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Abstract

Multi-omics approaches use a diversity of high-throughput technologies to profile the
different molecular layers of living cells. Ideally, the integration of this information should
result in comprehensive systems models of cellular physiology and regulation. However,
most multi-omics projects still include a limited number of molecular assays and there have
been very few multi-omic studies that evaluate dynamic processes such as cellular growth,
development and adaptation. Hence, we lack formal analysis methods and comprehensive
multi-omics datasets that can be leveraged to develop true multi-layered models for dynamic
cellular systems. Here we present the STATegra multi-omics dataset that combines
measurements from up to 10 different omics technologies applied to the same biological
system, namely the well-studied mouse pre-B-cell differentiation. STATegra includes high-
throughput measurements of chromatin structure, gene expression, proteomics and
metabolomics, and it is complemented with single-cell data. To our knowledge, the
STATegra collection is the most diverse multi-omics dataset describing a dynamic biological

system.

Background and Summary

The concept of multi-omics and data-integration has been increasingly used during the last 5
years to describe the multitude of high-throughput molecular technologies that can be
applied to the study and analysis of biological systems’. Such techniques hold the promise
to uncover the different biological processes and layers of regulatory complexity within
biological systems. In brief, high-throughput molecular methods can extract information of
essentially three basic, yet different components of living cells. Nucleic acids can readily be
profiled using massive, parallel sequencing, which in turn provide deep a characterization of
chromatin properties (i.e. Hi-’C, ATAC-seq®, DNase-seq*, ChIP-seq®, WGBS®, RRBS’) and
the dynamics of gene expression (i.e. RNA-seq®, microRNA-seq”'®, PAR-CLiP"", iCLIP-
seqm). Proteins are measured by proteomics and phosphoproteomics approaches, based
on Liquid Chromatography (LC) or Isotope-coded affinity tag labeling (iTRAQ) coupled to
Mass Spectrometry (MS). Finally, the metabolome and lipidome, i.e. organic compounds,
are captured using mature techniques such as LC/GC-MS or Nuclear Magnetic Resonance
(NMR). Increasingly, multi-omics technologies are applied during the same physiological
conditions from either the same or different samples to generate a comprehensive set of
data spanning multiple molecular levels. The general expectation of multi-omics projects is
that the combination of multi-layered data will reveal aspects of the complexity of biological
systems that cannot be fully understood using only a particular data-type. Moreover, in

addition to the exciting technical reality of being able to monitor several complementary data-
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types, the community has come to realize the power of using time in the experimental
design. Hence, by collecting data over time, where as a rule the different molecular entities
are correlated, it is much more amenable to extract key processes from each data-type as
well as uncovering dependencies between different regulatory layers. These technical and
conceptual advances are currently being transferred into the vibrant single-cell biology
community. Thus, recent advances in single-cell omics technologies have made it feasible to
perform multi-omics profiling of individual cells. Consequently, the single-cell community can
benefit from the experiences and lessons derived from time-dependent bulk multi-omics
analysis. Clearly, a high-resolution single-cell analysis has proven crucial to assess tissue

1315 cell fate’®'". In conclusion, we are most likely entering an era where we

heterogeneity
can target regulatory networks in single cells'® using a temporal paradigm coupled to a multi-
omics analysis.

While multi-omics projects are frequently depicted as a set of stacked molecular layers
that are connected to pass information from the genetic component to the organismal
phenotype, the harsh reality is that still many multi-omics project are constrained by
budgetary restrictions and sample limitations which evidently reduce the number
technologies that can realistically be assessed. In most cases, only a few data types can be
included, with a limited number of samples, and analyses is as a rule restricted to focus on 2
or 3 regulatory layers. A few international projects have however successfully collected large
datasets and generated comprehensive portfolios of omics measurements. For example,
ENCODE"™, TCGA®, IHE?, ImmGen®, had the explicit goal to perform an extensive
characterization of a particular set of cells or tissues. These projects have impacted the
scope and type of analysis methods and scientific discoveries that can be achieved so far by
the multi-omic approach. In some cases combining multi-level data has the ambition to
increase the required statistical power to enable the classification of samples or predict
disease outcomes. By measuring different types of features the chance of identifying
relevant biomarkers increases, but the analysis does not automatically lend itself to a
mechanistic account of the inter-dependencies between these biomarkers as well as their
relationship with the outcome, such as a disease. In some cases however, two specific
omics layers are measured in order to probe their regulatory relationships. For example,
methods that integrate ATAC-seq or RRBS with RNA-seq might shed light on the epigenetic
control of gene expression®, while integrating transcriptomics and metabolomics data may
help elucidate metabolic regulation®*?°. Yet, there have been very few multi-omic studies
that evaluate dynamic processes such as cellular growth, development and adaptation.
Hence, we still lack formal analysis methods and comprehensive multi-omics datasets that
can be leveraged to develop true multi-layered models for dynamic cellular systems. This

state-of-affairs has been the rationale underpinning the formulation of what is referred to as
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the STATegra project (http://www.stategra.eu/). This is a transnational initiative to develop

methods, software and data for dynamic multi-omics analyses. From the STATegra project
several tools for integrative multi-omics data analyses have been published and released®
33_

Here we share the collection of the different STATegra datasets, a multi-omics dataset
that combines measurements from up to 10 different omics technologies applied to the same
biological system. STATegra uses a well-studied system, namely mouse pre-B-cell

I**. This is a highly reproducible in vitro system®® that

differentiation, in a cell line mode
allows the generation of sufficient material to deploy a comprehensive set of omics
measurements. STATegra covers the three types of biomolecules and the different layers
that comprise the basic flow of genetic information: chromatin structure (through DNase-seq,
RRBS and ChIP-seq), gene expression (RNA-seq and miRNA-seq), proteomics and
metabolomics. The collection is complemented with single-cell RNA-seq and ATAC-seq data
on the differentiating conditions. The STATegra multi-omics dataset is unique in the number
and diversity of omics technologies available and in the dynamic nature of the system. Our
ambition has been to generate this collection of data to serve — in full or using parts of it- as
workbench for the development of integrative analysis methods for the multi-layered systems
biology.

