

A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems

Jacob W. Vogel^{a,*}, Renaud La Joie^b, Michel J. Grothe^c, Alex Diaz-Papkovich^a, Andrew Doyle^a, Etienne Vachon-Presseau^d, Claude Lepage^a, Reinder Vos de Wael^a, Yasser Iturria-Medina^a, Boris Bernhardt^a, Gil D. Rabinovici^b, Alan C. Evans^{a,1,*}

^a*Montreal Neurological Institute, McGill University, Montréal, QC, Canada*

^b*Memory and Aging Center, University of California, San Francisco, CA, USA*

^c*German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany*

^d*McGill University, Montréal, QC, Canada*

Abstract

The functional organization of the hippocampus is distributed as a gradient along its longitudinal axis that explains its differential interaction with diverse brain systems. We show that the location of human tissue samples extracted along the longitudinal axis of the hippocampus can be predicted within 2mm using the expression pattern of less than 100 genes. When variation in this specific gene expression pattern was observed across the whole brain, a distinct anteroventral-posterior gradient was observed. Frontal, anterior temporal and brainstem regions involved in social and motivational behaviors, selectively vulnerable to frontotemporal dementia and more functionally connected to the anterior hippocampus could be clearly differentiated from posterior parieto-occipital and cerebellar regions involved in spatial cognition, selectively vulnerable to Alzheimers disease, and more functionally connected to the posterior hippocampus. These findings place the human hippocampus at the interface of two major brain systems defined by a single distinct molecular gradient. (148/150)

Keywords: Hippocampus, Gene expression, Neuroimaging, Brain Networks, Imaging Genetics, Neurodegenerative Disease, Cognition

*Corresponding authors: jacob.vogel@mail.mcgill.ca, alan.evans@mcgill.ca

1 1. Introduction

2 A phylogenetically conserved and well connected structure involved in a
3 diverse multitude of behaviors, the hippocampus provides an excellent base
4 for studying the evolution of cognition. Alongside its highly nuanced and
5 well documented role in memory, the hippocampus has been implicated in
6 many other behaviors and functions, ranging from social cognition to spatial
7 orientation to regulation of endocrine processes, such as stress response [5, 8].
8 The hippocampus can be divided into well-described subfields – the cornu
9 ammoni (CA), dentate gyrus and subiculum – which represent its principal
10 axis of organization, and which strongly inform cytoarchitectonic variation
11 and both internal and external circuitry [5]. A second orthogonal axis of
12 organization of the hippocampus lies along its longitudinal axis in a gradi-
13 ent spanning its two poles. In the rodent, this axis is often referred to as
14 the ventral-dorsal axis, while a homologous gradient is thought to exist in
15 humans along the anterior-posterior axis [49, 20, 42]. To study variations
16 along this axis, the hippocampus is often divided into basic macroscopic
17 partitions; the head-body-tail division is often used in humans, whereas a
18 dorsal-ventral division is used in rodents. The divisions along the longitu-
19 dinal axis of the hippocampus are characterized by a complex but distinct
20 pattern of afferent and efferent connections, as well as impressive behavioral
21 domain specificity. In rodents, the ventral hippocampus shares connections
22 with the prefrontal cortex, basolateral amygdala, hypothalamus, and other
23 structures mediating neuroendocrine and autonomic signaling and motivated
24 behavior. Meanwhile, the dorsal hippocampus is anatomically connected
25 with retrosplenial cortex, mamillary bodies, anterior thalamic complex and
26 other networks implicated in movement, navigation and exploration ([8, 20]).
27 Studies directly assessing the existence of a homologous longitudinal organi-
28 zational axis in the human hippocampus have found compelling evidence in
29 support [52, 10, 14, 1], and evidence has emerged suggesting this axis defines
30 the multifaceted role of the hippocampus in complex cognitive systems [44]
31 and in vulnerability to neurodegenerative diseases [28, 33].

32 Centrally involved in so many aspects of brain function and dysfunction,
33 a comprehensive study of the hippocampus and its organizational principles
34 may be paramount to understanding the brain at large. With this concept in
35 mind, several studies have explored the molecular properties regulating the

36 longitudinal axis of the hippocampus. A number of studies have characterized
37 the genomic anatomy of the ventral-dorsal axis of the rodent hippocampus
38 as a whole or across specific subfields [13, 15, 19, 31, 51], how gene expression
39 along the axis changes over the course of development [29, 46], and how it
40 influences patterns of connectivity [8]. While some consensus over implicated
41 genes has been met, all of these studies have been performed exclusively in
42 rodents, and it is unclear whether similar genes and proteins are responsible
43 for regulating and characterizing the anterior-posterior axis of the human hip-
44 pocampus. This distinction is important, as the human hippocampus bears
45 a different anatomy from that of rodents, participates in ostensibly more
46 complicated cognitive systems, and shows selective vulnerability to diseases
47 unique to humans.

48 As yet, such explorations have been severely limited due to the compli-
49 cations of measuring regionally detailed gene expression in the human brain.
50 However, the Allen Human Brain Atlas has provided unprecedented access
51 to human brain gene expression data. In the current study we leverage gene
52 expression data from the Allen Human Brain Atlas dataset to define the ge-
53 nomic anatomy of the longitudinal axis of the human hippocampus. Specif-
54 ically, we sought to understand whether, as with the rodent hippocampus,
55 notable gene expression variations also exists along the human hippocam-
56 pus, and which genes are most prominently involved in this molecular orga-
57 nization. We further aimed to understand whether information about gene
58 expression can help explain interactions between the hippocampus and the
59 diverse brain systems it is associated with, as well as differential vulnerabil-
60 ity to neurodegenerative disease. To accomplish this, we drew from several
61 public and private human datasets to bridge molecular properties with brain
62 structure and function, behavior, and finally, dissociated vulnerability to
63 neurodegenerative disease. We show that a graduated pattern of gene ex-
64 pression along the hippocampal longitudinal axis predicts the location of a
65 brain tissue sample along this axis, and that distinct interactions between
66 the anterior and posterior hippocampus with specific brain systems can be
67 predicted by the genomic similarity shared between those brain systems and
68 the different poles of the hippocampus.

69 **2. Results**

70 *2.1. A sparse set of genes can predict sample location along the longitudinal*
71 *axis of the hippocampus*

72 Normalized gene expression information from 58,692 probes were obtained
73 from each of 170 brain samples extracted from the hippocampi of six deceased
74 human donors from the Allen Human Brain Atlas. The longitudinal axis of
75 the hippocampus, from the anterior to the posterior pole, was defined as
76 a curve passing through the center of mass of the hippocampal volume of
77 an average brain template in MNI standard space. The position of each
78 of the 170 hippocampus samples was projected onto this longitudinal axis
79 (**Fig. 1A, S1B**). LASSO-PCR was used to create a model predicting the
80 position of each sample based on its gene expression profile (**Fig. S1**).

81 Using repeat ten fold cross-validation, the LASSO-PCR model explained
82 68-73% of the variance in sample position along the longitudinal axis (average
83 MAE = 2.17mm) using only gene expression information (**Fig. 1B,C**). The
84 explained variance rose to 89% when the model was fit across all data.

85 By training our model on five subfields and then using this model to pre-
86 dict the position of the sixth left-out subfield (i.e. leave-one-subfield-out), we
87 revealed that the genomic signature underlying the anterior-posterior gradi-
88 ent of the hippocampus is consistent across hippocampal subfields (**Fig. 1D**),
89 though the variance predicted was poorer for CA2 ($r^2 = 0.47$) and the subicu-
90 lum ($r^2 = 0.58$) compared to CA1, CA3, CA4 and the dentate gyrus ($r^2s >$
91 0.73). Leave-one-donor-out prediction additionally suggested consistency of
92 the genomic signature across individuals (**Fig. 1E**): while two donors ac-
93 counted for over 60% of the samples, when samples from these two donors
94 were included in the model, prediction of the location of samples for the other
95 four donors was highly accurate ($r^2s > 0.80$).

96 Weights from the LASSO-PCR model were back-transformed onto the
97 individual probes in order to highlight the contribution of individual genes
98 to the regulation of the hippocampal longitudinal axis. Weights from L1-
99 regularized regression (LASSO) are difficult to reliably interpret [25], making
100 identification of individual candidate genes challenging. To circumvent this
101 issue, we iteratively removed the probes with 50 highest (anterior-associated)
102 and 50 lowest (posterior-associated) weights, respectively, refit the model,
103 and measured cross-validation accuracy of the new model, until all 58,692
104 probes were removed (**Fig. 1F**). Removing the first set of 100 probes (Set 1)
105 resulted in a sharp drop in cross-validation accuracy that was never recov-

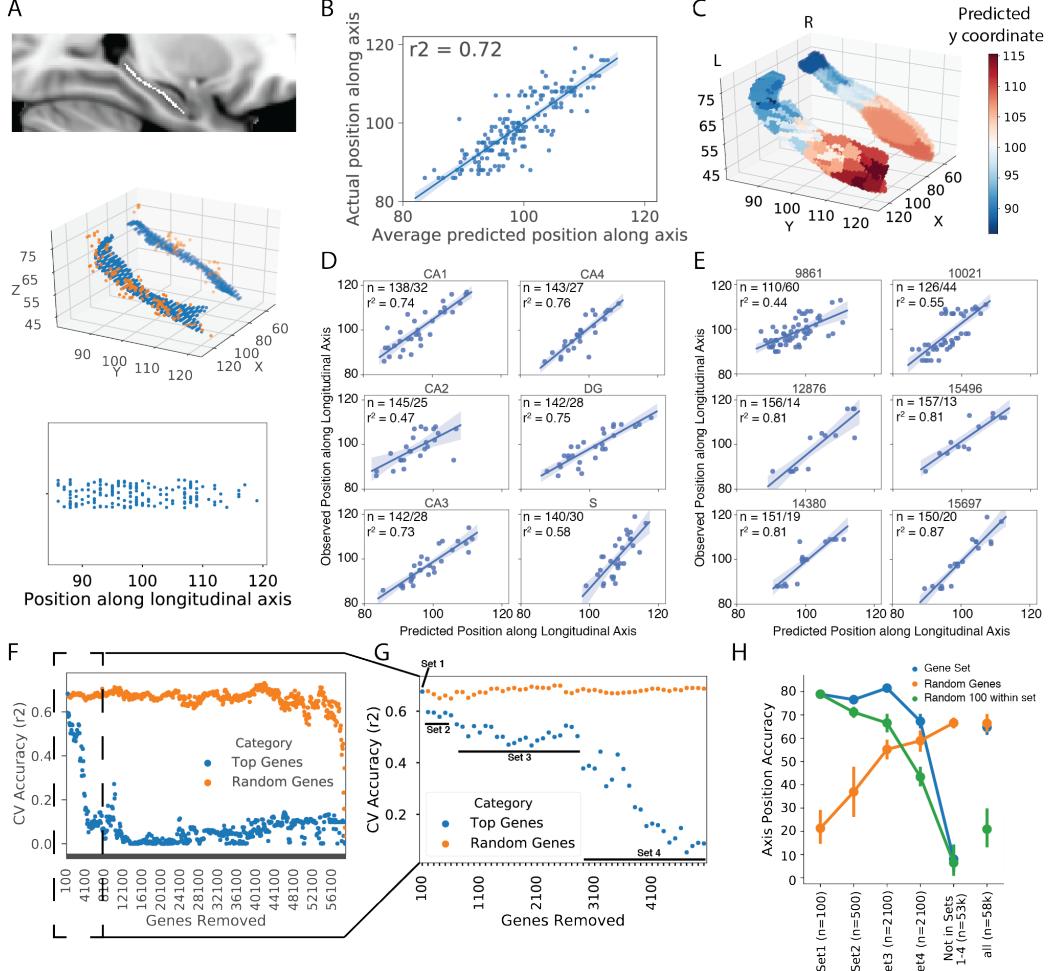


Figure 1: Gene expression predicts the location of tissue samples along the longitudinal axis of the hippocampus. A) (top) A curved skeleton of voxels was fitted along the center of mass of the hippocampal volume. (middle) Tissue samples (orange) were matched to the closest skeleton voxels (blue). (bottom) A sample's position along the longitudinal axis was represented as the y-axis coordinate of the sample's matched skeleton-voxel. B) Average predicted sample position (using gene expression) across ten separate 10-fold cross-validated LASSO-PCR models, compared to the actual position. C) Render of the hippocampal surface where each vertex shows the predicted location of the closest (surface projected) sample to that vertex. The smooth appearance of the right hippocampus is related to the fact that less samples were available for this structure. (D) Predicted vs. observed sample locations for leave-one-subfield-out models. For example, subpanel "CA1" shows the predicted vs. observed position of samples extracted from CA1 (test set) when the model was trained without CA1 samples (training set). In each plot, N represents the number of samples in the training and test sets. E) Predicted vs. observed sample locations for leave-one-donor-out models. F) The 100 most important probes in the LASSO-PCR model were iteratively removed and, after each removal, 10-fold cross-validation accuracy predicting sample position along the longitudinal axis was recorded (blue dots). G) The first 50 rounds of 100-probe removal from Panel A. Inflection points were identified after removing 100, 600, and 2700 genes. H) Accuracy in predicting sample position was recorded for models using different gene sets identified by the inflection points in panel G (blue), samples of 100 random within-set probes (green), and samples of random probes (orange) as input. Each model was run ten times with different bootstrap samples to calculate confidence intervals.

106 ered, supporting the notion that this gene set is important for regulating the
107 longitudinal axis of the human hippocampus. Accuracy dropped once again
108 after removing the next 500 probes (Set 2; rank 101-600), and after the next
109 1100 probes were removed (Set 3; rank 601-2700), cross-validation accuracy
110 began to drop precipitously, finally bottoming out after another 2100 probes
111 (Set 4; rank 2700-4800) were removed (**Fig. 1F,G**). In contrast, iteratively
112 removing sets of 100 random probes resulted in a very gradual and sporadic
113 decrease in accuracy that only bottomed out when nearly all probes were
114 removed (**Fig. 1F**). Refitting the LASSO-PCR model with only probes from
115 Set 1 (100 probes), Set 2 (500 probes) or Set 3 (2100 probes) resulted in
116 cross-validation accuracy above 80% (MAE: Set1 = 1.84 mm; Set2 = 2.39
117 mm; Set 3 = 1.85 mm), a substantial improvement over the original model
118 and a considerable improvement over models with equal-sized sets of random
119 genes. Genes from Set 4 (2100 probes) alone achieved accuracy similar to
120 a model using all (58,692) probes, and a model using all 53,892 probes not
121 included in Sets 1-4 achieved cross-validation accuracy near 0% (**Fig. 1H**).
122 These results indicate that 100 specific probes are sufficient to accurately
123 predict the location of a sample along the longitudinal axis of the hippocam-
124 pus, and that probes outside of a specific set of 4800 provide little to no
125 information about the axis. Fitting the model using gene Sets 2 and 3 alone
126 resulted in cross-validation accuracy similar to Set 1, suggesting the possibil-
127 ity that important regulatory genes may also be present within these probe
128 sets. However, the accuracy may also be assisted by the larger number of
129 probes included in these two sets. Indeed, random sets of 100 probes taken
130 from within Sets 2 and 3 showed reduced cross-validation accuracy compared
131 to Set 1 and full Sets 2 and 3 (**Fig. 1H**).

