

Fc γ RIIB I232T polymorphic change allosterically suppresses ligand binding

2

4

Wei Hu^{#,1}, Yong Zhang^{#,2}, Xiaolin Sun^{#,3}, Liling Xu⁴, Hengyi Xie⁴, Zhanguo Li³,
Wanli Liu^{*,4}, Jizhong Lou^{*,2,5}, Wei Chen^{*,1}

6

¹ Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the
Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China

8

² Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, Beijing 100101, China

10

³Department of Rheumatology and Immunology, Peking University People's Hospital, Peking-
Tsinghua Center for Life Sciences, Beijing Key Laboratory for Rheumatism and Immune Diagnosis
(BZ0135), Beijing 100044, China

12

⁴MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation
Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key
Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua
University, Beijing 100084, China

⁵University of Chinese Academy of Sciences, Beijing 100049, China

14

[#] Equal contribution

16

* Correspondence to:

18

jackweichen@zju.edu.cn, jlou@ibp.ac.cn, liulab@tsinghua.edu.cn

20

22

24 **Abstract**

26 Fc γ RIIB bindings to its ligand suppress immune cell activation. A single-
28 nucleotide polymorphic (SNP) change, I232T, in the transmembrane (TM) domain of
Fc γ RIIB loses its suppression function, which clinically associates with systemic lupus
erythematosus (SLE). Previously, we reported that I232T tilts Fc γ RIIB's TM domain.
30 In this study, combining with molecular dynamics simulations and single-cell FRET
assay, we further revealed that such tilting by I232T unexpectedly bends the Fc γ RIIB's
ectodomain towards plasma membrane to allosterically impede Fc γ RIIB's ligand
32 association. We then used single-cell biomechanical assay to further find out that I232T
also reduces two-dimensional in-situ binding affinities and association rates of Fc γ RIIB
34 interacting with its ligands by three-folds. This allosteric regulation by a SNP provides
an intrinsic molecular mechanism for functional loss of Fc γ RIIB-I232T in SLE patients.

36 **Introduction**

Disorders or hyper activation of immune components could lead to autoimmune
38 diseases. Malfunction of an immune receptor, Fc γ RIIB, is generally regarded as
destructive for immune system ¹⁻³. Fc γ RIIB is widely expressed on most types of
40 immune cells including B cells, plasma cells, monocytes, dendritic cells, macrophages,
neutrophils, basophils, mast cells and even memory CD8 T cells ⁴. Fc γ RIIB is unique
42 among all immune-receptors for Fc portion of IgG molecules (Fc γ Rs), which efficiently
down-regulates the activation of immune cells. It has been shown that single nucleotide
44 polymorphisms (SNPs) of the human Fc γ RIIB gene extensively influence the
susceptibility towards autoimmune disorders ^{2-3, 5}. A T-to-C variant in exon 5
46 (rs1050501) of Fc γ RIIB causes the I232T substitution (Fc γ RIIB-I232T) within the
transmembrane (TM) domain, and positively associates with systemic lupus
48 erythematosus (SLE) in the homozygous Fc γ RIIB-I232T populations through a large
amount of epidemiological studies ^{2, 5-9}. Although a statistical linkage of the
50 homozygous Fc γ RIIB-I232T polymorphism with SLE was established, comprehensive
assessments and deeper mechanistic investigations towards the inter-linkage of
52 Fc γ RIIB-I232T regarding to the age of syndrome onset, progress, and clinical
manifestation of SLE are still lacking.

54

Results and Discussion

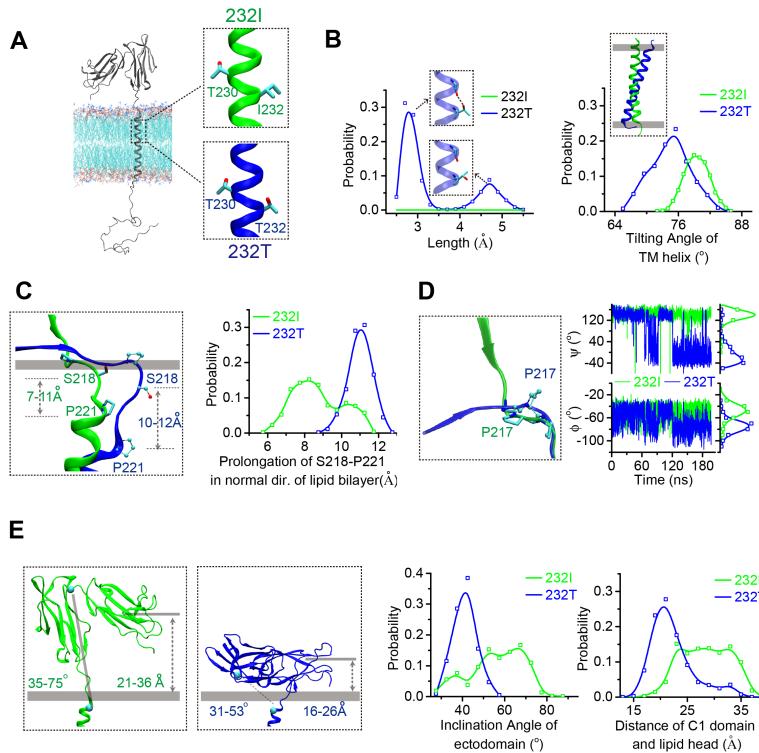
56 In this report, we firstly performed systemic examination over the association of
FcyRIIB-I232T with clinical manifestations of SLE. We enrolled 711 unrelated Chinese
58 patients with SLE and complete clinical documents into this study (Table 1). 688
unrelated healthy Chinese volunteers with matched gender and age were then enrolled
60 as controls. We confirmed a strong positive association of the homozygous FcyRIIB-
I232T polymorphism with SLE ($\chi^2 = 7.224$, $p = 0.008$, odds ratio with 95% confidence
62 interval (CI) = 1.927) (Table 1), in consistent with the published epidemiological data
^{2, 5-9}. Next, we comprehensively analyzed the clinical data for all 711 SLE patients,
64 including 50 FcyRIIB-I232T homozygotes, 283 FcyRIIB-I232T heterozygotes and 378
FcyRIIB-WT carriers. Strikingly, we found that the homozygous FcyRIIB-I232T
66 polymorphism is significantly associated with early disease onset (age at disease onset
 < 37 , $p = 0.002$) (Supplementary file 1 and 2). We also observed a significant
68 association of the homozygous FcyRIIB-I232T polymorphism with more severe SLE
clinical manifestations since the corresponding SLE patients present significant
70 elevation in the amounts of anti-dsDNA antibodies ($p = 0.004$), anti-nuclear antibodies
($p = 0.021$) and total Immunoglobulin (Ig) ($p = 0.032$) when compared to patients
72 carrying heterozygous FcyRIIB-I232T polymorphism or FcyRIIB-WT (Supplementary
file 1 and 2). Moreover, homozygous FcyRIIB-I232T polymorphism is also
74 significantly associated with the higher SLE disease activity index (SLEDAI) score (p
= 0.014 for SLEDAI ≥ 12 vs. $p = 0.861$ for SLEDAI < 12) as well as more severe

