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Abstract

The past two decades have witnessed significant advances in high-throughput “omics” tech-
nologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These
technologies have enabled simultaneous measurement of the expression levels of tens of thou-
sands of features from individual patient samples and have generated enormous amounts of
data that require analysis and interpretation. One specific area of interest has been in
studying the relationship between these features and patient outcomes, such as overall and
recurrence-free survival, with the goal of developing a predictive “omics” profile. Large-scale
studies often suffer from the presence of a large fraction of censored observations and poten-
tial time-varying effects of features, and methods for handling them have been lacking. In
this paper, we propose supervised methods for feature selection and survival prediction that
simultaneously deal with both issues. Our approach utilizes continuum power regression
(CPR) - a framework that includes a variety of regression methods - in conjunction with
the parametric or semi-parametric accelerated failure time (AFT) model. Both CPR and
AFT fall within the linear models framework and, unlike black-box models, the proposed
prognostic index has a simple yet useful interpretation. We demonstrate the utility of our
methods using simulated and publicly available cancer genomics data.
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1 Introduction

Advances in high-throughput technologies in the past two decades have enabled large-scale
“omics” studies that generate enormous amounts of data that are measured on a variety of
scales. Examples include, but are not limited to, genomic studies such as next-generation se-
quencing, methylation, allele-specific expression, microarrays, and DNA copy number as well
as studies involving genome-wide association, proteomics, metabolomics, transcriptomics
and radiomics. Genomic studies, for instance, enable the simultaneous measurement of the
expression profiles of tens of thousands of genomic features, often from a relatively small
number of individual patient samples. Such studies result in massive quantities of data
requiring analysis and interpretation while offering tremendous potential for growth in our
understanding of the pathophysiology of many diseases. When information on an outcome
variable such as time to an event (or survival time) is available, one of the goals of an in-
vestigator is to understand how the expression levels of genomic features, and clinical and
demographic variables (covariates) relate to an individual’s survival over the course of a dis-
ease. The number of covariates (n) far exceeds the number of observations (p), typically, in
these large-scale genomic studies. With the tremendous volume of information available, the
investigator can now estimate and attempt to understand the effects of specific genomic fea-
tures on various diseases with the ultimate goal of developing a prognostic profile of patient
survival. In this context, biomarker discovery poses many challenges and plays a pivotal
role in the search for more precise treatments. The role and significance of the analysis of
time-to-event data in cancer research cannot be overstated where current efforts focus on
predicting therapeutic responses of patients with a view to personalizing cancer treatment.

The ill-conditioned problem of predicting the survival probability when p >> n is further
compounded by the presence of censored survival times. In this high-dimensional setting, one
is often interested in building a genomic profile that is predictive of the survival probability for
a new patient. The Cox proportional hazards (PH) model is the most celebrated and widely

used statistical model linking survival time to covariates (Cox, 1972). It is a multiplicative
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hazards model that implies constant hazard ratio (HR); that is, it postulates that the risk
(or hazard) of death of an individual given their covariates is simply proportional to their
baseline risk in the absence of any covariate. While this model has proved to be very useful in
practice due to its simplicity and interpretability, the assumption of constant HR has been
shown to be invalid in a variety of situations in medical studies (Devarajan & Ebrahimi,
2011; Peri et al., 2013). When applied to our problem, the PH model would implicitly
assume a constant effect of genomic feature expression on survival over the entire period of
follow-up in a study, a supposition that is neither verifiable nor likely for each feature. For
example, non-proportional hazards (NPH) can occur when the effect of a genomic feature
increases or decreases over time leading to converging or diverging hazards (CH or DH), a
situation that cannot be handled by the PH model (Bhattacharjee et al., 2001; Xu et al.,
2005; Dunkler et al., 2010; Rouam et al., 2011). In addition, NPH can result from model mis-
specification such as from omitting a strong clinical covariate (for instance, age at diagnosis
or stage of disease) or another genomic feature. Another scenario encountered in practice
is the case of dependence between covariates and the censoring time distribution (Chen et
al., 2002). These scenarios require more general survival models that consider time-varying
covariate effects. Examples of such models include the Accelerated Failure Time (AFT) and
Proportional Odds (PO) models, among others (Buckley & James, 1979; Jin et al., 2006;
Martinussen & Scheike, 2006; Yang & Prentice, 2005; Devarajan & Ebrahimi, 2011). The
AFT model is a censored linear regression model in which the covariates cause an acceleration
(linear transformation) of the time scale while the PO model postulates that the odds of
death for an individual, given their covariates, is simply proportional to their baseline odds
- a situation typically encountered when the effect of a genomic feature decreases with time
leading to diverging hazards. Unlike PH, these models do not imply a constant HR and,
interestingly, both PH and PO models intersect with the AFT model. Moreover, the AFT
model can accommodate a variety of well known survival time distributions - such as the

lognormal, log-logistic, Weibull and exponential, to name a few - useful for modeling censored
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survival data in practice or accommodate a completely distribution-free approach with no
prior assumption on the data generating mechanism (Kalbfleisch & Prentice, 2002; Jin et
al., 2006). These attractive properties provide modeling flexibility and make the AFT model
a versatile alternative useful for handling a variety of data structures.

