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24 Abstract
FcyRIIB bindings to its ligand suppress immune cell activation. A single-
26  nucleotide polymorphic (SNP) change, 1232T, in the transmembrane (TM) domain of
FcyRIIB loses its suppression function, which clinically associates with systemic lupus
28  erythematosus (SLE). Previously, we reported that 1232T tilts FcyRIIB’s TM domain.
In this study, combining with molecular dynamics simulations and single-cell FRET
30  assay, we further revealed that such tilting by 1232T unexpectedly bends the FcyRIIB’s
ectodomain towards plasma membrane to allosterically impede FcyRIIB’s ligand
32  association. We then used single-cell biomechanical assay to further find out that [232T
also reduces two-dimensional in-situ binding affinities and association rates of FcyRIIB
34  interacting with its ligands by three-folds. This allosteric regulation by a SNP provides

an intrinsic molecular mechanism for functional loss of FcyRIIB-1232T in SLE patients.
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36 Introduction

Disorders or hyper activation of immune components could lead to autoimmune

38  diseases. Malfunction of an immune receptor, FcyRIIB, is generally regarded as
destructive for immune system '>. FcyRIIB is widely expressed on most types of

40  immune cells including B cells, plasma cells, monocytes, dendritic cells, macrophages,
neutrophils, basophils, mast cells and even memory CDS8 T cells *. FcyRIIB is unique

42  among all immune-receptors for Fc portion of IgG molecules (FcyRs), which efficiently
down-regulates the activation of immune cells. It has been shown that single nucleotide

44 polymorphisms (SNPs) of the human FcyRIIB gene extensively influence the

235 A T-to-C variant in exon 5

susceptibility towards autoimmune disorders
46  (rs1050501) of FcyRIIB causes the 1232T substitution (FcyRIIB-1232T) within the
transmembrane (TM) domain, and positively associates with systemic lupus
48  erythematosus (SLE) in the homozygous FcyRIIB-1232T populations through a large

amount of epidemiological studies > >

. Although a statistical linkage of the
50  homozygous FcyRIIB-1232T polymorphism with SLE was established, comprehensive
assessments and deeper mechanistic investigations towards the inter-linkage of

52  FcyRIIB-I232T regarding to the age of syndrome onset, progress, and clinical

manifestation of SLE are still lacking.

54
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Results and Discussion

56 In this report, we firstly performed systemic examination over the association of
FcyRIIB-1232T with clinical manifestations of SLE. We enrolled 711 unrelated Chinese
58  patients with SLE and complete clinical documents into this study (Table 1). 688
unrelated healthy Chinese volunteers with matched gender and age were then enrolled
60 as controls. We confirmed a strong positive association of the homozygous FcyRIIB-
1232T polymorphism with SLE (i’ = 7.224, p = 0.008, odds ratio with 95% confidence
62 interval (CI) = 1.927) (Table 1), in consistent with the published epidemiological data
239 Next, we comprehensively analyzed the clinical data for all 711 SLE patients,
64  including 50 FcyRIIB-1232T homozygotes, 283 FcyRIIB-1232T heterozygotes and 378
FcyRIIB-WT carriers. Strikingly, we found that the homozygous FcyRIIB-1232T
66  polymorphism is significantly associated with early disease onset (age at disease onset
< 37, p = 0.002) (Supplementary file 1 and 2). We also observed a significant
68  association of the homozygous FcyRIIB-I1232T polymorphism with more severe SLE
clinical manifestations since the corresponding SLE patients present significant
70  elevation in the amounts of anti-dsDNA antibodies (p = 0.004), anti-nuclear antibodies
(» = 0.021) and total Immunoglobulin (Ig) (p = 0.032) when compared to patients
72  carrying heterozygous FcyRIIB-1232T polymorphism or FcyRIIB-WT (Supplementary
file 1 and 2). Moreover, homozygous FcyRIIB-I232T polymorphism is also
74 significantly associated with the higher SLE disease activity index (SLEDAI) score (p

