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Abstract

Epstein-Barr virus (EBV) infection is transmitted by saliva and is a major cause of
cancer in people living with HIV/AIDS as well as in the general population. To better
understand the determinants of oral EBV shedding we evaluated the frequency and
quantity of detectable EBV in the saliva in a prospective cohort study of 85 adults in
Uganda, half of whom were co-infected with HIV-1. Participants were not receiving
antiviral medications, and those with HIV-1 co-infection had a CD4+ T cell count >200
cells/mm?3. Daily, self-collected oral swabs were collected over a 4-week period.
Compared with HIV-1 uninfected participants, co-infected participants had an increased
frequency of oral EBV shedding (IRR=1.27, 95% CI=1.10-1.47). To explain why EBV
oral shedding is greater in HIV-1 co-infected participants, we developed a stochastic,
mechanistic mathematical model that describes the dynamics of EBV, infected cells,
and antiviral cellular immune responses within the tonsillar epithelium, and examined
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parameter-specific differences between individuals of different HIV-1 infection statuses.
We fit the model to our observational data using Approximate Bayesian Computation.
After fitting, model simulations showed high fidelity to daily oral shedding time-courses
and matched key summary statistics. Examination of the model revealed that higher
EBYV loads in saliva are driven by B cell activation causing EBV lytic replication in the
tonsils, in combination with a less effective EBV-specific cellular immune response.
Thus, both these factors contribute to higher and more frequent EBV shedding in HIV-1
co-infected individuals compared to HIV-1 uninfected individuals. These conclusions
were further validated by modelling daily oral EBV shedding in a 26-participant North
American cohort. Our results provide insights into the determinants of EBV shedding
and implicate B cell activation to be a potential therapeutic target to reduce EBV
replication in HIV-1 co-infected individuals at high risk for EBV-related malignancies.

Author summary

Epstein-Barr virus (EBV) is a ubiquitous infection worldwide. Infection with EBV is
associated with the development of several kinds of cancer, including B cell lymphoma
and nasopharyngeal carcinoma. Rates of EBV replication and disease are higher in
individuals who are also infected with HIV-1. HIV-1 infection is associated with
increased B cell activation, which is known to induce EBV reactivation, as well as
immunodeficiency resulting from loss of T cells. However, whether these factors
contribute to higher rates of EBV replication during co-infection, and by how much, was
unknown. We analysed oral EBV shedding data in a cohort of adults from Uganda that
were chronically infected with EBV. We found that participants that were HIV-1
infected were much more likely to have detectable quantities of EBV in their saliva.
Also, when detected, the quantity of EBV present in the saliva was usually higher in
HIV-1 infected participants. To better understand these findings, we developed a
mathematical model to describe the dynamics of EBV, EBV-infected cells, and the
cellular immune response within the tonsils. By rigorously matching our model to our
participant data, we determined that high EBV loads in saliva are caused by high rates

of infected B cell activation, as well as worse cellular immune control of EBV infection.

These results provide an explanation of the impact of HIV-1 on EBV infection. Further,
they suggest that strategies that suppress B cell activation may prevent EBV-related
malignancy in people who are also infected with HIV-1.

Introduction

Epstein-Barr virus (EBV) infection is associated with the development of approximately
200,000 malignancies per year, including B cell lymphomas and nasopharyngeal
carcinoma [1]. The risk of EBV-associated malignancies is significantly higher in people
co-infected with HIV-1. For example, risks of non-Hodgkin lymphoma in the U.S., an
AIDS-defining cancer, are 10-fold higher in HIV-1 infected individuals than the general
population [2]. Individuals with EBV/HIV-1 co-infection tend to have higher EBV viral
loads in saliva and blood [3H5]. Uncovering the mechanisms by which HIV-1 impairs
control of EBV infection may provide clues relevant to prevention of EBV-related
disease as well as insights into basic EBV pathobiology.

EBYV is primarily transmitted via saliva, and infection is nearly universal, occurring
during early childhood in developing countries and by young adulthood in highly
developed countries [648]. During primary infection, it is thought that EBV first infects
oral epithelial cells overlying the lymphoid tissue known as Waldeyer’s ring [9]. This
area consists of the tubal, adenoid, palatine and lingual tonsils [9]. Infected epithelial
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cells produce large numbers of infectious virions [10], facilitating latent infection of
naive B cells in the underlying lymphoid tissue. EBV drives these naive B cells to
mature into resting memory B cells and circulate throughout the body, through the
expression of only a small number of latent gene products [11,[12]. Viral shedding is
highest during primary EBV infection but remains frequent throughout chronic
infection [5]. During chronic infection, B cells latently infected with EBV can return to
Waldeyer’s ring, encounter cognate antigen, and become activated to mature into
plasma cells, triggering lytic reactivation and production of infectious virions [13-15].
This process initiates a new round of epithelial infection in the tonsils and viral
shedding in the saliva. Increased EBV shedding with HIV-1 co-infection may be due to
more frequent reactivation of EBV-infected B cells, and thus increased viral seeding of
oral tissue, and/or impaired T cell-mediated immune control of EBV replication,
prolonging or inhibiting the clearance of infected epithelial cells [16-18].

