
1 
 

A multi-omics digital research object for the genetics of sleep 1 

regulation. 2 

 3 
Maxime Jan*

1, Nastassia Gobet*1, 2, Shanaz Diessler1, Paul Franken1, Ioannis Xenarios3,4 4 
1Centre for Integrative Genomics, University of Lausanne, Switzerland 5 
2Vital-IT, Swiss Institute of Bioinformatics, Switzerland 6 
3Ludwig Cancer Research/CHUV-UNIL, Lausanne, Switzerland 7 
4Health 2030 Genome Center, Geneva, Switzerland 8 
* These authors contributed equally to this work. 9 
 10 

 11 

 12 

Abstract 13 

More and more researchers make use of multi-omics approaches to tackle complex cellular 14 

and organismal systems. It has become apparent that the potential for re-use and integrate data 15 

generated by different labs can enhance knowledge. However, a meaningful and efficient re-16 

use of data generated by others is difficult to achieve without in depth understanding of how 17 

these datasets were assembled. We therefore designed and describe in detail a digital research 18 

object embedding data, documentation and analytics on mouse sleep regulation. The aim of 19 

this study was to bring together electrophysiological recordings, sleep-wake behavior, 20 

metabolomics, genetics, and gene regulatory data in a systems genetics model to investigate 21 

sleep regulation in the BXD panel of recombinant inbred lines. We here showcase both the 22 

advantages and limitations of providing such multi-modal data and analytics. The 23 

reproducibility of the results was tested by a bioinformatician not implicated in the original 24 

project and the robustness of results was assessed by re-annotating genetic and transcriptome 25 

data from the mm9 to the mm10 mouse genome assembly. 26 

 27 
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Background & Summary 29 

A good night’s sleep is essential for optimal performance, wellbeing and health. Chronically 30 

disturbed or curtailed sleep can have long-lasting adverse effects on health with associated 31 

increased risk for obesity and type-2 diabetes1. 32 

 33 

To gain insight into the molecular signaling pathways regulating undisturbed sleep and the 34 

response to sleep restriction in the mouse, we performed a population-based multi-level 35 

screening known as systems genetics 2. This approach allows to chart the molecular pathways 36 

connecting genetic variants to complex traits through the integration of multiple *omics 37 

datasets such as transcriptomics, proteomics, metabolomics or microbiomes 3.  38 

We built a systems genetics resource based on the BXD panel, a population of recombinant 39 

inbred lines of mice 4, that has been used for a number of complex traits and *omics screening 40 

such as brain slow-waves during NREM sleep 5, glucose regulation 6, cognitive aging 7 and 41 

mitochondria proteomics 8.  42 

 43 

We phenotyped 34 BXD/RwwJ inbred lines, 4 BXD/TyJ, 2 parental strains C57BL6/J and 44 

DBA/2J and their reciprocal F1 offspring. Mice of these 42 lines were challenged with 6h of 45 

sleep deprivation (SD) to evaluate the effects of insufficient sleep on sleep-wake behavior and 46 

brain activity (electroencephalogram or EEG; Figure 1, Experiment 1) and, on gene 47 

expression and metabolites (Figure 1, Experiment 2). For Experiment 1 we recorded the EEG 48 

together with muscle tone (electromyogram or EMG) and locomotor activity (LMA) 49 

continuously for 4 days. Based on the EEG/EMG signals we determined sleep-wake state 50 

[wakefulness, rapid-eye movement (REM) sleep, and non-REM (NREM) sleep] as well as the 51 

spectral composition of the EEG signal as end phenotypes. For Experiment 2 we quantified 52 

mRNA levels in cerebral cortex and liver using illumina HiSeq 2500 RNA-sequencing and 53 

performed a targeted metabolomics screen on blood using Biocrates p180 liquid 54 

chromatography (LC-) and Flow injection analysis (FIA-) coupled with mass spectrometry 55 

(MS). These transcriptome and metabolome data are regarded as intermediate phenotypes 56 

linking genome information to the sleep-wake related end phenotypes. 57 

 58 

The keystone of systems genetics is data integration. Accordingly, the scientific community 59 

can benefit from facilited dataset sharing to integrate the results of their own experiment with 60 

that of others. However, reliable methods for data integration are needed and require a broad 61 
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range of expertise such as in mathematical and statistical models 9, computational methods 10, 62 

visualization strategies 11, and deep understanding of complex phenotypes. Therefore, data 63 

sharing should not be limited to the dataset per se but also to analytics in the form of analysis 64 

workflows, code, interpretation of results, and meta-data 12. The concept of a Digital Research 65 

Object (DRO) was proposed to group dataset and analytics into one united package 13. Various 66 

guidelines have been suggested to address the challenges of sharing such DRO with the goal 67 

to improve and promote the human and computer knowledge sharing, like the FAIR 68 

(Findable, Accessible, Interoperable, Reusable) principles proposed by FORCE 11 14 or by the 69 

DB2K (Big Data to Knowledge) framework. These guidelines concern biomedical workflow, 70 

meta-data structures and computer infrastructures facilitating the reusability and 71 

interoperability of digital resources 15. Although such guidelines are often described and 72 

applied in the context of single data-type assays, they can be challenging to achieve for trans-73 

disciplinary research projects such as systems genetics, in which multiple data types, 74 

computer programs, references and novel methodologies need to be combined 16. Moreover, 75 

applying these principles can also be discouraging because of the time required for new 76 

working routines to become fully reproducible 17  and because only few biomedical journals 77 

have standardized and explicit data-sharing 18 or reproducibility 19 policies. Nonetheless, 78 

DROs are essential for scientific reliability 20, and can save time if a dataset or methods 79 

specific to a study need to be reused or improved by different users such as colleagues at other 80 

institutes, new comers to the lab, or at long-term yourself.  81 

 82 

We here complement our previous publication 2 by improving the raw and processed data 83 

availability. We describe in more details the different bioinformatics steps that were applied to 84 

analyze this resource and improve the analytical pipeline reproducibility by generating R 85 

reports and provide code. Finally, we assess the reproducibility of our bioinformatic pipeline 86 

from the perspective of a new student in bioinformatics that recently joined the group, and the 87 

robustness of the results by changing both the mouse reference genome and the RNA-seq 88 

reads alignment to new standards. 89 

 90 

Methods 91 

These methods are an expanded version of the methods described in our related paper 2. 92 

Appreciable portions are reproduced verbatim to deliver a complete description of the data 93 

and analytics with the aim to enhance reproducibility.  94 
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Experiment 1 and Experiment 2 (Figure 1) were approved by the veterinary authorities of the 95 

state of Vaud, Switzerland (SCAV authorization #2534). 96 

 97 

Animal, breeding, and housing conditions 98 

34 BXD lines originating from the University of Tennessee Health Science Center (Memphis, 99 

TN, United States of America) were selected for Experiment 1 and Experiment 2. These lines 100 

were randomly chosen from the newly generated advanced recombinant inbred line (ARIL) 101 

RwwJ panel 4, although lines with documented poor breeding performance were not 102 

considered. 4 additional BXD RI strains were chosen from the older TyJ panel for 103 

reproducibility purposes and were obtained directly from the Jackson Laboratory (JAX, Bar 104 

Harbor, Maine). The names used for some of the BXD lines have been modified over time to 105 

reflect genetic proximity. Table 1 lists the BXD line names we used in our files alongside the 106 

corresponding current JAX names and IDs. In our analyses, we discarded the BXD63/RwwJ 107 

line for quality reasons (see Technical Validation) as well as the 4 older BXD strains that were 108 

derived from a different DBA/2 sub-strains, i.e. DBA/2Rj instead of DBA/2J for RwwJ lines 109 
21. The methods below describe the remaining 33 BXD lines, F1 and parental strains. 110 

Two breeding trios per BXD strain were purchased from a local facility (EPFL-SV, Lausanne, 111 

Switzerland) and bred in-house until sufficient offspring was obtained. The parental strains 112 

DBA/2J (D2), C57BL6/J (B6) and their reciprocal F1 offspring (B6D2F1 [BD-F1] and 113 

