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Abstract

The functional organization of the hippocampus is distributed as a gradi-
ent along its longitudinal axis that explains its differential interaction with
diverse brain systems. We show that the location of human tissue samples
extracted along the longitudinal axis of the hippocampus can be predicted
within 2mm using the expression pattern of less than 100 genes. When
variation in this specific gene expression pattern was observed across the
whole brain, a distinct anterioventral-posteriodorsal gradient was observed.
Frontal, anterior temporal and brainstem regions involved in social and mo-
tivational behaviors, selectively vulnerable to frontotemporal dementia and
more functionally connected to the anterior hippocampus could be clearly
differentiated from posterior parieto-occipital and cerebellar regions involved
in spatial cognition, selectively vulnerable to Alzheimers disease, and more
functionally connected to the posterior hippocampus. These findings place
the human hippocampus at the interface of two major brain systems defined
by a single distinct molecular gradient. (148/150)
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1. Introduction1

A phylogenetically conserved and well connected structure involved in a2

diverse multitude of behaviors, the hippocampus provides an excellent base3

for studying the evolution of cognition. Alongside its highly nuanced and4

well documented role in memory, the hippocampus has been implicated in5

many other behaviors and functions, ranging from social cognition to spatial6

orientation to regulation of endocrine processes, such as stress response [5, 8].7

The hippocampus can be divided into well-described subfields – the cornu8

ammoni (CA), dentate gyrus and subiculum – which represent its principal9

axis of organization, and which strongly inform cytoarchitectonic variation10

and both internal and external circuitry [5]. A second orthogonal axis of11

organization of the hippocampus lies along its longitudinal axis in a gradi-12

ent spanning its two poles. In the rodent, this axis is often referred to as13

the ventral-dorsal axis, while a homologous gradient is thought to exist in14

humans along the anterior-posterior axis [49, 20, 42]. To study variations15

along this axis, the hippocampus is often divided into basic macroscopic16

partitions; the head-body-tail division is often used in humans, whereas a17

dorsal-ventral division is used in rodents. The divisions along the longitu-18

dinal axis of the hippocampus are characterized by a complex but distinct19

pattern of afferent and efferent connections, as well as impressive behavioral20

domain specificity. In rodents, the ventral hippocampus shares connections21

with the prefrontal cortex, basolateral amygdala, hypothalamus, and other22

structures mediating neuroendocrine and autonomic signaling and motivated23

behavior. Meanwhile, the dorsal hippocampus is anatomically connected24

with retrosplenial cortex, mamillary bodies, anterior thalamic complex and25

other networks implicated in movement, navigation and exploration ([8, 20]).26

Studies directly assessing the existence of a homologous longitudinal organi-27

zational axis in the human hippocampus have found compelling evidence in28

support [52, 10, 14, 1], and evidence has emerged suggesting this axis defines29

the multifaceted role of the hippocampus in complex cognitive systems [44]30

and in vulernability to neurodegenerative diseases [28, 33].31

Centrally involved in so many aspects of brain function and dysfunction,32

a comprehensive study of the hippocampus and its organizational principles33

may be paramount to understanding the brain at large. With this concept in34

mind, several studies have explored the molecular properties regulating the35
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longitudinal axis of the hippocampus. A number of studies have characterized36

the genomic anatomy of the ventral-dorsal axis of the rodent hippocampus37

as a whole or across specific subfields [13, 15, 19, 31, 51], how gene expression38

along the axis changes over the course of development [29, 46], and how it39

influences patterns of connectivity [8]. While some consensus over implicated40

genes has been met, all of these studies have been performed exclusively in41

rodents, and it is unclear whether similar genes and proteins are responsible42

for regulating and characterizing the anterior-posterior axis of the human hip-43

pocampus. This distinction is important, as the human hippocampus bears44

a different anatomy from that of rodents, participates in ostensibly more45

complicated cognitive systems, and shows selective vulnerability to diseases46

unique to humans.47

As yet, such explorations have been severely limited due to the compli-48

cations of measuring regionally detailed gene expression in the human brain.49

However, the Allen Human Brain Atlas has provided unprecedented access50

to human brain gene expression data. In the current study we leverage gene51

expression data from the Allen Human Brain Atlas dataset to define the ge-52

nomic anatomy of the longitudinal axis of the human hippocampus. Specif-53

ically, we sought to understand whether, as with the rodent hippocampus,54

notable gene expression variations also exists along the human hippocam-55

pus, and which genes are most prominently involved in this molecular orga-56

nization. We further aimed to understand whether information about gene57

expression can help explain interactions between the hippocampus and the58

diverse brain systems it is associated with, as well as differential vulnerabil-59

ity to neurodegenerative disease. To accomplish this, we drew from several60

public and private human datasets to bridge molecular properties with brain61

structure and function, behavior, and finally, dissociated vulnerability to62

neurodegenerative disease. We show that a graduated pattern of gene ex-63

pression along the hippocampal longitudinal axis predicts the location of a64

brain tissue sample along this axis, and that distinct interactions between65

the anterior and posterior hippocampus with specific brain systems can be66

predicted by the genomic similarity shared between those brain systems and67

the different poles of the hippocampus.68
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2. Results69

2.1. A sparse set of genes can predict sample location along the longitudinal70

axis of the hippocampus71

Normalized gene expression information from 58,692 probes were obtained72

from each of 170 brain samples extracted from the hippocampi of six deceased73

human donors from the Allen Human Brain Atlas. The longitudinal axis of74

the hippocampus, from the anterior to the posterior pole, was defined as75

a curve passing through the center of mass of the hippocampal volume of76

an average brain template in MNI standard space. The position of each77

of the 170 hippocampus samples was projected onto this longitudinal axis78

(Fig. 1A, S1B). LASSO-PCR was used to create a model predicting the79

position of each sample based on its gene expression profile (Fig. S1).80

Using repeat ten fold cross-validation, the LASSO-PCR model explained81

68-73% of the variance in sample position along the longitudinal axis (average82

MAE = 2.17mm) using only gene expression information (Fig. 1B,C). The83

explained variance rose to 89% when the model was fit across all data.84

By training our model on five subfields and then using this model to pre-85

dict the position of the sixth left-out subfield (i.e. leave-one-subfield-out), we86

revealed that the genomic signature underlying the anterior-posterior gradi-87

ent of the hippocampus is consistent across hippocampal subfields (Fig. 1D),88

though the variance predicted was poorer for CA2 (r2 = 0.47) and the subicu-89

lum (r2 = 0.58) compared to CA1, CA3, CA4 and the dentate gyrus (r2s >90

0.73). Leave-one-donor-out prediction additionally suggested consistency of91

the genomic signature across individuals (Fig. 1E): while two donors ac-92

counted for over 60% of the samples, when samples from these two donors93

were included in the model, prediction of the location of samples for the other94

four donors was highly accurate (r2s > 0.80).95

Weights from the LASSO-PCR model were back-transformed onto the96

individual probes in order to highlight the contribution of individual genes97

to the regulation of the hippocampal longitudinal axis. Weights from L1-98

regularized regression (LASSO) are difficult to reliably interpret [25], making99

identification of individual candidate genes challenging. To circumvent this100

issue, we iteratively removed the probes with 50 highest (anterior-associated)101

and 50 lowest (posterior-associated) weights, respectively, refit the model,102

and measured cross-validation accuracy of the new model, until all 58,692103

probes were removed (Fig. 1F). Removing the first set of 100 probes (Set 1)104

resulted in a sharp drop in cross-validation accuracy that was never recov-105
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Figure 1: Gene expression predicts the location of tissue samples along the longitudinal axis of the hip-
pocampus. A) (top) A curved skeleton of voxels was fitted along the center of mass of the hippocampal
volume. (middle) Tissue samples (orange) were matched to the closest skeleton voxels (blue). (bottom)
A sample’s position along the longitudinal axis was represented as the y-axis coordinate of the sample’s
matched skeleton-voxel. B) Average predicted sample position (using gene expression) across ten separate
10-fold cross-validated LASSO-PCR models, compared to the actual position. C) Render of the hippocam-
pal surface where each vertex shows the predicted location of the closest (surface projected) sample to
that vertex. The smooth appearance of the right hippocampus is related to the fact that less samples
were available for this structure. (D) Predicted vs. observed sample locations for leave-one-subfield-out
models. For example, subpanel “CA1” shows the predicted vs. observed position of samples extracted
from CA1 (test set) when the model was trained without CA1 samples (training set). In each plot, N
represents the number of samples in the training and test sets. E) Predicted vs. observed sample locations
for leave-one-donor-out models. F) The 100 most important probes in the LASSO-PCR model were itera-
tively removed and, after each removal, 10-fold cross-validation accuracy predicting sample position along
the longitudinal axis was recorded (blue dots). G) The first 50 rounds of 100-probe removal from Panel
A. Inflection points were identified after removing 100, 600, and 2700 genes. H) Accuracy in predicting
sample position was recorded for models using different gene sets identified by the inflection points in
panel G (blue), samples of 100 random within-set probes (green), and samples of random probes (orange)
as input. Each model was run ten times with different bootstrap samples to calculate confidence intervals.
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ered, supporting the notion that this gene set is important for regulating the106

longitudinal axis of the human hippocampus. Accuracy dropped once again107

after removing the next 500 probes (Set 2; rank 101-600), and after the next108

1100 probes were removed (Set 3; rank 601-2700), cross-validation accuracy109

began to drop precipitously, finally bottoming out after another 2100 probes110

(Set 4; rank 2700-4800) were removed (Fig. 1F,G). In contrast, iteratively111

removing sets of 100 random probes resulted in a very gradual and sporadic112

decrease in accuracy that only bottomed out when nearly all probes were113

removed (Fig. 1F). Refitting the LASSO-PCR model with only probes from114

Set 1 (100 probes), Set 2 (500 probes) or Set 3 (2100 probes) resulted in115

cross-validation accuracy above 80% (MAE: Set1 = 1.84 mm; Set2 = 2.39116

mm; Set 3 = 1.85 mm), a substantial improvement over the original model117

and a considerable improvement over models with equal-sized sets of random118

genes. Genes from Set 4 (2100 probes) alone achieved accuracy similar to119

a model using all (58,692) probes, and a model using all 53,892 probes not120

included in Sets 1-4 achieved cross-validation accuracy near 0% (Fig. 1H).121

These results indicate that 100 specific probes are sufficient to accurately122

predict the location of a sample along the longitudinal axis of the hippocam-123

pus, and that probes outside of a specific set of 4800 provide little to no124

information about the axis. Fitting the model using gene Sets 2 and 3 alone125

resulted in cross-validation accuracy similar to Set 1, suggesting the possibil-126