In previous studies, ChlP-seq data from this collection have been used to identify
Ikaros targets34. ChlP-seq, DNase-seq, RNA-seq and scRNA-seq datasets were used in
Vidal et al.*" to describe the cross-talk between IKAROS Foxo1 and Myc transcription factors
in regulating B-cell development. scATAC-seq, scRNA-seq and ATAC-seq data have been

used to develop new statistical methods for the integration of single-cell multi-omics®?.

Methods

Experimental design

Figure 1 illustrates the STATegra dataset. The mouse B3 cell line models the pre-Bl (or
Hardy fraction C’) stage. Upon nuclear translocation of the lkaros transcription factor these
cells progress to the pre-Bll (or Hardy fraction D) stage, where B cell progenitors undergo
growth arrest and differentiation® . The B3 cell line was retrovirally transduced with a
vector encoding an lkaros-REt2 fusion protein, which allows control of nuclear levels of
lkaros upon exposure to the drug Tamoxifen®. In parallel, cells were transfected with an
empty vector to serve as control for the Tamoxifen effect. After drug treatment, cultures
were harvested at Oh, 2h, 6h, 12h, 18h and 24hs (Figure 1A) and profiled by several omics
technologies: long messenger RNA-seq (MRNA-seq) and micro RNA-seq (miRNA-seq) to

measure gene expression; reduced representation by bisulfite sequencing (RRBS) to
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measure DNA methylation; DNase-seq to measure chromatin accessibility as DNasel
Hypersensitive Sites (DHS) and transcription factor footprints, shotgun proteomics and
targeted metabolomics of primary carbon and amino-acid metabolism. Moreover, single-cell
RNA-seq (scRNA-seq) data for the entire time-series, while bulk ATAC-seq (ATAC-seq) and
single-cell ATAC-seq (scATAC-seq) were obtained in a later round of experiments for Oh and
24h-time points of lkaros induction only (no control series were run for these datasets). The
dataset is complemented by existing ChIP-seq data on the same system equivalent to our
0Oh and 24h time points®. In total, 793 different samples across the different omics datasets
define the STATegra data collection (Figure 1B).

The time points analyzed were based on previous microarray studies® and have been fully
validated by comparing the transcriptional response in this experimental system to pre-B cell
differentiation in vivo® . Ikaros translocates to the nucleus of B3 cells within minutes, binds to
target promoters and changes RNAP2 occupancy and primary transcript levels with

immediate effect®

. The 2h time point is relatively late compared to changes in primary
transcript levels®® and was chosen because the data presented here were generated by
conventional RNA-seq, which relies on changes in steady state, rather than primary

transcript levels.

Culture conditions
B3 cells containing inducible Ikaros can be expanded before induction of lkaros to produce
sufficient material for all omics experiments. G1 arrest occurs within 16 h following |karos
induction. Cells containing inducible Ikaros were generated by transducing mouse pre-B cell
line B3 with mouse stem cell virus (MSCV) retroviral vectors encoding a fusion protein of
haemagglutinin-tagged wild type lkaros (HA-lkaros) and the estrogen receptor hormone-
binding domain (ERt2), followed by an internal ribosomal entry site (IRES) and GFP. Control
cells were generated by transducing mouse pre-B cell line B3 with mouse stem cell virus
(MSCV) retroviral vectors encoding the estrogen receptor hormone-binding domain (ERt2)
followed by an internal ribosomal entry site (IRES) and GFP. Retroviral infected B3 cells
were sorted based on GFP levels. GFP positive cells were expanded in culture for few days
(3-4) and then frozen. Frozen vials containing 5 million cells were stored in liquid nitrogen.
For time course experiments, 10 million control and lkaros cells were thawed and
expanded for 4 days. Four days later cells were plated for induction of the different time
points. Both control and lkaros cells were split in flasks containing 20 million cells at a
density of 0.5 million cells per ml each. For time point inductions, 0.5uM 4-hydroxy-tamoxifen
(4-OHT) was added to both, a flask containing lkaros cells and a flask containing control
cells, at one of the specified times: 2h, 6h, 12h, 18h or 24h before collection. Cells for time

point Oh (no 4-OHT) induction were obtained separately in three different batches (Figure
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1B). All cells within the same experimental batch were harvested simultaneously. Cells were
centrifuged for 5 min at 1200 rpm, washed twice in PBS and counted to aliquot. Aliquots of
10 million cells were done for RNA-seq and metabolomics and proteomics platforms and of 5
million cells for miRNA-seq and Methyl-seq platforms. Cell pellets were snap-frozen in liquid
nitrogen and stored at -80. 20-25 million and 50,000 cells were used for DNase-seq and bulk
ATAC-seq samples. The full time course experiment was repeated different times (batches)
to generate biological replicates (Figure 1B). The same physical cultures were used to obtain
cells for mRNA-seq, miRNA-seq, RRBS and proteomics. Other omics technologies ran their

own cultures to obtain cell material.
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Figure 1. STATegra data generation. A) Inducible Ikaros B3 cell system. Time course experiment collects
samples at 6 time-points after Tamoxifen induction of Ikaros expression, Control cells carry empty vector. B)
Diversity of omics platforms, number of biological replicates, batch distribution and lab assignment for B3 cell
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Acquisition of Multi-omics data