= 0.014 for SLEDAI =12 vs. p = 0.861 for SLEDAI < 12) as well as more severe
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76  clinical manifestations including arthritis (» = 0.008), anemia (p = 0.006), leukopenia
(» = 0.005), complement decrease (p = 0.006), hematuria (p = 0.004) and leucocyturia
78  (p =0.010) (Supplementary file 1 and 2). A suggestive association was also observed
between homozygous FcyRIIB-1232T polymorphism and serositis (p = 0.063)
80  (Supplementary file 1 and 2). These association analyses demonstrated that SLE
patients homozygous for FcyRIIB-1232T polymorphism are prone to develop more
82  severe clinical manifestations than the patients carrying heterozygous FcyRIIB-1232T
polymorphism or FcyRIIB-WT, reinforcing the importance to study the pathogenic
84  mechanism of FcyRIIB-1232T polymorphism since this SNP occurs at a notable

frequency in up to 40% (heterozygous polymorphism) humans .

86 Table 1: Association analysis of rs1050501 with SLE (adjusted for sex and age)

rs1050501 Control SLE OR 95% CI  p value
allelic
T 1038 (75.4) 1039 (73.1) 1.142 0.958-1.362  0.138
C 338 (24.6) 383 (26.9)
genotypic
TT+TC 662 (96.2) 661 (92.7) 1.927 1.185-3.134  0.008
CC 26 (3.78) 50 (7.03)
88 Previous biochemical studies revealed that monocytes harboring FcyRIIB-1232T

are hyper-activated with augmented FcyRI-triggered phospholipase D activation and
90 calcium signaling '°. B lymphocytes expressing FcyRIIB-1232T are of hyperactivity
and abnormal elevation of PLCy2 activation, proliferation and calcium mobilization ',

92  FcyRIIB-1232T B cells lose the ability to inhibit the oligomerization of B cell receptors
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(BCRs) upon co-ligation between BCR and FcyRIIB '*. Recent live-cell imaging
94  studies showed that B cells expressing FcyRIIB-I232T fail to inhibit the spatial-
temporal co-localization of BCR and CD19 within the B cell immunological synapses
96 . Human primary B cells from SLE patients with homozygous FcyRIIB-1232T
mutation revealed hyper-activation of PI3K "°. Thus, FcyRIIB-1232T is very likely the
98 first example that a naturally occurring SNP within the TM domain of a single-pass
transmembrane receptor can cripple its function in principle and is significantly relevant

100 in diseases.

These signaling events are usually triggered or followed by ligand engagement of

102  FcyRIIB, while this function is disrupted by a single amino acid change from Ile to Thr
in the TM domain. Two early biochemical studies proposed a model of reduced affinity

104  between FcyRIIB-I1232T and lipid rafts to explain the functional relevance and effect of

. . 10-11
this mutation '°

. Another model suggested that 1232T mutation enforces the
106  inclination of the TM domain and thereby reduces the lateral mobility and inhibitory
functions of FcyRIIB. However, both models assumed that FcyRIIB-I232T and
108  FcyRIIB-WT (1232) have an equal capability to perceive and bind to the ligand, the IgG
Fc portion within the antibody antigen immune complexes. This important but
110  experimentally un-proved pre-requisition in both models is based on the argument that
FcyRIIB-1232T and FcyRIIB-WT (I232) are identical in terms of the amino acid

112 sequences of the extracellular domain and thus the quaternary structures for recognizing

the ligands, i.e., the IgG Fc portions '*'>. However, currently there are no experimental
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114  evidences to validate this pre-requisite assumption.