D2B6F1 [DB-F1]) were bred and phenotyped alongside. Suitable (age and sex) offspring was 114 

transferred to our sleep-recording facility, where they were singly housed, with food and 115 

water available ad libitum, at a constant temperature of 25°C and under a 12 h light/12 h dark 116 

cycle (LD12:12, fluorescent lights, intensity 6.6 cds/m2, with ZT0 and ZT12 designating light 117 

and dark onset, respectively). Male mice aged 11–14 week at the time of experiment were 118 

used for phenotyping, with a mean of 12 animals per BXD line among all experiments. Note 119 

that 3 BXD lines had a lower replicate number (n), with respectively BXD79 (n = 6), BXD85 120 

(n = 5), and BXD101 (n = 4) because of poor breeding success. For the remaining 30 BXD 121 

lines, replicates were distributed as follows: for EEG/behavioral phenotyping (Experiment 1 122 

in Fig 1; mean = 6.2/line; 5 ≤ n ≤ 7) and for molecular phenotyping (Experiment 2 in Fig 1; 123 

mean = 6.8/line; 6 ≤ n ≤ 9). Additionally, to control for the reproducibility of the outcome 124 

variables over the experiment, parental lines were phenotyped twice—i.e., at the start (labeled 125 

in files as B61 and DB1) and end (labeled B62 and DB2) of the breeding and data-collecting 126 

phase, which spanned 2 years (March 2012–December 2013). To summarize, distributed over 127 

32 experimental cohorts, 227 individual mice were used for behavioral/EEG phenotyping 128 
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(Experiment 1) and 263 mice for tissue collection for transcriptome and metabolome analyses 129 

(Experiment 2), the latter being divided into sleep deprived (SD) and controls (“Ctr”; see 130 

Study design section below). We randomized the lines across the experimental cohorts so that 131 

biological replicates of 1 line were collected/recorded on more than 1 occasion while also 132 

ensuring that an even number of mice per line was included for tissue collection so as to pair 133 

SD and “Ctr” individuals within each cohort (for behavioral/EEG phenotyping, each mouse 134 

serves as its own control). 135 

 136 

Table 1: Names of BXD lines used in our files with the corresponding JAX name and ID. F1 lines (DB 137 
and BD) were generated in house. BXD line names in our files can also be found without ‘0’ i.e. 138 
BXD50 instead of BXD050. Further note that the names we used followed an older nomenclature and 139 
some names therefore differ from the current JAX names listed. 140 

Name in files JAX Name JAX ID 

BXD005 BXD5/TyJ 000037 

BXD029TL / BXD029t BXD29- Tlr4lps-2J/J 000029 

BXD029 BXD29/Ty 010981 

BXD032 BXD32/TyJ 000078 

BXD043 BXD43/RwwJ 007093 

BXD044 BXD44/RwwJ 007094 

BXD045 BXD45/RwwJ 007096 

BXD048 BXD48/RwwJ 007097 

BXD049 BXD49/RwwJ 007098 

BXD050 BXD50/RwwJ 007099 

BXD051 BXD51/RwwJ 007100 

BXD055 BXD55/RwwJ 007103 

BXD056 BXD56/RwwJ 007104 

BXD061 BXD61/RwwJ 007106 

BXD063 BXD63/RwwJ 007108 

BXD064 BXD64/RwwJ 007109 

BXD065 BXD65/RwwJ 007110 

BXD066 BXD66/RwwJ 007111 

BXD067 BXD67/RwwJ 007112 

BXD070 BXD70/RwwJ 007115 

BXD071 BXD71/RwwJ 007116 

BXD073 BXD73/RwwJ 007117 

BXD075 BXD75/RwwJ 007119 
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BXD079 BXD79/RwwJ 007123 

BXD081 BXD81/RwwJ 007125 

BXD083 BXD83/RwwJ 007126 

BXD084 BXD84/RwwJ 007127 

BXD085 BXD85/RwwJ 007128 

BXD087 BXD87/RwwJ 007130 

BXD089 BXD89/RwwJ 007132 

BXD090 BXD90/RwwJ 007133 

BXD095 BXD95/RwwJ 007138 

BXD096 BXD48a/RwwJ 007139 

BXD097 BXD65a/RwwJ 007140 

BXD098 BXD98/RwwJ 007141 

BXD100 BXD100/RwwJ 007143 

BXD101 BXD101/RwwJ 007144 

BXD103 BXD73b/RwwJ 007146 

C57BL6 / B61 / B62 C57BL/6J 000664 

DBA2 / DB1 / DB2 DBA/2J 000671 

DB / DXB F1 / DBA/2J x 

C57BL6/J F1 

- - 

BD / BXD F1 / C57BL6/J x 

DBA/2J F1 

- - 

 141 

Study design: 142 

The study consisted of 2 experiments, i.e., Experiments 1 and 2 (Figure 1). Animals of both 143 

experiments were maintained under the same housing conditions. Animals in Experiment 1 144 

underwent surgery and, after a >10 days recovery period, electroencephalography (EEG), 145 

electromyography (EMG) and locomotor activity (LMA) were recorded continuously for a 4-146 

day period starting at ZT0. The first 2 days were considered Baseline (B1 and B2). The first 6 147 

hours of Day 3 (ZT0–6), animals were sleep deprived (SD) in their home cage by “gentle 148 

handling” referring to preventing sleep by changing litter, introducing paper tissue, present a 149 

pipet near the animal or gently tapping the cage. Experimenters performing the SD rotated 150 

every 1 or 2 hours for the SD duration (for more information, see 22). The remaining 18 h of 151 

Day 3 and the entire Day 4 were considered Recovery (R1 and R2). 152 

Half of the animals included in Experiment 2 underwent SD alongside the animals of 153 

Experiment 1. The other half was left undisturbed in another room (i.e., control or Ctr, also 154 
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referred as Non Sleep Deprived or NSD). Both SD and “Ctr” mice of Experiment 2 were 155 

killed at ZT6 (i.e., immediately after the end of the SD) for sampling of liver and cerebral 156 

cortex tissue as well as trunk blood. All mice were left undisturbed for at least 2 days prior to 157 

SD. 158 

 159 

Experiment 1: EEG/EMG and LMA recording and signal pre-processing 160 

EEG/EMG surgery was performed under deep anesthesia. IP injection of Xylazine/Ketamine 161 

mixture (91/14.5 mg/kg, respectively) ensures a deep plane of anesthesia for the duration of 162 

the surgery (i.e., around 30 min). Analgesia was provided the evening prior and the 3 day after 163 

surgery with Dafalgan in the drinking water (200–300 mg/kg). Six holes were drilled into the 164 

cranium, 4 for screws to fix the connector with Adhesive Resin Cement, 2 for electrodes. The 165 

caudal electrode was placed over the hippocampal structure and the rostral electrode was 166 

placed over the frontal cerebral cortex. Two gold-wire electrode were inserted into the neck 167 

muscle for EMG recording (for details, see 22). Mice were allowed to recover for at least 10 168 

days prior to baseline recordings. EEG and EMG signals were amplified, filtered, digitized, 169 

and stored using EMBLA (Medcare Flaga, Thornton, CO, USA) hardware (A10 recorder) and 170 

software (Somnologica). Digitalization of the signal was performed as followed: the analog to 171 

digital conversion of the signal was performed at a rate of 2000 Hz, the signal was down 172 

sampled at 200 Hz, high-pass filter at 0.0625 Hz was applied to reject DC signal and a notch 173 

filter applied at 50 Hz for interfering signals filtering. Signal was then transformed by 174 

Discrete Fourier Transform (DFT) to yield power spectra between 0 and 100 Hz with a 0.25 175 

frequency resolution using a 4-seconds time resolution (called an epoch). EEG frequency bins 176 

with artefacts of known (line artefacts between 45-55 Hz) and unknown (75-77 Hz) source 177 

were removed from the average EEG spectra of all mice. Other specific 0.25 Hz bins 178 

containing artefacts (notably the 8.0, 16.0 and 32.0 Hz bins) of unknown source, were 179 

removed from individual mice based on the visual inspection of individual EEG spectra in 180 

each of the three sleep-wake states (i.e. wakefulness, REM sleep and NREM sleep). Power 181 

density in frequency bins deemed artefacted were estimated by linear interpolation. For 182 

details, see Pascal scripts in (Data Citation 4, gitlab Systems_Genetics_of_Sleep_Regulation). 183 

