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Abstract

The functional organization of the hippocampus is distributed as a gradi-
ent along its longitudinal axis that explains its differential interaction with
diverse brain systems. We show that the location of human tissue samples
extracted along the longitudinal axis of the hippocampus can be predicted
within 2mm using the expression pattern of less than 100 genes. When
variation in this specific gene expression pattern was observed across the
whole brain, a distinct anterioventral-posteriodorsal gradient was observed.
Frontal, anterior temporal and brainstem regions involved in social and mo-
tivational behaviors, selectively vulnerable to frontotemporal dementia and
more functionally connected to the anterior hippocampus could be clearly
differentiated from posterior parieto-occipital and cerebellar regions involved
in spatial cognition, selectively vulnerable to Alzheimers disease, and more
functionally connected to the posterior hippocampus. These findings place
the human hippocampus at the interface of two major brain systems defined
by a single distinct molecular gradient. (148/150)
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1 1. Introduction

2 A phylogenetically conserved and well connected structure involved in a
3 diverse multitude of behaviors, the hippocampus provides an excellent base
+ for studying the evolution of cognition. Alongside its highly nuanced and
s well documented role in memory, the hippocampus has been implicated in
s many other behaviors and functions, ranging from social cognition to spatial
7 orientation to regulation of endocrine processes, such as stress response [5, 8.
s The hippocampus can be divided into well-described subfields — the cornu
o ammoni (CA), dentate gyrus and subiculum — which represent its principal
10 axis of organization, and which strongly inform cytoarchitectonic variation
1 and both internal and external circuitry [5]. A second orthogonal axis of
12 organization of the hippocampus lies along its longitudinal axis in a gradi-
13 ent spanning its two poles. In the rodent, this axis is often referred to as
1 the ventral-dorsal axis, while a homologous gradient is thought to exist in
15 humans along the anterior-posterior axis [49, 20, 42]. To study variations
16 along this axis, the hippocampus is often divided into basic macroscopic
17 partitions; the head-body-tail division is often used in humans, whereas a
18 dorsal-ventral division is used in rodents. The divisions along the longitu-
19 dinal axis of the hippocampus are characterized by a complex but distinct
20 pattern of afferent and efferent connections, as well as impressive behavioral
a1 domain specificity. In rodents, the ventral hippocampus shares connections
2 with the prefrontal cortex, basolateral amygdala, hypothalamus, and other
23 structures mediating neuroendocrine and autonomic signaling and motivated
2 behavior. Meanwhile, the dorsal hippocampus is anatomically connected
»s  with retrosplenial cortex, mamillary bodies, anterior thalamic complex and
2 other networks implicated in movement, navigation and exploration ([8, 20]).
27 Studies directly assessing the existence of a homologous longitudinal organi-
s zational axis in the human hippocampus have found compelling evidence in
2 support [52, 10, 14, 1], and evidence has emerged suggesting this axis defines
» the multifaceted role of the hippocampus in complex cognitive systems [44]
aand in vulernability to neurodegenerative diseases [28, 33].

2 Centrally involved in so many aspects of brain function and dysfunction,
;3 a comprehensive study of the hippocampus and its organizational principles
s may be paramount to understanding the brain at large. With this concept in
s mind, several studies have explored the molecular properties regulating the
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s longitudinal axis of the hippocampus. A number of studies have characterized
;7 the genomic anatomy of the ventral-dorsal axis of the rodent hippocampus
1 as a whole or across specific subfields [13, 15, 19, 31, 51], how gene expression
» along the axis changes over the course of development [29, 46], and how it
o influences patterns of connectivity [8]. While some consensus over implicated
s genes has been met, all of these studies have been performed exclusively in
22 rodents, and it is unclear whether similar genes and proteins are responsible
s for regulating and characterizing the anterior-posterior axis of the human hip-
u pocampus. This distinction is important, as the human hippocampus bears
s a different anatomy from that of rodents, participates in ostensibly more
s complicated cognitive systems, and shows selective vulnerability to diseases
s unique to humans.

18 As yet, such explorations have been severely limited due to the compli-
s cations of measuring regionally detailed gene expression in the human brain.
so However, the Allen Human Brain Atlas has provided unprecedented access
51 to human brain gene expression data. In the current study we leverage gene
52 expression data from the Allen Human Brain Atlas dataset to define the ge-
53 nomic anatomy of the longitudinal axis of the human hippocampus. Specif-
s« ically, we sought to understand whether, as with the rodent hippocampus,
55 notable gene expression variations also exists along the human hippocam-
ss pus, and which genes are most prominently involved in this molecular orga-
s nization. We further aimed to understand whether information about gene
ss expression can help explain interactions between the hippocampus and the
so diverse brain systems it is associated with, as well as differential vulnerabil-
0 ity to neurodegenerative disease. To accomplish this, we drew from several
s1 public and private human datasets to bridge molecular properties with brain
s structure and function, behavior, and finally, dissociated vulnerability to
&3 neurodegenerative disease. We show that a graduated pattern of gene ex-
s« pression along the hippocampal longitudinal axis predicts the location of a
65 brain tissue sample along this axis, and that distinct interactions between
s the anterior and posterior hippocampus with specific brain systems can be
e predicted by the genomic similarity shared between those brain systems and
¢ the different poles of the hippocampus.
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o0 2. Results

0 2.1. A sparse set of genes can predict sample location along the longitudinal
71 axis of the hippocampus

7 Normalized gene expression information from 58,692 probes were obtained
73 from each of 170 brain samples extracted from the hippocampi of six deceased
7 human donors from the Allen Human Brain Atlas. The longitudinal axis of
7 the hippocampus, from the anterior to the posterior pole, was defined as
7 a curve passing through the center of mass of the hippocampal volume of
77 an average brain template in MNI standard space. The position of each
7s of the 170 hippocampus samples was projected onto this longitudinal axis
» (Fig. 1A, S1B). LASSO-PCR was used to create a model predicting the
o position of each sample based on its gene expression profile (Fig. S1).

81 Using repeat ten fold cross-validation, the LASSO-PCR model explained
22 68-73% of the variance in sample position along the longitudinal axis (average
&3 MAE = 2.17mm) using only gene expression information (Fig. 1B,C). The
s« explained variance rose to 89% when the model was fit across all data.

& By training our model on five subfields and then using this model to pre-
ss dict the position of the sixth left-out subfield (i.e. leave-one-subfield-out), we
s7 revealed that the genomic signature underlying the anterior-posterior gradi-
ss ent of the hippocampus is consistent across hippocampal subfields (Fig. 1D),
s though the variance predicted was poorer for CA2 (r? = 0.47) and the subicu-
o lum (r? = 0.58) compared to CA1, CA3, CA4 and the dentate gyrus (rs >
a 0.73). Leave-one-donor-out prediction additionally suggested consistency of
2 the genomic signature across individuals (Fig. 1E): while two donors ac-
s counted for over 60% of the samples, when samples from these two donors
o were included in the model, prediction of the location of samples for the other
o5 four donors was highly accurate (r’s > 0.80).

% Weights from the LASSO-PCR model were back-transformed onto the
o7 individual probes in order to highlight the contribution of individual genes
¢ to the regulation of the hippocampal longitudinal axis. Weights from L1-
o regularized regression (LASSO) are difficult to reliably interpret [25], making
wo identification of individual candidate genes challenging. To circumvent this
01 issue, we iteratively removed the probes with 50 highest (anterior-associated)
02 and 50 lowest (posterior-associated) weights, respectively, refit the model,
103 and measured cross-validation accuracy of the new model, until all 58,692
s probes were removed (Fig. 1F). Removing the first set of 100 probes (Set 1)
s resulted in a sharp drop in cross-validation accuracy that was never recov-
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Figure 1: Gene expression predicts the location of tissue samples along the longitudinal axis of the hip-
pocampus. A) (top) A curved skeleton of voxels was fitted along the center of mass of the hippocampal
volume. (middle) Tissue samples (orange) were matched to the closest skeleton voxels (blue). (bottom)
A sample’s position along the longitudinal axis was represented as the y-axis coordinate of the sample’s
matched skeleton-voxel. B) Average predicted sample position (using gene expression) across ten separate
10-fold cross-validated LASSO-PCR models, compared to the actual position. C) Render of the hippocam-
pal surface where each vertex shows the predicted location of the closest (surface projected) sample to
that vertex. The smooth appearance of the right hippocampus is related to the fact that less samples
were available for this structure. (D) Predicted vs. observed sample locations for leave-one-subfield-out
models. For example, subpanel “CA1” shows the predicted vs. observed position of samples extracted
from CA1 (test set) when the model was trained without CA1l samples (training set). In each plot, N
represents the number of samples in the training and test sets. E) Predicted vs. observed sample locations
for leave-one-donor-out models. F) The 100 most important probes in the LASSO-PCR model were itera-
tively removed and, after each removal, 10-fold cross-validation accuracy predicting sample position along
the longitudinal axis was recorded (blue dots). G) The first 50 rounds of 100-probe removal from Panel
A. Inflection points were identified after removing 100, 600, and 2700 genes. H) Accuracy in predicting
sample position was recorded for models using different gene sets identified by the inflection points in
panel G (blue), samples of 100 random within-set probes (green), and samples of random probes (orange)
as input. Each model was run ten times with different bootstrap samples to calculate confidence intervals.
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ws ered, supporting the notion that this gene set is important for regulating the
w7 longitudinal axis of the human hippocampus. Accuracy dropped once again
s after removing the next 500 probes (Set 2; rank 101-600), and after the next
1o 1100 probes were removed (Set 3; rank 601-2700), cross-validation accuracy
no  began to drop precipitously, finally bottoming out after another 2100 probes
ur (Set 4; rank 2700-4800) were removed (Fig. 1F,G). In contrast, iteratively
n2  removing sets of 100 random probes resulted in a very gradual and sporadic
us decrease in accuracy that only bottomed out when nearly all probes were
us  removed (Fig. 1F). Refitting the LASSO-PCR model with only probes from
us Set 1 (100 probes), Set 2 (500 probes) or Set 3 (2100 probes) resulted in
us  cross-validation accuracy above 80% (MAE: Setl = 1.84 mm; Set2 = 2.39
w7 mm; Set 3 = 1.85 mm), a substantial improvement over the original model
us and a considerable improvement over models with equal-sized sets of random
e genes. Genes from Set 4 (2100 probes) alone achieved accuracy similar to
120 a model using all (58,692) probes, and a model using all 53,892 probes not
121 included in Sets 1-4 achieved cross-validation accuracy near 0% (Fig. 1H).
122 These results indicate that 100 specific probes are sufficient to accurately
123 predict the location of a sample along the longitudinal axis of the hippocam-
12« pus, and that probes outside of a specific set of 4800 provide little to no
125 information about the axis. Fitting the model using gene Sets 2 and 3 alone
126 resulted in cross-validation accuracy similar to Set 1, suggesting the possibil-
127 ity that important regulatory genes may also be present within these probe
s sets. However, the accuracy may also be assisted by the larger number of
120 probes included in these two sets. Indeed, random sets of 100 probes taken
130 from within Sets 2 and 3 showed reduced cross-validation accuracy compared
13 to Set 1 and full Sets 2 and 3 (Fig. 1H).