We thus investigated whether 1232T polymorphic substitution in the TM domain

116  of FcyRIIB allosterically affects ligand recognition. Our previous observation of the
forced inclination of TM domain by 1232T led us to hypothesize that the inclination of

118 TM domain may lead to ectodomain conformational changes to allosterically attenuate
ligand binding. We first carried out large-scale molecular dynamic simulations with full

120  human FcyRIIB imbedded in the lipid bilayer harboring residues 1232 or T232 on its
TM domain (Figure 1A & Figure 1—figure supplement 1A). The simulations

122  confirmed previous results with TM only', i.e., 1232T polymorphic substitution
enforces the inclination of the TM domain (Figure 1B, right). The inclination might be

124  resulted by the ability of H-bond formation between the side-chain Oy atom of T232
and the backbone oxygen atoms of the neighboring residues in T232 system (Figure 1B,

126  left). The differences on the orientation of the TM domain induce a different
conformation on the membrane proximal region (ecto-TM linker) at the extracellular

128  side (Figure 1—figure supplement 2). The membrane buried non-helical region of the
linker extends more in the 1232T form than that in the WT, and the length between S218

130  and P221 peaks at 11 A for 1232T, 3 A longer than the 8 A peak position for 1232
system (Figure 1C). This length elongation further results in a different conformation

132  of residue P217, the main chain dihedral angle of P217 in 1232 system displays two
populations at 141°+£23° and -50°+12°, respectively, but shifts to 4°+45° and -75°+12°

134 in the T232 form (Figure 1D and Figure 1—figure supplement 2). These effects
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propagate and lead to striking effect on the extracellular domains of FcyRIIB. We found
136  that the extracellular domain of the T232 form adopts significant different conformation
than that of the 1232 form. The ectodomain of I232 maintains more straight
138  conformation, whereas that of T232 bends down towards the lipid bilayer (Figure 1E).
Statistical analyses show that the ectodomain inclination angle of the T232 form
140  distributes across 30~60° with a sharper single-peak at 40° (Figure 1E). In contrast, the
angle of the 1232 form distributes more flatter with a most favorable probability ranging
142  from 50° to 70° (Figure 1E). The distance of C1 domain is much closer to the membrane
for the T232 form than the 1232 form (Figure 1E). These results suggest that the T232
144 morphism (or [232T mutation) may reduce the antibody recognition ability of FcyRIIB
via two aspects. First, although the Fc binding site is not buried, the orientation and
146  membrane binding of T232 may sterically prevent the accessibility of the Fc portion of
IgG, as significant clashes between docked Fc and the membrane are observed (Figure
148  1—figure supplement 1B). Second, T232 is more rigid (or less flexibility, Figure 1E)
such that the chance to associate with the ligand is decreased (thus the ligand

150 association rate may be significantly reduced).
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152  Figure 1. MD simulations reveal the conformational dynamics of WT FcyRIIB and its 1232T
polymorphic change. (A) The modeled structure of complete FcyRIIB (residues A46-1310, shown
154  in grey cartoon) imbedded in an asymmetric lipid bilayer (Connected lines with atoms colored by
type: P, tan; O, red; N, blue; C, cyan). The helical structures in the vicinity of residue 232 for WT
156 (1232, green) and 1232T (T232, blue) are shown in the insets. (B) Probability distributions of the
distance between T232 Oy atom and its nearest backbone O atom from residue V228 (left), and of
158 the tilting angles between TM helix and lipid bilayer (right), the inclination of TM for T232 can be
observed clearly. (C) Comparison of the representative snapshots of 1232 and T232 systems at the
160  stalk and TM linker region after superposing the lipid bilayers (left), and length distribution of S218-
P221 backbone in normal direction of lipid bilayer (right). (D) Conformational difference of 1212-
162  S220 regions after aligning residues S218 to S220 (left), and the time courses of the dihedral angles
(v, @) of residue P217 (right). (E) Representative snapshots of the 1232 and T232 systems with the
164  inclination angles and Cl1(Ig-like C2-Type 1 domain)/bilayer distances indicated. Probability
distributions of the inclination angle between FcyRIIB ectodomain and lipid bilayer (left), and the

166  distances between C1 domain and lipid bilayer (right).
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MD simulations suggest that FcyRIIB ectodomain may bend towards membrane

168  through weakly association of its ectodomain with the membrane via multiple sites
(Figure 1—figure supplement 3) for 1232T polymorphism. We next performed single-

170  cell fluorescence resonance energy transfer (FRET) assay to experimentally validate
whether 1232T polymorphism allosterically bends the FcyRIIB ectodomain towards cell

