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Abstract

The ability to predict traits from genome-wide sequence information (Genomic
Prediction, GP), has improved our understanding of the genetic basis of complex traits and
transformed breeding practices. Transcriptome data may also be useful for GP. However, it
remains unclear how well transcript levels can predict traits, particularly when traits are scored at
different development stages. Using maize genetic markers and transcript levels from seedlings
to predict mature plant traits, we found transcript and genetic marker models have similar
performance. Surprisingly, genetic markers important for predictions were not close to or
identified as regulatory variants for important transcripts. Thus, transcript levels are predictive
not simply due to genetic variation. Furthermore, genetic marker models identified only one of
14 benchmark flowering time genes, while transcript models identified five. Our findings
highlight that transcriptome data is useful for GP and can provide a link between traits and

variation that cannot be readily captured at the sequence level.

Introduction

The prediction of complex traits from genetic data is a grand challenge in biology and the
outcome of such prediction has become increasingly useful for plant and animal breeding !%.
Among the different approaches for connecting genotypes to phenotypes, Genomic Prediction
(GP, or Genomic Selection) using all available markers was developed to overcome the
limitations of Marker-Assisted Selection, which uses only significant quantitative trait loci
(QTLs), for breeding traits that are controlled by many small effect alleles **. Using GP,
breeders are able to make data driven decision about what lines to include in their programs,
speeding up and reducing the cost of developing the next generation of crops >°. Furthermore,
because GP models are associating genetic signatures with phenotypes, untangling GP models
has the potential to improve our understanding of the genetic basis of complex traits. However,
as with related approaches such as genome wide association studies and QTL mapping, it
remains difficult to go from associated genetic markers to the molecular basis for a trait 7.

There are a number of factors contributing to this difficulty. The variation in markers
associated with phenotypes may not be the causal variants but are linked to the genes that control

the trait in question. Considering that linkage disequilibrium distance can range from 1 kilobase
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(kb) in diverse maize populations ? to ~250 kb in Arabidopsis thaliana '°, the linked candidate
genes can range from a few to a few hundreds. Even if the associated genetic variant is
controlling the underlying phenotype, most variants associated with complex traits have small
effect sizes and can be regulatory !!, which may not be linked to the genes they regulate.
Furthermore, multiple regulatory variants that have indiscernible effects on their own, could
interact epistatically to influence gene and ultimately trait expression. However, even with
sufficient statistical power to detect genetic variants with small effect sizes and interactions
between them, genetic information is connected to traits through multiple intermediate processes,
including, for example, transcription, translation, epigenetic modification, and metabolism. Each
of these intermediate processes represent an additional level of complexity that obscures the
association between genetic information and a trait.

One solution is to account for these intermediate processes by integrating relevant omics
data in addition to genetic variation. This approach has led to promising, but often mixed, results
in plants. Current efforts have focused primarily on predicting hybrid performance using
transcriptional information from the parental lines. For example, transcript level-based distance
measures generated from transcripts associated with the trait were better than genetic markers in
predicting hybrid performance in maize '>!*. However, when all transcripts were used (instead of
a subset of pre-selected transcripts), model performance decreased '*. The performance of
models based on transcript levels can be better or worse compared to those based on genetic
markers depending on the trait. For example, transcriptome data performed better for predicting
grain yield in hybrid maize populations, but genetic marker data performed better for predicting
grain dry matter content in the same population !°. Similarly, in a maize diversity panel, GP
models that combined transcript and marker data only outperformed models using markers alone
for certain traits '°. Finally, efforts to integrate additional omic information to predict various
traits in Drosophila melanogaster 7, and human diseases, such as breast cancer '®, and responses
to treatment interventions, including acute kidney rejection and response to infliximab in
ulcerative colitis '°2°, have demonstrated the potential usefulness of transcriptome data in the
field of precision medicine.

Overall, these efforts provide reasonable evidence that transcriptome data could be useful
for trait prediction. However, GP-based approaches that trained on the entire transcriptome data

have not been used to better understand the genetic mechanisms for a trait. In addition, it is not
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89  known the degree to which transcriptomes obtained at a particular developmental stage can be
90 informative for predicting phenotypes scored at a different stage. To address these questions, we
91  used transcriptome data derived from maize whole seedling 22 to predict phenotypes (flowering
92  time, height, and grain yield) at much later developmental stages. In addition to comparing

93  prediction performance between genetic marker and transcriptome-based models, we also looked
94  at whether transcripts and genetic marker features important for the prediction models were

95  located in the same or adjacent regions. Finally, we determined how well our models were able
96 to identify a benchmark set of flowering time genes to explore the potential of using GP to better
97  understand the mechanistic basis of complex traits.

98

99 Results and Discussion

100  Relationships between transcript levels, kinship, and phenotypes among maize lines

101 Before using the transcriptome data for GP, we first assessed properties of the

102  transcriptome data in three areas: (1) the quantity and distribution of transcript information

103  across the genome, (2) the amount of variation in transcript levels, and (3) the similarity in the
104  transcriptome profile between maize lines, with an emphasis on how these properties compared
105  to those based on the genotype data. After filtering out 16,898 transcripts that did not map to the
106  B73 reference genome or had zero or near zero variance across lines (see Methods), we had
107 31,238 transcripts. While the number of transcripts was <10% of the number of genetic markers
108  wused in this study (332,178), the distribution of transcripts along the genome was similar to the
109  genetic marker distribution (Fig. S1). The logz-transformed median transcript level across lines
110  ranged from 0 to 12.4 (median=2.2) and the variance ranged from 3x10° to 14.5 (median=

111 0.13), highlighting that a subset of transcripts had relatively high variation in transcript levels
112 across maize lines at the seedling stage. To determine how similar transcript levels were between
113  lines, we calculated the expression Correlation (eCor) between all pairs of lines using Pearson’s
114  Correlation Coefficient (PCC). The eCor values ranged from 0.84 to 0.99 (mean=0.93). As

115  expected, lines with similar transcriptome profiles were also genetically similar as there was a
116  significant correlation between eCor values with values in the kinship matrix generated from the
117 genetic marker data (Spearman’s Rank p = 0.27, p < 2.2x10°'%; Fig. 1A). As a result, we were
118  able to find clusters of lines that had both high transcript and genetic similarities (e.g. cluster a,

119  b; Fig. 1B, C). However, most of the variation in eCor was not explained by kinship, which
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120  explained why we identified other clusters that had similar transcriptome profiles, but were not
121 genetically similar (e.g. cluster c, Fig. 1B, C).