As evidenced by the following literature survey, very little research has been done to
account for the time-varying effect of genomic features or to study the consequences of NPH
on feature selection and survival prediction, despite its clear importance in translational
medicine. Within a broader context, these shortcomings extend to the many types of high-
throughput “omics” studies outlined earlier. In this paper, we generically use the term
“omics” to represent this variety and the term feature to denote the appropriate “omic”
feature of interest. The rest of the paper is organized as follows. In §2, we survey existing
methods for supervised dimension reduction within the context of high-throughput “omics”
data and censored survival outcomes, and discuss their weaknesses. Section 3 begins with
a motivation of the need for a flexible method using real-life cancer genomic data. In §4,
we propose an approach that combines continuum power regression with the parametric or
semi-parametric AFT model and in §5, we develop a prognostic index and survival prediction
algorithm using this approach. Section 6 is devoted to simulation studies for evaluating the
proposed methods while §7 focuses on the application of these methods to several publicly
available data sets in cancer genomics. Last but not least, §8 provides a summary and
discussion including future work. The Supplementary Information (SI) section contains

detailed results from simulation studies and real-life data sets.

2 A brief survey of existing methods and their limitations

A variety of methods are currently available in the literature for handling a large number of
features in conjunction with censored survival outcomes. These include methods based on
principal components regression (PCR) (Li & Li, 2004; Bair et al., 2006; Ma et al., 2006),

partial least squares (PLS) (Park et al., 2002; Li & Gui, 2004; Nguyen & Rocke, 2002;
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Nguyen, 2005; Nygard et al., 2008; Boulesteix & Strimmer, 2007; Devarajan et al., 2010;
Bastien et al., 2015) and regularization such as the ridge regression, least absolute shrinkage
and selection operator (LASSO), least angle regression, elastic net or related variants (Tib-
shirani, 1997; Gui & , 2005; Segal, 2008; Engler & Yi, 2009; Wang et al., 2009; Kaneko et
al., 2012). Other available methods in this context include those based on boosting (Li &
Luan, 2005; Wei & Li, 2007; Luan & Li, 2008; Lu & Li, 2008), sure screening procedures
(Fan et al., 2010), Cox assisted clustering (Eng & Hanlon, 2012), networks (Zhang et al.,
2013), kernel methods (Li & Luan, 2003) and nested cross-validation (Laimighofer et al.,
2016).

A comparison of various existing methods has revealed that those based on a linear
combination of features (such as PCR and PLS) or regularization (such as LASSO etc.)
showed overall superior performance (Bovelstad et al., 2007; van Wieringen et al., 2009;
Witten & Tibshirani, 2008). Methods based on PLS and PCR typically utilize all features
for prediction and cannot directly specify relevant features that are associated with survival.
Regularization methods generally perform well in this setting by identifying unimportant
features from the large number of features present by shrinking their coefficients to exactly
zero. However, a method such as LASSO suffers from some fundamental limitations due to
the Ly penalty. For instance, the number of non-zero coefficients can be at most n, i.e., the
number of features that can be selected by LASSO is bounded by the sample size of the
data set (Rosset et al., 2004). In large-scale genomic studies, this can lead to the unrealistic
conclusion that no more than n genomic features are relevant to survival in a complex
biological process where p > n are actually present. This is further compounded by the
relatively small number of observations often seen in these biomedical studies. Moreover, the
expression levels of features sharing a particular biological pathway can be highly correlated.
It is therefore desirable to have a method that automatically selects the entire set of correlated
features; however, LASSO can usually select only one feature in this situation. On the other

hand, a method such as ridge regression necessarily selects all features in a data set. These
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issues can pose serious problems particularly when dealing with the ultra high-dimensional
data sets obtained in modern “omics” studies (Wang et al., 2008).

An inherent weakness of these methods is the assumption of PH in their formulation
which does not permit the incorporation and, therefore, the detection of time-dependent
covariate effects. However, there exist methods based on alternate survival models such
as the AFT (Huang et al., 2006; Wang & Leng, 2007; Datta et al., 2007; Wang et al.,
2008; Luan & Li, 2008; Cai et al., 2009; Wang & Wang, 2010; Engler & Yi, 2009; Liu
et al., 2010; Devarajan et al., 2010), PO (Lu & Li, 2008), non-linear transformation (Lu
& Li, 2008), additive hazards (Ma et al., 2006) or that are model-free (Van Belle et al.,
2011; Geng et al., 2014; Pang et al., 2012). Huang et al. (2006) combine the AFT model
with LASSO or threshold-gradient-directed regularization (TGDR) using Stute’s estimator
(Stute, 1993), thereby providing flexible methods for handling NPH and high-dimensionality.
In addition to known limitations, their LASSO approach has been known to result in inferior
prediction accuracy in empirical studies. Furthermore, TGDR is sensitive to the choice of
a parameter value that could significantly alter the number of features selected and thus
lead to overestimation of the number of non-zero coefficients, potentially further reducing
the number of features selected (Wang & Wang, 2010). Datta et al. (2007) developed an
approach that combines standard PLS or LASSO with the AFT model after mean imputation
of censored observations. This approach does not improve upon these existing methods and
suffers from the limitations of LASSO. Devarajan et al. (2010) outlined a PLS-based method
for lognormally distributed data; however, it not only relies on unrealistic assumptions on
the data generating mechanism but also cannot be used on independent test data. Wang
et al. (2008) proposed a doubly penalized method based on the AFT model for estimation,
feature selection and survival prediction by extending elastic net regression for linear models
to censored survival data. Unlike LASSO, this approach can select an arbitrary number
of highly correlated features with non-zero coefficients; however, it involves the selection

of tuning parameters and can be computationally slow. Engler & Yi (2009) proposed an
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elastic net approach with mean imputation in conjunction with the Cox PH or AFT model
and showed that the AFT version showed better performance. Existing model-free methods
provide a flexible alternative that can account for linear and non-linear covariate effects;
however, they tend to be computationally infeasible and typically require the choice of various

tuning parameters.