132 *2.2. Candidate genomic regulators of the longitudinal axis of the human hip-
133 pocampus*

134 A list of the 100 top probes can be found in Table 1. Gene ontology
135 (GO) enrichment analysis of the top 100 probes from the model (Set 1)
136 revealed a consistent set of terms relating to regulation of anatomical struc-
137 ture morphogenesis and tissue (particularly axonal) growth and development.
138 (**Fig. 2A**). This gene set also included several genes previously identified to
139 differentiate the dorsal and ventral aspects of the rodent hippocampus (e.g.
140 NR2F2, SERTAD4, GDA, TTR, TPPB, SSTR1, TNNT2). Among this gene
141 set, a feature explainer based on cross-validated Random Forest Regression
142 suggested NR2F2 and RSPH9 as, on average, the most important local pre-

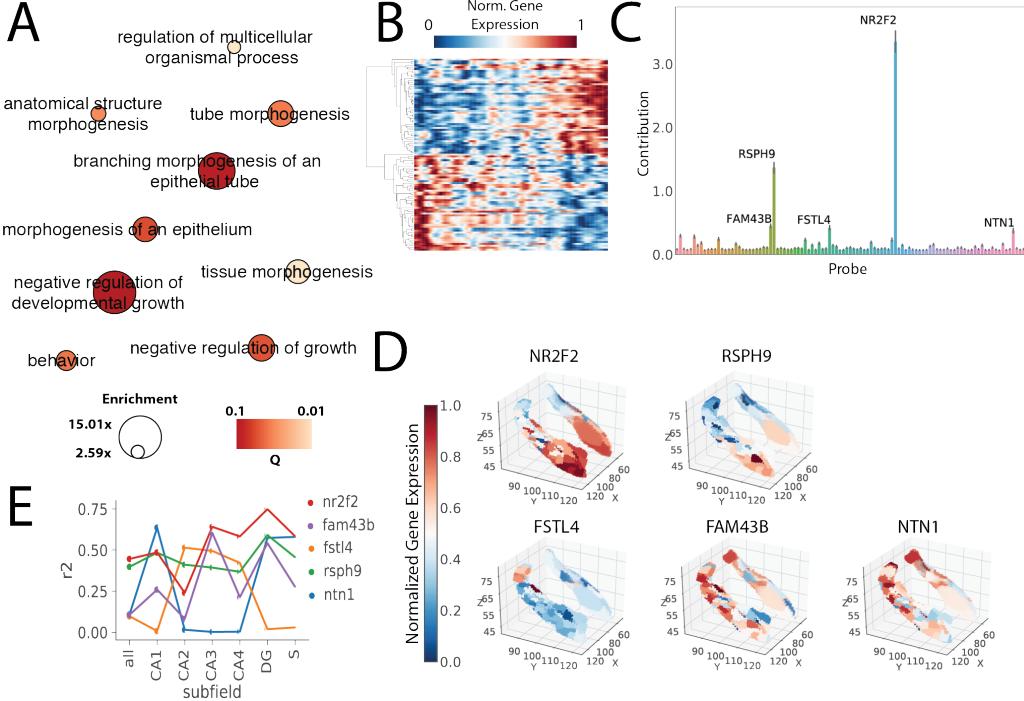


Figure 2: Candidate genes regulating the longitudinal axis of the human hippocampus. **A** Enriched Gene Ontology terms ($Q < 0.1$) associated with Gene Set 1. Circle size indicates enrichment, whereas color indicates Q value (lighter = lower Q value). **B** Matrix showing gene expression for Gene Sets 1 (y-axis) across each hippocampal sample, ordered most posterior to most anterior (x-axis). Values were smoothed with a 3mm gaussian kernel across the x-dimension only and then clustered so that anterior-posterior patterns can be clearly visualized. **C** Average absolute local feature importances of probes in Gene Set 1 measured using a Random Forest-based feature explainer across all samples. **D** Surface rendering of the expression patterns of each of the five genes identified as locally important features to predicting position along the longitudinal axis. **E** For each of the five genes, the relationship between expression and position along the longitudinal axis (r^2) is plotted stratified by subfield.

143 dictors of position along the longitudinal hippocampus axis (Fig. 2C). This
 144 result remained consistent when additionally adding all probes from Sets
 145 2 and 3 (Supplementary Fig. S2). In addition to NR2F2 and RSPH9,
 146 the feature explainer also implicated local contributions to individual sam-
 147 ples from FAM43B, FSTL4 and NTN1 (Fig. 2C). The expression pattern
 148 of these five genes differed, as each pattern likely added unique information
 149 to the model (Fig. 2D). For example, for some genes the anterior-posterior
 150 expression pattern was greater in certain subfields (Fig. 2E).

151 Feature explainers run on Sets 2 and 3 alone revealed more contributing
 152 features with less individual importance, compared to Set 1 and pools in-
 153 cluding Set 1 (Supplementary Fig. S2). This suggests individual sample

Anterior			Posterior		
Probe	Gene	Beta	Probe	Gene	Beta
1053204	SERPINF1	0.0261	1023030	NPNT	-0.0147
1053205	SERPINF1	0.0253	1023031	NPNT	-0.0141
1030761	KLK7	0.0193	1050553	TTR	-0.0129
1033144	RSPH9	0.0170	1064147	A_32_P11262	-0.0129
1030762	KLK7	0.0162	1058844	BDKRB1	-0.0124
1036045	LYPD1	0.0145	1041274	SERTAD4	-0.0123
1041466	GABRQ	0.0144	1048608	NTN1	-0.0122
1032692	PYDC1	0.0143	1039873	HHIP	-0.0119
1042620	SYTL2	0.0139	1039872	HHIP	-0.0111
1034086	RP13-102H20.1	0.0139	1017013	RP11-561O23.6	-0.0110
1042619	SYTL2	0.0137	1038748	GRHL2	-0.0107
1051105	SSTR1	0.0135	1041038	RGMA	-0.0107
1041090	LXN	0.0134	1058843	BDKRB1	-0.0106
1031172	TMEM215	0.0133	1042684	BNC2	-0.0105
1042621	SYTL2	0.0133	1050668	TPBG	-0.0104
1028032	C1QL1	0.0132	1029814	OSBPL3	-0.0101
1010361	PIRT	0.0132	1048607	NTN1	-0.0100
1054831	KCNG1	0.0132	1048537	ONECUT2	-0.0100
1059122	AQP3	0.0130	1058080	COL5A2	-0.0100
1064467	A_23_P213527	0.0128	1010982	RP11-291L15.2	-0.0099
1029570	RP11-45B20.3	0.0128	1027004	FSTL4	-0.0098
1066217	C1orf187	0.0126	1015986	C1orf133	-0.0098
1056223	GPR39	0.0123	1048913	DGKI	-0.0096
1021758	OPRK1	0.0120	1010774	DDC	-0.0096
1017426	CD36	0.0119	1069644	A_24_P401842	-0.0096
1059123	AQP3	0.0117	1070261	A_32_P121537	-0.0095
1030763	KLK7	0.0117	1025477	TNNT2	-0.0095
1053962	MYB	0.0117	1027005	FSTL4	-0.0095
1056238	GPR26	0.0116	1050554	TTR	-0.0094
1054547	LMO1	0.0115	1040196	HPSE2	-0.0094
1042988	GPR88	0.0114	1012040	DDC	-0.0093
1031384	VGLL3	0.0114	1010523	DDC	-0.0091
1014826	NR2F2	0.0113	1058079	COL5A2	-0.0091
1013661	NR2F2	0.0112	1038515	WNT10A	-0.0090
1020068	NR2F2	0.0112	1058569	CASR	-0.0090
1046866	GPR83	0.0111	1012029	DDC	-0.0090
1048357	GDA	0.0110	1052410	PVALB	-0.0089
1030949	NRG1	0.0109	1060554	A_24_P62668	-0.0089
1031962	RSPO2	0.0109	1033886	FAM43B	-0.0088
1063851	A_32_P136776	0.0108	1016934	CTXN3	-0.0088
1045386	C20orf103	0.0108	1010582	DDC	-0.0088
1037183	SYTL1	0.0108	1040195	HPSE2	-0.0088
1054593	LGALS2	0.0107	1043786	GAL	-0.0087
1041091	LXN	0.0107	1039883	GREM2	-0.0087
1056237	GPR26	0.0107	1026202	KDELR3	-0.0087
1013797	KIAA1772	0.0107	1058081	COL5A2	-0.0086
1066971	A_32_P115840	0.0106	1030360	PDLIM5	-0.0085
1048356	GDA	0.0106	1048538	ONECUT2	-0.0084
1033037	SEMA3D	0.0104	1060274	A_24_P102119	-0.0084
1020049	NRG1	0.0104	1043787	GAL	-0.0084

Table 1: The top 50 anterior- and posterior-associated probes, respectively, identified by the LASSO-PCR model

154 predictions are likely aided by different genes depending on their location
155 along the longitudinal axis. Sets 2 and 3 may therefore contain a mix of
156 genes regulating the longitudinal axis, genes regulated by the those genes,
157 and genes that are independent but are specifically hyperexpressed in the
158 anterior or posterior hippocampus. To partially explore this possibility, we
159 performed GO enrichment analysis on all genes represented in Set 2, and then
160 clustered genes sharing similar enrichment terms (**Supplementary Table**
161 **S1**). One cluster emerged sharing similar terms to those enriched in Set 1,
162 relating to regulation of axon guidance, as well as cell motility, migration
163 and development. This cluster also included genes previously described in
164 studies exploring the rodent longitudinal axis, including SLIT2 and CADM1.
165 Other GO enrichment sets included amine metabolic processes, GABA re-
166 ceptor activity, signal release/secretion, neuropeptide receptor activity, ion
167 transport, behavior, serotonin receptor activity and lipoprotein mediated sig-
168 naling. These latter gene clusters may be more likely to regulate behaviors
169 differentially associated with the anterior or posterior hippocampus. We re-
170 peated this analysis for Set 3 (**Supplementary Table S2**). Once again, a
171 cluster of genes emerged associated with cell motility and migration, which
172 again included genes previously described from the rodent literature (e.g.
173 NTNG2, SEMA3E, NOV, SEMA4G, CADM1, CYP26B1). A second cluster
174 emerged involving genes associated with both amine transport and neuronal
175 migration, and also included some previously described genes (e.g. RAB3B,
176 PENK, NTF3, NTS, OLFML2B, RASD2, RXRG, TIMP2).

177 As a way of validating the candidate genes identified, we repeated our
178 analyses using Partial Least Squares regression (PLSR), another algorithm
179 appropriate given the high dimensionality of our data. Using all probes, we
180 obtained similar overall cross-validation results (**Supplementary Fig. S3**).
181 Of the top 100 probes identified by the PLSR model, 50 were included in Set
182 1, another 42 in Set 2, and the last 8 were found in Set3. Interestingly, of
183 all probes in the model, NR2F2 and RSPH9 had the highest absolute beta
184 estimates (weights), once again implicating these two genes as regulators of
185 the longitudinal axis of the hippocampus (**Supplementary Table S3**).

186 *2.3. The genomic signature of the longitudinal axis of the hippocampus is*
187 *represented as a spatial gradient across the brain*

188 The Allen Human Brain Atlas data comprises 3702 samples across the
189 brains of six donors. By leveraging the weights of our LASSO-PCR model, we

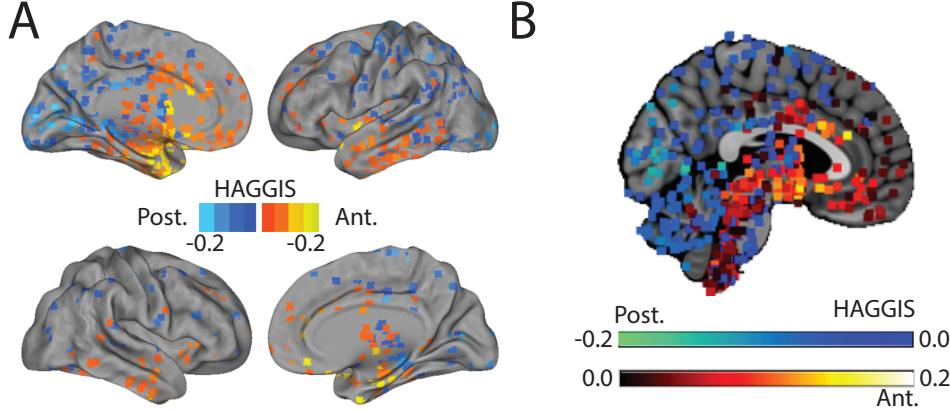


Figure 3: Spatial distribution of the HAGGIS across the brain. (A) Each sample was projected onto a cortical surface based on its MNI coordinates. Warm colors indicate the sample has a gene expression pattern more similar to the anterior hippocampus (higher HAGGIS), while cool colors represent the sample is more genetically similar to the posterior hippocampus (lower HAGGIS). (B) A medial slice inclusive of brainstem and cerebellum. Each dot represents a sample, and warm colors indicate higher HAGGIS, while cool colors represent lower HAGGIS. HAGGIS = Hippocampal Axis Genomic Similarity

190 created the Hippocampal Axis Genomic Gradient Index of Similarity (HAG-
191 GIS), a value representing the degree to which the genomic signature of the
192 hippocampal longitudinal axis is represented in the gene expression profile of
193 a given non-hippocampus sample (Fig. S1). Larger positive values represent
194 greater genomic similarity to the anterior hippocampus, while smaller nega-
195 tive values represent greater genomic similarity to the posterior hippocampus.
196 When plotting these values for all brain samples, we observed a general pat-
197 tern across the brain such that the brainstem and more antero-ventral sites of
198 the cerebral cortex demonstrated greater genomic similarity to the anterior
199 hippocampus, whereas the cerebellum and posterio-dorsal cortical regions
200 demonstrated greater similarity to the posterior hippocampus (Fig. 3, 4A).

201 *2.4. Specific gene expression patterns inform interactions between the hip-
202 pocampus and dissociated hippocampo-cortical systems*

203 The anterior and posterior hippocampus each exhibit a distinct profile of
204 anatomical connections in humans [1], which can also be represented using
205 resting-state functional connectivity [52]. Using logistic regression and the
206 HAGGIS, we identified coordinates to isolate the genomic posterior and an-
207 terior hippocampus (Supplementary Fig. S4A). We then used an open
208 database of resting-state functional connectivity information based on rsfMRI
209 scans from 1000 subjects to create an average voxelwise map representing the

210 degree to which brain regions are functionally connected to the anterior vs.
211 posterior hippocampus. Brain samples bearing a gene expression profile more
212 similar to the anterior hippocampus were also more functionally connected
213 to this substructure, while the opposite pattern was observed for samples
214 with gene expression profiles more similar to the posterior hippocampus (r^2
215 = 0.170, **Fig. 4A**). A separate model was constructed in order to ascertain
216 the maximum (cross-validated) variance in differential connectivity explainable
217 given the (genomic) data. This analysis revealed that, while HAGGIS
218 explained only 17% of the total model variance, it explained about 51% of
219 the variance explainable with the present genomic data (**Fig. 4C**).

220 The strength of this relationship differed depending on where along the
221 anterior-posterior axis the divisions were drawn, which parts of the brain
222 were included, and the size of the cube used to extract data around the
223 sample coordinate (**Supplementary Fig. S4C**). The r^2 ranged from 0.111
224 (central split, cortical only mask, 1mm cube diameter) to 0.304 (split at
225 anterior/poster extremes, mask excluding only brainstem and cerebellum,
226 11mm cube diameter), though in all cases the relationship was observed
227 to be significantly greater than chance (95% CI of chance $r^2 < 0.004$ for
228 all conditions; data not shown). The relationship between HAGGIS and
229 functional connectivity also varied slightly depending on the gene Set used
230 (**Fig. 4B**). Remarkably, prediction of functional connectivity by HAGGIS
231 performed just as well when the HAGGIS was created using the smaller
232 Sets, with the highest values achieved when only the top 100 probes were
233 used.

234 A diverging pattern of structural covariance with the rest of the brain has
235 also been observed across the longitudinal axis of the hippocampus [39], per-
236 haps representing co-variation in cytoarchitecture. We used an open dataset
237 of 153 structural MRI images from young healthy controls to create a map
238 representing variation in structural covariance between the brain and the
239 anterior vs posterior hippocampus. The more similar a brain region's gene
240 expression patterns were to the anterior hippocampus, the greater the struc-
241 tural covariance was between that structure and the anterior hippocampus,
242 and vice versa for the posterior hippocampus ($r^2 = 0.284$; **Fig. 4A**). HAG-
243 GIS explained 62% of the variance explainable with the present genomic data
244 (**Fig. 4C**). This relationship varied but remained strong across different brain
245 masks and gene sets (**Fig. 4B**).

