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Abstract

Epstein-Barr virus (EBV) infection is transmitted by saliva and is a major cause of
cancer in people living with HIV/AIDS as well as in the general population. To better
understand the determinants of oral EBV shedding we evaluated the frequency and
quantity of detectable EBV in the saliva in a prospective cohort study of 85 adults in
Uganda, half of whom were co-infected with HIV-1. Participants were not receiving
antiviral medications, and those with HIV-1 co-infection had a CD4+ T cell count >200
cells/mm3. Daily, self-collected oral swabs were collected over a 4-week period.
Compared with HIV-1 uninfected participants, co-infected participants had an increased
frequency of oral EBV shedding (IRR=1.27, 95% CI=1.10-1.47). To explain why EBV
oral shedding is greater in HIV-1 co-infected participants, we developed a stochastic,
mechanistic mathematical model that describes the dynamics of EBV, infected cells,
and antiviral cellular immune responses within the tonsillar epithelium, and examined
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parameter-specific differences between individuals of different HIV-1 infection statuses.
We fit the model to our observational data using Approximate Bayesian Computation.
After fitting, model simulations showed high fidelity to daily oral shedding time-courses
and matched key summary statistics. Examination of the model revealed that higher
EBV loads in saliva are driven by B cell activation causing EBV lytic replication in the
tonsils, in combination with a less effective EBV-specific cellular immune response.
Thus, both these factors contribute to higher and more frequent EBV shedding in HIV-1
co-infected individuals compared to HIV-1 uninfected individuals. These conclusions
were further validated by modelling daily oral EBV shedding in a 26-participant North
American cohort. Our results provide insights into the determinants of EBV shedding
and implicate B cell activation to be a potential therapeutic target to reduce EBV
replication in HIV-1 co-infected individuals at high risk for EBV-related malignancies.

Author summary

Epstein-Barr virus (EBV) is a ubiquitous infection worldwide. Infection with EBV is
associated with the development of several kinds of cancer, including B cell lymphoma
and nasopharyngeal carcinoma. Rates of EBV replication and disease are higher in
individuals who are also infected with HIV-1. HIV-1 infection is associated with
increased B cell activation, which is known to induce EBV reactivation, as well as
immunodeficiency resulting from loss of T cells. However, whether these factors
contribute to higher rates of EBV replication during co-infection, and by how much, was
unknown. We analysed oral EBV shedding data in a cohort of adults from Uganda that
were chronically infected with EBV. We found that participants that were HIV-1
infected were much more likely to have detectable quantities of EBV in their saliva.
Also, when detected, the quantity of EBV present in the saliva was usually higher in
HIV-1 infected participants. To better understand these findings, we developed a
mathematical model to describe the dynamics of EBV, EBV-infected cells, and the
cellular immune response within the tonsils. By rigorously matching our model to our
participant data, we determined that high EBV loads in saliva are caused by high rates
of infected B cell activation, as well as worse cellular immune control of EBV infection.
These results provide an explanation of the impact of HIV-1 on EBV infection. Further,
they suggest that strategies that suppress B cell activation may prevent EBV-related
malignancy in people who are also infected with HIV-1.

Introduction 1

Epstein-Barr virus (EBV) infection is associated with the development of approximately 2

200,000 malignancies per year, including B cell lymphomas and nasopharyngeal 3

carcinoma [1]. The risk of EBV-associated malignancies is significantly higher in people 4

co-infected with HIV-1. For example, risks of non-Hodgkin lymphoma in the U.S., an 5

AIDS-defining cancer, are 10-fold higher in HIV-1 infected individuals than the general 6

population [2]. Individuals with EBV/HIV-1 co-infection tend to have higher EBV viral 7

loads in saliva and blood [3–5]. Uncovering the mechanisms by which HIV-1 impairs 8

control of EBV infection may provide clues relevant to prevention of EBV-related 9

disease as well as insights into basic EBV pathobiology. 10

EBV is primarily transmitted via saliva, and infection is nearly universal, occurring 11

during early childhood in developing countries and by young adulthood in highly 12

developed countries [6–8]. During primary infection, it is thought that EBV first infects 13

oral epithelial cells overlying the lymphoid tissue known as Waldeyer’s ring [9]. This 14

area consists of the tubal, adenoid, palatine and lingual tonsils [9]. Infected epithelial 15

March 19, 2019 2/30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587063doi: bioRxiv preprint 

https://doi.org/10.1101/587063
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells produce large numbers of infectious virions [10], facilitating latent infection of 16

näıve B cells in the underlying lymphoid tissue. EBV drives these näıve B cells to 17

mature into resting memory B cells and circulate throughout the body, through the 18

expression of only a small number of latent gene products [11,12]. Viral shedding is 19

highest during primary EBV infection but remains frequent throughout chronic 20

infection [5]. During chronic infection, B cells latently infected with EBV can return to 21

Waldeyer’s ring, encounter cognate antigen, and become activated to mature into 22

plasma cells, triggering lytic reactivation and production of infectious virions [13–15]. 23

This process initiates a new round of epithelial infection in the tonsils and viral 24

shedding in the saliva. Increased EBV shedding with HIV-1 co-infection may be due to 25

more frequent reactivation of EBV-infected B cells, and thus increased viral seeding of 26

oral tissue, and/or impaired T cell-mediated immune control of EBV replication, 27

prolonging or inhibiting the clearance of infected epithelial cells [16–18]. 28

The dynamics of chronic herpesvirus infections in humans have been elucidated by 29

longitudinally sampling mucosal surfaces and blood, revealing the patterns of latency, 30

reactivation, and dissemination, as well as giving insight into viral pathogenesis and 31

host-pathogen interactions [19,20]. While several studies have examined EBV mucosal 32

shedding patterns in HIV-1-infected persons [5, 21–25], the majority have been in the 33

setting of advanced HIV-1 infection or in persons receiving highly active antiretroviral 34

therapy (HAART) [23–25]. The mechanisms by which co-infection with HIV-1 35

significantly increases viral loads in saliva have not been explained in part due to the 36

requirement for frequent quantitative measures of shedding amenable to mathematical 37

modelling [23–25]. Previous mathematical models have examined the within-host 38

dynamics of EBV infection, developing quantitative descriptions of how infected cells, B 39

cells, antibodies, virus, and T cells interact, and determining biologically relevant 40

parameter values for the rates at which infection dynamics occur in the tonsillar 41

epithelium [10,26–30]. However, none have examined the differences between EBV 42

shedding in HIV-1 co-infected and HIV-1 uninfected individuals. In this study, we 43

analysed rich oral EBV shedding data from a cohort of Ugandan adults with or without 44