 184 

LMA was recorded by passive infrared (PIR) sensors (Visonic, Tel Aviv, Israel) at 1 min 185 

resolution for the duration of the 4-day experiment, using ClockLab (ActiMetrics, IL, USA). 186 

Activity data were made available as .act files at Figshare (Data Citation 1: Figshare 187 

LinkToCome). 188 
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 189 

Offline, the sleep-wake states wakefulness, REM sleep, and NREM sleep were annotated on 190 

consecutive 4-second epochs, based on the EEG and EMG pattern. (see Sleep-wake state 191 

annotation section). EEG/EMG power spectra and sleep-wake states annotation were made 192 

available as .smo files at (Data Citation 1: Figshare LinkToCome). 193 

 194 

Experiment 2: Tissue collection and preparation 195 

Mice were killed by decapitation after being anesthetized with isoflurane, and blood, cerebral 196 

cortex, and liver were collected immediately. The whole procedure took no more than 5 min 197 

per mouse. Blood was collected at the decapitation site into tubes containing 10 ml heparin (2 198 

U/μl) and centrifuged at 4,000 rpm during 5 min at 4°C. Plasma was collected by pipetting, 199 

flash-frozen in liquid nitrogen, and stored at −80°C until further use. Cortex and liver were 200 

flash-frozen in liquid nitrogen immediately after dissection and were stored at −140°C until 201 

further use. 202 

For RNA extraction, frozen samples were homogenized for 45 seconds in 1 ml of QIAzol 203 

Lysis Reagent (Qiagen; Hilden, Germany) in a gentleMACS M tube using the gentleMACS 204 

Dissociator (Miltenyi Biotec; Bergisch Gladbach, Germany). Homogenates were stored at 205 

−80°C until RNA extraction. Total RNA was isolated and purified from cortex using the 206 

automated nucleic acid extraction system QIAcube (Qiagen; Hilden, Germany) with the 207 

RNeasy Plus Universal Tissue mini kit (Qiagen; Hilden, Germany) and were treated with 208 

DNAse. Total RNA from liver was isolated and purified manually using the Qiagen RNeasy 209 

Plus mini kit (Qiagen; Hilden, Germany), which includes a step for effective elimination of 210 

genomic DNA. RNA quantity, quality, and integrity were assessed utilizing the NanoDrop 211 

ND-1000 spectrophotometer (Thermo scientific; Waltham, Massachusetts, USA) and the 212 

Fragment Analyzer (Advanced Analytical). The 263 mice initially killed for tissue collection 213 

yielded 222 cortex and 222 liver samples of good quality. 214 

Equal amounts of RNA from biological replicates (3 samples per strain, tissue, and 215 

experimental condition, except for BXD79, BXD85, and BXD101; see above under Animals, 216 

breeding, and housing conditions) were pooled, yielding 156 samples for library preparation. 217 

RNA-seq libraries were prepared from 500 ng of pooled RNA using the Illumina TruSeq 218 

Stranded mRNA reagents (Illumina; San Diego, California, USA) on a Caliper Sciclone liquid 219 

handling robot (PerkinElmer; Waltham, Massachusetts, USA). Libraries were sequenced on 220 

the Illumina HiSeq 2500 using HiSeq SBS Kit v3 reagents, with cluster generation using the 221 

Illumina HiSeq PE Cluster Kit v3 reagents. Fastq files were pre-processed using the Illumina 222 
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Casava 1.82 pipeline and bad quality reads tagged with ‘Y’. A mean of 41 M 100 bp single-223 

end reads were obtained (29 M ≤ n ≤ 63 M). Quality of sequences were evaluated using 224 

FastQC software (version 0.10.1) and reports made available here (Data Citation 3, bxd.vital-225 

it.ch https://bxd.vital-it.ch/#/dataset/). Figure 2 (A, B, C and D) shows the Phred quality score 226 

distribution per base among all samples reads for ‘Cortex Control’, ‘Cortex SD’, ‘Liver 227 

Control’ and ‘Liver SD’ respectively. Fastq files were made available at NCBI Gene 228 

Expression Omnibus (Data Citation 2: NCBI Gene Expression Omnibus GSE112352). 229 

Targeted metabolomics analysis was performed using flow injection analysis (FIA) and liquid 230 

chromatography/mass spectrometry (LC/MS) as described in 23,24. To identify metabolites and 231 

measure their concentrations, plasma samples were analyzed using the AbsoluteIDQ p180 232 

targeted metabolomics kit (Biocrates Life Sciences AG, Innsbruck, Austria) and a Waters 233 

Xevo TQ-S mass spectrometer coupled to an Acquity UPLC liquid chromatography system 234 

(Waters Corporation, Milford, MA, USA). The kit provided absolute concentrations for 188 235 

endogenous compounds from 6 different classes, namely acyl carnitines, amino acids, 236 

biogenic amines, hexoses, glycerophospholipids, and sphingolipids. Plasma samples were 237 

prepared according to the manufacturer’s instructions. Sample order was randomized, and 3 238 

levels of quality controls (QCs) were run on each 96-well plate. Data were normalized 239 

between batches, using the results of quality control level 2 (QC2) repeats across the plate 240 

(n = 4) and between plates (n = 4) using Biocrates METIDQ software (QC2 correction). 241 

Metabolites below the lower limit of quantification or the limit of detection, as well as above 242 

the upper limit of quantification, or with standards out of limits, were discarded from the 243 

analysis 24. Out of the 188 metabolites assayed, 124 passed these criteria across samples and 244 

were used in subsequent analyses. No hexoses were present among the 124 metabolites. Out 245 

of the 256 mice killed for tissue collection, 249 plasma samples were used for this analysis. 246 

An average of 3.5 animals (3 ≤ n ≤ 6) per line and experimental condition were used (except 247 

for BXD79, BXD85, and BXD101 with respectively 2, 1, and 1 animal/condition used; see 248 

above under Animals, breeding, and housing conditions). Note that in contrast to the RNA-seq 249 

experiment, samples were not pooled but analyzed individually. Mean metabolite levels per 250 

BXD lines were made available at bxd.vital-it.ch (Data Citation 3, bxd.vital-it.ch 251 

https://bxd.vital-it.ch/#/dataset/), for details see intermediate files (Data Citation 5, figshare 252 

https://figshare.com/s/51916157a22357755de8). 253 

In the same plasma samples, we determined corticosterone levels using an enzyme 254 

immunoassay (corticosterone EIA kit; Enzo Life Sciences, Lausanne, Switzerland) according 255 

to the manufacturer’s instructions. All samples were diluted 40 times in the provided buffer, 256 
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kept on ice during the manipulation, and tested in duplicate. BXD lines were spread over 257 

multiple 96-well plates in an attempt to control for possible batch effects. In addition, a 258 

“control” sample was prepared by pooling plasma from 5 C57BL6/J mice. Aliquots of this 259 

control were measured along with each plate to assess plate-to-plate variability. The 260 

concentration was calculated in pg/ml based on the average net optical density (at λ = 405 261 

nm) for each standard and sample. 262 

Corticosterone level were made available on figshare (Data Citation 5, figshare 263 

https://figshare.com/s/51916157a22357755de8) 264 

 265 

Bioinformatics pipeline 266 

To facilitate the interpretation of the complete bioinformatic workflow that was performed on 267 

this dataset, we here describe first our general strategy to construct an analytics pipeline with 268 

which we hope to improve reproducibility. We then describe the specific methods used to 269 

analyze this dataset.  270 

The analytics and input datasets were separated into 3 layers according to increasing level of 271 

data abstraction (Figure 3). This hierarchical structure of the workflow was particularly useful 272 

to identify steps downstream novel versions of a script or data (e.g. Figure 3, red) and 273 

simplify workflow description.  The first low-level layer contains the procedures needed to 274 

reduce and transform the raw-data (i.e. RNA-seq reads, EEG/EMG signals) into an 275 

exploitable signal such as sleep phenotypes, genes expression or mice genotypes by further 276 

analytical steps. This layer is characterized by long and computationally intensive procedures 277 

which required the expertise of different persons, each with their own working environment 278 

and preferred informatics language. 279 

The intermediate layer contains some established analyses that could be performed on the 280 

data such as gene expression normalization followed by differential expression or 281 