76 clinical manifestations including arthritis ($p = 0.008$), anemia ($p = 0.006$), leukopenia
($p = 0.005$), complement decrease ($p = 0.006$), hematuria ($p = 0.004$) and leucocyturia
78 ($p = 0.010$) (Supplementary file 1 and 2). A suggestive association was also observed
between homozygous Fc γ RIIB-I232T polymorphism and serositis ($p = 0.063$)
80 (Supplementary file 1 and 2). These association analyses demonstrated that SLE
patients homozygous for Fc γ RIIB-I232T polymorphism are prone to develop more
82 severe clinical manifestations than the patients carrying heterozygous Fc γ RIIB-I232T
polymorphism or Fc γ RIIB-WT, reinforcing the importance to study the pathogenic
84 mechanism of Fc γ RIIB-I232T polymorphism since this SNP occurs at a notable
frequency in up to 40% (heterozygous polymorphism) humans ²⁻³.

86 **Table 1: Association analysis of rs1050501 with SLE (adjusted for sex and age)**

rs1050501	Control	SLE	OR	95% CI	p value
allelic					
T	1038 (75.4)	1039 (73.1)	1.142	0.958-1.362	0.138
C	338 (24.6)	383 (26.9)			
genotypic					
TT+TC	662 (96.2)	661 (92.7)	1.927	1.185-3.134	0.008
CC	26 (3.78)	50 (7.03)			

88 Previous biochemical studies revealed that monocytes harboring Fc γ RIIB-I232T
are hyper-activated with augmented Fc γ RI-triggered phospholipase D activation and
90 calcium signaling ¹⁰. B lymphocytes expressing Fc γ RIIB-I232T are of hyperactivity
and abnormal elevation of PLC γ 2 activation, proliferation and calcium mobilization ¹¹.
92 Fc γ RIIB-I232T B cells lose the ability to inhibit the oligomerization of B cell receptors

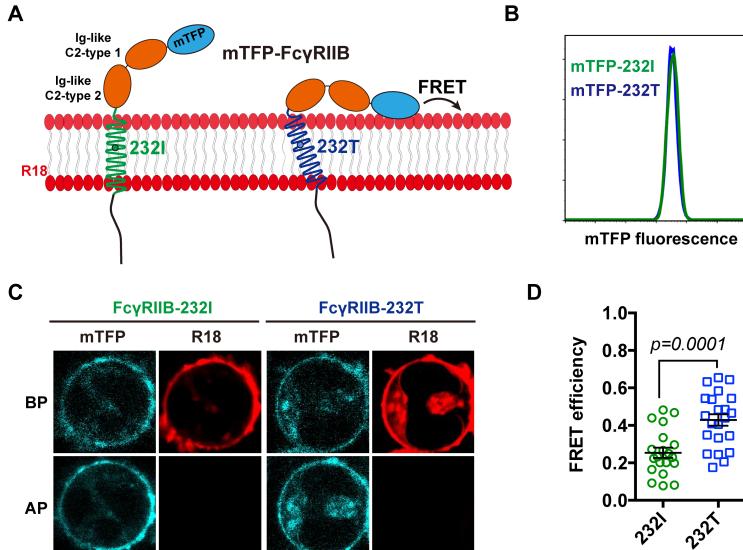

(BCRs) upon co-ligation between BCR and Fc γ RIIB¹². Recent live-cell imaging
94 studies showed that B cells expressing Fc γ RIIB-I232T fail to inhibit the spatial-
temporal co-localization of BCR and CD19 within the B cell immunological synapses
96¹³. Human primary B cells from SLE patients with homozygous Fc γ RIIB-I232T
mutation revealed hyper-activation of PI3K¹³. Thus, Fc γ RIIB-I232T is very likely the
98 first example that a naturally occurring SNP within the TM domain of a single-pass
transmembrane receptor can cripple its function in principle and is significantly relevant
100 in diseases.

These signaling events are usually triggered or followed by ligand engagement of
102 Fc γ RIIB, while this function is disrupted by a single amino acid change from Ile to Thr
in the TM domain. Two early biochemical studies proposed a model of reduced affinity
104 between Fc γ RIIB-I232T and lipid rafts to explain the functional relevance and effect of
this mutation¹⁰⁻¹¹. Another model suggested that I232T mutation enforces the
106 inclination of the TM domain and thereby reduces the lateral mobility and inhibitory
functions of Fc γ RIIB. However, both models assumed that Fc γ RIIB-I232T and
108 Fc γ RIIB-WT (I232) have an equal capability to perceive and bind to the ligand, the IgG
Fc portion within the antibody antigen immune complexes. This important but
110 experimentally un-proved pre-requisition in both models is based on the argument that
Fc γ RIIB-I232T and Fc γ RIIB-WT (I232) are identical in terms of the amino acid
112 sequences of the extracellular domain and thus the quaternary structures for recognizing
the ligands, i.e., the IgG Fc portions¹⁴⁻¹⁵. However, currently there are no experimental

114 evidences to validate this pre-requisite assumption.