HIV-1 co-infection and constructed a mechanistic mathematical model to identify the 45

determinants of EBV replication. 46

Results 47

HIV-1 infection is associated with increased frequency and 48

quantity of oral EBV shedding 49

Among this cohort of 85 participants, a total of 2264 daily oral swabs were collected, 50

with a median of 29 swabs per participant (range 1-32). 43 (51%) participants were 51

HIV-1 seropositive. Additional details of the cohort have been previously published [31], 52

and other data from the cohort, including EBV loads in genital swabs and plasma 53

samples, can be found in the Supporting Information. We began our analysis by first 54

examining whether HIV-1 infection status affects the frequency of EBV detection in the 55

saliva. We found that HIV-1 infection was significantly associated with EBV detection 56

in oral swabs, increasing the frequency of observation 1.27-fold (CI = 1.10-1.47, p-value 57

= 0.001, Fig 1A) and increasing the median quantity of EBV detected in oral swabs by 58

1 .61 log10 genome copies (CI = 1.29-1.93, p-value <0.001, Fig 1B). We also saw large 59

variability in participant viral loads over time (Fig 1C). In HIV-1 uninfected 60

participants, the median percentage of swabs positive for EBV was 86% (range 0-100%, 61

interquartile range (IQR) 33%) while in HIV-1 co-infected participants the median 62

percentage of swabs positive for EBV was 100% (range 27-100%, IQR 0%). Of swabs 63

that tested positive for EBV, viral loads varied over time by a median of 3.49 orders of 64
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magnitude (range 0.34-5.27, IQR 1.32) within individual HIV-1 uninfected participants 65

and a median of 2.30 orders of magnitude (range 0.95-5.93, IQR 1.15) within individual 66

HIV-1 co-infected participants. 67

The effect of CD4+ T count and HIV-1 plasma RNA levels on 68

oral EBV shedding in HIV-1 co-infected individuals 69

We next analysed how CD4+ T cell counts and HIV-1 plasma RNA levels impacted the 70

frequency of EBV detection in oral swabs of HIV-1 infected participants (Table 1). 71

CD4+ T cell count significantly affected the frequency of EBV detection in oral swabs. 72

Each additional 100-cell increase in CD4+ T cells/mm3 was associated with a 5% 73

reduction in the odds of EBV detection. This is consistent with cell-mediated immunity 74

conferring partial but incomplete control of EBV replication. We found no significant 75

association between HIV-1 viral load in plasma and the frequency of EBV detection in 76

saliva. 77

Table 1. Effects of plasma HIV-1 load and CD4+ T cell count on the
frequency of EBV detection. The effects of each 100-cell increase in CD4+ T
cells/mm3 and each log10 increase in HIV-1 RNA on the incidence rate ratio (IRR) of
EBV detection, their confidence intervals (CI) and their p-values are shown.

Trait IRR 95% CI p-value

HIV-1 RNA 1.04 0.98-1.12 0.201
CD4+ T cell 0.95 0.92-0.99 0.008
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Fig 1. Impact of HIV-1 infection on EBV detection A. Percentages of saliva samples that tested positive for EBV for
each participant stratified by HIV-1 status. Black dots indicate the percentage of samples that tested positive for EBV when
pooling participant samples. B. Median EBV viral loads/ml in oral swabs testing positive for EBV for each participant
stratified by HIV-1 status. C. Distributions of participants’ oral swab viral loads. Each box and whisker represents the viral
loads of EBV-positive oral swabs for an individual participant. The percent of oral swabs that tested positive for EBV for
each participant is indicated by the colour of the box. The red horizontal line represents the threshold of EBV detection (150
EBV copies/ml).
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Mathematical Model of EBV Shedding in the Tonsils 78

To obtain mechanistic insights into chronic oral EBV shedding and to better understand 79

the drivers of lytic replication and transmission, we constructed a mathematical model 80

that captures the relevant anatomic, virologic and immunologic features of oral EBV 81

infection. In chronically infected individuals, EBV is shed in all areas of Waldeyer’s ring 82

including the palatine, lingual, tubal tonsils and adenoids [9]. Most of the tonsillar area 83

is composed of stratified squamous epithelium or ciliated pseudostratified columnar 84

epithelium, arranged into a series of crypts or folds, allowing for a large surface area [32]. 85

The epithelium is often only one cell thick where EBV can transcytose to reach the 86

underlying lymphoid tissue where B cells and germinal centres are found [33]. The 87

palatine tonsils have an estimated surface area of 295 cm2, arranged into approximately 88

20 crypts [32], while the lingual tonsil area is composed of 35-100 crypts, and the 89

adenoids are composed of a series of folds in lymphoid tissue [34]. By estimating that 90

each palatine tonsil is approximately 1
12 of the entire surface area of Waldeyer’s ring, a 91

series of 240 crypts, each serving as sites where EBV infection may occur, can represent 92

the entire region. We assumed that the dynamics of each crypt are independent from 93

each other and explicitly modelled the dynamics of infected epithelial cells, the immune 94

response, and viral load within each crypt. 95

The dynamics within each crypt are shown in Fig 2. All parameters were assumed to 96

remain constant over the course of study, with some varying between participants to 97

account for differences in EBV shedding and HIV-1 infection status. We assumed that 98

latently infected B cells reactivate and infect the epithelium at a constant rate b. 99

Infected epithelial cells, I, infect other epithelial cells through cell-to-cell contact at a 100

constant per-capita rate β. As the total number of cells within a single crypt is large in 101

comparison to the expected number that can become infected with EBV, we assumed 102

that target cell number is not limiting. Epithelial infection causes the recruitment and 103

proliferation of EBV-specific cytotoxic T cells, T , at a per-capita rate θI. Cytotoxic T 104

cells kill infected epithelial cells following the law of mass action at a rate fIT . We 105

assumed that cytotoxic T cells die or leave the tonsils at a per-capita rate δ. 106