3  Motivation for the proposed methods

In the high-dimensional setting, incorporating time-dependent covariates in the Cox PH
model, use of stratification or separate modeling for different time periods in order to ac-
count for NPH are prohibitive and infeasible. As outlined in the literature survey above,
computational speed and/or infeasibility, number and choice of tuning parameters, restric-
tions on the number of “omic” features that can be selected, over-estimation of the number
of relevant features and poor predictive performance are some of the noteworthy limitations
when regularization is used on more general survival models that account for NPH or when
a completely model-free method (such as SVM, random forests etc.) is used. Unlike the
PH model, the AFT is built on the linear regression model for censored survival data and
is a viable alternative to it since it directly models survival time and, thus, has a simpler
and more intuitive interpretation. More importantly, it allows crossing hazard and survival
curves, a useful property for modeling large-scale “omics” data with tens of thousands of
features. In this paper, we adopt a more pragmatic approach for initially identifying the
number of relevant features in a data set by simultaneously utilizing model significance and
model fit based on different criteria. In addition, we adjust for potential confounders such as
age of diagnosis and stage of disease with the goal of further eliminating spurious features.
Such supervised marginal screening ensures that each feature selected for inclusion in the
development of a prediction model actually fits the model of interest and has a statistically
significant effect on survival.

Let Y denote the survival time of a typical subject in the study, the length of time entry
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into the study until a prescribed endpoint is attained. This endpoint may be the onset of
a disease or event associated with it, or death itself. In addition, we let C' be the duration
of observation of the subject, i.e. the time from entry into the study until removal. The
random variable C' is referred to as a censoring variable. In general, we assume that both
Y and C' are non-negative random variables of which only the first one to occur is observed.
Thus, an observation consists of the pair (7,6), where 7" = min(Y,C) and § = I(T' =Y).
We also have data on p covariates from each subject. It is assumed that censoring is non-
informative, i.e. the survival time Y and the censoring mechanism C are independent, and
that the covariates do not provide information about the censoring time C. Survival data
usually consists of N samples, each containing the triple (7;,0;,2;) for i = 1,---  n, where
z; = (zi1,- -+ , 2ip) 1s the covariate vector or profile of the i-th subject, 7; is the survival time
if 9; = 1 and it is the right censored time if §; = 0. The AFT model postulates a log-linear

relationship between time and covariates given by,

logY = @'z + oe, (3.1)

where (3 is a vector of regression coefficients, z is the vector of covariates, o is a scale
parameter and € is the error term whose distribution is either pre-specified or is left com-
pletely unspecified, thus resulting in parametric or semi-parametric versions of the model
(Kalbfleisch & Prentice, 2002; Jin et al., 2006). The intercept can be absorbed into 3’ and in
the semi-parametric version, ¢ = 1 without loss of generality. Its log-linear form enables the
measurements of the direct effect of features on survival time instead of the hazard; more-
over, the regression coefficients can be interpreted in a similar fashion to that of multiple
linear regression. In this model, effect size is measured as the ratio of expected survival times
between two groups, say, patients exhibiting low and high expression of a particular feature
or a set of features. In the clinical setting, it quantifies the effect of a feature on the expected

duration of illness for a patient. This has lead many prominent statisticians, most notably
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Sir D. R. Cox, to observe that the AFT model and its estimated regression coefficients to
have a rather 'direct physical interpretation’ (Reid, 1994). Moreover, it is well-known that
the PH and AFT models cannot simultaneously hold except in the case of extreme value
error distributions. Therefore, the AFT model assumptions can hold when the PH model
assumptions fail.

The semi-parametric AFT (sAFT) model is particularly attractive due to its distribution-
free nature. Rank-based inference for this model is described in Jin et al. (2003), and regu-
larized estimation is described in Cai et al. (2009) for high-dimensional data. An iterative
solution has been developed to estimate the regression parameters (Jin et al., 2006). This
procedure is based on the least-squares principle while accounting for censoring; however, it
is computationally slow which can be problematic in the high-dimensional setting. The scope
and applicability of AFT models can be significantly broadened by use of the generalized F
distribution (GenF’) (Ciampi et al. (1986) and more recently by Cox (2008)). GenF has
the form seen in equation (4.4). Estimation for this model is based on maximum likelihood
and, thus, offers a flexible and computationally efficient alternative to the sAFT model. Al-
though GenF spans a variety of well known and lesser known models that are appropriate for
modeling survival data, it has received little recognition in the literature. Its benefit lies in
its umbrella structure and it embeds the generalized gamma (which includes Weibull, expo-
nential, gamma and log-normal models), generalized log-logistic (which includes log-logistic
models), F and Burr-type distributions. Other models such as the Maxwell-Boltzmann, gen-
eralized normal, half-normal, Chi and Raleigh are also members of this family among others.
Thus, GenF' provides a flexible approach to modeling patient survival in conjunction with
large-scale “omics” data. There are several advantages to using GenF'. As alluded to in
§1, the AFT model intersects with the PH and PO models when the underlying data dis-
tribution is Weibull and log-logistic, respectively. The Weibull model with its monotonic
hazard function and the log-normal model due to its mathematical intractability in dealing

with censored observations offer limited potential for modeling survival data. Although the
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log-logistic model is similar in shape to the log-normal, its non-monotonic hazard function
allows hazard curves to converge with time thereby incorporating a particular type of NPH
and making it suitable for modeling cancer survival. It can be used if the course of the
disease is such that mortality peaks after a finite time period and then slowly declines.

We motivate the utility of the AFT model for our problem using three data sets from
large-scale cancer genomic studies that are detailed in §7.1. In this analysis, we fit semi-
parametric PH, PO and AFT models to each feature, after adjusting for clinical covariates
such as age at diagnosis and stage of cancer, and evaluate their goodness-of-fit (GOF) us-
ing appropriate methods (Therneau & Grambsch, 1994; Martinussen & Scheike, 2006; and
Novak, 2010). For each model, the g-value method was used to account for multiple testing
(Storey & Tibshirani, 2003). The goal is to identify features that exhibit some form of NPH,
thus demonstrating the need for alternatives to the PH model and, in particular, providing
the rationale for a flexible model like AFT.