122 Because the basis of GP is to predict a phenotype from genetic data, we next asked if

123  kinship or eCor were anti-correlated with the phenotypic distances between lines (see Methods).
124 While both kinship (p = -0.03, p < 2.2x10°'%; Fig. 1D) and eCor (p = -0.08, p < 2.2x10°'%; Fig.
125 1E) were significantly, negatively correlated with the phenotype distance, the degree of

126  correlation was minor. Furthermore, the groups of lines that clustered together based on their
127  eCor (e.g. clusters a, b; Fig. 1B, 1C) did not have lower phenotypic distance (Fig. 1F). Taken
128  together, these findings suggest that transcriptome data may be similarly informative as genotype
129  data but capture difference aspect of phenotypic variation. We tested both of these interpretations
130  further in subsequent sections.

131

132  Predicting complex traits from transcript data

133 To test how useful transcriptome data was for GP compared to genetic marker data, we
134  applied four approaches to predict three agronomically important traits in maize: flowering time,
135  height, and grain yield. Because no one GP algorithm always performs best 23, we tested two
136  linear algorithms (ridge regression Best Linear Unbiased Predictor (irBLUP) and Bayesian-Least
137  Absolute Shrinkage and Selection Operator (BL)), one non-linear algorithm (random forest: RF),
138  and one ensemble approach (En; see Methods). To establish a baseline for our GP models, we
139  determined the amount of the phenotypic signal that could be predicted using population

140  structure alone, defined as the first five Principal Components from the genetic marker data.

141 Then we built models for each trait using genetic marker data (G), kinship (K) derived from G,
142  transcript levels (T), or expression correlation (eCor) derived from T (Fig. 2). Model

143  performance was measured using PCC between the actual and the predicted phenotypic values.
144  Across algorithms and traits, the K data resulted in models with the best predictive performance,
145  while models built using the eCor data performed the worst (Fig. 2, Table S1). Furthermore,

146  models built using G always outperformed models using T. Regardless, eCor and T-based

147  models were significantly better than the baseline predictions (dotted blue line, Fig. 2),

148  indicating transcriptome data can be informative in GP. Considering that the transcriptome is
149  from seedling, it is particularly surprising that mature plant phenotypes can be predicted.

24,25

150  Consistent with earlier findings “*~, combining the predictions from multiple algorithms, known
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151  as an ensemble approach, resulted in the best predictive models (Fig. 2), and is therefore used to
152  1illustrate most of our findings.

153 Because the genetic marker and transcriptome data represented different types of

154  molecular information that could be associated with the traits of interest, we hypothesized that
155  their combination would be more informative and next built models that used combined data,
156  either K+T or G+T. For most combined models, adding the transcript data did not significantly
157  improve performance. The one exception was using RF to predict flowering time using G+T as
158  input (Fig. 2). To assess if G or T data features tend to be more informative in predicting traits,
159  we further quantified the importance score of each genetic marker and transcript feature for

160  models using G+T data. The importance score represents the impact that each feature had on
161  model performance defined according the algorithm used (see Methods). The importance scores
162  assigned to transcripts in the G+T models were correlated with the scores from the T-only

163  models (Fig. S2A), indicating that adding genetic marker features into the model did not impact
164  the relative importance of transcript features. Because RF importance measures tend to be biased
165  toward continuous features,?® we focused on rrBLUP and BL importance scores. For all three
166 traits, the top 1,000 most important features were enriched for genetic markers relative to

167  transcript features (Odds Ratio = 0.17 ~ 0.44; all p < 1x10°'%; Fig. S2B; Table S2). However, the
168  top 20 most important features tended to be enriched for transcript relative to genetic marker
169  features (Odds Ratio = 2.66 ~ 13.0, p = 0.087 ~ <1x10'%, Table S3), with transcript features
170  making up the top two most important feature in all cases (Fig. S2B). The consistency with

171 which transcript features were the most important for the models suggests that transcript

172  information is useful for GP. Further highlighting its usefulness, when either the 200 most

173  important transcripts or genetic markers were used to predict flowering time, models performed
174 equally well (7=0.70 = 0.010; =0.71 £ 0.009, respectively).

175

176  Comparison of the importance of transcripts verses genetic markers for model predictions

177 Because models built using transcript features outperformed baseline models based solely
178  on population structure, we know transcriptome data contained information useful for explaining
179  phenotypic variation. However, combining both datasets does not improve the model (K+T and

180  G+T, Fig. 2), we hypothesized that this is because these two data types capture similar aspects of

181  phenotypic variation. To address this, we assessed the extent to which the important genetic
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182  markers overlapped with or neighbored the genes where the important transcripts originated from
183  (top; Fig. 3A). The genic region and flanking sequences within a defined window of an

184  important transcript is referred to as the transcript regions (see Methods). For each trait and

185  algorithm, we compared the importance assigned to the transcript with that of the genetic marker
186  with the highest average importance in the transcript region (T:G pair).

187 Multiple window sizes were explored, and we used 2 kb (+/- 1kb from the center of a

188  gene) where the feature importance correlation between transcripts and genetic markers was

189  maximized (Fig. S3). Using this window size, 15,049 T:G pairs were identified. At the whole
190 genome level there appeared to be regions where both genetic markers and transcripts were

191  identified as important (Fig. S4). However, when we look closer, those regions mostly do not
192  overlap. In some cases, the important genetic markers and transcripts were in linkage

193  disequilibrium. Using the flowering time model as an example, we found the most important

194  genetic marker was located within a gene upstream the most important transcript

195 (GRMZM2G171650: MADS69; arrow a, Fig. 3B), but the two are in linkage disequilibrium %2, In
196  most cases, there were no important genetic markers that were located nearby to important

197  transcripts. For example, the second most important flowering time genetic marker was not

198  located near important transcript regions (arrow b, Fig. 3B). Similarly, the second most

199  important flowering time transcript (GRMZM5G865543) was over 0.6 Mb from an important
200  genetic marker (arrow c, Fig. 3B). Across all traits and algorithms, T:G pairs were only

201  moderately correlated (p = 0.09-0.13; Fig. 3C, Fig. SS5A).