Independent of infection, we assumed a constant number of EBV-specific cytotoxic T 107

cells, α, are tissue-resident. Like T , these cells can kill infected epithelial cells and 108

stimulate the proliferation of new EBV-specific cytotoxic T cells; however, while 109

population T leaves the system over time, these tissue-resident T cells remain within the 110

tissue and do not recirculate. This means there are always immune cells present to 111

respond to new infection and tissue is never entirely unprotected, allowing for faster 112

control of infection. EBV virions, V , are produced by infected epithelial cells, enter 113

saliva for at a per-capita rate p and are cleared at a per-capita rate c. In this model, we 114

assumed the main contributors to virus in the saliva are infected epithelial cells and 115

thus we did not directly model virions produced by infected B cells [10]. With the 116

propagation of EBV infection shown to be 800-fold more efficient through cell-to-cell 117

contact rather than through free virus, we also chose to assume all new epithelial cell 118

infection is caused by cell-to-cell contact [10,35]. 119

The concentration of EBV detected in the saliva of participants was highly variable, 120

and frequently undetectable. Therefore, we chose to implement our model in a 121

stochastic framework in order to capture these traits (Methods). Our model 122

assumptions were used to build a chemical master equation system [36] that describes 123

all system reactions within a single crypt, as follows: 124
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I → I + 1 with rate b+ βI (1)

I → I − 1 with rate fI(T + α) (2)

T → T + 1 with rate θI(T + α) (3)

T → T − 1 with rate δT (4)

V → V + 1 with rate pI (5)

V → V − 1 with rate cV. (6)

Fig 2. Description of single crypt dynamics. Waldeyer’s ring is represented as a
series of 240 individual crypts in which infection dynamics occur. Within each crypt,
the population dynamics of infected epithelial cells (I), cytotoxic T cells (T) and EBV
(V) are described. The salivary viral load is represented by the total viral load
aggregated across all crypts.

Basic model analysis 125

To understand how the different parameters of our mathematical model affect simulated 126

EBV shedding in saliva, we first conducted a literature review to find previously 127

estimated or measured values of our parameters (Table 2). We then performed a simple 128

univariate analysis to evaluate how changes in these parameters influence the 129

characteristics of model simulations. The starting set of parameters was chosen based 130

on current estimates in the literature; we then performed multiple model simulations, 131

varying each parameter in turn over 4 orders of magnitude to observe how sensitive the 132

model is to these changes (Fig 3). Since we observed large variability in the viral loads 133

of different cohort participants (Fig 1C), our aim was to select a fixed set of parameters 134
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that would allow for the generation of a wide range of viral loads. Increases in 135

parameter b or δ increased the median viral load of our model simulations; however, the 136

maximum viral load remained stable. In contrast, β appeared to control the maximum 137

viral load reached in simulations, with higher β values causing higher viral loads and 138

larger variance in the viral load. Parameters f , α, and θ, all governing the strength of 139

the cellular immune response, appeared to have similar effects on the simulation, all 140

causing comparable decreases in viral loads as the magnitude of the parameter 141

increased. Intuitively, increases in parameter p, governing the viral burst size, increased 142

the viral loads in simulations. Low viral loads and periods of viral extinction (as seen in 143

many HIV-1 uninfected participants) were uncommon with higher values of p. Thus, 144

these higher values of p are improbable. Lastly, increases in parameter c reduced the 145

viral loads and increased the variance. From this analysis, we chose our fixed parameter 146

values to be β = 50 , f= 0.1, α = 200, δ = 0.1, p = 104, and c = 6, which generally 147

agreed with published estimates. We allowed b and θ to vary during fitting as these two 148

parameters are the most likely to be affected by HIV-1 infection status. 149
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Fig 3. Evaluation of individual model parameters. Each parameter of the
model was examined to determine how it influences the simulation of oral viral shedding
over time. Parameters were varied one at a time over 4 orders of magnitude while
keeping all others constant, and 100 simulations were run for each parameter set. Viral
quantity over time is shown; 25-75% quartiles are shown in dark blue while 0-100%
quartiles are show in light blue. When not varying, b = 0.01, β = 50, f = 0.1, α = 200,
θ = 0.001, δ = 0.1, p = 104, and c = 6.

Table 2. Parameter values used in the model. Parameters that remained fixed
throughout cohort data fitting were chosen based on published values and univariate
analysis. ∗ The discrepancy between the published and model values for parameter β is
due to previous models separately accounting for infection due to cell-free virus. ∗∗ The
discrepancy between the published and model values for parameter δ is due to previous
models not accounting for tissue-resident cytotoxic T cells as a separate population.

Parameter Units Description
Published
Values

Model
Values

b cell day−1

rate of B cell
reactivation causing
new lytic epithelial
infection

-
fitted,
see text

β day−1
per-capita rate of
cell-to-cell infection

1.6
[37]

50∗

f day−1 cell−1

per-capita death rate
of infected epithelial
cells due to the effect
of cytotoxic T cells

1.8× 10−9−
0.2

[27,38,39]
0.1

α cell
number of tissue-
resident cytotoxic T
cells

- 200

θ day−1 cell−1

per-capita proliferation
rate of cytotoxic T
cells dependent on the
number of infected
epithelial cells

-
fitted,
see text

δ day−1
per-capita death rate
of cytotoxic T cells

9.5× 10−3

[27, 40]
0.1∗∗

p
virion day−1

ml−1 cell−1

production rate of
EBV virions by
infected epithelial
cells

102 − 105

[10, 27]
104

c day−1
per-capita clearance
rate of EBV virions

2
[27,41]

6
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Mathematical model fits clinical data well and simulates oral 150

shedding data with high fidelity 151

We fit our mathematical model to each participant’s data using Approximate Bayesian 152