12 2.2. Candidate genomic requlators of the longitudinal axis of the human hip-
133 pocampus

134 A list of the 100 top probes can be found in Table 1. Gene ontology
155 (GO) enrichment analysis of the top 100 probes from the model (Set 1)
s revealed a consistent set of terms relating to regulation of anatomical struc-
137 ture morphogenesis and tissue (particularly axonal) growth and development.
13 (Fig. 2A). This gene set also included several genes previously identified to
10 differentiate the dorsal and ventral aspects of the rodent hippocampus (e.g.
1w NR2F2, SERTAD4, GDA, TTR, TPBG, SSTR1, TNNT2). Among this gene
w1 set, a feature explainer based on cross-validated Random Forest Regression
12 suggested NR2F2 and RSPH9 as, on average, the most important local pre-
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Figure 2: Candidate genes regulating the longitudinal axis of the human hippocampus. A Enriched Gene
Ontology terms (Q<0.1) associated with Gene Set 1. Circle size indicates enrichment, whereas color
indicates Q value (lighter = lower Q value). B Matrix showing gene expression for Gene Sets 1 (y-axis)
across each hippocampal sample, ordered most posterior to most anterior (x-axis). Values were smoothed
with a 3mm gaussian kernel across the x-dimension only and then clustered so that anterior-posterior
patterns can be clearly visualized. C Average absolute local feature importances of probes in Gene Set 1
measured using a Random Forest-based feature explainer across all samples. D Surface rendering of the
expression patterns of each of the five genes identified as locally important features to predicting position
along the longitudinal axis. E For each of the five genes, the relationship between expression and position
along the longitudinal axis (r2) is plotted stratified by subfield.

13 dictors of position along the longitudinal hippocampus axis (Fig. 2C). This
s result remained consistent when additionally adding all probes from Sets
s 2 and 3 (Supplementary Fig. S2). In addition to NR2F2 and RSPH9,
us the feature explainer also implicated local contributions to individual sam-
17 ples from FAM43B, FSTL4 and NTN1 (Fig. 2C). The expression pattern
us of these five genes differed, as each pattern likely added unique information
1o to the model (Fig. 2D). For example, for some genes the anterior-posterior
150 expression pattern was greater in certain subfields (Fig. 2E).

151 Feature explainers run on Sets 2 and 3 alone revealed more contributing
12 features with less individual importance, compared to Set 1 and pools in-
153 cluding Set 1 (Supplementary Fig. S2). This suggests individual sample
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Anterior Posterior

Probe Gene Beta Probe Gene Beta

1053204 SERPINF1 0.0261 1023030 NPNT -0.0147
1053205 SERPINF1 0.0253 1023031 NPNT -0.0141
1030761 KLKT7 0.0193 1050553 TTR -0.0129
1033144 RSPH9 0.0170 1064147 A_32_P11262 -0.0129
1030762 KLK7 0.0162 1058844 BDKRBI1 -0.0124
1036045 LYPDI1 0.0145 1041274 SERTADA4 -0.0123
1041466 GABRQ 0.0144 1048608 NTN1 -0.0122
1032692 PYDC1 0.0143 1039873 HHIP -0.0119
1042620 SYTL2 0.0139 1039872  HHIP -0.0111
1034086 RP13-102H20.1 0.0139 1017013 RP11-561023.6 -0.0110
1042619 SYTL2 0.0137 1038748 GRHL2 -0.0107
1051105 SSTR1 0.0135 1041038 RGMA -0.0107
1041090 LXN 0.0134 1058843 BDKRBI1 -0.0106
1031172 TMEM215 0.0133 1042684 BNC2 -0.0105
1042621 SYTL2 0.0133 1050668 TPBG -0.0104
1028032 C1QL1 0.0132 1029814 OSBPL3 -0.0101
1010361 PIRT 0.0132 1048607 NTNI1 -0.0100
1054831 KCNG1 0.0132 1048537 ONECUT?2 -0.0100
1059122  AQP3 0.0130 1058080 COL5A2 -0.0100
1064467 A_23_P213527 0.0128 1010982 RP11-291L15.2 -0.0099
1029570 RP11-45B20.3 0.0128 1027004 FSTL4 -0.0098
1066217  Clorfl87 0.0126 1015986  Clorf133 -0.0098
1056223 GPR39 0.0123 1048913 DGKI -0.0096
1021758 OPRK1 0.0120 1010774 DDC -0.0096
1017426 CD36 0.0119 1069644 A_24_P401842 -0.0096
1059123  AQP3 0.0117 1070261 A_32_P121537 -0.0095
1030763 KLK7 0.0117 1025477 TNNT2 -0.0095
1053962 MYB 0.0117 1027005 FSTL4 -0.0095
1056238 GPR26 0.0116 1050554 TTR -0.0094
1054547 LMO1 0.0115 1040196 HPSE2 -0.0094
1042988 GPRS&8 0.0114 1012040 DDC -0.0093
1031384 VGLL3 0.0114 1010523 DDC -0.0091
1014826 NR2F2 0.0113 1058079 COL5A2 -0.0091
1013661 NR2F2 0.0112 1038515 WNT10A -0.0090
1020068 NR2F2 0.0112 1058569 CASR -0.0090
1046866 GPRS&3 0.0111 1012029 DDC -0.0090
1048357 GDA 0.0110 1052410 PVALB -0.0089
1030949 NRG1 0.0109 1060554 A_24_P62668 -0.0089
1031962 RSPO2 0.0109 10338386 FAMA43B -0.0088
1063851 A _32_P136776 0.0108 1016934 CTXN3 -0.0088
1045386  C200rf103 0.0108 1010582 DDC -0.0088
1037183 SYTL1 0.0108 1040195 HPSE2 -0.0088
1054593 LGALS2 0.0107 1043786 GAL -0.0087
1041091 LXN 0.0107 10398383 GREM2 -0.0087
1056237 GPR26 0.0107 1026202 KDELR3 -0.0087
1013797 KIAA1772 0.0107 1058081 COLb5A2 -0.0086
1066971  A_32_P115840 0.0106 1030360 PDLIM5 -0.0085
1048356  GDA 0.0106 1048538 ONECUT?2 -0.0084
1033037 SEMA3D 0.0104 1060274 A_24_P102119 -0.0084
1020049 NRG1 0.0104 1043787 GAL -0.0084

Table 1: The top 50 anterior- and posterior-associated probes, respectively, identified by the LASSO-PCR
model
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1ss predictions are likely aided by different genes depending on their location
155 along the longitudinal axis. Sets 2 and 3 may therefore contain a mix of
156 genes regulating the longitudinal axis, genes regulated by the those genes,
157 and genes that are independent but are specifically hyperexpressed in the
158 anterior or posterior hippocampus. To partially explore this possibility, we
159 performed GO enrichment analysis on all genes represented in Set 2, and then
o clustered genes sharing similar enrichment terms (Supplementary Table
161 S1). One cluster emerged sharing similar terms to those enriched in Set 1,
12 relating to regulation of axon guidance, as well as cell motility, migration
13 and development. This cluster also included genes previously described in
16 studies exploring the rodent longitudinal axis, including SLIT2 and CADM1.
165 Other GO enrichment sets included amine metabolic processes, GABA re-
166 ceptor activity, signal release/secretion, neuropeptide receptor activity, ion
17 transport, behavior, serotonin receptor activity and lipoprotein mediated sig-
s naling. These latter gene clusters may be more likely to regulate behaviors
1o differentially associated with the anterior or posterior hippocampus. We re-
o peated this analysis for Set 3 (Supplementary Table S2). Once again, a
i cluster of genes emerged associated with cell motility and migration, which
12 again included genes previously described from the rodent literature (e.g.
s NTNG2, SEMA3E, NOV, SEMA4G, CADM1, CYP26B1). A second cluster
s emerged involving genes associated with both amine transport and neuronal
s migration, and also included some previously described genes (e.g. RAB3B,
s PENK, NTF3, NTS, OLFML2B, RASD2, RXRG, TIMP2).

177 As a way of validating the candidate genes identified, we repeated our
s analyses using Partial Least Squares regression (PLSR), another algorithm
79 appropriate given the high dimensionality of our data. Using all probes, we
180 obtained similar overall cross-validation results (Supplementary Fig. S3).
11 Of the top 100 probes identified by the PLSR model, 50 were included in Set
12 1, another 42 in Set 2, and the last 8 were found in Set3. Interestingly, of
183 all probes in the model, NR2F2 and RSPH9 had the highest absolute beta
18 estimates (weights), once again implicating these two genes as regulators of
185 the longitudinal axis of the hippocampus (Supplementary Table S3).

s 2.3. The genomic signature of the longitudinal axis of the hippocampus is
187 represented as a spatial gradient across the brain

188 The Allen Human Brain Atlas data comprises 3702 samples across the
189 brains of six donors. By leveraging the weights of our LASSO-PCR model, we
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Figure 3: Spatial distribution of the HAGGIS across the brain. (A) Each sample was projected onto a
cortical surface based on its MNI coordinates. Warm colors indicate the sample has a gene expression
pattern more similar to the anterior hippocampus (higher HAGGIS), while cool colors represent the sample
is more genomically similar to the posterior hippocampus (lower HAGGIS). (B) A medial slice inclusive
of brainstem and cerebellum. Each dot represents a sample, and warm colors indicate higher HAGGIS,
while cool colors represent lower HAGGIS. HAGGIS = Hippocampal Axis Genomic Similarity

wo created the Hippocampal Axis Genomic Gradient Index of Similarity (HAG-
o1 GIS), a value representing the degree to which the genomic signature of the
12 hippocampal longitudinal axis is represented in the gene expression profile of
103 a given non-hippocampus sample (Fig. S1). Larger positive values represent
104 greater genomic similarity to the anterior hippocampus, while smaller nega-
105 tive values represent greater genomic similarity to the posterior hippocampus.
s When plotting these values for all brain samples, we observed a general pat-
17 tern across the brain such that the brainstem and more antero-ventral sites of
108 the cerebral cortex demonstrated greater genomic similarity to the anterior
19 hippocampus, whereas the cerebellum and posterio-dorsal cortical regions
20 demonstrated greater similarity to the posterior hippocampus (Fig. 3, 4A).