The dynamics of chronic herpesvirus infections in humans have been elucidated by
longitudinally sampling mucosal surfaces and blood, revealing the patterns of latency,
reactivation, and dissemination, as well as giving insight into viral pathogenesis and
host-pathogen interactions [19,/20]. While several studies have examined EBV mucosal
shedding patterns in HIV-1-infected persons [5,21H25], the majority have been in the
setting of advanced HIV-1 infection or in persons receiving highly active antiretroviral
therapy (HAART) [2325]. The mechanisms by which co-infection with HIV-1
significantly increases viral loads in saliva have not been explained in part due to the
requirement for frequent quantitative measures of shedding amenable to mathematical
modelling [23H25]. Previous mathematical models have examined the within-host
dynamics of EBV infection, developing quantitative descriptions of how infected cells, B
cells, antibodies, virus, and T cells interact, and determining biologically relevant
parameter values for the rates at which infection dynamics occur in the tonsillar
epithelium [10,/26530]. However, none have examined the differences between EBV
shedding in HIV-1 co-infected and HIV-1 uninfected individuals. In this study, we
analysed rich oral EBV shedding data from a cohort of Ugandan adults with or without
HIV-1 co-infection and constructed a mechanistic mathematical model to identify the
determinants of EBV replication.

Results

HIV-1 infection is associated with increased frequency and
quantity of oral EBV shedding

Among this cohort of 85 participants, a total of 2264 daily oral swabs were collected,
with a median of 29 swabs per participant (range 1-32). 43 (51%) participants were
HIV-1 seropositive. Additional details of the cohort have been previously published [31],
and other data from the cohort, including EBV loads in genital swabs and plasma
samples, can be found in the Supporting Information. We began our analysis by first
examining whether HIV-1 infection status affects the frequency of EBV detection in the
saliva. We found that HIV-1 infection was significantly associated with EBV detection
in oral swabs, increasing the frequency of observation 1.27-fold (CI = 1.10-1.47, p-value
= 0.001, Fig ) and increasing the median quantity of EBV detected in oral swabs by
1 .61 logyp genome copies (CI = 1.29-1.93, p-value <0.001, Fig ) We also saw large
variability in participant viral loads over time (Fig ) In HIV-1 uninfected
participants, the median percentage of swabs positive for EBV was 86% (range 0-100%,
interquartile range (IQR) 33%) while in HIV-1 co-infected participants the median
percentage of swabs positive for EBV was 100% (range 27-100%, IQR 0%). Of swabs
that tested positive for EBV, viral loads varied over time by a median of 3.49 orders of
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magnitude (range 0.34-5.27, IQR 1.32) within individual HIV-1 uninfected participants
and a median of 2.30 orders of magnitude (range 0.95-5.93, IQR 1.15) within individual
HIV-1 co-infected participants.

The effect of CD4+4+ T count and HIV-1 plasma RNA levels on
oral EBV shedding in HIV-1 co-infected individuals

We next analysed how CD4+ T cell counts and HIV-1 plasma RNA levels impacted the
frequency of EBV detection in oral swabs of HIV-1 infected participants (Table 1).

CD4+ T cell count significantly affected the frequency of EBV detection in oral swabs.

Each additional 100-cell increase in CD4+ T cells/mm? was associated with a 5%
reduction in the odds of EBV detection. This is consistent with cell-mediated immunity
conferring partial but incomplete control of EBV replication. We found no significant
association between HIV-1 viral load in plasma and the frequency of EBV detection in
saliva.

Table 1. Effects of plasma HIV-1 load and CD4+ T cell count on the
frequency of EBV detection. The effects of each 100-cell increase in CD4+ T
cells/mm? and each logyg increase in HIV-1 RNA on the incidence rate ratio (IRR) of
EBV detection, their confidence intervals (CI) and their p-values are shown.

Trait | IRR 95% CI p-value

HIV-1 RNA | 1.04 0.98-1.12 0.201
CD4+4 T cell | 0.95  0.92-0.99 0.008
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Fig 1. Impact of HIV-1 infection on EBV detection A. Percentages of saliva samples that tested positive for EBV for
each participant stratified by HIV-1 status. Black dots indicate the percentage of samples that tested positive for EBV when
pooling participant samples. B. Median EBV viral loads/ml in oral swabs testing positive for EBV for each participant
stratified by HIV-1 status. C. Distributions of participants’ oral swab viral loads. Each box and whisker represents the viral
loads of EBV-positive oral swabs for an individual participant. The percent of oral swabs that tested positive for EBV for
each participant is indicated by the colour of the box. The red horizontal line represents the threshold of EBV detection (150
EBV copies/ml).
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Mathematical Model of EBV Shedding in the Tonsils

To obtain mechanistic insights into chronic oral EBV shedding and to better understand
the drivers of lytic replication and transmission, we constructed a mathematical model
that captures the relevant anatomic, virologic and immunologic features of oral EBV
infection. In chronically infected individuals, EBV is shed in all areas of Waldeyer’s ring
including the palatine, lingual, tubal tonsils and adenoids [9]. Most of the tonsillar area
is composed of stratified squamous epithelium or ciliated pseudostratified columnar

epithelium, arranged into a series of crypts or folds, allowing for a large surface area [32].

The epithelium is often only one cell thick where EBV can transcytose to reach the
underlying lymphoid tissue where B cells and germinal centres are found [33]. The
palatine tonsils have an estimated surface area of 295 cm?, arranged into approximately
20 crypts [32], while the lingual tonsil area is composed of 35-100 crypts, and the
adenoids are composed of a series of folds in lymphoid tissue [34]. By estimating that
each palatine tonsil is approximately % of the entire surface area of Waldeyer’s ring, a
series of 240 crypts, each serving as sites where EBV infection may occur, can represent
the entire region. We assumed that the dynamics of each crypt are independent from
each other and explicitly modelled the dynamics of infected epithelial cells, the immune
response, and viral load within each crypt.