The results are summarized in Table 1 where A and B refer to sets of features for which
the PH and PO model do not fit, respectively, and C refers to the set of features for which
the AFT model fits, at the 5% significance level. Typically, we observe that there is a large
number of features for which the PH or PO model does not fit across all data sets. More
importantly, in each data set there is a significantly large fraction of features for which the
AFT model fits (median of 97%). After correction for multiple testing, these observations
are further corroborated by the corresponding ¢-values which indicate that the AFT model
provides a good fit. The intersections of these sets is particularly revealing where we observe
that the AFT model fits a large fraction of features for which the PH or PO model do not
provide a good fit (median of 95%). Thus, it would be beneficial to develop methods based
on the more general AFT model, which overlaps with the PH and PO models, due to its

inherent ability to account for crossing hazards.
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Table 1: Summary of model fits

Data Set HNSCC GBM Ovarian Ovarian Oral

cancer cancer cancer

(0S) (RFS)
p 19,341 9452 24,736 13,696 12,776
n 221 280 273 276 86

% C 62% 26% 59% 32% 59%
A: PH 752 217 1,814 2,407 1,810
(lack of fit) (4%)*  (2%)* (7%)c  (18%)°  (14%)°
B: PO 1,992 744 1,413 1,312 1,232

(lack of fit) (10%)*  (8%)* (%)  (10%)°  (10%)°
C: AFT 19,090 9,380 24,006 11,655 9,753
(good fit)  (99%)*  (99%)* (97%)*  (85%)*  (76%)°

ANC 733 212 1,759 1,865 1,379
BNC 1,966 725 1,350 1,122 1,023
ANB 464 A7 381 808 863
ANBNC 451 46 362 659 694

g-value: 0.99%, < 0.25°, & 0.5°; p=number of features, n=number of observations,
C=censored; numbers within parentheses represent fractions of subsets A, B or C

4  Continuum power regression for large-scale “omics” data

We develop analytical methods for large-scale “omics” data using continuum power regression
(CPR) - a unified framework for supervised dimension reduction - in conjunction with the
AFT model. CPR embeds a spectrum of regression methods into a single framework that
includes well known methods such as ordinary least squares (OLS), partial least squares
(PLS) and principal components regression (PCR) as special cases. Stone & Brooks (1990)
first proposed continuum regression (CR) and showed that OLS, PLS and PCR differed
only in the target quantity being maximized in the process of extracting latent components
that are linear combinations of these high-dimensional covariates. CR aims to maximize a

quantity that includes the variation in covariates as well as the correlation of response with
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covariates, the relative proportions of which are controlled via a single parameter . At
the extremes of this continuum, OLS maximizes correlation and PCR extracts orthogonal
components by maximizing variance, while PLS lies in-between and maximizes the covariance
between response and covariates. The numerical instability suffered by OLS due to multi-
collinearity and high-dimensionality are circumvented by the unsupervised and supervised
approaches provided by PCR and PLS, respectively, while the choice of v provides further
modeling flexibility.

Given an n x p matrix Z of predictors and an n-vector t of quantitative responses of an
outcome, the objective function for constructing reduced components in CR can be expressed

in terms of the objective functions for OLS (correlation, R?), PLS (covariance, C'ov) and

PCR (variance, Var) as

L (v) = gfy(Rz(Zu,t),Var(ZV))
= R*(Zv,t)[Var(Zv)]” (4.1)

x Cov(Zv,t)*[Var(Zv)] L.

The optimization criterion is max,||=1 ((v) subject to 'Sv; = 0,5 =1,..., K, where S = Z'Z is

the covariance of Z, the columns of v are weight vectors, v > 0 and K is the number of components.
CR reduces to OLS (y = 0), PLS (y = 1) and PCR (v — o0) and can be shown to be closely related
to ridge regression (Sundberg, 2002).

CPR is a variant of CR that is defined by the algorithm and not as the solution to the optimiza-
tion problem in equation (4.1). In CPR, the PLS estimate 7 o< ZZ't is generalized to 7 o< (ZZ't)”
for v > 0 where Z is modified into its powered version Z) via the SVD of Z, i.e., ZO) = ULV/2V".
CPR simplifies similar methods by requiring only one SVD after which standard PLS can be applied
to ZO)| thus significantly improving computational speed and ease of interpretation (de Jong et al.,
2001; Lorber et al., 1987). CPR coincides with CR for the special cases (7 = 0,1 and o). It has
been suggested that the continuity parameter v and dimensionality K can play similar roles (Stone
& Brooks, 1990; Frank & Friedman, 1993). There is also evidence to suggest that it is sufficient

to consider only the three important special cases (OLS, PLS and PCR) and that the continuum
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may be unnecessary in CR under certain conditions (Chen & Cook, 2010). Given the fact that at
three points CR is identical to CPR and that K and ~ have similar effects, the simplicity, modeling
flexibility and speed of CPR confer significant advantages over CR. In general, PLS requires fewer
components than PCR; this is because the components from the latter need not necessarily be
correlated with time-to-event, whereas all PLS components must be. PLS may be regarded as a

compromise between OLS and PCR.