a1 2.4. Specific gene expression patterns inform interactions between the hip-
202 pocampus and dissociated hippocampo-cortical systems

203 The anterior and posterior hippocampus each exhibit a distinct profile of
204 anatomical connections in humans [1], which can also be represented using
205 resting-state functional connectivity [52]. Using logistic regression and the
206 HAGGIS, we identified coordinates to isolate the genomic posterior and an-
207 terior hippocampus (Supplementary Fig. S4A). We then used an open
28 database of resting-state functional connectivity information based on rsfMRI
200 scans from 1000 subjects to create an average voxelwise map representing the
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210 degree to which brain regions are functionally connected to the anterior vs.
an posterior hippocampus. Brain samples bearing a gene expression profile more
212 similar to the anterior hippocampus were also more functionally connected
213 to this substructure, while the opposite pattern was observed for samples
2e with gene expression profiles more similar to the posterior hippocampus (r?
25 = 0.170, Fig. 4A). A separate model was constructed in order to ascertain
26 the maximum (cross-validated) variance in differential connectivity explain-
27 able given the (genomic) data. This analysis revealed that, while HAGGIS
25 explained only 17% of the total model variance, it explained about 51% of
210 the variance explainable with the present genomic data (Fig. 4C).

220 The strength of this relationship differed depending on where along the
21 anterior-posterior axis the divisions were drawn, which parts of the brain
22 were included, and the size of the cube used to extract data around the
»3 sample coordinate (Supplementary Fig. S4C). The r? ranged from 0.111
24 (central split, cortical only mask, Imm cube diameter) to 0.304 (split at
»s anterior/poster extremes, mask excluding only brainstem and cerebellum,
»6 1lmm cube diameter), though in all cases the relationship was observed
»7 to be significantly greater than chance (95% CI of chance r* <0.004 for
»s all conditions; data not shown). The relationship between HAGGIS and
29 functional connectivity also varied slightly depending on the gene Set used
20 (Fig. 4B). Remarkably, prediction of functional connectivity by HAGGIS
an performed just as well when the HAGGIS was created using the smaller
22 Sets, with the highest values achieved when only the top 100 probes were
233 used.

234 A diverging pattern of structural covariance with the rest of the brain has
235 also been observed across the longitudinal axis of the hippocampus [39], per-
236 haps representing co-variation in cytoarchitecture. We used an open dataset
237 of 153 structural MRI images from young healthy controls to create a map
238 representing variation in structural covariance between the brain and the
23 anterior vs posterior hippocampus. The more similar a brain region’s gene
a0 expression patterns were to the anterior hippocampus, the greater the struc-
2 tural covariance was between that structure and the anterior hippocampus,
22 and vice versa for the posterior hippocampus (r* = 0.284; Fig. 4A). HAG-
23 GIS explained 62% of the variance explainable with the present genomic data
24 Fig. 4C). This relationship varied but remained strong across different brain
25 masks and gene sets (Fig. 4B).

246 To validate these finding without relying on an anterior-posterior split,
27 we utilized a previously validated data-driven approach [52, 36] to extract
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Figure 4: HAGGIS predicts hippocampus-brain relationships. (A) From top to bottom: The spatial
distribution of (smoothed) HAGGIS across samples, differential functional connectivity to the anterior vs
posterior hippocampus measured with rsfMRI (middle), differential structural covariance with the anterior
vs posterior hippocampus, differential vulnerability to AD or FTD measured with FDG-PET. Graphs on
the left visualize the relationship between these spatial patterns by comparing the HAGGIS of each sample
with the mean value from the respective map within a 5-voxel cube around the sample coordinate. B
Each of the above associations was re-calculated using three other brain masks, and using a HAGGIS
formed from each gene set identified in Section 2.2. The r? of each of these associations is visualized. C
Pie charts indicating the proportion of genomic and total variance explained by each model. Numbers
in parentheses indicate percentage of total genomic variance. D Genes involved in both the longitudinal
axis of the hippocampus, and hippocampus-brain interactions. All genes pictured are among the top
50 anterior (red; top) or posterior (blue; bottom) features of the hippocampus longitudinal axis model.
Each also participates in one or more hippocampus-brain interactions, indicated by the circles within the
Venn diagrams. FCX = Differential functional connectivity between anterior and posterior hippocampus;
SCX = Differential structural covariance between anterior and posterior hippocampus; DIS = Differential
vulnerability between AD and FTD
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25 the principal gradients of hippocampal functional connectivity and struc-
29 tural covariance with the rest of the brain, respectively. We then tested
0 the relationship between each gradient and the predicted location of each
»1 sample based on the HAGGIS (Supplementary Table S4). For struc-
2 tural covariance, the 1st gradient, explaining 24% of the total variance in
253 brain-hippocampus covariance, showed a strong correlation with HAGGIS
s (r?=0.41; Supplementary Fig. S4D). For functional connectivity, the 3rd
25 gradient, explaining 13.5% of the total variance of hippocampus-brain con-
s nectivity, also showed a strong relationships with HAGGIS (r?=0.40; Sup-
»7 plementary Fig. S4E). These findings were not contingent on the gene set
23 used to calculate the HAGGIS (Supplementary Fig. S4F).

w0 2.5. Variation in genomic signature predicts regional vulnerability to neu-
260 rodegenerative disease

261 The anterior and posterior hippocampus are also differentially involved
22 in disparate neurodegenerative diseases [29], particularly Alzheimer’s disease
23 (AD) and frontotemporal dementia (FTD) [44, 28, 33]. We acquired fluo-
26 rodeoxyglucose (FDG) PET scans measuring glucose metabolism, a measure
x5 of neuronal health and degeneration, from patients diagnosed in a tertiary
%6 memory clinic as having AD or FTD. We used these scans to create a sta-
»7  tistical map representing the relative patterns of neurodegeneration in AD
e vs. FTD. We found that samples with greater genomic similarity to the an-
x0 terior hippocampus also showed greater hypometabolism in FTD compared
a0 to AD, whereas samples more similar to the posterior hippocampus showed
on greater hypometabolism in AD compared to FTD (r? = 0.118; Fig. 4A).
a2z HAGGIS explained about 21% of the variance explainable given the present
23 genomic information (Fig. 4C). This relationship also varied depending on
o the regions included and cube size, with r? ranging from 0.095 (whole-brain,
zs 1mm cube diameter) to 0.153 (cortex-only mask, 11mm cube diameter, Sup-
zs plementary Fig. S6), but remained greater than chance in all cases (data
27 not shown). Notably, and unlike previous analyses, the relationship between
s HAGGIS and regional disease vulnerability was not observed when restricting
2o the HAGGIS to the top 100 probes (Set 1) (Fig. 4B).

w0 2.6. Specific genes link longitudinal axis to connectivity and vulnerability pat-
281 terns

282 In order to highlight specific genes that may be involved in both main-
283 tenance of the longitudinal axis and hippocampus-brain interaction, we con-
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284 structed independent models to learn the genomic profile of the maps from
s Fig. 4A and compared the top 100 features from these models to the longi-
266 tudinal axis model. The proportion of overlap between the top 100 features
257 of each model with the top 100 features from the hippocampus longitudinal
23 axis model far exceeded chance (Functional: 20%; Structural: 21%; Disease:
20 11%). Overlapping genes from each model, stratified by involvement in ante-
200 TiOr Or posterior hippocampus, can be found in Fig. 4D. Interestingly, some
21 genes were involved in multiple systems. For example, PVALB, specifically
22 expressed in the posterior hippocampus, was also highly expressed in brain
203 regions functionally connected and structurally covarying with the poste-
204 TiOr hippocampus, as well as in regions specifically vulnerable to Alzheimer’s
205 disease. Additionally, anterior hippocampus gene GABRQ was also highly
206 expressed in regions both structurally covarying with the anterior hippocam-
207 pus and those vulnerable to frontotemporal dementia.

208 2.7. Variation in genomic signature predicts involvement in distributed cog-
209 nitive networks

300 The posterior and anterior hippocampus are implicated in distinct aspects
;0 of memory and cognition [52, 10, 14, 16]. We explored whether regions shar-
2 ing genomic similarity to the posterior or anterior hippocampus were more
303 likely to participate in cognitive networks proposed to involve those substruc-
sa  tures. We downloaded 100 meta-analytic functional coactivation maps from
ss  the Neurosynth database, each composed from between 91 and 4201 task-
w06 based functional MRI activation studies, and each of which was paired with
w7 a set of related cognitive/behavioral topics. These topic/map pairs repre-
w8 sent greater-than-chance regional functional coactivation patterns reported
300 consistently in studies sharing words from certain related topic-sets in the
si0 publication text. These maps can therefore be thought to represent specific
su  region-sets involved in distributed cognitive networks. We calculated the
sz mean HAGGIS of samples falling within each cognitive map, with higher
a1z positive values indicating greater genomic covariance between the regions
s covered by that coactivation map and the anterior hippocampus, and lower
a5 negative values representing greater genomic covariance with the posterior
316 hippocampus.

317 Using a conservative approach (only including maps with at least 500
ug  overlapping samples: 29 maps; minimum map size: 36,622 voxels), we ob-
a9 served a pattern largely consistent with previous hypotheses of hippocampal
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Figure 5: Variation in genomic signature predicts involvement in distributed cognitive networks. (Top)
Maps were downloaded from neurosynth representing greater than chance meta-analytic functional acti-
vation in studies with different topic-sets mentioned in their abstract. Mean HAGGIS (represented by
bars) was calculated for samples inside maps encompassing >500 samples (visualized either directly above
or directly below each bar). Error bars represent SEM. Topic hypothesized to belong to the AT or PM
system are shown in red and blue respectively. A word cloud summarizing the regions and topics most
associated with the genomic signal of the anterior (red) and posterior (blue) hippocampus
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20 involvement in different cognitive systems [44] (Fig. 5). As we hypothe-
s sized, regions that expressed a gene expression profile more consistent with
22 the anterior hippocampus tended to be those involved in social and emotional
w3 cognition, but also included maps associated with reward and conditioning,
24 among others. Also consistent with our hypotheses, cognitive networks more
15 genomically similar to the posterior hippocampus were associated with spa-
w6 tial cognition, imagination and mental simulation, but also included maps
27 associated with visualization, working memory and movement/action. In-
w8 terestingly, maps associated with episodic memory and physical stimulation
29 slightly favored the anterior hippocampus, or were not strongly associated
;30 with either posterior or anterior hippocampus. These patterns remained re-
s markably similar when repeating the analysis with only probes from Set 1,
32 representing the top 100 probes in our model (Supplementary Fig. S5).

