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Abstract 
Multi-omics approaches use a diversity of high-throughput technologies to profile the 

different molecular layers of living cells. Ideally, the integration of this information should 

result in comprehensive systems models of cellular physiology and regulation. However, 

most multi-omics projects still include a limited number of molecular assays and there have 

been very few multi-omic studies that evaluate dynamic processes such as cellular growth, 

development and adaptation. Hence, we lack formal analysis methods and comprehensive 

multi-omics datasets that can be leveraged to develop true multi-layered models for dynamic 

cellular systems. Here we present the STATegra multi-omics dataset that combines 

measurements from up to 10 different omics technologies applied to the same biological 

system, namely the well-studied mouse pre-B-cell differentiation. STATegra includes high-

throughput measurements of chromatin structure, gene expression, proteomics and 

metabolomics, and it is complemented with single-cell data. To our knowledge, the 

STATegra collection is the most diverse multi-omics dataset describing a dynamic biological 

system. 

 

Background and Summary 
The concept of multi-omics and data-integration has been increasingly used during the last 5 

years to describe the multitude of high-throughput molecular technologies that can be 

applied to the study and analysis of biological systems1. Such techniques hold the promise 

to uncover the different biological processes and layers of regulatory complexity within 

biological systems. In brief, high-throughput molecular methods can extract information of 

essentially three basic, yet different components of living cells. Nucleic acids can readily be 

profiled using massive, parallel sequencing, which in turn provide deep a characterization of 

chromatin properties (i.e. Hi-2C, ATAC-seq3, DNase-seq4, ChIP-seq5, WGBS6, RRBS7) and 

the dynamics of gene expression (i.e. RNA-seq8, microRNA-seq9,10, PAR-CLiP11, iCLIP-

seq12). Proteins are measured by proteomics and phosphoproteomics approaches,  based 

on Liquid Chromatography (LC) or Isotope-coded affinity tag labeling (iTRAQ) coupled to 

Mass Spectrometry (MS). Finally, the metabolome and lipidome, i.e. organic compounds, 

are captured using mature techniques such as LC/GC-MS or Nuclear Magnetic Resonance 

(NMR). Increasingly, multi-omics technologies are applied during the same physiological 

conditions from either the same or different samples to generate a comprehensive set of 

data spanning multiple molecular levels. The general expectation of multi-omics projects is 

that the combination of multi-layered data will reveal aspects of the complexity of biological 

systems that cannot be fully understood using only a particular data-type. Moreover, in 

addition to the exciting technical reality of being able to monitor several complementary data-
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types, the community has come to realize the power of using time in the experimental 

design. Hence, by collecting data over time, where as a rule the different molecular entities 

are correlated, it is much more amenable to extract key processes from each data-type as 

well as uncovering dependencies between different regulatory layers. These technical and 

conceptual advances are currently being transferred into the vibrant single-cell biology 

community. Thus, recent advances in single-cell omics technologies have made it feasible to 

perform multi-omics profiling of individual cells. Consequently, the single-cell community can 

benefit from the experiences and lessons derived from time-dependent bulk multi-omics 

analysis. Clearly, a high-resolution single-cell analysis has proven crucial to assess tissue 

heterogeneity13-15, cell fate16,17. In conclusion, we are most likely entering an era where we 

can target regulatory networks in single cells18 using a temporal paradigm coupled to a multi-

omics analysis.  

       While multi-omics projects are frequently depicted as a set of stacked molecular layers 

that are connected to pass information from the genetic component to the organismal 

phenotype, the harsh reality is that still many multi-omics project are constrained by 

budgetary restrictions and sample limitations which evidently reduce the number 

technologies that can realistically be assessed. In most cases, only a few data types can be 

included, with a limited number of samples, and analyses is as a rule restricted to focus on 2 

or 3 regulatory layers. A few international projects have however successfully collected large 

datasets and generated comprehensive portfolios of omics measurements. For example, 

ENCODE19, TCGA20, IHE21, ImmGen22, had the explicit goal to perform an extensive 

characterization of a particular set of cells or tissues. These projects have impacted the 

scope and type of analysis methods and scientific discoveries that can be achieved so far by 

the multi-omic approach. In some cases combining multi-level data has the ambition to 

increase the required statistical power to enable the classification of samples or predict 

disease outcomes. By measuring different types of features the chance of identifying 

relevant biomarkers increases, but the analysis does not automatically lend itself to a 

mechanistic account of the inter-dependencies between these biomarkers as well as their 

relationship with the outcome, such as a disease. In some cases however, two specific 

omics layers are measured in order to probe their regulatory relationships. For example, 

methods that integrate ATAC-seq or RRBS with RNA-seq might shed light on the epigenetic 

control of gene expression23, while integrating transcriptomics and metabolomics data may 

help elucidate metabolic regulation24,25. Yet, there have been very few multi-omic studies 

that evaluate dynamic processes such as cellular growth, development and adaptation. 

Hence, we still lack formal analysis methods and comprehensive multi-omics datasets that 

can be leveraged to develop true multi-layered models for dynamic cellular systems. This 

state-of-affairs has been the rationale underpinning the formulation of what is referred to as 
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the STATegra project (http://www.stategra.eu/). This is a transnational initiative to develop 

methods, software and data for dynamic multi-omics analyses. From the STATegra project 

several tools for integrative multi-omics data analyses have been published and released26-

33.  