202 This lack of correlation is notable for the most important genetic markers and transcripts.
203  For example, across the three traits, only 4-7 T:G pairs were both in the top 1% most important
204  features from the ensemble models, and those pairs were never the top ranked genetic markers or
205  transcripts from the model (Fig. 3B). These findings argue against the notion that these two data
206  types capture similar aspects of phenotypic variation as we hypothesized earlier. In light of this,
207  we hypothesized that the lack of correlation was because important transcripts tend to be

208 regulated by important trans factors located far beyond the transcript region. To test this, we

209  assessed the degree to which important genetic markers identified as expression QTL (eQTLs)
210  were associated with important transcripts. We identified 58,361 cis (62) and trans (58,299)

211 eQTL associated with 7,052 transcripts and defined T:eQTL pairs for each of these transcripts by
212  selecting the genetic marker within +/- 1kb of an eQTL for that transcript (i.e. eQTL region) with
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213  the highest average importance. Across all traits and algorithms, the importance of transcripts
214  and eQTL in T:eQTL pairs was actually negatively correlated (p =-0.15 ~ -0.06; Fig. 3C, Fig.
215 SS5B).

216 The lack of correlation between importance scores for T:G and T:eQTL pairs was in

217  contrast to the relatively high correlation observed in feature importance between algorithms (p=
218  0.31-0.98), with rrBLUP and BL importance scores being the most correlated (p= 0.87-0.98) and
219  the average correlation between genetic markers (p = 0.75) being higher than for transcripts (p =
220  0.55) (Fig. S6). Together with the findings that important genetic markers were not co-located
221 and eQTL were not associated with genes that gave rise to the important transcripts for any of
222  the three traits, these findings may suggest that transcriptome data is capturing layers of

223  information, such as epigenetic signals, that are not captured by genome sequences. However,
224  we cannot rule of the possibility that the eQTL approach is not sufficiently sensitive in

225  identifying important frans-factors. Further study is needed to resolve these possibilities.

226

227  Assessment of benchmark flowering time genes

228 Because the genetic basis for flowering time is well studied 2"-3°, we identified a set of 14
229  known flowering time genes (Table S3) and compared the ability of genetic marker and

230 transcript-based models to reveal them as important using the T:G and T:eQTL pairs described
231 earlier. Of the 14 benchmark genes, four had corresponding genetic markers in our T:G pair data.
232  When we increased the flanking regions threshold to 20kb from the center of the transcript for
233  defining T:G pairs, corresponding genetic markers were found for five additional benchmark

234  genes. Two benchmark genes, CCT1 and PEBP4, neither of which were members of a T:G pair,
235  were associated with eQTLs. To account for differences in distribution and range of importance
236  scores generated by different algorithms and numbers of features, the importance scores were
237  converted to percentiles for comparison purposes.

238 Different benchmark genes were important (>95™" percentile) for models using the two
239  different data types, with one and five benchmark gene considered important by the genetic

240  marker-based and the transcript-based models, respectively (Figure 4A; Table S4). For example,
241  the genetic marker located within the RAP2 gene, which has been shown to be associated with
242  flowering time in multiple studies 2*3!

243 (99.7"-99.9% percentile), but not transcript (59%-79 percentile) data. In contrast, MADS69,

, was identified as important based on genetic marker
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244  MADSI, PEBP24, and PEBPS were identified as important using transcript data (95%-100%

245  percentile), but not using genetic marker data (16"-93" percentile). Furthermore, with transcript
246  data we were able to assess the importance of three genes (ZAG6, REPBS5, and PEBP?2) that were
247  not located near genetic markers or associated with eQTL. For example, there were no eQTL
248  associated with or genetic markers within the 40bp window of ZAG6, but ZAG6 was 1dentified as
249  important (98%-99.9" percentile) in the transcript-based models (Fig. 4A). For some of these

250  benchmark genes, the region most closely linked to trait variation could be outside the +/- 20kb
251  window. For example, as described above, the important genetic marker for MADS69

252  (Chr3_160559109) is ~32 kb upstream, but the two are in linkage disequilibrium ?? (see arrows
253  in a; Fig. 3B). Taken together, these finding further highlight the usefulness of transcript data for
254  identifying the genetic basis for variation in a trait.

255

256  Improving our understanding of the genetic basis of flowering time using transcriptome data

257 An open question was why transcript-based models were able to identify five benchmark
258  flowering time genes as important that were not identified by genetic marker-based models and if
259  transcriptome data could be used to better understand the genetic basis of flowering time. To
260  understand why benchmark genes were not uniformly identified as important for flowering time
261  when using both genetic marker and transcript data, we determined the extent to which transcript
262 levels and the genetic marker allele (i.e. major or minor) were related to flowering time. As

263  expected, we observed the most significant differences in flowering time for the transcripts (Fig.
264  SA, Fig. S7A) and genetic markers (Fig. 5B, Fig. S7B) that were identified as important by our
265 models. For example, MADS1 was important only in the transcript-based models and transcript
266 level was significantly correlated with flowering time (p = 0.0001; Fig. SA). In contrast, lines
267  with the major allele for the genetic marker that paired with the MADS1 transcript (Chr9:

268 156980141) did not flower at a significantly different time than lines with the minor allele (p =
269  0.062; Fig. 5B). Another example was RAP2, which was important only in the genetic marker-
270  based models. Lines with the major allele in RAP2 were more likely to flower late (p < 1x10#),
271 but RAP2 transcript levels did not significantly correlate with changes in flowering time (p =
272 0.33). Overall, benchmark genes were more likely to have transcript levels associated with

273  flowering time (Fig. 5C) than genetic marker alleles associated with flowering time (Fig. SD).
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274 Importantly, using the transcriptome data we were also able to understand in more detail
275  the impact of the benchmark genes on flowering time. For example, variation in transcript levels
276  of MADS69 accounted for 16.7% of the variation in flowering time, more than any other

277  transcript, where lines with lower levels of transcription flowered later. Modulation of MADS69
278  expression levels has recently been patented as an approach to controlling flowering time*?.

279  Similarly, MADS]I transcript levels explained 3.7% of the variation in flowering time, with lines
280  with lower levels of transcription flowering later. This is consistent with what has been observed
281  experimentally, where down-regulation of MADS] results in delayed flowering time 3. For

282  medium confidence benchmark genes (i.e. identified through association studies), the specific
283  roles of the genes on flowering time are not well understood, but by finding positive or negative
284  correlations between transcript levels and the underlying phenotypes, more mechanistic details
285 can be interred. For example, transcript levels of Z4G6 had the second largest impact on

286 flowering time, accounting for 6% of variation, with increased transcript levels associated with
287  earlier flowering. Another example is PEBP24, with transcript levels of PEBP24 accounting for
288  2.7% of the variation in flowering time. Unlike many of the other benchmark genes, increased
289  PEBP24 transcript levels were associated with later flowering time. Overall, the identification of
290 these medium confidence benchmark genes as important transcript indicates the relevance of
291  transcriptional regulation in their flowering time functions.

