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Abstract  27!

 The ability to predict traits from genome-wide sequence information (Genomic 28!

Prediction, GP), has improved our understanding of the genetic basis of complex traits and 29!

transformed breeding practices. Transcriptome data may also be useful for GP. However, it 30!

remains unclear how well transcript levels can predict traits, particularly when traits are scored at 31!

different development stages. Using maize genetic markers and transcript levels from seedlings 32!

to predict mature plant traits, we found transcript and genetic marker models have similar 33!

performance. Surprisingly, genetic markers important for predictions were not close to or 34!

identified as regulatory variants for important transcripts. Thus, transcript levels are predictive 35!

not simply due to genetic variation. Furthermore, genetic marker models identified only one of 36!

14 benchmark flowering time genes, while transcript models identified five. Our findings 37!

highlight that transcriptome data is useful for GP and can provide a link between traits and 38!

variation that cannot be readily captured at the sequence level.  39!

 40!

 41!

Introduction  42!

The prediction of complex traits from genetic data is a grand challenge in biology and the 43!

outcome of such prediction has become increasingly useful for plant and animal breeding 1,2. 44!

Among the different approaches for connecting genotypes to phenotypes, Genomic Prediction 45!

(GP, or Genomic Selection) using all available markers was developed to overcome the 46!

limitations of Marker-Assisted Selection, which uses only significant quantitative trait loci 47!

(QTLs), for breeding traits that are controlled by many small effect alleles 3,4. Using GP, 48!

breeders are able to make data driven decision about what lines to include in their programs, 49!

speeding up and reducing the cost of developing the next generation of crops 5,6. Furthermore, 50!

because GP models are associating genetic signatures with phenotypes, untangling GP models 51!

has the potential to improve our understanding of the genetic basis of complex traits. However, 52!

as with related approaches such as genome wide association studies and QTL mapping, it 53!

remains difficult to go from associated genetic markers to the molecular basis for a trait 7,8. 54!

There are a number of factors contributing to this difficulty. The variation in markers 55!

associated with phenotypes may not be the causal variants but are linked to the genes that control 56!

the trait in question. Considering that linkage disequilibrium distance can range from 1 kilobase 57!
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(kb) in diverse maize populations 9 to ~250 kb in Arabidopsis thaliana 10, the linked candidate 58!

genes can range from a few to a few hundreds. Even if the associated genetic variant is 59!

controlling the underlying phenotype, most variants associated with complex traits have small 60!

effect sizes and can be regulatory 11, which may not be linked to the genes they regulate. 61!

Furthermore, multiple regulatory variants that have indiscernible effects on their own, could 62!

interact epistatically to influence gene and ultimately trait expression. However, even with 63!

sufficient statistical power to detect genetic variants with small effect sizes and interactions 64!

between them, genetic information is connected to traits through multiple intermediate processes, 65!

including, for example, transcription, translation, epigenetic modification, and metabolism. Each 66!

of these intermediate processes represent an additional level of complexity that obscures the 67!

association between genetic information and a trait.  68!

 One solution is to account for these intermediate processes by integrating relevant omics 69!

data in addition to genetic variation. This approach has led to promising, but often mixed, results 70!

in plants. Current efforts have focused primarily on predicting hybrid performance using 71!

transcriptional information from the parental lines. For example, transcript level-based distance 72!

measures generated from transcripts associated with the trait were better than genetic markers in 73!

predicting hybrid performance in maize 12,13. However, when all transcripts were used (instead of 74!

a subset of pre-selected transcripts), model performance decreased  14. The performance of 75!

models based on transcript levels can be better or worse compared to those based on genetic 76!

markers depending on the trait. For example, transcriptome data performed better for predicting 77!

grain yield in hybrid maize populations, but genetic marker data performed better for predicting 78!

grain dry matter content in the same population 15. Similarly, in a maize diversity panel, GP 79!

models that combined transcript and marker data only outperformed models using markers alone 80!

for certain traits 16. Finally, efforts to integrate additional omic information to predict various 81!

traits in Drosophila melanogaster 17, and human diseases, such as breast cancer 18, and responses 82!

to treatment interventions, including acute kidney rejection and response to infliximab in 83!

ulcerative colitis 19,20, have demonstrated the potential usefulness of transcriptome data in the 84!

field of precision medicine.  85!

Overall, these efforts provide reasonable evidence that transcriptome data could be useful 86!

for trait prediction. However, GP-based approaches that trained on the entire transcriptome data 87!

have not been used to better understand the genetic mechanisms for a trait. In addition, it is not 88!
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known the degree to which transcriptomes obtained at a particular developmental stage can be 89!

informative for predicting phenotypes scored at a different stage. To address these questions, we 90!

used transcriptome data derived from maize whole seedling 22 to predict phenotypes (flowering 91!

time, height, and grain yield) at much later developmental stages. In addition to comparing 92!

prediction performance between genetic marker and transcriptome-based models, we also looked 93!

at whether transcripts and genetic marker features important for the prediction models were 94!

located in the same or adjacent regions. Finally, we determined how well our models were able 95!

to identify a benchmark set of flowering time genes to explore the potential of using GP to better 96!

understand the mechanistic basis of complex traits.  97!

 98!

Results and Discussion  99!

Relationships between transcript levels, kinship, and phenotypes among maize lines 100!

Before using the transcriptome data for GP, we first assessed properties of the 101!

transcriptome data in three areas: (1) the quantity and distribution of transcript information 102!

across the genome, (2) the amount of variation in transcript levels, and (3) the similarity in the 103!

transcriptome profile between maize lines, with an emphasis on how these properties compared 104!

to those based on the genotype data. After filtering out 16,898 transcripts that did not map to the 105!

B73 reference genome or had zero or near zero variance across lines (see Methods), we had 106!

31,238 transcripts. While the number of transcripts was <10% of the number of genetic markers 107!

used in this study (332,178), the distribution of transcripts along the genome was similar to the 108!

genetic marker distribution (Fig. S1). The log2-transformed median transcript level across lines 109!

ranged from 0 to 12.4 (median=2.2) and the variance ranged from 3x10-30 to 14.5 (median= 110!

0.13), highlighting that a subset of transcripts had relatively high variation in transcript levels 111!

across maize lines at the seedling stage. To determine how similar transcript levels were between 112!

lines, we calculated the expression Correlation (eCor) between all pairs of lines using Pearson’s 113!