      Here we share the collection of the different STATegra datasets, a multi-omics dataset 

that combines measurements from up to 10 different omics technologies applied to the same 

biological system. STATegra uses a well-studied system, namely mouse pre-B-cell 

differentiation, in a cell line model34. This is a highly reproducible in vitro system33-36 that 

allows the generation of sufficient material to deploy a comprehensive set of omics 

measurements. STATegra covers the three types of biomolecules and the different layers 

that comprise the basic flow of genetic information: chromatin structure (through DNase-seq, 

RRBS and ChIP-seq), gene expression (RNA-seq and miRNA-seq), proteomics and 

metabolomics. The collection is complemented with single-cell RNA-seq and ATAC-seq data 

on the differentiating conditions. The STATegra multi-omics dataset is unique in the number 

and diversity of omics technologies available and in the dynamic nature of the system. Our 

ambition has been to generate this collection of data to serve – in full or using parts of it- as 

workbench for the development of integrative analysis methods for the multi-layered systems 

biology.  

In previous studies, ChIP-seq data from this collection have been used to identify 

Ikaros targets34. ChIP-seq, DNase-seq, RNA-seq and scRNA-seq datasets were used in 

Vidal et al.37 to describe the cross-talk between IKAROS Foxo1 and Myc transcription factors 

in regulating B-cell development. scATAC-seq, scRNA-seq and ATAC-seq data have been 

used to develop new statistical methods for the integration of single-cell multi-omics33. 

 

Methods 
Experimental design 
Figure 1 illustrates the STATegra dataset. The mouse B3 cell line models the pre-BI (or 

Hardy fraction C’) stage. Upon nuclear translocation of the Ikaros transcription factor these 

cells progress to the pre-BII (or Hardy fraction D) stage, where B cell progenitors undergo 

growth arrest and differentiation34,38. The B3 cell line was retrovirally transduced with a 

vector encoding an Ikaros-REt2 fusion protein, which allows control of nuclear levels of 

Ikaros upon exposure to the drug Tamoxifen34. In parallel, cells were transfected with an 

empty vector to serve as control for the Tamoxifen effect.  After drug treatment, cultures 

were harvested at 0h, 2h, 6h, 12h, 18h and 24hs (Figure 1A) and profiled by several omics 

technologies: long messenger RNA-seq (mRNA-seq) and micro RNA-seq (miRNA-seq) to 

measure gene expression; reduced representation by bisulfite sequencing (RRBS) to 
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measure DNA methylation; DNase-seq to measure chromatin accessibility as DNaseI 

Hypersensitive Sites (DHS) and transcription factor footprints, shotgun proteomics and 

targeted metabolomics of primary carbon and amino-acid metabolism. Moreover, single-cell 

RNA-seq (scRNA-seq) data for the entire time-series, while bulk ATAC-seq (ATAC-seq) and 

single-cell ATAC-seq (scATAC-seq) were obtained in a later round of experiments for 0h and 

24h-time points of Ikaros induction only (no control series were run for these datasets). The 

dataset is complemented by existing ChIP-seq data on the same system equivalent to our 

0h and 24h time points34. In total, 793 different samples across the different omics datasets 

define the STATegra data collection (Figure 1B). 

The time points analyzed were based on previous microarray studies34 and have been fully 

validated by comparing the transcriptional response in this experimental system to pre-B cell 

differentiation in vivo37. Ikaros translocates to the nucleus of B3 cells within minutes, binds to 

target promoters and changes RNAP2 occupancy and primary transcript levels with 

immediate effect36. The 2h time point is relatively late compared to changes in primary 

transcript levels36 and was chosen because the data presented here were generated by 

conventional RNA-seq, which relies on changes in steady state, rather than primary 

transcript levels. 

 

Culture conditions 
B3 cells containing inducible Ikaros can be expanded before induction of Ikaros to produce 

sufficient material for all omics experiments. G1 arrest occurs within 16 h following Ikaros 

induction. Cells containing inducible Ikaros were generated by transducing mouse pre-B cell 

line B3 with mouse stem cell virus (MSCV) retroviral vectors encoding a fusion protein of  

haemagglutinin-tagged wild type Ikaros (HA-Ikaros) and the estrogen receptor hormone-

binding domain (ERt2), followed by an internal ribosomal entry site (IRES) and GFP. Control 

cells were generated by transducing mouse pre-B cell line B3 with mouse stem cell virus 

(MSCV) retroviral vectors encoding the estrogen receptor hormone-binding domain (ERt2) 

followed by an internal ribosomal entry site (IRES) and GFP. Retroviral infected B3 cells 

were sorted based on GFP levels. GFP positive cells were expanded in culture for few days 

(3-4) and then frozen. Frozen vials containing 5 million cells were stored in liquid nitrogen. 