333 3. Discussion

334 The hippocampus plays a central role in many systems that regulate be-
15 havioral processes across several species, and that are dysregulated in several
136 human neuropsychiatric diseases. The contribution of the hippocampus to
;37 many of these systems is grossly organized across its longitudinal atlas. Char-
18 acterizing the molecular properties of this axis may be vital to understand-
539 ing how gene expression networks regulate macroscopic brain networks. We
s show that the anterior-posterior position of a tissue sample extracted from
s the human hippocampus can be predicted with remarkable accuracy using
w2 the expression pattern of only a handful of genes. Further, we find genomic
sz representation of the anterior-posterior gradient projected across the entire
ss  brain, and that this representation partially explains relationships between
us  the hippocampus and dissociated hippocampo-cortical systems. The ante-
us rior hippocampus shares genomic patterning with a system encompassing
w7 the medial prefrontal cortex, anterior temporal lobe and the brainstem. In
us  general, these regions showed greater functional connectivity and structural
uo covariance with the anterior than the posterior hippocampus, greater vul-
30 nerability to FTD than to AD, and more frequent involvement in cognitive
351 tasks involving motivation/conditioning, social and emotional cognition and
2 semantic knowledge. The posterior hippocampus, in contrast, shared a ge-
33 nomic pattern with the cerebellum, and occipital, parietal and motor and
s pre-motor cortex. These regions generally showed greater connectivity and
55 structural covariance with the posterior than anterior hippocampus, more
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356 vulnerability to AD than FTD, and were more likely to participate in cogni-
7 tive tasks involving spatial representation, visual processing, working mem-
s ory and simulation. These results confirm and extend findings across species
30 and sub-disciplines of neuroscience to suggest shared gene expression patterns
w0 underlying a well-described dissociation of anterior vs posterior hippocam-
1 pal involvement in cognitive brain networks. Further, the findings support
2 the existence of a specific axis of organization in the human brain, where an
33 anterior-ventral - posterior-dorsal gradient explains regional involvement in
sa  diverse behaviors, underscored by a specific pattern of gene expression. These
s findings together form a template for studying how specific genes may reg-
w6 Ulate the development of dissociated hippocampal connectivity networks in
s humans and their involvement in specific behaviors and, potentially, specific
w8 diseases.

369 Our results support an existing concept of molecular gradients in the
w0 cerebral cortex [11, 36, 21]. The anterior-ventral - posterior-dorsal pattern
sn observed in our data is reminiscent of a general anterior-posterior molecular
w2 gradient previously observed in the Allen Human Brain Atlas dataset [26, 21].
w3 [21] reviews qualities of this gradient, including a pattern of neuronal orga-
s nization where, as one moves caudally to rostrally, neuron and arbor size
ss  increase while neuronal number and density decrease. Perhaps related, a
s “‘dual origin” hypothesis has been proposed suggesting the cerebral cortex
sz has developed radially from certain phylogenetically conserved limbic struc-
sis tures over the course of evolution. This hypothesis describes a ventral system
s emanating from the perirhinal and amygdalar cortex that is involved in se-
;0 mantic identification of a stimulus and motivated behavior, while a dorsal
s1 system has evolved from the hippocampus and parahippocampal cortex to co-
s2 ordinate spatial representation and coordinated action [23]. The hypothesis
;83 18 supported by evidence from comparative cytoarchitectonics and connectiv-
;s ity patterns across species. The AT/PM hypothesis [44] provides yet another
s example of opposing cortical systems loosely following an anterior-posterior
;s organization and determining patterns of brain organization. Each of these
37 models originated from a different field of inquiry (gene expression, cortical
;s evolution, memory network organization), but the models converge in many
;9 respects, and a microcosm of this shared framework seems to be represented
20 along the longitudinal axis of the hippocampus — explicitly so in the AT /PM
s and dual origin models. Our results generally support the premise that the
;2 hippocampus participates in two distinct macroscopic networks characterized
53 by distinct structural covariance, functional connectivity, behavioral domain
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s specificity and disease vulnerability, and that participation in these networks
35 can be predicted by position along the longitudinal axis. However, we take
36 this framework one step further to suggest these two distinct networks are
37 composed of one single gradient of gene expression that may be underlying
38 their systemic distinctions.

399 While our initial model utilized the expression patterns of nearly 60,000
wo Pprobes corresponding to over 20,000 genes, the model favored a much smaller
w1 profile of probes to describe the longitudinal axis of the human hippocampus.
w2 When isolating a small set of only 100 probes, we were able to successfully
w3 predict the location of samples along the longitudinal atlas with less than
w2 mm error, as well as interactions between the hippocampus and the spe-
ws cific brain systems. The set was enriched with genes associated with, in
w6 particular, anatomical structure morphogenesis and cellular growth, suggest-
w7 ing genes within this set may be involved in coordinating and/or maintain-
w8 ing the anatomical variation of the hippocampus along its longitudinal axis.
a0 Whether these genes are also partially responsible for the functional variation
a0 along the axis remains unclear, though it is notable that similar expression
a1 patterns of these 100 genes can be observed in other brain regions that in-
a2 teract with the hippocampus. In particular, we identified several specific
a3 genes that appear to be involved in coordinating both the longitudinal axis
a1a of the hippocampus and one or more aspects of the hippocampus-associated
a5 distributed brain networks. A number of these genes (PVALB, GAL, ONE-
sns CUT2, PIRT, TNNT2, RSPH9, COL5A2, CTXN3) have been reported in
a7 previous studies examining genes regulating functional network organization
ss [47, 54]. The shared gene expression across disparate regions may be re-
no lated to shared anatomical characteristics (e.g.[3, 45, 48]), and examining
20 the contribution of genes across these different network properties (struc-
a1 ture, function, disease vulnerability) may lead to a clearer picture of the role
a2 various proteins play in overall network organization.

423 Many of the genes identified in our study have also been described in
w20 previous studies characterizing the dorsal and ventral subdivisions and lon-
w5 gitudinal gradients of the rodent hippocampus (e.g. [31, 51, 29, 46, 15]).
w6 This suggests a fair degree of homology between rodents and human in the
227 distribution of proteins along the longitudinal axis of the hippocampus, and
»s perhaps in the development and maintenance of the axis itself. However,
w20 many previously undocumented proteins were also identified, and replication
a0 and comparative studies will be required to disentangle whether these candi-
a1 date genes are truly unique to humans or a result of small sample sizes and
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a2 differing methodologies.

433 The most important genes identified in our model can be interpreted as
14 the most central genes in the hippocampal gene expression network(s) most
s associated with position along the longitudinal axis of the hippocampus. We
a6 cannot infer which genes are causally related to axis formation and main-
7 tenance and, as weights from backward regression problems are notoriously
s hard to interpret [25], even identifying the most important among a set of
a0 genes is challenging. Being aware of these limitations, we identified NR2F2
a0 (also called COUP-TFII) and RSPH9 to be particularly important in local
a1 prediction of sample location along the axis. This likely suggests that these
a2 two genes demonstrated the cleanest and most consistent linear gradient in
w3 expression across the longitudinal axis among those assessed (which can be
aas visually appreciated by the surface plots of expression levels of these genes
ws across the hippocampus in Fig. 2D). The pattern of expression we observed
ws  here mirror descriptions of other studies of NR2F2 expression in the rodent
«r hippocampus [22], as well as more macroscopically in the human brain during
us  development, particularly in the temporal lobes [4]. NR2F2 is also key in the
1o determination of cell fate in numerous circumstances [32, 27], including that
s0  of interneurons expressing PVALB (parvalbumin) or SST (somatostatin),
s where NR2F2 promotes SST and represses PVALB [27]. These findings are
2 highly consistent with the expression of PVALB (expressed posteriorly) and
i3 SSTRI (expressed anteriorly with NR2F2) in our data (Table 1). For its part,
s RSPHO is part of the structure of primary cilia, which can be found within
»ss  ependymal cells lining the ventricles, as well as in the CA1 subfield of the hip-
s6 pocampus and adjacent choroid plexus [56]. There is evidence that these cilia
w7 can promote neurogenesis in the hippocampus through mediating expression
sss  of SHH (sonic hedgehog) [9], a protein implicated in anterior-posterior pat-
s0  tern formation, and identified as a possible protein of importance in our
w0 data by the presence of HHIP (hedgehog-interacting protein) among the top
w1 100 anterior-posterior associated genes (Table 1). The expression patterns
w2 of RSPHY in our data may signal the presence of a specific pattern of cilia,
w3 which may help regulate the longitudinal axis of the hippocampus through
s hedgehog signaling. Both NR2F2 and RSPH9 have been identified as role-
45 players in human functional network organization [47, 54].