We thus investigated whether I232T polymorphic substitution in the TM domain
116 of Fc γ RIIB allosterically affects ligand recognition. Our previous observation of the
forced inclination of TM domain by I232T led us to hypothesize that the inclination of
118 TM domain may lead to ectodomain conformational changes to allosterically attenuate
ligand binding. We first carried out large-scale molecular dynamic simulations with full
120 human Fc γ RIIB imbedded in the lipid bilayer harboring residues I232 or T232 on its
TM domain (Figure 1A & Figure 1—figure supplement 1A). The simulations
122 confirmed previous results with TM only¹⁶, *i.e.*, I232T polymorphic substitution
enforces the inclination of the TM domain (Figure 1B, right). The inclination might be
124 resulted by the ability of H-bond formation between the side-chain O γ atom of T232
and the backbone oxygen atoms of the neighboring residues in T232 system (Figure 1B,
126 left). The differences on the orientation of the TM domain induce a different
conformation on the membrane proximal region (ecto-TM linker) at the extracellular
128 side (Figure 1—figure supplement 2). The membrane buried non-helical region of the
linker extends more in the I232T form than that in the WT, and the length between S218
130 and P221 peaks at 11 Å for I232T, 3 Å longer than the 8 Å peak position for I232
system (Figure 1C). This length elongation further results in a different conformation
132 of residue P217, the main chain dihedral angle of P217 in I232 system displays two
populations at 141°±23° and -50°±12°, respectively, but shifts to 4°±45° and -75°±12°
134 in the T232 form (Figure 1D and Figure 1—figure supplement 2). These effects

propagate and lead to striking effect on the extracellular domains of Fc γ RIIB. We found
136 that the extracellular domain of the T232 form adopts significant different conformation
than that of the I232 form. The ectodomain of I232 maintains more straight
138 conformation, whereas that of T232 bends down towards the lipid bilayer (Figure 1E).
Statistical analyses show that the ectodomain inclination angle of the T232 form
140 distributes across 30~60° with a sharper single-peak at 40° (Figure 1E). In contrast, the
angle of the I232 form distributes more flatter with a most favorable probability ranging
142 from 50° to 70° (Figure 1E). The distance of C1 domain is much closer to the membrane
for the T232 form than the I232 form (Figure 1E). These results suggest that the T232
144 morphism (or I232T mutation) may reduce the antibody recognition ability of Fc γ RIIB
via two aspects. First, although the Fc binding site is not buried, the orientation and
146 membrane binding of T232 may sterically prevent the accessibility of the Fc portion of
IgG, as significant clashes between docked Fc and the membrane are observed (Figure
148 1—figure supplement 1B). Second, T232 is more rigid (or less flexibility, Figure 1E)
such that the chance to associate with the ligand is decreased (thus the ligand
150 association rate may be significantly reduced).

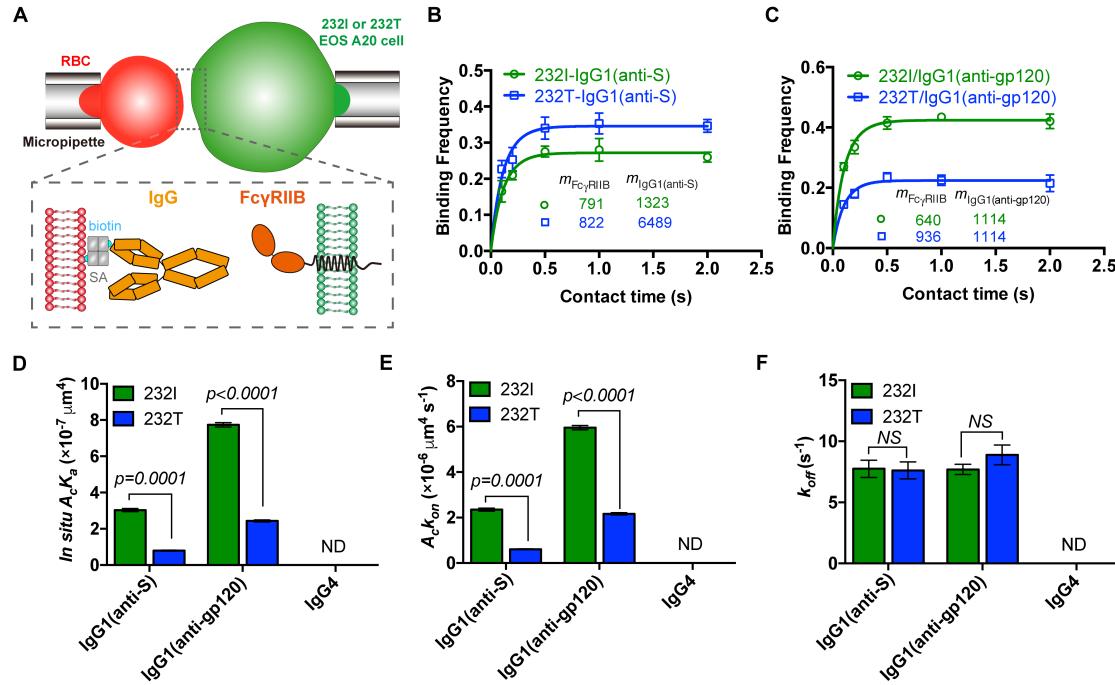


152 **Figure 1. MD simulations reveal the conformational dynamics of WT Fc γ RIIB and its I232T**
153 **polymorphic change.** (A) The modeled structure of complete Fc γ RIIB (residues A46-I310, shown
154 in grey cartoon) imbedded in an asymmetric lipid bilayer (Connected lines with atoms colored by
155 type: P, tan; O, red; N, blue; C, cyan). The helical structures in the vicinity of residue 232 for WT
156 (I232, green) and I232T (T232, blue) are shown in the insets. (B) Probability distributions of the
157 distance between T232 O γ atom and its nearest backbone O atom from residue V228 (left), and of
158 the tilting angles between TM helix and lipid bilayer (right), the inclination of TM for T232 can be
159 observed clearly. (C) Comparison of the representative snapshots of I232 and T232 systems at the
160 stalk and TM linker region after superposing the lipid bilayers (left), and length distribution of S218-
161 P221 backbone in normal direction of lipid bilayer (right). (D) Conformational difference of I212-
162 S220 regions after aligning residues S218 to S220 (left), and the time courses of the dihedral angles
163 (ψ , ϕ) of residue P217 (right). (E) Representative snapshots of the I232 and T232 systems with the
164 inclination angles and C1(Ig-like C2-Type 1 domain)/bilayer distances indicated. Probability
165 distributions of the inclination angle between Fc γ RIIB ectodomain and lipid bilayer (left), and the
166 distances between C1 domain and lipid bilayer (right).