RNA-seq

Total RNA was isolated with RNAbee (Ambion), frozen ICL and transported via courier (<1
day) to Karolinska Institutet. To account for the impact of the different sources of variability
during RNA-seq profiling, we implemented a carefully balanced distribution of samples in
relation to time points (6 time points), treatment (lkaros vs Control), library preparation, bar-
code, sequencing run and lanes and biological replicates (3 batches). Briefly, samples were

first balanced in six library preparation runs of 6 samples each (Figure 2). Secondly, each
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RNA-seq library was split into two (total of 72) in order to better account for variability
associated with sequencing. Finally, for sequencing, 75 nucleotides paired-end, the 72
libraries were balanced into 4 flow-cells and in each lane we included 3 libraries. In each
lane, we ensured to have different libraries, different batches, different time points and at
least both conditions present. Additionally, we balanced the time-points, conditions and
batches within each flow-cell. For each flow-cell, a full lane was reserved for quality control.
We aimed to obtain 50M reads per library, therefore 100M reads per sample. Libraries were

39
I

built using the strand-specific RNA-seq dUTP protocol™. Sequencing was conducted on an

lllumina HiSeq 2500 platform.
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Figure 2. Experimental design for RNA-seq.

Small RNA-seq for miRNA analysis
Small RNA-seq analysis was performed using Trizol-extracted total RNA of 3 biological
replicates (4,5,6) for time Oh and total RNA of 3 biological batches (1, 2 and 3) for times 2h,
6h, 12h, 18h and 24h. RNA quality was assessed using Bioanalyzer (Agilent Technologies)
evaluating the RNA integrity number (RIN). The library was generated using TruSeq Small
RNA Sample Preparation Kit and deep sequencing was performed in Illumina Hiseq 2000
platform. Between 15 and 20 millions of sequencing reads were obtained from each sample.
The library preparation and sequencing of the biological replicates were conducted in
two different occasions (technical batches). Figure 3 shows the experimental design
according to the batch in which samples were processed. There were two experimental
conditions (C=Control, IK=lkaros) and the 3 biological replicates per condition and time point
were numbered as 1, 2 and 3. For some of these biological replicates one additional
technical replicate was generated (Figure 3) in order to estimate the variability between

technical batches and to correct any potential batch effect.
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Figure 3. Experimental design for small RNA-seq. Two
sequencing batches were run. Samples with red filling were
repeated at both batches to allow for estimation of batch
effects.
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(Myog, Myod) in our biological system, thereby reducing excessive digestion of DNA.
Enrichment of DNasel hypersensitive fragments (0-500bp) was performed using a low-melt
gel size selection protocol. Library preparation was performed and sequenced as 43bp
paired-end NextSeq 500 Illumina reads. DNasel libraries were sequenced at a minimum
depth of 20 million reads per each biological replicate. To perform DNasel footprinting
analysis, libraries were further sequenced and merged to achieve a minimum of 200 million

mapped reads.

RRBS

Genomic DNA was isolated using the high salt method and used for reduced representation
bisulfite sequencing (RRBS), a bisulfite-based protocol that enriches CG-rich parts of the
genome, thereby reducing the amount of sequencing required while capturing the majority of
promoters and other relevant genomic regions. This approach provides both single-
nucleotide resolution and quantitative DNA methylation measurements. In brief, genomic
DNA is digested using the methylation-insensitive restriction enzyme Mspl in order to
generate short fragments that contain CpG dinucleotides at the ends. After end-repair, A-
tailing and ligation to methylated lllumina adapters, the CpG-rich DNA fragments (40-220
bp) are size selected, subjected to bisulfite conversion, PCR amplified and then sequenced
on an lllumina HiSeq2500 PE 2x100bp*°. The libraries were prepared for 100-bp paired-end

sequencing. Around 30 million sequencing reads were obtained from each sample.
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Single-cell RNA-seq

Single cells were isolated using the Fluidigm C1 System. Single-cell C1 runs were
completed using the smallest IFC (5-10 um) based on the estimated size of B3 cells. Briefly,
cells were collected for each time-point at a concentration of 400 cells/ul in a total of 50 pl.
To optimize cell capture rates on the C1, buoyancy estimates were optimized prior to each
run. Our C1 single-cell capture efficiency was ~75-90% across 8 C1 runs. Each individual
C1 capture site was visually inspected to ensure single-cell capture and cell viability. After
visualization, the IFC was loaded with Clontech SMARTer kit lysis, RT, and PCR
amplification reagents. After harvesting, cDNA was normalized across all libraries from 0.1-
0.3 ng/ul and libraries were constructed using lllumina’s Nextera XT library prep kit per
Fluidigm’s protocol. Constructed libraries were multiplexed and purified using AMPure
beads. The final multiplexed single-cell library was analyzed on an Agilent 2100 Bioanalyzer
for fragment distribution and quantified using Kapa Biosystem’s universal library
quantification kit. The library was normalized to 2 nM and sequenced as 75bp paired-end
dual-indexed reads using lllumina’s NextSeq 500 system at a depth of ~1.0-2.0 million reads
per library. Each lkaros time-point was performed once, with the exception of 18 and 24 hour
time-points, in which two C1 runs were required in order to achieve approximately ~50

single-cells per each time-point.