Correlation Coefficient (PCC). The eCor values ranged from 0.84 to 0.99 (mean=0.93). As 114!

expected, lines with similar transcriptome profiles were also genetically similar as there was a 115!

significant correlation between eCor values with values in the kinship matrix generated from the 116!

genetic marker data (Spearman’s Rank ρ = 0.27, p < 2.2x10-16; Fig. 1A). As a result, we were 117!

able to find clusters of lines that had both high transcript and genetic similarities (e.g. cluster a, 118!

b; Fig. 1B, C). However, most of the variation in eCor was not explained by kinship, which 119!
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explained why we identified other clusters that had similar transcriptome profiles, but were not 120!

genetically similar (e.g. cluster c, Fig. 1B, C).   121!

Because the basis of GP is to predict a phenotype from genetic data, we next asked if 122!

kinship or eCor were anti-correlated with the phenotypic distances between lines (see Methods). 123!

While both kinship (ρ = -0.03, p < 2.2x10-16; Fig. 1D) and eCor (ρ = -0.08, p < 2.2x10-16; Fig. 124!

1E) were significantly, negatively correlated with the phenotype distance, the degree of 125!

correlation was minor. Furthermore, the groups of lines that clustered together based on their 126!

eCor (e.g. clusters a, b; Fig. 1B, 1C) did not have lower phenotypic distance (Fig. 1F). Taken 127!

together, these findings suggest that transcriptome data may be similarly informative as genotype 128!

data but capture difference aspect of phenotypic variation. We tested both of these interpretations 129!

further in subsequent sections. 130!

 131!

Predicting complex traits from transcript data 132!

To test how useful transcriptome data was for GP compared to genetic marker data, we 133!

applied four approaches to predict three agronomically important traits in maize: flowering time, 134!

height, and grain yield. Because no one GP algorithm always performs best 6,23, we tested two 135!

linear algorithms (ridge regression Best Linear Unbiased Predictor (rrBLUP) and Bayesian-Least 136!

Absolute Shrinkage and Selection Operator (BL)), one non-linear algorithm (random forest: RF), 137!

and one ensemble approach (En; see Methods). To establish a baseline for our GP models, we 138!

determined the amount of the phenotypic signal that could be predicted using population 139!

structure alone, defined as the first five Principal Components from the genetic marker data. 140!

Then we built models for each trait using genetic marker data (G), kinship (K) derived from G, 141!

transcript levels (T), or expression correlation (eCor) derived from T (Fig. 2). Model 142!

performance was measured using PCC between the actual and the predicted phenotypic values. 143!

Across algorithms and traits, the K data resulted in models with the best predictive performance, 144!

while models built using the eCor data performed the worst (Fig. 2, Table S1). Furthermore, 145!

models built using G always outperformed models using T. Regardless, eCor and T-based 146!

models were significantly better than the baseline predictions (dotted blue line, Fig. 2), 147!

indicating transcriptome data can be informative in GP. Considering that the transcriptome is 148!

from seedling, it is particularly surprising that mature plant phenotypes can be predicted. 149!

Consistent with earlier findings 24,25, combining the predictions from multiple algorithms, known 150!
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as an ensemble approach, resulted in the best predictive models (Fig. 2), and is therefore used to 151!

illustrate most of our findings.  152!

Because the genetic marker and transcriptome data represented different types of 153!

molecular information that could be associated with the traits of interest, we hypothesized that 154!

their combination would be more informative and next built models that used combined data, 155!

either K+T or G+T. For most combined models, adding the transcript data did not significantly 156!

improve performance. The one exception was using RF to predict flowering time using G+T as 157!

input (Fig. 2). To assess if G or T data features tend to be more informative in predicting traits, 158!

we further quantified the importance score of each genetic marker and transcript feature for 159!

models using G+T data. The importance score represents the impact that each feature had on 160!

model performance defined according the algorithm used (see Methods). The importance scores 161!

assigned to transcripts in the G+T models were correlated with the scores from the T-only 162!

models (Fig. S2A), indicating that adding genetic marker features into the model did not impact 163!

the relative importance of transcript features. Because RF importance measures tend to be biased 164!

toward continuous features,26 we focused on rrBLUP and BL importance scores. For all three 165!

traits, the top 1,000 most important features were enriched for genetic markers relative to 166!

transcript features (Odds Ratio = 0.17 ~ 0.44; all p < 1x10-16; Fig. S2B; Table S2). However, the 167!

top 20 most important features tended to be enriched for transcript relative to genetic marker 168!

features (Odds Ratio = 2.66 ~ 13.0, p = 0.087 ~ <1x10-16, Table S3), with transcript features 169!

making up the top two most important feature in all cases (Fig. S2B). The consistency with 170!

which transcript features were the most important for the models suggests that transcript 171!

information is useful for GP.  Further highlighting its usefulness, when either the 200 most 172!

important transcripts or genetic markers were used to predict flowering time, models performed 173!

equally well (r=0.70 ± 0.010; r=0.71 ± 0.009, respectively).  174!

 175!

Comparison of the importance of transcripts verses genetic markers for model predictions  176!

Because models built using transcript features outperformed baseline models based solely 177!

on population structure, we know transcriptome data contained information useful for explaining 178!

phenotypic variation. However, combining both datasets does not improve the model (K+T and 179!

G+T, Fig. 2), we hypothesized that this is because these two data types capture similar aspects of 180!

phenotypic variation. To address this, we assessed the extent to which the important genetic 181!
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markers overlapped with or neighbored the genes where the important transcripts originated from 182!

(top; Fig. 3A). The genic region and flanking sequences within a defined window of an 183!

important transcript is referred to as the transcript regions (see Methods). For each trait and 184!

algorithm, we compared the importance assigned to the transcript with that of the genetic marker 185!

with the highest average importance in the transcript region (T:G pair).  186!

Multiple window sizes were explored, and we used 2 kb (+/- 1kb from the center of a 187!

gene) where the feature importance correlation between transcripts and genetic markers was 188!

maximized (Fig. S3). Using this window size, 15,049 T:G pairs were identified. At the whole 189!

genome level there appeared to be regions where both genetic markers and transcripts were 190!

identified as important (Fig. S4). However, when we look closer, those regions mostly do not 191!

overlap. In some cases, the important genetic markers and transcripts were in linkage 192!

disequilibrium. Using the flowering time model as an example, we found the most important 193!

genetic marker was located within a gene upstream the most important transcript 194!