Quantitative Trait Locus (QTL) mapping. With the scripts of this layer we explored the effects 282 

of sleep deprivation, genetic variations, as well as their interaction on EEG/behavioral 283 

phenotypes and intermediate phenotypes.  284 

The high-level layer contains the novel integrative methods that we developed to prioritize 285 

genes driving sleep regulation and to visually represent the meta-dimensional multi-omics 286 

networks underlying sleep phenotypes.  287 

 288 
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Code availability on Git: 289 

The scripts used for analytics were made available on gitlab (Data Citation 4, gitlab 290 

Systems_Genetics_of_Sleep_Regulation).The master branch contains the scripts used for our 291 

publication and mm9 analysis. A second branch was created for analysis performed on a 292 

mm10 mouse references (see Technical Validation). The intermediate files required to run 293 

these scripts were made available here: (Data Citation 5, figshare 294 

https://figshare.com/s/51916157a22357755de8). Finally, a documentation file was 295 

generated to understand the hierarchical relationship between the scripts and datasets in a 296 

form of a dynamic html document (see Workflow documentation).  297 

 298 

Standard and non-standard semantics 299 

To improve the reproducibility and reusability of our workflow, we tried to prioritize standard 300 

semantics and well-established pipelines when it was applicable, such as the RNA-seq 301 

processing by STAR and htseq-count 25. The use of curated symbols for genes nomenclature 302 

by RefSeq allowed a better semantic interoperability with other resources such as Uniprot 303 

protein ID using solutions like biomaRt 26.  We provided some of the references files used in 304 

these scripts, like the RefSeq .gtf reference file. These annotations can be updated and 305 

possibly change the gene quantification with updated version or different genome reference 306 

(see References_Files in Data Citation 5, figshare 307 

https://figshare.com/s/51916157a22357755de8).  308 

However, some steps could not be performed using standards. The EEG/behavioral 309 

phenotyping procedure could not be performed by any standard computational workflow or 310 

common semantics as none exist. The nomenclature that was chosen in this case to generate 311 

unique phenotypic ID was a combination of the phenotype observed (e.g. EEG power during 312 

NREM sleep) and the features observed in this phenotype (e.g. delta band 1-4 Hz). These 313 

phenotypes were also present as file name and column name in our dataset (Data Citation 5, 314 

figshare https://figshare.com/s/51916157a22357755de8).  315 

 316 

Favor R and Rmarkdown reports for reproducible results 317 

Once the data processed within the low-level layer, the effect of sleep deprivation, genetics 318 

and their interaction were measured using different statistical models and computational 319 

methods. We chose to prioritize the programming language R as it was the best suited tool for 320 

these statistical analyses and for the generation of figures. Beside the advantages of a license-321 

free and portable language, R was already recommended as main tool for systems genetics 322 
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analysis 27. Many available packages were particularly adapted for the systems genetics 323 

design, involving phenotype-genotype association (r/qtl), network analysis (WGCNA, SANTA, 324 

igraph), differential expression (EdgeR, DESeq, limma), bayesian network learning (bnlearn), 325 

visualization (ggplot2, grid), enrichment (topGO, topAnat) and parallel computing (parallel). 326 

Only a few analyses were performed using other softwares, principally for efficiency reasons 327 

in cis-/trans-eQTL analysis where the number of models to test was quite large 28,29. R is one 328 

of the flagships of open science and reproducibility 30 with a reviewable source code and the 329 

possibility of generating reports known as ‘Rmarkdown’ with 2 packages: knitr 31 and 330 

rmarkdown 32. This report format contains combination of code, figures, and comments within 331 

a single markdown document that can be easily converted into pdf or html format. 332 

Rmarkdown scripts were made available on (Data Citation 4, gitlab 333 

Systems_Genetics_of_Sleep_Regulation) and the reports in the form of .html document were 334 

made available with data on (Data Citation 5, figshare 335 

https://figshare.com/s/51916157a22357755de8). To avoid the need to copy/paste some 336 

functions shared between Rmarkdowns but still display them in our reports, we used the 337 

readLines() function within Rmarkdown chunks. Finally, the use of the sessionInfo() function 338 

at the end of the document allowed to keep track of the packages version and the environment 339 

variable used. Some of these Rmarkdown reports were generated on a remote cluster instead 340 

of the more traditional Rstudio environment, for more information on how to generate these 341 

Rmarkdown, see the Usage Notes. 342 

 343 

Workflow documentation 344 

This systems genetics approach was an integrative project that implicated multiple 345 

collaborators, that each contributed to the final results, with their own working habit related to 346 

their area of expertise. For better reproducibility of the generated files, a critical goal was to 347 

keep track of the different files created, associated documents or analytical steps that were 348 

produced. For example, EEG/behavioral phenotypes could be found within many files and 349 

reports, from low-level to high-level layers, but their nomenclatures were still hard to interpret 350 

as mentioned above, for those not directly related to this project. A newcomer in this project 351 

should be able to easily recover the metadata document containing all the physiological 352 

phenotypes information (i.e. understand that a metadata document was created and where to 353 

find it or who to ask for it) and understand which scripts were used to produce these 354 

phenotypes. To establish what was exactly performed, we generated a documentation file 355 

containing the essential information and relationships between all the files, scripts, 356 
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Rmarkdown, small workflow or database annotation (referred here simply as 357 

Reference_Files) used in this project. This document describes the inputs/outputs needed and 358 

where to locate the information distributed among different person or different directories on 359 

a digital infrastructure as presented in figure 3 but with more details to improve the 360 

reproducibility of the DRO 33. 361 

The markdown format was kept as it was easy to write/read by a human or to generate via a 362 

python script. This file was formatted into a simplified RDF-like triples structure, were each 363 

files-objects (subject) were linked to information (objects) by a property. This format allowed 364 

to use the following properties to describe each file-objects we had: The file-object name or 365 

identification, a brief description (i.e. about the software used or the data content), the file-366 

object version, the input(s)/output(s), the associated documents, hyperlink(s) to remote 367 

database or citation, the location of the file-object on the project directory or archiving 368 

system, and the author(s) to contact for questions. These associations could be viewed as a 369 

graph to display the important files and pipelines used. This document was useful to 370 

understand how exactly the different files were generated, and to recover the scripts and 371 

input/ouput that were used, even after prolonged periods and to use them again, which permit 372 

for example to reproduce data with novel or updated annotation files. Furthermore, if an error 373 

was detected within a script, the results and figures downstream that needed to be recomputed 374 

could be easily found. This documentation file was made available on gitlab (Data Citation 4, 375 

gitlab Systems_Genetics_of_Sleep_Regulation).  376 

 377 

Data Mining Website 378 

The DRO built for this systems genetics resource is constituted of the following collection: 379 

raw-data, processed data, Rmarkdown reports, results & interpretation, workflow, scripts, and 380 

metadata. To improve the reproducibility of our integrative visualization method (see 381 

HivePlots below), we provided some data-mining tools, a server to store some intermediate 382 

results, and a web application 34 (Data Citation 3, bxd.vital-it.ch https://bxd.vital-383 

it.ch/#/dataset/). The home page of the web application displays the information for the 384 

NREM sleep gain during the 24 hours (in four 6-hour intervals) after sleep deprivation. Three 385 

data-mining tutorials were described on the website the web interface to: (i) mine a single 386 

phenotype, (ii) search for a gene, and (iii) compare hiveplots. Currently, no centralized 387 

repository exists containing all types of phenotypic data that were extracted within this 388 

project. This web-interface can, however be viewed as a hub for this DRO that became 389 

findable and accessible with a web-browser. With this web resource, we provided an advanced 390 
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interactive interface for EEG/behavioral end-phenotypes and their associated intermediate 391 

phenotypes (variants, metabolites, gene expression). Compared to other web-resources for 392 

systems genetics like GeneNetwork where the principal focus is QTL mining, this interface 393 

provides an integrative view of this one dataset, with also data files and link to code to 394 

reproduce some of our analyses in the form of Rmarkdown, like the prioritization strategy.  395 