For time course experiments, 10 million control and Ikaros cells were thawed and 

expanded for 4 days. Four days later cells were plated for induction of the different time 

points. Both control and Ikaros cells were split in flasks containing 20 million cells at a 

density of 0.5 million cells per ml each. For time point inductions, 0.5uM 4-hydroxy-tamoxifen 

(4-OHT) was added to both, a flask containing Ikaros cells and a flask containing control 

cells, at one of the specified times: 2h, 6h, 12h, 18h or 24h before collection. Cells for time 

point 0h (no 4-OHT) induction were obtained separately in three different batches (Figure 
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1B). All cells within the same experimental batch were harvested simultaneously. Cells were 

centrifuged for 5 min at 1200 rpm, washed twice in PBS and counted to aliquot. Aliquots of 

10 million cells were done for RNA-seq and metabolomics and proteomics platforms and of 5 

million cells for miRNA-seq and Methyl-seq platforms. Cell pellets were snap-frozen in liquid 

nitrogen and stored at -80. 20-25 million and 50,000 cells were used for DNase-seq and bulk 

ATAC-seq samples. The full time course experiment was repeated different times (batches) 

to generate biological replicates (Figure 1B). The same physical cultures were used to obtain 

cells for mRNA-seq, miRNA-seq, RRBS and proteomics. Other omics technologies ran their 

own cultures to obtain cell material.   

 
Figure 1. STATegra data generation. A) Inducible Ikaros B3 cell system. Time course experiment collects 
samples at 6 time-points after Tamoxifen induction of Ikaros expression, Control cells carry empty vector. B) 
Diversity of omics platforms, number of biological replicates, batch distribution and lab assignment for B3 cell 
culture and omic library preparation. Data on each row corresponds to the one omics type on the left. + Previous 
data from 34. 
  
Acquisition of Multi-omics data 
RNA-seq 

Total RNA was isolated with RNAbee (Ambion), frozen ICL and transported via courier (<1 

day) to Karolinska Institutet. To account for the impact of the different sources of variability 

during RNA-seq profiling, we implemented a carefully balanced distribution of samples in 

relation to time points (6 time points), treatment (Ikaros vs Control), library preparation, bar-

code, sequencing run and lanes and biological replicates (3 batches). Briefly, samples were 

first balanced in six library preparation runs of 6 samples each (Figure 2). Secondly, each 
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RNA-seq library was split into two (total of 72) in order to better account for variability 

associated with sequencing. Finally, for sequencing, 75 nucleotides paired-end, the 72 

libraries were balanced into 4 flow-cells and in each lane we included 3 libraries. In each 

lane, we ensured to have different libraries, different batches, different time points and at 

least both conditions present. Additionally, we balanced the time-points, conditions and 

batches within each flow-cell. For each flow-cell, a full lane was reserved for quality control. 

We aimed to obtain 50M reads per library, therefore 100M reads per sample. Libraries were 

built using the strand-specific RNA-seq dUTP protocol39. Sequencing was conducted on an 

Illumina HiSeq 2500 platform.   

 
Figure 2. Experimental design for RNA-seq. 
 
Small RNA-seq for miRNA analysis  

Small RNA-seq analysis was performed using Trizol-extracted total RNA of 3 biological 

replicates (4,5,6) for time 0h and total RNA of 3 biological batches (1, 2 and 3) for times 2h, 

6h, 12h, 18h and 24h. RNA quality was assessed using Bioanalyzer (Agilent Technologies) 

evaluating the RNA integrity number (RIN). The library was generated using TruSeq Small 

RNA Sample Preparation Kit and deep sequencing was performed in Illumina Hiseq 2000 

platform. Between 15 and 20 millions of sequencing reads were obtained from each sample. 

The library preparation and sequencing of the biological replicates were conducted in 

two different occasions (technical batches). Figure 3 shows the experimental design 

according to the batch in which samples were processed. There were two experimental 

conditions (C=Control, IK=Ikaros) and the 3 biological replicates per condition and time point 

were numbered as 1, 2 and 3. For some of these biological replicates one additional 

technical replicate was generated (Figure 3) in order to estimate the variability between 

technical batches and to correct any potential batch effect. 
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Figure 3. Experimental design for small RNA-seq. Two 
sequencing batches were run. Samples with red filling were 
repeated at both batches to allow for estimation of batch 
effects. 
  
DNase-seq 

DNase-seq was performed on ~20-25 million cells 

with 3 biological replicates for all time-points (0-24 

hours) and conditions (Ikaros-inducible and 

control). Briefly, cells were harvested and washed 

with cold 1X PBS, prior to nuclei lysis. Lysing 

conditions were optimized to ensure >90% 

recovery of intact nuclei. DNaseI concentrations 

were titrated on Ikaros-inducible and control cells 

using qPCR against known positive DNaseI 

hypersensitive promoters (Ap2a1, Ikzf1, Igll1) and 

negative inaccessible hypersensitive promoters 

(Myog, Myod) in our biological system, thereby reducing excessive digestion of DNA. 

Enrichment of DNaseI hypersensitive fragments (0-500bp) was performed using a low-melt 

gel size selection protocol. Library preparation was performed and sequenced as 43bp 

paired-end NextSeq 500 Illumina reads. DNaseI libraries were sequenced at a minimum 

depth of 20 million reads per each biological replicate. To perform DNaseI footprinting 

analysis, libraries were further sequenced and merged to achieve a minimum of 200 million 

mapped reads.  