Computation (ABC). As our model is stochastic, this fitting process involved finding 153

parameter values that produced simulations with similar summary statistics to the data 154

rather than simulations that directly matched the curve of the data. The traits of each 155

participant were captured using five summary statistics: the percentage of EBV-positive 156

swabs, the median, maximum, and variance of detectable viral loads, and the number of 157

peaks in viral load, a peak being defined as when the directly preceding and following 158

time points have lower viral loads. The goodness of fit was assessed by the statistic ρi,j , 159

which is defined as 160

ρi,j =
1

5

5∑
k=1

|Di,k − D̂j,k

Di,k
| (7)

for participant i and parameter set j. Here Di,k is the kth summary statistic for the 161

data of participant i and D̂j,k is the kth summary statistic for simulations using 162

parameter set j. Lower ρ values indicate a better fit between the model simulation and 163

the data. Full details are given in the Methods. Examples of 4 participants’ shedding 164

data and model simulations with ρ values varying between 0.1 and 0.7 are shown in Fig 165

4. At these low ρ values, all simulations capture the summary statistics of the 166

participants quite well, but a general improvement in fit quality is apparent as ρ 167

approaches 0.1. 168

Fig 4. Comparison of EBV shedding patterns in Ugandan cohort participants and model simulations. The
EBV shedding patterns of four representative participants are shown. Participants A and B are uninfected with HIV-1 while
participants C and D are co-infected with HIV-1. Model simulations that fit these data with varying success (ρ = 0.1, 0.3, 0.5,
0.7) are shown. Lower ρ values indicate a better fit to the summary statistics of the data. The horizontal grey line indicates
the threshold of detection (150 EBV copies/ml) when measuring EBV loads in participant saliva samples.
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Among all 85 participants’ data, we were able to fit parameters to 82. Of the 3 169

participants whose data could not be fit, 2 participants had no EBV detected in any of 170

their saliva swabs, and 1 participant had only 1 swab taken. Fig 5 shows the 171

distribution of ρ values (Equation 7) calculated for 1000 optimal parameter sets for each 172

participant that was fit by the model. The ρ values accepted during fitting ranged 173

between 0.002 and 0.558, indicating that accepted model fits matched the data at least 174

as well as the examples shown in Fig 4. In general, our model fits were slightly better 175

for participants with a high median viral load. Using generalized estimating equations 176

(GEE), and assuming a Gaussian distribution for ρ values, we found that each log10 177

decrease in a participant’s median viral load increased ρ by 0.051 (95% CI =0.039-0.063, 178

p-value< 0.001). 179

Fig 5. Goodness of fit of mathematical model to participant data. Datasets from 82 study participants were fit by
our mathematical model. Each participant’s dataset is represented by 1000 parameter sets that best fit model simulations to
the data. Goodness of fit for each parameter set is measured by a ρ value as defined in Equation 7. Boxes indicate the
interquartile range and whiskers indicate the 95% range. Lower values indicate a better fit between the data and the model.
The colour of the box indicates the median EBV viral load detected in the saliva of that participant.

Sensitivity analysis of the fitted model 180

After fitting our model to data (Methods), we performed a sensitivity analysis to 181

confirm that we chose suitable values for the parameters that remained fixed 182

throughout the fitting process. Parameters b and θ were fixed at their fit values, while 183

those that had remained fixed during fitting were varied over two orders of magnitude. 184

A simulation was run for each new set of parameters and the goodness of fit was 185

compared to the original. Results are shown in Fig 6. In all cases and for all 186

participants, the median ρ value generated from parameter sets was higher and, 187

therefore, a worse fit than our fixed parameter choices, providing confidence that the 188

values chosen for our fixed parameters provided a consistently good fit. 189
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Fig 6. Sensitivity analysis of fit parameters. For the 1000 parameter sets
selected by the ABC fitting algorithm for each participant, we varied parameters β, f ,
α, δ, p, and c (the parameters that remained fixed during fitting) over two orders of
magnitude to observe whether changes in these values could have improved the model
fit. Each parameter was set to equal 0.1 and 10 times the value it was set to during
fitting and one simulation of each new parameter set was performed. The median
factor-change in the resulting ρ value for each participant is shown on the y-axis. In all
cases, the new parameter values led to worse fits (factor change in ρ exceeded one).

High EBV viral loads are caused by large numbers of actively 190

infected crypts 191

When examining the model-predicted viral dynamics in simulated individuals, we 192

noticed that high viral loads in the saliva were caused by multiple crypts actively 193

producing virus at the same time (Fig 7). Using importance sampling (Methods) on the 194

results of our ABC fitting algorithm, we achieved a representation of how the number of 195

actively infected crypts and the amount of virus produced by these crypts differ among 196

individuals stratified by HIV-1 infection status. 197

The distributions for the median number of crypts HIV-1 co-infected and HIV-1 198

uninfected individuals have over time are shown in Fig 7A. Over time, an HIV-1 199

co-infected person will have a higher median number of actively infected crypts than an 200

HIV-1 uninfected person with probability 0.68 (Fig 7A). While these distributions vary 201

greatly (IQR of 1 and 4 for HIV-1 uninfected and HIV-1 co-infected individuals 202

respectively), over time HIV-1 uninfected persons are expected to have a median of 1 203
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crypt within their tonsils actively producing virus, while HIV-1 co-infected individuals 204

are expected to have 2. These results match well with previous estimates that indicate 205

individuals have ≤ 3 independent plaques of oral epithelial infection at any given 206

time [10]. Infected crypts within an HIV-1 infected individual are also shown to produce 207

more virus. Over time, an HIV-1 co-infected individual is expected to have a higher 208

median viral load within their actively infected crypts than an HIV-1 uninfected 209

individual with probability 0.65 (Fig 7C). Our simulations predict a median of 798 EBV 210