(GRMZM2G171650: MADS69; arrow a, Fig. 3B), but the two are in linkage disequilibrium 22. In 195!

most cases, there were no important genetic markers that were located nearby to important 196!

transcripts. For example, the second most important flowering time genetic marker was not 197!

located near important transcript regions (arrow b, Fig. 3B). Similarly, the second most 198!

important flowering time transcript (GRMZM5G865543) was over 0.6 Mb from an important 199!

genetic marker (arrow c, Fig. 3B). Across all traits and algorithms, T:G pairs were only 200!

moderately correlated (ρ = 0.09-0.13; Fig. 3C, Fig. S5A).  201!

This lack of correlation is notable for the most important genetic markers and transcripts. 202!

For example, across the three traits, only 4-7 T:G pairs were both in the top 1% most important 203!

features from the ensemble models, and those pairs were never the top ranked genetic markers or 204!

transcripts from the model (Fig. 3B). These findings argue against the notion that these two data 205!

types capture similar aspects of phenotypic variation as we hypothesized earlier. In light of this, 206!

we hypothesized that the lack of correlation was because important transcripts tend to be 207!

regulated by important trans factors located far beyond the transcript region. To test this, we 208!

assessed the degree to which important genetic markers identified as expression QTL (eQTLs) 209!

were associated with important transcripts. We identified 58,361 cis (62) and trans (58,299) 210!

eQTL associated with 7,052 transcripts and defined T:eQTL pairs for each of these transcripts by 211!

selecting the genetic marker within +/- 1kb of an eQTL for that transcript (i.e. eQTL region) with 212!
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the highest average importance. Across all traits and algorithms, the importance of transcripts 213!

and eQTL in T:eQTL pairs was actually negatively correlated (ρ = -0.15 ~ -0.06; Fig. 3C, Fig. 214!

S5B). 215!

The lack of correlation between importance scores for T:G and T:eQTL pairs was in 216!

contrast to the relatively high correlation observed in feature importance between algorithms (ρ= 217!

0.31-0.98), with rrBLUP and BL importance scores being the most correlated (ρ= 0.87-0.98) and 218!

the average correlation between genetic markers (ρ = 0.75) being higher than for transcripts (ρ = 219!

0.55) (Fig. S6). Together with the findings that important genetic markers were not co-located 220!

and eQTL were not associated with genes that gave rise to the important transcripts for any of 221!

the three traits, these findings may suggest that transcriptome data is capturing layers of 222!

information, such as epigenetic signals, that are not captured by genome sequences. However, 223!

we cannot rule of the possibility that the eQTL approach is not sufficiently sensitive in 224!

identifying important trans-factors. Further study is needed to resolve these possibilities. 225!

 226!

Assessment of benchmark flowering time genes 227!

Because the genetic basis for flowering time is well studied 27–30, we identified a set of 14 228!

known flowering time genes (Table S3) and compared the ability of genetic marker and 229!

transcript-based models to reveal them as important using the T:G and T:eQTL pairs described 230!

earlier. Of the 14 benchmark genes, four had corresponding genetic markers in our T:G pair data. 231!

When we increased the flanking regions threshold to 20kb from the center of the transcript for 232!

defining T:G pairs, corresponding genetic markers were found for five additional benchmark 233!

genes. Two benchmark genes, CCT1 and PEBP4, neither of which were members of a T:G pair, 234!

were associated with eQTLs. To account for differences in distribution and range of importance 235!

scores generated by different algorithms and numbers of features, the importance scores were 236!

converted to percentiles for comparison purposes.  237!

Different benchmark genes were important (>95th percentile) for models using the two 238!

different data types, with one and five benchmark gene considered important by the genetic 239!

marker-based and the transcript-based models, respectively (Figure 4A; Table S4). For example, 240!

the genetic marker located within the RAP2 gene, which has been shown to be associated with 241!

flowering time in multiple studies 22,31, was identified as important based on genetic marker 242!

(99.7th-99.9th percentile), but not transcript (59th-79th percentile) data. In contrast, MADS69, 243!
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MADS1, PEBP24, and PEBP8 were identified as important using transcript data (95th-100th 244!

percentile), but not using genetic marker data (16th-93th percentile). Furthermore, with transcript 245!

data we were able to assess the importance of three genes (ZAG6, REPB5, and PEBP2) that were 246!

not located near genetic markers or associated with eQTL. For example, there were no eQTL 247!

associated with or genetic markers within the 40bp window of ZAG6, but ZAG6 was identified as 248!

important (98th-99.9th percentile) in the transcript-based models (Fig. 4A). For some of these 249!

benchmark genes, the region most closely linked to trait variation could be outside the +/- 20kb 250!

window. For example, as described above, the important genetic marker for MADS69 251!

(Chr3_160559109) is ~32 kb upstream, but the two are in linkage disequilibrium 22 (see arrows 252!

in a; Fig. 3B). Taken together, these finding further highlight the usefulness of transcript data for 253!

identifying the genetic basis for variation in a trait. 254!

  255!

Improving our understanding of the genetic basis of flowering time using transcriptome data  256!

An open question was why transcript-based models were able to identify five benchmark 257!

flowering time genes as important that were not identified by genetic marker-based models and if 258!

transcriptome data could be used to better understand the genetic basis of flowering time. To 259!

understand why benchmark genes were not uniformly identified as important for flowering time 260!

when using both genetic marker and transcript data, we determined the extent to which transcript 261!

levels and the genetic marker allele (i.e. major or minor) were related to flowering time. As 262!

expected, we observed the most significant differences in flowering time for the transcripts (Fig. 263!

5A, Fig. S7A) and genetic markers (Fig. 5B, Fig. S7B) that were identified as important by our 264!

models.  For example, MADS1 was important only in the transcript-based models and transcript 265!

level was significantly correlated with flowering time (p = 0.0001; Fig. 5A). In contrast, lines 266!

with the major allele for the genetic marker that paired with the MADS1 transcript (Chr9: 267!