 

RRBS 

Genomic DNA was isolated using the high salt method and used for reduced representation 

bisulfite sequencing (RRBS), a bisulfite-based protocol that enriches CG-rich parts of the 

genome, thereby reducing the amount of sequencing required while capturing the majority of 

promoters and other relevant genomic regions. This approach provides both single-

nucleotide resolution and quantitative DNA methylation measurements. In brief, genomic 

DNA is digested using the methylation-insensitive restriction enzyme MspI in order to 

generate short fragments that contain CpG dinucleotides at the ends. After end-repair, A-

tailing and ligation to methylated Illumina adapters, the CpG-rich DNA fragments (40–220 

bp) are size selected, subjected to bisulfite conversion, PCR amplified and then sequenced 

on an Illumina HiSeq2500 PE 2x100bp40. The libraries were prepared for 100-bp paired-end 

sequencing. Around 30 million sequencing reads were obtained from each sample. 
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Single-cell RNA-seq 

Single cells were isolated using the Fluidigm C1 System. Single-cell C1 runs were 

completed using the smallest IFC (5-10 um) based on the estimated size of B3 cells. Briefly, 

cells were collected for each time-point at a concentration of 400 cells/µl in a total of 50 µl. 

To optimize cell capture rates on the C1, buoyancy estimates were optimized prior to each 

run. Our C1 single-cell capture efficiency was ~75-90% across 8 C1 runs. Each individual 

C1 capture site was visually inspected to ensure single-cell capture and cell viability. After 

visualization, the IFC was loaded with Clontech SMARTer kit lysis, RT, and PCR 

amplification reagents. After harvesting, cDNA was normalized across all libraries from 0.1-

0.3 ng/µl and libraries were constructed using Illumina’s Nextera XT library prep kit per 

Fluidigm’s protocol. Constructed libraries were multiplexed and purified using AMPure 

beads. The final multiplexed single-cell library was analyzed on an Agilent 2100 Bioanalyzer 

for fragment distribution and quantified using Kapa Biosystem’s universal library 

quantification kit. The library was normalized to 2 nM and sequenced as 75bp paired-end 

dual-indexed reads using Illumina’s NextSeq 500 system at a depth of ~1.0-2.0 million reads 

per library. Each Ikaros time-point was performed once, with the exception of 18 and 24 hour 

time-points, in which two C1 runs were required in order to achieve approximately ~50 

single-cells per each time-point.  

 

Bulk and single-cell ATAC-seq 

Single-cell ATAC-seq was performed using the Fluidigm C1 system as done previously41. 

Briefly, cells were collected for 0 and 24-hours post-treatment with tamoxifen, at a 

concentration of 500 cells/µl in a total of 30-50 µl. Additionally, 3 biological replicates of 

~50,000 cells were collected for each measured time-point to generate bulk ATAC-seq 

measurements. Bulk ATAC-seq was performed as previously described3. ATAC-seq peak 

calling was performed using bulk ATAC-seq samples. ATAC-seq peaks were then used to 

estimate the single-cell ATAC-seq signal. Our C1 single-cell capture efficiency was ~70-80% 

for our pre-B system. Each individual C1 capture site was visually inspected to ensure 

single-cell capture. In brief, amplified transposed DNA was collected from all captured 

single-cells and dual-indexing library preparation was performed. After PCR amplification of 

single-cell libraries, all subsequent libraries were pooled and purified using a single MinElute 

PCR purification (Qiagen). The pooled library was run on a Bioanalyzer and normalized 

using Kappa library quantification kit prior to sequencing. A single pooled library was 

sequenced as 40bp paired-end dual-indexed reads using the high-output (75  cycle) kit on 

the NextSeq 500 from Illumina. Two C1 runs were performed for 0 and 24-hour single-cell 

ATAC-seq experiments.  
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Proteomics    

A heavy-isotope labeled cell line representing the preB3 cell line at the starting condition was 

spiked to the sample before trypsin digestion to balance differences in sample amount 

resulting from sample preparation. After tryptic digestion, proteomic measurements of the 36 

biological batches were analyzed by one-dimensional nanoRP-C18 LC-MS/MS in technical 

triplicates on an LTQ Orbitrap platform coupled to an Ultimate 300 RSLC system (Thermo-

Fisher). First, peptide mixtures were desalted on a trapping column (0.3x5mm, Acclaim 

PepMap C18, 5 µm, Thermo-Fisher) at a flow rate of 25 µl/min of 0.05% TFA. A linear 

gradient from 3% B to 32% acetonitrile in 0.1% formic acid in 4 h was applied optimal 

separation of the complete proteome sample. Peptides eluting from the column were directly 

transferred to the gas phase via a nano-electrospray ionization source (Proxeon) and 

detected in the mass spectrometer. A data-dependent acquisition cycle consisting of 1 

survey scan at a resolution of 60,000 and up to 7 MS/MS scans were employed. Orbitrap 

MS spectra were internally calibrated on the siloxane signal at 442.1 m/z Charge-state 

detection was enabled allowing for a precursor selection of charges 2-5 and excluding 

precursors with undefined, single and higher charge. Precursors with minimal signal intensity 

of 5000 cps, were isolated within a 1.2 Da window and fragmented by CID (normalized 

collision energy 35, activation time 30 ms, Q 0.25) and analyzed in the ion trap. Previously 

analyzed precursors were dynamically excluded from MS/MS selection for 180 seconds.  