292 While using the benchmark genes allowed us to assess the usefulness of transcript levels
293  compared to genetic marker information for identifying genes involved in flowering time, we
294  should note that many non-benchmark genes were also identified by our models as important.
295  For example, from the Ensemble model, there were 154 important, non-benchmark transcripts
296  with importance scores falling between the two most important benchmark genes (MADS69,
297 100" percentile; ZAG6, 99.5™" percentile; yellow, Table S5). While seven of those in between
298 transcripts were annotated with the Gene Ontology (GO) term “flower development”

299  (GO:0009908, green, Table S5), these 154 non-benchmark transcripts were not enriched for this
300 GO term (g = 1.0). In fact, neither these transcripts nor any other set of important transcripts

301  from models based on other algorithms (see Methods) were enriched for any GO terms.

302  Therefore, from our transcript-based GP models we have identified 147 high ranking transcripts,
303  many of which have unknown functions, that are among the most important in predicting

304 flowering time in maize but do not play known roles in this process. For example, both

10
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305 GRMZM5G865543 and GRMZM2G023520, the second and third most important transcripts
306  respectively from the Ensemble model, are unknown genes. Note that the transcriptome data is
307  from the seedling stage. It is possible that genes of these important transcripts influence

308 biological processes in earlier stage of development that influence flowering time later. To
309 further our understanding of the genetic basis of flowering time control and the connections
310  between juvenile and adult phenotypes, these important transcripts are prime candidates for

311 future genetic studies.
312

313  Conclusions

314 We have generated predictive models that use genetic markers, transcripts, and their

315  combination to predict flowering time, height, and yield in a diverse maize population. While
316  models built using transcriptome data did not outperform models that used genotype data,

317  transcript-based models performed well above random expectation, and in many cases,

318  performance was similar to that of genotype-based models. We found that transcripts and genetic
319  markers from different genomic regions were identified as important for model predictions.

320  Furthermore, by assessing the relative importance of the features used to build the models, we
321  found that transcript-based models identified more known flowering time associated genes than
322  genetic marker-based models. These findings underscore the usefulness of transcript data for
323  improving our understanding of the genetic mechanisms responsible for complex traits.

324 There are four possible mechanistic explanations of why transcript levels could have a
325 similar predictive power as genetic markers. First, cis-regulatory variants that impact transcript
326 levels, are all more likely to be similar between closely related individuals. Therefore, the ability
327  of transcript data to predict phenotypes is simply a reflection of that dependency. However, we
328  demonstrated that the most informative transcript features for predicting maize phenotypes are
329  distinct from the most informative genetic marker features found in the transcript regions. While
330 for some important transcripts, the associated important genetic marker could be in linkage

331  disequilibrium but outside of the 2kb window used in our study (e.g. ~32 kb away in the case of
332 MADS69), overall as we increased the transcript region window size, the correlation between the
333  importance scores assigned to T:G pairs decreased, suggesting this is not generally the case.

334  Thus, the second explanation is that there are trans-regulatory variants, e.g. due to transposon

335 polymorphisms or transcriptional regulators, that play a major role. However, we found that the
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336  importance of eQTLs (99.9% trans) and their associated transcripts were not positively

337  correlated, suggesting that the trans-regulatory variation we identified cannot explain why

338 transcript variation is predictive of phenotypic variation either. However, considering the

339  challenges in identifying eQTLs due to mixed tissues used ** and in modeling epistatic

340 interactions *3, we cannot conclusively rule of this possibility. The third explanation is that

341  transcription is a molecular phenotype caused by the integration of multiple genetic marker

342  signals, both cis and trans, that may not have had strong signals individually. The fourth

343  explanation is that there are epigenetic variants contributing to expression variation. It remains to
344  be determined what the contribution of epigenetic variation is on our ability to use transcript data
345  to predict phenotypes.

346 One surprise is that the transcript data generated during the V1 seedling stage on whole
347  seedlings can predict adult plant phenotypes. We reason that complex traits, such as flowering
348  time, are influenced by more than just canonical genes that act immediately prior to the growth
349 and developmental sequences leading to flowering. For example, early developmental events
350  such as cotyledon damage 3¢, root restriction 37, and photoperiod and temperature changes *® can
351  impact flowering time in mature plants. Therefore, early development transcript differences

352  could eventually result in different flowering time. However, we anticipate that if transcript data
353  collection occurred temporally and/or spatially closer to the phenotype data the predictive power
354  of transcript levels would increase, and likely perform better than genetic marker-based models.
355  Finally, an area of active research in GP is the incorporation of Genotype by Environment (GxE)
356 interactions into predictive models 3*~*!. One potential benefit of using transcript information for
357  GP could be that GXE interactions would be picked up by transcript level signals. Because

358 transcriptome data used in our study was from whole seedlings (i.e. not the same individuals that
359  were phenotype), this could not be tested.

360 Our findings highlight an important benefit of using transcript data to better understand
361  the genetic basis of a trait. While it can be difficult to associate signals from a number of small
362  effect genetic markers or even a single large effect genetic marker back to a specific gene,

363 transcript level information is inherently associated with genes. Because of the importance of
364  regulatory variation on complex traits '!, the use of transcript information in GP could be crucial
365  for deciphering the contribution of regulatory variation to the genetic basis of traits. Therefore,

366  while we observed that in terms of predictive ability, genetic marker data outperformed transcript
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367  data, expression differences are more straightforward to interpret than sequence polymorphisms.
368 In practice, this meant that transcript-based models identified five benchmark flowering time

369  genes, while genetic marker-based models only identified one and it highlighted our finding that
370  more insight into the genetic basis of complex traits can be gained when transcriptome data are
371  considered.
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380

381 Methods

382  Genotypic, transcriptomic, and phenotypic data processing

383 The phenotypic #?, and genotypic and transcriptomic ?? data used in this study were

384  generated from the pan-genome population consisting of diverse inbred maize lines. Genotype,
385 transcriptome, flowering time, height, and yield data was all available for 388 lines out of the
386 503 maize pan-genome panel and were used for the study (Table S6). Genetic marker scores

387  derived from RNA-seq reads were converted to a [-1,0,1] format corresponding to [aa, Aa, AA]
388  with the more common allele (AA) designated as 1. The genetic marker positions were converted
389  from maize B73 reference genome A Golden Path v2 (AGPv2) to AGPv4.37. The AGPv2

390  genetic markers that did not map to AGPv4.37 and genetic markers with a minor allele frequency
391  less than 5% were removed, resulting in 332,178 genetic markers.