The dynamics within each crypt are shown in Fig[2] All parameters were assumed to
remain constant over the course of study, with some varying between participants to
account for differences in EBV shedding and HIV-1 infection status. We assumed that
latently infected B cells reactivate and infect the epithelium at a constant rate b.
Infected epithelial cells, I, infect other epithelial cells through cell-to-cell contact at a
constant per-capita rate 5. As the total number of cells within a single crypt is large in
comparison to the expected number that can become infected with EBV, we assumed
that target cell number is not limiting. Epithelial infection causes the recruitment and
proliferation of EBV-specific cytotoxic T cells, T, at a per-capita rate 1. Cytotoxic T
cells kill infected epithelial cells following the law of mass action at a rate fIT. We
assumed that cytotoxic T cells die or leave the tonsils at a per-capita rate §.
Independent of infection, we assumed a constant number of EBV-specific cytotoxic T
cells, «, are tissue-resident. Like T', these cells can kill infected epithelial cells and
stimulate the proliferation of new EBV-specific cytotoxic T cells; however, while
population T' leaves the system over time, these tissue-resident T cells remain within the
tissue and do not recirculate. This means there are always immune cells present to
respond to new infection and tissue is never entirely unprotected, allowing for faster
control of infection. EBV virions, V, are produced by infected epithelial cells, enter
saliva for at a per-capita rate p and are cleared at a per-capita rate c. In this model, we
assumed the main contributors to virus in the saliva are infected epithelial cells and
thus we did not directly model virions produced by infected B cells [10]. With the
propagation of EBV infection shown to be 800-fold more efficient through cell-to-cell
contact rather than through free virus, we also chose to assume all new epithelial cell
infection is caused by cell-to-cell contact [10L[35].

The concentration of EBV detected in the saliva of participants was highly variable,
and frequently undetectable. Therefore, we chose to implement our model in a
stochastic framework in order to capture these traits (Methods). Our model
assumptions were used to build a chemical master equation system [36] that describes
all system reactions within a single crypt, as follows:
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Fig 2. Description of single crypt dynamics. Waldeyer’s ring is represented as a
series of 240 individual crypts in which infection dynamics occur. Within each crypt,
the population dynamics of infected epithelial cells (I), cytotoxic T cells (T) and EBV
(V) are described. The salivary viral load is represented by the total viral load
aggregated across all crypts.

Basic model analysis

To understand how the different parameters of our mathematical model affect simulated
EBYV shedding in saliva, we first conducted a literature review to find previously
estimated or measured values of our parameters (Table . We then performed a simple
univariate analysis to evaluate how changes in these parameters influence the
characteristics of model simulations. The starting set of parameters was chosen based
on current estimates in the literature; we then performed multiple model simulations,
varying each parameter in turn over 4 orders of magnitude to observe how sensitive the
model is to these changes (Fig . Since we observed large variability in the viral loads
of different cohort participants (Fig ), our aim was to select a fixed set of parameters
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that would allow for the generation of a wide range of viral loads. Increases in
parameter b or ¢ increased the median viral load of our model simulations; however, the
maximum viral load remained stable. In contrast, 8 appeared to control the maximum
viral load reached in simulations, with higher § values causing higher viral loads and
larger variance in the viral load. Parameters f, o, and 6, all governing the strength of
the cellular immune response, appeared to have similar effects on the simulation, all
causing comparable decreases in viral loads as the magnitude of the parameter
increased. Intuitively, increases in parameter p, governing the viral burst size, increased
the viral loads in simulations. Low viral loads and periods of viral extinction (as seen in
many HIV-1 uninfected participants) were uncommon with higher values of p. Thus,
these higher values of p are improbable. Lastly, increases in parameter ¢ reduced the
viral loads and increased the variance. From this analysis, we chose our fixed parameter
values to be 8 =50, f= 0.1, « = 200, § = 0.1, p = 10*, and ¢ = 6, which generally
agreed with published estimates. We allowed b and 6 to vary during fitting as these two
parameters are the most likely to be affected by HIV-1 infection status.
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Fig 3. Evaluation of individual model parameters. Each parameter of the
model was examined to determine how it influences the simulation of oral viral shedding
over time. Parameters were varied one at a time over 4 orders of magnitude while
keeping all others constant, and 100 simulations were run for each parameter set. Viral
quantity over time is shown; 25-75% quartiles are shown in dark blue while 0-100%
quartiles are show in light blue. When not varying, b = 0.01, 8 = 50, f = 0.1, a = 200,
6 =0.001, § = 0.1, p = 10*, and c = 6.

Table 2. Parameter values used in the model. Parameters that remained fixed
throughout cohort data fitting were chosen based on published values and univariate
analysis. * The discrepancy between the published and model values for parameter 3 is
due to previous models separately accounting for infection due to cell-free virus. ** The
discrepancy between the published and model values for parameter ¢ is due to previous

models not accounting for tissue-resident cytotoxic T cells as a separate population.

Parameter

Units

Description

Published
Values

Model
Values

cell day—!

rate of B cell
reactivation causing
new lytic epithelial
infection

fitted,
see text

day~!

per-capita rate of
cell-to-cell infection

1.6
137]

50*

day—! cell!

per-capita death rate
of infected epithelial
cells due to the effect
of cytotoxic T cells

1.8 x 1079—
0.2
[27.138.139)

0.1

cell

number of tissue-
resident cytotoxic T
cells

200

day~?! cell™!

per-capita proliferation
rate of cytotoxic T
cells dependent on the
number of infected
epithelial cells

fitted,
see text

day~!

per-capita death rate
of cytotoxic T cells

9.5 x 1073
[27,140]

0.1

virion day—!

ml~ ! cell™!

production rate of
EBYV virions by
infected epithelial
cells

102 — 10°
f10l[27]

104

day~!

per-capita clearance
rate of EBV virions

[27[41]
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Mathematical model fits clinical data well and simulates oral
shedding data with high fidelity