172  membrane (Figure 2A). According to our MD simulation results (Figure 1E), we
hypothesized that an mTFP (as FRET donor) fused at the N-terminal of FcyRIIB (2321

174  or 232T) ectodomain should fall in the spatial proximity (~16~36A) for FRET with
plasma outer membrane labeled with octadecyl rhodamine B (R18, as FRET acceptor),

176  and that 1232T polymorphism may enhance FRET efficiency. With de-quenching assay
on A201II1.6 B cell lines expressing similar level of either mTFP-2321 or mTFP-232T

178  FcyRIIB (Figures 2B and 2C), we found that 1232T polymorphism indeed enhances the
FRET efficiency about two folds, from ~ 20% in the 1232 form to ~40% in the T232

180 form (Figure 2C and 2D). This enhancement of FRET efficiency by I1232T
polymorphism indicates that FcyRIIB-232T ectodomain prefers to a more recumbent

182  orientation on the plasma membrane than FcyRIIB-232I, consistent with our MD

simulation observations above.

10
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184

Figure 2. The FcyRIIB-232T ectodomain prefers to a more recumbent orientation on the
186  plasma membrane. (A) Schematic illustration of mTFP-R18 FRET system to detect the distance
between the ecto-domain of FcyRIIB232I (green) or FcyRIIB232T (blue) (N-terminal of
188  ectodomain fused with mTFP as FRET donor, cyan) with the plasma membrane (stained with R18
dye as FRET acceptor, red). (B) mTFP fluorescence comparison of A20111.6 B cell lines expressing
190  mTFP-232I (green) or mTFP-232T (blue) constructs by FACS analysis. (C) Representative images
of de-quenching FRET assay. R18-labeled mTFP-2321 or mTFP-232T cells image were acquired in
192  both channels before or after R18 photo-bleaching (BP or AP). (D) FRET efficiency of mTFP-2321

or mTFP-232T cells (~20 cells, respectively) were calculated and plotted. Error bars represent SEM.

194 Ectodomain orientation changes of a receptor can significantly affect its in-situ
binding affinity with its ligands'’. We therefore predict that titling FeyRIIB ectodomain
196  towards plasma membrane by 1232T polymorphism may attenuate its ligand binding
affinity, especially the association rate. To test this hypothesis, we applied well-
198  established single-cell biomechanical apparatus with adhesion frequency assay'® to
directly and quantitatively measure in-situ two-dimensional (2D) binding kinetics of

200  the WT or 1232T FcyRIIB binding with its ligands (Figure 3A). It revealed that the in-

11


https://doi.org/10.1101/586487
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/586487; this version posted March 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

situ 2D effective binding affinity of FcyRIIB232I with MERS virus S protein human
202  IgGl antibody (anti-S) is about three times higher than that of FcyRIIB232T binding
with same antibody (4.K,;=3.03+0.15x107 and 0.80+0.04x10"um*, respectively),
204  whereas that of human IgG4 is hardly measured as its binding is too weak and beyond
the detection limit (10™ um®) '® of this assay (Figure 3B and 3D), which is consistent
206  with previous reported FcyRIIB/IgG4 binding affinity is far less than IgG1 '. Moreover,
off-rates of the WT and the 1232T form binding with human IgG1 are similar
208  (7.75+1.42 and 7.62+1.41 s, respectively) (Figure 3B and 3F), while the 2D effective
on-rate of the 1232T binding with human IgGl is three times slower than that of the WT
210  Dbinding with same ligand (Figure 3B and 3E). These kinetics data strongly support our
prediction that 1232T polymorphism tilts FcyRIIB ectodomain more recumbent toward
212  the plasma membrane so that its ligand binding domain is harder to be accessed, which
reduces FcyRIIB/IgG1 binding on-rate. The conclusion is also confirmed by FcyRIIB
214  binding with another human IgG1 (HIV1 gp120 human IgG1, anti-gp120) (Figures 3C
to 3F). That is, the 2D effective affinity of FcyRIIB binding with human IgG1 and on-
216  rate both are three times higher than those of 232T’s (Iécha=7.74ﬂ:O.24X10'7 and
2.4340.11x10"um*, respectively; Ackon=5.95+0.19 and 2.16+0.10x10 um"* s,
218  respectively), while their binding off-rates are similar (7.70+0.83 and 8.90+1.61 s™,

respectively) (Figure 3C, 3D, 3E and 3F).