4.1 The CPR-AFT model

For a given application, CPR has the potential to offer insight into the underlying model. The
ability of AFT to incorporate crossing hazard curves offers unparalleled flexibility for modeling
large-scale “omics” data. As both CPR and AFT fall within the linear models framework, it seems
natural to consider a hybrid model that combines their strengths. By combining AFT with CPR
in a two-step procedure, we develop supervised dimension reduction methods jointly referred to as
(A)CPR-AFT which include CPR-AFT and Adjusted CPR-AFT or ACPR-AFT, that adjusts for
censored observations. (A)CPR-AFT represents a powerful array of solutions for this problem and
enables identification of an “omic” profile that is predictive of a patient’s response to a specific
treatment under a variety of scenarios encountered in practice.

(A)CPR-AFT has a distinct advantage over other methods in the literature because it directly
addresses the three main issues with the application of survival analysis to “omics” data. First,
it addresses the issue of high-dimensionality using CPR, reducing the number of “omic” features
into a smaller number of CPR components that are linear combinations of these features. Second,
it addresses the issue of NPH by using the AFT model, a model that does not assume PH but
partly overlaps with the PH model. Lastly, it addresses the issue of censoring by imputing the
censored observations using the extracted CPR components and the fitted AFT model. In the
literature survey in §2 we noted other dimension reduction methods and, while some utilized either
PLS or AFT, none of the methods addressed the issue of censoring directly. A large number of
published large-scale genomic studies with censored survival outcomes seem to indicate that the
proportion of censored observations is in the 60-80% range. Examples of such studies can be found

in The Cancer Genome Atlas (TCGA) Network (http://cancergenome.nih.gov/), Gene Expression

13


https://doi.org/10.1101/586529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/586529; this version posted June 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and Rouam et al. (2011), among others.
Thus, in this application, having a method like ACPR-AFT that adjusts for censored data is not
only beneficial but also desirable (Spirko, 2017). Furthermore, we explore the utility of CPR
coefficients, w, which are computed as w = v¢’ where the columns of v are weights vectors and ¢’

are the loadings, in developing a survival prediction model and for feature ranking and selection.

4.1.1 Supervised extraction of CPR components

The first step in the implementing the CPR-AFT model is to apply CPR which finds weight
vectors, columns of v, such that the linear combinations Z(¥r maximize the objective function
R2(ZMv 1) [Var(ZMv)]” where t = (logt,, ... ,logt,) are the log transformed observed event times
subject to the constraints outlined earlier. Here, Z(?) is found via the spectral decomposition of Z:;
after this step, standard PLS can be applied to Z() . Let u;; = zivp,i=1,...,Nk=1,..., K,
denote the linear combinations selected by CPR where z; denotes the ith row of Z(") and vy, denotes
the k" column of v. These represent the CPR components, and the number of components K < p
is chosen based on leave-one-out cross validation (LOOCV) to minimize the predicted residual sum
of squares (PRESS) statistic. We use the reparametrization v = /(1 — o) where « values of 0,
1/2 and 1 correspond to OLS, PLS and PCR, respectively. In subsequent sections, we outline
how (A)CPR-AFT can be used to select K, the optimal number of components, and «, the CPR
parameter. PLS is an important special case of CPR which maximizes the covariance between Zv

and log(t) and has been discussed by Devarajan et al. (2010) within this context.

4.1.2 Fitting the AFT model to CPR components

The next step in the (A)CPR-AFT methods involve fitting the AFT model in equation (3.1). We
propose flexible parametric and distribution-free versions of (A)CPR-AFT using the GenF and

sAFT models, respectively. The flexible parametric AFT model, GenF, is given by

logV; = B'u; +o*W;,i=1,...,N, (4.2)
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where Y; is the survival time for the i-th subject, u} = (ujo,...,uix) is a (K + 1) vector for the
i-th subject, B8 = (Bo, b1, - - -, PK) is the (K + 1) vector of unknown regression parameters, W; are
independent error terms with a common distribution Fyy ~ GenF and o* is the scale parameter. In
this setting, u;x, k =1, ..., K represent the K CPR components for the i-th subject, i =1,..., V.

The semi-parametric AFT model, sAFT, has the form
logV; = Bw; +W;,i=1,...,N, (4.3)

where the terms are as defined in equation (4.2). Here, W; are independent error terms with
unknown distribution Fjy. Given a feature expression vector z and PLS component u, using

equation (4.2) the survival function of Y is given by

S(ylz) = P(Y > y|z) =~ P(logY > logy|u)
= P(B'u+ o*W > logy|u)

= P(W > (logy — f'u)/o")
—1-Fy <logy—,@'u> ,

O-*

and is estimated by replacing the unknown parameters with their maximum likelihood estimates.

4.2 The parametric and semi-parametric (A)CPR-AFT algorithms

Below, we outline the CPR-AFT and ACPR-AFT algorithms. CPR-AFT ignores censoring and
treats those observations as complete while ACPR-AFT imputes censored observations using mean
residual life based on available data. For a pre-specified CPR parameter o, ACPR-AFT facilitates
efficient extraction of the optimal number, K, of CPR components as determined by PRESS and
LOOCYV. The survival prediction algorithm proposed in §5, based on (A)CPR-AFT, simultaneously
allows the optimal choice of a to be chosen in addition to the optimal K and utilizes the CPR

coefficients, w, from the final model.
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Algorithm 1 CPR-AFT

1: Choose the parameter a and a pre-specified range of values for K.

2: For each K in the range pre-specified in Step 1, compute the PRESS statistic based on
LOOCYV and choose the number of CPR components, K, that minimizes the PRESS
statistic. Note that, in this approach, K remains fixed and is chosen independently of a.

3: Perform CPR using a chosen in Step 1 and K identified in Step 2 to obtain weight
vectors vy, k =1,..., K. These weight vectors are used to compute the CPR coefficients
w as described in §4.1.1.

4: Build the final model using w as detailed in §5.