MD simulations suggest that Fc γ RIIB ectodomain may bend towards membrane

168 through weakly association of its ectodomain with the membrane via multiple sites
(Figure 1—figure supplement 3) for I232T polymorphism. We next performed single-

170 cell fluorescence resonance energy transfer (FRET) assay to experimentally validate
whether I232T polymorphism allosterically bends the Fc γ RIIB ectodomain towards cell
membrane (Figure 2A). According to our MD simulation results (Figure 1E), we
172 hypothesized that an mTFP (as FRET donor) fused at the N-terminal of Fc γ RIIB (232I
or 232T) ectodomain should fall in the spatial proximity (~16~36 \AA) for FRET with
plasma outer membrane labeled with octadecyl rhodamine B (R18, as FRET acceptor),
174 and that I232T polymorphism may enhance FRET efficiency. With de-quenching assay
on A20II1.6 B cell lines expressing similar level of either mTFP-232I or mTFP-232T
176 Fc γ RIIB (Figures 2B and 2C), we found that I232T polymorphism indeed enhances the
FRET efficiency about two folds, from ~ 20% in the I232 form to ~40% in the T232
178 form (Figure 2C and 2D). This enhancement of FRET efficiency by I232T
polymorphism indicates that Fc γ RIIB-232T ectodomain prefers to a more recumbent
180 orientation on the plasma membrane than Fc γ RIIB-232I, consistent with our MD
simulation observations above.



184

Figure 2. The Fc γ RIIB-232T ectodomain prefers to a more recumbent orientation on the
186 **plasma membrane.** (A) Schematic illustration of mTFP-R18 FRET system to detect the distance
between the ecto-domain of Fc γ RIIB232I (green) or Fc γ RIIB232T (blue) (N-terminal of
188 ectodomain fused with mTFP as FRET donor, cyan) with the plasma membrane (stained with R18
dye as FRET acceptor, red). (B) mTFP fluorescence comparison of A20II1.6 B cell lines expressing
190 mTFP-232I (green) or mTFP-232T (blue) constructs by FACS analysis. (C) Representative images
of de-quenching FRET assay. R18-labeled mTFP-232I or mTFP-232T cells image were acquired in
192 both channels before or after R18 photo-bleaching (BP or AP). (D) FRET efficiency of mTFP-232I
or mTFP-232T cells (~20 cells, respectively) were calculated and plotted. Error bars represent SEM.

194 Ectodomain orientation changes of a receptor can significantly affect its *in-situ*
binding affinity with its ligands¹⁷. We therefore predict that titling Fc γ RIIB ectodomain
196 towards plasma membrane by I232T polymorphism may attenuate its ligand binding
affinity, especially the association rate. To test this hypothesis, we applied well-
198 established single-cell biomechanical apparatus with adhesion frequency assay¹⁸ to
directly and quantitatively measure *in-situ* two-dimensional (2D) binding kinetics of
200 the WT or I232T Fc γ RIIB binding with its ligands (Figure 3A). It revealed that the *in-*

situ 2D effective binding affinity of Fc γ RIIB232I with MERS virus S protein human IgG1 antibody (anti-S) is about three times higher than that of Fc γ RIIB232T binding with same antibody ($A_c K_a = 3.03 \pm 0.15 \times 10^{-7}$ and $0.80 \pm 0.04 \times 10^{-7} \mu\text{m}^4$, respectively), whereas that of human IgG4 is hardly measured as its binding is too weak and beyond the detection limit ($10^{-8} \mu\text{m}^4$)¹⁸ of this assay (Figure 3B and 3D), which is consistent with previous reported Fc γ RIIB/IgG4 binding affinity is far less than IgG1¹. Moreover, off-rates of the WT and the I232T form binding with human IgG1 are similar (7.75±1.42 and 7.62±1.41 s⁻¹, respectively) (Figure 3B and 3F), while the 2D effective on-rate of the I232T binding with human IgG1 is three times slower than that of the WT binding with same ligand (Figure 3B and 3E). These kinetics data strongly support our prediction that I232T polymorphism tilts Fc γ RIIB ectodomain more recumbent toward the plasma membrane so that its ligand binding domain is harder to be accessed, which reduces Fc γ RIIB/IgG1 binding on-rate. The conclusion is also confirmed by Fc γ RIIB binding with another human IgG1 (HIV1 gp120 human IgG1, anti-gp120) (Figures 3C to 3F). That is, the 2D effective affinity of Fc γ RIIB binding with human IgG1 and on-rate both are three times higher than those of 232T's ($A_c K_a = 7.74 \pm 0.24 \times 10^{-7}$ and $2.43 \pm 0.11 \times 10^{-7} \mu\text{m}^4$, respectively; $A_c k_{\text{on}} = 5.95 \pm 0.19$ and $2.16 \pm 0.10 \times 10^{-7} \mu\text{m}^4 \text{ s}^{-1}$, respectively), while their binding off-rates are similar (7.70±0.83 and 8.90±1.61 s⁻¹, respectively) (Figure 3C, 3D, 3E and 3F).

220

Figure 3. Fc γ RIIB-232T exhibited significantly reduced 2D IgG1 binding affinity and on-rate

222

in comparison with Fc γ RIIB-232I. (A) Schematic illustration of micropipette binding frequency approach. Two opposing micropipettes aspirated red blood cell (red, coating IgG antibody) and Fc γ RIIB A20II1.6 B cell (232I or 232T, green) respectively to operate contact-retraction cycles manipulation. (B and C) Adhesion curves of Fc γ RIIB (232I or 232T) and human IgG1 antibody (anti-S or anti-gp120) according to probabilistic kinetic model. (D, E and F) From the adhesion curves, *in situ* 2D effective binding affinity ($A_c K_a$), on-rate ($A_c k_{on}$) and off-rate (k_{off}) were calculated.

226

228 Error bars represent SEM.

230

In summary, we confirmed that homozygous Fc γ RIIB-I232T confers dramatically

232

increased risk of developing more severe clinical manifestations in patients with SLE.

234

The pathological relevant of I232T is caused by the inclination of TM domain which leads to differed conformation of Fc γ RIIB ectodomain. Ectodomain harboring I232T polymorphism bends towards the membrane such that the Fc binding ability is significantly reduced. The hampered Fc recognition ability of Fc γ RIIB-I232T results in

deficiency on its inhibitory function and thus hyper-activated immune cells, potentially
236 leading to SLE and other immune diseases.