12
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Figure 3. FcyRIIB-232T exhibited significantly reduced 2D IgG1 binding affinity and on-rate
222  in comparison with FcyRIIB-2321. (A) Schematic illustration of micropipette binding frequency
approach. Two opposing micropipettes aspirated red blood cell (red, coating IgG antibody) and
224  FcyRIIB A20111.6 B cell (2321 or 232T, green) respectively to operate contact-retraction cycles
manipulation. (B and C) Adhesion curves of FcyRIIB (2321 or 232T) and human IgG1 antibody
226  (anti-S or anti-gp120) according to probabilistic kinetic model. (D, E and F) From the adhesion
curves, in situ 2D effective binding affinity (4.K,), on-rate (4.kon) and off-rate (k) were calculated.

228  Error bars represent SEM.

In summary, we confirmed that homozygous FcyRIIB-1232T confers dramatically

230  increased risk of developing more severe clinical manifestations in patients with SLE.
The pathological relevant of 1232T is caused by the inclination of TM domain which

232 leads to differed conformation of FcyRIIB ectodomain. Ectodomain harboring 1232T
polymorphism bends towards the membrane such that the Fc binding ability is

234 significantly reduced. The hampered Fc recognition ability of FcyRIIB-1232T results in

13


https://doi.org/10.1101/586487
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/586487; this version posted March 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

deficiency on its inhibitory function and thus hyper-activated immune cells, potentially

236  leading to SLE and other immune diseases.

14
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238  Methods
SNP rs1050501 genotyping and statistical analysis

240 The ethics committee of Peking University People's Hospital approved this study
and informed consents were obtained from each patient and healthy volunteer. There
242  were 711 patients fulfilling the 1997 revised classification criteria of the American
College of Rheumatology that enrolled in this study. Healthy volunteers were recruited
244 as controls. 4-8ml peripheral blood was acquired from SLE patients and healthy
volunteers. Genomic DNA was extracted from peripheral blood samples using the
246  TIANamp Blood DNA Midi Kit (TIANGEN BIOTECH, Beijing) following the
manufacturer’s protocol. The TagMan Genotyping Assays were applied for genotyping
248  of SNP rs1050501 (TagMan probe C: 5’-VIC-CGCTACAGCA GTCCCAGT-NFQ-3’,
TagMan Probe T: 5°’-FAM- CGCTACAGCA ATCCCAGT-NFQ-3") (Life technology).
250  Amplification and genotyping analyses were performed using ABI 7300 Real-Time
PCR system. Relative quantification of probes levels was calculated (7500 Sequence
252 Detection System Software Version 1.4, ABI). Few samples were genotyped by using
primers (forward: 5’-AAGGGGAGCC CTTCCCTCTGTT-3°, reverse: 5°-
254  CATCACCCAC CATGTCTCAC-3’) binding to the flanking introns of exon 5 as
reported '*!'. The DNA sequencing was done by BGI (Beijing). The Pearson chi-square
256  tests were performed for the comparison of differences between cases and controls at
genotype model (recessive model CC vs. TT+TC). The odds ratios (OR), 95%
258  confidence intervals (CI) and p value for recessive model analysis were calculated using
logistic regression, adjusting for age and sex. In statistical analyses, p value of less than

260  0.05 was considered statistically significant.