Algorithm 2 ACPR-AFT

1: Repeat Steps 1-3 of CPR-AFT (Algorithm 1).

2: Use uncensored data to obtain CPR components where the number of components,
K, is chosen as specified in Step 2 of the CPR-AFT algorithm. For GenF', use these
components as covariates for the model in equation (4.2) and obtain estimates for 3 and
o*; and for sAFT, use these components as covariates for the model in equation (4.3)
and obtain the estimate for 8. It is important to note that the components obtained in
this step are used only to estimate 3 and/or o*.

3: Let v; = logt;. Impute censored observations by estimating the mean residual life using
observed data v; by v = dv; + (1 — 52-)E(logYZ-| logY; > v;),i = 1,...,N. Under the

A

GenF model in equation (4.2), E(logY;|logV; > v;) = Bu; 4+ 6*E (W!W > v;&),
where ,(3' and ¢* are obtained in Step 2 and W is the error term in equation (4.2). Under
the sAFT model (4.3), E(logY|logy; > v;) = Bu; + 6*E (W|W > v — Bui>, where

A

(3 is obtained in Step 2 and W is the error term in equation (4.3). The calculation of
this conditional expectation for GenF' and sAFT models are outlined in §4.3 and §4.4,
respectively. Here, u; are the CPR components obtained in Step 2 of CPR-AFT.

4: Use vf,...,vy from Step 3 to construct new CPR components. The number of compo-
nents, K, for the adjusted survival data is determined based on LOOCYV such that the
PRESS statistic is minimized. The weight vectors v corresponding to these new CPR
components are used to compute the CPR coefficients w.

5: Repeat Steps 1-4 for different choices of @ and choose the optimal combination of (o, K)
that minimizes the PRESS statistic.

6: Retain the CPR coefficients w corresponding to the optimal choice of («v, K') in Step 5
to build the final model. This approach is outlined in detail in §5.
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4.3 A flexible parametric approach to (A)CPR-AFT

In equation (4.2), if Y ~ GenF then the density of can be written as

frWlp,on,m) = ———e "7 yo~ (*)n (4.4)
{[i+ () o] ")

where y > 0. As shown in Ciampi et al. (1986) and Cox (2008), this model has an umbrella
structure that includes many special cases where choosing specific parameter values will result in
a particular model of interest. Important special cases include the generalized gamma, Weibull
(exponential), gamma, log-normal, log-logistic, and Burr-type distributions and are listed in Table
2. The hazard behavior of GenF' for finite values of the parameters is described in Cox (2008)
and clearly highlights the flexibility provided by this model in handling different hazard shapes.

Here, we propose a generalization of (A)CPR-AFT using the GenF model, which encompasses

Table 2: GenF Model: Some special Cases

Model Parameters
Generalized Gamma m — 00
Weibull (exponential) | m — oo, n = 1(c = 1)

Gamma m— 00,0 =1
Log-Normal m — 00, N — 00
Generalized log-logistic m=n
Log-Logistic m=1n=1
Burr III m=1
Burr XII n=1

many important models and is, therefore, a flexible alternative for modeling censored survival
data in conjunction with large-scale “omics” data. To this end, we first obtain the density of
W = % in equation (4.2) and use it to derive the expression for the conditional expectation
E (W\W > ”’;75?“1) for this model in the ACPR-AFT algorithm. Using equation (4.4), the density

of W can be derived to be
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where —oo < w < co. Using the density of W,

waw(w) dw
1—-F(z)

j‘ln [% (130)}fv(v) dv

1— ffv(v) dv
0

EW|W > z)

1 (1 =yt 7 = vifus,

Wamdzz

In CPR-AFT, GenF is used for model fitting in Step 3 while in ACPR-AFT, it is used to use

where fy(v) ~ B(n,m) = m
to compute the expression in equation (4.5) in Step 3 and to fit appropriate models to estimate
the parameters in Steps 2 and 5. The GenF model can be fitted using the R package flexsurvreg
(R Core Team, 2018) and is described in Cox (2008). In addition to GenF', we are also interested
in comparing its performance to important special cases such as the log-normal, log logistic, and
Weibull. To obtain the conditional expectation, E(W|W > z), for these special cases, one just
needs to replace the parameters in equation (4.5) with those listed in Table 2 for the respective

model.

4.4 A semi-parametric approach to (A)CPR-AFT

Although the generalization based on GenF' is parametric in nature, it offers tremendous modeling
flexibility. Here, we further extend our (A)CPR-AFT approach using the sAFT model which has
no distributional assumption for the error term. This is an attractive property as it does not force
the choice of a specific model, thus providing more flexibility in the application of the method. The
SAFT model has the form given in equation (4.2). Following Jin et al. (2006), the conditional

expectation in Step 3 of ACPR-AFT is obtained as

feO:ZIB) Udﬁ:g (U)

EWIW > z) = - : (4.6)
1 — Fa{ei(B)}
- - 3 ~ o 61 . .
where z = e;(f) = v; — fu; and Fp(t) =1 — H (1 — 5 1I{ej(ﬁ)>er(6)}> is the Kaplan Meier
Jj= juig )
ie; (B)<t

estimator of F based on {¢;(3),d;}. In CPR-AFT, sAFT is used for model fitting in Step 3 while in
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ACPR-AFT, it is used to compute the expression in equation (4.6) in Step 3 and to fit appropriate
models to estimate the parameters in Steps 2 and 5. Fitting the semi-parametric AFT model is
based on the Buckley-James (BJ) type estimator developed by Jin et al. (2006) and is implemented

in the R package Iss (R Core Team, 2018).