156980141) did not flower at a significantly different time than lines with the minor allele (p = 268!

0.062; Fig. 5B). Another example was RAP2, which was important only in the genetic marker-269!

based models. Lines with the major allele in RAP2 were more likely to flower late (p < 1x10-4), 270!

but RAP2 transcript levels did not significantly correlate with changes in flowering time (p = 271!

0.33). Overall, benchmark genes were more likely to have transcript levels associated with 272!

flowering time (Fig. 5C) than genetic marker alleles associated with flowering time (Fig. 5D).  273!
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Importantly, using the transcriptome data we were also able to understand in more detail 274!

the impact of the benchmark genes on flowering time. For example, variation in transcript levels 275!

of MADS69 accounted for 16.7% of the variation in flowering time, more than any other 276!

transcript, where lines with lower levels of transcription flowered later. Modulation of MADS69 277!

expression levels has recently been patented as an approach to controlling flowering time32. 278!

Similarly, MADS1 transcript levels explained 3.7% of the variation in flowering time, with lines 279!

with lower levels of transcription flowering later. This is consistent with what has been observed 280!

experimentally, where down-regulation of MADS1 results in delayed flowering time 33. For 281!

medium confidence benchmark genes (i.e. identified through association studies), the specific 282!

roles of the genes on flowering time are not well understood, but by finding positive or negative 283!

correlations between transcript levels and the underlying phenotypes, more mechanistic details 284!

can be interred. For example, transcript levels of ZAG6 had the second largest impact on 285!

flowering time, accounting for 6% of variation, with increased transcript levels associated with 286!

earlier flowering. Another example is PEBP24, with transcript levels of PEBP24 accounting for 287!

2.7% of the variation in flowering time. Unlike many of the other benchmark genes, increased 288!

PEBP24 transcript levels were associated with later flowering time. Overall, the identification of 289!

these medium confidence benchmark genes as important transcript indicates the relevance of 290!

transcriptional regulation in their flowering time functions. 291!

While using the benchmark genes allowed us to assess the usefulness of transcript levels 292!

compared to genetic marker information for identifying genes involved in flowering time, we 293!

should note that many non-benchmark genes were also identified by our models as important. 294!

For example, from the Ensemble model, there were 154 important, non-benchmark transcripts 295!

with importance scores falling between the two most important benchmark genes (MADS69, 296!

100th percentile; ZAG6, 99.5th percentile; yellow, Table S5). While seven of those in between 297!

transcripts were annotated with the Gene Ontology (GO) term “flower development” 298!

(GO:0009908, green, Table S5), these 154 non-benchmark transcripts were not enriched for this 299!

GO term (q = 1.0). In fact, neither these transcripts nor any other set of important transcripts 300!

from models based on other algorithms (see Methods) were enriched for any GO terms. 301!

Therefore, from our transcript-based GP models we have identified 147 high ranking transcripts, 302!

many of which have unknown functions, that are among the most important in predicting 303!

flowering time in maize but do not play known roles in this process. For example, both 304!
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GRMZM5G865543 and GRMZM2G023520, the second and third most important transcripts 305!

respectively from the Ensemble model, are unknown genes. Note that the transcriptome data is 306!

from the seedling stage. It is possible that genes of these important transcripts influence 307!

biological processes in earlier stage of development that influence flowering time later. To 308!

further our understanding of the genetic basis of flowering time control and the connections 309!

between juvenile and adult phenotypes, these important transcripts are prime candidates for 310!

future genetic studies.  311!

!312!

Conclusions 313!

We have generated predictive models that use genetic markers, transcripts, and their 314!

combination to predict flowering time, height, and yield in a diverse maize population. While 315!

models built using transcriptome data did not outperform models that used genotype data, 316!

transcript-based models performed well above random expectation, and in many cases, 317!

performance was similar to that of genotype-based models. We found that transcripts and genetic 318!

markers from different genomic regions were identified as important for model predictions. 319!

Furthermore, by assessing the relative importance of the features used to build the models, we 320!

found that transcript-based models identified more known flowering time associated genes than 321!

genetic marker-based models. These findings underscore the usefulness of transcript data for 322!

improving our understanding of the genetic mechanisms responsible for complex traits. 323!

There are four possible mechanistic explanations of why transcript levels could have a 324!

similar predictive power as genetic markers. First, cis-regulatory variants that impact transcript 325!

levels, are all more likely to be similar between closely related individuals. Therefore, the ability 326!

of transcript data to predict phenotypes is simply a reflection of that dependency. However, we 327!

demonstrated that the most informative transcript features for predicting maize phenotypes are 328!

distinct from the most informative genetic marker features found in the transcript regions. While 329!

for some important transcripts, the associated important genetic marker could be in linkage 330!

disequilibrium but outside of the 2kb window used in our study (e.g. ~32 kb away in the case of 331!

MADS69), overall as we increased the transcript region window size, the correlation between the 332!

importance scores assigned to T:G pairs decreased, suggesting this is not generally the case. 333!

Thus, the second explanation is that there are trans-regulatory variants, e.g. due to transposon 334!

polymorphisms or transcriptional regulators, that play a major role. However, we found that the 335!
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importance of eQTLs (99.9% trans) and their associated transcripts were not positively 336!

correlated, suggesting that the trans-regulatory variation we identified cannot explain why 337!

transcript variation is predictive of phenotypic variation either. However, considering the 338!

challenges in identifying eQTLs due to mixed tissues used 34 and in modeling epistatic 339!

interactions 35, we cannot conclusively rule of this possibility. The third explanation is that 340!

transcription is a molecular phenotype caused by the integration of multiple genetic marker 341!

signals, both cis and trans, that may not have had strong signals individually. The fourth 342!

explanation is that there are epigenetic variants contributing to expression variation. It remains to 343!

be determined what the contribution of epigenetic variation is on our ability to use transcript data 344!

to predict phenotypes.   345!

One surprise is that the transcript data generated during the V1 seedling stage on whole 346!

seedlings can predict adult plant phenotypes. We reason that complex traits, such as flowering 347!

time, are influenced by more than just canonical genes that act immediately prior to the growth 348!

and developmental sequences leading to flowering. For example, early developmental events 349!

such as cotyledon damage 36, root restriction 37, and photoperiod and temperature changes 38 can 350!

impact flowering time in mature plants. Therefore, early development transcript differences 351!

could eventually result in different flowering time. However, we anticipate that if transcript data 352!

collection occurred temporally and/or spatially closer to the phenotype data the predictive power 353!

of transcript levels would increase, and likely perform better than genetic marker-based models. 354!