Molecular Dynamics Simulations

262 Structure model of the full human FcyRIIB system (residues A46-1310) was built

by fusing the crystal structure of the ectodomain (PDB code 2FCB, residues A46-Q215)

15
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264  to the transmembrane (TM) helix (residues M222-R248) model obtained in previous
study'®, the stalk (residues A216-P221) and cytoplasmic regions (residues K249-1310)
266  are randomly placed. An asymmetric lipid bilayer with the membrane lateral area of
100x100 A* was generated with Membrane Builder in CHARMM-GUI", the lipids in
268  the outer leaflet contain POPC, PSM, and Cholesterol with molar ratio 1:1:1 and these
in the inner leaflet contain POPE, POPC, POPS, POPIP2, Cholesterol with molar ratio
270  4:3:2:1:5. FcyRIIB model was inserted into the lipid membrane with its TM
perpendicular to the bilayer surface and the ectodomain stands straight, as shown in

272  Figure 1A.

The WT system was subsequently solvated in 100x100x203 A* rectagular water
274  boxes with TIP3P water model and was neutralized by 0.15 M NaCl. The 1232T
polymorphism was obtained from the same configuration using the Mutator plugin of

276  VMD?. The final systems contained ~0.20 million atoms in total.

Both systems were first pre-equilibrated with the following three steps: (1) 5,000

278  steps energy minimization with the heavy atoms of protein and the head group of the
lipids fixed, followed by 2 ns equilibration simulation under 1 fs timestep with these

280  atoms constrained by 5 kcal/mol/A” spring; (2) 5,000 steps energy minimization with
the heavy atoms of protein fixed, followed by 2ns equilibration simulation under 1 fs

282  timestep with these atoms constrained by 1 kcal/mol/ A* spring; (3) 4 ns equilibration
simulation under 2 fs timestep with the heavy atoms of protein ecto- and TM domains

284  constrained (that is, the stalk and intracellular portion is free) by 0.2 kcal/mol/A* spring.

The resulted systems were subjected to productive simulations for 200 ns with 2

286  fs timestep without any constrains, and the snapshots of the last 80 ns (sampled at 10
ps intervals) were used for detailed analyses including the probability distributions of

288  hydrogen bonds, tilting angles of the TM helix, inclination angles of ectodomain, the
distance between Ig-like C2-type 1 domain and lipid bilayer. The tilting angle of TM

290  helix is defined as the angle between TM helix and membrane plane, similar as that

16


https://doi.org/10.1101/586487
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/586487; this version posted March 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

used in previous study'®. The inclination angle of ectodomain is defined as the angle
292  between the membrane plane and the vector linking NT-terminal of TM helix (M222-
[224) and linker region of Ig-like C2-type 1 and 2 domain (S130-W132). The distance
294  Dbetween Ig-like C2-type 1 domain and lipid bilayer is defined as the length between
center of mass (COM) of this domain and the heavy atoms of phospholipid head in the

296  normal direction of bilayer.

All simulations were performed with NAMD2 software*' using CHARMM36m

298  force field with the CMAP correction®”. The simulations were performed in NPT
ensemble (1 atm, 310K) using a Langevin thermostat and Nosé-Hoover Langevin

300  piston method Z, respectively. 12A cutoff with 10 to 12 A smooth switching was used
for the calculation of the van der Waals interactions. The electrostatic interactions were

302  computed using the particle mesh Eward method under periodic boundary conditions.

The system preparations and illustrations were conducted using VMD.

304  Plasmid construction and cell lines establishment

FcyRIIB-2321 pHAGE and FcyRIIB-232T pHAGE plasmids were previously

306  constructed '°. mTFP was fused to the N termini of FcyRIIB (2321 or 232T) in a pHAGE
backbone by ClonExpress™ MultiS One Step Cloning Kit (Catalog#C113, Vazyme,

308  China). Stable mTFP-232I/mTFP-232T expressing A20111.6 B cell lines were acquired
by lentivirus infection (three-vector system: mTFP-2321 or mTFP-2321 pHAGE,

310 psPAX2, and pMD2.G). A20111.6 B cell lines expressing similar level of either mTFP-
2321 or mTFP-232T FcyRIIB was obtained by multiple rounds of cell sorting. FcyRIIB-

312 2321 and FeyRIIB-232T A20111.6 B cell lines were previously established'®.
FRET measurement