ity that important regulatory genes may also be present within these probe127

sets. However, the accuracy may also be assisted by the larger number of128

probes included in these two sets. Indeed, random sets of 100 probes taken129

from within Sets 2 and 3 showed reduced cross-validation accuracy compared130

to Set 1 and full Sets 2 and 3 (Fig. 1H).131

2.2. Candidate genomic regulators of the longitudinal axis of the human hip-132

pocampus133

A list of the 100 top probes can be found in Table 1. Gene ontology134

(GO) enrichment analysis of the top 100 probes from the model (Set 1)135

revealed a consistent set of terms relating to regulation of anatomical struc-136

ture morphogenesis and tissue (particularly axonal) growth and development.137

(Fig. 2A). This gene set also included several genes previously identified to138

differentiate the dorsal and ventral aspects of the rodent hippocampus (e.g.139

NR2F2, SERTAD4, GDA, TTR, TPBG, SSTR1, TNNT2). Among this gene140

set, a feature explainer based on cross-validated Random Forest Regression141

suggested NR2F2 and RSPH9 as, on average, the most important local pre-142
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Figure 2: Candidate genes regulating the longitudinal axis of the human hippocampus. A Enriched Gene
Ontology terms (Q<0.1) associated with Gene Set 1. Circle size indicates enrichment, whereas color
indicates Q value (lighter = lower Q value). B Matrix showing gene expression for Gene Sets 1 (y-axis)
across each hippocampal sample, ordered most posterior to most anterior (x-axis). Values were smoothed
with a 3mm gaussian kernel across the x-dimension only and then clustered so that anterior-posterior
patterns can be clearly visualized. C Average absolute local feature importances of probes in Gene Set 1
measured using a Random Forest-based feature explainer across all samples. D Surface rendering of the
expression patterns of each of the five genes identified as locally important features to predicting position
along the longitudinal axis. E For each of the five genes, the relationship between expression and position
along the longitudinal axis (r2) is plotted stratified by subfield.

dictors of position along the longitudinal hippocampus axis (Fig. 2C). This143

result remained consistent when additionally adding all probes from Sets144

2 and 3 (Supplementary Fig. S2). In addition to NR2F2 and RSPH9,145

the feature explainer also implicated local contributions to individual sam-146

ples from FAM43B, FSTL4 and NTN1 (Fig. 2C). The expression pattern147

of these five genes differed, as each pattern likely added unique information148

to the model (Fig. 2D). For example, for some genes the anterior-posterior149

expression pattern was greater in certain subfields (Fig. 2E).150

Feature explainers run on Sets 2 and 3 alone revealed more contributing151

features with less individual importance, compared to Set 1 and pools in-152

cluding Set 1 (Supplementary Fig. S2). This suggests individual sample153
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Anterior Posterior
Probe Gene Beta Probe Gene Beta
1053204 SERPINF1 0.0261 1023030 NPNT -0.0147
1053205 SERPINF1 0.0253 1023031 NPNT -0.0141
1030761 KLK7 0.0193 1050553 TTR -0.0129
1033144 RSPH9 0.0170 1064147 A 32 P11262 -0.0129
1030762 KLK7 0.0162 1058844 BDKRB1 -0.0124
1036045 LYPD1 0.0145 1041274 SERTAD4 -0.0123
1041466 GABRQ 0.0144 1048608 NTN1 -0.0122
1032692 PYDC1 0.0143 1039873 HHIP -0.0119
1042620 SYTL2 0.0139 1039872 HHIP -0.0111
1034086 RP13-102H20.1 0.0139 1017013 RP11-561O23.6 -0.0110
1042619 SYTL2 0.0137 1038748 GRHL2 -0.0107
1051105 SSTR1 0.0135 1041038 RGMA -0.0107
1041090 LXN 0.0134 1058843 BDKRB1 -0.0106
1031172 TMEM215 0.0133 1042684 BNC2 -0.0105
1042621 SYTL2 0.0133 1050668 TPBG -0.0104
1028032 C1QL1 0.0132 1029814 OSBPL3 -0.0101
1010361 PIRT 0.0132 1048607 NTN1 -0.0100
1054831 KCNG1 0.0132 1048537 ONECUT2 -0.0100
1059122 AQP3 0.0130 1058080 COL5A2 -0.0100
1064467 A 23 P213527 0.0128 1010982 RP11-291L15.2 -0.0099
1029570 RP11-45B20.3 0.0128 1027004 FSTL4 -0.0098
1066217 C1orf187 0.0126 1015986 C1orf133 -0.0098
1056223 GPR39 0.0123 1048913 DGKI -0.0096
1021758 OPRK1 0.0120 1010774 DDC -0.0096
1017426 CD36 0.0119 1069644 A 24 P401842 -0.0096
1059123 AQP3 0.0117 1070261 A 32 P121537 -0.0095
1030763 KLK7 0.0117 1025477 TNNT2 -0.0095
1053962 MYB 0.0117 1027005 FSTL4 -0.0095
1056238 GPR26 0.0116 1050554 TTR -0.0094
1054547 LMO1 0.0115 1040196 HPSE2 -0.0094
1042988 GPR88 0.0114 1012040 DDC -0.0093
1031384 VGLL3 0.0114 1010523 DDC -0.0091
1014826 NR2F2 0.0113 1058079 COL5A2 -0.0091
1013661 NR2F2 0.0112 1038515 WNT10A -0.0090
1020068 NR2F2 0.0112 1058569 CASR -0.0090
1046866 GPR83 0.0111 1012029 DDC -0.0090
1048357 GDA 0.0110 1052410 PVALB -0.0089
1030949 NRG1 0.0109 1060554 A 24 P62668 -0.0089
1031962 RSPO2 0.0109 1033886 FAM43B -0.0088
1063851 A 32 P136776 0.0108 1016934 CTXN3 -0.0088
1045386 C20orf103 0.0108 1010582 DDC -0.0088
1037183 SYTL1 0.0108 1040195 HPSE2 -0.0088
1054593 LGALS2 0.0107 1043786 GAL -0.0087
1041091 LXN 0.0107 1039883 GREM2 -0.0087
1056237 GPR26 0.0107 1026202 KDELR3 -0.0087
1013797 KIAA1772 0.0107 1058081 COL5A2 -0.0086
1066971 A 32 P115840 0.0106 1030360 PDLIM5 -0.0085
1048356 GDA 0.0106 1048538 ONECUT2 -0.0084
1033037 SEMA3D 0.0104 1060274 A 24 P102119 -0.0084
1020049 NRG1 0.0104 1043787 GAL -0.0084

Table 1: The top 50 anterior- and posterior-associated probes, respectively, identified by the LASSO-PCR
model
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predictions are likely aided by different genes depending on their location154

along the longitudinal axis. Sets 2 and 3 may therefore contain a mix of155

genes regulating the longitudinal axis, genes regulated by the those genes,156

and genes that are independent but are specifically hyperexpressed in the157

anterior or posterior hippocampus. To partially explore this possibility, we158

performed GO enrichment analysis on all genes represented in Set 2, and then159

clustered genes sharing similar enrichment terms (Supplementary Table160

S1). One cluster emerged sharing similar terms to those enriched in Set 1,161

relating to regulation of axon guidance, as well as cell motility, migration162

and development. This cluster also included genes previously described in163

studies exploring the rodent longitudinal axis, including SLIT2 and CADM1.164

Other GO enrichment sets included amine metabolic processes, GABA re-165

ceptor activity, signal release/secretion, neuropeptide receptor activity, ion166

transport, behavior, serotonin receptor activity and lipoprotein mediated sig-167

naling. These latter gene clusters may be more likely to regulate behaviors168

differentially associated with the anterior or posterior hippocampus. We re-169

peated this analysis for Set 3 (Supplementary Table S2). Once again, a170

cluster of genes emerged associated with cell motility and migration, which171

again included genes previously described from the rodent literature (e.g.172

NTNG2, SEMA3E, NOV, SEMA4G, CADM1, CYP26B1). A second cluster173

emerged involving genes associated with both amine transport and neuronal174

migration, and also included some previously described genes (e.g. RAB3B,175

PENK, NTF3, NTS, OLFML2B, RASD2, RXRG, TIMP2).176

As a way of validating the candidate genes identified, we repeated our177

analyses using Partial Least Squares regression (PLSR), another algorithm178

appropriate given the high dimensionality of our data. Using all probes, we179

obtained similar overall cross-validation results (Supplementary Fig. S3).180

Of the top 100 probes identified by the PLSR model, 50 were included in Set181

1, another 42 in Set 2, and the last 8 were found in Set3. Interestingly, of182

all probes in the model, NR2F2 and RSPH9 had the highest absolute beta183

estimates (weights), once again implicating these two genes as regulators of184

the longitudinal axis of the hippocampus (Supplementary Table S3).185

2.3. The genomic signature of the longitudinal axis of the hippocampus is186

represented as a spatial gradient across the brain187

The Allen Human Brain Atlas data comprises 3702 samples across the188

brains of six donors. By leveraging the weights of our LASSO-PCR model, we189

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587071doi: bioRxiv preprint 

https://doi.org/10.1101/587071
http://creativecommons.org/licenses/by-nc/4.0/


HAGGIS

-0.2 -0.2
Post. Ant.

A B

-0.2

0.2

0.0

0.0

HAGGIS

Ant.

Post.