Bulk and single-cell ATAC-seq

Single-cell ATAC-seq was performed using the Fluidigm C1 system as done previously'.
Briefly, cells were collected for 0 and 24-hours post-treatment with tamoxifen, at a
concentration of 500 cells/ul in a total of 30-50 pl. Additionally, 3 biological replicates of
~50,000 cells were collected for each measured time-point to generate bulk ATAC-seq
measurements. Bulk ATAC-seq was performed as previously described®. ATAC-seq peak
calling was performed using bulk ATAC-seq samples. ATAC-seq peaks were then used to
estimate the single-cell ATAC-seq signal. Our C1 single-cell capture efficiency was ~70-80%
for our pre-B system. Each individual C1 capture site was visually inspected to ensure
single-cell capture. In brief, amplified transposed DNA was collected from all captured
single-cells and dual-indexing library preparation was performed. After PCR amplification of
single-cell libraries, all subsequent libraries were pooled and purified using a single MinElute
PCR purification (Qiagen). The pooled library was run on a Bioanalyzer and normalized
using Kappa library quantification kit prior to sequencing. A single pooled library was
sequenced as 40bp paired-end dual-indexed reads using the high-output (75 cycle) kit on
the NextSeq 500 from lllumina. Two C1 runs were performed for 0 and 24-hour single-cell

ATAC-seq experiments.
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Proteomics

A heavy-isotope labeled cell line representing the preB3 cell line at the starting condition was
spiked to the sample before trypsin digestion to balance differences in sample amount
resulting from sample preparation. After tryptic digestion, proteomic measurements of the 36
biological batches were analyzed by one-dimensional nanoRP-C18 LC-MS/MS in technical
triplicates on an LTQ Orbitrap platform coupled to an Ultimate 300 RSLC system (Thermo-
Fisher). First, peptide mixtures were desalted on a trapping column (0.3x5mm, Acclaim
PepMap C18, 5 um, Thermo-Fisher) at a flow rate of 25 pl/min of 0.05% TFA. A linear
gradient from 3% B to 32% acetonitrile in 0.1% formic acid in 4 h was applied optimal
separation of the complete proteome sample. Peptides eluting from the column were directly
transferred to the gas phase via a nano-electrospray ionization source (Proxeon) and
detected in the mass spectrometer. A data-dependent acquisition cycle consisting of 1
survey scan at a resolution of 60,000 and up to 7 MS/MS scans were employed. Orbitrap
MS spectra were internally calibrated on the siloxane signal at 442.1 m/z Charge-state
detection was enabled allowing for a precursor selection of charges 2-5 and excluding
precursors with undefined, single and higher charge. Precursors with minimal signal intensity
of 5000 cps, were isolated within a 1.2 Da window and fragmented by CID (normalized
collision energy 35, activation time 30 ms, Q 0.25) and analyzed in the ion trap. Previously

analyzed precursors were dynamically excluded from MS/MS selection for 180 seconds.

Metabolomics

Metabolomics measurements were performed on different biological batches than the other
omics platforms because the sample preparation part for metabolomics is different than for
the rest. In particular, metabolomics requires acute stopping of all metabolic reactions after
sampling, while for other types of measurements this is not so critical. The cell extraction
protocol for metabolomics consisted of filtration, washing, and quenching steps to remove
medium from the cells and stop metabolism. Four biological batches (9, 10, 11 and 12) were
acquired. Visual inspection of the cell pellets showed that batch 11 and 12 contained
samples that were not completely dry. The metabolomics measurements were obtained with
two different analytical platforms, a targeted liquid chromatography mass spectrometry (LC-
MS) platform and gas chromatography mass spectrometry (GC-MS) platform. The LC-MS is
a targeted platform measuring amino acids and biogenic amines and the GC-MS focuses on
polar metabolites of the primary metabolism such as glycolysis, cyclic acid cycle and amino
acid metabolism. LC-MS and GC-MS data had measurements for respectively 36 and 40
metabolites. The measurements were done on exactly the same samples. 80% of the pooled
extract was for GC-MS, 10% for LC-MS, 8% for protein weight. Some metabolites were

measured at both platforms. In that case, the LC-MS value was selected.
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The metabolomics measurement pipeline includes two types of control: the quality
control (QC) sample and the internal standard solution. The QC sample is typically a mixture
of study samples that is inserted after each six study samples in the measurement series
and is used to correct for experimental drift of the analytical instrument. Because of the
limited availability of sample material the QC sample used here was not a mixture of study
samples but material of control B3 cells not activated with tamoxifen. The internal standard
solution for the GC-MS and LC-MS consists of 13C labeled yeast extract, which is added to
each study sample at the beginning of the sample preparation process to correct for
experimental errors made during the sample processing. For LC-MS an additional internal
standard solution is added consisting of 13C labeled amines for most of the amines
measured with the platform. For LC-MS the labeled versions of the metabolites were used
as internal standard while for GC-MS the best internal standard was chosen based on the
smallest residual standard deviation of the QC samples. During the process of
measurement, the time points for each batch were randomized, but each Ikaros sample and

its control were maintained together.

Omics pre-processing
Data pre-processing is next described in detail for each omics type. Figure 4 shows a
comparative overview of the different preprocessing pipelines.

