the proposed tool.

A different estimation of the calibration curves may
have a large impact on the correction of the case/controls
samples and the classification of the patients. Figures
5E-F exemplify this case where Moskalev’s CPR classifies
patient 16D as normal methylated, while MethylCal, besides
patient 16D, identifies patients 09D and 12D as normal
methylated. In particular, MethylCal estimates an average
corrected methylation level for patient 09D (11.34) that is
more than double the level obtained by Moskalev’s CPR
(5.24). Further investigations confirm that patient 09D is
always classified by Moskalev’s CPR as having undergone
loss of methylation irrespectively of the level of significance
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Figure 5. Calibrated methylation level and corrected methylation degree of the NFKBIA assay in celiac patients using Moskalev’s cubic polynomial regression (left panels)
and MethylCal (right panels). (A-B) The apparent level of methylation observed after amplification (y-axis) is plotted as a function of the actual methylation percentage
(AMP) (x-axis). Circles depict the apparent level of methylation after PCR for each CpG at different AMPs, whereas the red dotted lines show MethylCal’s predicted level of
methylation for each CpG. Black dots highlight potential outliers. The grey dash-dotted line represents an unbiased plot. (C-D) The apparent level of methylation observed
after amplification (y-axis) is plotted (circles) as a function of the CpGs in the DMR (x-axis), stratified by AMP (top figure box and the grey dot-dashed line). For each stratum,
the red dotted line shows the level of methylation predicted by MethylCal, whereas the red dot-dashed lines depict the 95% prediction credible interval. (E-F) For each
patient (x-axis), the boxplot depicts the range and the mean (circle) of the corrected methylation degree (y-axis) across CpGs while the dashed-dotted grey lines show the
healthy controls’ confidence interval. Top red triangles indicate patients classified as having undergone loss or gain of methylation if their average (across CpGs) corrected
methylation degree is outside the healthy controls’ confidence interval. Bold font (x-axis) indicates patients’ classification described in the main text.

of the test (α≤ 0.10).

DISCUSSION

Bisulfite amplicon sequencing is an ideal platform for the
detection of methylation changes on multiple targets in
parallel due to the low cost and the efficiency in the
single-base quantification (32). The main limitation of this
technology is a preferential amplification of an allele and
strand in the PCR due to methylation state (12). This effect
causes inaccurate estimation of the methylation and in silico
calibration tools have been proposed to minimize it.

In this work, we proposed a new Bayesian calibration

tool that is able to analyse jointly all CpGs within a
CGI or a DMR avoiding “one-at-a-time” CpG calibration.
MethylCal has several benefits compared to existing methods
(12, 15), including a better “out-of-sample” prediction which
is particularly important in the derivation of the corrected
methylation degree and the ability to detect CpG-AMP
combinations that should be regarded as outliers, and
therefore removed or further checked. Our approach is also
very general and it is applicable irrespectively of the locus
analysed (CGIs or DMRs), the type and degree of PCR bias
to be recovered (large towards the un-methylated allele as in
the PLAGL1 assay, small towards the methylated allele as in
SDHC CpG:17), the number of CpGs per locus (few as in the
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MEST assay, many as in the PLAGL1 assay) and the number
of calibration samples.

MethylCal includes four different models, each of which
with a different random-effects combination. In the analysis
of BWS data, M4 is the preferred model since it allows
the specification of the correlation of the apparent level of
methylation between CpGs and the AMPs. This behaviour is
particularly evident in two assays, GRB10 and MEST, that
show higher than expected methylation levels at 0% and
25% actual methylation, an effect that gradually disappears
at higher AMPs (Supplementary Figures S.2C-E). Although
less pronounced, the opposite behaviour is present in the
assays H19/IGF2 and KCNQ1OT1 (Figures S.2G-I) and
SDHC CpG:27 (Supplementary Figure S.3B). This pattern
cannot be explained by the expected error associated with
standard controls (5% for un-methylated DNA and an
extra 5% for fully-methylated DNA). Given that the same
calibration samples were used in all reactions and the high
conversion rate (> 98%), this phenomenon might be due to
regions specific resistance to bisulfite conversion. A possible
explanation is the formation of stable secondary structures
around the CpG site that makes the region more resistant to
denaturation and subsequent conversion (33).

The application of MethylCal for the calibration of
the observed methylation levels of the KCNQ1OT1 and
H19/IGF2 assays in a real data set of possible BWS
cases shows the importance of the accurate quantification
and correction of the PCR bias to distinguish borderline
cases. We considered gain of methylation in a region when
the level of methylation is above 3SD from the average
methylation level detected in the control group and loss of
methylation when the level of methylation is below 3SD.
Using MethylCal, we classified patients B5B37 as having
undergone gain of methylation in the target region H19/IGF2
in contrast to Moskalev’s method that identified the same
patient with a loss of methylation in the target region
KCNQ1OT1. In the analysis, we applied a very conservative
threshold, ±3SD (around 0.3% of false-positive error in the
diagnostic), but MethylCal’s results do not change if the
level of significance is increased to a less restrictive 1%,
demonstrating that its corrections are less influenced by the
choice of the level of the test. Finally, the benefits of the
proposed method, i.e., better calibrations and more reliable
corrections, are also shown in a second case/control data set
related to pyrosequenced methylation levels in three target
regions associated with susceptibility to celiac disease.

In both real data applications, the improvement in the
accuracy observed after calibration determines the diagnosis,
but it could also influence clinical or treatment decisions or
further actions. Moreover, the accuracy of the calibration
method is critical in disorders with mosaicism like BWS
but not exclusive, since the same problem will affect, for
example, circulating tumor DNA samples, which will have
extensive application in cancer diagnostic in a near future.

In conclusion, MethylCal learns the existence, location
and size of PCR bias better than existing methods and
adjusts for it in the correction step, allowing the identification

of loss or gain of methylation in difficult cases with less
uncertainty compared to existing methods. The availability
as an user-friendly R package will also permit its routine
application in clinical diagnostic and research laboratories.
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