Figure 3: Spatial distribution of the HAGGIS across the brain. (A) Each sample was projected onto a
cortical surface based on its MNI coordinates. Warm colors indicate the sample has a gene expression
pattern more similar to the anterior hippocampus (higher HAGGIS), while cool colors represent the sample
is more genomically similar to the posterior hippocampus (lower HAGGIS). (B) A medial slice inclusive
of brainstem and cerebellum. Each dot represents a sample, and warm colors indicate higher HAGGIS,
while cool colors represent lower HAGGIS. HAGGIS = Hippocampal Axis Genomic Similarity

created the Hippocampal Axis Genomic Gradient Index of Similarity (HAG-190

GIS), a value representing the degree to which the genomic signature of the191

hippocampal longitudinal axis is represented in the gene expression profile of192

a given non-hippocampus sample (Fig. S1). Larger positive values represent193

greater genomic similarity to the anterior hippocampus, while smaller nega-194

tive values represent greater genomic similarity to the posterior hippocampus.195

When plotting these values for all brain samples, we observed a general pat-196

tern across the brain such that the brainstem and more antero-ventral sites of197

the cerebral cortex demonstrated greater genomic similarity to the anterior198

hippocampus, whereas the cerebellum and posterio-dorsal cortical regions199

demonstrated greater similarity to the posterior hippocampus (Fig. 3, 4A).200

2.4. Specific gene expression patterns inform interactions between the hip-201

pocampus and dissociated hippocampo-cortical systems202

The anterior and posterior hippocampus each exhibit a distinct profile of203

anatomical connections in humans [1], which can also be represented using204

resting-state functional connectivity [52]. Using logistic regression and the205

HAGGIS, we identified coordinates to isolate the genomic posterior and an-206

terior hippocampus (Supplementary Fig. S4A). We then used an open207

database of resting-state functional connectivity information based on rsfMRI208

scans from 1000 subjects to create an average voxelwise map representing the209
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degree to which brain regions are functionally connected to the anterior vs.210

posterior hippocampus. Brain samples bearing a gene expression profile more211

similar to the anterior hippocampus were also more functionally connected212

to this substructure, while the opposite pattern was observed for samples213

with gene expression profiles more similar to the posterior hippocampus (r2
214

= 0.170, Fig. 4A). A separate model was constructed in order to ascertain215

the maximum (cross-validated) variance in differential connectivity explain-216

able given the (genomic) data. This analysis revealed that, while HAGGIS217

explained only 17% of the total model variance, it explained about 51% of218

the variance explainable with the present genomic data (Fig. 4C).219

The strength of this relationship differed depending on where along the220

anterior-posterior axis the divisions were drawn, which parts of the brain221

were included, and the size of the cube used to extract data around the222

sample coordinate (Supplementary Fig. S4C). The r2 ranged from 0.111223

(central split, cortical only mask, 1mm cube diameter) to 0.304 (split at224

anterior/poster extremes, mask excluding only brainstem and cerebellum,225

11mm cube diameter), though in all cases the relationship was observed226

to be significantly greater than chance (95% CI of chance r2 <0.004 for227

all conditions; data not shown). The relationship between HAGGIS and228

functional connectivity also varied slightly depending on the gene Set used229

(Fig. 4B). Remarkably, prediction of functional connectivity by HAGGIS230

performed just as well when the HAGGIS was created using the smaller231

Sets, with the highest values achieved when only the top 100 probes were232

used.233

A diverging pattern of structural covariance with the rest of the brain has234

also been observed across the longitudinal axis of the hippocampus [39], per-235

haps representing co-variation in cytoarchitecture. We used an open dataset236

of 153 structural MRI images from young healthy controls to create a map237

representing variation in structural covariance between the brain and the238

anterior vs posterior hippocampus. The more similar a brain region’s gene239

expression patterns were to the anterior hippocampus, the greater the struc-240

tural covariance was between that structure and the anterior hippocampus,241

and vice versa for the posterior hippocampus (r2 = 0.284; Fig. 4A). HAG-242

GIS explained 62% of the variance explainable with the present genomic data243

Fig. 4C). This relationship varied but remained strong across different brain244

masks and gene sets (Fig. 4B).245

To validate these finding without relying on an anterior-posterior split,246

we utilized a previously validated data-driven approach [52, 36] to extract247
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Figure 4: HAGGIS predicts hippocampus-brain relationships. (A) From top to bottom: The spatial
distribution of (smoothed) HAGGIS across samples, differential functional connectivity to the anterior vs
posterior hippocampus measured with rsfMRI (middle), differential structural covariance with the anterior
vs posterior hippocampus, differential vulnerability to AD or FTD measured with FDG-PET. Graphs on
the left visualize the relationship between these spatial patterns by comparing the HAGGIS of each sample
with the mean value from the respective map within a 5-voxel cube around the sample coordinate. B
Each of the above associations was re-calculated using three other brain masks, and using a HAGGIS
formed from each gene set identified in Section 2.2. The r2 of each of these associations is visualized. C
Pie charts indicating the proportion of genomic and total variance explained by each model. Numbers
in parentheses indicate percentage of total genomic variance. D Genes involved in both the longitudinal
axis of the hippocampus, and hippocampus-brain interactions. All genes pictured are among the top
50 anterior (red; top) or posterior (blue; bottom) features of the hippocampus longitudinal axis model.
Each also participates in one or more hippocampus-brain interactions, indicated by the circles within the
Venn diagrams. FCX = Differential functional connectivity between anterior and posterior hippocampus;
SCX = Differential structural covariance between anterior and posterior hippocampus; DIS = Differential
vulnerability between AD and FTD
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the principal gradients of hippocampal functional connectivity and struc-248

tural covariance with the rest of the brain, respectively. We then tested249

the relationship between each gradient and the predicted location of each250

sample based on the HAGGIS (Supplementary Table S4). For struc-251

tural covariance, the 1st gradient, explaining 24% of the total variance in252

brain-hippocampus covariance, showed a strong correlation with HAGGIS253

(r2=0.41; Supplementary Fig. S4D). For functional connectivity, the 3rd254

gradient, explaining 13.5% of the total variance of hippocampus-brain con-255

nectivity, also showed a strong relationships with HAGGIS (r2=0.40; Sup-256

plementary Fig. S4E). These findings were not contingent on the gene set257

used to calculate the HAGGIS (Supplementary Fig. S4F).258

2.5. Variation in genomic signature predicts regional vulnerability to neu-259

rodegenerative disease260

The anterior and posterior hippocampus are also differentially involved261

in disparate neurodegenerative diseases [29], particularly Alzheimer’s disease262

(AD) and frontotemporal dementia (FTD) [44, 28, 33]. We acquired fluo-263

rodeoxyglucose (FDG) PET scans measuring glucose metabolism, a measure264

of neuronal health and degeneration, from patients diagnosed in a tertiary265

memory clinic as having AD or FTD. We used these scans to create a sta-266

tistical map representing the relative patterns of neurodegeneration in AD267

vs. FTD. We found that samples with greater genomic similarity to the an-268

terior hippocampus also showed greater hypometabolism in FTD compared269

to AD, whereas samples more similar to the posterior hippocampus showed270

greater hypometabolism in AD compared to FTD (r2 = 0.118; Fig. 4A).271

HAGGIS explained about 21% of the variance explainable given the present272

genomic information (Fig. 4C). This relationship also varied depending on273

the regions included and cube size, with r2 ranging from 0.095 (whole-brain,274

1mm cube diameter) to 0.153 (cortex-only mask, 11mm cube diameter, Sup-275

plementary Fig. S6), but remained greater than chance in all cases (data276

not shown). Notably, and unlike previous analyses, the relationship between277

HAGGIS and regional disease vulnerability was not observed when restricting278

the HAGGIS to the top 100 probes (Set 1) (Fig. 4B).279

2.6. Specific genes link longitudinal axis to connectivity and vulnerability pat-280

terns281

In order to highlight specific genes that may be involved in both main-282

tenance of the longitudinal axis and hippocampus-brain interaction, we con-283
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structed independent models to learn the genomic profile of the maps from284

Fig. 4A and compared the top 100 features from these models to the longi-285

tudinal axis model. The proportion of overlap between the top 100 features286

of each model with the top 100 features from the hippocampus longitudinal287

axis model far exceeded chance (Functional: 20%; Structural: 21%; Disease:288

11%). Overlapping genes from each model, stratified by involvement in ante-289

rior or posterior hippocampus, can be found in Fig. 4D. Interestingly, some290

genes were involved in multiple systems. For example, PVALB, specifically291

expressed in the posterior hippocampus, was also highly expressed in brain292

regions functionally connected and structurally covarying with the poste-293

rior hippocampus, as well as in regions specifically vulnerable to Alzheimer’s294

disease. Additionally, anterior hippocampus gene GABRQ was also highly295

expressed in regions both structurally covarying with the anterior hippocam-296

pus and those vulnerable to frontotemporal dementia.297

2.7. Variation in genomic signature predicts involvement in distributed cog-298

nitive networks299

The posterior and anterior hippocampus are implicated in distinct aspects300

of memory and cognition [52, 10, 14, 16]. We explored whether regions shar-301

ing genomic similarity to the posterior or anterior hippocampus were more302

likely to participate in cognitive networks proposed to involve those substruc-303

tures. We downloaded 100 meta-analytic functional coactivation maps from304

the Neurosynth database, each composed from between 91 and 4201 task-305

based functional MRI activation studies, and each of which was paired with306

a set of related cognitive/behavioral topics. These topic/map pairs repre-307

sent greater-than-chance regional functional coactivation patterns reported308

consistently in studies sharing words from certain related topic-sets in the309

publication text. These maps can therefore be thought to represent specific310

region-sets involved in distributed cognitive networks. We calculated the311

mean HAGGIS of samples falling within each cognitive map, with higher312

positive values indicating greater genomic covariance between the regions313

covered by that coactivation map and the anterior hippocampus, and lower314

negative values representing greater genomic covariance with the posterior315

hippocampus.316

Using a conservative approach (only including maps with at least 500317

overlapping samples: 29 maps; minimum map size: 36,622 voxels), we ob-318

served a pattern largely consistent with previous hypotheses of hippocampal319
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Figure 5: Variation in genomic signature predicts involvement in distributed cognitive networks. (Top)
Maps were downloaded from neurosynth representing greater than chance meta-analytic functional acti-
vation in studies with different topic-sets mentioned in their abstract. Mean HAGGIS (represented by
bars) was calculated for samples inside maps encompassing >500 samples (visualized either directly above
or directly below each bar). Error bars represent SEM. Topic hypothesized to belong to the AT or PM
system are shown in red and blue respectively. A word cloud summarizing the regions and topics most
associated with the genomic signal of the anterior (red) and posterior (blue) hippocampus
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involvement in different cognitive systems [44] (Fig. 5). As we hypothe-320