 396 

Low-Layer Analyses: 397 

 398 

Sleep-wake state annotation 399 

To assist the annotation of this extensive dataset (around 20 million 4 s epochs), we developed 400 

a semiautomated scoring system. The 4-day recordings of 43 mice (19% of all recordings), 401 

representing animals from 12 strains, were fully annotated visually by an expert according to 402 

established criteria 22. Due to large between-line variability in EEG signals, even after 403 

normalization, a partial overlap of the different sleep-wake states remained, as evidenced by 404 

the absolute position of the center of each state cluster, which differed even among individuals 405 

of the same line (precluding the use of 1 “reference” mouse), even per line, to reliably 406 

annotate sleep-wake states for the others. To overcome this problem, 1 day out of 4 (i.e., Day 407 

3 or R1, which includes the SD) was visually annotated for each mouse. These 4 seconds 408 

sleep-wake scores were used to train the semiautomatic scoring algorithm, which took as 409 

input 82 numerical variables derived from the analyses of EEG and EMG signals using 410 

frequency- (discrete Fourier transform [DFT]) and time-domain analyses performed at 1 411 

second resolution. We then used these data to train a series of support vector machines 412 

(SVMs)35 specifically tailored for each mouse, using combinations of the 5 or 6 most 413 

informative variables out of the 82 input variables. The best-performing SVMs for a given 414 

mouse were then selected based on the upper-quartile performance for global classification 415 

accuracy and sensitivity for REM sleep (the sleep-wake state with the lowest prevalence) and 416 

used to predict sleep-wake states in the remaining 3 days of the recording. The predictions for 417 

4 consecutive 1-s epochs were converted into 1 four-second epoch 418 

. Next, the results of the distinct SVMs were collapsed into a consensus prediction, using a 419 

majority vote. In case of ties, epochs were annotated according to the consensus prediction of 420 

their neighboring epochs. To prevent overfitting and assess the expected performance of the 421 

predictor, only 50% of the R1 manually annotated data from each mouse were used for 422 

training. The classification performance was assessed by comparing the automatic and visual 423 
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scoring of the fully manually annotated 4 d recordings of 43 mice. The global accuracy was 424 

computed using a confusion matrix 36 of the completely predicted days (B1, B2, and R2). For 425 

all subsequent analyses, the visually annotated Day 3 (R1) recording and the algorithmically 426 

annotated days (B1, B2, and R2) were used for all mice, including those for which these days 427 

were visually annotated. The resulting sleep-wake state annotation together with EEG power 428 

spectra and EMG levels were saved as binary files (.smo) with their corresponding metadata 429 

files (.hdr) and deposited at FigShare (Data Citation 1: Figshare https://...). For more 430 

information on .smo and .hdr files, see Usage Notes. 431 

 432 

EEG/Behavioral Phenotyping 433 

We quantified 341 phenotypes based on the sleep-wake states, LMA, and the spectral 434 

composition of the EEG, constituting 3 broad phenotypic categories. For the first phenotypic 435 

catergory (“State”), the 96 hours sleep-wake sequence of each animal was used to directly 436 

assess traits in 3 “state”-related phenotypic subcategories: (i) duration (e.g., time spent in 437 

wakefulness, NREM sleep, and REM sleep, both absolute and relative to each other, such as 438 

the ratio of time spent in REM versus NREM sleep); (ii) aspects of their distribution over the 439 

24 h cycle (e.g., time course of hourly values, midpoint of the 12 h interval with highest time 440 

spent awake, and differences between the light and dark periods); and (iii) sleep-wake 441 

architecture (e.g., number and duration of sleep-wake bouts, sleep fragmentation, and sleep-442 

wake state transition probabilities). Similarly, for the second phenotypic category (“LMA”) 443 

overall activity counts per day, as well as per unit of time spent awake, and the distribution of 444 

activity over the 24 h cycle was extracted from the LMA data.  As final phenotypic category 445 

(“EEG”), EEG signals of the 4 different sleep-wake states (wakefulness, NREM sleep, REM 446 

sleep, and theta-dominated waking [TDW], see below) were quantified within the 4-s epochs 447 

matching the sleep-wake states using DFT (0.25 Hz resolution, range 0.75–90 Hz, window 448 

function Hamming). Signal power was calculated in discrete EEG frequency bands—i.e., 449 

delta (1.0–4.25 Hz, δ), slow delta (1.0–2.25 Hz; δ1), fast delta (2.5–4.25; δ2), theta (5.0–9.0 450 

Hz; θ), sigma (11–16 Hz; σ), beta (18–30 Hz; β), slow gamma (32–55 Hz; γ1), and fast 451 

gamma (55–80 Hz; γ2). Power in each frequency band was referenced to total EEG power 452 

over all frequencies (0.75–90 Hz) and all sleep-wake states in days B1 and B2 to account for 453 

interindividual variability in absolute power. The contribution of each sleep-wake state to this 454 

reference was weighted such that, e.g., animals spending more time in NREM sleep (during 455 

which total EEG power is higher) do not have a higher reference as a result 37. Moreover, the 456 

frequency of dominant EEG rhythms was extracted as phenotypes, specifically that of the 457 
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theta rhythm characteristic of REM sleep and TDW. The latter state, a substate of 458 

wakefulness, defined by the prevalence of theta activity (6.0–10.0 Hz) in the EEG during 459 

waking 38,39, was quantified according to the algorithm described in 40. We assessed the time 460 

spent in this state, the fraction of total wakefulness it represents, and its distribution over 24 h. 461 

Finally, discrete, paroxysmal events were counted, such as sporadic spontaneous seizures and 462 

neocortical spindling, which are known features of D2 mice 41, which we also found in some 463 

BXD lines. 464 

All phenotypes were quantified in baseline and recovery separately, and the effect of SD on 465 

all variables was computed as recovery versus baseline differences or ratios. The recovery-to-466 

baseline contrasts are the focus of this paper. Obviously, some of the 341 phenotypes are 467 

strongly correlated (e.g., the time spent awake and asleep in a given recording interval), 468 

resulting in identical QTLs (albeit with different association strengths). Pascal source code 469 

used for EEG/behavioral phenotyping was made available on gitlab (Data Citation 4, gitlab 470 

Systems_Genetics_of_Sleep_Regulation). Processed phenotypes and descriptions were made 471 

available at bxd.vital-it.ch (Data Citation 3, bxd.vital-it.ch https://bxd.vital-it.ch/#/dataset/). 472 

 473 

Read alignment 474 

For gene expression quantification, we used a standard pipeline that was already applied in a 475 

previous study 6. Bad quality reads tagged by Casava 1.82 were filtered from fastq files and 476 

reads were mapped to MGSCv37/mm9 using the STAR splice aligner (v 2.4.0g) with the 477 

2pass pipeline 42.  478 

 479 

Genotyping 480 

The RNA-seq dataset was also used to complement the publicly available GeneNetwork 481 

genetic map (www.genenetwork.org), thus increasing its resolution. RNA-seq variant calling 482 

was performed using the Genome Analysis ToolKit (GATK) from the Broad Institute, using 483 

the recommended workflow for RNA-seq data 43. To improve coverage depth, 2 additional 484 

RNA-seq datasets from other projects using the same BXD lines were added 6. In total, 6 485 

BXD datasets from 4 different tissues (cortex, hypothalamus, brainstem, and liver) were used. 486 

A hard filtering procedure was applied as suggested by the GATK pipeline 43-45. Furthermore, 487 

genotypes with more than 10% missing information, low quality (<5,000), and redundant 488 

information were removed. GeneNetwork genotypes, which were discrepant with our RNA-489 

seq experiment, were tagged as “unknown” (mean of 1% of the GeneNetwork 490 
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genotypes/strain [0.05% ≤n≤ 8%]). Finally, GeneNetwork and our RNA-seq genotypes were 491 

merged into a unique set of around 11,000 genotypes, which was used for all subsequent 492 

analyses. This set of genotypes was already used successfully in a previous study of BXD 493 

lines 6 and is available through our “Swiss-BXD” web interface (Data Citation 3, bxd.vital-494 

it.ch https://bxd.vital-it.ch/#/dataset/). 495 

 496 

Protein damage prediction 497 

Variants detected by our RNA-seq variant calling were annotated using Annovar 46 with the 498 