RNA-seq miRNA- RRBS DNase-seq scRNA-seq ATAC-seqMetabolomicsProteomics
seq

Trimming Trimming Identification | Identification
1
Mapping Mapping Mapping
Methylation I I
calling
1 1
Coverage
filtering :
Smoothing 'Sampk“- Filtering
discarded
e M-value e Missing value
Quantification : A . Quantification it
1 1
Length/GC Cuffnorm TM_M .
Normalization Normalization Normalization
1 1
Batch effect Platform
correction :
M fusion

Filtering

Filtering

¢ \ 4

12,762
features

9,075
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Figure 4. Preprocessing pipelines for 7 omics technologies. See methods for details.
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RNA-seq

Tophat2*? was used to map fragments to the mm10 reference genome; the very-sensitive
mode only allowing a unique best mapping per fragment was used. Piccard
(https://broadinstitute.github.io/picard/) and Fastqc*® were used to perform a quality control
considering elements such as duplication levels, GC content and k-mer overrepresentation.
We observed that the duplication level was high (over 90%) in most samples as expected for
high sequencing-depth in RNA-seq; additionally, some samples were having a GC content
over-representation (Supplementary file S1). Trimming was applied to remove lllumina
primers and low-quality nucleotides. HTSEQ* intersection-option was used to assign
fragments to genes. Data were normalized using cqn®, which corrects for GC content and
gene-length. A non-parametric version of Combat methodology*® was used after cqn to

correct for library-preparation effects.

miRNA-seq
The quality of the sequencing reads was checked with the Fastqc tool with good results
(Supplementary file S1). Alignment of raw data was performed using Novoalign

(http://novocraft.com/) on mouse mMIRNA sequences from mirBase. Quantification was

performed using multiBamCov*’ and counts were found for 1,086 out of 1,908 miRNAs
present in the database. Low count miRNAS were further filtered out with the CPM (counts
per million) method in NOISeq R package48 by setting a threshold of 1 for CPM. The final
dataset contained 469 miRNAs. GC content bias was eliminated with the cqn R package®,
and data was normalized by TMM*. PCA analysis indicated that, although Control and
Ikaros samples separated well above batches, a batch effect was observed for different

t*® and technical

Ikaros time points (not shown). This bias was corrected by ComBa
replicates were used to avoid confounding batches with experimental conditions. After batch

correction, technical replicates were averaged for further analyses.

DNase-seq

DNase-seq reads were trimmed to 36bp and paired-end mapped to the mm10 reference
genome using Bowtie2*® with options: -v 2 -k 1 -m 1 --best —strata. DNase-seq peaks were
called for each replicate using the HOMER findPeaks function. We employed a specific
peak-calling strategy to capture several features of our DNasel hypersensitive sites (DHS).
Our strategy was to include both ‘narrow’ and ‘broad’ DHS peaks in our analysis. This
captured a comprehensive set of sites with a wide DHS dynamic range. Initially, we used
HOMER to determine narrow DHS peaks using a default size parameter (120-150bp) with a

minimum peak distance of 50bp between DHS and an FDR of 1%. We then included a
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second round of peak calling, restricting to a peak size of 500bp with a minimum peak
distance of 50bp between DHS peaks and an FDR of 1%. We then merged the two peak
sets for each replicate. We required a minimum 1bp overlap of peaks across all three
biological replicates for each time-point respectively and generated a consensus DHS peak
list across all time-points.

The consensus DHS (53,624) were filtered for chrM peaks, partial chromosomes,
and mouse ENCODE blacklist regions. Counts representing the chromatin accessibility were
estimated for each consensus DHS using the Bedtools coverageBed function. Additionally,
no DHS were considered with less than 10 reads (~1 RPM) in all time-points, resulting in a
final dataset with 52,788 consensus DHSs. Data were normalized by a combination of
RPKM and TMM. An unwanted source of variability was detected in the data that could not
be associated with any experimental factor such as production batches or library
preparation. Therefore, a method like ComBat could not be applied in this case but we used
the ARSYN method®’ instead which can estimate the systematic sources of noise and then

correct the data to remove them.

RRBS

Initial quality assessment was based on data passing the lllumina Chastity filter. The second
quality assessment was based on the reads using the Fastqc quality control tool version
0.10.0. Reads were adaptor- and quality-trimmed using Trim-Galore Software v0.3.4
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) in RRBS paired-end mode,
in order to decrease methylation call errors arising from poor quality data. Mapping to the

1%2 and

reference genome (GRCm38, mm10) was performed using Bismark v0.10.
Bowtie2®. The quality of the mapping was inspected using HTSEQ-ga**. SAM files were
used as input in Bismark to obtain methylation calls. Paired-end mode with no overlap mode
was specified. The first four bases from each read were avoided to eliminate M-bias, i.e.
deviation from the horizontal line in the mean CpG methylation level for each read position.
BedGraph and *.cov files were further considered and analyzed with the BiSeq package®.
Coverage was inspected before proceeding to smooth the methylation levels (between 0 and
1) per CpG site. Briefly, we firstly defined “frequently covered CpG sites” as those sites that
are covered in at least 2/3 of the samples. The frequently covered CpG sites were
considered only to define the cluster boundaries and we defined CpG clusters using a
maximum distance of 100 bp and at least 20 CpGs. This selection resulted in 1,116,417
CpG sites within CpG clusters, with no threshold on coverage. The extra coverage of
unusually high covered sites (95% quantile of the coverage) was eliminated to remove
potential biases during the smoothing step introduced by CpGs with exceptional high

coverage. Then, the methylation levels were smoothed with a bandwidth of 80 bp as
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described®. Clustering analysis was performed with the methylation estimates of the 20%
most variable positions (based on CV), with multidimensional scaling or hierarchical
clustering. M-values were obtained after thresholding methylation levels in the interval [0.01,
0.99] to avoid infinite values, as M = log2(b/(1-b)), where b is the constrained methylation

level. The final dataset contained a total of 1,116,417 Methylation features.