We fit our mathematical model to each participant’s data using Approximate Bayesian
Computation (ABC). As our model is stochastic, this fitting process involved finding
parameter values that produced simulations with similar summary statistics to the data
rather than simulations that directly matched the curve of the data. The traits of each
participant were captured using five summary statistics: the percentage of EBV-positive
swabs, the median, maximum, and variance of detectable viral loads, and the number of
peaks in viral load, a peak being defined as when the directly preceding and following
time points have lower viral loads. The goodness of fit was assessed by the statistic p; ;,
which is defined as

5 A

1~ Diy— Dy
2:7§ ) > 7
pu] 5]{:_1‘ th | ()

for participant ¢ and parameter set j. Here D, j, is the k" summary statistic for the
data of participant ¢ and Bj,k is the k' summary statistic for simulations using
parameter set j. Lower p values indicate a better fit between the model simulation and
the data. Full details are given in the Methods. Examples of 4 participants’ shedding
data and model simulations with p values varying between 0.1 and 0.7 are shown in Fig
[ At these low p values, all simulations capture the summary statistics of the
participants quite well, but a general improvement in fit quality is apparent as p
approaches 0.1.

Data p=0.1 p=0.3 p=0.5 p=0.7
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Fig 4. Comparison of EBV shedding patterns in Ugandan cohort participants and model simulations. The
EBYV shedding patterns of four representative participants are shown. Participants A and B are uninfected with HIV-1 while
participants C and D are co-infected with HIV-1. Model simulations that fit these data with varying success (p = 0.1, 0.3, 0.5,
0.7) are shown. Lower p values indicate a better fit to the summary statistics of the data. The horizontal grey line indicates
the threshold of detection (150 EBV copies/ml) when measuring EBV loads in participant saliva samples.
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Among all 85 participants’ data, we were able to fit parameters to 82. Of the 3
participants whose data could not be fit, 2 participants had no EBV detected in any of
their saliva swabs, and 1 participant had only 1 swab taken. Fig 5| shows the
distribution of p values (Equation @ calculated for 1000 optimal parameter sets for each
participant that was fit by the model. The p values accepted during fitting ranged
between 0.002 and 0.558, indicating that accepted model fits matched the data at least
as well as the examples shown in Fig[@l In general, our model fits were slightly better
for participants with a high median viral load. Using generalized estimating equations
(GEE), and assuming a Gaussian distribution for p values, we found that each log;g
decrease in a participant’s median viral load increased p by 0.051 (95% CI =0.039-0.063,
p-value< 0.001).

0.6 1
logqo (Med. viral load)

0.4
£ 24

a Ed 46

B3 6

0.2 B 810

0.01

NEG POS
HIV Status

Fig 5. Goodness of fit of mathematical model to participant data. Datasets from 82 study participants were fit by
our mathematical model. Each participant’s dataset is represented by 1000 parameter sets that best fit model simulations to
the data. Goodness of fit for each parameter set is measured by a p value as defined in Equation 7] Boxes indicate the

interquartile range and whiskers indicate the 95% range. Lower values indicate a better fit between the data and the model.

The colour of the box indicates the median EBV viral load detected in the saliva of that participant.

Sensitivity analysis of the fitted model

After fitting our model to data (Methods), we performed a sensitivity analysis to
confirm that we chose suitable values for the parameters that remained fixed
throughout the fitting process. Parameters b and 6 were fixed at their fit values, while
those that had remained fixed during fitting were varied over two orders of magnitude.
A simulation was run for each new set of parameters and the goodness of fit was
compared to the original. Results are shown in Fig[f] In all cases and for all
participants, the median p value generated from parameter sets was higher and,
therefore, a worse fit than our fixed parameter choices, providing confidence that the
values chosen for our fixed parameters provided a consistently good fit.
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Fig 6. Sensitivity analysis of fit parameters. For the 1000 parameter sets
selected by the ABC fitting algorithm for each participant, we varied parameters 3, f,
a, d, p, and ¢ (the parameters that remained fixed during fitting) over two orders of
magnitude to observe whether changes in these values could have improved the model
fit. Each parameter was set to equal 0.1 and 10 times the value it was set to during
fitting and one simulation of each new parameter set was performed. The median
factor-change in the resulting p value for each participant is shown on the y-axis. In all
cases, the new parameter values led to worse fits (factor change in p exceeded one).

High EBYV viral loads are caused by large numbers of actively
infected crypts

When examining the model-predicted viral dynamics in simulated individuals, we
noticed that high viral loads in the saliva were caused by multiple crypts actively
producing virus at the same time (Fig[7). Using importance sampling (Methods) on the
results of our ABC fitting algorithm, we achieved a representation of how the number of
actively infected crypts and the amount of virus produced by these crypts differ among
individuals stratified by HIV-1 infection status.

The distributions for the median number of crypts HIV-1 co-infected and HIV-1
uninfected individuals have over time are shown in Fig[7A. Over time, an HIV-1
co-infected person will have a higher median number of actively infected crypts than an
HIV-1 uninfected person with probability 0.68 (Fig ) While these distributions vary
greatly (IQR of 1 and 4 for HIV-1 uninfected and HIV-1 co-infected individuals
respectively), over time HIV-1 uninfected persons are expected to have a median of 1