RefSeq annotation dataset. Nonsynonymous variations were further investigated for protein 499 

disruption using Polyphen-2 version 2.2.2 47, which was adapted for use in the mouse 500 

according to recommended configuration. Variant annotation file and polyphen2 scores were 501 

made available here (Data Citation 5, figshare 502 

https://figshare.com/s/51916157a22357755de8). 503 

 504 

Gene expression quantification: 505 

Count data was generated using htseq-count from the HTseq package using parameters 506 

“stranded = reverse” and “mode = union” 48. Gene boundaries were extracted from the 507 

mm9/refseq/reflat dataset of the UCSC table browser. Raw counts were made available here 508 

(Data Citation 5, figshare https://figshare.com/s/51916157a22357755de8). 509 

 510 

Intermediate-Layer Analyses: 511 

Gene expression normalization: 512 

EdgeR was then used to normalize read counts by library size. Genes with with low 513 

expression value were excluded from the analysis, and the raw read counts were normalized 514 

using the TMM normalization 49 and converted to log counts per million (CPM). R. Although 515 

for both tissues, the RNA-seq samples passed all quality thresholds, and among-strain 516 

variability was small, more reads were mapped in cortex than in liver, and we observed a 517 

somewhat higher coefficient of variation in the raw gene read count in liver than in cortex. 518 

Genes expression as CPM or log2 CPM were made available here: (Data Citation 5, figshare 519 

https://figshare.com/s/51916157a22357755de8). 520 

 521 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2019. ; https://doi.org/10.1101/586206doi: bioRxiv preprint 

https://doi.org/10.1101/586206
http://creativecommons.org/licenses/by/4.0/


18 
 

Differential expression 522 

To assess the gene differential expression between the sleep-deprived and control conditions, 523 

we used the R package limma 50 with the voom weighting function followed by the limma 524 

empirical Bayes method 51. Differential expression tables were made available here: (Data 525 

Citation 5, figshare https://figshare.com/s/51916157a22357755de8). 526 

 527 

QTL mapping 528 

The R package qtl/r 28 was used for interval mapping of behavioral/EEG phenotypes 529 

(phQTLs) and metabolites (mQTLs). Pseudomarkers were imputed every cM, and genome-530 

wide associations were calculated using the Expected-Maximization (EM) algorithm. p-values 531 

were corrected for FDR using permutation tests with 1,000 random shuffles. The significance 532 

threshold was set to 0.05 FDR, a suggestive threshold to 0.63 FDR, and a highly suggestive 533 

threshold to 0.10 FDR according to 52,53. QTL boundaries were determined using a 1.5 LOD 534 

support interval. To preserve sensitivity in QTL detection, we did not apply further p-value 535 

correction for the many phenotypes tested. Effect size of single QTLs was estimated using 2 536 

methods. Method 1 does not consider eventual other QTLs present and computes effect size 537 

according to 1 − 10^(−(2/n)*LOD). Method 2 does consider multi-QTL effects and computes 538 

effect size by each contributing QTL by calculating first the full, additive model for all QTLs 539 

identified and, subsequently, estimating the effects of each contributing QTL by computing 540 

the variance lost when removing that QTL from the full model (“drop-one-term” analysis). 541 

For Method 2, the additive effect of multiple suggestive, highly suggestive, and significant 542 

QTLs was calculated using the fitqtl function of the qtl/r package 54. With this method, the 543 

sum of single QTL effect estimation can be lower than the full model because of association 544 

between genotypes. In the Results section, Method 1 was used to estimate effect size, unless 545 

specified otherwise. It is important to note that the effect size estimated for a QTL represents 546 

the variance explained of the genetic portion of the variance (between-strain variability) 547 

quantified as heritability and not of the total variance observed for a given phenotype (i.e., 548 

within- plus between-strain variability). 549 

For detection of eQTLs, cis-eQTLs were mapped using FastQTL 28 within a 2 Mb window for 550 

which adjusted p-values were computed with 1,000 permutations and beta distribution fitting. 551 

The R package qvalue 55 was then used for multiple-testing correction as proposed by 28. Only 552 

the q-values are reported for each cis-eQTL in the text. Trans-eQTL detection was performed 553 

using a modified version of FastEpistasis 29, on several million associations (approximately 554 

15,000 genes × 11,000 markers), applying a global, hard p-value threshold of 1E−4. 555 
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List of ph-QTLs, cis-eQTL, trans-eQTL and m-QTLs were made available here: (Data 556 

Citation 5, figshare https://figshare.com/s/51916157a22357755de8). 557 

 558 

High-layer Analyses: 559 

Hiveplot visualization 560 

Hiveplots were constructed with the R package HiveR56 for each phenotype. Gene expression 561 

and metabolite levels represented in the hiveplots come from either the “Ctr” (control) or SD 562 

molecular datasets according to the phenotype represented in the hiveplot; i.e., the “Ctr” 563 

dataset is represented for phenotypes related to the baseline (“bsl”) condition, while the SD 564 

dataset is shown for phenotypes related to recovery (“rec” and “rec/bsl”). For a given 565 

hiveplot, only those genes and metabolites were included (depicted as nodes on the axes) for 566 

which the Pearson correlation coefficient between the phenotype concerned and the molecule 567 

passed a data-driven threshold set to the top 0.5% of all absolute correlations between all 568 

phenotypes on the one hand and all molecular (gene expression and metabolites) on the other. 569 

This threshold was calculated separately for “Bsl” phenotypes and for “Rec” and “Rec/Bsl” 570 

phenotypes and amounted to absolute correlation thresholds of 0.510 and 0.485, respectively. 571 

The latter was used for the recovery phenotypes. Associations between gene expressions and 572 

metabolites represented by the edges in the hiveplot were filtered using quantile thresholds 573 

(top 0.05% gene–gene associations, top 0.5% gene–metabolite associations). We corrected for 574 

cis-eQTL confounding effects by computing partial correlations between all possible pairs of 575 

genes. Hiveplots figures and Rmarkdowns reports were made available here (Data Citation 5, 576 

figshare https://figshare.com/s/51916157a22357755de8). 577 

 578 

Candidate-gene prioritization strategy 579 

In order to prioritize genes in identified QTL regions, we chose to combine the results of the 580 

following analyses: (i) QTL mapping (phQTL or mQTL), (ii) correlation analysis, (iii) 581 

expression QTL (eQTL), (iv) protein damaging–variation prediction, and (v) DE. Each result 582 

was transformed into an “analysis score” using a min/max normalization, in which the 583 

contribution of extreme values was reduced by a winsorization of the results. These analysis 584 

scores were first associated with each gene (see below) and then integrated into a single 585 

"integrated score" computed separately for each tissue, yielding 1 integrated score in cortex 586 

and 1 in liver. The correlation analysis score, eQTL score, DE score, and protein damaging–587 

variation score are already associated to genes, and these values were therefore attributed to 588 
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the corresponding gene. To associate a gene with the ph-/m-QTL analysis score (which is 589 

associated to markers), we used the central position of the gene to infer the associated ph-/m-590 

QTL analysis score at that position. In case of a cis-eQTL linked to a gene or a damaging 591 

variation within the gene, we used the position of the associated marker instead. To emphasize 592 

diversity and reduce analysis score information redundancy, we weighted each analysis score 593 

using the Henikoff algorithm. The individual scores were discretized before using the 594 

Henikoff algorithm, which was applied on all the genes within the ph-/mQTL region 595 

associated with each phenotype. The integrated score was calculated separately for cortex and 596 

liver. We performed a 10,000-permutation procedure to compute an FDR for the integrated 597 

scores. For each permutation procedure, all 5 analysis scores were permutated, and a novel 598 

integrated score was computed again. The maximal integrated score for each permutation 599 

procedure was kept, and a significance threshold was set at quantile 95. Applying the 600 