Merits of BJ Estimation The BJ estimation method (Buckley & James, 1979) is an iterative
least squares approach that is closely related to OLS without censoring and, thus, provides a more
accessible interpretation to practitioners. It has been utilized in a variety of applications involving
many areas such as medicine (Hammer et al., 2002), genetics (Bautista et al., 2008), astronomy
(Steffen et al., 2006) and economics (Deaton and Irish, 1984; Calli and Wever bergh, 2009), and has
been shown to be the preferred estimation approach in a comparison study (Wang & Wang, 2010).
In contrast to methods that assume independence between the censoring mechanism and covariates,
the BJ approach requires weaker assumptions and, in conjunction with boosting, has been shown
to be superior to LASSO-type methods and to generate sparser models (Wang & Wang, 2010). It
utilizes Kaplan-Meier estimates and is readily available in statistical software such as R (R Core
Team, 2018); moreover, BJ estimation for the AFT model can be conveniently extended to describe
more complex data structures with existing software, such as MART and MARS (Friedman, 1991;

2001). Hence, we use BJ estimation in the proposed algorithms.

5 Supervised dimension reduction

A natural approach to build a final model based on (A)CPR-~AFT is using the K CPR components
from ACPR-AFT as covariates in equation (4.2) and following Step 3 of CPR-AFT. It would result
in an AFT model based on reduced components from ACPR-AFT. A prognostic index can be
defined as n = uf, where u is the n x K matrix whose columns contain the K CPR components
and § is the K-vector of coefficients from this final AFT model fit. A major disadvantage of
this approach is that component information is not available for new subjects and, therefore, it
is not possible to develop a prediction model that can be used on future subjects with feature

expression profiles. Recall that wpx1 = VpxxrCj,; where the K columns of v contain weight
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vectors and ¢’ contains the loadings associated with the K CPR components which are contained
in the columns of u, « . Hence, we propose an approach based on the CPR coefficients, w, rather
than directly using the reduced CPR components, u, for predicting the survival probability of a
future subject whose feature expression profile is readily available. As shown in the next section,
some important differences exist between this approach and the final AFT model discussed above

with vastly different implications for prediction.

5.1 Developing a prognostic index

We use the CPR coefficients to devise an approach based on the weighted average of feature
expressions and illustrate its utility in developing a survival prediction model. Using the vector of
CPR coefficients, w, for the p features from a particular model of interest and the n x p feature

expression matrix, Z, the weighted average, n, is calculated as
n = Zw. (5.1)

This results in an n-dimensional vector, which we call the prognostic index (PI), where each element
represents a subject’s weighted average feature expression. In the calculation of 1, a heavier weight
is placed on features deemed significant and in our approach, we calculate 1 using the subset of
features determined by marginal screening procedures (see §5.2 for details). It is worth noting that
PI represents the predicted (log) survival times and, thus, enables the development of a prediction

model using (A)CPR-AFT as outlined in the next section.

5.2 Predictive modeling using (A)CPR-AFT

We develop a survival prediction algorithm using the CPR coefficients w from (A)CPR-AFT, sep-
arately for GenF and sAFT, by adopting a flexible approach that simultaneously chooses the
optimal « in addition to the optimal K, the number of CPR components. The proposed approach
utilizes (A)CPR-AFT for several choices of « that represent a variety of scenarios: the midpoint
of the trajectory from OLS and PLS (o = 0.25), PLS (0.5), the midpoint of the trajectory from

PLS to PCR (0.75) and PCR (0.95). Since p > n, OLS (a = 0) is not a useful option in our
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application and PCR (a = 1) requires a value of « close to 1 in order to avoid numerical instability.
In this approach, the final model is chosen based on the optimal («, K) combination that results
in the smallest PRESS using LOOCV after applying (A)CPR-AFT, and the corresponding CPR
coefficients w are used to develop the PI for evaluating the performance of this prediction model.

In CPR-AFT, there is no way of choosing an optimal o because it plays no role in the selection
of K and is only used after K is chosen to run CPR. Therefore, an optimal (a, K) combination
cannot be chosen because Step 2 (choosing K using PRESS) does not depend on a. K would remain
the same even if Steps 3 and 4 of CPR-AFT are repeated for different choices of o where each «
would yield a different survival prediction model, and models corresponding to various choices of «
would have to be evaluated and compared separately. On the other hand, an optimal combination
can be chosen in ACPR-AFT because each pre-specified « directly impacts the adjustments. By
comparing the PRESS statistics after adjustments are made (step 4 of ACPR-AFT) for different
choices of «, the optimal («, K) combination can be selected. Thus, ACPR-AFT has a significant
advantage over CPR-AFT because it adjusts for censored observations. For these reasons, we
consider two different unadjusted methods in our comparisons, one each based on the chosen value
of a from GenF and sAFT in ACPR-AFT.

Prior to the application of (A)CPR-AFT, supervised marginal screening procedures were used
to narrow down the number of features. These methods ensure that features used for prediction
demonstrate an association with survival, at the univariate level, after adjusting for potential
confounders such as age of diagnosis and stage of disease. An added benefit of such pre-filtering
is that it significantly reduces computation time. Supervised marginal screening was performed
to select (i) features that fit the sAFT model and had a statistically significant effect on survival
(sAFT) or (ii) features that had a significant effect on survival using concordance regression (CON)
(Dunkler et al., 2010), at the 0.05 significance level. Once a subset is selected, (A)CPR-AFT is
applied and the optimal («, K) is chosen. The CPR coefficients, w, are retained for the adjusted
(ACPR-AFT) and unadjusted (CPR-AFT) methods (based on GenF and sAFT) and used to
predict the logarithm of survival time for each subject given their feature expression profile Z using
the prognostic index, PI = n = Zw. We use italicized notation (sAF'T or GenF') to denote the

particular method associated with ACPR-AFT while sAFT is used to denote the marginal screening
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method.