392 Transcriptomic data from whole-seedling tissue including root at the V1 stage from >
393  was processed to remove loci that did not map to AGPv4.37. The remaining maize B73 genes
394  were filtered with default settings of the nearZeroVar function from the R caret package to

395 remove genes with zero or near zero variance (> 95% of the lines sharing the same transcript

396 level) across lines. After the filtering steps, transcript counts for 31,238 genes were retained in

397  the final dataset. The raw transcripts per million count data were transformed with a loge + 1
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398 transformation before the data were used in subsequent analyses. To assess if transcriptome data
399  had predictive power beyond random expectation, transcriptome data was permuted by gene, so
400  each gene had the same distribution of transcript values, but the values were randomly assigned
401  to different maize lines for building the transcriptome shuffled models. To compared important
402 transcripts and genetic markers from GP models, transcripts were converted from AGPv3 to v4,
403 only genes with one to one correspondence between AGPv3 and v4 were included in this

404  analysis.

405

406  Comparison of transcript and genetic marker data

407 Three different approaches were used to determine the similarity between lines based on
408 the three different data types. For the genotype data, a kinship matrix was generated using the
409  centered Identity By State (IBS) method * implemented in TASSEL v5.20180517 #4. For the
410 transcript data, we generated an expression Correlation (eCor) matrix by calculating the Pearson
411 Correlation Coefficients (PCCs) of transcript values between lines using the cor.test function in
412  R. The eCor matrix was normalized between 0 and 1 and the diagonal was set as 1. Finally, for
413  phenotype data, we calculated the Euclidean distance between lines using the distances package
414  in the R environment. The correlation between kinship, eCor, and Phenotype Distance between
415  pairs of lines was calculated using PCC.

416

417  Genomic prediction models and model performance

418 Because part of the phenotypic signal observed in GP models may be due to population
419  structure within the breeding population, we established a baseline for our GP models by using
420 the first 5 principle components generated using the marker data alone, to predict phenotype

421  values. Four methods were used for each trait, two linear-parametric methods: ridge regression-
422  Best Linear Unbiased Predictor (rrfBLUP)* and Bayesian Least absolute shrinkage and selection
423  operator (BL)*, and one non-linear and non-parametric method: Random Forest (RF)*’, and one
424  ensemble based approach (En)*. Both rBLUP and BL were implemented in R using the

425  “rrBLUP” and “BGLR” packages respectively. RF was implemented in python using Scikit-
426  Learn *°. Ensemble predictions were generated by taking the mean of the predicted trait values
427  from rrBLUP, BL, and RF. A grid-search was performed on the first 10 of the 100 cross-

428  validation replicates to find the best combination of parameters for the RF model. Parameters

14


https://doi.org/10.1101/587121
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/587121; this version posted March 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

429  tested included max tree depth (3, 5, 10, and 50) and the max number of features included in
430  each tree (10%, 50%, 100%, square root, and logy).

431 The predictive performance of the models was compared using the PCC. The PCC

432  between the predicted (Y) and the true trait value (Y) and was computed using the cor() function
433  in R for rBLUP and BL or the NumPy corrcoef function in Python for RF. One hundred

434  replicates of a five-fold cross validation approach were applied to maximize the data available
435  for model training without resulting in overfitting. For each replicate, the lines were randomly
436  divided into 5 subsets, where each subset is used as the testing set once and the rest 4 subsets
437  combined to train the model, resulting in a total of 500 cross-validated runs. PCC was calculated
438  using only the predicted values from the testing set for each run.

439

440  Genetic marker/transcript importance analysis

441 In order to identify features important for building the predictive models, feature

442  importance information was extracted from each model established with one of four methods:
443  rBLUP, BL, RF, and Ensemble. For rrBLUP, the importance metric was the marker effect ($u)
444  calculated by mixed.solve in the R rrBLUP package. For BL, the importance metric was the

445  estimated posterior mean ($ETA) calculated using the R BGLR package. The absolute value of
446  marker effect and estimated posterior mean were used since the features are categorical with no
447  particular meaning for the sign of importance metrics. For RF, the importance metric was the
448  Gini importance, collected using the importance score function built into the Scikit-Learn

449  implementation of RF. The Gini importance is the total decrease in node impurity (i.e. the

450 homogeneity of classes in a node) after a particular feature is used to split a node. Node impurity
451  decreases as instances from one of the classes are removed from the node, leaving a greater

452  proportion of instances from the other class. Importance metrics from rrBLUP, BL, and RF were
453  averaged over the 100 cross-validation replicates. Ensemble importance scores were calculated
454 by normalizing the average importance scores from each model and each method between 0 and
455 1, then taking the mean of normalized importance scores across the three algorithms. Enrichment
456  for transcript compared to genetic marker features within the top 1000 or top 20 features was
457  done using Fisher’s Exact Test, where the number of transcript features in and not in the top X

458  features was compared to the number of genetic marker features in and not in the top X features.
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459 To determine the degree to which the importance of a transcript correlates with the

460 importance of nearby genetic markers, the genetic marker G with the greatest mean importance
461  score within a fixed window from the center of a genomic region R where a transcript 7 mapped
462  to was selected among genetic markers in region R, referred to as a T:G pair (Fig. 3A). To

463  identify the effect of window size, a series of window sizes ranging from 1-40kb were tested. For
464  each window size, the Spearman’s Correlation (p) was calculated between the importance scores
465  of T:G pairs. The window size with the highest correlation (2kb) was chosen (Figure S4). For
466 this analysis, transcripts without location information or without one-to-one mapping between
467  AGP V3 to V4 were removed, leaving 24,412 transcripts. With a window size of 2kb, additional
468  transcripts were dropped because there was not a genetic marker within that window, resulting in
469 15,049 transcripts to be included in the downstream analysis.

470 To determine the degree to which the importance of a transcript correlated with the

471  importance of trans-regulatory variants, significant eQTLs (multiple testing corrected p<0.05)
472  were identified for each transcript using the linear regression (modelLINEAR) approach from
473  MatrixeQTL implemented in R. Benjamini-Hochberg false discovery rate correction was used to
474  adjust p for multiple testing and eQTLs were considered significant if adjusted p < 0.05. The
475  distance for considering eQTL as cis was 1 mega base >°, however, because <0.1% of eQTL

476  identified were cis, all eQTL were analyzed together. The importance of an eQTL or the

477  neighboring genetic marker located within a 2kb window of the eQTL with the greatest average
478  importance score was compared to the importance of the transcript with the eQTL in question
479  (T:eQTL pair).