Finally, an area of active research in GP is the incorporation of Genotype by Environment (GxE) 355!

interactions into predictive models 39–41. One potential benefit of using transcript information for 356!

GP could be that GxE interactions would be picked up by transcript level signals. Because 357!

transcriptome data used in our study was from whole seedlings (i.e. not the same individuals that 358!

were phenotype), this could not be tested.   359!

Our findings highlight an important benefit of using transcript data to better understand 360!

the genetic basis of a trait. While it can be difficult to associate signals from a number of small 361!

effect genetic markers or even a single large effect genetic marker back to a specific gene, 362!

transcript level information is inherently associated with genes. Because of the importance of 363!

regulatory variation on complex traits 11, the use of transcript information in GP could be crucial 364!

for deciphering the contribution of regulatory variation to the genetic basis of traits. Therefore, 365!

while we observed that in terms of predictive ability, genetic marker data outperformed transcript 366!
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data, expression differences are more straightforward to interpret than sequence polymorphisms. 367!

In practice, this meant that transcript-based models identified five benchmark flowering time 368!

genes, while genetic marker-based models only identified one and it highlighted our finding that 369!

more insight into the genetic basis of complex traits can be gained when transcriptome data are 370!

considered.  371!
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 379!
 380!

Methods  381!

Genotypic, transcriptomic, and phenotypic data processing 382!

The phenotypic 42, and genotypic and transcriptomic 22 data used in this study were 383!

generated from the pan-genome population consisting of diverse inbred maize lines. Genotype, 384!

transcriptome, flowering time, height, and yield data was all available for 388 lines out of the 385!

503 maize pan-genome panel and were used for the study (Table S6). Genetic marker scores 386!

derived from RNA-seq reads were converted to a [-1,0,1] format corresponding to [aa, Aa, AA] 387!

with the more common allele (AA) designated as 1. The genetic marker positions were converted 388!

from maize B73 reference genome A Golden Path v2 (AGPv2) to AGPv4.37. The AGPv2 389!

genetic markers that did not map to AGPv4.37 and genetic markers with a minor allele frequency 390!

less than 5% were removed, resulting in 332,178 genetic markers.  391!

Transcriptomic data from whole-seedling tissue including root at the V1 stage from 22 392!

was processed to remove loci that did not map to AGPv4.37. The remaining maize B73 genes 393!

were filtered with default settings of the nearZeroVar function from the R caret package to 394!

remove genes with zero or near zero variance (> 95% of the lines sharing the same transcript 395!

level) across lines. After the filtering steps, transcript counts for 31,238 genes were retained in 396!

the final dataset. The raw transcripts per million count data were transformed with a loge + 1 397!
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transformation before the data were used in subsequent analyses. To assess if transcriptome data 398!

had predictive power beyond random expectation, transcriptome data was permuted by gene, so 399!

each gene had the same distribution of transcript values, but the values were randomly assigned 400!

to different maize lines for building the transcriptome shuffled models. To compared important 401!

transcripts and genetic markers from GP models, transcripts were converted from AGPv3 to v4, 402!

only genes with one to one correspondence between AGPv3 and v4 were included in this 403!

analysis. 404!

 405!

Comparison of transcript and genetic marker data 406!

 Three different approaches were used to determine the similarity between lines based on 407!

the three different data types. For the genotype data, a kinship matrix was generated using the 408!

centered Identity By State (IBS) method 43 implemented in TASSEL v5.20180517 44. For the 409!

transcript data, we generated an expression Correlation (eCor) matrix by calculating the Pearson 410!

Correlation Coefficients (PCCs) of transcript values between lines using the cor.test function in 411!

R. The eCor matrix was normalized between 0 and 1 and the diagonal was set as 1. Finally, for 412!

phenotype data, we calculated the Euclidean distance between lines using the distances package 413!

in the R environment. The correlation between kinship, eCor, and Phenotype Distance between 414!

pairs of lines was calculated using PCC.  415!

 416!

Genomic prediction models and model performance 417!

Because part of the phenotypic signal observed in GP models may be due to population 418!

structure within the breeding population, we established a baseline for our GP models by using 419!

the first 5 principle components generated using the marker data alone, to predict phenotype 420!

values. Four methods were used for each trait, two linear-parametric methods: ridge regression-421!

Best Linear Unbiased Predictor (rrBLUP)45 and Bayesian Least absolute shrinkage and selection 422!

operator (BL)46, and one non-linear and non-parametric method: Random Forest (RF)47, and one 423!

ensemble based approach (En)48. Both rrBLUP and BL were implemented in R using the 424!

“rrBLUP” and “BGLR” packages respectively. RF was implemented in python using Scikit-425!

Learn 49. Ensemble predictions were generated by taking the mean of the predicted trait values 426!

from rrBLUP, BL, and RF. A grid-search was performed on the first 10 of the 100 cross-427!

validation replicates to find the best combination of parameters for the RF model. Parameters 428!

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/587121doi: bioRxiv preprint 

https://doi.org/10.1101/587121
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 15!

tested included max tree depth (3, 5, 10, and 50) and the max number of features included in 429!

each tree (10%, 50%, 100%, square root, and log2).  430!

The predictive performance of the models was compared using the PCC. The PCC 431!

between the predicted (Ŷ) and the true trait value (Y) and was computed using the cor() function 432!

in R for rrBLUP and BL or the NumPy corrcoef function in Python for RF. One hundred 433!

replicates of a five-fold cross validation approach were applied to maximize the data available 434!

for model training without resulting in overfitting. For each replicate, the lines were randomly 435!

divided into 5 subsets, where each subset is used as the testing set once and the rest 4 subsets 436!

combined to train the model, resulting in a total of 500 cross-validated runs. PCC was calculated 437!

using only the predicted values from the testing set for each run.  438!

 439!

Genetic marker/transcript importance analysis 440!