Single-cell RNA-seq

A total of 560 single-cell RNA-seq libraries were mapped with Tophat54 to the mouse
Ensembl gene annotations and mm10 reference genome. Single-cell libraries with a
mapping rate less than 50% and less than 450,000 mapped reads were excluded from any
downstream analysis, resulting in 324 single-cells for all subsequent analysis. Cufflinks®®
version 2.2.1 was used to quantify expression from single-cell libraries using Cuffquant.
Gene expression measurements for each single-cell library were merged and normalized
into a single data matrix using Cuffnorm. Genes with zero counts in more than 80% of the

samples were removed resulting in a data matrix with 9,075 genes.

ATAC-seq

Single-cell libraries were mapped with Bowtie®™ to the mm10 reference genome using the
following parameters (bowtie -S -p 2 --trim3 10 -X 2000). Duplicate fragments were removed
using Picard (http://picard.sourceforge.net). We considered single-cell libraries that
recovered > 5k fragments after mapping and duplication removal. Bulk ATAC-seq replicates
were mapped to the mm10 reference genome using the following parameters (bowtie2 -S -p
10 --trim3 10 -X 2000). Peak calling was performed on bulk replicates using HOMER with
the following parameters (findPeaks <tags> -o <output> -localSize 50000 - size 150 -minDist
50 —fragLength 0). The intersection of peaks in three biological replicates was performed. A
consolidated list of 25,466 peaks was generated from the union of peaks from 0 and 24 hour

time-points.

Proteomics

Data were searched against a protein sequence database containing all confirmed mouse
protein sequences from the Uniprot database (swissprot), common contaminants and
reversed using the Andromeda algorithm within the MaxQuant software suite version 1.5.0.0.
Mass deviation settings for peptide detection were 20 ppm for the first search and 7 ppm for
the main search. IT MS/MS data were searched with a mass accuracy of 0.6 Da. N-terminal
acetylation and methionine oxidation were set as variable modifications,
carbamidomethylation of cysteine as fixed modification. Unidentified signals, present at a

similar retention environment, were matched if at least one run had a positive identification of
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the peptide sequence by enabling the match between run option within an alignment time
window of 30 min. Obtained search results were filtered for reversed database hits on the
peptide spectrum match level (1%) and the protein level (2%) and all protein groups with at
least 1 razor or unique peptide were initially accepted. For quantitation of proteins over the
different timepoints, light protein intensities were extracted from the data file for each protein.

Distant measuring intervals and long gradient times lead to a substantial variation
between peak localization and areas of individual LC-MS/MS runs resulting in a huge
number of missing values. This issue was addressed by:

a) Alternative LC MS/MS alignment routines. Upon the observation that missing values
were not randomly distributed, but associated to particular samples, we believed that
a misalignment of chromatograms played a role. We improved the alignment
between samples to rescue some of the missing values.

b) RNA-seq data was used as database source protein identification. The rationale is
that the mRNAs of expressed proteins should be found within the RNA-seq detected
genes. Reducing the size of the protein database to proteins detected by RNA-seq
will reduce the number of false hits and lead therefore to more specific data on the
pre-B cell proteome. Since proteomic data exhibit a lower coverage of the proteins
abundant in a cell, a substantial data loss is not expected.

c) A conservative missing value imputation strategy was applied to log2-transformed
data corresponding to 2,527 proteins. Briefly, this strategy discarded proteins with a
large number of missing values, considered as not expressed those proteins that
were missing either in the whole Control or lkaros condition, and imputed values in
conditions with only 1 out of 3 missings. Samples were normalized by the mean of
medians per experimental condition. Proteins with missing values in all the 3
replicates per condition in at least 11 of the 12 conditions were discarded, resulting in
2,396 proteins used for the imputation. Proteins with all missing values in the Control
condition were imputed from a Gaussian distribution with mean 50% of the minimum
sample value and with standard deviation equal to the median of all within-group
standard deviations for all the proteins in the original data. The same procedure was
followed for lkaros condition. Finally, when for a given condition only one of the three
biological replicates was missing, the missing value was computed as before but
using the mean of the two measured values. The resulting imputed data with no
missing values were normalized by TMM. Both imputed and non-imputed datasets

are available at the STATegra figshare repository.
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Metabolomics

For the GC platform, a 13C labeled yeast extract was added as internal standard. A Quality
Control (QC) sample was measured every 6 samples. For each of the compounds measured
on the GC platform, the labeled compound peak that led to the smallest standard error in the
QC samples for that compound, was selected as internal standard. Because the amount of
sample was almost completely used for the two analytical platforms no replicate analyses
were possible. This meant that the internal standard selection could not be validated using
replicate samples as is common practice. For the targeted LCMS method, the optimal
internal standards for each metabolite were chosen during optimization and validation of the
method. The limited within batch drift effects were corrected using the batch correction
approach developed by van der Kloet et al*®.

Four biological batches (batches 9 through 12) were provided to the metabolomics
platforms, which were (physically) different from the batches used for mRNA-seq, miRNA-
seq and proteomics. Visual inspection showed that samples of batch 11 and 12 were not
completely dry. Analysis of some key metabolites and PCA showed batch 12 levels to be
outside the general trend in batches 9, 10 and 11 (not shown). Therefore, it was decided to
exclude batch 12 from further analysis.