466 The longitudinal axis of the hippocampus provides many clues about the
w7 development and characterization of different behavioral systems, which may
w8 be particularly important when it comes to understanding diseases character-
wo ized by selective dysfunction of these systems. Understanding the molecular
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a0 components that maintain vulnerable systems may go a long way in learn-
an  ing which components are responsible when the system begins to fail. Data
a2 from multiple studies support a specific role for the longitudinal axis of the
w3 hippocampus in AD and FTD [28, 33]. Our data support this notion, sug-
aa - gesting that regions more vulnerable to FTD than AD share a more similar
a5 molecular profile to the anterior than posterior hippocampus, and that the
a6 opposite pattern was observed for regions more vulnerable to AD than FTD.
a7 It is tempting to wonder whether the same genes that coordinate the devel-
s opment of systems also incidentally contribute to the degeneration of these
a0 systems over time, a possible example of antagonistic pleiotropy. For ex-
w0 ample, among the top 100 anterior-posterior associated genes identified in
i1 our model were several genes known to interact with amyloid- protein, the
w2 primary pathologic hallmark of AD, many of them specifically associated
.3 with the posterior hippocampus in our data. For example, TTR has been
s shown to bind amyloid-8 aggregates in a chaperone-like manner [12], and
ss  TTR mutations have been associated with hippocampal atrophy in aging
s humans [17]. NTNI1 interacts with the amyloid precursor protein (APP) and
w7 has been described as a key regulator of amyloid-/ production [43, 34]. Much
s less is known about the molecular properties of FTD, but it was interesting
s to see the KLK7 gene among the top anterior hippocampus-associated genes
w0 (Table 1), as the KLK7 protein and other kallikreins have been found to
s be reduced in the CSF of FTD patients [18]. Although little can be ex-
w2 trapolated from our data about the potentially dissociated role of specific
w03 proteins in AD and FTD, we provide evidence for distinct molecular proper-
w0 ties that characterize the dissociated hippocampo-cortical systems vulnerable
w5 to each of these two diseases. The implicated genes and proteins may provide
w6 promising candidates for more targeted studies of their role in disease-specific
w7 neurodegeneration.

a8 3.1. Limitations

499 Our study comes with a number of important limitations that must be
so0 addressed. The single greatest limitation of our study is that our gene ex-
so0  pression data comes from a limited number of samples taken from only six
s2  donors who differed in age, sex and ethnicity. We partially addressed this
s03 issue by statistically removing donor effects from our gene expression data
sa and performing leave-one-donor-out analyses, but in doing so, assume cer-
sos tain aspects of gene expression should be fairly consistent across individuals.
so6 Some confidence is inspired by the fact that, in spite of these limitations, we
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sor  were able to replicate findings from rodent studies. We also tried to circum-
sos vent this issue by showing that relationships linked to our primary findings
so0  hold in several other independent datasets. Another major limitation is a
s reliance on specific coordinates of samples reported at time of autopsy, trans-
su lated to single-subject MRI space, and then normalized to a common subject
sz space. While we took measures to improve the quality of the normalization
513 t0 common space, we cannot rule out noise introduced during any of these
s steps. Our analysis of gene expression gradients along the hippocampal lon-
si5 gitudinal axis is particularly sensitive to these issues because it relies on the
si6  exact coordinates of the samples extracted. Once again, we were able to
si7 replicate findings from other studies, but it is possible that the importance
si8 of some proteins to our model could have been affected. As discussed previ-
s19  ously, another limitation is related to our attempts to extrapolate biological
s20 importance from machine learning models. While we took many steps to
sa1 try to test the stability of weights in our models, our interpretations remain
52 somewhat speculative and must be replicated in more focused studies. A re-
523 cent study suggested that, while the principal community structure of mouse
s« hippocampal connectivity is organized across its longitudinal axis, higher
s resolution analysis suggests a more complex division of substructures dis-
s2 tributed across subfields [8]. We acknowledge that a simple linear gradient
s may not be sufficient to capture the full complexity of functional organization
s28  of the hippocampus, and that this complexity may be driving the variation
s20 in our predictions across different hippocampus subfields. Finally, a major
s30 limitation comes with the complexity of drawing conclusions across so many
s datasets, each of which are subject to variation based on methodological
sz processing. We tried to overcome this by primarily using open-access data
533 preprocessed beforehand by experts, and by making all of our data and code
su  freely available at https://github.com/illdopejake/HippocampusAP Axis so
s35 that other researchers can scrutinize, reproduce, and hopefully re-use our
s3 analyses.
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26 8. Online Methods

747 All data and analyses described in this manuscript are available online and

7s can be fully reproduced using exclusively open-access software, with (mostly

720 python) scripts and data provided at https://github.com/illdopejake/Hippocampus AP Axis.
70 All code and analyses are presented in a series of Jupyter notebooks at the

751 link provided. Supplementary Table S6 outlines which notebook contains the

72 analyses described in each Methods subsections detailed below. See Supple-

753 mentary Table S5 for a summary of datasets used.

754 8.1. Human gene expression data

755 Human gene expression data were downloaded from the Allen Human
75 Brain Atlas (http://human.brain-map.org, RRID: SCR_007416). A detailed
57 description of this dataset can be found elsewhere [50, 6]. Briefly, tissue
758 samples were extracted across both hemispheres of two human brain donors,
70 as well as the left hemisphere of four additional donors, totaling 3702 sam-
70 ples. Stereotaxic coordinates and MNI space coordinates are provided for
761 each sample. Each sample underwent microarray analysis and preprocessing
72 to quantify gene expression across 58,692 probes. This analysis provides an
763 estimate of the relative expression of different proteins (encoded by differ-
76¢ ent genes) within the tissue sample. While previous publications have used
s different strategies to reduce the number of probes (see [6] for review), due
766 tO assumptions associated with these strategies and the high-dimensionality
77 approach of our models, we opted to retain all 58,692 probes for analysis.
768 Importantly, the MNI coordinates originally supplied with the dataset did
70 not account for nonlinear deformations in transforming the donor MRIs in
70 native space to MNI space, and thus included a noticeable degree of error (i.e.
7 many samples mapped outside of the brain or their labeled brain regions) [6].
772 However, these coordinates have been meticulously reconstructed and trans-
73 formed accounting for nonlinear deformations (http://doi.org/10.5281/zenodo.2483290).
772 Moving forward, all mentions of MNI coordinates will refer to the Devenyi
775 coordinates.

776 Given the different ages, sexes and other characteristics, substantial dif-
777 ferences in gene expression are expected between donors. However, similar
77¢ to previous studies using this dataset, we were only interested in common
779 patterns of human gene expression for the present analyses, rather than inter-
780 individual differences. As such, all samples across the six donors were aggre-
71 gated, the effect of donor was removed from each probe using linear models
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72 (i.e. with dummy coded donor ID variables), and probe values were standard-
73 ized. Therefore, probe values represent gene expression normalized across all
s samples, with inter-individual differences removed.

785 Along with coordinates, each sample contains ground-truth information
76 about the specific brain sub-structure from which the sample originated, as
77 defined by the anatomist extracting the sample. To identify samples falling
7ss  within the hippocampus, we selected all samples with structure labels of CA1
o field, CA2 field, CA3 field, CA4 field, Subiculum and Dentate Gyrus, from
70 both the left and right hemispheres — 188 samples in total. 18 samples had
791 MNI coordinates more than 3mm outside of the hippocampal volume defined
792 below, leaving 170 hippocampal samples in total.

793 8.2. Identifying the longitudinal axis of the hippocampus

704 Many previous studies have explored differences between the dorsal and
05 ventral (or posterior and anterior) hippocampus, but such a system requires
96 an often arbitrary delineation between these two structures [20, 42]. To over-
797 come this limitation, we instead sought to quantify the longitudinal axis of
796 the hippocampus and observe changes in gene expression across this axis.
799 Such an approach would still capture gross differences in expression between
g0 anterior and posterior sites, but would also allow for detection of more com-
so1  plex gradients. Notably, the hippocampus curves dorsally and medially, so a
sz straight line may not be appropriate for defining its longitudinal structure.

803 The objective is to identify a curved path that follows the center of mass
sos Of the hippocampus along its curvilinear shape (Fig. S1B). The initial hip-
g5 pocampus volume was defined as labels 9 and 19 from the Harvard-Oxford-
sos  sub-maxprob-thr25-1mm atlas derived from the MNI ICBM 152 average brain
sr template, supplied with FSL 5.0 ( RRID:SCR_002823). A “skeleton” of
sos the hippocampal volume was created from morphological operations (dila-
s00 tions/erosions) using the MINC Toolkit (version 1.0.08) (RRID:SCR_014138;
g0 http://bic-mni.github.io/#MINC-Tool-Kit). The hippocampus mask was re-
sn sampled to 0.5mm isotropic voxel size and a chamfer map was created, mea-
sz suring the distance from the border of the resampled hippocampus volume
s13 up to 10mm away. This chamfer map was binarized to create a large smooth
s1a blob around the hippocampal surface. An opposite chamfer map was created
s15  inside the blob, and the local minimum of the derivatives of this map were
s1s  computed in order to isolate the points at the greatest distance from the
g1z blob surface. This creates a “skeleton” following the curvilinear shape of the
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s1s  hippocampal volume, which was then masked with the original hippocampal
s10  volume. Finally, the skeleton was resampled back to Imm space.

820 Next, this hippocampal skeleton, in MNI space coordinates, was used to
g1 calculate the position of each hippocampus tissue sample along the longitu-
s22 dinal axis. For each sample, we identified the skeleton MNI coordinate with
23 the minimum projected distance to the sample’s MNI coordinate. The po-
¢ sition of the sample was then coded as the y-coordinate (anterior-posterior
s axis) of the closest skeleton voxel. This process effectively transforms all
226 sample coordinates along a single anterior-posterior dimension. (Fig. S1B).
g2z Note that, depending on location of the sample, the MNI y-coordinate of the
g8 sample may not share the same y-coordinate of the closest skeleton point.

s20  8.3. Identifying genes regulating the longitudinal axis of the human hippocam-
830 pus

831 We sought to identify which genes may play a significant role in the posi-
s tioning of samples along the longitudinal hippocampal axis. Sparse regression
s33 algorithms built for high dimensional datasets have been proposed, such as
su least-angle regression (LARS) and LASSO-LARS. However, during regular-
e3s ization, these algorithms will often select only one of a set of several collinear
s3s  variables and reduce the coefficient of the other variables in the set to zero. In
s37  the case of gene expression data, gene co-expression networks are of interest
s3s  to us, and we do not necessarily want to select one of a set of co-expressed
s genes. Therefore, we opted instead to use a LASSO-PCR approach [53, 30].
g0 Such an approach will reduce the dimensions of the data while preserving
a1 gene co-expression networks, yet still allow for a sparse selection of features.
842 In summary, we reduced our input data, a 170 (sample) x 58,692 (probe)
g3 matrix, using principle components analysis (PCA) with singular value de-
s composition. The resulting 170 (sample) x 170 (component score) matrix
s was used in a principal component regression (PCR) model (Fig. S1). Ap-
sas  proaches to PCR models typically reduce the number of independent vari-
g7 ables by removing the components whose eigenvalues fall below some thresh-
sas 0ld related to the percentage of variance explained. This does not account
sao  for potentially strong relationships between the dependent variable and mi-
sso nor components. Thus, we elected to use a Least Absolute Shrinkage and
s Selection Operator (LASSO) regression model with sample position along
g2 the longitudinal hippocampus axis (defined in the previous section) as the
53 dependent variable.
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854 In our regression model we have our standardized matrix of gene ex-
ess  pression data X, our measurements along the longitudinal axis Y, and the
sss model Y = X B + e. We wish to estimate the values of the matrix B =
57 [0, 51, -, Bp)T, where f3; is the estimated impact of probe i on longitudi-
sss nal position. Probes with larger impacts will have higher estimated values;
g0 negative values suggest greater expression in posterior compared to anterior
g0 hippocampus, and vice versa. Since there are a large number of regression pa-
g1 rameters, we use dimension reduction through PCA. We transform the data
s such that X7 X = PAPT = Z7Z where A is the diagonal matrix of eigenval-
s ues of X’X, Z is the matrix of principal components, and PTP = I. We are
sss  NOW interested in solving the principal component regression Y = Z A, where
ss the regression coefficients are stored in the matrix A and are the contribution
sss  Of principal components to position. We derive estimates of A using LASSO.
ssv 'The coeflicients of the two regression equations are related by the expressions
s A= PTBand B = PA, so we estimate B = PA, giving us the beta values
g0 Of the individual probes, which are in terms of the original probes.