DNA copies per active crypt in HIV-1 co-infected individuals and 389 EBV DNA copies 211

per active crypt in HIV-1 uninfected individuals. These distributions again vary greatly, 212

leading to overlap (IQR of 753 and 1472 for HIV-1 uninfected and HIV-1 co-infected 213

individuals respectively). The overlap between the distributions of traits for HIV-1 214

co-infected and HIV-1 uninfected individuals implies that HIV-1 status alone does not 215

determine a distinct phenotype. Thus, we chose to also examine the behaviour of traits 216

when stratifying our simulations according to participants’ median viral loads in the 217

saliva. Higher median EBV viral loads detected in saliva correlate well with higher 218

numbers of actively infected crypts (Fig 7B) and higher viral loads per actively infected 219

crypt (Fig 7D). Together, these results indicate that high EBV loads in the saliva are 220

caused by more frequent and extensive infection in tonsillar crypts. 221
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Fig 7. Predicted numbers of active crypts and viral load per active crypt. Distributions of the median number of
crypts actively producing EBV (A and B) and the median EBV viral load produced by an active crypt at any given time (C
and D) are shown stratified by participant HIV-1 status and EBV median viral load in the saliva. Increases in median
salivary EBV viral load are caused by a higher number of crypts having active (B), and more extensive (D) infection. This
trend translates to HIV-1 co-infected participants having more infected crypts infected, and each infected crypt producing
more virus. Bars above boxplots indicate the probability that a randomly selected individual of one group has a higher
parameter value (be it number of active crypts or viral load/active crypt) than a randomly selected individual in a second
group. Arrows show the direction of comparison. We see that HIV-1 uninfected individuals usually have more actively
infected crypts and more virus per active crypt than HIV-1 co-infected individuals. Similarly, we see that individuals with
higher median viral loads in their saliva usually have more actively infected crypts and more virus per active crypt than
individuals with lower median viral loads.
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Greater oral EBV shedding in HIV-1 co-infection is due to 222

increased B cell reactivation and weaker cellular immune 223

response 224

We next looked at parameter-specific differences between individuals of different 225

infection status groups and determined distributions for parameters b (rate of B cell 226

reactivation causing new lytic epithelial infection) and θ (rate of EBV-specific cytotoxic 227

T cell proliferation and recruitment). Parameter distributions stratified by HIV-1 228

infection status and median EBV viral load in saliva are shown in Fig 8. While these 229

distributions display substantial variability and overlap, changes in both b and θ 230

account for the the generally higher EBV viral loads observed in the saliva of HIV-1 231

co-infected individuals. HIV-1 co-infected individuals appear to have higher rates of B 232

cell reactivation. The median value of b was found to be 2.9 times higher in HIV-1 233

co-infected individuals, equalling 0.007/day in HIV-1 uninfected individuals (IQR for b 234

of 0.01) and 0.02/day in HIV-1 co-infected individuals (IQR for b of 0.04). Together, 235

these distributions indicate that an HIV-1 co-infected individual will have a higher b 236

value than an HIV-1 uninfected individual with probability 0.76. HIV-1 co-infected 237

individuals also appear to have lower rates of EBV-specific cytotoxic T cell immune 238

response. The median value of θ was 19.7 times lower in HIV-1 co-infected individuals, 239

equalling 3.1× 10−4 in HIV-1 co-infected individuals (IQR for θ of 0.04) and 6.1× 10−3 240

in HIV-1 uninfected individuals (IQR for θ of 0.001). Together these distributions 241

indicate that an HIV-1 co-infected individual will have a lower θ value than an HIV-1 242

uninfected individual with probability 0.74. We also note that, in general, increases in 243

median EBV viral load in saliva correlate with increases in the rate at which B cell 244

reactivation occurs and causes infection (b). Similarly, there is an inverse correlation 245

between the strength of the EBV-specific cytotoxic T cell immune response (θ) and the 246

median viral load (Fig 8B and 8D). 247

We also sought to quantify the correlation between b and θ (Fig 9). When looking at 248

within-group correlation of participants with similar median viral loads, b and θ have 249

moderate positive correlation (R = 0.22, 0.42, 0.36 and 0.71 for increasing viral load 250

groups), indicating that b and θ can counter-balance to cause similar viral loads. 251

However, when observing all data, b and θ are moderately negatively correlated (R = 252

0.45), indicating the highest viral loads are found in individuals whose parameters 253

feature high b and low θ values. 254
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Fig 8. Distribution of parameters b and θ, stratified by HIV-1 status and median EBV viral load in saliva.
Fitting our mathematical model to participant data revealed that parameter b is usually greater in HIV-1 co-infected
participants (A) and increases with median EBV viral load (B), and parameter θ is usually lower in HIV-1 co-infected
participants (C) and decreases with median saliva EBV viral load (D). Bars above boxplots indicate the probability that a
randomly selected individual of one group has a higher parameter value (be it b or θ) than a randomly selected individual in a
second group. Arrows show the direction of comparison.
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Fig 9. Correlation between parameters b and θ. Obtained densities of
parameters b and θ are plotted, stratified by median oral EBV viral load group. As b
and θ have opposite effects on viral load, positive correlations are seen within each
group (grey lines). However, across all participants, b and θ are negatively correlated
(blue line).

We next examined whether rates of B cell reactivation and cellular immune response 255

could be predicted by the CD4+ T cell count and HIV-1 plasma viral load in HIV-1 256

co-infected participants. A generalized linear model (Methods) revealed that each log10 257

increase in HIV-1 RNA copies/ml significantly decreased the value of θ but did not 258

significantly affect b. However, each 100-cell/mm3 increase in CD4+ T cell count 259

significantly changed the value of θ and b, increasing θ and decreasing b (Table 3). 260
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Table 3. Effect of CD4+ T cell count and HIV-1 load on parameters b and
θ. In HIV-1 co-infected participants, median values of parameters b and θ are influenced
by the CD4+ T cell count and HIV-1 plasma viral load. The fold-change (FC) in the fit
b and θ values, for every log10 increase in HIV-1 RNA copies/mL and every 100 CD4+
T cell/mm3 increase is shown.