Both analytical platforms show some overlap in the metabolites that were measured.
On GCMS 22 metabolites were uniquely quantified and 18 metabolites were quantified
uniquely on LCMS, while 18 metabolites were quantified both on GCMS and LCMS, making
a total of 58 metabolites. Although the intensity levels of the GCMS and LCMS were rather
different a high correlation between the two platforms for most overlapping metabolites was
observed. Metabolite levels were log scaled and levels were mean-centered over the three
batches 9, 10 and 11. For the metabolites that were measured both on GCMS and LCMS,

the LCMS values were selected as this platform is targeted for these types of metabolites.
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Data Records

Raw data

STATegra multi-omics data have been deposited in different public repositories dedicated to
different data types. Table 1 shows a list of the current hosting of raw data files. Moreover,
pre-processed data arranged as a data-matrix per omics data-type have also made available
at Lifebit (https://lifebit.ai/) site. Additionally, preprocessing scripts and intermediate files are

available at the STATegraData GitHub repository.

Table 1. Public repositories hosting STATegra multi-omics data.

Data set Database and accession
mRNA-seq GEO, GSE75417
miRNA-seq GEO, GSE75394
RRBS GEO, GSE75393
DNAse-seq GEO, GSE75390
ATAC-seq GEO, GSE89362
scRNA-seq GEO, GSE89280
scATAC-seq GEO, GSE89362
ChlIP-seq GEO, GSE38200
Proteomics ProteomeXchange,
PXD003263
Metabolomics | Metabolights, MTBLS283

STATegra Knowledge Base
In order to evaluate how to best integrate and semantically map specific prior knowledge and
relevant information derived from multiple sources together with heterogeneous
experimental data, a STATegra Knowledge network for B-cell differentiation (KB) was
(applying the  BioXM™

(https://ssl.biomax.de/stategrakb/). Prior

developed knowledge  management  environment®’

knowledge includes among others relevant

molecular elements (genes, proteins, metabolites, etc.), functional information (GO, OMIM,
etc.), functional interactions (e.g. protein-protein interaction, transcriptional regulation (e.g.
mouse TF-regulatory network), miRNA network, etc.) and information about gene homologs
(mouse, rat, human). Also, genome features with coordinates for peak-to-gene associations

of NGS data (e.g. mouse genome assembly mm10), metabolic and signal transduction
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pathways, cell types related to B-cell differentiation as well as ontologies such as the mouse
anatomy ontology (MGI) were incorporated. This integrated and dynamically organized
knowledge serves as information rich, structured background network. Semantic mapping of
experimental data to this background network of prior knowledge enables complex
integration and analysis approaches®®. The STATegra Knowledge Base visualizes multiple
omics data types and summarizes information from different layers on top of a network
graph. The overlay of experimental data on top of such networks helps interpretation of

results as well as validate database predictions.

Technical validation
Validation of time course replicability
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Figure 5. Biomarkers of B3 cell differentiation across three experimental batches.
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As a quality control of batch replicability, real time RT-PCR was used to check the impact of
Ikaros in gene expression upon induction and reproducibility across time course
experiments. RNA from all samples was extracted using RNAbee (AMS Biotechnology
(Europe) Ltd) and treated with Turbo DNAse (Life technologies). Bioanalyser technology was
used to check the RNA integrity and samples were quantified using a Nanodrop. Changes in
the expression of few previously identified lkaros-responsive genes were analyzed (Figure
5). As expected®, early down-regulation of /gll1 and Myc, late down-regulation of Sic7a5,
Hk2 and Ldha, and up-regulation of Foxo1 and Lig4 were consistently observed in the three
independently collected time course replicates. Either frozen pellets or RNA samples from
the time course experiments and Oh time point collections were sent to the different

experimental labs to perform the library preparation for the sequencing.

Validation of dataset replicability and co-variation structure.

To assess the quality of our data we analyzed the correlation values between replicates of
the same condition and compared to correlation values when samples belonging to different
conditions were compared (Figure 6A). We applied this analysis to RNA-seq, miRNA-seq,
Dnase-seq, Methyl-seq, proteomics and metabolomics. ChiP-seq and ATAC-seq data were
excluded as only two replicates were available in each case. Also, single-cell data was
excluded from this analysis, as the zero-inflated nature of the technologies makes correlation
analysis meaningless. We found that, for all technologies, biological replicates had very high
correlation (> 0.9, Figure 6A), in general higher than the correlations among samples of
different experimental conditions that also displayed a wider range of values. This result
reflects the time course nature of the experimental design, where closer time points have
higher correlations than distant time points.

To further validate data and to understand whether the different omics measurements
captured the dynamics of B-cell differentiation and/or had a similar co-variation structure, we
ran Principal Component Analysis for all datasets (Figure 6B). In general, the different multi-
omics datasets show PCA plots that recapitulate the time progression of our inducible
system. A well spread temporal progression on the first PC was observed for mRNA-seq,
miRNA-seq and scRNA-seq data, being RNA-seq the dataset with the most consistent
progression signal. Metabolomics and Proteomics showed a two-stage pattern, with samples
from Oh-12h hours clustering at negative values, and samples at 18h-24h clustering at
positive values of the first and second PC, respectively. DNase-seq showed a noisier, but
distinguishable distribution of the temporal signal at PC2, while RRBS is the only dataset
with an unclear temporal pattern. For scATAC-seq, only two time points were measured and
cells nicely separated on the second PC. This analysis reveals that multi-omics datasets

consistently described the progression of B-cell differentiation but also that the different
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omics technologies present different noise levels. Interestingly, dynamic patterns are slightly
different for nucleic acids and proteins and metabolites, possibly indicating a later response

of these with respect to the transcriptional change.