Henikoff weighting improved the sensitivity of the gene prioritization. E.g., among the 91 601 

behavioral/EEG phenotypes quantified with 1 or more suggestive/significant QTL after SD, 602 

40 had at least 1 gene significantly prioritized with Henikoff weighting, against 32 without. 603 

Gene prioritization figures and Rmarkdown reports were made available here (Data Citation 604 

5, figshare https://figshare.com/s/51916157a22357755de8) 605 

 606 

Reproducibility of the pipeline 607 

Technical reproducibility of the pipeline 608 

To assess the reproducibility of our analytical pipeline, we asked a bioinformatician that was 609 

not involved in the data collection and analysis to reanalyze some of the results. A relatively 610 

short computational time as well as importance in the published results were taken as 611 

selection criteria of analyses to be replicated. The TMM normalisation of RNA-seq counts, 612 

differential gene expression, cis-eQTL detection, and the ph-/m-QTL mapping for 4 sleep 613 

phenotypes (slow delta power gain after SD, fast delta power after SD, theta peak frequency 614 

shift after SD and NREM sleep gain in the dark after SD) and 2 metabolites 615 

(Phosphatidylcholine ae C38:2 and alpha amino-adipic acid) used as main examples in our 616 

previous publication were all re-analyzed. Finally, gene prioritization and hiveplot 617 

visualization of these 4 examples were replicated. Originally, ties in the nodes ranking 618 

function on the hiveplots axis was solved using the “random” method, but this function was 619 

modified in the hiveplot code and set as “first” to remain deterministic (see Technical 620 

Validation for results). 621 
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 622 

Reanalysis with mm10 623 

To quantify the effect of new standards and robustness of our end-results and interpretation 624 

we changed some analyses within our low layer. The mm10 genome assembly was set as our 625 

new reference and the gene expression was reanalysed from the raw fastq files with the 626 

BioJupies reproducible pipeline 57 58 that use kallisto pseudo-alignement 59. The gene positions 627 

were retrieved from the headers of the ENSEMBL fasta file used by BioJupies 628 

(Mus_musculus.GRCm38.cdna.all.fa.gz). Genotypes were downloaded from GeneNetwork 629 

database and our annovar/polyphen2 variations positions based on mm9 were adapted to 630 

mm10 using CrossMap version 0.2.4 60. The analyses performed to assess the technical 631 

reproducibility of our pipeline (see above) were finally replicated using these new files. (see 632 

Technical Validation for results). 633 

 634 

Data Records 635 

EEG/EMG power spectra and locomotor activity files were submitted to figshare Data 636 

Citation 1: Figshare LinkWithSubmission). Raw data of RNA-sequencing were submitted to 637 

Gene Expression Omnibus (Data Citation 2: NCBI Gene Expression Omnibus GSE112352). 638 

Processed phenotypes files as gene expression, metabolites level and mean EEG/behavioral 639 

phenotypes per lines, as well as phenotypes descriptions, were submitted to our data-mining 640 

web-site (Data Citation 3, bxd.vital-it.ch https://bxd.vital-it.ch/#/) on the ‘Downloads’ panel. 641 

Scripts and code were submitted to gitlab  Data Citation 4, gitlab 642 

Systems_Genetics_of_Sleep_Regulation). Intermediate files required to run these scripts were 643 

submitted to figshare (Data Citation 5, figshare 644 

https://figshare.com/s/51916157a22357755de8). BXD genotypes are available on 645 

GeneNetwork (Data Citation 6, GeneNetwork, GN600). 646 

 647 

Technical Validation 648 

Compare genotype RNA-seq vs GeneNetwork 649 

To verify the genetic background of each mice we phenotyped, we analyzed the 650 

correspondence between GeneNetwork genotypes and RNA-seq variants detected by GATK.  651 

For the 3811 GeneNetwork genotypes, 1289 could be recalled in our RNA-seq variant calling 652 

pipeline. Figure 4 shows the similarity proportion between RNA-seq variants and 653 

GeneNetwork genotypes, for each pair of BXD lines. Our BXD63 was more similar with the 654 
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GeneNetwork BXD67 than with the BXD63, probably due to mislabeling. We therefore chose 655 

to exclude this line. The matrix also shows the genetic similarity between BXD73 and 656 

BXD103 (now renamed as BXD73b), between BXD48 and BXD96 (now BXD48a) and 657 

between BXD65 and BXD97 (now BXD65a), which confirmed the renaming of these BXD 658 

lines on GeneNetwork. 659 

Reproducibility of the pipeline 660 

Technical reproducibility of the pipeline 661 

To assess the technical reproducibility of the pipeline, a bioinformatics student (NG) new to 662 

the project reproduced chosen steps of the bioinformatic pipeline. The results (Figure 5, upper 663 

part) were consistent with previous analyses (PLOS paper figures: 2C, 4C left, 7D, and 7C 664 

bottom). The robustness of the pipeline was verified because the same conclusions could be 665 

drawn. For examples, the same 3 genes showed the largest differential expression after SD in 666 

the cortex (Arc, Plin4, and Egr2 in Figure 5B). Moreover, the Acot11 gene was prioritized by 667 

gene prioritization (Figure 5D&E). Nevertheless, the numbers of significant genes of cis 668 

eQTL showed variations compared to previous analysis {Diessler, 2018 #495} due to use of 669 

significance threshold for visualization. For example, the number of genes with significant 670 

QTL unique to Cortex SD changed from 870 (PLOS paper Figure 2C) to 872 (Figure 5A). 671 

The genes are considered as significant if their FDR-adjusted p-value is below or equal to 672 

0.05, which is obtained by estimating the β-distribution fitting of random permutations tests. 673 

Changing the fastqtl version (version 1.165 to version 2.184) seems to change the pseudo-674 

random number generation, even when using the concept of fixed seed. Consequently, the 675 

number of genes considered as significant varies because their FDR-adjusted p-value passes 676 

just above or below the threshold (FDR in the range of 0.04864 to 0.05054). This confirms 677 

that looking at the order of magnitude is important, though the use of significance threshold is 678 

convenient. 679 

 680 

Moreover, the reanalysis process helped to improve the code documentation by explicitly 681 

writing project-related knowledge, such as common abbreviations. Having another 682 

perspective on the code also allowed to improve its structure. Indeed, a retrospective overview 683 

helped improve the organisation of files, which was more difficult to do within the 684 

implementation of the project because the code was incrementally created and adapted. The 685 

process allowed to catch and correct minor mistakes or make improvements improved 686 

readability and consistency. For example, it was highlighted that the ranking function used in 687 
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hiveplot to order nodes in the axes was using the “random” argument for differentiating ties. 688 

As a key concept of the hiveplots was to be fully reproducible in the sense of “perpetual 689 

uniformity” 56, we changed the ties.method parameter to “first” so that the same input always 690 

gives the same result, without having to fix a seed for the pseudo-random generation. Another 691 

example was the ranking of the x-axis in the gene DE volcano plot and the colouring that 692 

were based on log-odds values (B statistic according to in limma R package) instead of FDR-693 

adjusted p-values. However, this reproducibility ‘experiment’ was internal to the group, which 694 

facilitate communication such as which steps to focus on and whether to run them locally or 695 

in a high-performance computing (HPC) structure. An assessment of the computational 696 

requirements for each step, such as computing time, memory, software, and libraries used may 697 

be interesting to provide to facilitate external reproducibility. 698 

 699 

Reanalysis with mm10 700 

To assess the influence of the reference genome used in the analyses, we reproduced selected 701 

parts of bioinformatic pipeline using the updated version (mm10 instead of mm9). The results 702 

(Figure 5, lower part, table 2 and 3) were consistent with previous analyses but presented also 703 

some substantial variations. The cis-eQTL detection revealed differences in the number of 704 

significant associations found, as showed in Table 2. These differences could be mainly 705 

explained by small q-value variation around the significant threshold. Nevertheless, around 706 

5% of cis-eQTLs did not reproduce even at a more permissive significant threshold (0.1 707 