sized, regions that expressed a gene expression profile more consistent with321

the anterior hippocampus tended to be those involved in social and emotional322

cognition, but also included maps associated with reward and conditioning,323

among others. Also consistent with our hypotheses, cognitive networks more324

genomically similar to the posterior hippocampus were associated with spa-325

tial cognition, imagination and mental simulation, but also included maps326

associated with visualization, working memory and movement/action. In-327

terestingly, maps associated with episodic memory and physical stimulation328

slightly favored the anterior hippocampus, or were not strongly associated329

with either posterior or anterior hippocampus. These patterns remained re-330

markably similar when repeating the analysis with only probes from Set 1,331

representing the top 100 probes in our model (Supplementary Fig. S5).332

3. Discussion333

The hippocampus plays a central role in many systems that regulate be-334

havioral processes across several species, and that are dysregulated in several335

human neuropsychiatric diseases. The contribution of the hippocampus to336

many of these systems is grossly organized across its longitudinal atlas. Char-337

acterizing the molecular properties of this axis may be vital to understand-338

ing how gene expression networks regulate macroscopic brain networks. We339

show that the anterior-posterior position of a tissue sample extracted from340

the human hippocampus can be predicted with remarkable accuracy using341

the expression pattern of only a handful of genes. Further, we find genomic342

representation of the anterior-posterior gradient projected across the entire343

brain, and that this representation partially explains relationships between344

the hippocampus and dissociated hippocampo-cortical systems. The ante-345

rior hippocampus shares genomic patterning with a system encompassing346

the medial prefrontal cortex, anterior temporal lobe and the brainstem. In347

general, these regions showed greater functional connectivity and structural348

covariance with the anterior than the posterior hippocampus, greater vul-349

nerability to FTD than to AD, and more frequent involvement in cognitive350

tasks involving motivation/conditioning, social and emotional cognition and351

semantic knowledge. The posterior hippocampus, in contrast, shared a ge-352

nomic pattern with the cerebellum, and occipital, parietal and motor and353

pre-motor cortex. These regions generally showed greater connectivity and354

structural covariance with the posterior than anterior hippocampus, more355
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vulnerability to AD than FTD, and were more likely to participate in cogni-356

tive tasks involving spatial representation, visual processing, working mem-357

ory and simulation. These results confirm and extend findings across species358

and sub-disciplines of neuroscience to suggest shared gene expression patterns359

underlying a well-described dissociation of anterior vs posterior hippocam-360

pal involvement in cognitive brain networks. Further, the findings support361

the existence of a specific axis of organization in the human brain, where an362

anterior-ventral - posterior-dorsal gradient explains regional involvement in363

diverse behaviors, underscored by a specific pattern of gene expression. These364

findings together form a template for studying how specific genes may reg-365

ulate the development of dissociated hippocampal connectivity networks in366

humans and their involvement in specific behaviors and, potentially, specific367

diseases.368

Our results support an existing concept of molecular gradients in the369

cerebral cortex [11, 36, 21]. The anterior-ventral - posterior-dorsal pattern370

observed in our data is reminiscent of a general anterior-posterior molecular371

gradient previously observed in the Allen Human Brain Atlas dataset [26, 21].372

[21] reviews qualities of this gradient, including a pattern of neuronal orga-373

nization where, as one moves caudally to rostrally, neuron and arbor size374

increase while neuronal number and density decrease. Perhaps related, a375

“dual origin” hypothesis has been proposed suggesting the cerebral cortex376

has developed radially from certain phylogenetically conserved limbic struc-377

tures over the course of evolution. This hypothesis describes a ventral system378

emanating from the perirhinal and amygdalar cortex that is involved in se-379

mantic identification of a stimulus and motivated behavior, while a dorsal380

system has evolved from the hippocampus and parahippocampal cortex to co-381

ordinate spatial representation and coordinated action [23]. The hypothesis382

is supported by evidence from comparative cytoarchitectonics and connectiv-383

ity patterns across species. The AT/PM hypothesis [44] provides yet another384

example of opposing cortical systems loosely following an anterior-posterior385

organization and determining patterns of brain organization. Each of these386

models originated from a different field of inquiry (gene expression, cortical387

evolution, memory network organization), but the models converge in many388

respects, and a microcosm of this shared framework seems to be represented389

along the longitudinal axis of the hippocampus – explicitly so in the AT/PM390

and dual origin models. Our results generally support the premise that the391

hippocampus participates in two distinct macroscopic networks characterized392

by distinct structural covariance, functional connectivity, behavioral domain393
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specificity and disease vulnerability, and that participation in these networks394

can be predicted by position along the longitudinal axis. However, we take395

this framework one step further to suggest these two distinct networks are396

composed of one single gradient of gene expression that may be underlying397

their systemic distinctions.398

While our initial model utilized the expression patterns of nearly 60,000399

probes corresponding to over 20,000 genes, the model favored a much smaller400

profile of probes to describe the longitudinal axis of the human hippocampus.401

When isolating a small set of only 100 probes, we were able to successfully402

predict the location of samples along the longitudinal atlas with less than403

2 mm error, as well as interactions between the hippocampus and the spe-404

cific brain systems. The set was enriched with genes associated with, in405

particular, anatomical structure morphogenesis and cellular growth, suggest-406

ing genes within this set may be involved in coordinating and/or maintain-407

ing the anatomical variation of the hippocampus along its longitudinal axis.408

Whether these genes are also partially responsible for the functional variation409

along the axis remains unclear, though it is notable that similar expression410

patterns of these 100 genes can be observed in other brain regions that in-411

teract with the hippocampus. In particular, we identified several specific412

genes that appear to be involved in coordinating both the longitudinal axis413

of the hippocampus and one or more aspects of the hippocampus-associated414

distributed brain networks. A number of these genes (PVALB, GAL, ONE-415

CUT2, PIRT, TNNT2, RSPH9, COL5A2, CTXN3) have been reported in416

previous studies examining genes regulating functional network organization417

[47, 54]. The shared gene expression across disparate regions may be re-418

lated to shared anatomical characteristics (e.g.[3, 45, 48]), and examining419

the contribution of genes across these different network properties (struc-420

ture, function, disease vulnerability) may lead to a clearer picture of the role421

various proteins play in overall network organization.422

Many of the genes identified in our study have also been described in423

previous studies characterizing the dorsal and ventral subdivisions and lon-424

gitudinal gradients of the rodent hippocampus (e.g. [31, 51, 29, 46, 15]).425

This suggests a fair degree of homology between rodents and human in the426

distribution of proteins along the longitudinal axis of the hippocampus, and427

perhaps in the development and maintenance of the axis itself. However,428

many previously undocumented proteins were also identified, and replication429

and comparative studies will be required to disentangle whether these candi-430

date genes are truly unique to humans or a result of small sample sizes and431
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differing methodologies.432

The most important genes identified in our model can be interpreted as433

the most central genes in the hippocampal gene expression network(s) most434

associated with position along the longitudinal axis of the hippocampus. We435

cannot infer which genes are causally related to axis formation and main-436

tenance and, as weights from backward regression problems are notoriously437

hard to interpret [25], even identifying the most important among a set of438

genes is challenging. Being aware of these limitations, we identified NR2F2439

(also called COUP-TFII) and RSPH9 to be particularly important in local440

prediction of sample location along the axis. This likely suggests that these441

two genes demonstrated the cleanest and most consistent linear gradient in442

expression across the longitudinal axis among those assessed (which can be443

visually appreciated by the surface plots of expression levels of these genes444

across the hippocampus in Fig. 2D). The pattern of expression we observed445

here mirror descriptions of other studies of NR2F2 expression in the rodent446

hippocampus [22], as well as more macroscopically in the human brain during447

development, particularly in the temporal lobes [4]. NR2F2 is also key in the448

determination of cell fate in numerous circumstances [32, 27], including that449

of interneurons expressing PVALB (parvalbumin) or SST (somatostatin),450

where NR2F2 promotes SST and represses PVALB [27]. These findings are451

highly consistent with the expression of PVALB (expressed posteriorly) and452

SSTR1 (expressed anteriorly with NR2F2) in our data (Table 1). For its part,453

RSPH9 is part of the structure of primary cilia, which can be found within454

ependymal cells lining the ventricles, as well as in the CA1 subfield of the hip-455

pocampus and adjacent choroid plexus [56]. There is evidence that these cilia456

can promote neurogenesis in the hippocampus through mediating expression457

of SHH (sonic hedgehog) [9], a protein implicated in anterior-posterior pat-458

tern formation, and identified as a possible protein of importance in our459

data by the presence of HHIP (hedgehog-interacting protein) among the top460

100 anterior-posterior associated genes (Table 1). The expression patterns461

of RSPH9 in our data may signal the presence of a specific pattern of cilia,462

which may help regulate the longitudinal axis of the hippocampus through463

hedgehog signaling. Both NR2F2 and RSPH9 have been identified as role-464

players in human functional network organization [47, 54].465

The longitudinal axis of the hippocampus provides many clues about the466

development and characterization of different behavioral systems, which may467

be particularly important when it comes to understanding diseases character-468

ized by selective dysfunction of these systems. Understanding the molecular469
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components that maintain vulnerable systems may go a long way in learn-470

ing which components are responsible when the system begins to fail. Data471

from multiple studies support a specific role for the longitudinal axis of the472

hippocampus in AD and FTD [28, 33]. Our data support this notion, sug-473

gesting that regions more vulnerable to FTD than AD share a more similar474

molecular profile to the anterior than posterior hippocampus, and that the475

opposite pattern was observed for regions more vulnerable to AD than FTD.476

It is tempting to wonder whether the same genes that coordinate the devel-477

opment of systems also incidentally contribute to the degeneration of these478

systems over time, a possible example of antagonistic pleiotropy. For ex-479

ample, among the top 100 anterior-posterior associated genes identified in480

our model were several genes known to interact with amyloid-β protein, the481

primary pathologic hallmark of AD, many of them specifically associated482

with the posterior hippocampus in our data. For example, TTR has been483

shown to bind amyloid-β aggregates in a chaperone-like manner [12], and484

TTR mutations have been associated with hippocampal atrophy in aging485

humans [17]. NTN1 interacts with the amyloid precursor protein (APP) and486

has been described as a key regulator of amyloid-β production [43, 34]. Much487

less is known about the molecular properties of FTD, but it was interesting488

to see the KLK7 gene among the top anterior hippocampus-associated genes489

(Table 1), as the KLK7 protein and other kallikreins have been found to490

be reduced in the CSF of FTD patients [18]. Although little can be ex-491

trapolated from our data about the potentially dissociated role of specific492

proteins in AD and FTD, we provide evidence for distinct molecular proper-493

ties that characterize the dissociated hippocampo-cortical systems vulnerable494

to each of these two diseases. The implicated genes and proteins may provide495

promising candidates for more targeted studies of their role in disease-specific496

neurodegeneration.497

3.1. Limitations498

Our study comes with a number of important limitations that must be499

addressed. The single greatest limitation of our study is that our gene ex-500

pression data comes from a limited number of samples taken from only six501

donors who differed in age, sex and ethnicity. We partially addressed this502

issue by statistically removing donor effects from our gene expression data503

and performing leave-one-donor-out analyses, but in doing so, assume cer-504

tain aspects of gene expression should be fairly consistent across individuals.505