238 **Methods**

SNP rs1050501 genotyping and statistical analysis

240 The ethics committee of Peking University People's Hospital approved this study
and informed consents were obtained from each patient and healthy volunteer. There
242 were 711 patients fulfilling the 1997 revised classification criteria of the American
College of Rheumatology that enrolled in this study. Healthy volunteers were recruited
244 as controls. 4-8ml peripheral blood was acquired from SLE patients and healthy
volunteers. Genomic DNA was extracted from peripheral blood samples using the
246 TIANamp Blood DNA Midi Kit (TIANGEN BIOTECH, Beijing) following the
manufacturer's protocol. The TaqMan Genotyping Assays were applied for genotyping
248 of SNP rs1050501 (TaqMan probe C: 5'-VIC-CGCTACAGCA GTCCCAGT-NFQ-3',
TaqMan Probe T: 5'-FAM- CGCTACAGCA ATCCCAGT-NFQ-3') (Life technology).
250 Amplification and genotyping analyses were performed using ABI 7300 Real-Time
PCR system. Relative quantification of probes levels was calculated (7500 Sequence
252 Detection System Software Version 1.4, ABI). Few samples were genotyped by using
primers (forward: 5'-AAGGGGAGCC CTTCCCTCTGTT-3', reverse: 5'-
254 CATCACCCAC CATGTCTCAC-3') binding to the flanking introns of exon 5 as
reported¹⁰⁻¹¹. The DNA sequencing was done by BGI (Beijing). The Pearson chi-square
256 tests were performed for the comparison of differences between cases and controls at
genotype model (recessive model CC vs. TT+TC). The odds ratios (OR), 95%
258 confidence intervals (CI) and p value for recessive model analysis were calculated using
logistic regression, adjusting for age and sex. In statistical analyses, *p* value of less than
260 0.05 was considered statistically significant.

Molecular Dynamics Simulations

262 Structure model of the full human Fc γ RIIB system (residues A46-I310) was built
by fusing the crystal structure of the ectodomain (PDB code 2FCB, residues A46-Q215)

264 to the transmembrane (TM) helix (residues M222-R248) model obtained in previous
265 study¹⁶, the stalk (residues A216-P221) and cytoplasmic regions (residues K249-I310)
266 are randomly placed. An asymmetric lipid bilayer with the membrane lateral area of
267 $100 \times 100 \text{ \AA}^2$ was generated with Membrane Builder in CHARMM-GUI¹⁹, the lipids in
268 the outer leaflet contain POPC, PSM, and Cholesterol with molar ratio 1:1:1 and these
269 in the inner leaflet contain POPE, POPC, POPS, POPIP2, Cholesterol with molar ratio
270 4:3:2:1:5. Fc γ RIIB model was inserted into the lipid membrane with its TM
271 perpendicular to the bilayer surface and the ectodomain stands straight, as shown in
272 Figure 1A.

273 The WT system was subsequently solvated in $100 \times 100 \times 203 \text{ \AA}^3$ rectangular water
274 boxes with TIP3P water model and was neutralized by 0.15 M NaCl. The I232T
275 polymorphism was obtained from the same configuration using the Mutator plugin of
276 VMD²⁰. The final systems contained ~0.20 million atoms in total.

277 Both systems were first pre-equilibrated with the following three steps: (1) 5,000
278 steps energy minimization with the heavy atoms of protein and the head group of the
279 lipids fixed, followed by 2 ns equilibration simulation under 1 fs timestep with these
280 atoms constrained by 5 kcal/mol/ \AA^2 spring; (2) 5,000 steps energy minimization with
281 the heavy atoms of protein fixed, followed by 2ns equilibration simulation under 1 fs
282 timestep with these atoms constrained by 1 kcal/mol/ \AA^2 spring; (3) 4 ns equilibration
283 simulation under 2 fs timestep with the heavy atoms of protein ecto- and TM domains
284 constrained (that is, the stalk and intracellular portion is free) by 0.2 kcal/mol/ \AA^2 spring.

285 The resulted systems were subjected to productive simulations for 200 ns with 2
286 fs timestep without any constrains, and the snapshots of the last 80 ns (sampled at 10
287 ps intervals) were used for detailed analyses including the probability distributions of
288 hydrogen bonds, tilting angles of the TM helix, inclination angles of ectodomain, the
289 distance between Ig-like C2-type 1 domain and lipid bilayer. The tilting angle of TM
290 helix is defined as the angle between TM helix and membrane plane, similar as that

used in previous study¹⁶. The inclination angle of ectodomain is defined as the angle
292 between the membrane plane and the vector linking NT-terminal of TM helix (M222-
I224) and linker region of Ig-like C2-type 1 and 2 domain (S130-W132). The distance
294 between Ig-like C2-type 1 domain and lipid bilayer is defined as the length between
center of mass (COM) of this domain and the heavy atoms of phospholipid head in the
296 normal direction of bilayer.

All simulations were performed with NAMD2 software²¹ using CHARMM36m
298 force field with the CMAP correction²². The simulations were performed in NPT
ensemble (1 atm, 310K) using a Langevin thermostat and Nosé-Hoover Langevin
300 piston method²³, respectively. 12Å cutoff with 10 to 12 Å smooth switching was used
for the calculation of the van der Waals interactions. The electrostatic interactions were
302 computed using the particle mesh Eward method under periodic boundary conditions.
The system preparations and illustrations were conducted using VMD.

304 *Plasmid construction and cell lines establishment*

Fc γ RIIB-232I pHAGE and Fc γ RIIB-232T pHAGE plasmids were previously
306 constructed¹⁶. mTFP was fused to the N termini of Fc γ RIIB (232I or 232T) in a pHAGE
backbone by ClonExpressTM MultiS One Step Cloning Kit (Catalog#C113, Vazyme,
308 China). Stable mTFP-232I/mTFP-232T expressing A20II1.6 B cell lines were acquired
by lentivirus infection (three-vector system: mTFP-232I or mTFP-232I pHAGE,
310 psPAX2, and pMD2.G). A20II1.6 B cell lines expressing similar level of either mTFP-
232I or mTFP-232T Fc γ RIIB was obtained by multiple rounds of cell sorting. Fc γ RIIB-
312 232I and Fc γ RIIB-232T A20II1.6 B cell lines were previously established¹⁶.

FRET measurement

314 FRET measurements were performed as previously described²⁴⁻²⁵. Briefly, all
FRET measurements were carried out on Nikon TiE C2 confocal microscope with 100x

316 oil lens, Argon 457 nm and HeNe 561 nm laser line laser. 1×10^6 mTFP-232I/mTFP-
317 232T A20II1.6 B cells were stained with 300 nM octadecyl rhodamine B (R18) on ice
318 for 3 mins and then were captured in both channels before or after R18 photo-bleaching.
319 mTFP intensity was processed through Image J. And FRET efficiency= $(DQ - Q) / DQ$,
320 where DQ and Q are dequenched and quenched mTFP intensity, respectively. FRET
321 efficiency of mTFP-232I or mTFP-232T cells (~ 20 cells, respectively) were calculated
322 and plotted through Prism 7. Error bars represent SEM.