March 19, 2019

13,30

190

191

192

193

194

195

196

197

198

199

200

201

202

203


https://doi.org/10.1101/587063
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/587063; this version posted March 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

crypt within their tonsils actively producing virus, while HIV-1 co-infected individuals
are expected to have 2. These results match well with previous estimates that indicate
individuals have < 3 independent plaques of oral epithelial infection at any given

time [10]. Infected crypts within an HIV-1 infected individual are also shown to produce
more virus. Over time, an HIV-1 co-infected individual is expected to have a higher
median viral load within their actively infected crypts than an HIV-1 uninfected
individual with probability 0.65 (Fig Ep) Our simulations predict a median of 798 EBV
DNA copies per active crypt in HIV-1 co-infected individuals and 389 EBV DNA copies
per active crypt in HIV-1 uninfected individuals. These distributions again vary greatly,
leading to overlap (IQR of 753 and 1472 for HIV-1 uninfected and HIV-1 co-infected
individuals respectively). The overlap between the distributions of traits for HIV-1
co-infected and HIV-1 uninfected individuals implies that HIV-1 status alone does not
determine a distinct phenotype. Thus, we chose to also examine the behaviour of traits
when stratifying our simulations according to participants’ median viral loads in the
saliva. Higher median EBV viral loads detected in saliva correlate well with higher
numbers of actively infected crypts (Fig ) and higher viral loads per actively infected
crypt (Fig mD) Together, these results indicate that high EBV loads in the saliva are
caused by more frequent and extensive infection in tonsillar crypts.
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Fig 7. Predicted numbers of active crypts and viral load per active crypt. Distributions of the median number of
crypts actively producing EBV (A and B) and the median EBV viral load produced by an active crypt at any given time (C
and D) are shown stratified by participant HIV-1 status and EBV median viral load in the saliva. Increases in median
salivary EBV viral load are caused by a higher number of crypts having active (B), and more extensive (D) infection. This
trend translates to HIV-1 co-infected participants having more infected crypts infected, and each infected crypt producing
more virus. Bars above boxplots indicate the probability that a randomly selected individual of one group has a higher
parameter value (be it number of active crypts or viral load/active crypt) than a randomly selected individual in a second
group. Arrows show the direction of comparison. We see that HIV-1 uninfected individuals usually have more actively
infected crypts and more virus per active crypt than HIV-1 co-infected individuals. Similarly, we see that individuals with
higher median viral loads in their saliva usually have more actively infected crypts and more virus per active crypt than
individuals with lower median viral loads.
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Greater oral EBV shedding in HIV-1 co-infection is due to
increased B cell reactivation and weaker cellular immune
response

We next looked at parameter-specific differences between individuals of different
infection status groups and determined distributions for parameters b (rate of B cell
reactivation causing new lytic epithelial infection) and 6 (rate of EBV-specific cytotoxic
T cell proliferation and recruitment). Parameter distributions stratified by HIV-1
infection status and median EBV viral load in saliva are shown in Fig |8 While these
distributions display substantial variability and overlap, changes in both b and 6
account for the the generally higher EBV viral loads observed in the saliva of HIV-1
co-infected individuals. HIV-1 co-infected individuals appear to have higher rates of B
cell reactivation. The median value of b was found to be 2.9 times higher in HIV-1
co-infected individuals, equalling 0.007/day in HIV-1 uninfected individuals (IQR for b
of 0.01) and 0.02/day in HIV-1 co-infected individuals (IQR for b of 0.04). Together,
these distributions indicate that an HIV-1 co-infected individual will have a higher b
value than an HIV-1 uninfected individual with probability 0.76. HIV-1 co-infected
individuals also appear to have lower rates of EBV-specific cytotoxic T cell immune
response. The median value of § was 19.7 times lower in HIV-1 co-infected individuals,
equalling 3.1 x 10~* in HIV-1 co-infected individuals (IQR. for § of 0.04) and 6.1 x 1073
in HIV-1 uninfected individuals (IQR for 6 of 0.001). Together these distributions
indicate that an HIV-1 co-infected individual will have a lower 6 value than an HIV-1
uninfected individual with probability 0.74. We also note that, in general, increases in
median EBV viral load in saliva correlate with increases in the rate at which B cell
reactivation occurs and causes infection (b). Similarly, there is an inverse correlation
between the strength of the EBV-specific cytotoxic T cell immune response () and the
median viral load (Fig[8B and §D).

We also sought to quantify the correlation between b and 0 (Fig E[) When looking at
within-group correlation of participants with similar median viral loads, b and 6 have
moderate positive correlation (R = 0.22, 0.42, 0.36 and 0.71 for increasing viral load
groups), indicating that b and  can counter-balance to cause similar viral loads.
However, when observing all data, b and 6 are moderately negatively correlated (R =
0.45), indicating the highest viral loads are found in individuals whose parameters
feature high b and low 6 values.
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Fig 8. Distribution of parameters b and 6, stratified by HIV-1 status and median EBV viral load in saliva.
Fitting our mathematical model to participant data revealed that parameter b is usually greater in HIV-1 co-infected
participants (A) and increases with median EBV viral load (B), and parameter 6 is usually lower in HIV-1 co-infected
participants (C) and decreases with median saliva EBV viral load (D). Bars above boxplots indicate the probability that a
randomly selected individual of one group has a higher parameter value (be it b or #) than a randomly selected individual in a

second group. Arrows show the direction of comparison.
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parameters b and 6 are plotted, stratified by median oral EBV viral load group. As b
and 0 have opposite effects on viral load, positive correlations are seen within each
group (grey lines). However, across all participants, b and 6 are negatively correlated

(blue line).

We next examined whether rates of B cell reactivation and cellular immune response
could be predicted by the CD4+ T cell count and HIV-1 plasma viral load in HIV-1
co-infected participants. A generalized linear model (Methods) revealed that each log;o
increase in HIV-1 RNA copies/ml significantly decreased the value of § but did not

significantly affect b. However, each 100-cell/mm? increase in CD4+ T cell count

significantly changed the value of § and b, increasing 6 and decreasing b (Table [3)).
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Table 3. Effect of CD4+ T cell count and HIV-1 load on parameters b and

0. In HIV-1 co-infected participants, median values of parameters b and 6 are influenced
by the CD4+ T cell count and HIV-1 plasma viral load. The fold-change (FC) in the fit
b and 6 values, for every logyg increase in HIV-1 RNA copies/mL and every 100 CD4+
T cell/mm? increase is shown.