Trait FC 95% CI p-value

θ
HIV-1 RNA 0.16 0.06-0.42 <0.001
CD4+ T cell 1.84 1.05-3.22 0.040

b
HIV-1 RNA 1.21 0.89-1.63 0.226
CD4+ T cell 0.80 0.69-0.92 0.004

Application of our model to a distinct data set from a North 261

American cohort 262

To test it’s generalizability, we applied our model to a previously described set of data 263

from a cohort of 26 participants in Seattle, Washington, who underwent daily oral EBV 264

sampling and testing using the same methods as the Ugandan cohort described 265

above [22]. A total of 1323 swabs were collected during the 8-week period of the study, 266

with a median of 55 swabs per participant (3-61 swabs). 16 (62%) of these participants 267

were HIV-1 co-infected and if on HAART were required to remain on a stable regimen 268

throughout the study. None were receiving other antiviral drugs at the time of 269

enrollment. While the objective of the Seattle study was to analyse the effects of 270

valganciclovir on daily EBV oral shedding, we restricted our analysis to the data from 271

the eight-week period when participants received placebo. 272

Participants of the Seattle cohort showed significantly lower oral EBV viral loads 273

than those of the Uganda cohort. Given a positive swab, HIV-1 uninfected, EBV 274

shedding participants had a mean of 1.4 log10-lower EBV viral load, while HIV-1 275

co-infected, EBV shedding participants had a mean of 2.0 log10-lower viral load with 276

p-values<0.001 for both cases. Nonetheless, both sets of data serve as good 277

representations of EBV shedding in the saliva and we expect the host-pathogen 278

interactions occurring within the tonsils to be the same. Our mathematical model fit 279

the data again with high fidelity (Fig S3 in Supporting Information) and produced 280

similar results in terms of the number of infected crypts (Fig S4A and S4B in 281

Supporting Information), virus produced by crypts (Fig S4C and S4D in Supporting 282

Information), and the values for parameters b and θ when stratified by HIV-1 status 283

and median EBV load (Fig S5 in Supporting Information). Full details are given in the 284

Supporting Information. Overall, we find that our modelling approach and findings 285

from the Uganda cohort are strongly supported by analysis of the Seattle cohort data. 286

Discussion 287

By modelling the replication patterns of EBV in saliva in HIV-1 co-infected and 288

uninfected individuals, we were able to evaluate the potential mechanisms that explain 289

why persons with HIV-1 have worse EBV infections and are more susceptible to 290

EBV-related malignancies. Specifically, our model indicates that increased oral EBV 291

shedding with HIV-1 co-infection is due to greater reactivation of EBV-infected B cells 292

as well as impaired EBV-specific cytotoxic T cell immune control. 293

It has been previously reported that persons infected with HIV-1 have higher oral 294

EBV shedding than HIV-1 uninfected individuals [3, 4, 23–25,42, 43]. However, few data 295

sets allow detailed representation of the dynamics of oral EBV shedding in HIV-1 296

March 19, 2019 19/30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587063doi: bioRxiv preprint 

https://doi.org/10.1101/587063
http://creativecommons.org/licenses/by-nc-nd/4.0/


co-infected and uninfected participants over time. We also found that HIV-1 infection 297

was associated with a significantly increased frequency and quantity of oral EBV 298

shedding. There was also a statistically significant association between higher CD4+ T 299

cell counts and a lower frequency of EBV shedding in HIV-1 co-infected participants. 300

B cell activation and plasma cell differentiation have been shown to induce EBV 301

reactivation and lytic replication [12]. Furthermore, it is clear that HIV-1 infection is 302

associated with increased levels of B cell activation [18,44]. As such, we hypothesized 303

that, in addition to impaired cellular immune control of EBV infection, an increase in 304

EBV reactivation from latently-infected B cells in HIV-1 co-infected individuals 305

contributes to higher levels of oral EBV replication. This prompted us to develop a 306

mathematical model to describe the dynamics of virus, infected cells, and the cellular 307

immune response within the tonsillar epithelium. We then fit this model to participant 308

data, seeking to determine the drivers of these differences. 309

While previous mathematical models have examined the within-host dynamics of 310

EBV infection [10,26–29], none have examined the differences between HIV-1 infected 311

and HIV-1 uninfected individuals [38,45–47]. Strengths of our approach include the 312

incorporation of granular quantitative EBV shedding measurements from two 313

independent cohorts, each made up of HIV-1 co-infected and uninfected individuals, and 314

the availability of CD4+ T cell counts and HIV-1 plasma viral load data from 315

co-infected participants. Limitations include the lack of data on EBV-specific T cell 316

responses and direct measures of B cell activation in these individuals. 317

Our mathematical model was based on representing the tonsillar epithelium as a 318

series of crypts, each serving as a potential site of epithelial infection and viral shedding. 319

In this way, a single tonsillar crypt behaves similarly to how individual herpes simplex 320

virus (HSV)-2 lesions have been modelled in the past, with reactivation of EBV-infected 321

B cells being analogous to the release of HSV-2 from infected neurons, sparking new 322

epithelial lesions [38, 45–47]. These previous models all captured the stochastic patterns 323

of HSV-2 shedding well, which appear similar to the patterns of oral EBV shedding. 324

Our model assumes that all tonsillar crypts are independent from one another. In 325

reality, virus from one infected crypt may spill over and seed infection in a neighbouring 326

crypt, rather than EBV entering an uninfected crypt purely via the reactivation of B 327

cells as we assume in our model. By not accounting for this, our predicted B cell 328

reactivation rates are likely higher than their true biological values. However, assuming 329

the amount of viral spill-over into neighbouring crypts is proportional to the viral load, 330

our qualitative comparison remains valid. Furthermore, modelling the tonsillar crypts as 331

multiple, segregated sites of infection was essential for simulating the high variability in 332

viral load seen over time in cohort data. In simulations without this spatial separation, 333

viral loads and levels of immune surveillance within an individual often equilibrated over 334

time and no longer matched the stochastic nature of participant data. This result 335

indicates that while virus and immune cells may travel between crypts, this effect is 336

likely minimal. While a fully-spatial model including the mobility of virus and immune 337

cells throughout the tonsils would be ideal, it could only be parameterized speculatively, 338

and would be computationally intensive. Our intermediate strategy of a crypt-level 339

simulation is simple enough to be computationally feasible but complex enough to 340

retain the inherent stochasticity and spatial diversity of EBV infection dynamics within 341

the tonsils. 342

Using our mathematical model, we found that HIV-1 co-infected individuals are 343