In order to identify features important for building the predictive models, feature 441!

importance information was extracted from each model established with one of four methods: 442!

rrBLUP, BL, RF, and Ensemble. For rrBLUP, the importance metric was the marker effect ($u) 443!

calculated by mixed.solve in the R rrBLUP package. For BL, the importance metric was the 444!

estimated posterior mean ($ETA) calculated using the R BGLR package.  The absolute value of 445!

marker effect and estimated posterior mean were used since the features are categorical with no 446!

particular meaning for the sign of importance metrics. For RF, the importance metric was the 447!

Gini importance, collected using the _importance_score function built into the Scikit-Learn 448!

implementation of RF. The Gini importance is the total decrease in node impurity (i.e. the 449!

homogeneity of classes in a node) after a particular feature is used to split a node. Node impurity 450!

decreases as instances from one of the classes are removed from the node, leaving a greater 451!

proportion of instances from the other class. Importance metrics from rrBLUP, BL, and RF were 452!

averaged over the 100 cross-validation replicates. Ensemble importance scores were calculated 453!

by normalizing the average importance scores from each model and each method between 0 and 454!

1, then taking the mean of normalized importance scores across the three algorithms. Enrichment 455!

for transcript compared to genetic marker features within the top 1000 or top 20 features was 456!

done using Fisher’s Exact Test, where the number of transcript features in and not in the top X 457!

features was compared to the number of genetic marker features in and not in the top X features.  458!
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To determine the degree to which the importance of a transcript correlates with the 459!

importance of nearby genetic markers, the genetic marker G with the greatest mean importance 460!

score within a fixed window from the center of a genomic region R where a transcript T mapped 461!

to was selected among genetic markers in region R, referred to as a T:G pair (Fig. 3A). To 462!

identify the effect of window size, a series of window sizes ranging from 1-40kb were tested. For 463!

each window size, the Spearman’s Correlation (ρ) was calculated between the importance scores 464!

of T:G pairs. The window size with the highest correlation (2kb) was chosen (Figure S4). For 465!

this analysis, transcripts without location information or without one-to-one mapping between 466!

AGP V3 to V4 were removed, leaving 24,412 transcripts. With a window size of 2kb, additional 467!

transcripts were dropped because there was not a genetic marker within that window, resulting in 468!

15,049 transcripts to be included in the downstream analysis. 469!

To determine the degree to which the importance of a transcript correlated with the 470!

importance of trans-regulatory variants, significant eQTLs (multiple testing corrected p<0.05) 471!

were identified for each transcript using the linear regression (modelLINEAR) approach from 472!

MatrixeQTL implemented in R. Benjamini-Hochberg false discovery rate correction was used to 473!

adjust p for multiple testing and eQTLs were considered significant if adjusted p < 0.05. The 474!

distance for considering eQTL as cis was 1 mega base 50, however, because <0.1% of eQTL 475!

identified were cis, all eQTL were analyzed together. The importance of an eQTL or the 476!

neighboring genetic marker located within a 2kb window of the eQTL with the greatest average 477!

importance score was compared to the importance of the transcript with the eQTL in question 478!

(T:eQTL pair).  479!

Enrichment of Gene Ontology (GO) terms associated with important transcripts 480!

compared to the reference genome was tested using agriGO v2 51. The enrichment p-values are 481!

corrected for multiple testing by agriGOv2 using FDR. The top 10, 25, and 100 transcripts from 482!

each algorithm, excluding the benchmark flowering time genes, were tested against the reference 483!

genome. Additionally, the top 153 transcripts, excluding benchmark genes, from the ensemble 484!

algorithm and the union of the top 10, 25, and 100 transcripts from all four algorithms were 485!

tested. 486!

!487!
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Benchmark flowering time genes 488!

We compiled a list of genes known to be involved in flowering time based on evidence 489!

from knockdown experiments 27–30,33 and/or association study 22,52. Genes were assigned 490!

confidence levels based on the type of evidence available, with experimental evidence 491!

considered high confidence, association study evidence and significant similarity with known 492!

flowering time genes from other species considered medium confidence (Table S8). Because 493!

some of these genes did not have genetic markers located within the 2kb window of the center of 494!

the transcript, progressively larger windows were used to identify the most important nearby 495!

genetic marker up to 40kb. To compared importance scores across algorithms and between 496!

models using G or T data as input, percentiles were used. To determine if transcripts or genetic 497!

markers assigned to flowering time benchmark genes were associated with flowering time in this 498!

study, linear models and t-tests, respectively, implemented in R were used.  499!

 500!

Data Availability 501!
All data and code needed to reproduce the results from this study is available on GitHub 502!

including genomic, transcriptomic, and phenotype data 503!

(https://github.com/ShiuLab/Manuscript_Code/tree/master/2019_expression_GP/data),!codes to 504!

run rrBLUP and BL models (https://github.com/ShiuLab/GenomicSelection), codes to run RF 505!

models (https://github.com/ShiuLab/ML-Pipeline), as well as R code used for preprocessing, 506!

T:G/eQTL pairing, eQTL analysis, and additional statistical analyses 507!

(https://github.com/ShiuLab/Manuscript_Code/tree/master/2019_expression_GP/scripts). 508!

 509!

Figures 510!

Figure 1. Relationship between lines from transcript and genetic marker data 511!

(A) Relationship between kinship based on genetic marker data (X-axis) and expression 512!

correlation (eCor, in Pearson's Correlation Coefficient (PCC)) based on transcript data (Y-axis). 513!

Boxplots show the median Y-axis value for each X-axis bin (bin size=0.15) with the 5th (blue) 514!

and 95th (red) percentile range shown. The correlation between kinship and eCor was calculated 515!

using Spearman’s Rank Coefficient (ρ). (B, C) The relationships between lines based on eCor  516!

(B) or kinship (C)  for all pairs of maize lines. Lines are sorted based on hierarchical clustering 517!

results using the eCor values. The blue, white, and red color scales indicate negative, no, or 518!
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positive correlations, respectively. Dotted rectangles: indicating cluster of lines discussed in the 519!

main text. (D, E) The relationships between the Euclidian distance calculated with phenotype 520!

values (Phenotype Distance: Y-axis) and kinship (D), and eCor (E). Colored line: follow those in 521!

(A). (F) The relationships between lines based on Phenotype Distance, where the lines were 522!

sorted as in (B). Red: smaller distance (more similar). Blue: greater distances (less similar). 523!