Some confidence is inspired by the fact that, in spite of these limitations, we506
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were able to replicate findings from rodent studies. We also tried to circum-507

vent this issue by showing that relationships linked to our primary findings508

hold in several other independent datasets. Another major limitation is a509

reliance on specific coordinates of samples reported at time of autopsy, trans-510

lated to single-subject MRI space, and then normalized to a common subject511

space. While we took measures to improve the quality of the normalization512

to common space, we cannot rule out noise introduced during any of these513

steps. Our analysis of gene expression gradients along the hippocampal lon-514

gitudinal axis is particularly sensitive to these issues because it relies on the515

exact coordinates of the samples extracted. Once again, we were able to516

replicate findings from other studies, but it is possible that the importance517

of some proteins to our model could have been affected. As discussed previ-518

ously, another limitation is related to our attempts to extrapolate biological519

importance from machine learning models. While we took many steps to520

try to test the stability of weights in our models, our interpretations remain521

somewhat speculative and must be replicated in more focused studies. A re-522

cent study suggested that, while the principal community structure of mouse523

hippocampal connectivity is organized across its longitudinal axis, higher524

resolution analysis suggests a more complex division of substructures dis-525

tributed across subfields [8]. We acknowledge that a simple linear gradient526

may not be sufficient to capture the full complexity of functional organization527

of the hippocampus, and that this complexity may be driving the variation528

in our predictions across different hippocampus subfields. Finally, a major529

limitation comes with the complexity of drawing conclusions across so many530

datasets, each of which are subject to variation based on methodological531

processing. We tried to overcome this by primarily using open-access data532

preprocessed beforehand by experts, and by making all of our data and code533

freely available at https://github.com/illdopejake/HippocampusAPAxis so534

that other researchers can scrutinize, reproduce, and hopefully re-use our535

analyses.536
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8. Online Methods746

All data and analyses described in this manuscript are available online and747

can be fully reproduced using exclusively open-access software, with (mostly748

python) scripts and data provided at https://github.com/illdopejake/HippocampusAPAxis.749

All code and analyses are presented in a series of Jupyter notebooks at the750

link provided. Supplementary Table S6 outlines which notebook contains the751

analyses described in each Methods subsections detailed below. See Supple-752

mentary Table S5 for a summary of datasets used.753

8.1. Human gene expression data754

Human gene expression data were downloaded from the Allen Human755

Brain Atlas (http://human.brain-map.org, RRID: SCR 007416). A detailed756

description of this dataset can be found elsewhere [50, 6]. Briefly, tissue757

samples were extracted across both hemispheres of two human brain donors,758

as well as the left hemisphere of four additional donors, totaling 3702 sam-759

ples. Stereotaxic coordinates and MNI space coordinates are provided for760

each sample. Each sample underwent microarray analysis and preprocessing761

to quantify gene expression across 58,692 probes. This analysis provides an762

estimate of the relative expression of different proteins (encoded by differ-763

ent genes) within the tissue sample. While previous publications have used764

different strategies to reduce the number of probes (see [6] for review), due765

to assumptions associated with these strategies and the high-dimensionality766

approach of our models, we opted to retain all 58,692 probes for analysis.767

Importantly, the MNI coordinates originally supplied with the dataset did768

not account for nonlinear deformations in transforming the donor MRIs in769

native space to MNI space, and thus included a noticeable degree of error (i.e.770

many samples mapped outside of the brain or their labeled brain regions) [6].771

However, these coordinates have been meticulously reconstructed and trans-772

formed accounting for nonlinear deformations (http://doi.org/10.5281/zenodo.2483290).773

Moving forward, all mentions of MNI coordinates will refer to the Devenyi774

coordinates.775

Given the different ages, sexes and other characteristics, substantial dif-776

ferences in gene expression are expected between donors. However, similar777

to previous studies using this dataset, we were only interested in common778

patterns of human gene expression for the present analyses, rather than inter-779

individual differences. As such, all samples across the six donors were aggre-780

gated, the effect of donor was removed from each probe using linear models781
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(i.e. with dummy coded donor ID variables), and probe values were standard-782

ized. Therefore, probe values represent gene expression normalized across all783

samples, with inter-individual differences removed.784

Along with coordinates, each sample contains ground-truth information785

about the specific brain sub-structure from which the sample originated, as786

defined by the anatomist extracting the sample. To identify samples falling787

within the hippocampus, we selected all samples with structure labels of CA1788

field, CA2 field, CA3 field, CA4 field, Subiculum and Dentate Gyrus, from789

both the left and right hemispheres – 188 samples in total. 18 samples had790

MNI coordinates more than 3mm outside of the hippocampal volume defined791

below, leaving 170 hippocampal samples in total.792

8.2. Identifying the longitudinal axis of the hippocampus793

Many previous studies have explored differences between the dorsal and794

ventral (or posterior and anterior) hippocampus, but such a system requires795

an often arbitrary delineation between these two structures [20, 42]. To over-796

come this limitation, we instead sought to quantify the longitudinal axis of797

the hippocampus and observe changes in gene expression across this axis.798

Such an approach would still capture gross differences in expression between799

anterior and posterior sites, but would also allow for detection of more com-800

plex gradients. Notably, the hippocampus curves dorsally and medially, so a801

straight line may not be appropriate for defining its longitudinal structure.802

The objective is to identify a curved path that follows the center of mass803

of the hippocampus along its curvilinear shape (Fig. S1B). The initial hip-804

pocampus volume was defined as labels 9 and 19 from the Harvard-Oxford-805

sub-maxprob-thr25-1mm atlas derived from the MNI ICBM152 average brain806

template, supplied with FSL 5.0 ( RRID:SCR 002823). A “skeleton” of807

the hippocampal volume was created from morphological operations (dila-808

tions/erosions) using the MINC Toolkit (version 1.0.08) (RRID:SCR 014138;809

http://bic-mni.github.io/#MINC-Tool-Kit). The hippocampus mask was re-810

sampled to 0.5mm isotropic voxel size and a chamfer map was created, mea-811

suring the distance from the border of the resampled hippocampus volume812

up to 10mm away. This chamfer map was binarized to create a large smooth813

blob around the hippocampal surface. An opposite chamfer map was created814

inside the blob, and the local minimum of the derivatives of this map were815

computed in order to isolate the points at the greatest distance from the816

blob surface. This creates a “skeleton” following the curvilinear shape of the817
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hippocampal volume, which was then masked with the original hippocampal818

volume. Finally, the skeleton was resampled back to 1mm space.819

Next, this hippocampal skeleton, in MNI space coordinates, was used to820

calculate the position of each hippocampus tissue sample along the longitu-821

dinal axis. For each sample, we identified the skeleton MNI coordinate with822

the minimum projected distance to the sample’s MNI coordinate. The po-823

sition of the sample was then coded as the y-coordinate (anterior-posterior824

axis) of the closest skeleton voxel. This process effectively transforms all825

sample coordinates along a single anterior-posterior dimension. (Fig. S1B).826

Note that, depending on location of the sample, the MNI y-coordinate of the827

sample may not share the same y-coordinate of the closest skeleton point.828

8.3. Identifying genes regulating the longitudinal axis of the human hippocam-829

pus830

We sought to identify which genes may play a significant role in the posi-831

tioning of samples along the longitudinal hippocampal axis. Sparse regression832

algorithms built for high dimensional datasets have been proposed, such as833

least-angle regression (LARS) and LASSO-LARS. However, during regular-834

ization, these algorithms will often select only one of a set of several collinear835

variables and reduce the coefficient of the other variables in the set to zero. In836

the case of gene expression data, gene co-expression networks are of interest837

to us, and we do not necessarily want to select one of a set of co-expressed838

genes. Therefore, we opted instead to use a LASSO-PCR approach [53, 30].839

Such an approach will reduce the dimensions of the data while preserving840

gene co-expression networks, yet still allow for a sparse selection of features.841

In summary, we reduced our input data, a 170 (sample) x 58,692 (probe)842

matrix, using principle components analysis (PCA) with singular value de-843

composition. The resulting 170 (sample) x 170 (component score) matrix844

was used in a principal component regression (PCR) model (Fig. S1). Ap-845

proaches to PCR models typically reduce the number of independent vari-846

ables by removing the components whose eigenvalues fall below some thresh-847

old related to the percentage of variance explained. This does not account848

for potentially strong relationships between the dependent variable and mi-849

nor components. Thus, we elected to use a Least Absolute Shrinkage and850

Selection Operator (LASSO) regression model with sample position along851

the longitudinal hippocampus axis (defined in the previous section) as the852

dependent variable.853
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In our regression model we have our standardized matrix of gene ex-854

pression data X, our measurements along the longitudinal axis Y , and the855

model Y = XB + ε. We wish to estimate the values of the matrix B =856

[β0, β1, ..., βp]
T , where βi is the estimated impact of probe i on longitudi-857

nal position. Probes with larger impacts will have higher estimated values;858

negative values suggest greater expression in posterior compared to anterior859

hippocampus, and vice versa. Since there are a large number of regression pa-860

rameters, we use dimension reduction through PCA. We transform the data861

such that XTX = PΛP T = ZTZ, where Λ is the diagonal matrix of eigenval-862

ues of X ′X, Z is the matrix of principal components, and P TP = I. We are863

now interested in solving the principal component regression Y = ZA, where864

the regression coefficients are stored in the matrix A and are the contribution865

of principal components to position. We derive estimates of A using LASSO.866

The coefficients of the two regression equations are related by the expressions867