expected to have more actively infected crypts producing more EBV at any given time 344

than HIV-1 uninfected individuals. Also, by specifically including the dynamics of 345

cellular immune control and rates of B cell reactivation leading to new epithelial 346

infection, we saw that both factors contribute to higher EBV viral loads in HIV-1 347

co-infected individuals. These results are consistent with previous observations that 348
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cellular immune control of EBV infection in HIV-1 co-infected individuals is 349

impaired [48]. Similarly, HIV-1 infection is known to dysregulate B cell function and 350

increase B cell activation, which can result directly from HIV-1 itself as well as more 351

frequent and severe co-infections compared to HIV-1-uninfected 352

individuals [17,18,49,50]. Indeed, our model demonstrated that higher CD4+ T cell 353

counts were associated with significantly higher predicted rates of EBV-specific 354

cytotoxic T cell activity and significantly lower predicted rates of EBV-infected B cell 355

reactivation. Furthermore, increases in HIV-1 plasma RNA levels were associated with 356

significantly lower predicted rates of EBV-specific cytotoxic T cell activity. 357

Importantly, our results have implications for strategies to prevent EBV infection 358

and disease. EBV-specific cellular immunity is recognized as critical for controlling EBV 359

replication and preventing EBV-associated malignancies. [48, 51–55]. Independent of 360

restoring EBV-specific cellular immune responses, strategies to reduce B cell 361

reactivation in EBV-infected persons might limit viral replication, transmission, and 362

related malignancies [56,57]. 363
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Methods 364

Cohorts and samples 365

Men and women aged 18 to 65 were enrolled in the Uganda cohort as previously 366

described and were followed for four weeks [31]. Eligible HIV-1 seropositive persons had 367

a CD4+ T cell count greater than 200 cells/mm3 and were not taking antiretroviral 368

therapy, in accordance with the WHO guidelines at that time [58]. Men aged 24 to 66 369

were enrolled in the Seattle cohort as previously described [21, 22].As the Seattle cohort 370

shedding data was obtianed from a randomized placebo-controlled cross-over trial of 371

valgnaciclovir, only data collected while participants were receiving placebo was used for 372

this study. Both participants and pill administrators were unaware of group 373

assignments. Participants of both cohorts did not take any drugs with anti-herpesvirus 374

activity during the study period. Self-collected daily oropharyngeal swabs for both 375

cohorts were collected by swabbing the oral mucosa and pharynx with a Dacron swab 376

and were then placed in a vial containing 1 ml of 1X digestion buffer, stored at room 377

temperature, and returned at weekly (Ugandan cohort) or bi-weekly (Seattle cohort) 378

clinical visits. In the Uganda cohort, focused physical exams and collection of genital 379

and plasma samples were performed at weekly clinic visits. This data is described in the 380

Supporting Information. All participants provided either written or verbal informed 381

consent. Study procedures for both cohorts were approved by the University of 382

Washington Human Subjects Review Board. Additional approval for the Ugandan 383

cohort study was given by the Makerere University Research and Ethics Committee and 384

the Uganda National Council for Science and Technology. 385

Laboratory testing 386

Commercially available immunoassays were used to ascertain HIV-1 and EBV 387

serostatus (Inverness Medical Innovations, Inc and Wampole® for the Ugandan cohort 388

and Abbott Laboratories for the Seattle Cohort [22]). For the Ugandan cohort, CD4+ T 389

cell counts, and plasma HIV-1 RNA levels were determined in HIV-1-infected persons at 390

the Makerere University-John Hopkins University laboratory using standard cell sorting 391

techniques and the Amplicor HIV-1 monitor test (Roche, version 1.5), respectively. For 392

both cohorts, DNA was extracted from mucosal swabs and plasma [59], and real-time 393

quantitative polymerase chain reaction (qPCR) was performed using specific primers to 394

detect EBV [60], with positive and negative controls as previously described [19,59]. 395

Mucosal samples with greater than 150 copies/ml and plasma samples with greater than 396

50 copies/ml herpesvirus DNA/ml were considered positive [61]. 397

Statistical analyses of data 398

The frequency of mucosal shedding and viremia was defined as the proportion of 399

samples testing positive for EBV. The frequency of mucosal shedding was first 400

compared in HIV-1 co-infected and uninfected persons. To do this, we used generalized 401

estimating equations (GEE) and assumed frequencies followed a Poisson distribution. In 402

HIV-1 seropositive persons, frequencies of mucosal shedding and viremia were also 403

modelled with GEE allowing for continuous adjustment for each 100 cell/mm3 increase 404

in CD4+ T cell count and each log10 increase in HIV-1 RNA. Again, we assumed the 405

frequency of shedding follows a Poisson distribution. Finally, GEE were used to 406

compare the quantities of virus shed in mucosal samples in HIV-1 co-infected and HIV-1 407

uninfected persons assuming a Gaussian distribution. In all tests, two-sided p-values 408

≤0.05 were considered statistically significant. 409
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Mathematical model simulations 410

Based on the reactions of the model, we applied the tau leaping algorithm to 411

stochastically simulate the dynamics of each crypt [62]. With this algorithm, a small, 412

constant-sized time step is taken, and the number of occurrences of each reaction is 413

stochastically chosen following a Poisson or Multinomial distribution depending on the 414

independence of the reaction. One long simulation is performed, which is then divided 415

into 240 sections to represent the dynamics of each of the 240 crypts. Specifically, the 416

simulation is run out to a time of 417

Winit + 240(Li +Wcrypt) (8)

and crypt c’s dynamics are taken from the time interval 418

t ∈ [Winit + (c− 1)(Li +Wcrypt),Winit + cLi] (9)

where Winit represents the time necessary to remove the effects of the initial conditions 419

on the simulation, Li represents the duration of which participant i had oral swabs 420

taken, and Wcrypt represents the time necessary to make the dynamics of one crypt 421

quasi-independent of the next. With immune cell decay (δT ) acting as the slowest rate 422

in the model (δ = 0.1/(day-cell)), we let both Wcrypt and Winit equal 120 days, so that 423

if infection in one crypt occurred, only an expected 1/106 of the responding immune 424