 524!

Figure 2. Genomic prediction model performance 525!

PCCs between predicted and true values for three traits and four algorithms using six different 526!

input features. The darkest red indicate a normalized PCC of 1 (the algorithm/input feature 527!

combination performed the best for the trait), while the darkest blue has a normalized PCC of 0 528!

(performed the worst. Original PCC values were shown in the boxes with the top performing 529!

model(s) in white. Right violin-plots show the PCC distributions among different input features 530!

for each algorithm (right).  The median PCCs are indicated with black bars. The model 531!

performance PCCs based on only population structure are indicated with a blue dashed line. 532!

Bottom violin-plots show the PCC distributions among different algorithms for each input 533!

feature. rrB: ridge regression Best Linear Unbiased Predictor. BL: Bayesian Least Absolute 534!

Shrinkage and Selection Operator. RF: Random Forest. En: Ensemble. 535!

 536!

Figure 3. Correlation between genetic marker and transcript importance for flowering time 537!

(A) Illustration of how transcript (T):genetic marker (G) (top graph) and T:expression 538!

Quantitative Trait Locus (eQTL) (bottom graph) pairs were determined. Genetic marker 539!

importance percentiles are shown above the genetic markers (red triangle) and eQTL (yellow 540!

triangle). A T:G pair was defined as the transcript and the most important genetic marker within 541!

the transcript region (top graph). A T:eQTL pair was defined as the transcript and the most 542!

important genetic marker within the eQTL region (bottom graph). (B) Manhattan plots of the 543!

transcript (blue bar) and genetic marker (red dot) importance scores (-loge(1-importance 544!

percentile)) in a 2Mb window surrounding top two genetic markers (top and middle plots) and 545!

transcripts (top and bottom plots) based on the Ensemble models for predicting flowering time. 546!

All genetic markers (i.e. not just the T:G pair) are shown. The threshold (gray dotted line) is set 547!

at the 99th percentile importance. (C) Density scatter plot of the importance scores (see Methods) 548!

of the genetic marker (Y-axis) and transcript (X-axis) for T:G pairs (top graphs) and of the eQTL 549!
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genetic marker (Y-axis) and transcript (X-axis) for the T:eQTL pairs (bottom graphs) for three 550!

traits. The threshold (black dotted line) was set at the 99th percentile importance score for each 551!

trait and input feature type. The correlation between importance scores between transcript and 552!

genetic marker/eQTL pairs was calculated using Spearman’s rank (ρ).  553!

 554!

Figure 4. Comparison of transcript and genetic marker importance scores for benchmark 555!

flowering time genes 556!

Importance percentile of each transcript (left) and genetic marker (right) pair as determined by 557!

each of the 4 algorithms (X-axis). Genes are sorted based on hierarchical clustering of their 558!

importance percentiles. Gray boxes designate benchmark genes that did not have genetic markers 559!

within a 40kb window. Confidence levels (high or medium) were assigned based on the type of 560!

evidence available for the benchmark gene (see Methods). Algorithms were abbreviated as in 561!

Figure 2. 562!

 563!

Figure 5. Relationship between transcript level/allele type and flowering time for benchmark 564!

genes 565!

(A) Boxplots show the transcript levels (loge(Fold-Change)) over flowering time bin with the 5th 566!

(blue) and 95th (red) percentile range shown. Flowering time was defined as the growing degree 567!

days/100. Linear models were fit and adjusted r2 and p-values are shown. Confidence levels of 568!

benchmark genes were designated as in (4). (B) Distributions of flowering time for lines with the 569!

major (red) or minor (gray) alleles for the genetic marker paired with each benchmark gene as 570!

indicated in (A). Differences in flowering time by allele were tested using t-tests. (C) Number of 571!

transcripts (Y-axis) for which transcript levels were associated with flowering time in linear 572!

models within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A). (D) 573!

Number of genetic markers (Y-axis) for which differences in flowering time by allele from t-574!

tests were within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A). 575!

 576!
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Supplemental Figures 577!

Figure S1. Distribution of genetic marker and transcript data across maize chromosomes 578!

Number of genetic markers (top) and transcripts (bottom) included in this study in 1 Mb bins 579!

across the maize chromosomes.  580!

 581!

Figure S2. Feature importance analysis for G+T models 582!

(A) Relationships between importance scores for transcripts from the T (X-axis) and G+T (Y-583!

axis) flowering time prediction models established with rrBLUP (left column), BL (middle 584!

column), and RF (right column). The Pearson’s Correlation Coefficient (r) is shown in the top 585!

left corner. (B) Distribution of importance scores for the top 1,000 (inset = top 20) features from 586!

the G+T models for three traits using rrBLUP (top row) and BL (bottom row). Transcript 587!

features are in purple and genetic marker features are in yellow. 588!

 !589!

Figure S3. Impact of transcript region sizes on importance correlation between 590!

transcript:genetic marker pairs  591!

The correlation (green) between importance scores for transcript:genetic marker pairs and the 592!

number of pairs found (blue) as the transcript region size increases. Shown here are the 593!

correlation scores when using top (solid) or the 95th percentile (dashed) mean importance score 594!

of genetic markers in the transcript region. 595!

 596!

Figure S4. Manhattan plot of importance scores from Genomic Prediction models 597!

Manhattan plots of genetic marker (top) and transcript (bottom) importance scores for predicting 598!

(A) flowering time, (B) height, and (C) yield. Threshold importance scores (dotted blue) were set 599!

at the 99th percentile importance score for each trait, algorithm, and input feature type (i.e. 600!

genetic markers or transcripts). Genetic markers and transcripts falling above that threshold 601!

colored in blue. 602!

 603!

Figure S5. Correlation between genetic marker/eQTL and transcript importance  604!

Density plot of the importance scores of (A) genetic markers (G, Y-axis) and transcripts (T, X-605!

axis) from T:G pairs and (B) eQTL (eQTL, Y-axis) and transcripts (T, X-axis) from T:eQTL 606!
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pairs. The threshold was set (red dotted line) as the 99th percentile of the normalized importance 607!

score for each trait, algorithm, and input feature type. The correlation between transcript and 608!

genetic marker importance was calculated using Spearman’s Rank (ρ).  609!

 610!