480 Enrichment of Gene Ontology (GO) terms associated with important transcripts

481  compared to the reference genome was tested using agriGO v2 3!, The enrichment p-values are
482  corrected for multiple testing by agriGOv2 using FDR. The top 10, 25, and 100 transcripts from
483  each algorithm, excluding the benchmark flowering time genes, were tested against the reference
484  genome. Additionally, the top 153 transcripts, excluding benchmark genes, from the ensemble
485  algorithm and the union of the top 10, 25, and 100 transcripts from all four algorithms were

486  tested.

487
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488  Benchmark flowering time genes

489 We compiled a list of genes known to be involved in flowering time based on evidence

27-30,33 22,52

490 from knockdown experiments and/or association study . Genes were assigned

491  confidence levels based on the type of evidence available, with experimental evidence

492  considered high confidence, association study evidence and significant similarity with known
493 flowering time genes from other species considered medium confidence (Table S8). Because
494  some of these genes did not have genetic markers located within the 2kb window of the center of
495 the transcript, progressively larger windows were used to identify the most important nearby
496  genetic marker up to 40kb. To compared importance scores across algorithms and between

497  models using G or T data as input, percentiles were used. To determine if transcripts or genetic
498  markers assigned to flowering time benchmark genes were associated with flowering time in this
499  study, linear models and t-tests, respectively, implemented in R were used.

500

501  Data Availability

502 All data and code needed to reproduce the results from this study is available on GitHub
503 including genomic, transcriptomic, and phenotype data

504  (https://github.com/Shiul.ab/Manuscript Code/tree/master/2019 _expression_GP/data), codes to
505 run rrBLUP and BL models (https://github.com/Shiul.ab/GenomicSelection), codes to run RF

506  models (https://github.com/ShiuLab/ML-Pipeline), as well as R code used for preprocessing,

507  T:G/eQTL pairing, eQTL analysis, and additional statistical analyses
508  (https://github.com/Shiul.ab/Manuscript Code/tree/master/2019 expression GP/scripts).
509

510  Figures

511  Figure 1. Relationship between lines from transcript and genetic marker data

512  (A) Relationship between kinship based on genetic marker data (X-axis) and expression

513  correlation (eCor, in Pearson's Correlation Coefficient (PCC)) based on transcript data (Y-axis).
514  Boxplots show the median Y-axis value for each X-axis bin (bin size=0.15) with the 5" (blue)
515  and 95" (red) percentile range shown. The correlation between kinship and eCor was calculated
516  using Spearman’s Rank Coefficient (p). (B, C) The relationships between lines based on eCor
517  (B) or kinship (C) for all pairs of maize lines. Lines are sorted based on hierarchical clustering

518  results using the eCor values. The blue, white, and red color scales indicate negative, no, or
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519  positive correlations, respectively. Dotted rectangles: indicating cluster of lines discussed in the
520 main text. (D, E) The relationships between the Euclidian distance calculated with phenotype
521  values (Phenotype Distance: Y-axis) and kinship (D), and eCor (E). Colored line: follow those in
522  (A). (F) The relationships between lines based on Phenotype Distance, where the lines were

523  sorted as in (B). Red: smaller distance (more similar). Blue: greater distances (less similar).

524

525  Figure 2. Genomic prediction model performance

526  PCCs between predicted and true values for three traits and four algorithms using six different
527  input features. The darkest red indicate a normalized PCC of 1 (the algorithm/input feature

528  combination performed the best for the trait), while the darkest blue has a normalized PCC of 0
529  (performed the worst. Original PCC values were shown in the boxes with the top performing
530  model(s) in white. Right violin-plots show the PCC distributions among different input features
531  for each algorithm (right). The median PCCs are indicated with black bars. The model

532  performance PCCs based on only population structure are indicated with a blue dashed line.
533  Bottom violin-plots show the PCC distributions among different algorithms for each input

534  feature. rrB: ridge regression Best Linear Unbiased Predictor. BL: Bayesian Least Absolute
535  Shrinkage and Selection Operator. RF: Random Forest. En: Ensemble.

536

537  Figure 3. Correlation between genetic marker and transcript importance for flowering time

538  (A) Illustration of how transcript (T):genetic marker (G) (top graph) and T:expression

539  Quantitative Trait Locus (eQTL) (bottom graph) pairs were determined. Genetic marker

540 importance percentiles are shown above the genetic markers (red triangle) and eQTL (yellow
541  triangle). A T:G pair was defined as the transcript and the most important genetic marker within
542  the transcript region (top graph). A T:eQTL pair was defined as the transcript and the most

543  important genetic marker within the eQTL region (bottom graph). (B) Manhattan plots of the
544  transcript (blue bar) and genetic marker (red dot) importance scores (-loge(1-importance

545  percentile)) in a 2Mb window surrounding top two genetic markers (top and middle plots) and
546  transcripts (top and bottom plots) based on the Ensemble models for predicting flowering time.
547  All genetic markers (i.e. not just the T:G pair) are shown. The threshold (gray dotted line) is set
548  at the 99" percentile importance. (C) Density scatter plot of the importance scores (see Methods)
549  of the genetic marker (Y-axis) and transcript (X-axis) for T:G pairs (top graphs) and of the eQTL
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550  genetic marker (Y-axis) and transcript (X-axis) for the T:eQTL pairs (bottom graphs) for three
551 traits. The threshold (black dotted line) was set at the 99" percentile importance score for each
552  trait and input feature type. The correlation between importance scores between transcript and
553  genetic marker/eQTL pairs was calculated using Spearman’s rank (p).

554

555  Figure 4. Comparison of transcript and genetic marker importance scores for benchmark

556  flowering time genes

557  Importance percentile of each transcript (left) and genetic marker (right) pair as determined by
558  each of the 4 algorithms (X-axis). Genes are sorted based on hierarchical clustering of their

559  importance percentiles. Gray boxes designate benchmark genes that did not have genetic markers
560  within a 40kb window. Confidence levels (high or medium) were assigned based on the type of
561 evidence available for the benchmark gene (see Methods). Algorithms were abbreviated as in
562  Figure 2.