cells would carry on to the next crypt’s dynamics. 425

Viral loads from each crypt are added together to get the model-predicted amount of 426

virus seen in the saliva over time. As the qPCR threshold of detection was 150 427

copies/ml for the data used, whenever the total simulated viral load in the saliva 428

dropped below 150 copies/ml, we set the output to zero. 429

Model fitting using Approximate Bayesian Computation 430

We next fit parameters to daily quantitative oral EBV shedding data from our cohort 431

participants. We used Approximate Bayesian Computation (ABC), where summary 432

statistics of the data and model simulations are compared to determine which 433

parameters allow the model to best fit the data. We used the R package EasyABC to 434

execute sequential ABC, following Lenormand’s algorithm [63]. Here, uniform priors for 435

each parameter are set, and an initial n number of simulations are run, each with a 436

different set of parameters randomly chosen from the priors. The algorithm calculates 437

summary statistics, chosen by the user, for each parameter set (D̂) and compares how 438

well they match with the summary statistics of the data (D) by calculating a distance 439

measure, ρ(D, D̂). The best-matching φ percent of these simulations are kept, with the 440

parameters of the chosen simulations used to build new priors. This process repeats 441

until the distance between the summary statistics of the data and simulations is 442

minimized. We executed this algorithm for the data of each individual participant. We 443

chose to capture the trends of the data using 5 summary statistics: the frequency of 444

positive swabs, the median, maximum, and variance of detectable viral loads, and the 445

number of peaks in viral loads, a peak being defined as when the directly preceding and 446

following time points have lower viral loads. The associated ρ value for participant i 447

and parameter set j (ρi,j) is defined as in Equation 7 of the main text: 448

ρi,j =
1

5

5∑
k=1

|Di,k − D̂j,k

Di,k
| (10)

where Di,k is the kth summary statistic for the data of participant i and D̂j,k is the kth 449

summary statistic for parameter set j. Using the Lenormand algorithm, 1000 parameter 450
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sets that minimize ρi,j were selected for each participant. During this fitting, we fixed 451

all parameters except b and θ as these are the two parameters that are likely most 452

affected by HIV-1 infection. For each chosen parameter set, we also calculated the 453

median number of actively infected crypts and the median amount of virus produced by 454

an actively infected crypt, so we could later compare how these traits differ between 455

participant groups. 456

Since we lack information on immune cell presence in tonsillar crypts and can only 457

fit the model to data on viral load, we had to censor simulations where the cytotoxic T 458

cell level became unrealistically high. Whenever a parameter set led to a simulation 459

where cytotoxic T cell count within a tonsillar crypt was greater than 105 cells, we 460

prevented it from being selected by the ABC algorithm, ensuring only biologically 461

relevant simulations were being considered. 462

Determining the posterior distribution of parameters and 463

differences between participant groups 464

We combined the results of our ABC fitting algorithm to compare how the posterior 465

distributions of parameters b and θ, the number of actively infected crypts, and the 466

amount of virus produced vary between different participant groups. 467

As some parameter values selected by the ABC fitting algorithm fit the data better 468

than others (i.e. have lower ρ values), we approximated the posterior distributions of 469

our parameter sets by performing importance sampling on the raw posterior 470

distributions [64,65]. To do this, we weighted each output parameter set by the 471

reciprocal of its ρ value. By weighting inversely to ρ, we assume our model is a correct 472

representation of viral dynamics in the tonsils and put greater importance on those 473

parameter sets that fit the data well. 474

To determine the posterior distributions of parameters in HIV-1 co-infected and 475

uninfected groups (XA and XB respectively), the probability of each parameter set 476

(x(i, j)) serving in each posterior is set to 477

P (XA = xi,j) = P (i ∈ A)
1

ρi,j

1

qA
(11)

P (XB = xi,j) = P (i ∈ B)
1

ρi,j

1

qB
(12)

where A and B are the sets of indices of participants who are HIV-1 uninfected and 478

co-infected, respectively, and we define the normalization factors 479

qA =
∑
∀i∈A

∑
∀j

1

ρi,j
and qB =

∑
∀i∈B

∑
∀j

1

ρi,j
. (13)

Note that 480∑
∀i

∑
∀j

P (XA = xi,j) = 1 and
∑
∀i

∑
∀j

P (XB = xi,j) = 1. (14)

We took 105 draws from each distribution and plotted the resulting data to obtain 481

graphical representations of the posterior parameter distributions for parameters b and 482

θ, the number of actively infected crypts, and the virus produced, for HIV-1 co-infected 483

and uninfected participants. The above process was repeated where instead of 484

stratifying by HIV-1 status, participants were stratified by median EBV load in order to 485

produce similar plots. 486

We also performed importance sampling on the raw posterior distributions for 487

individual participants. Using these, we were able to calculate the mean parameter 488
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values for b and θ for each participant. Means of parameters b and θ in HIV-1 489

co-infected participants were then modelled as functions of the participants’ CD4+ T 490

cell count and HIV-1 RNA load. This was done using GLM allowing for continuous 491

adjustment for each 100 cell/mm3 increase in CD4+ T cell count and each log10 increase 492

in HIV-1 RNA. Parameters b and θ were assumed to follow a Gaussian distribution. In 493

these tests, two-sided p-values ≤0.05 were considered statistically significant. 494

Sensitivity analysis of model parameters 495

We performed two sensitivity analyses to evaluate how changes in parameter values 496

affect the results of the model. First, to initially determine acceptable values for 497

parameters, we performed a univariate analysis, starting with an initial set of 498

parameters, varying one parameter at a time, and running 100 simulations for each 499

parameter set to gain a representation of how EBV viral dynamics behave. From this 500

analysis we selected parameter values for β, f , α, δ, p, and c which would remain fixed 501

throughout the ABC data fitting process while leaving the parameters of most interest, 502

b and θ, free. 503

After completing ABC, we performed another univariate analysis to observe whether 504

our choices for fixed parameter values were correct. By letting b and θ equal values 505

selected by the ABC algorithm and then individually varying the parameters that were 506

fixed, we checked whether different values of our fixed parameters would have improved 507

the model’s fit. 508
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