Figure S6. Correlation between feature importance between algorithms 611!

Density scatter plot of the importance scores of genetic markers (top) and transcripts (bottom) 612!

generated with rrBLUP and BL (left), rrBLUP and RF (middle), as well as BL and RF (right).  613!

The correlation between importance scores between algorithms was calculated using Spearman’s 614!

Rank (ρ). 615!

 616!

Figure S7. Relationship between transcript levels and alleles and flowering time for 617!

benchmark genes 618!

(A) Boxplots show the median transcript level (log(Fold-Change)) for each flowering time 619!

(Growing Degree Days (GDD)/100) bin with the 95th (red) and 5th (blue) percentiles shown. 620!

Linear models were fit and adjusted r2 and p-values are shown. (B) Violin-plots of the 621!

distribution of flowering time (GDD/100) for lines with the major (blue) or minor (gray) allele 622!

for the genetic marker paired with each benchmark gene. Significant differences in the GDD by 623!

allele were tested for using t-tests. 624!

 625!
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Supplemental Tables 626!

Table S1. Model performance by feature input type and algorithm 627!

Table S2. Enrichment of transcript vs. genotype features among the top most important 628!

features from G+T models 629!

Table S3. Description of benchmark flowering time genes, including evidence for flowering 630!

time association and T:Gs and T:eQTL pair information 631!

Table S4. Importance scores and percentiles for benchmark gene transcripts, and genetic 632!

marker and eQTL pairs  633!

Table S5. Top 1000 most important transcripts for flowering time from the Ensemble models. !634!

Table S6. Account of data (Genetic Marker, Transcript, Phenotype) availability for maize lines 635!

and decision to include line in the study 636!
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(A) Relationship between kinship based on genetic marker data (X-axis) and expression correlation (eCor, in Pearson's Correlation Coefficient (PCC)) based on transcript data (Y-axis). Boxplots show the median Y-axis value for each X-axis bin (bin size=0.15) with the 5th (blue) and 95th (red) percentile range shown. The correlation between kinship and eCor was calculated using Spearman’s Rank Coefficient (ρ). (B, C) The relationships between lines based on eCor  (B) or kinship (C)  for all pairs of maize lines. Lines are sorted based on hierarchical clustering results using the eCor values. The blue, white, and red color scales indicate negative, no, or positive correlations, respectively. Dotted rectangles: indicating cluster of lines discussed in the main text. (D, E) The relationships between the Euclidian distance calculated with phenotype values (Phenotype Distance: Y-axis) and kinship (D), and eCor (E). Colored line: follow those in (A). (F) The relationships between lines based on Phenotype Distance, where the lines were sorted as in (B). Red: smaller distance (more similar). Blue: greater distances (less similar).



Figure 1. Relationship between lines from transcript and genetic marker data
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PCCs between predicted and true values for three traits and four algorithms using six different input features. The darkest red indicate a normalized PCC of 1 (the algorithm/input feature combination performed the best for the trait), while the darkest blue has a normalized PCC of 0 (performed the worst. Original PCC values were shown in the boxes with the top performing model(s) in white. Right violin-plots show the PCC distributions among different input features for each algorithm (right).  The median PCCs are indicated with black bars. The model performance PCCs based on only population structure are indicated with a blue dashed line. Bottom violin-plots show the PCC distributions among different algorithms for each input feature. rrB: ridge regression Best Linear Unbiased Predictor. BL: Bayesian Least Absolute Shrinkage and Selection Operator. RF: Random Forest. En: Ensemble.

Figure 2. Genomic prediction model performance
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(A) Illustration of how transcript (T):genetic marker (G) (top graph) and T:expression Quantitative Trait Locus (eQTL) (bottom graph) pairs were determined. Genetic marker importance percentiles are shown above the genetic markers (red triangle) and eQTL (yellow triangle). A T:G pair was defined as the transcript and the most important genetic marker within the transcript region (top graph). A T:eQTL pair was defined as the transcript and the most important genetic marker within the eQTL region (bottom graph). (B) Manhattan plots of the transcript (blue bar) and genetic marker (red dot) importance scores (-loge(1-importance percentile)) in a 2Mb window surrounding top two genetic markers (top and middle plots) and transcripts (top and bottom plots) based on the Ensemble models for predicting flowering time. All genetic markers (i.e. not just the T:G pair) are shown. The threshold (gray dotted line) is set at the 99th percentile importance. (C) Density scatter plot of the importance scores (see Methods) of the genetic marker (Y-axis) and transcript (X-axis) for T:G pairs (top graphs) and of the eQTL genetic marker (Y-axis) and transcript (X-axis) for the T:eQTL pairs (bottom graphs) for three traits. The threshold (black dotted line) was set at the 99th percentile importance score for each trait and input feature type. The correlation between importance scores between transcript and genetic marker/eQTL pairs was calculated using Spearman’s rank (ρ). 

Figure 3. Correlation between genetic marker and transcript importance for flowering time
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Importance percentile of each transcript (left) and genetic marker (right) pair as determined by each of the 4 algorithms (X-axis). Genes are sorted based on hierarchical clustering of their importance percentiles. Gray boxes designate benchmark genes that did not have genetic markers within a 40kb window. Confidence levels (high or medium) were assigned based on the type of evidence available for the benchmark gene (see Methods). Algorithms were abbreviated as in Figure 2.

Figure 4. Comparison of transcript and genetic marker importance scores for benchmark flowering time genes
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(A) Boxplots show the transcript levels (loge(Fold-Change)) over flowering time bin with the 5th (blue) and 95th (red) percentile range shown. Flowering time was defined as the growing degree days/100. Linear models were fit and adjusted r2 and p-values are shown. Confidence levels of benchmark genes were designated as in (4). (B) Distributions of flowering time for lines with the major (red) or minor (gray) alleles for the genetic marker paired with each benchmark gene as indicated in (A). Differences in flowering time by allele were tested using t-tests. (C) Number of transcripts (Y-axis) for which transcript levels were associated with flowering time in linear models within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A). (D) Number of genetic markers (Y-axis) for which differences in flowering time by allele from t-tests were within p-value bins (-log10(p-value); X-axis). Benchmark genes are labeled as in (A).

Figure 5. Relationship between transcript level/allele type and flowering time for benchmark genes
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