The following cross validation approach is used to build and evaluate the prediction models.
The data is first split into training and test sets roughly in a 2:1 ratio, where wy, represents the
vector of CPR coefficients corresponding to the training set and is used to predict the logarithm
of survival time in the test set. Thus, PI = Zewy,, where Zy, is from the test set, and the model
is evaluated for prediction accuracy. We utilize the following measures of prediction accuracy to
evaluate and compare the predictive performance of ACPR-AFT, using GenF or sAFT models,
to the unadjusted CPR-AFT approach: (i) R2, the fraction of variation that is explained by
the K CPR components in the final (A)CPR-AFT model, (ii) Mean Squared Error, MSE =
L3 6;(PI; — logT;)? where PI; is the prognostic index for the i’k subject, n* = 37 | &; and
d; = 1 implies the event was observed; M SFE is calculated for both the training set, M.SErpr, and
the test set, M SErg, and (iii) area under the time-dependent receiver operating characteristic
curve (AUC) which quantifies a method’s ability to predict survival at varying time points such as
2, 3 or 5 years and is implemented in the R package survivalROC (Haegerty et al., 2000; R Core

Team, 2018). An AUC close to 1 indicates better prediction accuracy. In summary, the survival

prediction algorithm involves the following steps:

Algorithm 3 Survival Prediction Algorithm

1: Use supervised marginal screening to filter features using SAFT or CON, as outlined
above.

2: Randomly split the filtered data set into training (67% of subjects) and test sets (33%
of subjects).

3: Apply (A)CPR-AFT (GenF and sAFT) to the training set using o = (.25,.5,.75,.95).

e Choose optimal (o, K) combination.
e Retain the CPR regression coefficients, wy,.

4: Use wy, from Step 3 to predict (log) survival times in the test set, i.e., calculate PI =
7wy, where Z;, is from the test set.

5: Evaluate the prediction models using the measures of prediction accuracy outlined above.

6: Repeat Steps 2-5 25 times. Median values of the prediction accuracy measures from step
5 are reported.
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6 Application to simulated data

6.1 Simulation schemes

We considered two different simulation schemes to generate artificial survival and feature expression
data sets based on the approach outlined in Dunkler et al. (2010). In order to account for various
types of hazards, survival times Y;,7 = 1,...,n, were generated from each of 5 different models
specified as follows: standard log-normal LN (x = 0, 0 = 1); log-logistic LL1 (a1 = 2,A; =
2,A9 = 4) and LL2 (a1 = 3,3 = 4, A1 = 1, A2 = 2); and Weibull W1 (a1 = 1,\; = %) and W2
(1 =30 =2, A1 =1, Ny = %), where LL1 and W1 refer to the respective models where the shape
parameters are the same but the scale parameters differ, and LL2 and W2 refer to the respective
models where both the shape and scale parameters differ. We use a more informed approach that
is broader in scope compared to that of Dunkler et al. (2010), who only considered W1 in their
simulations. Here, LN, LL2 and W2 cases are of particular interest because of their ability to
simulate crossing hazards. To simulate censoring, we drew random samples with uniform follow-up
times C' from U(0,7) and defined the observed survival time as 7" = min(Y,C) with censoring
indicator § = I(T' =Y"). We chose 7 to get censoring proportions of 33, 67% and 80%.

For each model, we simulated censored survival times and feature expression data for N = 200
subjects and p = 5000 mock features where feature expression is linked to survival time based
on the logarithm of the hazard ratio (HR), B4(t) = Bolog(HR). Feature expression data was
generated from the standard normal model. Following Klein and Moeschberger (2003), log(H R)
was calculated based on the respective model of interest. For LN, we used 8,(t) = Bo(t? — 1)
to simulate crossing hazards similar to what was done in Dunkler et al. (2010). Then, 5y was
chosen so that only the first 400 features were assumed to have an effect on survival time, with 200
having a large effect and 200 having a small effect. In Scheme 1, we adopt a univariate approach
where feature expression is linked to survival one feature at a time, and in Scheme 2 we adopt a
multivariate approach that incorporates correlations between features. More details on these steps

can be found in Dunkler et al. (2010).
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6.2 FEvaluation of methods

In ST §1.1, we discuss feature ranking and selection methods using components extracted from
(A)CPR-AFT. We evaluated their performance for (i) GenF' versus its special cases and (ii) GenF
and sAFT-based ACPR-AFT versus unadjusted CPR-AFT under different data generating mech-
anisms and censoring fractions for each simulation scheme. These results are summarized in SI
Tables 1-6 and Figures 1 & 2. In addition, the survival prediction algorithm proposed in §5.2 was
evaluated using GenF or sAFT-based ACPR-AFT and compared with unadjusted CPR-AFT for
each simulation scheme. Details are provided in the SI §1.2 and results are summarized in SI Tables
7-12. Overall, our simulation studies establish the superiority of GenF or sAFT-based ACPR-AFT

under a variety of data generating mechanisms encountered in practice.

7 Application to high-throughput “omics” data

We demonstrate the utility of (A)CPR-AFT in supervised dimension reduction and developing a
survival prediction model using the following publicly available data sets in cancer genomics. These

data sets are described in detail in SI §2.

7.1 Data sets

e Head & Neck squamous cell carcinoma (HNSCC): Published by TCGA and contains survival

data and RNA sequencing gene expression profiles for 221 subjects with HNSCC.

e Glioblastoma (GBM): Published by TCGA and contains survival data and methylation pro-

files for 280 tumor samples obtained using the Infinium HumanMethylation27 platform.

e Ovarian cancer: Published by Tothill et al. (2008) and contains Affymetrix gene expression
profiles for 282 subjects and correspo