246 To validate these finding without relying on an anterior-posterior split,
247 we utilized a previously validated data-driven approach [52, 36] to extract

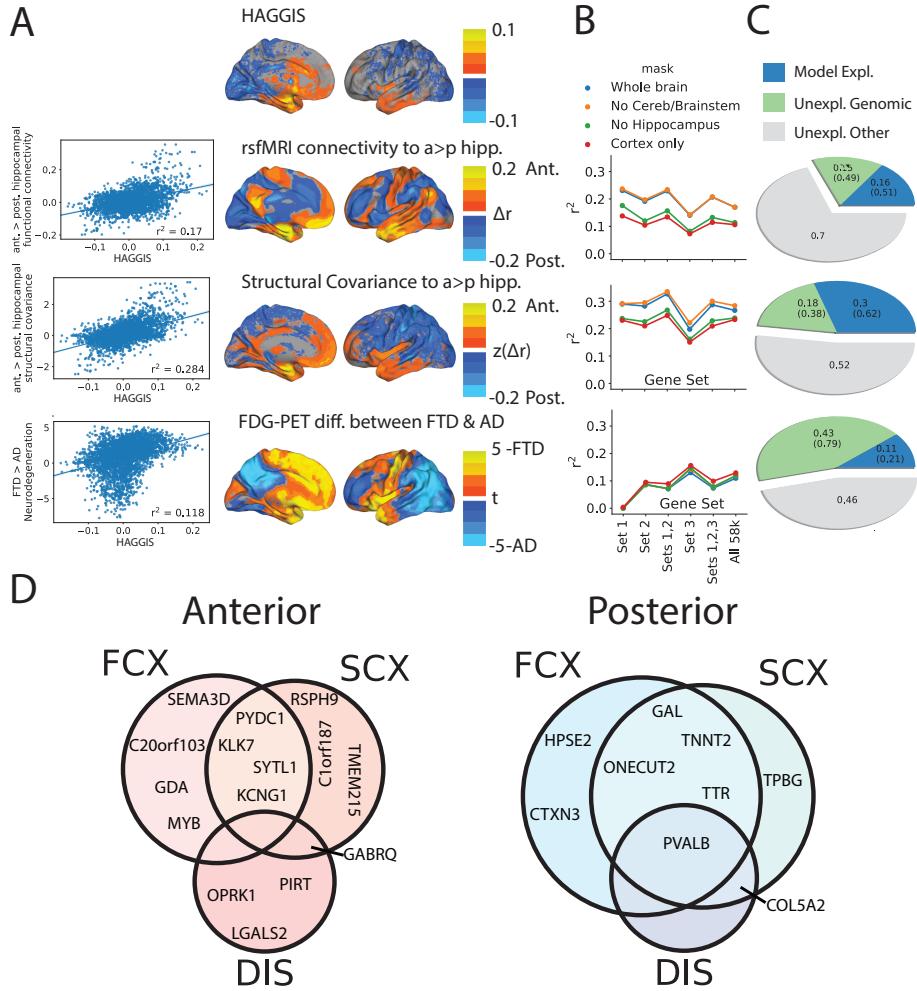


Figure 4: HAGGIS predicts hippocampus-brain relationships. **(A)** From top to bottom: The spatial distribution of (smoothed) HAGGIS across samples, differential functional connectivity to the anterior vs posterior hippocampus measured with rsfMRI (middle), differential structural covariance with the anterior vs posterior hippocampus, differential vulnerability to AD or FTD measured with FDG-PET. Graphs on the left visualize the relationship between these spatial patterns by comparing the HAGGIS of each sample with the mean value from the respective map within a 5-voxel cube around the sample coordinate. **B** Each of the above associations was re-calculated using three other brain masks, and using a HAGGIS formed from each gene set identified in Section 2.2. The r^2 of each of these associations is visualized. **C** Pie charts indicating the proportion of genomic and total variance explained by each model. Numbers in parentheses indicate percentage of total genomic variance. **D** Genes involved in both the longitudinal axis of the hippocampus, and hippocampus-brain interactions. All genes pictured are among the top 50 anterior (red; top) or posterior (blue; bottom) features of the hippocampus longitudinal axis model. Each also participates in one or more hippocampus-brain interactions, indicated by the circles within the Venn diagrams. FCX = Differential functional connectivity between anterior and posterior hippocampus; SCX = Differential structural covariance between anterior and posterior hippocampus; DIS = Differential vulnerability between AD and FTD

248 the principal gradients of hippocampal functional connectivity and struc-
249 tural covariance with the rest of the brain, respectively. We then tested
250 the relationship between each gradient and the predicted location of each
251 sample based on the HAGGIS (**Supplementary Table S4**). For struc-
252 tural covariance, the 1st gradient, explaining 24% of the total variance in
253 brain-hippocampus covariance, showed a strong correlation with HAGGIS
254 ($r^2=0.41$; **Supplementary Fig. S4D**). For functional connectivity, the 3rd
255 gradient, explaining 13.5% of the total variance of hippocampus-brain con-
256 nectivity, also showed a strong relationships with HAGGIS ($r^2=0.40$; **Sup-**
257 **plementary Fig. S4E**). These findings were not contingent on the gene set
258 used to calculate the HAGGIS (**Supplementary Fig. S4F**).

259 *2.5. Variation in genomic signature predicts regional vulnerability to neu-*
260 *rodegenerative disease*

261 The anterior and posterior hippocampus are also differentially involved
262 in disparate neurodegenerative diseases [29], particularly Alzheimer's disease
263 (AD) and frontotemporal dementia (FTD) [44, 28, 33]. We acquired fluo-
264 rodeoxyglucose (FDG) PET scans measuring glucose metabolism, a measure
265 of neuronal health and degeneration, from patients diagnosed in a tertiary
266 memory clinic as having AD or FTD. We used these scans to create a sta-
267 tistical map representing the relative patterns of neurodegeneration in AD
268 vs. FTD. We found that samples with greater genomic similarity to the an-
269 terior hippocampus also showed greater hypometabolism in FTD compared
270 to AD, whereas samples more similar to the posterior hippocampus showed
271 greater hypometabolism in AD compared to FTD ($r^2 = 0.118$; **Fig. 4A**).
272 HAGGIS explained about 21% of the variance explainable given the present
273 genomic information (**Fig. 4C**). This relationship also varied depending on
274 the regions included and cube size, with r^2 ranging from 0.095 (whole-brain,
275 1mm cube diameter) to 0.153 (cortex-only mask, 11mm cube diameter, **Sup-**
276 **plementary Fig. S6**), but remained greater than chance in all cases (data
277 not shown). Notably, and unlike previous analyses, the relationship between
278 HAGGIS and regional disease vulnerability was not observed when restricting
279 the HAGGIS to the top 100 probes (Set 1) (**Fig. 4B**).

280 *2.6. Specific genes link longitudinal axis to connectivity and vulnerability pat-*
281 *terns*

282 In order to highlight specific genes that may be involved in both main-
283 tenance of the longitudinal axis and hippocampus-brain interaction, we con-

284 structured independent models to learn the genomic profile of the maps from
285 **Fig. 4A** and compared the top 100 features from these models to the longitudinal
286 axis model. The proportion of overlap between the top 100 features
287 of each model with the top 100 features from the hippocampus longitudinal
288 axis model far exceeded chance (Functional: 20%; Structural: 21%; Disease:
289 11%). Overlapping genes from each model, stratified by involvement in ante-
290 rior or posterior hippocampus, can be found in **Fig. 4D**. Interestingly, some
291 genes were involved in multiple systems. For example, PVALB, specifically
292 expressed in the posterior hippocampus, was also highly expressed in brain
293 regions functionally connected and structurally covarying with the poste-
294 rior hippocampus, as well as in regions specifically vulnerable to Alzheimer's
295 disease. Additionally, anterior hippocampus gene GABRQ was also highly
296 expressed in regions both structurally covarying with the anterior hippocam-
297 pus and those vulnerable to frontotemporal dementia.

298 *2.7. Variation in genomic signature predicts involvement in distributed cog-
299 nitive networks*

300 The posterior and anterior hippocampus are implicated in distinct aspects
301 of memory and cognition [52, 10, 14, 16]. We explored whether regions shar-
302 ing genomic similarity to the posterior or anterior hippocampus were more
303 likely to participate in cognitive networks proposed to involve those substruc-
304 tures. We downloaded 100 meta-analytic functional coactivation maps from
305 the Neurosynth database, each composed from between 91 and 4201 task-
306 based functional MRI activation studies, and each of which was paired with
307 a set of related cognitive/behavioral topics. These topic/map pairs repre-
308 sent greater-than-chance regional functional coactivation patterns reported
309 consistently in studies sharing words from certain related topic-sets in the
310 publication text. These maps can therefore be thought to represent specific
311 region-sets involved in distributed cognitive networks. We calculated the
312 mean HAGGIS of samples falling within each cognitive map, with higher
313 positive values indicating greater genomic covariance between the regions
314 covered by that coactivation map and the anterior hippocampus, and lower
315 negative values representing greater genomic covariance with the posterior
316 hippocampus.

317 Using a conservative approach (only including maps with at least 500
318 overlapping samples: 29 maps; minimum map size: 36,622 voxels), we ob-
319 served a pattern largely consistent with previous hypotheses of hippocampal

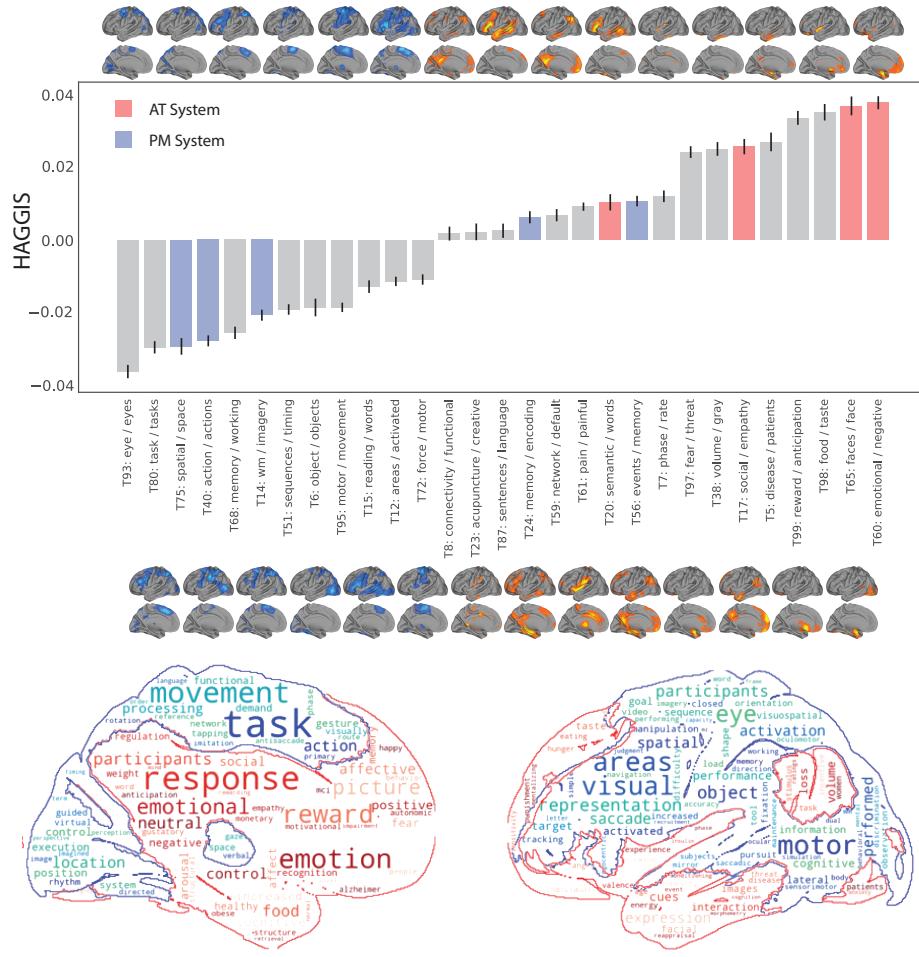


Figure 5: Variation in genomic signature predicts involvement in distributed cognitive networks. (Top) Maps were downloaded from neurosynth representing greater than chance meta-analytic functional activation in studies with different topic-sets mentioned in their abstract. Mean HAGGIS (represented by bars) was calculated for samples inside maps encompassing >500 samples (visualized either directly above or directly below each bar). Error bars represent SEM. Topic hypothesized to belong to the AT or PM system are shown in red and blue respectively. A word cloud summarizing the regions and topics most associated with the genomic signal of the anterior (red) and posterior (blue) hippocampus

320 involvement in different cognitive systems [44] (**Fig. 5**). As we hypothe-
321 sized, regions that expressed a gene expression profile more consistent with
322 the anterior hippocampus tended to be those involved in social and emotional
323 cognition, but also included maps associated with reward and conditioning,
324 among others. Also consistent with our hypotheses, cognitive networks more
325 genomically similar to the posterior hippocampus were associated with spa-
326 tial cognition, imagination and mental simulation, but also included maps
327 associated with visualization, working memory and movement/action. In-
328 terestingly, maps associated with episodic memory and physical stimulation
329 slightly favored the anterior hippocampus, or were not strongly associated
330 with either posterior or anterior hippocampus. These patterns remained re-
331 markably similar when repeating the analysis with only probes from Set 1,
332 representing the top 100 probes in our model (**Supplementary Fig. S5**).

333 3. Discussion

334 The hippocampus plays a central role in many systems that regulate be-
335 havioral processes across several species, and that are dysregulated in several
336 human neuropsychiatric diseases. The contribution of the hippocampus to
337 many of these systems is grossly organized across its longitudinal atlas. Char-
338 acterizing the molecular properties of this axis may be vital to understand-
339 ing how gene expression networks regulate macroscopic brain networks. We
340 show that the anterior-posterior position of a tissue sample extracted from
341 the human hippocampus can be predicted with remarkable accuracy using
342 the expression pattern of only a handful of genes. Further, we find genomic
343 representation of the anterior-posterior gradient projected across the entire
344 brain, and that this representation partially explains relationships between
345 the hippocampus and dissociated hippocampo-cortical systems. The ante-
346 rior hippocampus shares genomic patterning with a system encompassing
347 the medial prefrontal cortex, anterior temporal lobe and the brainstem. In
348 general, these regions showed greater functional connectivity and structural
349 covariance with the anterior than the posterior hippocampus, greater vul-
350 nerability to FTD than to AD, and more frequent involvement in cognitive
351 tasks involving motivation/conditioning, social and emotional cognition and
352 semantic knowledge. The posterior hippocampus, in contrast, shared a ge-
353 nomic pattern with the cerebellum, and occipital, parietal and motor and
354 pre-motor cortex. These regions generally showed greater connectivity and
355 structural covariance with the posterior than anterior hippocampus, more

356 vulnerability to AD than FTD, and were more likely to participate in cognitive
357 tasks involving spatial representation, visual processing, working memory and simulation. These results confirm and extend findings across species
358 and sub-disciplines of neuroscience to suggest shared gene expression patterns
359 underlying a well-described dissociation of anterior vs posterior hippocampal involvement in cognitive brain networks. Further, the findings support
360 the existence of a specific axis of organization in the human brain, where an
361 anterior-ventral - posterior-dorsal gradient explains regional involvement in
362 diverse behaviors, underscored by a specific pattern of gene expression. These
363 findings together form a template for studying how specific genes may regulate
364 the development of dissociated hippocampal connectivity networks in
365 humans and their involvement in specific behaviors and, potentially, specific
366 diseases.