| Trait FC 95% CI p-value

HIV-1 RNA 0.16 0.06-0.42 <0.001
CD4+ T cell 1.84 1.05-3.22 0.040

HIV-1 RNA  1.21 0.89-1.63 0.226
CD4+ T cell 0.80 0.69-0.92 0.004

9

b

Application of our model to a distinct data set from a North
American cohort

To test it’s generalizability, we applied our model to a previously described set of data
from a cohort of 26 participants in Seattle, Washington, who underwent daily oral EBV
sampling and testing using the same methods as the Ugandan cohort described

above [22]. A total of 1323 swabs were collected during the 8-week period of the study,
with a median of 55 swabs per participant (3-61 swabs). 16 (62%) of these participants
were HIV-1 co-infected and if on HAART were required to remain on a stable regimen
throughout the study. None were receiving other antiviral drugs at the time of
enrollment. While the objective of the Seattle study was to analyse the effects of
valganciclovir on daily EBV oral shedding, we restricted our analysis to the data from
the eight-week period when participants received placebo.

Participants of the Seattle cohort showed significantly lower oral EBV viral loads
than those of the Uganda cohort. Given a positive swab, HIV-1 uninfected, EBV
shedding participants had a mean of 1.4 logjp-lower EBV viral load, while HIV-1
co-infected, EBV shedding participants had a mean of 2.0 log;p-lower viral load with
p-values<0.001 for both cases. Nonetheless, both sets of data serve as good
representations of EBV shedding in the saliva and we expect the host-pathogen
interactions occurring within the tonsils to be the same. Our mathematical model fit
the data again with high fidelity (Fig S3 in Supporting Information) and produced
similar results in terms of the number of infected crypts (Fig S4A and S4B in
Supporting Information), virus produced by crypts (Fig S4C and S4D in Supporting
Information), and the values for parameters b and 6 when stratified by HIV-1 status
and median EBV load (Fig S5 in Supporting Information). Full details are given in the
Supporting Information. Overall, we find that our modelling approach and findings
from the Uganda cohort are strongly supported by analysis of the Seattle cohort data.

Discussion

By modelling the replication patterns of EBV in saliva in HIV-1 co-infected and
uninfected individuals, we were able to evaluate the potential mechanisms that explain
why persons with HIV-1 have worse EBV infections and are more susceptible to
EBV-related malignancies. Specifically, our model indicates that increased oral EBV
shedding with HIV-1 co-infection is due to greater reactivation of EBV-infected B cells
as well as impaired EBV-specific cytotoxic T cell immune control.

It has been previously reported that persons infected with HIV-1 have higher oral
EBV shedding than HIV-1 uninfected individuals [3}|4}[2325]/42,/43]. However, few data
sets allow detailed representation of the dynamics of oral EBV shedding in HIV-1
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co-infected and uninfected participants over time. We also found that HIV-1 infection
was associated with a significantly increased frequency and quantity of oral EBV
shedding. There was also a statistically significant association between higher CD4+ T
cell counts and a lower frequency of EBV shedding in HIV-1 co-infected participants.

B cell activation and plasma cell differentiation have been shown to induce EBV
reactivation and lytic replication [12]. Furthermore, it is clear that HIV-1 infection is
associated with increased levels of B cell activation [18}|44]. As such, we hypothesized
that, in addition to impaired cellular immune control of EBV infection, an increase in
EBYV reactivation from latently-infected B cells in HIV-1 co-infected individuals
contributes to higher levels of oral EBV replication. This prompted us to develop a
mathematical model to describe the dynamics of virus, infected cells, and the cellular
immune response within the tonsillar epithelium. We then fit this model to participant
data, seeking to determine the drivers of these differences.

While previous mathematical models have examined the within-host dynamics of
EBV infection |10,[26H29], none have examined the differences between HIV-1 infected
and HIV-1 uninfected individuals [38,45-47]. Strengths of our approach include the
incorporation of granular quantitative EBV shedding measurements from two
independent cohorts, each made up of HIV-1 co-infected and uninfected individuals, and
the availability of CD4+ T cell counts and HIV-1 plasma viral load data from
co-infected participants. Limitations include the lack of data on EBV-specific T cell
responses and direct measures of B cell activation in these individuals.

Our mathematical model was based on representing the tonsillar epithelium as a

series of crypts, each serving as a potential site of epithelial infection and viral shedding.

In this way, a single tonsillar crypt behaves similarly to how individual herpes simplex
virus (HSV)-2 lesions have been modelled in the past, with reactivation of EBV-infected
B cells being analogous to the release of HSV-2 from infected neurons, sparking new
epithelial lesions [38}|45H47]. These previous models all captured the stochastic patterns
of HSV-2 shedding well, which appear similar to the patterns of oral EBV shedding.
Our model assumes that all tonsillar crypts are independent from one another. In
reality, virus from one infected crypt may spill over and seed infection in a neighbouring
crypt, rather than EBV entering an uninfected crypt purely via the reactivation of B
cells as we assume in our model. By not accounting for this, our predicted B cell
reactivation rates are likely higher than their true biological values. However, assuming
the amount of viral spill-over into neighbouring crypts is proportional to the viral load,
our qualitative comparison remains valid. Furthermore, modelling the tonsillar crypts as
multiple, segregated sites of infection was essential for simulating the high variability in
viral load seen over time in cohort data. In simulations without this spatial separation,
viral loads and levels of immune surveillance within an individual often equilibrated over
time and no longer matched the stochastic nature of participant data. This result
indicates that while virus and immune cells may travel between crypts, this effect is
likely minimal. While a fully-spatial model including the mobility of virus and immune
cells throughout the tonsils would be ideal, it could only be parameterized speculatively,
and would be computationally intensive. Our intermediate strategy of a crypt-level
simulation is simple enough to be computationally feasible but complex enough to
retain the inherent stochasticity and spatial diversity of EBV infection dynamics within
the tonsils.