314 FRET measurements were performed as previously described®*®. Briefly, all

FRET measurements were carried out on Nikon TiE C2 confocal microscope with 100x

17


https://doi.org/10.1101/586487
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/586487; this version posted March 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

316  oil lens, Argon 457 nm and HeNe 561 nm laser line laser. 1x10° mTFP-2321/mTFP-
232T A20I11.6 B cells were stained with 300 nM octadecyl rhodamine B (R18) on ice
318  for 3 mins and then were captured in both channels before or after R18 photo-bleaching.
mTFP intensity was processed through Image J. And FRET efficiency= (DQ—Q)/DQ,
320  where DQ and Q are dequenched and quenched mTFP intensity, respectively. FRET
efficiency of mTFP-2321 or mTFP-232T cells (~20 cells, respectively) were calculated

322  and plotted through Prism 7. Error bars represent SEM.
RBC preparation

324 Streptavidin-coated red blood cells (RBCs) preparation have been described
previously '®. IgG was biotinylated by EZ-Link Sulfo-NHS-LC-Biotin kits (Thermo
326  Fisher Scientific). Different amounts of biotinylated IgG was linked into RBCs through
SA-biotin interaction at RT for 30 min, respectively. [gG-coated RBCs were obtained
328  for micropipette adhesion frequency assay to measure 2D binding kinetics of
FcyRIIB/IgG. All above experimental processes were followed by the institutional

330 ethical review board of Zhejiang University.
2D binding kinetics measurements

332 The micropipette adhesion frequency assay was applied to measure FcyRIIB/IgG
2D in-situ binding kinetics. The detail experimental progress was previously
334 described'®. In brief, biotinylated human antibodies (IgG1 or IgG4) were coated on red
blood cell (RBC) with streptavidin-biotin association. Two opposing micropipettes
336  aspirated the RBC and FcyRIIB A20I11.6 B cell (2321 or 232T) respectively to operate
contact-retraction cycles manipulation. Through these 50 contact-retraction cycles, the
338  binding frequency was acquired with definite contact area and a series of setting contact
time (0.1, 0.2, 0.5, 1 and 2 s). 3~4 cell pairs were tested for each setting contact time.
340  And these data were fitted by probabilistic kinetic model. In order to accurately

calculate 2D binding affinity and on-rate, these two surface molecular densities
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342  (mFcyRIIB and mlgG) were determined by standard calibration beads on flow
cytometry, respectively. Binding kinetics were calculated and plotted through Prism 7.

344  Error bars represent SEM.
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Figure 1—figure supplement 1
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1232T polymorphic change of FcyRIIB induced the recumbent of its ectodomain and may

result in impaired binding to Fc domain of antibodies. (A) The domain architecture of FcyRIIB,

the modeled structure of the transmembrane region is highlighted, residue 232 is the only difference

between WT FcyRIIB (I232) and 1232T polymorphism(T232). (B) The ectodomain of WT

(FcyRIIB-2321) stands straight with the membrane and is free for antibody biding. (C) For FcyRIIB-

232T polymorphic change, although the Fc binding site is still accessible, but its binding ability

with antibody will be significantly reduced as observed by the clashes of the Fc domain and the

membrane when the ectodomain in the FcyRIIB/Fc complex structure (PDB code: 3WJJ) is

superimposed to that observed by the MD simulation.
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Figure 1—figure supplement 2
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Conformation difference of ecto-TM linker and its vicinity in WT (1232) FcyRIIB and 1232T
polymorphism obtained by MD simulations. (A)The conformation of the ecto-TM linker in lipid
bilayer (left) or lipids removed (right, the residues number in this region is indicated). (B)

Conformational difference of 1212-S220 regions after aligning residues S218 to S220.
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Figure 1—figure supplement 3
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Residue index

The association between FcyRIIB ectodomain and membrane in 1232T polymorphism is

mediated by multiple residues. The residues important to the association can be obtained by

comparing the contact ratios per residue for WT (2321, green) or the FcyRIIB-232T (232T, blue).

Regions with greater contact ration differences are highlighted in the insets. Of them, N168, K170,

S191 and D193 may play more essential roles.
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