RBC preparation

324 Streptavidin-coated red blood cells (RBCs) preparation have been described
325 previously¹⁸. IgG was biotinylated by EZ-Link Sulfo-NHS-LC-Biotin kits (Thermo
326 Fisher Scientific). Different amounts of biotinylated IgG was linked into RBCs through
327 SA-biotin interaction at RT for 30 min, respectively. IgG-coated RBCs were obtained
328 for micropipette adhesion frequency assay to measure 2D binding kinetics of
329 Fc γ RIIB/IgG. All above experimental processes were followed by the institutional
330 ethical review board of Zhejiang University.

2D binding kinetics measurements

332 The micropipette adhesion frequency assay was applied to measure Fc γ RIIB/IgG
333 2D *in-situ* binding kinetics. The detail experimental progress was previously
334 described¹⁸. In brief, biotinylated human antibodies (IgG1 or IgG4) were coated on red
335 blood cell (RBC) with streptavidin-biotin association. Two opposing micropipettes
336 aspirated the RBC and Fc γ RIIB A20II1.6 B cell (232I or 232T) respectively to operate
337 contact-retraction cycles manipulation. Through these 50 contact-retraction cycles, the
338 binding frequency was acquired with definite contact area and a series of setting contact
339 time (0.1, 0.2, 0.5, 1 and 2 s). 3~4 cell pairs were tested for each setting contact time.
340 And these data were fitted by probabilistic kinetic model. In order to accurately
341 calculate 2D binding affinity and on-rate, these two surface molecular densities

342 (mFcγRIIB and mIgG) were determined by standard calibration beads on flow cytometry, respectively. Binding kinetics were calculated and plotted through Prism 7.

344 Error bars represent SEM.

346 **Author contributions**

W. Chen, J. Lou, and W. Liu conceived this project; W. Chen, J. Lou, W. Liu, W. Hu, Y.
348 Zhang and X. Sun designed the project; W. Hu and W. Chen performed FRET and
binding assay; Y. Zhang and J. Lou performed MD simulations; X. Sun and Z. Li
350 performed SNP rs1050501 genotyping and statistical analysis. L. Xu and H. Xie
prepared reagents and performed antibody biotinylation. W. Chen, J. Lou, W. Liu, W.
352 Hu, Y. Zhang and X. Sun wrote the manuscript.

354

Acknowledgments

356 We thank Dr. Y. Shi from The Institute of Microbiology of the Chinese Academy of
Sciences (IMCAS) for kindly providing us HIV1 gp120 human IgG1 and PD1 human
358 IgG4 antibody, Dr. L. Zhang and X. Wang from Tsinghua University for kindly
providing us MERS virus S protein human IgG1 antibody, T. Zhang in W. Chen's Lab
360 for FRET assay assistance, core facilities in Zhejiang University School of Medicine
for technical supports, especially X. Song for FACS supports. This work was supported
362 by grants from the National Basic Research Program of China (2015CB910800 to W.
Chen), the National Science Foundation of China (31470900 and 31522021 to W. Chen;
364 11672317 to J. Lou; 11772348 to Y. Zhang), the Young Thousand Talents Plan of China
(W. Chen), the Fundamental Research Funds for the Central Universities
366 (2015XZZX004-32 to W. Chen). The computational resources were provided by the
National Supercomputing Center Tianjin Center and HPC-Service Station at the Center
368 for Biological Imaging of the Institute of Biophysics.

370 DECLARATION OF INTERESTS

The authors declare no competing interests.

372

374 **References**

1. Pincetic, A.; Bournazos, S.; DiLillo, D. J.; Maamary, J.; Wang, T. T.; Dahan, R.; Fiebiger, B. M.; Ravetch, J. V., Type I and type II Fc receptors regulate innate and adaptive immunity. *Nature immunology* **2014**, *15* (8), 707-16.
2. Niederer, H. A.; Clatworthy, M. R.; Willcocks, L. C.; Smith, K. G., FcgammaRIIB, FcgammaRIIB, and systemic lupus erythematosus. *Annals of the New York Academy of Sciences* **2010**, *1183*, 69-88.
3. Smith, K. G.; Clatworthy, M. R., FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. *Nature reviews. Immunology* **2010**, *10* (5), 328-43.
4. Starbeck-Miller, G. R.; Badovinac, V. P.; Barber, D. L.; Harty, J. T., Cutting edge: Expression of FcgammaRIIB tempers memory CD8 T cell function in vivo. *Journal of immunology* **2014**, *192* (1), 35-9.
5. Kyogoku, C.; Dijstelbloem, H. M.; Tsuchiya, N.; Hatta, Y.; Kato, H.; Yamaguchi, A.; Fukazawa, T.; Jansen, M. D.; Hashimoto, H.; van de Winkel, J. G. J.; Kallenberg, C. G. M.; Tokunaga, K., Fc gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus - Contribution of FCGR2B to genetic susceptibility. *Arthritis Rheum* **2002**, *46* (5), 1242-1254.
6. Chu, Z. T.; Tsuchiya, N.; Kyogoku, C.; Ohashi, J.; Qian, Y. P.; Xu, S. B.; Mao, C. Z.; Chu, J. Y.; Tokunaga, K., Association of Fc gamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. *Tissue Antigens* **2004**, *63* (1), 21-27.
7. Clatworthy, M. R.; Willcocks, L.; Urban, B.; Langhorne, J.; Williams, T. N.; Peshu, N.; Watkins, N. A.; Floto, R. A.; Smith, K. G. C., Systemic lupus erythematosus-associated defects in the inhibitory receptor Fc gamma RIIb reduce susceptibility to malaria. *P Natl Acad Sci USA* **2007**, *104* (17), 7169-7174.
8. Siriboonrit, U.; Tsuchiya, N.; Sirikong, M.; Kyogoku, C.; Bejrchandra, S.; Suthipinittharm, P.; Luangtrakool, K.; Srinak, D.; Thongpradit, R.; Fujiwara, K.; Chandanayingyong, D.; Tokunaga, K., Association of Fc gamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. *Tissue Antigens* **2003**, *61* (5), 374-383.
9. Willcocks, L. C.; Carr, E. J.; Niederer, H. A.; Rayner, T. F.; Williams, T. N.; Yang, W. L.; Scott, J. A. G.; Urban, B. C.; Peshu, N.; Vyse, T. J.; Lau, Y. L.; Lyons, P. A.; Smith, K. G. C., A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. *P Natl Acad Sci USA* **2010**, *107* (17), 7881-7885.
10. Floto, R. A.; Clatworthy, M. R.; Heilbronn, K. R.; Rosner, D. R.; MacAry, P. A.; Rankin, A.; Lehner, P. J.; Ouwehand, W. H.; Allen, J. M.; Watkins, N. A.; Smith, K. G., Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. *Nature medicine* **2005**, *11* (10), 1056-8.
11. Kono, H.; Kyogoku, C.; Suzuki, T.; Tsuchiya, N.; Honda, H.; Yamamoto, K.; Tokunaga, K.; Honda, Z., FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. *Human molecular genetics* **2005**, *14* (19), 2881-92.
12. Liu, W.; Won Sohn, H.; Tolar, P.; Meckel, T.; Pierce, S. K., Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. *Journal of immunology* **2010**,