Using our mathematical model, we found that HIV-1 co-infected individuals are
expected to have more actively infected crypts producing more EBV at any given time
than HIV-1 uninfected individuals. Also, by specifically including the dynamics of
cellular immune control and rates of B cell reactivation leading to new epithelial
infection, we saw that both factors contribute to higher EBV viral loads in HIV-1
co-infected individuals. These results are consistent with previous observations that
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cellular immune control of EBV infection in HIV-1 co-infected individuals is
impaired [48]. Similarly, HIV-1 infection is known to dysregulate B cell function and
increase B cell activation, which can result directly from HIV-1 itself as well as more
frequent and severe co-infections compared to HIV-1-uninfected
individuals [17,/18.[49,/50]. Indeed, our model demonstrated that higher CD4+ T cell
counts were associated with significantly higher predicted rates of EBV-specific
cytotoxic T cell activity and significantly lower predicted rates of EBV-infected B cell
reactivation. Furthermore, increases in HIV-1 plasma RNA levels were associated with
significantly lower predicted rates of EBV-specific cytotoxic T cell activity.
Importantly, our results have implications for strategies to prevent EBV infection
and disease. EBV-specific cellular immunity is recognized as critical for controlling EBV
replication and preventing EBV-associated malignancies. [48,/51H55]. Independent of
restoring EBV-specific cellular immune responses, strategies to reduce B cell
reactivation in EBV-infected persons might limit viral replication, transmission, and
related malignancies [56},57].
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Methods

Cohorts and samples

Men and women aged 18 to 65 were enrolled in the Uganda cohort as previously
described and were followed for four weeks [31]. Eligible HIV-1 seropositive persons had
a CD4+ T cell count greater than 200 cells/mm? and were not taking antiretroviral
therapy, in accordance with the WHO guidelines at that time [58]. Men aged 24 to 66
were enrolled in the Seattle cohort as previously described [21}[22].As the Seattle cohort
shedding data was obtianed from a randomized placebo-controlled cross-over trial of
valgnaciclovir, only data collected while participants were receiving placebo was used for
this study. Both participants and pill administrators were unaware of group
assignments. Participants of both cohorts did not take any drugs with anti-herpesvirus
activity during the study period. Self-collected daily oropharyngeal swabs for both
cohorts were collected by swabbing the oral mucosa and pharynx with a Dacron swab
and were then placed in a vial containing 1 ml of 1X digestion buffer, stored at room
temperature, and returned at weekly (Ugandan cohort) or bi-weekly (Seattle cohort)
clinical visits. In the Uganda cohort, focused physical exams and collection of genital
and plasma samples were performed at weekly clinic visits. This data is described in the
Supporting Information. All participants provided either written or verbal informed
consent. Study procedures for both cohorts were approved by the University of
Washington Human Subjects Review Board. Additional approval for the Ugandan
cohort study was given by the Makerere University Research and Ethics Committee and
the Uganda National Council for Science and Technology.

Laboratory testing

Commercially available immunoassays were used to ascertain HIV-1 and EBV
serostatus (Inverness Medical Innovations, Inc and Wampole®) for the Ugandan cohort
and Abbott Laboratories for the Seattle Cohort [22]). For the Ugandan cohort, CD44 T
cell counts, and plasma HIV-1 RNA levels were determined in HIV-1-infected persons at
the Makerere University-John Hopkins University laboratory using standard cell sorting
techniques and the Amplicor HIV-1 monitor test (Roche, version 1.5), respectively. For
both cohorts, DNA was extracted from mucosal swabs and plasma [59], and real-time
quantitative polymerase chain reaction (qQPCR) was performed using specific primers to
detect EBV [60], with positive and negative controls as previously described [19}/59].
Mucosal samples with greater than 150 copies/ml and plasma samples with greater than
50 copies/ml herpesvirus DNA /ml were considered positive [61].

Statistical analyses of data

The frequency of mucosal shedding and viremia was defined as the proportion of
samples testing positive for EBV. The frequency of mucosal shedding was first
compared in HIV-1 co-infected and uninfected persons. To do this, we used generalized
estimating equations (GEE) and assumed frequencies followed a Poisson distribution. In
HIV-1 seropositive persons, frequencies of mucosal shedding and viremia were also
modelled with GEE allowing for continuous adjustment for each 100 cell/mm3 increase
in CD4+ T cell count and each logy increase in HIV-1 RNA. Again, we assumed the
frequency of shedding follows a Poisson distribution. Finally, GEE were used to
compare the quantities of virus shed in mucosal samples in HIV-1 co-infected and HIV-1
uninfected persons assuming a Gaussian distribution. In all tests, two-sided p-values
<0.05 were considered statistically significant.
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Mathematical model simulations

Based on the reactions of the model, we applied the tau leaping algorithm to
stochastically simulate the dynamics of each crypt [62]. With this algorithm, a small,
constant-sized time step is taken, and the number of occurrences of each reaction is
stochastically chosen following a Poisson or Multinomial distribution depending on the
independence of the reaction. One long simulation is performed, which is then divided
into 240 sections to represent the dynamics of each of the 240 crypts. Specifically, the
simulation is run out to a time of

VVinit + 24O(L2 + Wcrypt) (8)
and crypt ¢’s dynamics are taken from the time interval
te “/Vinit + (C - 1)(LL + Wcrypt)a Winit + CLi] (9)

where Wi,i¢ represents the time necessary to remove the effects of the initial conditions
on the simulation, L; represents the duration of which participant ¢ had oral swabs
taken, and We,ype represents the time necessary to make the dynamics of one crypt
quasi-independent of the next. With immune cell decay (6T") acting as the slowest rate
in the model (§ = 0.1/(day-cell)), we let both We,ypy and Wini, equal 120 days, so that
if infection in one crypt occurred, only an expected 1/10° of the responding immune
cells would carry on to the next crypt’s dynamics.