563

564  Figure 5. Relationship between transcript level/allele type and flowering time for benchmark
565  genes

566  (A) Boxplots show the transcript levels (loge(Fold-Change)) over flowering time bin with the 5%
567  (blue) and 95" (red) percentile range shown. Flowering time was defined as the growing degree
568  days/100. Linear models were fit and adjusted r? and p-values are shown. Confidence levels of
569  benchmark genes were designated as in (4). (B) Distributions of flowering time for lines with the
570  major (red) or minor (gray) alleles for the genetic marker paired with each benchmark gene as
571 indicated in (A). Differences in flowering time by allele were tested using t-tests. (C) Number of
572  transcripts (Y-axis) for which transcript levels were associated with flowering time in linear

573  models within p-value bins (-logio(p-value); X-axis). Benchmark genes are labeled as in (A). (D)
574  Number of genetic markers (Y-axis) for which differences in flowering time by allele from t-
575  tests were within p-value bins (-logio(p-value); X-axis). Benchmark genes are labeled as in (A).

576
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577  Supplemental Figures

578  Figure S1. Distribution of genetic marker and transcript data across maize chromosomes

579  Number of genetic markers (top) and transcripts (bottom) included in this study in 1 Mb bins
580  across the maize chromosomes.

581

582  Figure S2. Feature importance analysis for G+T models

583  (A) Relationships between importance scores for transcripts from the T (X-axis) and G+T (Y-
584  axis) flowering time prediction models established with rrBLUP (left column), BL (middle

585  column), and RF (right column). The Pearson’s Correlation Coefficient (r) is shown in the top
586 left corner. (B) Distribution of importance scores for the top 1,000 (inset = top 20) features from
587  the G+T models for three traits using rrBLUP (top row) and BL (bottom row). Transcript

588  features are in purple and genetic marker features are in yellow.
589

590  Figure S3. Impact of transcript region sizes on importance correlation between

591  transcript:genetic marker pairs

592  The correlation (green) between importance scores for transcript:genetic marker pairs and the
593  number of pairs found (blue) as the transcript region size increases. Shown here are the

594  correlation scores when using top (solid) or the 95th percentile (dashed) mean importance score
595  of genetic markers in the transcript region.

596

597  Figure S4. Manhattan plot of importance scores from Genomic Prediction models

598  Manhattan plots of genetic marker (top) and transcript (bottom) importance scores for predicting
599  (A) flowering time, (B) height, and (C) yield. Threshold importance scores (dotted blue) were set
600  at the 99" percentile importance score for each trait, algorithm, and input feature type (i.e.

601  genetic markers or transcripts). Genetic markers and transcripts falling above that threshold

602  colored in blue.

603

604  Figure S5. Correlation between genetic marker/eQTL and transcript importance

605 Density plot of the importance scores of (A) genetic markers (G, Y-axis) and transcripts (T, X-
606  axis) from T:G pairs and (B) eQTL (eQTL, Y-axis) and transcripts (T, X-axis) from T:eQTL
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pairs. The threshold was set (red dotted line) as the 99" percentile of the normalized importance
score for each trait, algorithm, and input feature type. The correlation between transcript and

genetic marker importance was calculated using Spearman’s Rank (p).

Figure S6. Correlation between feature importance between algorithms

Density scatter plot of the importance scores of genetic markers (top) and transcripts (bottom)
generated with rBLUP and BL (left), rrBLUP and RF (middle), as well as BL and RF (right).
The correlation between importance scores between algorithms was calculated using Spearman’s

Rank (p).

Figure S7. Relationship between transcript levels and alleles and flowering time for

benchmark genes

(A) Boxplots show the median transcript level (log(Fold-Change)) for each flowering time
(Growing Degree Days (GDD)/100) bin with the 95th (red) and 5th (blue) percentiles shown.
Linear models were fit and adjusted 1> and p-values are shown. (B) Violin-plots of the
distribution of flowering time (GDD/100) for lines with the major (blue) or minor (gray) allele
for the genetic marker paired with each benchmark gene. Significant differences in the GDD by

allele were tested for using t-tests.
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626  Supplemental Tables

627  Table S1. Model performance by feature input type and algorithm

628  Table S2. Enrichment of transcript vs. genotype features among the top most important
629  features from G+T models

630  Table S3. Description of benchmark flowering time genes, including evidence for flowering

631  time association and T:Gs and T:eQTL pair information

632  Table S4. Importance scores and percentiles for benchmark gene transcripts, and genetic

633  marker and eQTL pairs
634  Table S5. Top 1000 most important transcripts for flowering time from the Ensemble models.

635  Table S6. Account of data (Genetic Marker, Transcript, Phenotype) availability for maize lines

636  and decision to include line in the study

637
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Figure 1. Relationship between lines from transcript and genetic marker data
(A) Relationship between kinship based on genetic marker data (X-axis) and
expression correlation (eCor, in Pearson's Correlation Coefficient (PCC)) based on
transcript data (Y-axis). Boxplots show the median Y-axis value for each X-axis bin
(bin size=0.15) with the 5th (blue) and 95th (red) percentile range shown. The
correlation between kinship and eCor was calculated using Spearman’s Rank
Coefficient (p). (B, C) The relationships between lines based on eCor (B) or kinship
(C) for all pairs of maize lines. Lines are sorted based on hierarchical clustering
results using the eCor values. The blue, white, and red color scales indicate
negative, no, or positive correlations, respectively. Dotted rectangles: indicating
cluster of lines discussed in the main text. (D, E) The relationships between the
Euclidian distance calculated with phenotype values (Phenotype Distance: Y-axis)
and kinship (D), and eCor (E). Colored line: follow those in (A). (F) The
relationships between lines based on Phenotype Distance, where the lines were
sorted as in (B). Red: smaller distance (more similar). Blue: greater distances (less
similar).


(A) Relationship between kinship based on genetic marker data (X-axis) and expression correlation (eCor, in Pearson's Correlation Coefficient (PCC)) based on transcript data (Y-axis). Boxplots show the median Y-axis value for each X-axis bin (bin size=0.15) with the 5th (blue) and 95th (red) percentile range shown. The correlation between kinship and eCor was calculated using Spearman’s Rank Coefficient (ρ). (B, C) The relationships between lines based on eCor  (B) or kinship (C)  for all pairs of maize lines. Lines are sorted based on hierarchical clustering results using the eCor values. The blue, white, and red color scales indicate negative, no, or positive correlations, respectively. Dotted rectangles: indicating cluster of lines discussed in the main text. (D, E) The relationships between the Euclidian distance calculated with phenotype values (Phenotype Distance: Y-axis) and kinship (D), and eCor (E). Colored line: follow those in (A). (F) The relationships between lines based on Phenotype Distance, where the lines were sorted as in (B). Red: smaller distance (more similar). Blue: greater distances (less similar).
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Figure 2. Genomic prediction model performance
PCCs between predicted and true values for three traits
and four algorithms using six different input features.
The darkest red indicate a normalized PCC of 1 (the
algorithm/input feature combination performed the best
for the trait), while the darkest blue has a normalized
PCC of 0 (performed the worst. Original PCC values
were shown in the boxes with the top performing
model(s) in white. Right violin-plots show the PCC
distributions among different input features for each
algorithm (right). The median PCCs are indicated with
black bars. The model performance PCCs based on
only population structure are indicated with a blue
dashed line. Bottom violin-plots show the PCC
distributions among different algorithms for each input
feature. rrB: ridge regression Best Linear Unbiased
Predictor. BL: Bayesian Least Absolute Shrinkage and
Selection Operator. RF: Random Forest. En: Ensemble.