367 Our results support an existing concept of molecular gradients in the
368 cerebral cortex [11, 36, 21]. The anterior-ventral - posterior-dorsal pattern
369 observed in our data is reminiscent of a general anterior-posterior molecular
370 gradient previously observed in the Allen Human Brain Atlas dataset [26, 21].
371 [21] reviews qualities of this gradient, including a pattern of neuronal organization
372 where, as one moves caudally to rostrally, neuron and arbor size
373 increase while neuronal number and density decrease. Perhaps related, a
374 “dual origin” hypothesis has been proposed suggesting the cerebral cortex
375 has developed radially from certain phylogenetically conserved limbic structures
376 over the course of evolution. This hypothesis describes a ventral system
377 emanating from the perirhinal and amygdalar cortex that is involved in semantic
378 identification of a stimulus and motivated behavior, while a dorsal system has evolved from the hippocampus and parahippocampal cortex to coordinate
379 spatial representation and coordinated action [23]. The hypothesis
380 is supported by evidence from comparative cytoarchitectonics and connectivity
381 patterns across species. The AT/PM hypothesis [44] provides yet another
382 example of opposing cortical systems loosely following an anterior-posterior
383 organization and determining patterns of brain organization. Each of these
384 models originated from a different field of inquiry (gene expression, cortical
385 evolution, memory network organization), but the models converge in many
386 respects, and a microcosm of this shared framework seems to be represented
387 along the longitudinal axis of the hippocampus – explicitly so in the AT/PM
388 and dual origin models. Our results generally support the premise that the
389 hippocampus participates in two distinct macroscopic networks characterized
390 by distinct structural covariance, functional connectivity, behavioral domain
391

394 specificity and disease vulnerability, and that participation in these networks
395 can be predicted by position along the longitudinal axis. However, we take
396 this framework one step further to suggest these two distinct networks are
397 composed of one single gradient of gene expression that may be underlying
398 their systemic distinctions.

399 While our initial model utilized the expression patterns of nearly 60,000
400 probes corresponding to over 20,000 genes, the model favored a much smaller
401 profile of probes to describe the longitudinal axis of the human hippocampus.
402 When isolating a small set of only 100 probes, we were able to successfully
403 predict the location of samples along the longitudinal atlas with less than
404 2 mm error, as well as interactions between the hippocampus and the spe-
405 cific brain systems. The set was enriched with genes associated with, in
406 particular, anatomical structure morphogenesis and cellular growth, suggest-
407 ing genes within this set may be involved in coordinating and/or maintain-
408 ing the anatomical variation of the hippocampus along its longitudinal axis.
409 Whether these genes are also partially responsible for the functional variation
410 along the axis remains unclear, though it is notable that similar expression
411 patterns of these 100 genes can be observed in other brain regions that in-
412 teract with the hippocampus. In particular, we identified several specific
413 genes that appear to be involved in coordinating both the longitudinal axis
414 of the hippocampus and one or more aspects of the hippocampus-associated
415 distributed brain networks. A number of these genes (PVALB, GAL, ONE-
416 CUT2, PIRT, TNNT2, RSPH9, COL5A2, CTXN3) have been reported in
417 previous studies examining genes regulating functional network organization
418 [47, 54]. The shared gene expression across disparate regions may be re-
419 lated to shared anatomical characteristics (e.g.[3, 45, 48]), and examining
420 the contribution of genes across these different network properties (struc-
421 ture, function, disease vulnerability) may lead to a clearer picture of the role
422 various proteins play in overall network organization.

423 Many of the genes identified in our study have also been described in
424 previous studies characterizing the dorsal and ventral subdivisions and lon-
425 gitudinal gradients of the rodent hippocampus (e.g. [31, 51, 29, 46, 15]).
426 This suggests a fair degree of homology between rodents and human in the
427 distribution of proteins along the longitudinal axis of the hippocampus, and
428 perhaps in the development and maintenance of the axis itself. However,
429 many previously undocumented proteins were also identified, and replication
430 and comparative studies will be required to disentangle whether these candi-
431 date genes are truly unique to humans or a result of small sample sizes and

432 differing methodologies.

433 The most important genes identified in our model can be interpreted as
434 the most central genes in the hippocampal gene expression network(s) most
435 associated with position along the longitudinal axis of the hippocampus. We
436 cannot infer which genes are causally related to axis formation and main-
437 tenance and, as weights from backward regression problems are notoriously
438 hard to interpret [25], even identifying the most important among a set of
439 genes is challenging. Being aware of these limitations, we identified NR2F2
440 (also called COUP-TFII) and RSPH9 to be particularly important in local
441 prediction of sample location along the axis. This likely suggests that these
442 two genes demonstrated the cleanest and most consistent linear gradient in
443 expression across the longitudinal axis among those assessed (which can be
444 visually appreciated by the surface plots of expression levels of these genes
445 across the hippocampus in Fig. 2D). The pattern of expression we observed
446 here mirror descriptions of other studies of NR2F2 expression in the rodent
447 hippocampus [22], as well as more macroscopically in the human brain during
448 development, particularly in the temporal lobes [4]. NR2F2 is also key in the
449 determination of cell fate in numerous circumstances [32, 27], including that
450 of interneurons expressing PVALB (parvalbumin) or SST (somatostatin),
451 where NR2F2 promotes SST and represses PVALB [27]. These findings are
452 highly consistent with the expression of PVALB (expressed posteriorly) and
453 SSTR1 (expressed anteriorly with NR2F2) in our data (Table 1). For its part,
454 RSPH9 is part of the structure of primary cilia, which can be found within
455 ependymal cells lining the ventricles, as well as in the CA1 subfield of the hip-
456 pocampus and adjacent choroid plexus [56]. There is evidence that these cilia
457 can promote neurogenesis in the hippocampus through mediating expression
458 of SHH (sonic hedgehog) [9], a protein implicated in anterior-posterior pat-
459 tern formation, and identified as a possible protein of importance in our
460 data by the presence of HHIP (hedgehog-interacting protein) among the top
461 100 anterior-posterior associated genes (Table 1). The expression patterns
462 of RSPH9 in our data may signal the presence of a specific pattern of cilia,
463 which may help regulate the longitudinal axis of the hippocampus through
464 hedgehog signaling. Both NR2F2 and RSPH9 have been identified as role-
465 players in human functional network organization [47, 54].

466 The longitudinal axis of the hippocampus provides many clues about the
467 development and characterization of different behavioral systems, which may
468 be particularly important when it comes to understanding diseases character-
469 ized by selective dysfunction of these systems. Understanding the molecular

470 components that maintain vulnerable systems may go a long way in learning
471 which components are responsible when the system begins to fail. Data
472 from multiple studies support a specific role for the longitudinal axis of the
473 hippocampus in AD and FTD [28, 33]. Our data support this notion, sug-
474 gesting that regions more vulnerable to FTD than AD share a more similar
475 molecular profile to the anterior than posterior hippocampus, and that the
476 opposite pattern was observed for regions more vulnerable to AD than FTD.
477 It is tempting to wonder whether the same genes that coordinate the devel-
478 opment of systems also incidentally contribute to the degeneration of these
479 systems over time, a possible example of antagonistic pleiotropy. For ex-
480 ample, among the top 100 anterior-posterior associated genes identified in
481 our model were several genes known to interact with amyloid- β protein, the
482 primary pathologic hallmark of AD, many of them specifically associated
483 with the posterior hippocampus in our data. For example, TTR has been
484 shown to bind amyloid- β aggregates in a chaperone-like manner [12], and
485 TTR mutations have been associated with hippocampal atrophy in aging
486 humans [17]. NTN1 interacts with the amyloid precursor protein (APP) and
487 has been described as a key regulator of amyloid- β production [43, 34]. Much
488 less is known about the molecular properties of FTD, but it was interesting
489 to see the KLK7 gene among the top anterior hippocampus-associated genes
490 (Table 1), as the KLK7 protein and other kallikreins have been found to
491 be reduced in the CSF of FTD patients [18]. Although little can be ex-
492 trapolated from our data about the potentially dissociated role of specific
493 proteins in AD and FTD, we provide evidence for distinct molecular proper-
494 ties that characterize the dissociated hippocampo-cortical systems vulnerable
495 to each of these two diseases. The implicated genes and proteins may provide
496 promising candidates for more targeted studies of their role in disease-specific
497 neurodegeneration.

498 3.1. Limitations

499 Our study comes with a number of important limitations that must be
500 addressed. The single greatest limitation of our study is that our gene ex-
501 pression data comes from a limited number of samples taken from only six
502 donors who differed in age, sex and ethnicity. We partially addressed this
503 issue by statistically removing donor effects from our gene expression data
504 and performing leave-one-donor-out analyses, but in doing so, assume cer-
505 tain aspects of gene expression should be fairly consistent across individuals.
506 Some confidence is inspired by the fact that, in spite of these limitations, we

507 were able to replicate findings from rodent studies. We also tried to circum-
508 vent this issue by showing that relationships linked to our primary findings
509 hold in several other independent datasets. Another major limitation is a
510 reliance on specific coordinates of samples reported at time of autopsy, trans-
511 lated to single-subject MRI space, and then normalized to a common subject
512 space. While we took measures to improve the quality of the normalization
513 to common space, we cannot rule out noise introduced during any of these
514 steps. Our analysis of gene expression gradients along the hippocampal lon-
515 gitudinal axis is particularly sensitive to these issues because it relies on the
516 exact coordinates of the samples extracted. Once again, we were able to
517 replicate findings from other studies, but it is possible that the importance
518 of some proteins to our model could have been affected. As discussed previ-
519 ously, another limitation is related to our attempts to extrapolate biological
520 importance from machine learning models. While we took many steps to
521 try to test the stability of weights in our models, our interpretations remain
522 somewhat speculative and must be replicated in more focused studies. A re-
523 cent study suggested that, while the principal community structure of mouse
524 hippocampal connectivity is organized across its longitudinal axis, higher
525 resolution analysis suggests a more complex division of substructures dis-
526 tributed across subfields [8]. We acknowledge that a simple linear gradient
527 may not be sufficient to capture the full complexity of functional organization
528 of the hippocampus, and that this complexity may be driving the variation
529 in our predictions across different hippocampus subfields. Finally, a major
530 limitation comes with the complexity of drawing conclusions across so many
531 datasets, each of which are subject to variation based on methodological
532 processing. We tried to overcome this by primarily using open-access data
533 preprocessed beforehand by experts, and by making all of our data and code
534 freely available at <https://github.com/illdopejake/HippocampusAPAxis> so
535 that other researchers can scrutinize, reproduce, and hopefully re-use our
536 analyses.

537 4. Acknowledgements

538 We would like to thank David Berron, Mallar Chakravarty, JB Poline
539 and Gabriel Devenyi for advice and technical support. We would also like
540 to acknowledge support from the Ludmer Centre for Neuroinformatics and
541 Mental Health and the Healthy Brains for Healthy Lives initiative. Addi-
542 tionally, we thank Bruce Miller, Howie Rosen and Bill Jagust for support-

543 ing the FDG studies in AD and FTD, which were funded through the fol-
544 lowing sources: NIA R01 AG045611 (Rabinovici), P50 AG23501 (Miller,
545 Rosen, Rabinovici), P01 AG019724 (Miller, Rosen, Rabinovici). Author
546 J.W.V. is funded through a Tri-Council Vanier CGS Doctoral Fellowship.
547 Author R.L.J. is funded through an Alzheimers Association Research Fel-
548 lowship (AARF-16-443577, PI: Renaud La Joie). Author R.V.D.W. was
549 funded through a Savoy Foundation fellowship. Nearly all data and tools
550 used in this manuscript are publicly accessible, and this work would not be
551 possible without the hard work put into collecting, storing and maintaining
552 these data and platforms. Data were provided in part by OASIS: Cross-
553 Sectional: Principal Investigators: D. Marcus, R. Buckner, J. Csernansky
554 J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910,
555 P20 MH071616, U24 RR021382. Data were additionally provided in part
556 by the Brain Genomics Superstruct Project of Harvard University and the
557 Massachusetts General Hospital, (Principal Investigators: Randy Buckner,
558 Joshua Roffman, and Jordan Smoller), with support from the Center for
559 Brain Science Neuroinformatics Research Group, the Athinoula A. Marti-
560 ninos Center for Biomedical Imaging, and the Center for Human Genetic Re-
561 search. 20 individual investigators at Harvard and MGH generously con-
562 tributed data to GSP Open Access Data Use Terms Version: 2014-Apr-22
563 the overall project. Data were additionally provided from numerous studies
564 included in Neurosynth.

565 5. Author Contributions

566 J.W.V., M.J.G. and R.L.J. conceptualized the study. J.W.V., A.D.P,
567 A.D., E.V.P., C.L., R.V.D.W and B.B. designed and developed the method-
568 ologies. J.W.V. analyzed the data. R.L.J. and G.D.R. provided patient data.
569 J.W.V., R.L.J., M.J.G. and A.D.P wrote the manuscript. All authors revised
570 the manuscript and provided critical feedback. R.L.J., M.J.G. and A.C.E.
571 supervised the study.

572 6. Declaration of Interests

573 The authors declare no competing interests.

574 7. References

575 [1] Adnan, A., Barnett, A., Moayedi, M., McCormick, C., Cohn, M., & McAndrews, M. P. (2016). Dis-
576 tinct hippocampal functional networks revealed by tractography-based parcellation. *Brain Structure*
577 and *Function*, 221, 2999–3012.

578 [2] Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between
579 human brain regions. *Nature Reviews Neuroscience*, 14, 322–336.

580 [3] Alexander-Bloch, A. F., Mathias, S. R., Fox, P. T., Olvera, R. L., Göring, H. H. H., Duggirala,
581 R., Curran, J. E., Blangero, J., & Glahn, D. C. (2017). Human Cortical Thickness Organized into
582 Genetically-determined Communities across Spatial Resolutions. *Cerebral Cortex*, pp. 1–13.

583 [4] Alzu'Bi, A., Lindsay, S. J., Harkin, L. F., McIntyre, J., Lisgo, S. N., & Clowry, G. J. (2017).
584 The Transcription Factors COUP-TFI and COUP-TFII have Distinct Roles in Arealisation and
585 GABAergic Interneuron Specification in the Early Human Fetal Telencephalon. *Cerebral Cortex*, 27,
586 4971–4987.

587 [5] Andersen, P., Morris, R., Amaral, D., Bliss, T., & O'Keefe, J. (2006). *The Hippocampus Book*.
588 (Oxford University Press).

589 [6] Arnatkevi, A. (2018). A practical guide to linking brain-wide gene expression and neuroimaging data
590 Keywords Measuring gene expression.

591 [7] Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. *NeuroImage*, 38, 95–113.

592 [8] Bienkowski, M. S., Bowman, I., Song, M. Y., Gou, L., Ard, T., Cotter, K., Zhu, M., Benavidez,
593 N. L., Yamashita, S., Abu-Jaber, J., Azam, S., Lo, D., Foster, N. N., Hintiryan, H., & Dong, H.-W.
594 (2018). Integration of gene expression and brain-wide connectivity reveals the multiscale organization
595 of mouse hippocampal networks. *Nature Neuroscience*.

596 [9] Breunig, J. J., Sarkisian, M. R., Arellano, J. I., Morozov, Y. M., Ayoub, A. E., Sojitra, S., Wang, B.,
597 Flavell, R. A., Rakic, P., & Town, T. (2008). Primary cilia regulate hippocampal neurogenesis by
598 mediating sonic hedgehog signaling. *Proceedings of the National Academy of Sciences*, 105, 13127–
599 13132.

600 [10] Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z.-x., Grady, C., Rosenbaum,
601 R. S., Winocur, G., Barese, M. D., & Moscovitch, M. (2018). Multiple Scales of Representation
602 along the Hippocampal Anteroposterior Axis in Humans. *Current Biology*, 28, 2129–2135.

603 [11] Buckner, R. L. & Krienen, F. M. (2013). The evolution of distributed association networks in the
604 human brain. *Trends in Cognitive Sciences*, 17, 648–665.

605 [12] Buxbaum, J. N., Ye, Z., Reixach, N., Friske, L., Levy, C., Das, P., Golde, T., Masliah, E., Roberts,
606 A. R., & Bartfai, T. (2008). Transthyretin protects Alzheimer's mice from the behavioral and
607 biochemical effects of A toxicity. *Proceedings of the National Academy of Sciences*, 105, 2681–2686.

608 [13] Cembrowski, M. S., Bachman, J. L., Wang, L., Sugino, K., Shields, B. C., Cembrowski, M. S., Bach-
609 man, J. L., Wang, L., Sugino, K., Shields, B. C., & Spruston, N. (2016). Spatial Gene-Expression
610 Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons Article Spatial Gene-Expression
611 Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons. *Neuron*, 89, 351–368.