870 There are limitations to this approach. Beginning with the full set of
g1 components can incidentally retain small components and make estimates of
sz beta coefficients unstable [30]. Interpretation of the components is challeng-
e ing, and here they were generated without the dependent variable (the mea-
se  surements along the anterior-posterior axes). At the theoretical level PCA
ers  can break down when there are many more variables than observations since
s the sample covariance eigenvectors may not be close to population eigenvec-
g7 tors [24] though empirical results here are positive and in concordance with
s previous results. Partial least squares (PLS) is a method related to PCR that
so accounts for the dependent variable and returned similar results (Figure S4).
880 To test the generalizability of the model, we employed several cross-
ss1  validation methods. First, we performed 10-fold cross-validation of the full
sz data set, which was repeated 10 times. Second, we performed a leave-one-
ss3  subfield-out cross-validation, to see if a model defined on five hippocampal
s subfields (CA1-4, subiculum, dentate gyrus) could predict the axis position
sss  Of samples from the sixth subfield. Finally, we performed leave-one-donor-
s out cross-validation to see if a model trained on samples from five donors
se7  could predict the axis positions of samples from the sixth donor. Note that
sss  the range of sample position was constrained by anatomy during the leave-
sso one-subfield-out cross-validation, and the number of samples varied quite
g0 dramatically across donors for the leave-one-donor-out validation. The fi-
so1  nal model used for all subsequent analyses utilized all samples. As a sanity
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s check, we calculated the mean of the fifty genes with the highest (anterior)
so3 and lowest (posterior) betas within each sample and measured the variance
sa  explained in sample position along the longitudinal axis by this average ex-
g5 pression signal.

ss  8.4. De-constructing model features to assess candidate genes responsible for
807 axis requlation

898 An advantage of the LASSO-PCR model is that it is more likely to iden-
oo tify several genes participating in a co-expression network rather than ar-
oo bitrarily identifying a single gene to represent that network. However, this
o1 also leads to a possible disadvantage related to reduced precision in singling
o2 out which genes, if any, are singularly important to the model. Addition-
o3 ally, the global feature importances of a LASSO model cannot be reliably
oa interpreted, as adding or removing features can cause feature importances
s to shuffle dramatically [25]. We attempted to de-construct our model with
s these limitations in mind. Fifty probes with, respectively, highest (anterior)
o7 and lowest (posterior) back-transformed weight (feature importance) were
ws iteratively removed from our model. After each removal of these 100 probes,
w0 the model was refit, 10-fold cross-validation (CV) accuracy was recorded,
a0 and the 100 top probes from the new model were removed. This process was
o repeated until all probes were removed. As a control, we repeated this same
o1z process iteratively removing 100 random probes instead of the 100 most im-
a3 portant probes. Change in CV accuracy across rounds of probe removal was
aia  visually assessed and inflection points were identified at rounds where CV
a5 accuracy dropped and did not recover. Rounds in between inflection points
a6 were considered stable, and probes removed between inflection points were
a7 grouped together in gene sets, analyzed separately in subsequent analysis.

018 To establish whether these gene sets alone could predict sample position
a9 along the longitudinal axis of the hippocampus, we reran the LASSO-PCR
o0 model with only the probes involved in these gene sets. Prediction accuracy
o1 was recorded using 10-fold cross-validation. The models were run ten times
o with bootstrap samples to attain confidence intervals. As a control analysis,
o3 models were run using sets of random probes the same size as each gene
o4 set, and this process was repeated 10 times for each set, each time using
os cross-validation to measure prediction accuracy. Finally, in order to compare
w6 larger gene sets to Set 1 — which contained only 100 probes — we extracted
o7 10 random sets of 100 genes from within each gene set and input these into
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ws the model, once again using 10-fold cross-validation to measure prediction
929 accuracy.

930 To further highlight candidate genes involved in hippocampal longitu-
a1 dinal axis regulation, we employed the Local Interpretable Model-Agnostic
o2 Explanations (LIME) python package (https://github.com/marcotcr/lime/).
a3 LIME makes local perturbations to model inputs and measures the impact
osa  of those perturbations on model performance. LIME can only assess local
i35 feature importance, however, by aggregating information across multiple lo-
a6 cal features, some limited information can be ascertained about contribution
o7 of features (probes) to predicting an outcome (sample position along the
o3 longitudinal axis). For each gene set identified, we performed 10-fold cross-
a9 validation with a Random Forest Regressor. A Random Forest Regressor
uo  was chosen because its metric of feature importances is itself assessed using
w1 out-of-sample prediction. For each fold, LIME was used to identify absolute
a2 feature importances for samples in the left-out fold, and this information was
us aggregated across all predictions from all folds. Elevated feature importance
as  could indicate importance of a probe across prediction of multiple samples, or
ws could indicate great importance across a limited set of predictions, meaning
wus interpretation is still limited.

wr  8.5. Characterization of gene sets using gene ontology enrichment analysis

048 Gene ontology (GO) enrichment analysis was used to characterize func-
us tions shared by several genes within gene sets. These analyses were performed
o0 using the online tool GOrilla ( RRID:SCR_006848; http://cbl-gorilla.cs.technion.ac.il/),
51 which identifies terms from the GO libraries that are associated with genes
o in the inputted gene set and are significantly (FDR < 0.1) enriched com-
i3 pared to a baseline gene set. We used the entire set of genes available in the
ssa  Allen Human Brain Atlas dataset as the baseline gene set. Altogether, the
sss  background set we entered included 29,381 distinct genes, 19,895 of which
ss6  were recognized by GOrilla. Of these, only 17,836 were associated with a GO
o7 term. We left all other parameters to their defaults. Some of the gene sets
sss  produced long lists of enriched terms. We summarized this information us-
ss0 ing hierarchical agglomerative clustering on the significantly enriched terms.
swo A binary gene x term matrix was created where a 1 indicated a gene was
w1 associated with a term. This matrix was fed to an Agglomerative clustering
o2 algorithm using Jaccard index with average linkage and pre-calculated con-
%3 nectivity constraints (10 neighbors), and the process was repeated varying
sa the number of clusters from 2-20. Local peaks in silhouette index were used
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ss to define the final cluster number, favoring a higher number of clusters for
ws better precision. The resulting clusters represented sets of genes sharing sev-
o7 eral associated terms. For gene Set 2 (top 101-600 most important probes
s to the model, see Section 2.2), peaks in Silhouette score were seen at k=2
oo (0.225), k=7 (0.132) and k=10 (0.128). We chose a 10-cluster solution. For
oo gene Set 3 (top 601-2700 probes, Section 2.2), peaks in Silhouette score were
o seen at k=2 (0.349), k=5 (0.173) and k=12 (0.093). We chose a 12-cluster
a2 solution. The purpose of this analysis was to cluster genes with enriched GO
o3 terms for purely descriptive purposes.

aia 8.6. Whole-brain genomic representation of the hippocampal longitudinal axis
o75 - HAGGIS formulation

o76 We sought to ascertain to what degree the specific pattern of genes regu-
o7 lating the hippocampal longitudinal axis was expressed throughout the rest
s of the brain. The probe weight (beta) vector from the LASSO-PCR analysis
oo can be thought of as a hippocampal longitudinal axis genomic signature. In
so order to test for the presence of this signature in other brain regions, we
o1 found the dot product between the beta vector (genomic axis signature) and
2 the gene expression (probe) vector for each sample (Fig. S1C). Note that
se3  when estimating regression coefficients we have:

B=(XTX)"'XxTy (1)

sa This is equivalent to using the estimates of coefficients from the LASSO-
ss PCR model to predict the location of the (non-hippocampal) sample along
ses the hippocampal axis. In practice, this amounts to using the hippocampus
se7 model to predict where a non-hippocampus sample might fall along the hip-
s pocampal longitudinal axis based on that sample’s gene expression. However,
w9 conceptually, this value can also offer an index of covariance between a given
w0 sample’s gene expression and the gene expression profile of the anterior or
o1 posterior hippocampus. Higher (positive) values represent greater genomic
02 covariance with the anterior hippocampus, while lower (negative) values rep-
w3 Tesent greater similarity to the posterior hippocampus. For the purposes of
oa parity, this index will be referred to in the text as the Hippocampal Axis
s Genomic Gradient Index of Similarity (HAGGIS) index.

we 8.7. Comparisons with resting-state functional connectivity

907 For each of the 170 hippocampal samples, a resting-state functional con-
s nectivity map was downloaded from Neurosynth (RRID:SCR_006798; http://neurosynth.org/)
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w9 using the closest available MNI coordinate to the MNI coordinate of the
woo sample. The Euclidian distance between Neurosynth coordinate and sample
wa  coordinate never exceeded 2mm. Each map is based on the resting-state
w02 functional connectivity patterns of 1000 young, healthy individuals from the
w3 Brain Genomics Superstruct project [55].