 

Metabolomics 

Metabolomics measurements were performed on different biological batches than the other 

omics platforms because the sample preparation part for metabolomics is different than for 

the rest. In particular, metabolomics requires acute stopping of all metabolic reactions after 

sampling, while for other types of measurements this is not so critical. The cell extraction 

protocol for metabolomics consisted of filtration, washing, and quenching steps to remove 

medium from the cells and stop metabolism. Four biological batches (9, 10, 11 and 12) were 

acquired. Visual inspection of the cell pellets showed that batch 11 and 12 contained 

samples that were not completely dry. The metabolomics measurements were obtained with 

two different analytical platforms, a targeted liquid chromatography mass spectrometry (LC-

MS) platform and gas chromatography mass spectrometry (GC-MS) platform. The LC-MS is 

a targeted platform measuring amino acids and biogenic amines and the GC-MS focuses on 

polar metabolites of the primary metabolism such as glycolysis, cyclic acid cycle and amino 

acid metabolism. LC-MS and GC-MS data had measurements for respectively 36 and 40 

metabolites. The measurements were done on exactly the same samples. 80% of the pooled 

extract was for GC-MS, 10% for LC-MS, 8% for protein weight. Some metabolites were 

measured at both platforms. In that case, the LC-MS value was selected. 
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The metabolomics measurement pipeline includes two types of control: the quality 

control (QC) sample and the internal standard solution. The QC sample is typically a mixture 

of study samples that is inserted after each six study samples in the measurement series 

and is used to correct for experimental drift of the analytical instrument. Because of the 

limited availability of sample material the QC sample used here was not a mixture of study 

samples but material of control B3 cells not activated with tamoxifen. The internal standard 

solution for the GC-MS and LC-MS consists of 13C labeled yeast extract, which is added to 

each study sample at the beginning of the sample preparation process to correct for 

experimental errors made during the sample processing. For LC-MS an additional internal 

standard solution is added consisting of 13C labeled amines for most of the amines 

measured with the platform. For LC-MS the labeled versions of the metabolites were used 

as internal standard while for GC-MS the best internal standard was chosen based on the 

smallest residual standard deviation of the QC samples. During the process of 

measurement, the time points for each batch were randomized, but each Ikaros sample and 

its control were maintained together. 

  

Omics pre-processing 
Data pre-processing is next described in detail for each omics type. Figure 4 shows a 

comparative overview of the different preprocessing pipelines. 

 
Figure 4. Preprocessing pipelines for 7 omics technologies. See methods for details. 
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RNA-seq 

Tophat242 was used to map fragments to the mm10 reference genome; the very-sensitive 

mode only allowing a unique best mapping per fragment was used. Piccard 

(https://broadinstitute.github.io/picard/) and Fastqc43 were used to perform a quality control 

considering elements such as duplication levels, GC content and k-mer overrepresentation. 

We observed that the duplication level was high (over 90%) in most samples as expected for 

high sequencing-depth in RNA-seq; additionally, some samples were having a GC content 

over-representation (Supplementary file S1). Trimming was applied to remove Illumina 

primers and low-quality nucleotides. HTSEQ44 intersection-option was used to assign 

fragments to genes. Data were normalized using cqn45, which corrects for GC content and 

gene-length. A non-parametric version of Combat methodology46 was used after cqn to 

correct for library-preparation effects.  

 

miRNA-seq 

The quality of the sequencing reads was checked with the Fastqc tool with good results 

(Supplementary file S1). Alignment of raw data was performed using Novoalign 

(http://novocraft.com/) on mouse miRNA sequences from mirBase. Quantification was 

performed using multiBamCov47 and counts were found for 1,086 out of 1,908 miRNAs 

present in the database.  Low count miRNAS were further filtered out with the CPM (counts 

per million) method in NOISeq R package48 by setting a threshold of 1 for CPM. The final 

dataset contained 469 miRNAs. GC content bias was eliminated with the cqn R package45, 

and data was normalized by TMM49. PCA analysis indicated that, although Control and 

Ikaros samples separated well above batches, a batch effect was observed for different 

Ikaros time points (not shown). This bias was corrected by ComBat46 and technical 

replicates were used to avoid confounding batches with experimental conditions. After batch 

correction, technical replicates were averaged for further analyses. 

 

DNase-seq  

DNase-seq reads were trimmed to 36bp and paired-end mapped to the mm10 reference 

genome using Bowtie250 with options: -v 2 -k 1 -m 1 --best –strata. DNase-seq peaks were 

called for each replicate using the HOMER findPeaks function. We employed a specific 

peak-calling strategy to capture several features of our DNaseI hypersensitive sites (DHS). 

Our strategy was to include both ‘narrow’ and ‘broad’ DHS peaks in our analysis. This 

captured a comprehensive set of sites with a wide DHS dynamic range. Initially, we used 

HOMER to determine narrow DHS peaks using a default size parameter (120-150bp) with a 

minimum peak distance of 50bp between DHS and an FDR of 1%. We then included a 
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second round of peak calling, restricting to a peak size of 500bp with a minimum peak 

distance of 50bp between DHS peaks and an FDR of 1%. We then merged the two peak 

sets for each replicate. We required a minimum 1bp overlap of peaks across all three 

biological replicates for each time-point respectively and generated a consensus DHS peak 

list across all time-points.  

The consensus DHS (53,624) were filtered for chrM peaks, partial chromosomes, 

and mouse ENCODE blacklist regions. Counts representing the chromatin accessibility were 

estimated for each consensus DHS using the Bedtools coverageBed function. Additionally, 

no DHS were considered with less than 10 reads (~1 RPM) in all time-points, resulting in a 

final dataset with 52,788 consensus DHSs. Data were normalized by a combination of 

RPKM and TMM. An unwanted source of variability was detected in the data that could not 

be associated with any experimental factor such as production batches or library 

preparation. Therefore, a method like ComBat could not be applied in this case but we used 

the ARSyN method51 instead which can estimate the systematic sources of noise and then 

correct the data to remove them. 