A = P TB and B = PA, so we estimate B̂ = PÂ, giving us the beta values868

of the individual probes, which are in terms of the original probes.869

There are limitations to this approach. Beginning with the full set of870

components can incidentally retain small components and make estimates of871

beta coefficients unstable [30]. Interpretation of the components is challeng-872

ing, and here they were generated without the dependent variable (the mea-873

surements along the anterior-posterior axes). At the theoretical level PCA874

can break down when there are many more variables than observations since875

the sample covariance eigenvectors may not be close to population eigenvec-876

tors [24] though empirical results here are positive and in concordance with877

previous results. Partial least squares (PLS) is a method related to PCR that878

accounts for the dependent variable and returned similar results (Figure S4).879

To test the generalizability of the model, we employed several cross-880

validation methods. First, we performed 10-fold cross-validation of the full881

data set, which was repeated 10 times. Second, we performed a leave-one-882

subfield-out cross-validation, to see if a model defined on five hippocampal883

subfields (CA1-4, subiculum, dentate gyrus) could predict the axis position884

of samples from the sixth subfield. Finally, we performed leave-one-donor-885

out cross-validation to see if a model trained on samples from five donors886

could predict the axis positions of samples from the sixth donor. Note that887

the range of sample position was constrained by anatomy during the leave-888

one-subfield-out cross-validation, and the number of samples varied quite889

dramatically across donors for the leave-one-donor-out validation. The fi-890

nal model used for all subsequent analyses utilized all samples. As a sanity891
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check, we calculated the mean of the fifty genes with the highest (anterior)892

and lowest (posterior) betas within each sample and measured the variance893

explained in sample position along the longitudinal axis by this average ex-894

pression signal.895

8.4. De-constructing model features to assess candidate genes responsible for896

axis regulation897

An advantage of the LASSO-PCR model is that it is more likely to iden-898

tify several genes participating in a co-expression network rather than ar-899

bitrarily identifying a single gene to represent that network. However, this900

also leads to a possible disadvantage related to reduced precision in singling901

out which genes, if any, are singularly important to the model. Addition-902

ally, the global feature importances of a LASSO model cannot be reliably903

interpreted, as adding or removing features can cause feature importances904

to shuffle dramatically [25]. We attempted to de-construct our model with905

these limitations in mind. Fifty probes with, respectively, highest (anterior)906

and lowest (posterior) back-transformed weight (feature importance) were907

iteratively removed from our model. After each removal of these 100 probes,908

the model was refit, 10-fold cross-validation (CV) accuracy was recorded,909

and the 100 top probes from the new model were removed. This process was910

repeated until all probes were removed. As a control, we repeated this same911

process iteratively removing 100 random probes instead of the 100 most im-912

portant probes. Change in CV accuracy across rounds of probe removal was913

visually assessed and inflection points were identified at rounds where CV914

accuracy dropped and did not recover. Rounds in between inflection points915

were considered stable, and probes removed between inflection points were916

grouped together in gene sets, analyzed separately in subsequent analysis.917

To establish whether these gene sets alone could predict sample position918

along the longitudinal axis of the hippocampus, we reran the LASSO-PCR919

model with only the probes involved in these gene sets. Prediction accuracy920

was recorded using 10-fold cross-validation. The models were run ten times921

with bootstrap samples to attain confidence intervals. As a control analysis,922

models were run using sets of random probes the same size as each gene923

set, and this process was repeated 10 times for each set, each time using924

cross-validation to measure prediction accuracy. Finally, in order to compare925

larger gene sets to Set 1 – which contained only 100 probes – we extracted926

10 random sets of 100 genes from within each gene set and input these into927
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the model, once again using 10-fold cross-validation to measure prediction928

accuracy.929

To further highlight candidate genes involved in hippocampal longitu-930

dinal axis regulation, we employed the Local Interpretable Model-Agnostic931

Explanations (LIME) python package (https://github.com/marcotcr/lime/).932

LIME makes local perturbations to model inputs and measures the impact933

of those perturbations on model performance. LIME can only assess local934

feature importance, however, by aggregating information across multiple lo-935

cal features, some limited information can be ascertained about contribution936

of features (probes) to predicting an outcome (sample position along the937

longitudinal axis). For each gene set identified, we performed 10-fold cross-938

validation with a Random Forest Regressor. A Random Forest Regressor939

was chosen because its metric of feature importances is itself assessed using940

out-of-sample prediction. For each fold, LIME was used to identify absolute941

feature importances for samples in the left-out fold, and this information was942

aggregated across all predictions from all folds. Elevated feature importance943

could indicate importance of a probe across prediction of multiple samples, or944

could indicate great importance across a limited set of predictions, meaning945

interpretation is still limited.946

8.5. Characterization of gene sets using gene ontology enrichment analysis947

Gene ontology (GO) enrichment analysis was used to characterize func-948

tions shared by several genes within gene sets. These analyses were performed949

using the online tool GOrilla ( RRID:SCR 006848; http://cbl-gorilla.cs.technion.ac.il/),950

which identifies terms from the GO libraries that are associated with genes951

in the inputted gene set and are significantly (FDR < 0.1) enriched com-952

pared to a baseline gene set. We used the entire set of genes available in the953

Allen Human Brain Atlas dataset as the baseline gene set. Altogether, the954

background set we entered included 29,381 distinct genes, 19,895 of which955

were recognized by GOrilla. Of these, only 17,836 were associated with a GO956

term. We left all other parameters to their defaults. Some of the gene sets957

produced long lists of enriched terms. We summarized this information us-958

ing hierarchical agglomerative clustering on the significantly enriched terms.959

A binary gene x term matrix was created where a 1 indicated a gene was960

associated with a term. This matrix was fed to an Agglomerative clustering961

algorithm using Jaccard index with average linkage and pre-calculated con-962

nectivity constraints (10 neighbors), and the process was repeated varying963

the number of clusters from 2-20. Local peaks in silhouette index were used964
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to define the final cluster number, favoring a higher number of clusters for965

better precision. The resulting clusters represented sets of genes sharing sev-966

eral associated terms. For gene Set 2 (top 101-600 most important probes967

to the model, see Section 2.2), peaks in Silhouette score were seen at k=2968

(0.225), k=7 (0.132) and k=10 (0.128). We chose a 10-cluster solution. For969

gene Set 3 (top 601-2700 probes, Section 2.2), peaks in Silhouette score were970

seen at k=2 (0.349), k=5 (0.173) and k=12 (0.093). We chose a 12-cluster971

solution. The purpose of this analysis was to cluster genes with enriched GO972

terms for purely descriptive purposes.973

8.6. Whole-brain genomic representation of the hippocampal longitudinal axis974

– HAGGIS formulation975

We sought to ascertain to what degree the specific pattern of genes regu-976

lating the hippocampal longitudinal axis was expressed throughout the rest977

of the brain. The probe weight (beta) vector from the LASSO-PCR analysis978

can be thought of as a hippocampal longitudinal axis genomic signature. In979

order to test for the presence of this signature in other brain regions, we980

found the dot product between the beta vector (genomic axis signature) and981

the gene expression (probe) vector for each sample (Fig. S1C). Note that982

when estimating regression coefficients we have:983

β̂ = (XTX)−1XTY (1)

This is equivalent to using the estimates of coefficients from the LASSO-984

PCR model to predict the location of the (non-hippocampal) sample along985

the hippocampal axis. In practice, this amounts to using the hippocampus986

model to predict where a non-hippocampus sample might fall along the hip-987

pocampal longitudinal axis based on that sample’s gene expression. However,988

conceptually, this value can also offer an index of covariance between a given989

sample’s gene expression and the gene expression profile of the anterior or990

posterior hippocampus. Higher (positive) values represent greater genomic991

covariance with the anterior hippocampus, while lower (negative) values rep-992

resent greater similarity to the posterior hippocampus. For the purposes of993

parity, this index will be referred to in the text as the Hippocampal Axis994

Genomic Gradient Index of Similarity (HAGGIS) index.995

8.7. Comparisons with resting-state functional connectivity996

For each of the 170 hippocampal samples, a resting-state functional con-997

nectivity map was downloaded from Neurosynth (RRID:SCR 006798; http://neurosynth.org/)998
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using the closest available MNI coordinate to the MNI coordinate of the999

sample. The Euclidian distance between Neurosynth coordinate and sample1000

coordinate never exceeded 2mm. Each map is based on the resting-state1001

functional connectivity patterns of 1000 young, healthy individuals from the1002

Brain Genomics Superstruct project [55].1003

We sought to test whether the genes regulating the longitudinal axis of1004

the hippocampus contribute to the differential brain connectivity observ-1005

able along this axis. The measurement resolution of resting-state functional1006

magnetic resonance imaging (rsfMRI) limits detail at which differences in1007

connectivity can be observed along a structure as small as the hippocam-1008

pus. To ameliorate this issue, we divided the hippocampus into genomically-1009

determined posterior and anterior subsections, created mean connectivity1010

maps for each, and used these mean connectivity maps to create a subtrac-1011

tion image representing differential functional connectivity between the two1012

poles of the hippocampus [28]. To determine a reasonable division between1013

anterior and posterior hippocampus, we created a split at every point along1014

the hippocampus skeleton. For each split, we classified samples as anterior1015

or posterior based on the position of the coordinate along the longitudinal1016

axis relative to the split. For each split, we next ran Logistic Regression,1017

entering sample class (i.e. anterior or posterior) as the dependent variable1018

and sample HAGGIS as the only independent variable. We then plotted1019

the classification accuracy at each split under the hypothesis that higher1020

anterior-posterior classification accuracy would suggest a more empirically1021

sound anterior-posterior division (Fig S4A). We defined the optimal ante-1022

rior and posterior cut points as i) local maxima in accuracy that ii) were at1023

least 3mm from both hippocampal poles and iii) captured at least 20 samples1024

for each side of the split. This lead to an anterior split point of y=108 (MNI:1025