416 184 (4), 1977-89.

418 13. Xu, L.; Li, G.; Wang, J.; Fan, Y.; Wan, Z.; Zhang, S.; Shaheen, S.; Li, J.; Wang, L.; Yue, C.;
Zhao, Y.; Wang, F.; Brzostowski, J.; Chen, Y. H.; Zheng, W.; Liu, W., Through an ITIM-independent
420 mechanism the FcgammaRIIB blocks B cell activation by disrupting the colocalized microclustering
of the B cell receptor and CD19. *Journal of immunology* **2014**, *192* (11), 5179-91.

422 14. D'Ambrosio, D.; Fong, D. C.; Cambier, J. C., The SHIP phosphatase becomes associated with
Fc gammaRIIB1 and is tyrosine phosphorylated during 'negative' signaling. *Immunol Lett* **1996**, *54*
(2-3), 77-82.

424 15. Dal Porto, J. M.; Gauld, S. B.; Merrell, K. T.; Mills, D.; Pugh-Bernard, A. E.; Cambier, J., B
cell antigen receptor signaling 101. *Molecular immunology* **2004**, *41* (6-7), 599-613.

426 16. Xu, L.; Xia, M.; Guo, J.; Sun, X.; Li, H.; Xu, C.; Gu, X.; Zhang, H.; Yi, J.; Fang, Y.; Xie, H.;
Wang, J.; Shen, Z.; Xue, B.; Sun, Y.; Meckel, T.; Chen, Y.-H.; Hu, Z.; Li, Z.; Xu, C.; Gong, H.; Liu1,
428 a. W., Impairment on the lateral mobility induced by structural changes underlies the functional
deficiency of the lupusassociated polymorphism FcγRIIB-T232. *J. Exp. Med.* **2016**, *213*, 2707-2727.

430 17. Huang, J.; Chen, J.; Chesla, S. E.; Yago, T.; Mehta, P.; McEver, R. P.; Zhu, C.; Long, M.,
Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand
432 binding kinetics. *J Biol Chem* **2004**, *279* (43), 44915-23.

434 18. Huang, J.; Zarnitsyna, V. I.; Liu, B.; Edwards, L. J.; Jiang, N.; Evavold, B. D.; Zhu, C., The
kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. *Nature*
2010, *464*, 932.

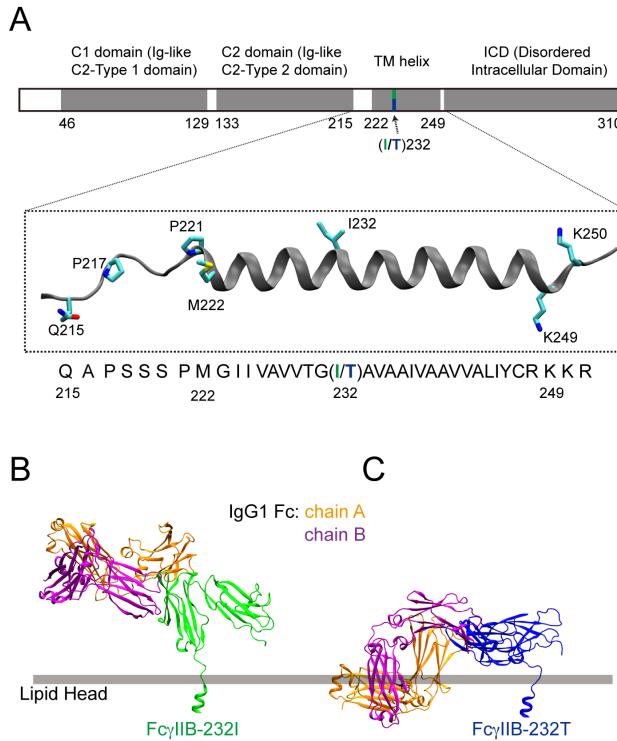
436 19. Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Davila-Contreras, E. M.; Qi, Y.; Lee, J.;
Monje-Galvan, V.; Venable, R. M.; Klauda, J. B.; Im, W., CHARMM-GUI Membrane Builder
438 toward realistic biological membrane simulations. *Journal of computational chemistry* **2014**, *35*
(27), 1997-2004.

440 20. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. *J. Mol. Graph.*
1996, *14*, 33-38.

442 21. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skee,
R. D.; Kalé, L.; Schulten, K., Scalable Molecular Dynamics with NAMD. *J. Comput. Chem.* **2005**,
444 *26*, 1781-1802.

446 22. A. D. MacKerell, J.; Bashford, D.; Bellott, M.; R. L. Dunbrack, J.; Evanseck, J. D.; Field, M.
J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.
K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; W. E. Reiher, I.; Roux, B.;
448 Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.;
Karplus, M., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of
450 Proteins. *J. Phys. Chem. B* **1998**, *102*, 3586-3616.

452 23. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics
simulation: The Langevin piston method. *J. Chem. Phys.* **1995**, *103*, 4613-4621.


454 24. Shi, X.; Bi, Y.; Yang, W.; Guo, X.; Jiang, Y.; Wan, C.; Li, L.; Bai, Y.; Guo, J.; Wang, Y.; Chen,
X.; Wu, B.; Sun, H.; Liu, W.; Wang, J.; Xu, C., Ca^{2+} regulates T-cell receptor activation by
modulating the charge property of lipids. *Nature* **2012**, *493*, 111.