FDR), which affected some of our end results. For example, Wrn was no longer prioritized for 708 

the gain of slow EEG delta power (δ1) after SD compared to previous results on mm9. 709 

Although the cis-eQTL for Wrn was present in both assemblies for the ‘Cortex Control’ 710 

samples, it disappeared for ‘Cortex SD’ samples using mm10. A number of factors could have 711 

contributed to this discrepancy among which i) the variations between mm9 and mm10 could 712 

change the mappability of some transcripts, although this did not seem to be the case for the 713 

Wrn sequence, ii) pseudo-alignment (Kallisto) was used instead of alignment (STAR), which 714 

may have influenced the quantification, iii) bad quality reads were filtered with our STAR 715 

pipeline according to Casava 1.82 but not with Kallisto, and iv) variant calling on RNA-seq 716 

data to add markers was not done for mm10, so only markers from GeneNetwork were used. 717 

Specifically to the latter factor, the marker closest to Wrn gene in mm9 merged genotypes 718 

(rs51740715) is not present in mm10. The change in the number of genetic markers could 719 

have therefore influenced the cis-eQTL detection, which is an important in the gene 720 
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prioritization that resulted in the identification of Wrn as candidate underlying the EEG delta 721 

power (δ1) trait under mm9. 722 

 723 

 Liver NSD Liver SD Cortex NSD Cortex SD 

Assembly mm9 mm10 mm9 mm10 mm9 mm10 mm9 mm10 

Total genes 

14103 12647 14103 12647 14889 15734 14889 15734 

Unique genes 

2405 949 2405 949 1043 1888 1043 1888 

Genes with significant cis-eQTL 

3155 3092 2654 2695 4522 4192 4732 4542 

Proportion of genes with  

significant cis-eQTL 

0.22 0.24 0.19 0.21 0.30 0.27 0.32 0.29 

Genes with significant cis-eQTL 
overlapping 

2255 1911 3204 3483 

Genes with not significant 
cis-eQTL overlapping 

8375 8857 9062 8801 

Genes with significant cis-eQTL  
not overlapping 

900 837 743 784 1318 988 1249 1059 

Genes with significant cis-eQTL   
almost overlapping 

2995 2898 2535 2505 4201 4019 4441 4350 

Table 2: Comparison of cis-eQTL summary statistics in mm9 and mm10 reanalyses. ‘Unique’ is 724 
defined as specific to an assembly (mm9 or mm10). Significance is defined as a q-value below or equal 725 
to 0.05. ‘Overlapping’ is defined as common between mm9 and mm10 reanalyses. ‘Almost 726 
overlapping’ is defined as uncommon between mm9 and mm10 that would be common if a threshold of 727 
0.1 was used instead of 0.05.  728 

 729 

 Liver Cortex 

 mm9 mm10 mm9 mm10 

Total genes 12539 13264 14754 16057 

DE genes 7573 8754 11534 11980 

Proportion of DE genes 0.6040 0.6600 0.7818 0.7461 

Suggestive DE genes 8253 9392 12069 12580 
Proportion of 
suggestive DE genes 0.6582 0.7081 0.8180 0.7835 

Table 3: Comparison of gene DE in mm9 and mm10 reanalyses. Suggestive is defined as a q-value 730 
below or equal to 0.1. 731 

 732 

Usage Notes 733 

SMO files 734 

Binary .smo files were structured as follows: Each file contains a 4-day recording or precisely 735 

86’400 consecutive 4s epochs. Each 4s epoch contains the following information: one byte 736 

character and 404 single precision floating-points, which represent, respectively: sleep-wake 737 

state of the 4s epoch as a character (wake = ‘w’, NREM sleep = ‘n’, REM sleep = ‘r’, wake 738 

w/ EEG artifact = ‘1’, NREM sleep w/ EEG artifact = ‘2’, REM sleep w/ EEG artifact = ‘3’, 739 

wake w/ spindle-like EEG activity = ‘4’, NREM sleep w/ spindle-like EEG activity = ‘5’, 740 
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REM sleep w/ spindle-like EEG activity = ‘6’, Paroxysmal EEG activity in wake = ‘7’, 741 

Paroxysmal EEG activity in NREM sleep = ‘8’, Paroxysmal EEG activity in REM sleep  = ‘9’ 742 

), EEG power density from the full DFT spectrum of the 4s epoch from 0.00 Hz to 100.00 Hz 743 

(401 values at 0.25-Hz resolution), the EEG variance, the EMG variance, and temperature. 744 

Temperature was not measured and was set to 0.0.  745 

 746 

HDR files 747 

Text .hdr files are generated alongside their corresponding .smo file and contain among other 748 

information, the mouse ID (Patient) and recording date. 749 

 750 

Rmarkdown scripts 751 

Some of the Rmarkdown scripts were created for a remote cluster environment on a CentOS 752 

distribution which required the use of a second script that generated the document with the 753 

rmarkdown::render() function and pass the expected function arguments. Therefore some 754 

functions that use the parallel package in R are only executable on a linux environment (i.e. 755 

mclapply() ). These functions can be modified with the doSNOW R library to be applicable on 756 

a windows environment. The author can set many option in the YAML (Yet Another Markup 757 

Language) header to: create dynamic and readable table that contains multiple rows, 758 

hide/show source code or integrated CSS style and table of contents. The reports can be 759 

visualized using any web-browser. 760 
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 783 

Figures 784 

Figure 1: Data generation. The behavioral/EEG end-phenotypes of the BXD mouse panel 785 

were quantified in experiment 1. Mice were recorded for 4 days: 2 days of baseline (B1 & 786 

B2), followed by 6h of sleep deprivation (SD) and 2 days of recovery (R1 & R2). EEG 787 

spectral composition was written in .smo files, activity in .act files and meta-data in .hdr files. 788 

Blood metabolomics, liver transcriptomics and cortical transcriptomics were quantified in 789 

experiment 2. ‘Control’ and ‘Sleep deprived’ batches were sampled at a single time point: 790 

ZT6 (i.e. directly after sleep deprivation for the ‘sleep deprived’ batch). Transcriptomics was 791 

performed on pooled sampled per BXD strains. For blood metabolomics, metabolite 792 

quantification was performed for each BXD replicates.  793 

 794 

Figure 2: PHRED read quality per base for BXD RNA-sequencing. PHRED quality score 795 

based on illumina 1.9. A: Samples from Cortex during control. B: Samples from Cortex after 796 

sleep deprivation. C: Samples from Liver during control. D: Samples from Liver after sleep 797 

deprivation. 798 

 799 

Figure 3: Summary of the bioinformatic analytical pipeline. Representation of the main 800 

bioinformatics methods used. Original analyses were performed using the mm9 mouse 801 

assembly (yellow). Results were also reproduced using the mm10 mouse assembly (red) and 802 

all downstream analyses. Layers represent the scripts organization on gitlab and available 803 

intermediate files. 804 

 805 
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Figure 4: Similarity matrix [in %] between RNA-seq variant calling and GeneNetwork 806 

genotypes. A similarity of 1 indicates that all common genotypes are similar. We here 807 

compare only genotypes that were labeled as ‘B’ or ‘D’ and excluded unknown ‘U’ or 808 

heterozygous ‘H’ genotypes. 809 

 810 

Figure 5: Robustness of the analysis pipeline. A to E: Technical reanalysis with mm9 811 

reference genome. F to J: Reanalysis with mm10 reference genome. A and F: Venn diagram of 812 

significant cis-eQTL. B and G: Volcano plot of differential gene expression in cortex. C and 813 

H: Hiveplot NREM sleep gain during recovery of with highlight on Acot11. D, E, I, and J: 814 

Gene prioritization for NREM sleep gain during recovery (D and I) or phosphatidylcholine 815 

acyl-alkyl C38:2 levels (E and J). recovery=first 6 hours of dark period after sleep deprivation 816 

(ZT 12-18), SD=sleep deprivation, NSD=not sleep deprivation (control), FC= fold-change, 817 

NREM=non-REM, REM=Rapid eye movement, LOD=logarithm of odds, FDR=false 818 

discovery rate. 819 

 820 
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