  

RRBS 

Initial quality assessment was based on data passing the Illumina Chastity filter. The second 

quality assessment was based on the reads using the Fastqc quality control tool version 

0.10.0. Reads were adaptor- and quality-trimmed using Trim-Galore Software v0.3.4 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) in RRBS paired-end mode, 

in order to decrease methylation call errors arising from poor quality data. Mapping to the 

reference genome (GRCm38, mm10) was performed using Bismark v0.10.152 and 

Bowtie250. The quality of the mapping was inspected using HTSEQ-qa44. SAM files were 

used as input in Bismark to obtain methylation calls. Paired-end mode with no overlap mode 

was specified. The first four bases from each read were avoided to eliminate M-bias, i.e. 

deviation from the horizontal line in the mean CpG methylation level for each read position. 

BedGraph and *.cov files were further considered and analyzed with the BiSeq package53. 

Coverage was inspected before proceeding to smooth the methylation levels (between 0 and 

1) per CpG site. Briefly, we firstly defined “frequently covered CpG sites” as those sites that 

are covered in at least 2/3 of the samples. The frequently covered CpG sites were 

considered only to define the cluster boundaries and we defined CpG clusters using a 

maximum distance of 100 bp and at least 20 CpGs. This selection resulted in 1,116,417 

CpG sites within CpG clusters, with no threshold on coverage. The extra coverage of 

unusually high covered sites (95% quantile of the coverage) was eliminated to remove 

potential biases during the smoothing step introduced by CpGs with exceptional high 

coverage. Then, the methylation levels were smoothed with a bandwidth of 80 bp as 
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described53. Clustering analysis was performed with the methylation estimates of the 20% 

most variable positions (based on CV), with multidimensional scaling or hierarchical 

clustering. M-values were obtained after thresholding methylation levels in the interval [0.01, 

0.99] to avoid infinite values, as M = log2(b/(1-b)), where b is the constrained methylation 

level. The final dataset contained a total of 1,116,417 Methylation features. 

  

Single-cell RNA-seq     

A total of 560 single-cell RNA-seq libraries were mapped with Tophat54 to the mouse 

Ensembl gene annotations and mm10 reference genome. Single-cell libraries with a 

mapping rate less than 50% and less than 450,000 mapped reads were excluded from any 

downstream analysis, resulting in 324 single-cells for all subsequent analysis. Cufflinks55 

version 2.2.1 was used to quantify expression from single-cell libraries using Cuffquant. 

Gene expression measurements for each single-cell library were merged and normalized 

into a single data matrix using Cuffnorm. Genes with zero counts in more than 80% of the 

samples were removed resulting in a data matrix with 9,075 genes. 

 

ATAC-seq 

Single-cell libraries were mapped with Bowtie50 to the mm10 reference genome using the 

following parameters (bowtie -S -p 2 --trim3 10 -X 2000). Duplicate fragments were removed 

using Picard (http://picard.sourceforge.net). We considered single-cell libraries that 

recovered > 5k fragments after mapping and duplication removal. Bulk ATAC-seq replicates 

were mapped to the mm10 reference genome using the following parameters (bowtie2 -S -p 

10 --trim3 10 -X 2000). Peak calling was performed on bulk replicates using HOMER with 

the following parameters (findPeaks <tags> -o <output> -localSize 50000 - size 150 -minDist 

50 –fragLength 0). The intersection of peaks in three biological replicates was performed. A 

consolidated list of 25,466 peaks was generated from the union of peaks from 0 and 24 hour 

time-points. 

 

Proteomics 

Data were searched against a protein sequence database containing all confirmed mouse 

protein sequences from the Uniprot database (swissprot), common contaminants and 

reversed using the Andromeda algorithm within the MaxQuant software suite version 1.5.0.0. 

Mass deviation settings for peptide detection were 20 ppm for the first search and 7 ppm for 

the main search. IT MS/MS data were searched with a mass accuracy of 0.6 Da. N-terminal 

acetylation and methionine oxidation were set as variable modifications, 

carbamidomethylation of cysteine as fixed modification. Unidentified signals, present at a 

similar retention environment, were matched if at least one run had a positive identification of 
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the peptide sequence by enabling the match between run option within an alignment time 

window of 30 min. Obtained search results were filtered for reversed database hits on the 

peptide spectrum match level (1%) and the protein level (2%) and all protein groups with at 

least 1 razor or unique peptide were initially accepted. For quantitation of proteins over the 

different timepoints, light protein intensities were extracted from the data file for each protein. 