1004 We sought to test whether the genes regulating the longitudinal axis of
wos the hippocampus contribute to the differential brain connectivity observ-
s  able along this axis. The measurement resolution of resting-state functional
wer  magnetic resonance imaging (rsfMRI) limits detail at which differences in
ws connectivity can be observed along a structure as small as the hippocam-
we  pus. To ameliorate this issue, we divided the hippocampus into genomically-
o determined posterior and anterior subsections, created mean connectivity
o1 maps for each, and used these mean connectivity maps to create a subtrac-
012 tion image representing differential functional connectivity between the two
013 poles of the hippocampus [28]. To determine a reasonable division between
w4 anterior and posterior hippocampus, we created a split at every point along
s the hippocampus skeleton. For each split, we classified samples as anterior
s or posterior based on the position of the coordinate along the longitudinal
w17 axis relative to the split. For each split, we next ran Logistic Regression,
s entering sample class (i.e. anterior or posterior) as the dependent variable
o and sample HAGGIS as the only independent variable. We then plotted
w0 the classification accuracy at each split under the hypothesis that higher
w21 anterior-posterior classification accuracy would suggest a more empirically
022 sound anterior-posterior division (Fig S4A). We defined the optimal ante-
1023 tior and posterior cut points as i) local maxima in accuracy that ii) were at
1024 least 3mm from both hippocampal poles and iii) captured at least 20 samples
1025 for each side of the split. This lead to an anterior split point of y=108 (MNI:
w6 -19) and a posterior point of y = 94 (MNI: -35). All samples in between were
w2z removed. Results in the main text are reported using this split but, due to
s the somewhat arbitrary nature of this analysis, results are also reported for
w20 several other splits.

1030 Once the anterior and posterior samples had been defined, a mean image
i1 was made of the functional connectivity maps corresponding to each anterior
w2 and posterior sample, respectively. The posterior map was then subtracted
1033 from the anterior map. The resulting image represented relative functional
w34 connectivity to the anterior hippocampus over the posterior hippocampus.
s For each non-brainstem, non-cerebellum sample, a 5x5x5mm cube was drawn
w6 around the MNI coordinate of the sample. The mean of rsfmri subtraction
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7 image values within the cube was calculated, and this value was used as
s a measure of relative functional connectivity of the sample to the anterior
w3 over posterior hippocampus. Finally, we ran a Pearson’s correlation between
140 this functional connectivity measure and the HAGGIS. A positive correlation
wa  would indicate that brain regions with more genomic similarity to the anterior
w2 or posterior hippocampus would be more likely to be functionally connected
w3 to those regions, respectively. This analysis was performed using weights
104 from the model performed on the entire gene set, as well as weights from
s models defined on individual gene sets.

1046 We repeated this analysis using three other brain masks: i) All brain
07 Tegions; ii) All regions except cerebellum, brainstem and hippocampus; iii)
w  cerebral cortex only. In addition, we varied the radius of the cube drawn
1w around the sample coordinate between Imm and 6mm. For completeness,
w0 we performed the above analysis using each cube radius, with each mask,
w1 and using many different splits — a total of 336 analyses. To ensure the
052 relationships between HAGGIS and rsfMRI connectivity were not born out
w53 of chance, we performed a permutation test for each of the 336 conditions.
s+ Specifically, the gene expression values for each sample were randomly shuf-
s fled, and a correlation was run between the extracted rsfMRI connectivity
wss values and the shuffled gene expression values. This process was repeated
w7 1000 times to create a null distribution, to which the observed value was
s compared to establish an exact p-value.

1050 We performed one final validation by applying diffusion map embedding
wso  [36, 52] — a non-linear dimension reduction approach — to the hippocampal-
e brain functional connectivity matrix. This approach summarizes variation in
12 hippocamus-brain connectivity into components or “gradients” [52], allowing
ws3s threshold-free representations of variation in hippocampus-brain functional
wes connectivity for each tissue sample. The whole-brain connectivity maps for
s each sample (see above) were masked with a cortex-only mask (see above),
wes vectorized and concatenated into a Sample x Voxel matrix. A correlation
wez  matrix was created from the transpose, generating a Sample x Sample simi-
wes larity matrix, which was reduced using diffusion map embedding with default
weo  settings. We report the total variance in hippocampus-brain functional con-
w0 nectivity explained by each gradient, as well as the r? summarizing each
wn gradient’s relationship to sample location along the longitudinal axis, and
w2 predicted sample location based on gene expression (proportionate to HAG-
s GIS). We also report p-values, which are Bonferroni corrected for multiple
wa  comparisons. We then selected the gradient with the greatest relationship to
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s predicted sample location (i.e. HAGGIS), provided this relationship was sig-
we  nificantly stronger than that of other gradients, as measured using Steiger’s
wrr tests [52]. For these select gradients, we also report this information with
s sample location predicted using each of the gene Sets described above (Sec-
w070 tion 2.2, 84)

1080 Other studies have published examining genomic regulators of functional
st connectivity [47, 54], and so we sought to understand what proportion of the
02 variance explained from the main analysis (shown in Fig 4A) was unique to
g3 the HAGGIS rather than general network connectivity. We trained a cross-
s« validated PLS model to learn the genomic features predicting relative anterior
1055 VS posterior connectivity to the hippocampus (i.e. the map in Fig 4A; see
s subsection 8.10 below for details). We considered the 10-fold cross-validated
ws7  variance explained of this model to represent an estimate of the maximum
wss variance explainable given the present genomic data. We then represented
s the variance explained of HAGGIS as a proportion of the overall variance
o explainable given the genomic data (visualized in Fig 4C).

wi  8.8. Comparisons with structural covariance

1002 Structural covariance is thought to reflect shared cytoarchitecture and/or
i3 developmental and degenerative trajectories between regions [2]. The ante-
ww rior and posterior hippocampus have shown different patterns of structural
s covariance with the rest of the brain [39], and structural covariance appears
wes  to be genetically determined to some extent [2]. Accordingly, we assessed
w07 whether the differential structural covariance between different brain regions
s and the hippocampus along its longitudinal axis is reflected by patterns of
1000 Eenomic covariance.

1100 Structural covariance was calculated using the OASIS: Cross-Sectional
uo structural (T1) MRI dataset [35], accessed with Nilearn (RRID:SCR_001362;
uo2  https://nilearn.github.io/). The OASIS images came preprocessed using the
iz SPM DARTEL pipeline [7]. 153 preprocessed gray matter volume images
e were identified as healthy, cognitively normal young (age < 40) controls.
nos For each voxel corresponding to the MNI coordinates of an Allen Human
s Brain Atlas hippocampus sample, a structural covariance vector was calcu-
nor  lated between that voxel and all other brain voxels. Elements in the vector
nos represented Pearson correlation coefficients between voxel values across the
oo dataset of 153 individuals between the two regions. Anterior and posterior
mo hippocampus divisions identified in the previous analysis were used to divide
uun  the covariance vectors, and the average covariance within anterior vectors
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ui2 and posterior vectors were calculated, respectively. The difference between
ms  these vectors was calculated to create a map where each voxel contained
us  a value representing the relative structural covariance to the anterior over
uis  the posterior hippocampus. The values strongly favored the anterior hip-
me  pocampus, so the map was z-scored, such that lower values represented less
iz structural covariance to the anterior hippocampus. Relationships between
ms HAGGIS and relative structural covariance were carried out in a manner
uo identical to the functional connectivity analysis described above, and were
2 repeated using different gene sets and brain masks. Similar to the functional
uxn  connectivity analysis, we calculated the variance explained by HAGGIS as a
122 proportion of the maximum variance explainable given the data (see previous
123 subsection).

1124 As with the functional connectivity analysis, we used diffusion map em-
s bedding to generate threshold-free measures (gradients) summarizing hippocampus-
2 brain structural covariance. For each sample, we calculated structural co-
2 variance between the voxel at the sample location and all other voxels falling
ms  within in a cortical mask, creating covariance vectors. These vectors were
2 concatenated into a Sample x Voxel matrix, and reduced using diffusion map
u embedding as described above (Section 8.7).

un 8.9. Comparisons with neurodegeneration in Alzheimer’s disease and fron-
1132 totemporal dementia

1133 Previous studies have noted the differential relationship of the hippocam-
us  pus to Alzheimer’s disease (AD) and frontotemporal dementia (FTD). We
s tested whether regions more genomically similar to the anterior than poste-
ms  rior hippocampus might be more vulnerable to neurodegeneration in FTD
uy than in AD (and vice versa). In April 2018, we queried our database look-
uss  ing for patients who fulfilled the following criteria: i) Had available both a
n  [M'C] Pittsburgh Compound B (PiB)-PET scan for S-amyloid and a ['*F]
s Fluorodeoxyglucose (FDG)-PET scan of brain glucose metabolism acquired
ua on the Biograph scanner; ii) Had either a clinical diagnosis of AD [37] and
e a positive PIB-PET read, or a clinical diagnosis of FTD (either behavioral
nas variant F'TD or semantic variant primary progressive aphasia, as described
uas in [38]) and a negative PIB-PET read. Note that This query resulted in 36
us AD and 39 FTD patients. Five patients were later excluded because of in-
ws complete FDG-PET SUVR (missing at least one of the 6 frames between 30
ez and 60 min post-injection), resulting in a final count of 35 AD and 35 FTD

37


https://doi.org/10.1101/587071
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/587071; this version posted March 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

AD FTD Test
Age at FDG: Cohen’s d = 0.07, p(t-test)=0.79,
rgnean (sd) 62.0 (8.8) 614 (8.7) p(MannWhitr?e(y):Q;Q
Females: n (%) 12 (34%) 19 (54%) Fisher exact p=0.15
Years of education: Cohen’s d = 0.04, p(t-test)=0.88,
mean (sd) 161 (2.9) 16.3 (4.7) p(MannWhitney)=0.81
Dementia stage . .
(CDR>1) n (%) 22 (63%) 17 (49%) Fisher exact p=0.34

Cohen’s d = 0.25, p(t-test)=0.30,

CDR-SoB: mean (sd) 4.8 (1.9) 4.2 (3.2) p(MannWhitney)—0.31

Table 2: FDG = fluorodeoxyglucose; sd = standard deviation; CDR = Clinical Dementia Rating; CDR-
SoB = Clinical Dementia Rating, Sum of Boxes

s patients. Demographic information can be found in Table 2. Note there is
s N0 overlap between this sample and the sample described in [28].

1150 All patients were seen at the at University of California, San Francisco
usi Memory Aging Center and imaged at the Lawrence Berkeley National Labs.
us2 PET acquisition details can be found elsewhere [40]. FDG-PET images were
us3 processed using SPM12 using a previously described pipeline [40]. Briefly,
uss  six five-minute frames were realigned and averaged, and the average image
uss  was coregistered onto patient specific anatomical T1-MRI scans. Standard
uss  uptake value ratios (SUVR) were calculated using the pons (Freesurfer seg-
us7 mentation of the brainstem with manual cleaning) as a reference region, and
uss SUVR images were warped to the MNI template using MRI-derived param-
uso eters. All 70 patients were entered into a voxelwise t-test controlling for
s age and disease severity (Clinical Dementia Rating Sum of Boxes score) us-
uet  ing SPM12; highlighting differences in glucose hypometabolism (a proxy for
e neurodegeneration) between AD and FTD patients. The t-map from this
ues analysis was used for subsequent analyses, and is made available with this
ues  publication (https://neurovault.org/collections/4756/).