612 [14] Chase, H. W., Clos, M., Dibble, S., Fox, P., Grace, A. A., Phillips, M. L., & Eickhoff, S. B. (2015).
613 Evidence for an anterior-posterior differentiation in the human hippocampal formation revealed by
614 meta-analytic parcellation of fMRI coordinate maps: Focus on the subiculum. *NeuroImage*, 113,
615 44–60.

616 [15] Christensen, T., Bisgaard, C. F., Nielsen, H. B., & Wiborg, O. (2010). TRANSCRIPTOME DIFFERENTIATION ALONG THE DORSO VENTRAL AXIS IN LASER-CAPTURED MICRODISSECTED RAT HIPPOCAMPAL GRANULAR CELL LAYER. *NSC*, 170, 731–741.

619 [16] Collin, S. H. P., Milivojevic, B., & Doeller, C. F. (2015). Memory hierarchies map onto the hippocampal long axis in humans. *Nature Neuroscience*, 18, 1562–1564.

621 [17] Cuenco, K. T., Friedland, R., Baldwin, C. T., Guo, J., Vardarajan, B., Lunetta, K. L., Cupples, L. A., Green, R. C., DeCarli, C., & Farrer Lindsay A., L. A. (2011). Association of TTR polymorphisms with hippocampal atrophy in Alzheimer disease families. *Neurobiology of Aging*, 32, 249–256.

624 [18] Diamandis, E. P., Scorilas, A., Kishi, T., Blennow, K., Luo, L. Y., Soosaipillai, A., Rademaker, A. W., & Sjogren, M. (2004). Altered kallikrein 7 and 10 concentrations in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia. *Clinical Biochemistry*, 37, 230–237.

627 [19] Dong, H.-w., Swanson, L. W., Chen, L., Fanselow, M. S., & Toga, A. W. (2009). Genomic anatomic evidence for distinct functional domains in hippocampal field CA1. 106.

629 [20] Fanselow, M. S. & Dong, H.-w. (2010). Review Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures ? *Neuron*, 65, 7–19.

631 [21] Fornito, A., Arnatkevičiūtė, A., & Fulcher, B. D. (2018). Bridging the Gap between Connectome and Transcriptome. *Trends in Cognitive Sciences*, xx, 1–17.

633 [22] Fuentealba, P., Klausberger, T., Karayannis, T., Suen, W. Y., Huck, J., Tomioka, R., Rockland, K., Capogna, M., Studer, M., Morales, M., & Somogyi, P. (2010). Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus. *Journal of Neuroscience*, 30, 1595–1609.

637 [23] Giaccio, R. G. (2006). The dual origin hypothesis : An evolutionary brain-behavior framework for analyzing psychiatric disorders. 30, 526–550.

639 [24] Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalization. (CRC Press).

641 [25] Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J. D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. *NeuroImage*, 87, 96–110.

644 [26] Hawrylycz, M., Miller, J. A., Menon, V., Feng, D., Dolbeare, T., Guillozet-Bongaarts, A. L., Jegga, A. G., Aronow, B. J., Lee, C.-K., Bernard, A., Glasser, M. F., Dierker, D. L., Menche, J., Szafer, A., Collman, F., Grange, P., Berman, K. A., Mihalas, S., Yao, Z., Stewart, L., Barabási, A.-L., Schulkin, J., Phillips, J., Ng, L., Dang, C., Haynor, D. R., Jones, A., Van Essen, D. C., Koch, C., & Lein, E. (2015). Canonical genetic signatures of the adult human brain. *Nature neuroscience*, 18, 1832–1844.

649 [27] Hu, J. S., Vogt, D., Lindtner, S., Sandberg, M., Silberberg, S. N., & Rubenstein, J. L. R. (2017). β Cou-TF1 β and β Cou-TF2 β control subtype and laminar identity of MGE-derived neocortical interneurons. *Development*, 144, 2837–2851.

652 [28] LaJoie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., P??lerin, A., M??zenger, F., Belliard, S., deLaSayette, V., Eustache, F., Desgranges, B., & Ch??telat, G. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between alzheimer's and semantic dementia-targeted networks. *Neuron*, 81, 1417–1428.

656 [29] Lee, A.-r., Kim, J.-h., Cho, E., Kim, M., Park, M., & Albrecht, A. (2017). Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Disease-Related Genes during Postnatal Development. 10, 1–14.

659 [30] Lee, H., Park, Y. M., & Lee, S. (2015). Principal Component Regression by Principal Component
660 Selection. *Communications for Statistical Applications and Methods*, 22, 173–180.

661 [31] Leonardo, E., Richardson-Jones, J., Sibille, E., Kottman, A., & Hen, R. (2006). Molecular hetero-
662 geneity along the dorsomedial axis of the murine hippocampal CA1 field: a microarray analysis of
663 gene expression. *Neuroscience*, 137, 177–186.

664 [32] Lin, F. J., Qin, J., Tang, K., Tsai, S. Y., & Tsai, M. J. (2011). Coup d'Etat: An orphan takes
665 control. *Endocrine Reviews*, 32, 404–421.

666 [33] Lladó, A., Tort-merino, A., Sánchez-valle, R., Falgàs, N., Balasa, M., Bosch, B., Castellví, M., Olives,
667 J., Antonell, A., & Hornberger, M. (2018). Neurobiology of Aging The hippocampal longitudinal
668 axis d relevance for underlying tau and TDP-43 pathology. *Neurobiology of Aging*, 70, 1–9.

669 [34] Lourenço, F. C., Galvan, V., Fombonne, J., Corset, V., Llambi, F., Müller, U., Bredesen, D. E.,
670 & Mehlen, P. (2009). Netrin-1 interacts with amyloid precursor protein and regulates amyloid- β
671 production. *Cell Death and Differentiation*, 16, 655–663.

672 [35] Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007).
673 Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged,
674 Nondemented, and Demented Older Adults. *Journal of Cognitive Neuroscience*, 19, 1498–1507.

675 [36] Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., & Huntenburg, J. M. (2016). Situating
676 the default-mode network along a principal gradient of macroscale cortical organization. 113, 12574–
677 12579.

678 [37] McKhann, G., Knopman, D. S., Chertkow, H., Hyman, B., Jack, C. R., Kawas, C., Klunk, W.,
679 Koroshetz, W., Manly, J., Mayeux, R., Mohs, R., Morris, J., Rossor, M., Scheltens, P., Carrillo,
680 M., Weintraub, S., & Phelps, C. (2011). The diagnosis of dementia due to Alzheimers disease:
681 Recommendations from the National Institute on Aging- Alzheimers Association workgroups on
682 diagnostic guidelines for Alzheimers disease. *Alzheimers Dementia*, 7, 263–269.

683 [38] Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., Kertesz,
684 A., Robert, P. H., Albert, M., Boone, K., Miller, B. L., Cummings, J., & Benson, D. F. (1998).
685 Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. *Neurology*, 51, 1546–
686 54.

687 [39] Nordin, K., Persson, J., Stening, E., Herlitz, A., Larsson, E. M., & Söderlund, H. (2018). Struc-
688 tural whole-brain covariance of the anterior and posterior hippocampus: Associations with age and
689 memory. *Hippocampus*, 28, 151–163.

690 [40] Ossenkopppele, R., Schonhaut, D. R., Schöll, M., Lockhart, S. N., Ayakta, N., Baker, S. L., O'Neil,
691 J. P., Janabi, M., Lazaris, A., Cantwell, A., Vogel, J., Santos, M., Miller, Z. A., Bettcher, B. M.,
692 Vossel, K. A., Kramer, J. H., Gorno-Tempini, M. L., Miller, B. L., Jagust, W. J., & Rabinovici,
693 G. D. (2016). Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's
694 disease. *Brain*, 139, 1551–1567.

695 [41] Poldrack, R. A., Mumford, J. A., Schonberg, T., Kalar, D., & Barman, B. (2012). Discovering
696 Relations Between Mind , Brain , and Mental Disorders Using Topic Mapping. 8.

697 [42] Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the
698 human hippocampus. *Trends in Cognitive Sciences*, 17, 230–240.

699 [43] Rama, N., Goldschneider, D., Corset, V., Lambert, J., Pays, L., & Mehlen, P. (2012). Amyloid
700 precursor protein regulates netrin-1-mediated commissural axon outgrowth. *Journal of Biological
701 Chemistry*, 287, 30014–30023.

702 [44] Ranganath, C. & Ritcley, M. (2012). Two cortical systems for memory-guided behaviour. *Nature Reviews Neuroscience*, 13, 713–726.

703

704 [45] Reardon, P. K., Seidlitz, J., Vandekar, S., Liu, S., Patel, R., Park, M. T., Alexander-Bloch, A.,
705 Clasen, L. S., Blumenthal, J. D., Lalonde, F. M., Giedd, J. N., Gur, R., Gur, R., Lerch, J. P.,
706 Chakravarty, M. M., Satterthwaite, T., Shinohara, R. T., & Raznahan, A. (2018). Normative brain
707 size variation and brain shape diversity in humans.

708 [46] Reilly, K. C. O., Flatberg, A., & Islam, S. (2015). Identification of dorsal ventral hippocampal
709 differentiation in neonatal rats. *Brain Structure and Function*, pp. 2873–2893.

710 [47] Richiardi, J., Altmann, A., Milazzo, A.-C., Chang, C., Chakravarty, M. M., Banaschewski, T.,
711 Barker, G. J., Bokde, A. L. W., Bromberg, U., Büchel, C., Conrod, P., Fauth-Bühler, M., Flor, H.,
712 Frouin, V., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Lemaître, H., Mann, K. F., Martinot,
713 J.-L., Nees, F., Paus, T., Pausova, Z., Rietschel, M., Robbins, T. W., Smolka, M. N., Spanagel, R.,
714 Ströhle, A., Schumann, G., Hawrylycz, M., Poline, J.-B., Greicius, M. D., & consortium, I. (2015).
715 BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.
716 *Science* (New York, N.Y.), 348, 1241–1244.

717 [48] Romero-garcia, R., Whitaker, K. J., Seidlitz, J., Shinn, M., Fonagy, P., Dolan, R. J., Jones, P. B.,
718 Goodyer, I. M., Consortium, N., Bullmore, E. T., & Petra, E. V. (2018). NeuroImage Structural
719 covariance networks are coupled to expression of genes enriched in supragranular layers of the human
720 cortex. 171, 256–267.

721 [49] Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the
722 hippocampal longitudinal axis. *Nature Reviews Neuroscience*, 15, 655–669.

723 [50] Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L., Hawrylycz, M., &
724 Dang, C. (2012). Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central
725 nervous system. *Nucleic Acids Research*, 41, D996–D1008.

726 [51] Thompson, C. L., Pathak, S. D., Jeromin, A., Ng, L. L., Macpherson, C. R., Mortrud, M. T., Cusick,
727 A., Riley, Z. L., Sunkin, S. M., Bernard, A., Puchalski, R. B., Gage, F. H., Jones, A. R., Bajic, V. B.,
728 Hawrylycz, M. J., & Lein, E. S. (2008). Article Genomic Anatomy of the Hippocampus. *Neuron*, 60,
729 1010–1021.

730 [52] Vos de Wael, R., Larivière, S., Caldairou, B., Hong, S.-J., Margulies, D. S., Jefferies, E., Bernasconi,
731 A., Smallwood, J., Bernasconi, N., & Bernhardt, B. C. (2018). Anatomical and microstructural
732 determinants of hippocampal subfield functional connectome embedding. *Proceedings of the National
733 Academy of Sciences*, 115, 201803667.

734 [53] Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., & Kross, E. (2013). An fMRI-
735 Based Neurologic Signature of Physical Pain. *New England Journal of Medicine*, 368, 1388–1397.

736 [54] Wang, G. Z., Belgard, T. G., Mao, D., Chen, L., Berto, S., Preuss, T. M., Lu, H., Geschwind, D. H.,
737 & Konopka, G. (2015). Correspondence between Resting-State Activity and Brain Gene Expression.
738 *Neuron*, 88, 659–666.

739 [55] Yeo, B., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., Roffman, J., Smoller,
740 J., Zollei, L., Polimeni, J., Fischl, B., Liu, H., & Buckner, R. (2011). The organization of the human
741 cerebral cortex estimated by intrinsic functional connectivity. *Journal of Neuroph*, 106, 1125–1165.

742 [56] Zeisel, A., Munoz-Manchado, A. B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A.,
743 Marques, S., Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J.,
744 & Linnarsson, S. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell
745 RNA-seq. *Science*, 347, 1138–1142.

746 8. Online Methods

747 All data and analyses described in this manuscript are available online and
748 can be fully reproduced using exclusively open-access software, with (mostly
749 python) scripts and data provided at <https://github.com/illdopejake/HippocampusAPAxis>.
750 All code and analyses are presented in a series of Jupyter notebooks at the
751 link provided. Supplementary Table S6 outlines which notebook contains the
752 analyses described in each Methods subsections detailed below. See Supple-
753 mentary Table S5 for a summary of datasets used.

754 8.1. Human gene expression data

755 Human gene expression data were downloaded from the Allen Human
756 Brain Atlas (<http://human.brain-map.org>, RRID: SCR_007416). A detailed
757 description of this dataset can be found elsewhere [50, 6]. Briefly, tissue
758 samples were extracted across both hemispheres of two human brain donors,
759 as well as the left hemisphere of four additional donors, totaling 3702 sam-
760 ples. Stereotaxic coordinates and MNI space coordinates are provided for
761 each sample. Each sample underwent microarray analysis and preprocessing
762 to quantify gene expression across 58,692 probes. This analysis provides an
763 estimate of the relative expression of different proteins (encoded by differ-
764 ent genes) within the tissue sample. While previous publications have used
765 different strategies to reduce the number of probes (see [6] for review), due
766 to assumptions associated with these strategies and the high-dimensionality
767 approach of our models, we opted to retain all 58,692 probes for analysis.

768 Importantly, the MNI coordinates originally supplied with the dataset did
769 not account for nonlinear deformations in transforming the donor MRIs in
770 native space to MNI space, and thus included a noticeable degree of error (i.e.
771 many samples mapped outside of the brain or their labeled brain regions) [6].
772 However, these coordinates have been meticulously reconstructed and trans-
773 formed accounting for nonlinear deformations (<http://doi.org/10.5281/zenodo.2483290>).
774 Moving forward, all mentions of MNI coordinates will refer to the Devenyi
775 coordinates.

776 Given the different ages, sexes and other characteristics, substantial dif-
777 ferences in gene expression are expected between donors. However, similar
778 to previous studies using this dataset, we were only interested in common
779 patterns of human gene expression for the present analyses, rather than inter-
780 individual differences. As such, all samples across the six donors were aggre-
781 gated, the effect of donor was removed from each probe using linear models

782 (i.e. with dummy coded donor ID variables), and probe values were standard-
783 ized. Therefore, probe values represent gene expression normalized across all
784 samples, with inter-individual differences removed.

785 Along with coordinates, each sample contains ground-truth information
786 about the specific brain sub-structure from which the sample originated, as
787 defined by the anatomist extracting the sample. To identify samples falling
788 within the hippocampus, we selected all samples with structure labels of CA1
789 field, CA2 field, CA3 field, CA4 field, Subiculum and Dentate Gyrus, from
790 both the left and right hemispheres – 188 samples in total. 18 samples had
791 MNI coordinates more than 3mm outside of the hippocampal volume defined
792 below, leaving 170 hippocampal samples in total.

793 *8.2. Identifying the longitudinal axis of the hippocampus*

794 Many previous studies have explored differences between the dorsal and
795 ventral (or posterior and anterior) hippocampus, but such a system requires
796 an often arbitrary delineation between these two structures [20, 42]. To over-
797 come this limitation, we instead sought to quantify the longitudinal axis of
798 the hippocampus and observe changes in gene expression across this axis.
799 Such an approach would still capture gross differences in expression between
800 anterior and posterior sites, but would also allow for detection of more com-
801 plex gradients. Notably, the hippocampus curves dorsally and medially, so a
802 straight line may not be appropriate for defining its longitudinal structure.