Distant measuring intervals and long gradient times lead to a substantial variation 

between peak localization and areas of individual LC-MS/MS runs resulting in a huge 

number of missing values. This issue was addressed by: 

a) Alternative LC MS/MS alignment routines. Upon the observation that missing values 

were not randomly distributed, but associated to particular samples, we believed that 

a misalignment of chromatograms played a role. We improved the alignment 

between samples to rescue some of the missing values. 

b) RNA-seq data was used as database source protein identification. The rationale is 

that the mRNAs of expressed proteins should be found within the RNA-seq detected 

genes. Reducing the size of the protein database to proteins detected by RNA-seq 

will reduce the number of false hits and lead therefore to more specific data on the 

pre-B cell proteome. Since proteomic data exhibit a lower coverage of the proteins 

abundant in a cell, a substantial data loss is not expected. 

c) A conservative missing value imputation strategy was applied to log2-transformed 

data corresponding to 2,527 proteins. Briefly, this strategy discarded proteins with a 

large number of missing values, considered as not expressed those proteins that 

were missing either in the whole Control or Ikaros condition, and imputed values in 

conditions with only 1 out of 3 missings. Samples were normalized by the mean of 

medians per experimental condition. Proteins with missing values in all the 3 

replicates per condition in at least 11 of the 12 conditions were discarded, resulting in 

2,396 proteins used for the imputation. Proteins with all missing values in the Control 

condition were imputed from a Gaussian distribution with mean 50% of the minimum 

sample value and with standard deviation equal to the median of all within-group 

standard deviations for all the proteins in the original data. The same procedure was 

followed for Ikaros condition. Finally, when for a given condition only one of the three 

biological replicates was missing, the missing value was computed as before but 

using the mean of the two measured values. The resulting imputed data with no 

missing values were normalized by TMM. Both imputed and non-imputed datasets 

are available at the STATegra figshare repository.  
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Metabolomics 

For the GC platform, a 13C labeled yeast extract was added as internal standard. A Quality 

Control (QC) sample was measured every 6 samples. For each of the compounds measured 

on the GC platform, the labeled compound peak that led to the smallest standard error in the 

QC samples for that compound, was selected as internal standard. Because the amount of 

sample was almost completely used for the two analytical platforms no replicate analyses 

were possible. This meant that the internal standard selection could not be validated using 

replicate samples as is common practice. For the targeted LCMS method, the optimal 

internal standards for each metabolite were chosen during optimization and validation of the 

method. The limited within batch drift effects were corrected using the batch correction 

approach developed by van der Kloet et al56. 

Four biological batches (batches 9 through 12) were provided to the metabolomics 

platforms, which were (physically) different from the batches used for mRNA-seq, miRNA-

seq and proteomics. Visual inspection showed that samples of batch 11 and 12 were not 

completely dry. Analysis of some key metabolites and PCA showed batch 12 levels to be 

outside the general trend in batches 9, 10 and 11 (not shown). Therefore, it was decided to 

exclude batch 12 from further analysis. 

Both analytical platforms show some overlap in the metabolites that were measured. 

On GCMS 22 metabolites were uniquely quantified and 18 metabolites were quantified 

uniquely on LCMS, while 18 metabolites were quantified both on GCMS and LCMS, making 

a total of 58 metabolites. Although the intensity levels of the GCMS and LCMS were rather 

different a high correlation between the two platforms for most overlapping metabolites was 

observed. Metabolite levels were log scaled and levels were mean-centered over the three 

batches 9, 10 and 11. For the metabolites that were measured both on GCMS and LCMS, 

the LCMS values were selected as this platform is targeted for these types of metabolites. 
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Data Records 
Raw data 

STATegra multi-omics data have been deposited in different public repositories dedicated to 

different data types. Table 1 shows a list of the current hosting of raw data files. Moreover, 

pre-processed data arranged as a data-matrix per omics data-type have also made available 

at Lifebit (https://lifebit.ai/) site. Additionally, preprocessing scripts and intermediate files are 

available at the STATegraData GitHub repository. 

 
Table 1. Public repositories hosting STATegra multi-omics data. 

Data set Database and accession 

mRNA-seq GEO, GSE75417 

miRNA-seq GEO, GSE75394 

RRBS GEO, GSE75393 

DNAse-seq GEO, GSE75390 

ATAC-seq GEO, GSE89362 

scRNA-seq GEO, GSE89280 

scATAC-seq GEO, GSE89362 

ChIP-seq GEO, GSE38200 

Proteomics ProteomeXchange,	
PXD003263 

Metabolomics MetaboLights,	MTBLS283 

 
 
STATegra Knowledge Base 

In order to evaluate how to best integrate and semantically map specific prior knowledge and 

relevant information derived from multiple sources together with heterogeneous 

experimental data, a STATegra Knowledge network for B-cell differentiation (KB) was 

developed (applying the BioXMTM knowledge management environment57 

(https://ssl.biomax.de/stategrakb/). Prior knowledge includes among others relevant 

molecular elements (genes, proteins, metabolites, etc.), functional information (GO, OMIM, 

etc.), functional interactions (e.g. protein-protein interaction, transcriptional regulation (e.g. 

mouse TF-regulatory network), miRNA network, etc.) and information about gene homologs 

(mouse, rat, human). Also, genome features with coordinates for peak-to-gene associations 

of NGS data (e.g. mouse genome assembly mm10), metabolic and signal transduction 
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pathways, cell types related to B-cell differentiation as well as ontologies such as the mouse 

anatomy ontology (MGI) were incorporated. This integrated and dynamically organized 

knowledge serves as information rich, structured background network. Semantic mapping of 

experimental data to this background network of prior knowledge enables complex 

integration and analysis approaches58. The STATegra Knowledge Base visualizes multiple 

omics data types and summarizes information from different layers on top of a network 

graph. The overlay of experimental data on top of such networks helps interpretation of 

results as well as validate database predictions.  