456 25. Wan, Z.; Xu, C.; Chen, X.; Xie, H.; Li, Z.; Wang, J.; Ji, X.; Chen, H.; Ji, Q.; Shaheen, S.; Xu,
Y.; Wang, F.; Tang, Z.; Zheng, J.-S.; Chen, W.; Lou, J.; Liu, W., PI(4,5)P2 determines the threshold

458 of mechanical force–induced B cell activation. *The Journal of Cell Biology* **2018**, *217* (7), 2565.

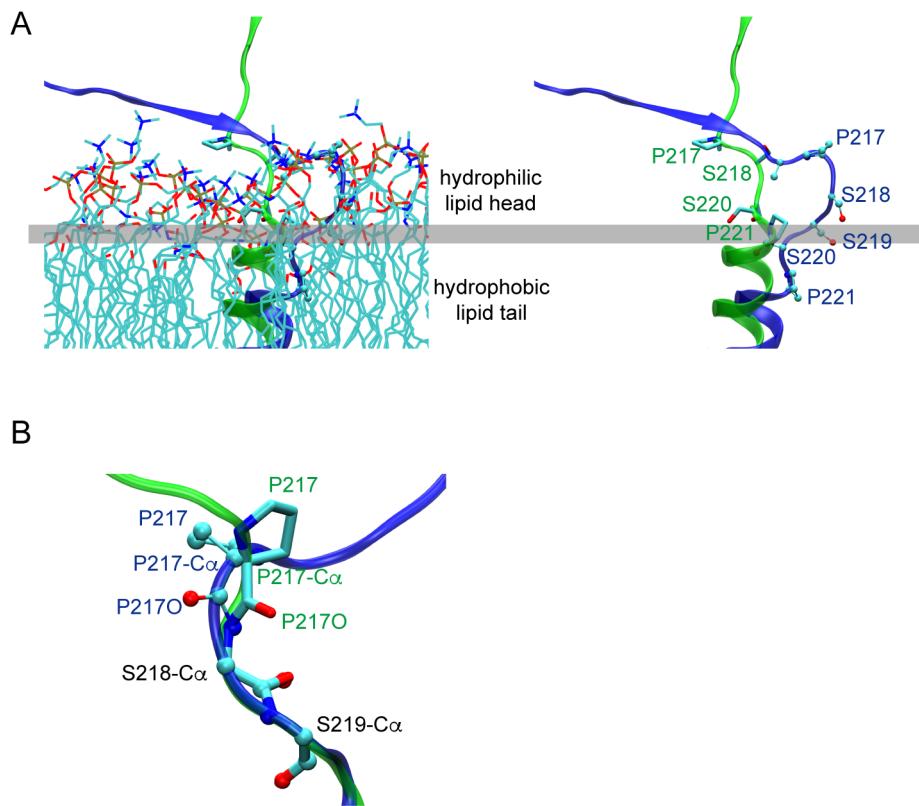
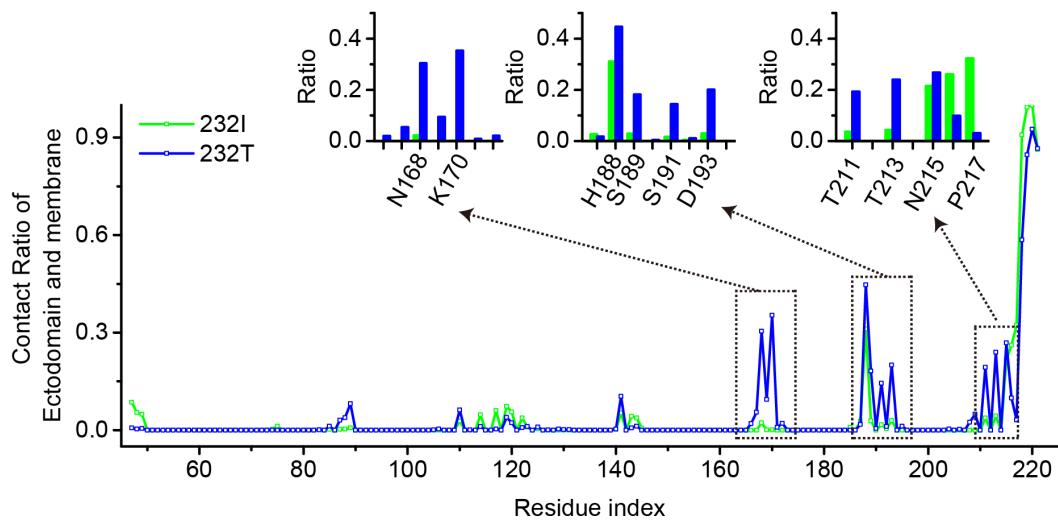

460

Figure 1—figure supplement 1

I232T polymorphic change of Fc_γRIIB induced the recumbent of its ectodomain and may result in impaired binding to Fc domain of antibodies. (A) The domain architecture of Fc_γRIIB, the modeled structure of the transmembrane region is highlighted, residue 232 is the only difference between WT Fc_γRIIB (I232) and I232T polymorphism(T232). (B) The ectodomain of WT (Fc_γRIIB-232I) stands straight with the membrane and is free for antibody biding. (C) For Fc_γRIIB-232T polymorphic change, although the Fc binding site is still accessible, but its binding ability with antibody will be significantly reduced as observed by the clashes of the Fc domain and the membrane when the ectodomain in the Fc_γRIIB/Fc complex structure (PDB code: 3WJJ) is superimposed to that observed by the MD simulation.


Figure 1—figure supplement 2

Conformation difference of ecto-TM linker and its vicinity in WT (I232) Fc γ RIIB and I232T

polymorphism obtained by MD simulations. (A) The conformation of the ecto-TM linker in lipid bilayer (left) or lipids removed (right, the residues number in this region is indicated). (B) Conformational difference of I212-S220 regions after aligning residues S218 to S220.

Figure 1—figure supplement 3

The association between Fc γ RIIB ectodomain and membrane in I232T polymorphism is mediated by multiple residues. The residues important to the association can be obtained by comparing the contact ratios per residue for WT (232I, green) or the Fc γ RIIB-232T (232T, blue). Regions with greater contact ratio differences are highlighted in the insets. Of them, N168, K170, S191 and D193 may play more essential roles.