803 The objective is to identify a curved path that follows the center of mass
804 of the hippocampus along its curvilinear shape (**Fig. S1B**). The initial hip-
805 pocampus volume was defined as labels 9 and 19 from the Harvard-Oxford-
806 sub-maxprob-thr25-1mm atlas derived from the MNI ICBM152 average brain
807 template, supplied with FSL 5.0 (RRID:SCR_002823). A “skeleton” of
808 the hippocampal volume was created from morphological operations (dila-
809 tions/erosions) using the MINC Toolkit (version 1.0.08) (RRID:SCR_014138;
810 <http://bic-mni.github.io/#MINC-Tool-Kit>). The hippocampus mask was re-
811 sampled to 0.5mm isotropic voxel size and a chamfer map was created, mea-
812 suring the distance from the border of the resampled hippocampus volume
813 up to 10mm away. This chamfer map was binarized to create a large smooth
814 blob around the hippocampal surface. An opposite chamfer map was created
815 inside the blob, and the local minimum of the derivatives of this map were
816 computed in order to isolate the points at the greatest distance from the
817 blob surface. This creates a “skeleton” following the curvilinear shape of the

818 hippocampal volume, which was then masked with the original hippocampal
819 volume. Finally, the skeleton was resampled back to 1mm space.

820 Next, this hippocampal skeleton, in MNI space coordinates, was used to
821 calculate the position of each hippocampus tissue sample along the longitudi-
822 dinal axis. For each sample, we identified the skeleton MNI coordinate with
823 the minimum projected distance to the sample's MNI coordinate. The po-
824 sition of the sample was then coded as the y-coordinate (anterior-posterior
825 axis) of the closest skeleton voxel. This process effectively transforms all
826 sample coordinates along a single anterior-posterior dimension. (Fig. S1B).
827 Note that, depending on location of the sample, the MNI y-coordinate of the
828 sample may not share the same y-coordinate of the closest skeleton point.

829 *8.3. Identifying genes regulating the longitudinal axis of the human hippocam-*
830 *pus*

831 We sought to identify which genes may play a significant role in the posi-
832 tioning of samples along the longitudinal hippocampal axis. Sparse regression
833 algorithms built for high dimensional datasets have been proposed, such as
834 least-angle regression (LARS) and LASSO-LARS. However, during regular-
835 ization, these algorithms will often select only one of a set of several collinear
836 variables and reduce the coefficient of the other variables in the set to zero. In
837 the case of gene expression data, gene co-expression networks are of interest
838 to us, and we do not necessarily want to select one of a set of co-expressed
839 genes. Therefore, we opted instead to use a LASSO-PCR approach [53, 30].
840 Such an approach will reduce the dimensions of the data while preserving
841 gene co-expression networks, yet still allow for a sparse selection of features.

842 In summary, we reduced our input data, a 170 (sample) x 58,692 (probe)
843 matrix, using principle components analysis (PCA) with singular value de-
844 composition. The resulting 170 (sample) x 170 (component score) matrix
845 was used in a principal component regression (PCR) model (Fig. S1). Ap-
846 proaches to PCR models typically reduce the number of independent vari-
847 ables by removing the components whose eigenvalues fall below some thresh-
848 old related to the percentage of variance explained. This does not account
849 for potentially strong relationships between the dependent variable and mi-
850 nor components. Thus, we elected to use a Least Absolute Shrinkage and
851 Selection Operator (LASSO) regression model with sample position along
852 the longitudinal hippocampus axis (defined in the previous section) as the
853 dependent variable.

854 In our regression model we have our standardized matrix of gene ex-
855 pression data X , our measurements along the longitudinal axis Y , and the
856 model $Y = XB + \epsilon$. We wish to estimate the values of the matrix $B =$
857 $[\beta_0, \beta_1, \dots, \beta_p]^T$, where β_i is the estimated impact of probe i on longitudi-
858 nal position. Probes with larger impacts will have higher estimated values;
859 negative values suggest greater expression in posterior compared to anterior
860 hippocampus, and vice versa. Since there are a large number of regression pa-
861 rameters, we use dimension reduction through PCA. We transform the data
862 such that $X^T X = P \Lambda P^T = Z^T Z$, where Λ is the diagonal matrix of eigenval-
863 ues of $X^T X$, Z is the matrix of principal components, and $P^T P = I$. We are
864 now interested in solving the principal component regression $Y = ZA$, where
865 the regression coefficients are stored in the matrix A and are the contribution
866 of principal components to position. We derive estimates of A using LASSO.
867 The coefficients of the two regression equations are related by the expressions
868 $A = P^T B$ and $B = PA$, so we estimate $\hat{B} = P\hat{A}$, giving us the beta values
869 of the individual probes, which are in terms of the original probes.

870 There are limitations to this approach. Beginning with the full set of
871 components can incidentally retain small components and make estimates of
872 beta coefficients unstable [30]. Interpretation of the components is challeng-
873 ing, and here they were generated without the dependent variable (the mea-
874 surements along the anterior-posterior axes). At the theoretical level PCA
875 can break down when there are many more variables than observations since
876 the sample covariance eigenvectors may not be close to population eigenvec-
877 tors [24] though empirical results here are positive and in concordance with
878 previous results. Partial least squares (PLS) is a method related to PCR that
879 accounts for the dependent variable and returned similar results (Figure S4).

880 To test the generalizability of the model, we employed several cross-
881 validation methods. First, we performed 10-fold cross-validation of the full
882 data set, which was repeated 10 times. Second, we performed a leave-one-
883 subfield-out cross-validation, to see if a model defined on five hippocampal
884 subfields (CA1-4, subiculum, dentate gyrus) could predict the axis position
885 of samples from the sixth subfield. Finally, we performed leave-one-donor-
886 out cross-validation to see if a model trained on samples from five donors
887 could predict the axis positions of samples from the sixth donor. Note that
888 the range of sample position was constrained by anatomy during the leave-
889 one-subfield-out cross-validation, and the number of samples varied quite
890 dramatically across donors for the leave-one-donor-out validation. The fi-
891 nal model used for all subsequent analyses utilized all samples. As a sanity

892 check, we calculated the mean of the fifty genes with the highest (anterior)
893 and lowest (posterior) betas within each sample and measured the variance
894 explained in sample position along the longitudinal axis by this average ex-
895 pression signal.

896 *8.4. De-contracting model features to assess candidate genes responsible for*
897 *axis regulation*

898 An advantage of the LASSO-PCR model is that it is more likely to iden-
899 tify several genes participating in a co-expression network rather than ar-
900 bitrarily identifying a single gene to represent that network. However, this
901 also leads to a possible disadvantage related to reduced precision in singling
902 out which genes, if any, are singularly important to the model. Addition-
903 ally, the global feature importances of a LASSO model cannot be reliably
904 interpreted, as adding or removing features can cause feature importances
905 to shuffle dramatically [25]. We attempted to de-construct our model with
906 these limitations in mind. Fifty probes with, respectively, highest (anterior)
907 and lowest (posterior) back-transformed weight (feature importance) were
908 iteratively removed from our model. After each removal of these 100 probes,
909 the model was refit, 10-fold cross-validation (CV) accuracy was recorded,
910 and the 100 top probes from the new model were removed. This process was
911 repeated until all probes were removed. As a control, we repeated this same
912 process iteratively removing 100 random probes instead of the 100 most im-
913 portant probes. Change in CV accuracy across rounds of probe removal was
914 visually assessed and inflection points were identified at rounds where CV
915 accuracy dropped and did not recover. Rounds in between inflection points
916 were considered stable, and probes removed between inflection points were
917 grouped together in gene sets, analyzed separately in subsequent analysis.

918 To establish whether these gene sets alone could predict sample position
919 along the longitudinal axis of the hippocampus, we reran the LASSO-PCR
920 model with only the probes involved in these gene sets. Prediction accuracy
921 was recorded using 10-fold cross-validation. The models were run ten times
922 with bootstrap samples to attain confidence intervals. As a control analysis,
923 models were run using sets of random probes the same size as each gene
924 set, and this process was repeated 10 times for each set, each time using
925 cross-validation to measure prediction accuracy. Finally, in order to compare
926 larger gene sets to Set 1 – which contained only 100 probes – we extracted
927 10 random sets of 100 genes from within each gene set and input these into

928 the model, once again using 10-fold cross-validation to measure prediction
929 accuracy.

930 To further highlight candidate genes involved in hippocampal longitudinal
931 axis regulation, we employed the Local Interpretable Model-Agnostic
932 Explanations (LIME) python package (<https://github.com/marcotcr/lime/>).
933 LIME makes local perturbations to model inputs and measures the impact
934 of those perturbations on model performance. LIME can only assess local
935 feature importance, however, by aggregating information across multiple local
936 features, some limited information can be ascertained about contribution
937 of features (probes) to predicting an outcome (sample position along the
938 longitudinal axis). For each gene set identified, we performed 10-fold cross-
939 validation with a Random Forest Regressor. A Random Forest Regressor
940 was chosen because its metric of feature importances is itself assessed using
941 out-of-sample prediction. For each fold, LIME was used to identify absolute
942 feature importances for samples in the left-out fold, and this information was
943 aggregated across all predictions from all folds. Elevated feature importance
944 could indicate importance of a probe across prediction of multiple samples, or
945 could indicate great importance across a limited set of predictions, meaning
946 interpretation is still limited.

947 *8.5. Characterization of gene sets using gene ontology enrichment analysis*

948 Gene ontology (GO) enrichment analysis was used to characterize functions
949 shared by several genes within gene sets. These analyses were performed
950 using the online tool GOrilla (RRID:SCR_006848; <http://cbl-gorilla.cs.technion.ac.il/>),
951 which identifies terms from the GO libraries that are associated with genes
952 in the inputted gene set and are significantly (FDR < 0.1) enriched com-
953 pared to a baseline gene set. We used the entire set of genes available in the
954 Allen Human Brain Atlas dataset as the baseline gene set. Altogether, the
955 background set we entered included 29,381 distinct genes, 19,895 of which
956 were recognized by GOrilla. Of these, only 17,836 were associated with a GO
957 term. We left all other parameters to their defaults. Some of the gene sets
958 produced long lists of enriched terms. We summarized this information us-
959 ing hierarchical agglomerative clustering on the significantly enriched terms.
960 A binary gene x term matrix was created where a 1 indicated a gene was
961 associated with a term. This matrix was fed to an Agglomerative clustering
962 algorithm using Jaccard index with average linkage and pre-calculated con-
963nectivity constraints (10 neighbors), and the process was repeated varying
964 the number of clusters from 2-20. Local peaks in silhouette index were used

965 to define the final cluster number, favoring a higher number of clusters for
966 better precision. The resulting clusters represented sets of genes sharing sev-
967 eral associated terms. For gene Set 2 (top 101-600 most important probes
968 to the model, see Section 2.2), peaks in Silhouette score were seen at k=2
969 (0.225), k=7 (0.132) and k=10 (0.128). We chose a 10-cluster solution. For
970 gene Set 3 (top 601-2700 probes, Section 2.2), peaks in Silhouette score were
971 seen at k=2 (0.349), k=5 (0.173) and k=12 (0.093). We chose a 12-cluster
972 solution. The purpose of this analysis was to cluster genes with enriched GO
973 terms for purely descriptive purposes.

974 8.6. *Whole-brain genomic representation of the hippocampal longitudinal axis*
975 – HAGGIS formulation

976 We sought to ascertain to what degree the specific pattern of genes regu-
977 lating the hippocampal longitudinal axis was expressed throughout the rest
978 of the brain. The probe weight (beta) vector from the LASSO-PCR analysis
979 can be thought of as a hippocampal longitudinal axis genomic signature. In
980 order to test for the presence of this signature in other brain regions, we
981 found the dot product between the beta vector (genomic axis signature) and
982 the gene expression (probe) vector for each sample (Fig. S1C). Note that
983 when estimating regression coefficients we have:

$$\hat{\beta} = (X^T X)^{-1} X^T Y \quad (1)$$

984 This is equivalent to using the estimates of coefficients from the LASSO-
985 PCR model to predict the location of the (non-hippocampal) sample along
986 the hippocampal axis. In practice, this amounts to using the hippocampus
987 model to predict where a non-hippocampus sample might fall along the hip-
988 pocampal longitudinal axis based on that sample's gene expression. However,
989 conceptually, this value can also offer an index of covariance between a given
990 sample's gene expression and the gene expression profile of the anterior or
991 posterior hippocampus. Higher (positive) values represent greater genomic
992 covariance with the anterior hippocampus, while lower (negative) values rep-
993 resent greater similarity to the posterior hippocampus. For the purposes of
994 parity, this index will be referred to in the text as the Hippocampal Axis
995 Genomic Gradient Index of Similarity (HAGGIS) index.

996 8.7. Comparisons with resting-state functional connectivity

997 For each of the 170 hippocampal samples, a resting-state functional con-
998 nectivity map was downloaded from Neurosynth (RRID:SCR_006798; <http://neurosynth.org/>)

999 using the closest available MNI coordinate to the MNI coordinate of the
1000 sample. The Euclidian distance between Neurosynth coordinate and sample
1001 coordinate never exceeded 2mm. Each map is based on the resting-state
1002 functional connectivity patterns of 1000 young, healthy individuals from the
1003 Brain Genomics Superstruct project [55].

1004 We sought to test whether the genes regulating the longitudinal axis of
1005 the hippocampus contribute to the differential brain connectivity observ-
1006 able along this axis. The measurement resolution of resting-state functional
1007 magnetic resonance imaging (rsfMRI) limits detail at which differences in
1008 connectivity can be observed along a structure as small as the hippocam-
1009 pus. To ameliorate this issue, we divided the hippocampus into genomically-
1010 determined posterior and anterior subsections, created mean connectivity
1011 maps for each, and used these mean connectivity maps to create a subtrac-
1012 tion image representing differential functional connectivity between the two
1013 poles of the hippocampus [28]. To determine a reasonable division between
1014 anterior and posterior hippocampus, we created a split at every point along
1015 the hippocampus skeleton. For each split, we classified samples as anterior
1016 or posterior based on the position of the coordinate along the longitudinal
1017 axis relative to the split. For each split, we next ran Logistic Regression,
1018 entering sample class (i.e. anterior or posterior) as the dependent variable
1019 and sample HAGGIS as the only independent variable. We then plotted
1020 the classification accuracy at each split under the hypothesis that higher
1021 anterior-posterior classification accuracy would suggest a more empirically
1022 sound anterior-posterior division (Fig S4A). We defined the optimal ante-
1023 rior and posterior cut points as i) local maxima in accuracy that ii) were at
1024 least 3mm from both hippocampal poles and iii) captured at least 20 samples
1025 for each side of the split. This lead to an anterior split point of $y=108$ (MNI:
1026 -19) and a posterior point of $y = 94$ (MNI: -35). All samples in between were
1027 removed. Results in the main text are reported using this split but, due to
1028 the somewhat arbitrary nature of this analysis, results are also reported for
1029 several other splits.

1030 Once the anterior and posterior samples had been defined, a mean image
1031 was made of the functional connectivity maps corresponding to each anterior
1032 and posterior sample, respectively. The posterior map was then subtracted
1033 from the anterior map. The resulting image represented relative functional
1034 connectivity to the anterior hippocampus over the posterior hippocampus.
1035 For each non-brainstem, non-cerebellum sample, a 5x5x5mm cube was drawn
1036 around the MNI coordinate of the sample. The mean of rsfmri subtraction

1037 image values within the cube was calculated, and this value was used as
1038 a measure of relative functional connectivity of the sample to the anterior
1039 over posterior hippocampus. Finally, we ran a Pearson's correlation between
1040 this functional connectivity measure and the HAGGIS. A positive correlation
1041 would indicate that brain regions with more genomic similarity to the anterior
1042 or posterior hippocampus would be more likely to be functionally connected
1043 to those regions, respectively. This analysis was performed using weights
1044 from the model performed on the entire gene set, as well as weights from
1045 models defined on individual gene sets.