 
Technical validation 
Validation of time course replicability 

 
Figure 5. Biomarkers of B3 cell differentiation across three experimental batches. 
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As a quality control of batch replicability, real time RT-PCR was used to check the impact of 

Ikaros in gene expression upon induction and reproducibility across time course 

experiments. RNA from all samples was extracted using RNAbee (AMS Biotechnology 

(Europe) Ltd) and treated with Turbo DNAse (Life technologies). Bioanalyser technology was 

used to check the RNA integrity and samples were quantified using a Nanodrop. Changes in 

the expression of few previously identified Ikaros-responsive genes were analyzed (Figure 

5).  As expected34, early down-regulation of Igll1 and Myc, late down-regulation of Slc7a5, 

Hk2 and Ldha, and up-regulation of Foxo1 and Lig4 were consistently observed in the three 

independently collected time course replicates. Either frozen pellets or RNA samples from 

the time course experiments and 0h time point collections were sent to the different 

experimental labs to perform the library preparation for the sequencing.  
 
Validation of dataset replicability and co-variation structure. 

To assess the quality of our data we analyzed the correlation values between replicates of 

the same condition and compared to correlation values when samples belonging to different 

conditions were compared (Figure 6A). We applied this analysis to RNA-seq, miRNA-seq, 

Dnase-seq, Methyl-seq, proteomics and metabolomics. ChIP-seq and ATAC-seq data were 

excluded as only two replicates were available in each case. Also, single-cell data was 

excluded from this analysis, as the zero-inflated nature of the technologies makes correlation 

analysis meaningless. We found that, for all technologies, biological replicates had very high 

correlation (> 0.9, Figure 6A), in general higher than the correlations among samples of 

different experimental conditions that also displayed a wider range of values. This result 

reflects the time course nature of the experimental design, where closer time points have 

higher correlations than distant time points.  

To further validate data and to understand whether the different omics measurements 

captured the dynamics of B-cell differentiation and/or had a similar co-variation structure, we 

ran Principal Component Analysis for all datasets (Figure 6B). In general, the different multi-

omics datasets show PCA plots that recapitulate the time progression of our inducible 

system. A well spread temporal progression on the first PC was observed for mRNA-seq, 

miRNA-seq and scRNA-seq data, being RNA-seq the dataset with the most consistent 

progression signal. Metabolomics and Proteomics showed a two-stage pattern, with samples 

from 0h-12h hours clustering at negative values, and samples at 18h-24h clustering at 

positive values of the first and second PC, respectively. DNase-seq showed a noisier, but 

distinguishable distribution of the temporal signal at PC2, while RRBS is the only dataset 

with an unclear temporal pattern. For scATAC-seq, only two time points were measured and 

cells nicely separated on the second PC. This analysis reveals that multi-omics datasets 

consistently described the progression of B-cell differentiation but also that the different 
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omics technologies present different noise levels. Interestingly, dynamic patterns are slightly 

different for nucleic acids and proteins and metabolites, possibly indicating a later response 

of these with respect to the transcriptional change. 

 
Figure 6. Quality control of STATegra multi-omics data. A) Distribution of pair-wise correlation values for 
samples belonging to different (Across) or the same (Within) experimental conditions. B) PCA analysis. Only the 
Ikaros series is shown. Data were preprocessd as described in Methods. Time progression is represented by an 
increasingly darker red color. 
 
Multi-layer data example 

In order to illustrate the consistency of the STATegra multi-layer data, we analyzed values 

for the lactate dehydrogenase A gene (Figure 7). LDHA catalyzes pyruvate to lactate 

conversion in the final step of anaerobic glycolysis (Figure 7A). Ldha is one of known Ikaros 

target genes34 and downregulated upon Ikaros-induced differentiation of the B3 cell line 

(Figure 5). The STATegra footprint data confirmed that Ikaros binds to the promoter region 

of the Ldha gene (Figure 7B) while the promoter DHS signal, mRNA and protein levels were 

downregulated as cells progressed towards the pre-BII stage (Figure 7C). We obtained 

confirmed microRNAs targeting the Ldha transcript 3’UTR from the mirWalk database59 and 

identified four microRNAs with a strong negative correlation with Ldha expression levels 

(Figure 7C). One of these microRNAs,  mir449a-5p, has been reported to bind and regulated 

Ldha in human cells60. Finally, STATegra data indicated a general downregulation of 

glycolysis (Figure 7D), as previously described, and confirmed a decrease in pyruvate and 
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lactate at mid-late time points of differentiation (Figure 7A). In summary, the STATegra data 

recapitulates known metabolic-switch observations in the B3 system and showed a 

consistent pattern of change across regulatory layers. 

 
Figure 7. STATegra data for lactate dehydrogenase A. A) LDHA reaction at glycolysis. B) Promoter regions of 

the Ldha gene showing a DSH and IKZF1 footprint identified by DNase-seq. Only values for the Ikaros-induced 

time course are shown. In red, the IKZF1 ChIP-seq peak region. C-E: Paintomics27 representation of Ldha data. 

Boxes display mean log2FC values between Ikaros and Control at 0,2,6,12,18 and 24 hours after Ikaros 

induction. Red indicates up-regulation, blue indicates down-regulation. C) Ldha data for DNase-seq, RNA-seq, 

Proteomics, and miRNA-seq. miRNA-Ldha target data was predicted by at least 5 algorithms in the mirWalk59 

database. D) STATegra log2FC values for pyruvate (left) and lactate (right). E) Major Gene Expression, 

Proteomics, and DNase-seq trends for glycolysis pathway computed by Paintomics27. 
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