-19) and a posterior point of y = 94 (MNI: -35). All samples in between were1026

removed. Results in the main text are reported using this split but, due to1027

the somewhat arbitrary nature of this analysis, results are also reported for1028

several other splits.1029

Once the anterior and posterior samples had been defined, a mean image1030

was made of the functional connectivity maps corresponding to each anterior1031

and posterior sample, respectively. The posterior map was then subtracted1032

from the anterior map. The resulting image represented relative functional1033

connectivity to the anterior hippocampus over the posterior hippocampus.1034

For each non-brainstem, non-cerebellum sample, a 5x5x5mm cube was drawn1035

around the MNI coordinate of the sample. The mean of rsfmri subtraction1036
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image values within the cube was calculated, and this value was used as1037

a measure of relative functional connectivity of the sample to the anterior1038

over posterior hippocampus. Finally, we ran a Pearson’s correlation between1039

this functional connectivity measure and the HAGGIS. A positive correlation1040

would indicate that brain regions with more genomic similarity to the anterior1041

or posterior hippocampus would be more likely to be functionally connected1042

to those regions, respectively. This analysis was performed using weights1043

from the model performed on the entire gene set, as well as weights from1044

models defined on individual gene sets.1045

We repeated this analysis using three other brain masks: i) All brain1046

regions; ii) All regions except cerebellum, brainstem and hippocampus; iii)1047

cerebral cortex only. In addition, we varied the radius of the cube drawn1048

around the sample coordinate between 1mm and 6mm. For completeness,1049

we performed the above analysis using each cube radius, with each mask,1050

and using many different splits – a total of 336 analyses. To ensure the1051

relationships between HAGGIS and rsfMRI connectivity were not born out1052

of chance, we performed a permutation test for each of the 336 conditions.1053

Specifically, the gene expression values for each sample were randomly shuf-1054

fled, and a correlation was run between the extracted rsfMRI connectivity1055

values and the shuffled gene expression values. This process was repeated1056

1000 times to create a null distribution, to which the observed value was1057

compared to establish an exact p-value.1058

We performed one final validation by applying diffusion map embedding1059

[36, 52] – a non-linear dimension reduction approach – to the hippocampal-1060

brain functional connectivity matrix. This approach summarizes variation in1061

hippocamus-brain connectivity into components or “gradients” [52], allowing1062

threshold-free representations of variation in hippocampus-brain functional1063

connectivity for each tissue sample. The whole-brain connectivity maps for1064

each sample (see above) were masked with a cortex-only mask (see above),1065

vectorized and concatenated into a Sample x Voxel matrix. A correlation1066

matrix was created from the transpose, generating a Sample x Sample simi-1067

larity matrix, which was reduced using diffusion map embedding with default1068

settings. We report the total variance in hippocampus-brain functional con-1069

nectivity explained by each gradient, as well as the r2 summarizing each1070

gradient’s relationship to sample location along the longitudinal axis, and1071

predicted sample location based on gene expression (proportionate to HAG-1072

GIS). We also report p-values, which are Bonferroni corrected for multiple1073

comparisons. We then selected the gradient with the greatest relationship to1074
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predicted sample location (i.e. HAGGIS), provided this relationship was sig-1075

nificantly stronger than that of other gradients, as measured using Steiger’s1076

tests [52]. For these select gradients, we also report this information with1077

sample location predicted using each of the gene Sets described above (Sec-1078

tion 2.2, 8.4).1079

Other studies have published examining genomic regulators of functional1080

connectivity [47, 54], and so we sought to understand what proportion of the1081

variance explained from the main analysis (shown in Fig 4A) was unique to1082

the HAGGIS rather than general network connectivity. We trained a cross-1083

validated PLS model to learn the genomic features predicting relative anterior1084

vs posterior connectivity to the hippocampus (i.e. the map in Fig 4A; see1085

subsection 8.10 below for details). We considered the 10-fold cross-validated1086

variance explained of this model to represent an estimate of the maximum1087

variance explainable given the present genomic data. We then represented1088

the variance explained of HAGGIS as a proportion of the overall variance1089

explainable given the genomic data (visualized in Fig 4C).1090

8.8. Comparisons with structural covariance1091

Structural covariance is thought to reflect shared cytoarchitecture and/or1092

developmental and degenerative trajectories between regions [2]. The ante-1093

rior and posterior hippocampus have shown different patterns of structural1094

covariance with the rest of the brain [39], and structural covariance appears1095

to be genetically determined to some extent [2]. Accordingly, we assessed1096

whether the differential structural covariance between different brain regions1097

and the hippocampus along its longitudinal axis is reflected by patterns of1098

genomic covariance.1099

Structural covariance was calculated using the OASIS: Cross-Sectional1100

structural (T1) MRI dataset [35], accessed with Nilearn (RRID:SCR 001362;1101

https://nilearn.github.io/). The OASIS images came preprocessed using the1102

SPM DARTEL pipeline [7]. 153 preprocessed gray matter volume images1103

were identified as healthy, cognitively normal young (age < 40) controls.1104

For each voxel corresponding to the MNI coordinates of an Allen Human1105

Brain Atlas hippocampus sample, a structural covariance vector was calcu-1106

lated between that voxel and all other brain voxels. Elements in the vector1107

represented Pearson correlation coefficients between voxel values across the1108

dataset of 153 individuals between the two regions. Anterior and posterior1109

hippocampus divisions identified in the previous analysis were used to divide1110

the covariance vectors, and the average covariance within anterior vectors1111
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and posterior vectors were calculated, respectively. The difference between1112

these vectors was calculated to create a map where each voxel contained1113

a value representing the relative structural covariance to the anterior over1114

the posterior hippocampus. The values strongly favored the anterior hip-1115

pocampus, so the map was z-scored, such that lower values represented less1116

structural covariance to the anterior hippocampus. Relationships between1117

HAGGIS and relative structural covariance were carried out in a manner1118

identical to the functional connectivity analysis described above, and were1119

repeated using different gene sets and brain masks. Similar to the functional1120

connectivity analysis, we calculated the variance explained by HAGGIS as a1121

proportion of the maximum variance explainable given the data (see previous1122

subsection).1123

As with the functional connectivity analysis, we used diffusion map em-1124

bedding to generate threshold-free measures (gradients) summarizing hippocampus-1125

brain structural covariance. For each sample, we calculated structural co-1126

variance between the voxel at the sample location and all other voxels falling1127

within in a cortical mask, creating covariance vectors. These vectors were1128

concatenated into a Sample x Voxel matrix, and reduced using diffusion map1129

embedding as described above (Section 8.7).1130

8.9. Comparisons with neurodegeneration in Alzheimer’s disease and fron-1131

totemporal dementia1132

Previous studies have noted the differential relationship of the hippocam-1133

pus to Alzheimer’s disease (AD) and frontotemporal dementia (FTD). We1134

tested whether regions more genomically similar to the anterior than poste-1135

rior hippocampus might be more vulnerable to neurodegeneration in FTD1136

than in AD (and vice versa). In April 2018, we queried our database look-1137

ing for patients who fulfilled the following criteria: i) Had available both a1138

[11C] Pittsburgh Compound B (PiB)-PET scan for β-amyloid and a [18F]1139

Fluorodeoxyglucose (FDG)-PET scan of brain glucose metabolism acquired1140

on the Biograph scanner; ii) Had either a clinical diagnosis of AD [37] and1141

a positive PIB-PET read, or a clinical diagnosis of FTD (either behavioral1142

variant FTD or semantic variant primary progressive aphasia, as described1143

in [38]) and a negative PIB-PET read. Note that This query resulted in 361144

AD and 39 FTD patients. Five patients were later excluded because of in-1145

complete FDG-PET SUVR (missing at least one of the 6 frames between 301146

and 60 min post-injection), resulting in a final count of 35 AD and 35 FTD1147
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AD FTD Test
Age at FDG:
mean (sd)

62.0 (8.8) 61.4 (8.7)
Cohen’s d = 0.07, p(t-test)=0.79,

p(MannWhitney)=0.82
Females: n (%) 12 (34%) 19 (54%) Fisher exact p=0.15

Years of education:
mean (sd)

16.1 (2.9) 16.3 (4.7)
Cohen’s d = 0.04, p(t-test)=0.88,

p(MannWhitney)=0.81
Dementia stage

(CDR≥1)
: n (%) 22 (63%) 17 (49%) Fisher exact p=0.34

CDR-SoB: mean (sd) 4.8 (1.9) 4.2 (3.2)
Cohen’s d = 0.25, p(t-test)=0.30,

p(MannWhitney)=0.31

Table 2: FDG = fluorodeoxyglucose; sd = standard deviation; CDR = Clinical Dementia Rating; CDR-
SoB = Clinical Dementia Rating, Sum of Boxes

patients. Demographic information can be found in Table 2. Note there is1148

no overlap between this sample and the sample described in [28].1149

All patients were seen at the at University of California, San Francisco1150

Memory Aging Center and imaged at the Lawrence Berkeley National Labs.1151

PET acquisition details can be found elsewhere [40]. FDG-PET images were1152

processed using SPM12 using a previously described pipeline [40]. Briefly,1153

six five-minute frames were realigned and averaged, and the average image1154

was coregistered onto patient specific anatomical T1-MRI scans. Standard1155

uptake value ratios (SUVR) were calculated using the pons (Freesurfer seg-1156

mentation of the brainstem with manual cleaning) as a reference region, and1157

SUVR images were warped to the MNI template using MRI-derived param-1158

eters. All 70 patients were entered into a voxelwise t-test controlling for1159

age and disease severity (Clinical Dementia Rating Sum of Boxes score) us-1160

ing SPM12, highlighting differences in glucose hypometabolism (a proxy for1161

neurodegeneration) between AD and FTD patients. The t-map from this1162

analysis was used for subsequent analyses, and is made available with this1163

publication (https://neurovault.org/collections/4756/).1164

For each non-brainstem, non-cerebellar sample, a 5mm diameter cube1165

was drawn around the sample’s MNI coordinates, and the mean t-value from1166

the t-map described above was extracted. This value represents the relative1167

neurodegeneration in FTD over AD in or around the region the sample was1168

extracted from. Across samples, a correlation was calculated between this1169

value and the sample’s HAGGIS. A positive correlation would suggest regions1170

more genomically similar to the anterior than the posterior hippocampus are1171
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more vulnerable to neurodegeneration in FTD than in AD. To ensure our1172