1046 We repeated this analysis using three other brain masks: i) All brain
1047 regions; ii) All regions except cerebellum, brainstem and hippocampus; iii)
1048 cerebral cortex only. In addition, we varied the radius of the cube drawn
1049 around the sample coordinate between 1mm and 6mm. For completeness,
1050 we performed the above analysis using each cube radius, with each mask,
1051 and using many different splits – a total of 336 analyses. To ensure the
1052 relationships between HAGGIS and rsfMRI connectivity were not born out
1053 of chance, we performed a permutation test for each of the 336 conditions.
1054 Specifically, the gene expression values for each sample were randomly shuf-
1055 fled, and a correlation was run between the extracted rsfMRI connectivity
1056 values and the shuffled gene expression values. This process was repeated
1057 1000 times to create a null distribution, to which the observed value was
1058 compared to establish an exact p-value.

1059 We performed one final validation by applying diffusion map embedding
1060 [36, 52] – a non-linear dimension reduction approach – to the hippocampal-
1061 brain functional connectivity matrix. This approach summarizes variation in
1062 hippocampus-brain connectivity into components or “gradients” [52], allowing
1063 threshold-free representations of variation in hippocampus-brain functional
1064 connectivity for each tissue sample. The whole-brain connectivity maps for
1065 each sample (see above) were masked with a cortex-only mask (see above),
1066 vectorized and concatenated into a Sample x Voxel matrix. A correlation
1067 matrix was created from the transpose, generating a Sample x Sample simi-
1068 larity matrix, which was reduced using diffusion map embedding with default
1069 settings. We report the total variance in hippocampus-brain functional con-
1070 nectivity explained by each gradient, as well as the r^2 summarizing each
1071 gradient's relationship to sample location along the longitudinal axis, and
1072 predicted sample location based on gene expression (proportionate to HAG-
1073 GIS). We also report p-values, which are Bonferroni corrected for multiple
1074 comparisons. We then selected the gradient with the greatest relationship to

1075 predicted sample location (i.e. HAGGIS), provided this relationship was sig-
1076 nificantly stronger than that of other gradients, as measured using Steiger's
1077 tests [52]. For these select gradients, we also report this information with
1078 sample location predicted using each of the gene Sets described above (Sec-
1079 tion 2.2, 8.4).

1080 Other studies have published examining genomic regulators of functional
1081 connectivity [47, 54], and so we sought to understand what proportion of the
1082 variance explained from the main analysis (shown in Fig 4A) was unique to
1083 the HAGGIS rather than general network connectivity. We trained a cross-
1084 validated PLS model to learn the genomic features predicting relative anterior
1085 vs posterior connectivity to the hippocampus (i.e. the map in Fig 4A; see
1086 subsection 8.10 below for details). We considered the 10-fold cross-validated
1087 variance explained of this model to represent an estimate of the maximum
1088 variance explainable given the present genomic data. We then represented
1089 the variance explained of HAGGIS as a proportion of the overall variance
1090 explainable given the genomic data (visualized in Fig 4C).

1091 *8.8. Comparisons with structural covariance*

1092 Structural covariance is thought to reflect shared cytoarchitecture and/or
1093 developmental and degenerative trajectories between regions [2]. The ante-
1094 rior and posterior hippocampus have shown different patterns of structural
1095 covariance with the rest of the brain [39], and structural covariance appears
1096 to be genetically determined to some extent [2]. Accordingly, we assessed
1097 whether the differential structural covariance between different brain regions
1098 and the hippocampus along its longitudinal axis is reflected by patterns of
1099 genomic covariance.

1100 Structural covariance was calculated using the OASIS: Cross-Sectional
1101 structural (T1) MRI dataset [35], accessed with Nilearn (RRID:SCR_001362;
1102 <https://nilearn.github.io/>). The OASIS images came preprocessed using the
1103 SPM DARTEL pipeline [7]. 153 preprocessed gray matter volume images
1104 were identified as healthy, cognitively normal young (age < 40) controls.
1105 For each voxel corresponding to the MNI coordinates of an Allen Human
1106 Brain Atlas hippocampus sample, a structural covariance vector was calcu-
1107 lated between that voxel and all other brain voxels. Elements in the vector
1108 represented Pearson correlation coefficients between voxel values across the
1109 dataset of 153 individuals between the two regions. Anterior and posterior
1110 hippocampus divisions identified in the previous analysis were used to divide
1111 the covariance vectors, and the average covariance within anterior vectors

1112 and posterior vectors were calculated, respectively. The difference between
1113 these vectors was calculated to create a map where each voxel contained
1114 a value representing the relative structural covariance to the anterior over
1115 the posterior hippocampus. The values strongly favored the anterior hip-
1116 pocampus, so the map was z-scored, such that lower values represented less
1117 structural covariance to the anterior hippocampus. Relationships between
1118 HAGGIS and relative structural covariance were carried out in a manner
1119 identical to the functional connectivity analysis described above, and were
1120 repeated using different gene sets and brain masks. Similar to the functional
1121 connectivity analysis, we calculated the variance explained by HAGGIS as a
1122 proportion of the maximum variance explainable given the data (see previous
1123 subsection).

1124 As with the functional connectivity analysis, we used diffusion map em-
1125 bedding to generate threshold-free measures (gradients) summarizing hippocampus-
1126 brain structural covariance. For each sample, we calculated structural co-
1127 variance between the voxel at the sample location and all other voxels falling
1128 within in a cortical mask, creating covariance vectors. These vectors were
1129 concatenated into a Sample x Voxel matrix, and reduced using diffusion map
1130 embedding as described above (Section 8.7).

1131 *8.9. Comparisons with neurodegeneration in Alzheimer's disease and fron-*
1132 *totemporal dementia*

1133 Previous studies have noted the differential relationship of the hippocam-
1134 pus to Alzheimer's disease (AD) and frontotemporal dementia (FTD). We
1135 tested whether regions more genetically similar to the anterior than poste-
1136 rior hippocampus might be more vulnerable to neurodegeneration in FTD
1137 than in AD (and vice versa). In April 2018, we queried our database look-
1138 ing for patients who fulfilled the following criteria: i) Had available both a
1139 [¹¹C] Pittsburgh Compound B (PiB)-PET scan for β -amyloid and a [¹⁸F]
1140 Fluorodeoxyglucose (FDG)-PET scan of brain glucose metabolism acquired
1141 on the Biograph scanner; ii) Had either a clinical diagnosis of AD [37] and
1142 a positive PIB-PET read, or a clinical diagnosis of FTD (either behavioral
1143 variant FTD or semantic variant primary progressive aphasia, as described
1144 in [38]) and a negative PIB-PET read. Note that This query resulted in 36
1145 AD and 39 FTD patients. Five patients were later excluded because of in-
1146 complete FDG-PET SUVR (missing at least one of the 6 frames between 30
1147 and 60 min post-injection), resulting in a final count of 35 AD and 35 FTD

	AD	FTD	Test
Age at FDG: mean (sd)	62.0 (8.8)	61.4 (8.7)	Cohen's d = 0.07, p(t-test)=0.79, p(MannWhitney)=0.82
Females: n (%)	12 (34%)	19 (54%)	Fisher exact p=0.15
Years of education: mean (sd)	16.1 (2.9)	16.3 (4.7)	Cohen's d = 0.04, p(t-test)=0.88, p(MannWhitney)=0.81
Dementia stage (CDR\geq1): n (%)	22 (63%)	17 (49%)	Fisher exact p=0.34
CDR-SoB: mean (sd)	4.8 (1.9)	4.2 (3.2)	Cohen's d = 0.25, p(t-test)=0.30, p(MannWhitney)=0.31

Table 2: FDG = fluorodeoxyglucose; sd = standard deviation; CDR = Clinical Dementia Rating; CDR-SoB = Clinical Dementia Rating, Sum of Boxes

1148 patients. Demographic information can be found in Table 2. Note there is
1149 no overlap between this sample and the sample described in [28].

1150 All patients were seen at the University of California, San Francisco
1151 Memory Aging Center and imaged at the Lawrence Berkeley National Labs.
1152 PET acquisition details can be found elsewhere [40]. FDG-PET images were
1153 processed using SPM12 using a previously described pipeline [40]. Briefly,
1154 six five-minute frames were realigned and averaged, and the average image
1155 was coregistered onto patient specific anatomical T1-MRI scans. Standard
1156 uptake value ratios (SUVR) were calculated using the pons (Freesurfer seg-
1157 mentation of the brainstem with manual cleaning) as a reference region, and
1158 SUVR images were warped to the MNI template using MRI-derived param-
1159 eters. All 70 patients were entered into a voxelwise t-test controlling for
1160 age and disease severity (Clinical Dementia Rating Sum of Boxes score) us-
1161 ing SPM12, highlighting differences in glucose hypometabolism (a proxy for
1162 neurodegeneration) between AD and FTD patients. The t-map from this
1163 analysis was used for subsequent analyses, and is made available with this
1164 publication (<https://neurovault.org/collections/4756/>).

1165 For each non-brainstem, non-cerebellar sample, a 5mm diameter cube
1166 was drawn around the sample's MNI coordinates, and the mean t-value from
1167 the t-map described above was extracted. This value represents the relative
1168 neurodegeneration in FTD over AD in or around the region the sample was
1169 extracted from. Across samples, a correlation was calculated between this
1170 value and the sample's HAGGIS. A positive correlation would suggest regions
1171 more genetically similar to the anterior than the posterior hippocampus are

1172 more vulnerable to neurodegeneration in FTD than in AD. To ensure our
1173 findings were not specific to the brainmask used or the size of the extraction
1174 cube, we reran the analysis using each of the three additional masks described
1175 in Section 8.7, as well as varying the diameter of the extraction cube. Finally,
1176 permutation tests were run for each condition to compare our observations
1177 to chance (see Section 8.7). As with the previous analyses, we ran these sets
1178 of analyses across different gene sets.

1179 *8.10. Identifying candidate genomic regulators of brain-hippocampus interactions*
1180

1181 In sections 8.7, 8.8 and 8.9, we describe methods to uncover relationships
1182 between HAGGIS and hippocampus-brain interactions. We wished to iden-
1183 tify which specific genes were principally involved both in the organization
1184 of the longitudinal axis of the hippocampus, as well as in the hippocampus-
1185 brain interactions, further elucidating the role of the various genes identi-
1186 fied in section 8.4 along the axis. For each hippocampus-brain interaction
1187 map (visualized in Fig. 4A), we fit a partial least squares (PLS) regression
1188 model with gene expression information as X and hippocampus-brain inter-
1189 action value as Y, across all brain samples. As with the model described in
1190 section 8.3, the X input was first transformed using principal components
1191 analysis and represented as a set of genomic components. The model was fit
1192 varying the number of PLS components (i.e. modes) between 1 and 10, and
1193 using 10-fold cross-validation to assess model accuracy. The model with the
1194 highest cross-validated explained variance was selected as the best model, and
1195 was considered the maximum explainable variance given the genomic data
1196 available, which was therefore useful to compare to the HAGGIS models
1197 (see section 8.7 above). Note that the hippocampus itself was not included
1198 in any of the models. For each of the three PLS models, feature weights
1199 were backtransformed back into probe space (see section 8.3), and the top 50
1200 anterior and posterior associated features (i.e. with the highest and lowest
1201 weights) were identified. Overlapping features between each model and the
1202 hippocampus longitudinal axis model are reported. These features represent
1203 genes that appear to be very important in predicting the location of tissue
1204 samples in the hippocampus, but also in predicting interactions between the
1205 hippocampus and other brain regions. To ensure this overlap did not occur
1206 by chance, 1000 sets of 100 random probes were generated, and used to cal-
1207 culate the probability of overlap between 100 random features and the 100
1208 features from the the hippocampus longitudinal axis model.

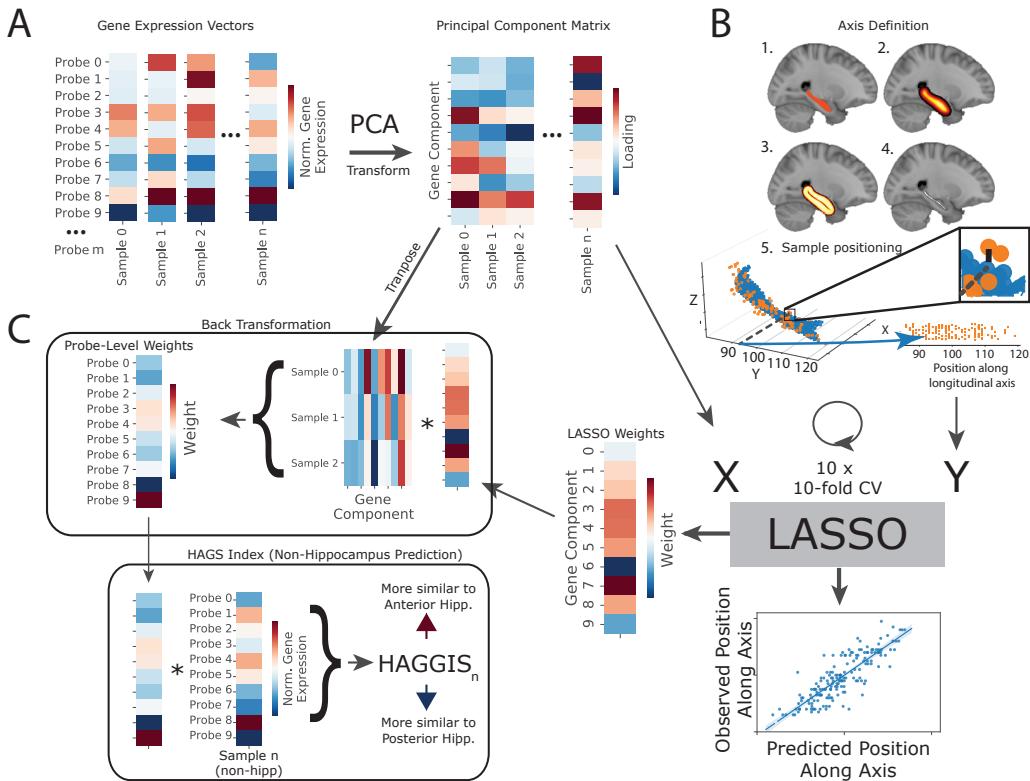
1209 8.11. Comparisons with large-scale cognitive systems

1210 The Neurosynth website contains 3D meta-analytic functional co-activation
1211 maps from task-fMRI studies that are paired with sets of related topics
1212 (words) extracted from the text of these studies. These topic-list/co-activation
1213 map pairs are the result of a Latent-Dirichlet Allocation across 11,406 arti-
1214 cles, the details of which can be found elsewhere [41]. In short, topic lists
1215 represent words that are mentioned greater than chance ($FDR < 0.01$) in pa-
1216 pers reporting functional co-activation in given coordinates, summarized by
1217 paired co-activation maps. All 100 (association/reverse inference) maps from
1218 the set of 100 topic list/co-activation map pairs on the Neurosynth website
1219 were downloaded and binarized such that all values above 0 were set to 1, and
1220 all other values were set to 0. We manually labeled the topics according to
1221 their hypothesized association with the AT-PM system [44] based on the con-
1222 tent of the word list (AT/PM/Not associated) but without reference to the
1223 spatial pattern of the co-activation. For each of the 100 binarized functional
1224 meta-analytic co-activation maps, all samples with MNI coordinates falling
1225 within the map were identified, and the mean HAGGIS of those samples was
1226 calculated. Therefore, each topic/map pair had an associated value indicat-
1227 ing the degree to which the brain regions involved expressed genes similar to
1228 the anterior or posterior hippocampus. Higher values represented similarity
1229 to the anterior hippocampus, lower values to the posterior hippocampus, and
1230 higher absolute values represented greater genomic covariance. To increase
1231 confidence in this approach, the main analyses were restricted only to maps
1232 overlapping with at least 500 samples (29/100).