a ) mRNA-seq miRNA-seq RRBS
0.990
0.98 q 0.99
0.4 0.98
¢ 0.980 -
0.92 4
0.97 .
0.90 4 ° 0.975 - E
0.88 4 0.96 4 8 .
0.970 4
0.86
Acv‘oss Wn‘hm Acr‘oss W\l‘hvn Acv‘oss Wu‘hm
Metabolomics DNase-seq Proteomics
10 1.00
085 0851
08
H ° 0.80 0.80 - .
07 E 075 3 . 0759
0.70 4 g 0.70
H
08 ; , 065 - , 065 . ,
Across Within Across Within Across Within
b) mRNA-seq miRNA-se RRBS Proteomics
[ ] © -
Tk24h s k24h @p
R ps o lm 8h 1k24h,
° o o @Ik18h 1k24h
e _ [ikigh
2 @ ° B 1k24h| 2 P
© (@) @ g @ @ O « >
bl ° wish | & o @ ° R [5) OQ@)
Ik18h N 0 Ik18h @ |8 | .
& Qo & O = & )
Q kigh, Syl O o r % @ 2| S
1k24h| ) 1k18n k180 “’HL( 4 1k24h o
"
o Py, ®r2dn I8 Q
oo m o momoe : ¢ " © @ o w0 w0 wo we wo 2 " o
PC1:51.84% PC1: 32.28% PC1: 12.26% PC1:35.91%
Metabolomics . DNase-seq SCATAC-seq scRNA-seq
1k24h lk24h @ [ o LX) on oo |
: b Ik18h ! 1k244
R xR @ Iki8h e @ <"
S 0° 3] wish@ ) 24 s ° <
© @ e S o] o 2 104 oo |
- = “1k18h@ ® - ©
Y k2ah@| & . 1O N o &
13 O O 3
a © ® o a o o
1° oce 1K18h 10 L o 5000 &
kish® 2@ s > 21D P * ° s
: H : H PR o © » © 20 . » w00 toom o o
PC1: 64.26% PC1:28.87% PC1:5.39% PC1:13.83%

Figure 6. Quality control of STATegra multi-omics data. A) Distribution of pair-wise correlation values for
samples belonging to different (Across) or the same (Within) experimental conditions. B) PCA analysis. Only the
Ikaros series is shown. Data were preprocessd as described in Methods. Time progression is represented by an

increasingly darker red color.

Multi-layer data example

In order to illustrate the consistency of the STATegra multi-layer data, we analyzed values
for the lactate dehydrogenase A gene (Figure 7). LDHA catalyzes pyruvate to lactate
conversion in the final step of anaerobic glycolysis (Figure 7A). Ldha is one of known Ikaros
target genes* and downregulated upon Ikaros-induced differentiation of the B3 cell line
(Figure 5). The STATegra footprint data confirmed that Ikaros binds to the promoter region
of the Ldha gene (Figure 7B) while the promoter DHS signal, mRNA and protein levels were
downregulated as cells progressed towards the pre-Bll stage (Figure 7C). We obtained
confirmed microRNAs targeting the Ldha transcript 3'UTR from the mirWalk database® and
identified four microRNAs with a strong negative correlation with Ldha expression levels
(Figure 7C). One of these microRNAs, mir449a-5p, has been reported to bind and regulated
Ldha in human cells®. Finally, STATegra data indicated a general downregulation of

glycolysis (Figure 7D), as previously described, and confirmed a decrease in pyruvate and
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lactate at mid-late time points of differentiation (Figure 7A). In summary, the STATegra data
recapitulates known metabolic-switch observations in the B3 system and showed a

consistent pattern of change across regulatory layers.

A 3
Pyruvate
Metabolism

l C DNasel-seq data

% Ldha

2-Hydroxy-
ethyl-ThPP
O

,

Tanaa]
1155 Propanate metabolism

B Chr7 ssssor  wssamm  ssssnm  sssessonp  sssesob  assaseaoby

Pyruvate|

[l =? L-Lactate
| q
v Gene expression

IKZF1 Footprint (DNase-seq)

Oh

2h A .k

6h . ‘

12h vy - Proteomics

18h
24h

Ldha
Ldha

DHS

IKZF1 Peak (ChIP-seq)

D Metabolomics Metabolomics

miRNA-Seq data

* L-Lactic aci,

* Ldha

E % Ldha

Gene Expression Proteomics DNasel-Seq data
© 1 major trends in this pathway @ 1 major trends in this pathway @ 1 major trends in this pathway % Ldha

10 15 3  Ldha

== =

Cluster 2 -8~ Cluster 1 -8~ Cluster 1

Figure 7. STATegra data for lactate dehydrogenase A. A) LDHA reaction at glycolysis. B) Promoter regions of
the Ldha gene showing a DSH and IKZF1 footprint identified by DNase-seq. Only values for the Ikaros-induced
time course are shown. In red, the IKZF1 ChlP-seq peak region. C-E: Paintomics®’ representation of Ldha data.
Boxes display mean log2FC values between lkaros and Control at 0,2,6,12,18 and 24 hours after lkaros
induction. Red indicates up-regulation, blue indicates down-regulation. C) Ldha data for DNase-seq, RNA-seq,
Proteomics, and miRNA-seq. miRNA-Ldha target data was predicted by at least 5 algorithms in the mirwalk®>®
database. D) STATegra log2FC values for pyruvate (left) and lactate (right). E) Major Gene Expression,

Proteomics, and DNase-seq trends for glycolysis pathway computed by Paintomics®’.
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