Viral loads from each crypt are added together to get the model-predicted amount of
virus seen in the saliva over time. As the qPCR threshold of detection was 150
copies/ml for the data used, whenever the total simulated viral load in the saliva
dropped below 150 copies/ml, we set the output to zero.

Model fitting using Approximate Bayesian Computation

We next fit parameters to daily quantitative oral EBV shedding data from our cohort
participants. We used Approximate Bayesian Computation (ABC), where summary
statistics of the data and model simulations are compared to determine which
parameters allow the model to best fit the data. We used the R package EasyABC to
execute sequential ABC, following Lenormand’s algorithm [63]. Here, uniform priors for
each parameter are set, and an initial n number of simulations are run, each with a
different set of parameters randomly chosen from the priors. The algorithm calculates
summary statistics, chosen by the user, for each parameter set (D) and compares how
well they match with the summary statistics of the data (D) by calculating a distance
measure, p(D, ﬁ) The best-matching ¢ percent of these simulations are kept, with the
parameters of the chosen simulations used to build new priors. This process repeats
until the distance between the summary statistics of the data and simulations is
minimized. We executed this algorithm for the data of each individual participant. We
chose to capture the trends of the data using 5 summary statistics: the frequency of
positive swabs, the median, maximum, and variance of detectable viral loads, and the
number of peaks in viral loads, a peak being defined as when the directly preceding and
following time points have lower viral loads. The associated p value for participant @
and parameter set j (p; ;) is defined as in Equation [7| of the main text:

5 A

1 D —Djp
,L:—E _— 10
p’] 5k:1‘ DZJC | ( )

where D; ;. is the k" summary statistic for the data of participant i and lA)jJC is the k"
summary statistic for parameter set j. Using the Lenormand algorithm, 1000 parameter
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sets that minimize p; ; were selected for each participant. During this fitting, we fixed
all parameters except b and 6 as these are the two parameters that are likely most
affected by HIV-1 infection. For each chosen parameter set, we also calculated the
median number of actively infected crypts and the median amount of virus produced by
an actively infected crypt, so we could later compare how these traits differ between
participant groups.

Since we lack information on immune cell presence in tonsillar crypts and can only
fit the model to data on viral load, we had to censor simulations where the cytotoxic T
cell level became unrealistically high. Whenever a parameter set led to a simulation
where cytotoxic T cell count within a tonsillar crypt was greater than 10° cells, we
prevented it from being selected by the ABC algorithm, ensuring only biologically
relevant simulations were being considered.

Determining the posterior distribution of parameters and
differences between participant groups

We combined the results of our ABC fitting algorithm to compare how the posterior
distributions of parameters b and @, the number of actively infected crypts, and the
amount of virus produced vary between different participant groups.

As some parameter values selected by the ABC fitting algorithm fit the data better
than others (i.e. have lower p values), we approximated the posterior distributions of
our parameter sets by performing importance sampling on the raw posterior
distributions [64./65]. To do this, we weighted each output parameter set by the
reciprocal of its p value. By weighting inversely to p, we assume our model is a correct
representation of viral dynamics in the tonsils and put greater importance on those
parameter sets that fit the data well.

To determine the posterior distributions of parameters in HIV-1 co-infected and
uninfected groups (X4 and Xp respectively), the probability of each parameter set
(w(i,7)) serving in each posterior is set to

1 1

P(XA in)j) :P(iGA) — (11)
Pi,j 4A
. 1 1

P(XB :xm) :P(ZEB) — (12)
Pij 4B

where A and B are the sets of indices of participants who are HIV-1 uninfected and
co-infected, respectively, and we define the normalization factors

w=Y 3w e Y Y (13)

vieA vj Pbi vieB v; Pii
Note that
Y>3 PXa=z;)=1 and > Y P(Xp=um;) =L (14)
Vi Vj Vi Vj

We took 10° draws from each distribution and plotted the resulting data to obtain
graphical representations of the posterior parameter distributions for parameters b and
0, the number of actively infected crypts, and the virus produced, for HIV-1 co-infected
and uninfected participants. The above process was repeated where instead of
stratifying by HIV-1 status, participants were stratified by median EBV load in order to
produce similar plots.

We also performed importance sampling on the raw posterior distributions for
individual participants. Using these, we were able to calculate the mean parameter
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values for b and @ for each participant. Means of parameters b and 6 in HIV-1
co-infected participants were then modelled as functions of the participants’ CD4+ T
cell count and HIV-1 RNA load. This was done using GLM allowing for continuous
adjustment for each 100 cell/mm? increase in CD4+ T cell count and each log;o increase
in HIV-1 RNA. Parameters b and 6 were assumed to follow a Gaussian distribution. In
these tests, two-sided p-values <0.05 were considered statistically significant.

Sensitivity analysis of model parameters

We performed two sensitivity analyses to evaluate how changes in parameter values
affect the results of the model. First, to initially determine acceptable values for
parameters, we performed a univariate analysis, starting with an initial set of
parameters, varying one parameter at a time, and running 100 simulations for each
parameter set to gain a representation of how EBV viral dynamics behave. From this
analysis we selected parameter values for g8, f, a, d, p, and ¢ which would remain fixed
throughout the ABC data fitting process while leaving the parameters of most interest,
b and 6, free.

After completing ABC, we performed another univariate analysis to observe whether
our choices for fixed parameter values were correct. By letting b and 6 equal values
selected by the ABC algorithm and then individually varying the parameters that were
fixed, we checked whether different values of our fixed parameters would have improved
the model’s fit.
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