findings were not specific to the brainmask used or the size of the extraction1173

cube, we reran the analysis using each of the three additional masks described1174

in Section 8.7, as well as varying the diameter of the extraction cube. Finally,1175

permutation tests were run for each condition to compare our observations1176

to chance (see Section 8.7). As with the previous analyses, we ran these sets1177

of analyses across different gene sets.1178

8.10. Identifying candidate genomic regulators of brain-hippocampus interac-1179

tions1180

In sections 8.7, 8.8 and 8.9, we describe methods to uncover relationships1181

between HAGGIS and hippocampus-brain interactions. We wished to iden-1182

tify which specific genes were principally involved both in the organization1183

of the longitudinal axis of the hippocampus, as well as in the hippocampus-1184

brain interactions, further elucidating the role of the various genes identi-1185

fied in section 8.4 along the axis. For each hippocampus-brain interaction1186

map (visualized in Fig. 4A), we fit a partial least squares (PLS) regression1187

model with gene expression information as X and hippocampus-brain inter-1188

action value as Y, across all brain samples. As with the model described in1189

section 8.3, the X input was first transformed using principal components1190

analysis and represented as a set of genomic components. The model was fit1191

varying the number of PLS components (i.e. modes) between 1 and 10, and1192

using 10-fold cross-validation to assess model accuracy. The model with the1193

highest cross-validated explained variance was selected as the best model, and1194

was considered the maximum explainable variance given the genomic data1195

available, which was therefore useful to compare to the HAGGIS models1196

(see section 8.7 above). Note that the hippocampus itself was not included1197

in any of the models. For each of the three PLS models, feature weights1198

were backtransformed back into probe space (see section 8.3), and the top 501199

anterior and posterior associated features (i.e. with the highest and lowest1200

weights) were identified. Overlapping features between each model and the1201

hippocampus longitudinal axis model are reported. These features represent1202

genes that appear to be very important in predicting the location of tissue1203

samples in the hippocampus, but also in predicting interactions between the1204

hippocampus and other brain regions. To ensure this overlap did not occur1205

by chance, 1000 sets of 100 random probes were generated, and used to cal-1206

culate the probability of overlap between 100 random features and the 1001207

features from the the hippocampus longitudinal axis model.1208
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8.11. Comparisons with large-scale cognitive systems1209

The Neurosynth website contains 3D meta-analytic functional co-activation1210

maps from task-fMRI studies that are paired with sets of related topics1211

(words) extracted from the text of these studies. These topic-list/co-activation1212

map pairs are the result of a Latent-Dirichlet Allocation across 11,406 arti-1213

cles, the details of which can be found elsewhere [41]. In short, topic lists1214

represent words that are mentioned greater than chance (FDR<0.01) in pa-1215

pers reporting functional co-activation in given coordinates, summarized by1216

paired co-activation maps. All 100 (association/reverse inference) maps from1217

the set of 100 topic list/co-activation map pairs on the Neurosynth website1218

were downloaded and binarized such that all values above 0 were set to 1, and1219

all other values were set to 0. We manually labeled the topics according to1220

their hypothesized association with the AT-PM system [44] based on the con-1221

tent of the word list (AT/PM/Not associated) but without reference to the1222

spatial pattern of the co-activation. For each of the 100 binarized functional1223

meta-analytic co-activation maps, all samples with MNI coordinates falling1224

within the map were identified, and the mean HAGGIS of those samples was1225

calculated. Therefore, each topic/map pair had an associated value indicat-1226

ing the degree to which the brain regions involved expressed genes similar to1227

the anterior or posterior hippocampus. Higher values represented similarity1228

to the anterior hippocampus, lower values to the posterior hippocampus, and1229

higher absolute values represented greater genomic covariance. To increase1230

confidence in this approach, the main analyses were restricted only to maps1231

overlapping with at least 500 samples (29/100).1232

To help visualize these results, we created a word cloud summarizing1233

both the spatial (functional coactiviation) and topic (cognitive) information1234

associated with the anterior and posterior hippocampus respectively. For the1235

topic information, each topic-set contained 40 words arranged by importance1236

to the topic-set. Each word was given a value proportionate to its impor-1237

tance rank in its topic set (i.e. most important word valued at 40, least1238

important at 1). Next, the value of each word was multiplied by the average1239

HAGGIS within the binarized map paired to the word’s topic-set (i.e. the1240

bars in Fig 5), multiplied by 1000 to increase the weighting of this multiplier1241

proportionate to the within-set ranking. Therefore, each word had an asso-1242

ciated value, such that the highest values represented words most important1243

to topic/map pairs with the greatest HAGGIS, where multiple mentions in-1244

creased the value of the word. To summarize the spatial information, we1245

binarized each map and multiplied it by the average HAGGIS within the1246
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binarized map (i.e. the bars in Fig 5), and summed all maps, and smoothed1247

the image with a 4mm isotropic kernel. All voxels with positive values were1248

binarized into a mask, and this mask was used as constraint for the anterior-1249

hippocampus word cloud, inside which the top 100 words were visualized. All1250

voxels with negative values were binarized into a posterior mask used as a1251

constraint for the posterior-hippocampus word cloud. The word values were1252

repeated inverting the HAGGIS multipliers, and the top 100 words were vi-1253

sualized. The final image represents brain regions coactivated more with the1254

anterior vs posterior hippocampus, and the cognitive topics most associated1255

with those regions.1256

9. Supplementary Figures1257
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Supplementary Fig. S1: LASSO-PCR pipeline to predict the position of a tissue sample along the lon-
gitudinal axis of the hippocampus using gene expression. (A) The 170 (Sample) x 58,692 (probe) gene
expression matrix was first reduced using principal components analysis (PCA), such that each sample
had a singular value representing the loading onto each principal component. The principal component
matrix was used as the predictor (X) variable in the LASSO-PCR model. (B) The longitudinal axis of
the hippocampus was defined with a medial axis transform: 1) We start with a mask of the hippocampus,
which is resampled to 0.5mm space. 2) The mask is dilated by creating a chamfer map measuring distance
from the center of the hippocampus, extending out 10mm into a smooth hippocampus-shaped blob. 3)
An inverse chamfer map was created inside the blob, local minimum of the derivatives of this map were
computed. 4) These operations resulted in a hippocampus “skeleton”. 5) For each tissue sample (orange),
the closest hippocampus skeleton voxel (blue) was located, and the y-axis of this coordinate was used
as the position of the sample along the longitudinal axis, which was used as the dependent variable (Y).
(C) A sparse LASSO regression model fit the (reduced) gene expression data to position along the atlas,
with ten rounds of 10-fold cross-validation. Model weights were back-transformed to probe space. The
back-transformed weights were applied to the gene expression vectors of non-hippocampus samples to
the derive the HAGGIS, indicating genomic similarity to the anterior (positive) or posterior (negative)
hippocampus.
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Supplementary Fig. S2: Feature-explainer applied to different gene sets. The Random-Forest based feature
explainer was applied to different combinations of gene sets associated with position along the longitudinal
axis of the hippocampus. For each plot, the y-axis represents local feature importance, indicating the
degree to which, on average, perturbing the feature (probe) impacts individual model predictions. NR2F2
and RSPH9 consistently demonstrated the greatest importance when included in the model. Compared
to Set 1, feature explainers identified more features with less importance for Sets 2 and 3.
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Supplementary Fig. S3: Validating results with PLSR. To ensure previous findings were not a product
of algorithm choice, PLSR was fit to the gene expression data in order to predict position along the
longitudinal axis of the hippocampus. A 10-fold cross-validation suggested nine as the optimal number of
components. B Fitting the PLSR model to the data resulted in a similar r2 as the LASSO-PCR approach.
C The weights from the LASSO-PCR and PLSR models were highly correlated.
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Supplementary Fig. S4: Validation of rsfMRI connectivity results. (A) An anterior-posterior split of
the hippocampus was made at every y-coordinate along the hippocampal axis, and a Logistic Regression
with HAGGIS was performed to classify anterior from posterior hippocampus. Accuracy at each split is
visualized. The coordinates of the final split used for the analysis in the main text are indicated with
red dashed lines. (B) The analysis was performed across several additional splits, indicated on the x-
axis. The number of anterior and posterior samples included after each split are shown in orange and
blue, respectively. The splits move from more extreme to more central as the x-axis moves from left to
right. C The rsfmri analysis was repeated varying the radius of the extraction cube, the brain mask, and
the anterior/posterior split. The r2 of the correlation between HAGGIS and functional connectivity for
each condition is shown. Diffusion map embedding was used to summarize principal axes of whole-brain
functional connectivity (D) and structural covariance (E). Select gradients are correlated with the gene
expression pattern predicting longitudinal axis location. The gradients are rendered onto a hippocampus
surface, and expression of the gradient in whole-brain connectivity/covariance patterns is visualized. F
The r2 of relationships shown in C and D where the gene expression pattern is composed of different gene
sets.
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Supplementary Fig. S5: Cognitive meta-analysis when using all probes vs. top 100 probes. On the left is
a vertical reproduction of Fig 4F. On the right is the results of the exact same analysis, except calculating
the HAGGIS using only the top 100 probes, rather than all 58,692 probes. The pattern is remarkably
similar, especially as pertaining to the topics associated with the AT/PM system.
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Supplementary Fig. S6: Validation of FDG neurodegeneration results. The analysis comparing HAGGIS
to relative neurodegeneration in AD vs FTD was repeated using different extraction cube sizes and different
brain masks. The r2 for each condition is visualized
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