PCCs between predicted and true values for three traits and four algorithms using six different input features. The darkest red indicate a normalized PCC of 1 (the algorithm/input feature combination performed the best for the trait), while the darkest blue has a normalized PCC of 0 (performed the worst. Original PCC values were shown in the boxes with the top performing model(s) in white. Right violin-plots show the PCC distributions among different input features for each algorithm (right).  The median PCCs are indicated with black bars. The model performance PCCs based on only population structure are indicated with a blue dashed line. Bottom violin-plots show the PCC distributions among different algorithms for each input feature. rrB: ridge regression Best Linear Unbiased Predictor. BL: Bayesian Least Absolute Shrinkage and Selection Operator. RF: Random Forest. En: Ensemble.
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Figure 3. Correlation between genetic marker and transcript importance for flowering time

(A) Illustration of how transcript (T):genetic marker (G) (top graph) and T:expression Quantitative Trait Locus
(eQTL) (bottom graph) pairs were determined. Genetic marker importance percentiles are shown above the genetic
markers (red triangle) and eQTL (yellow triangle). A T:G pair was defined as the transcript and the most important
genetic marker within the transcript region (top graph). A T:eQTL pair was defined as the transcript and the most
important genetic marker within the eQTL region (bottom graph). (B) Manhattan plots of the transcript (blue bar)
and genetic marker (red dot) importance scores (-loge(1-importance percentile)) in a 2Mb window surrounding top
two genetic markers (top and middle plots) and transcripts (top and bottom plots) based on the Ensemble models for
predicting flowering time. All genetic markers (i.e. not just the T:G pair) are shown. The threshold (gray dotted line)
is set at the 99th percentile importance. (C) Density scatter plot of the importance scores (see Methods) of the
genetic marker (Y-axis) and transcript (X-axis) for T:G pairs (top graphs) and of the eQTL genetic marker (Y-axis)
and transcript (X-axis) for the T:eQTL pairs (bottom graphs) for three traits. The threshold (black dotted line) was
set at the 99th percentile importance score for each trait and input feature type. The correlation between importance
scores between transcript and genetic marker/eQTL pairs was calculated using Spearman’s rank (p).


(A) Illustration of how transcript (T):genetic marker (G) (top graph) and T:expression Quantitative Trait Locus (eQTL) (bottom graph) pairs were determined. Genetic marker importance percentiles are shown above the genetic markers (red triangle) and eQTL (yellow triangle). A T:G pair was defined as the transcript and the most important genetic marker within the transcript region (top graph). A T:eQTL pair was defined as the transcript and the most important genetic marker within the eQTL region (bottom graph). (B) Manhattan plots of the transcript (blue bar) and genetic marker (red dot) importance scores (-loge(1-importance percentile)) in a 2Mb window surrounding top two genetic markers (top and middle plots) and transcripts (top and bottom plots) based on the Ensemble models for predicting flowering time. All genetic markers (i.e. not just the T:G pair) are shown. The threshold (gray dotted line) is set at the 99th percentile importance. (C) Density scatter plot of the importance scores (see Methods) of the genetic marker (Y-axis) and transcript (X-axis) for T:G pairs (top graphs) and of the eQTL genetic marker (Y-axis) and transcript (X-axis) for the T:eQTL pairs (bottom graphs) for three traits. The threshold (black dotted line) was set at the 99th percentile importance score for each trait and input feature type. The correlation between importance scores between transcript and genetic marker/eQTL pairs was calculated using Spearman’s rank (ρ). 
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Figure 4. Comparison of transcript and genetic marker
importance scores for benchmark flowering time genes
Importance percentile of each transcript (left) and genetic
marker (right) pair as determined by each of the 4
algorithms (X-axis). Genes are sorted based on
hierarchical clustering of their importance percentiles.
Gray boxes designate benchmark genes that did not have
genetic markers within a 40kb window. Confidence

levels (high or medium) were assigned based on the type
of evidence available for the benchmark gene (see
Methods). Algorithms were abbreviated as in Figure 2.


Importance percentile of each transcript (left) and genetic marker (right) pair as determined by each of the 4 algorithms (X-axis). Genes are sorted based on hierarchical clustering of their importance percentiles. Gray boxes designate benchmark genes that did not have genetic markers within a 40kb window. Confidence levels (high or medium) were assigned based on the type of evidence available for the benchmark gene (see Methods). Algorithms were abbreviated as in Figure 2.
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Figure 5. Relationship between transcript level/allele type and flowering time for benchmark genes

(A) Boxplots show the transcript levels (loge(Fold-Change)) over flowering time bin with the 5th (blue) and 95th (red)
percentile range shown. Flowering time was defined as the growing degree days/100. Linear models were fit and adjusted r2
and p-values are shown. Confidence levels of benchmark genes were designated as in (4). (B) Distributions of flowering time
for lines with the major (red) or minor (gray) alleles for the genetic marker paired with each benchmark gene as indicated in
(A). Differences in flowering time by allele were tested using t-tests. (C) Number of transcripts (Y-axis) for which transcript
levels were associated with flowering time in linear models within p-value bins (-log10(p-value); X-axis). Benchmark genes
are labeled as in (A). (D) Number of genetic markers (Y-axis) for which differences in flowering time by allele from t-tests
were within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A).


(A) Boxplots show the transcript levels (loge(Fold-Change)) over flowering time bin with the 5th (blue) and 95th (red) percentile range shown. Flowering time was defined as the growing degree days/100. Linear models were fit and adjusted r2 and p-values are shown. Confidence levels of benchmark genes were designated as in (4). (B) Distributions of flowering time for lines with the major (red) or minor (gray) alleles for the genetic marker paired with each benchmark gene as indicated in (A). Differences in flowering time by allele were tested using t-tests. (C) Number of transcripts (Y-axis) for which transcript levels were associated with flowering time in linear models within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A). (D) Number of genetic markers (Y-axis) for which differences in flowering time by allele from t-tests were within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A).
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