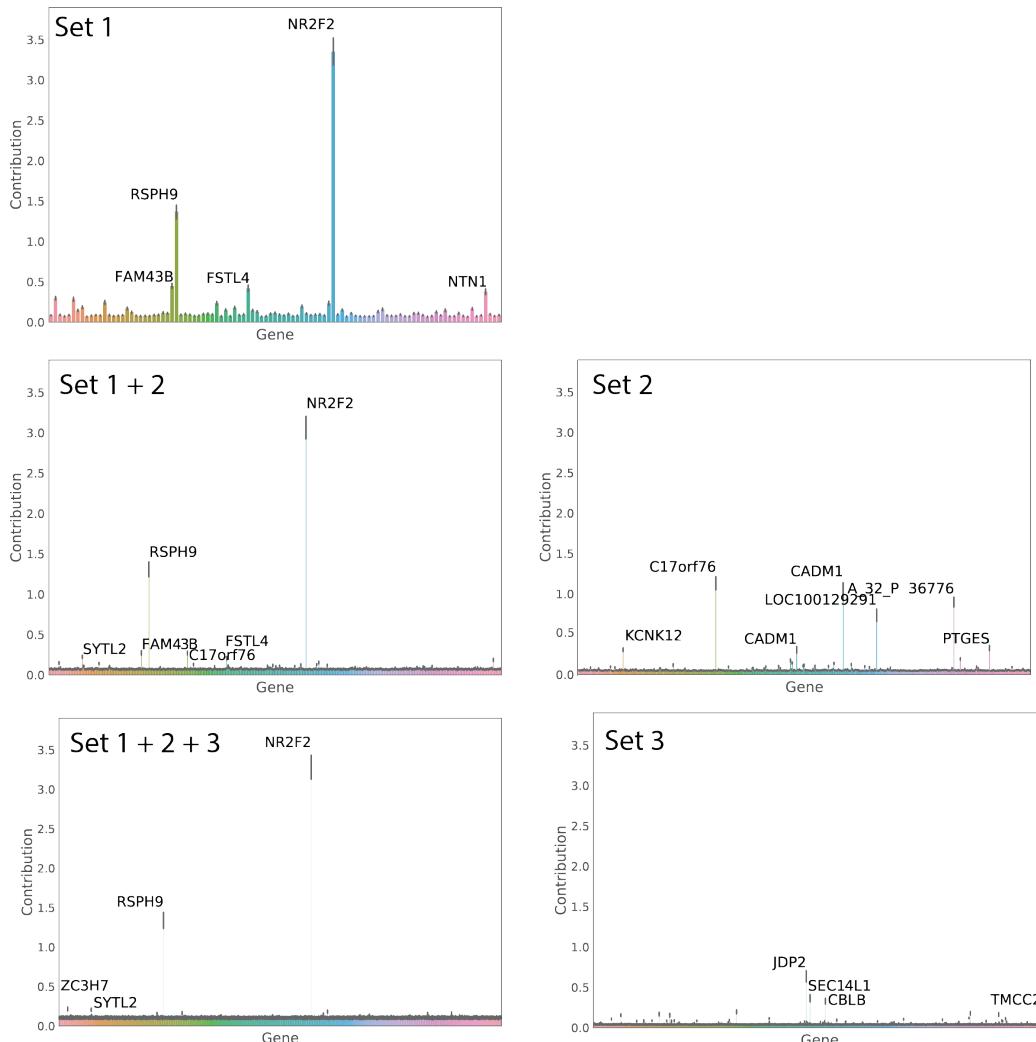
1233 To help visualize these results, we created a word cloud summarizing
1234 both the spatial (functional coactivation) and topic (cognitive) information
1235 associated with the anterior and posterior hippocampus respectively. For the
1236 topic information, each topic-set contained 40 words arranged by importance
1237 to the topic-set. Each word was given a value proportionate to its impor-
1238 tance rank in its topic set (i.e. most important word valued at 40, least
1239 important at 1). Next, the value of each word was multiplied by the average
1240 HAGGIS within the binarized map paired to the word's topic-set (i.e. the
1241 bars in Fig 5), multiplied by 1000 to increase the weighting of this multiplier
1242 proportionate to the within-set ranking. Therefore, each word had an asso-
1243 ciated value, such that the highest values represented words most important
1244 to topic/map pairs with the greatest HAGGIS, where multiple mentions in-
1245 creased the value of the word. To summarize the spatial information, we
1246 binarized each map and multiplied it by the average HAGGIS within the

1247 binarized map (i.e. the bars in Fig 5), and summed all maps, and smoothed
1248 the image with a 4mm isotropic kernel. All voxels with positive values were
1249 binarized into a mask, and this mask was used as constraint for the anterior-
1250 hippocampus word cloud, inside which the top 100 words were visualized. All
1251 voxels with negative values were binarized into a posterior mask used as a
1252 constraint for the posterior-hippocampus word cloud. The word values were
1253 repeated inverting the HAGGIS multipliers, and the top 100 words were vi-
1254 sualized. The final image represents brain regions coactivated more with the
1255 anterior vs posterior hippocampus, and the cognitive topics most associated
1256 with those regions.

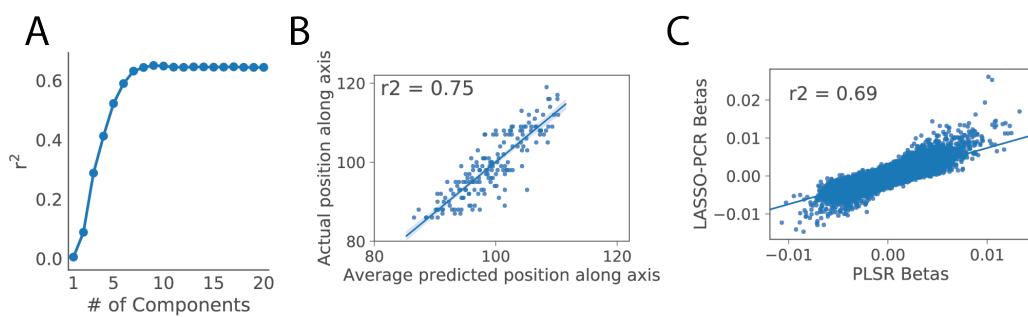
1257 **9. Supplementary Figures**



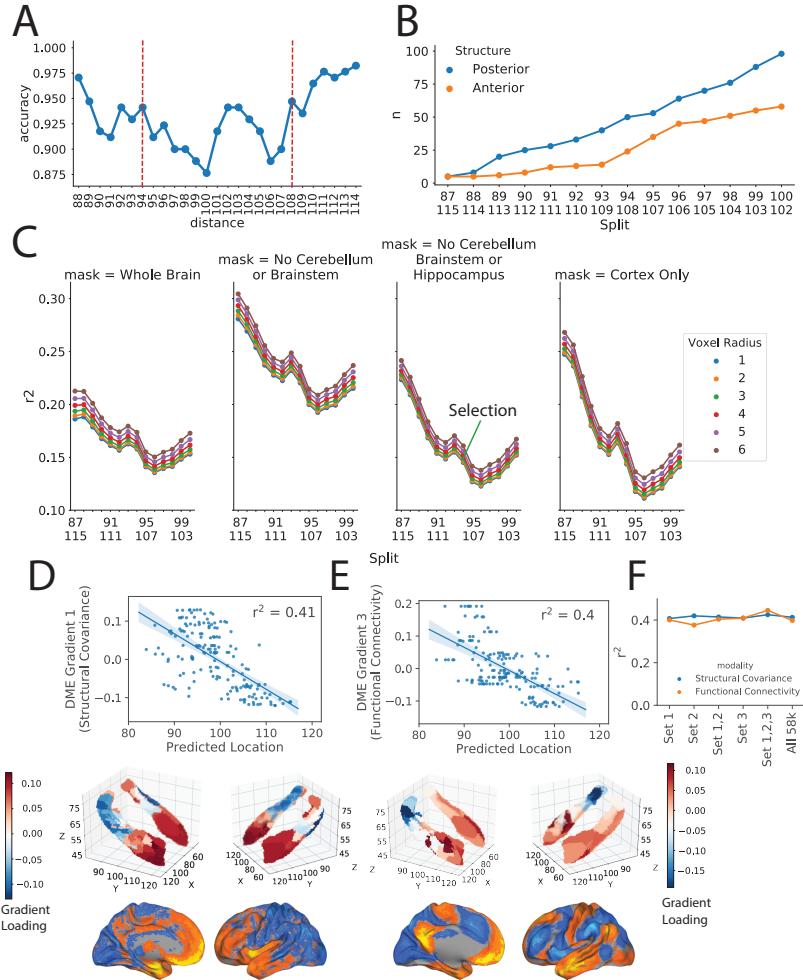
Supplementary Fig. S1: LASSO-PCR pipeline to predict the position of a tissue sample along the longitudinal axis of the hippocampus using gene expression. **(A)** The 170 (Sample) \times 58,692 (probe) gene expression matrix was first reduced using principal components analysis (PCA), such that each sample had a singular value representing the loading onto each principal component. The principal component matrix was used as the predictor (X) variable in the LASSO-PCR model. **(B)** The longitudinal axis of the hippocampus was defined with a medial axis transform: 1) We start with a mask of the hippocampus, which is resampled to 0.5mm space. 2) The mask is dilated by creating a chamfer map measuring distance from the center of the hippocampus, extending out 10mm into a smooth hippocampus-shaped blob. 3) An inverse chamfer map was created inside the blob, local minimum of the derivatives of this map were computed. 4) These operations resulted in a hippocampus “skeleton”. 5) For each tissue sample (orange), the closest hippocampus skeleton voxel (blue) was located, and the y-axis of this coordinate was used as the position of the sample along the longitudinal axis, which was used as the dependent variable (Y). **(C)** A sparse LASSO regression model fit the (reduced) gene expression data to position along the atlas, with ten rounds of 10-fold cross-validation. Model weights were back-transformed to probe space. The back-transformed weights were applied to the gene expression vectors of non-hippocampus samples to derive the HAGGIS, indicating genomic similarity to the anterior (positive) or posterior (negative) hippocampus.



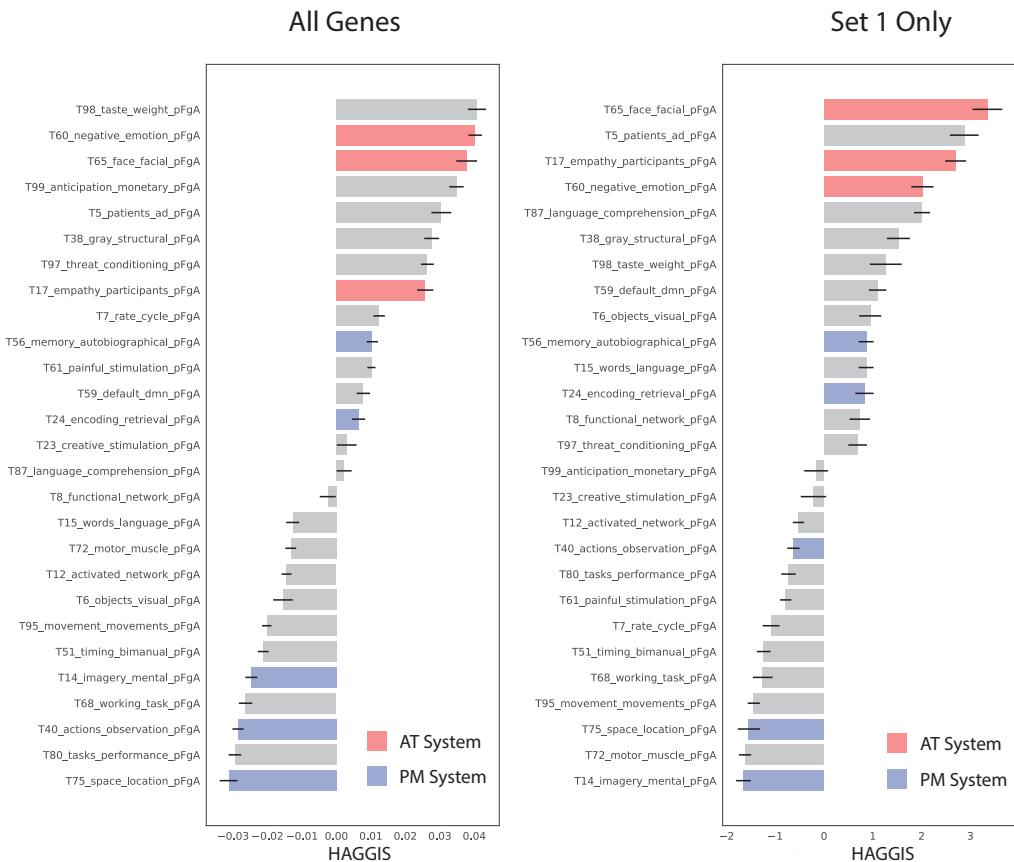
Supplementary Fig. S2: Feature-explainer applied to different gene sets. The Random-Forest based feature explainer was applied to different combinations of gene sets associated with position along the longitudinal axis of the hippocampus. For each plot, the y-axis represents local feature importance, indicating the degree to which, on average, perturbing the feature (probe) impacts individual model predictions. NR2F2 and RSPH9 consistently demonstrated the greatest importance when included in the model. Compared to Set 1, feature explainers identified more features with less importance for Sets 2 and 3.



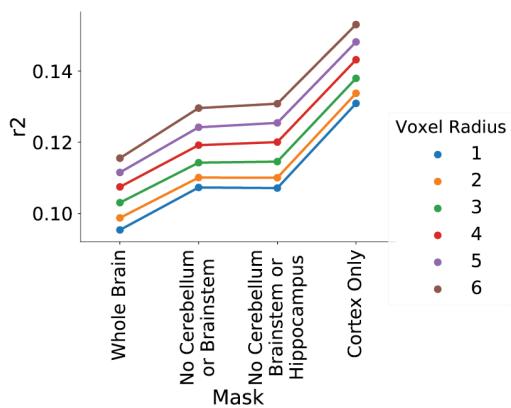
Supplementary Fig. S3: Validating results with PLSR. To ensure previous findings were not a product of algorithm choice, PLSR was fit to the gene expression data in order to predict position along the longitudinal axis of the hippocampus. **A** 10-fold cross-validation suggested nine as the optimal number of components. **B** Fitting the PLSR model to the data resulted in a similar r^2 as the LASSO-PCR approach. **C** The weights from the LASSO-PCR and PLSR models were highly correlated.



Supplementary Fig. S4: Validation of rsfMRI connectivity results. **(A)** An anterior-posterior split of the hippocampus was made at every y-coordinate along the hippocampal axis, and a Logistic Regression with HAGGIS was performed to classify anterior from posterior hippocampus. Accuracy at each split is visualized. The coordinates of the final split used for the analysis in the main text are indicated with red dashed lines. **(B)** The analysis was performed across several additional splits, indicated on the x-axis. The number of anterior and posterior samples included after each split are shown in orange and blue, respectively. The splits move from more extreme to more central as the x-axis moves from left to right. **C** The rsfmri analysis was repeated varying the radius of the extraction cube, the brain mask, and the anterior/posterior split. The r^2 of the correlation between HAGGIS and functional connectivity for each condition is shown. Diffusion map embedding was used to summarize principal axes of whole-brain functional connectivity **(D)** and structural covariance **(E)**. Select gradients are correlated with the gene expression pattern predicting longitudinal axis location. The gradients are rendered onto a hippocampus surface, and expression of the gradient in whole-brain connectivity/covariance patterns is visualized. **F** The r^2 of relationships shown in C and D where the gene expression pattern is composed of different gene sets.



Supplementary Fig. S5: Cognitive meta-analysis when using all probes vs. top 100 probes. On the left is a vertical reproduction of Fig 4F. On the right is the results of the exact same analysis, except calculating the HAGGIS using only the top 100 probes, rather than all 58,692 probes. The pattern is remarkably similar, especially as pertaining to the topics associated with the AT/PM system.



Supplementary Fig. S6: Validation of FDG neurodegeneration results. The analysis comparing HAGGIS to relative neurodegeneration in AD vs FTD was repeated using different extraction cube sizes and different brain masks. The r^2 for each condition is visualized