1165 For each non-brainstem, non-cerebellar sample, a 5mm diameter cube
ues was drawn around the sample’s MNI coordinates, and the mean t-value from
uer the t-map described above was extracted. This value represents the relative
ues neurodegeneration in FTD over AD in or around the region the sample was
ues extracted from. Across samples, a correlation was calculated between this
uno value and the sample’s HAGGIS. A positive correlation would suggest regions
un  more genomically similar to the anterior than the posterior hippocampus are
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uz  more vulnerable to neurodegeneration in FTD than in AD. To ensure our
urs  findings were not specific to the brainmask used or the size of the extraction
ua  cube, we reran the analysis using each of the three additional masks described
urs  in Section 8.7, as well as varying the diameter of the extraction cube. Finally,
uzs  permutation tests were run for each condition to compare our observations
urr to chance (see Section 8.7). As with the previous analyses, we ran these sets
s of analyses across different gene sets.

ure  8.10. Identifying candidate genomic requlators of brain-hippocampus interac-
1180 tions

1181 In sections 8.7, 8.8 and 8.9, we describe methods to uncover relationships
usz  between HAGGIS and hippocampus-brain interactions. We wished to iden-
uss  tify which specific genes were principally involved both in the organization
uss  of the longitudinal axis of the hippocampus, as well as in the hippocampus-
uss brain interactions, further elucidating the role of the various genes identi-
uss fied in section 8.4 along the axis. For each hippocampus-brain interaction
gz map (visualized in Fig. 4A), we fit a partial least squares (PLS) regression
uss model with gene expression information as X and hippocampus-brain inter-
uss action value as Y, across all brain samples. As with the model described in
oo section 8.3, the X input was first transformed using principal components
noa  analysis and represented as a set of genomic components. The model was fit
uee  varying the number of PLS components (i.e. modes) between 1 and 10, and
no3  using 10-fold cross-validation to assess model accuracy. The model with the
nes highest cross-validated explained variance was selected as the best model, and
nes  was considered the maximum explainable variance given the genomic data
nos available, which was therefore useful to compare to the HAGGIS models
uer  (see section 8.7 above). Note that the hippocampus itself was not included
nes in any of the models. For each of the three PLS models, feature weights
e were backtransformed back into probe space (see section 8.3), and the top 50
100 anterior and posterior associated features (i.e. with the highest and lowest
o weights) were identified. Overlapping features between each model and the
o2 hippocampus longitudinal axis model are reported. These features represent
23 genes that appear to be very important in predicting the location of tissue
120« samples in the hippocampus, but also in predicting interactions between the
1z0s  hippocampus and other brain regions. To ensure this overlap did not occur
1206 by chance, 1000 sets of 100 random probes were generated, and used to cal-
o7 culate the probability of overlap between 100 random features and the 100
s features from the the hippocampus longitudinal axis model.
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o 8.11. Comparisons with large-scale cognitive systems

1210 The Neurosynth website contains 3D meta-analytic functional co-activation
n maps from task-fMRI studies that are paired with sets of related topics
iz (words) extracted from the text of these studies. These topic-list/co-activation
1213 map pairs are the result of a Latent-Dirichlet Allocation across 11,406 arti-
i cles, the details of which can be found elsewhere [41]. In short, topic lists
1215 represent words that are mentioned greater than chance (FDR<0.01) in pa-
216 pers reporting functional co-activation in given coordinates, summarized by
i paired co-activation maps. All 100 (association/reverse inference) maps from
s the set of 100 topic list/co-activation map pairs on the Neurosynth website
1219 were downloaded and binarized such that all values above 0 were set to 1, and
1220 all other values were set to 0. We manually labeled the topics according to
121 their hypothesized association with the AT-PM system [44] based on the con-
122 tent of the word list (AT/PM/Not associated) but without reference to the
1223 spatial pattern of the co-activation. For each of the 100 binarized functional
1224 meta-analytic co-activation maps, all samples with MNI coordinates falling
1225 within the map were identified, and the mean HAGGIS of those samples was
126 calculated. Therefore, each topic/map pair had an associated value indicat-
1227 ing the degree to which the brain regions involved expressed genes similar to
1228 the anterior or posterior hippocampus. Higher values represented similarity
1220 to the anterior hippocampus, lower values to the posterior hippocampus, and
1230 higher absolute values represented greater genomic covariance. To increase
n confidence in this approach, the main analyses were restricted only to maps
1w overlapping with at least 500 samples (29/100).

1233 To help visualize these results, we created a word cloud summarizing
11 both the spatial (functional coactiviation) and topic (cognitive) information
1235 associated with the anterior and posterior hippocampus respectively. For the
1236 topic information, each topic-set contained 40 words arranged by importance
1237 to the topic-set. Each word was given a value proportionate to its impor-
1238 tance rank in its topic set (i.e. most important word valued at 40, least
13 important at 1). Next, the value of each word was multiplied by the average
120 HAGGIS within the binarized map paired to the word’s topic-set (i.e. the
e bars in Fig 5), multiplied by 1000 to increase the weighting of this multiplier
1242 proportionate to the within-set ranking. Therefore, each word had an asso-
1243 clated value, such that the highest values represented words most important
124 10 topic/map pairs with the greatest HAGGIS, where multiple mentions in-
1245 creased the value of the word. To summarize the spatial information, we
1246 binarized each map and multiplied it by the average HAGGIS within the
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127 binarized map (i.e. the bars in Fig 5), and summed all maps, and smoothed
1248 the image with a 4mm isotropic kernel. All voxels with positive values were
1240 binarized into a mask, and this mask was used as constraint for the anterior-
1so  hippocampus word cloud, inside which the top 100 words were visualized. All
ps1 voxels with negative values were binarized into a posterior mask used as a
sz constraint for the posterior-hippocampus word cloud. The word values were
153 repeated inverting the HAGGIS multipliers, and the top 100 words were vi-
s sualized. The final image represents brain regions coactivated more with the
1ss  anterior vs posterior hippocampus, and the cognitive topics most associated
se  with those regions.

sz 9. Supplementary Figures
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Supplementary Fig. S1: LASSO-PCR pipeline to predict the position of a tissue sample along the lon-
gitudinal axis of the hippocampus using gene expression. (A) The 170 (Sample) x 58,692 (probe) gene
expression matrix was first reduced using principal components analysis (PCA), such that each sample
had a singular value representing the loading onto each principal component. The principal component
matrix was used as the predictor (X) variable in the LASSO-PCR model. (B) The longitudinal axis of
the hippocampus was defined with a medial axis transform: 1) We start with a mask of the hippocampus,
which is resampled to 0.5mm space. 2) The mask is dilated by creating a chamfer map measuring distance
from the center of the hippocampus, extending out 10mm into a smooth hippocampus-shaped blob. 3)
An inverse chamfer map was created inside the blob, local minimum of the derivatives of this map were
computed. 4) These operations resulted in a hippocampus “skeleton”. 5) For each tissue sample (orange),
the closest hippocampus skeleton voxel (blue) was located, and the y-axis of this coordinate was used
as the position of the sample along the longitudinal axis, which was used as the dependent variable (Y).
(C) A sparse LASSO regression model fit the (reduced) gene expression data to position along the atlas,
with ten rounds of 10-fold cross-validation. Model weights were back-transformed to probe space. The
back-transformed weights were applied to the gene expression vectors of non-hippocampus samples to
the derive the HAGGIS, indicating genomic similarity to the anterior (positive) or posterior (negative)
hippocampus.
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Supplementary Fig. S2: Feature-explainer applied to different gene sets. The Random-Forest based feature
explainer was applied to different combinations of gene sets associated with position along the longitudinal
axis of the hippocampus. For each plot, the y-axis represents local feature importance, indicating the
degree to which, on average, perturbing the feature (probe) impacts individual model predictions. NR2F2
and RSPHY consistently demonstrated the greatest importance when included in the model. Compared
to Set 1, feature explainers identified more features with less importance for Sets 2 and 3.
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Supplementary Fig. S3: Validating results with PLSR. To ensure previous findings were not a product
of algorithm choice, PLSR was fit to the gene expression data in order to predict position along the
longitudinal axis of the hippocampus. A 10-fold cross-validation suggested nine as the optimal number of
components. B Fitting the PLSR model to the data resulted in a similar r2 as the LASSO-PCR approach.
C The weights from the LASSO-PCR and PLSR models were highly correlated.
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Supplementary Fig. S4: Validation of rsfMRI connectivity results. (A) An anterior-posterior split of
the hippocampus was made at every y-coordinate along the hippocampal axis, and a Logistic Regression
with HAGGIS was performed to classify anterior from posterior hippocampus. Accuracy at each split is
visualized. The coordinates of the final split used for the analysis in the main text are indicated with
red dashed lines. (B) The analysis was performed across several additional splits, indicated on the x-
axis. The number of anterior and posterior samples included after each split are shown in orange and
blue, respectively. The splits move from more extreme to more central as the x-axis moves from left to
right. C The rsfmri analysis was repeated varying the radius of the extraction cube, the brain mask, and
the anterior/posterior split. The r? of the correlation between HAGGIS and functional connectivity for
each condition is shown. Diffusion map embedding was used to summarize principal axes of whole-brain
functional connectivity (D) and structural covariance (E). Select gradients are correlated with the gene
expression pattern predicting longitudinal axis location. The gradients are rendered onto a hippocampus
surface, and expression of the gradient in whole-brain connectivity/covariance patterns is visualized. F
The r2 of relationships shown in C and D where the gene expression pattern is composed of different gene
sets.
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Supplementary Fig. S5: Cognitive meta-analysis when using all probes vs. top 100 probes. On the left is
a vertical reproduction of Fig 4F. On the right is the results of the exact same analysis, except calculating
the HAGGIS using only the top 100 probes, rather than all 58,692 probes. The pattern is remarkably
similar, especially as pertaining to the topics associated with the AT/PM system.
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Supplementary Fig. S6: Validation of FDG neurodegeneration results. The analysis comparing HAGGIS
to relative neurodegeneration in AD vs FTD was repeated using different extraction cube sizes and different
brain masks. The r2 for each condition is visualized
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