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13 Abstract

14 More and more researchers make use of multi-omics approaches to tackle complex cellular
15  and organismal systems. It has become apparent that the potential for re-use and integrate data
16  generated by different labs can enhance knowledge. However, a meaningful and efficient re-
17  use of data generated by others is difficult to achieve without in depth understanding of how
18  these datasets were assembled. We therefore designed and describe in detail a digital research
19  object embedding data, documentation and analytics on mouse sleep regulation. The aim of
20  this study was to bring together electrophysiological recordings, sleep-wake behavior,

21  metabolomics, genetics, and gene regulatory data in a systems genetics model to investigate
22 sleep regulation in the BXD panel of recombinant inbred lines. We here showcase both the
23 advantages and limitations of providing such multi-modal data and analytics. The

24 reproducibility of the results was tested by a bioinformatician not implicated in the original
25  project and the robustness of results was assessed by re-annotating genetic and transcriptome
26  data from the mm9 to the mm10 mouse genome assembly.

27
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29 Background & Summary

30  Agood night’s sleep is essential for optimal performance, wellbeing and health. Chronically
31  disturbed or curtailed sleep can have long-lasting adverse effects on health with associated
32 increased risk for obesity and type-2 diabetes’.

33

34  To gain insight into the molecular signaling pathways regulating undisturbed sleep and the
35  response to sleep restriction in the mouse, we performed a population-based multi-level

36  screening known as systems genetics 2. This approach allows to chart the molecular pathways
37  connecting genetic variants to complex traits through the integration of multiple *omics

38  datasets such as transcriptomics, proteomics, metabolomics or microbiomes 2.

39  We built a systems genetics resource based on the BXD panel, a population of recombinant
40  inbred lines of mice *, that has been used for a number of complex traits and *omics screening
41  such as brain slow-waves during NREM sleep °, glucose regulation °, cognitive aging ’ and
42 mitochondria proteomics ®.

43

44 We phenotyped 34 BXD/RwwJ inbred lines, 4 BXD/TyJ, 2 parental strains C57BL6/J and

45  DBA/2]J and their reciprocal F1 offspring. Mice of these 42 lines were challenged with 6h of
46  sleep deprivation (SD) to evaluate the effects of insufficient sleep on sleep-wake behavior and
47  brain activity (electroencephalogram or EEG; Figure 1, Experiment 1) and, on gene

48  expression and metabolites (Figure 1, Experiment 2). For Experiment 1 we recorded the EEG
49  together with muscle tone (electromyogram or EMG) and locomotor activity (LMA)

50  continuously for 4 days. Based on the EEG/EMG signals we determined sleep-wake state

51  [wakefulness, rapid-eye movement (REM) sleep, and non-REM (NREM) sleep] as well as the
52  spectral composition of the EEG signal as end phenotypes. For Experiment 2 we quantified
53  mRNA levels in cerebral cortex and liver using illumina HiSeq 2500 RNA-sequencing and
54  performed a targeted metabolomics screen on blood using Biocrates p180 liquid

55  chromatography (LC-) and Flow injection analysis (FIA-) coupled with mass spectrometry
56  (MS). These transcriptome and metabolome data are regarded as intermediate phenotypes

57  linking genome information to the sleep-wake related end phenotypes.

58

59  The keystone of systems genetics is data integration. Accordingly, the scientific community
60  can benefit from facilited dataset sharing to integrate the results of their own experiment with

61 that of others. However, reliable methods for data integration are needed and require a broad
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62  range of expertise such as in mathematical and statistical models °, computational methods *°,
63  visualization strategies **, and deep understanding of complex phenotypes. Therefore, data

64  sharing should not be limited to the dataset per se but also to analytics in the form of analysis
65  workflows, code, interpretation of results, and meta-data *%. The concept of a Digital Research
66  Object (DRO) was proposed to group dataset and analytics into one united package **. Various
67  guidelines have been suggested to address the challenges of sharing such DRO with the goal
68  to improve and promote the human and computer knowledge sharing, like the FAIR

69  (Findable, Accessible, Interoperable, Reusable) principles proposed by FORCE 11 * or by the
70 DB2K (Big Data to Knowledge) framework. These guidelines concern biomedical workflow,
71  meta-data structures and computer infrastructures facilitating the reusability and

72 interoperability of digital resources *°. Although such guidelines are often described and

73 applied in the context of single data-type assays, they can be challenging to achieve for trans-
74  disciplinary research projects such as systems genetics, in which multiple data types,

75  computer programs, references and novel methodologies need to be combined °. Moreover,
76  applying these principles can also be discouraging because of the time required for new

77 working routines to become fully reproducible ¥’ and because only few biomedical journals
78  have standardized and explicit data-sharing *® or reproducibility *° policies. Nonetheless,

79  DROs are essential for scientific reliability °, and can save time if a dataset or methods

80  specific to a study need to be reused or improved by different users such as colleagues at other
81  institutes, new comers to the lab, or at long-term yourself.

82

83  We here complement our previous publication ? by improving the raw and processed data

84  availability. We describe in more details the different bioinformatics steps that were applied to
85  analyze this resource and improve the analytical pipeline reproducibility by generating R

86  reports and provide code. Finally, we assess the reproducibility of our bioinformatic pipeline
87  from the perspective of a new student in bioinformatics that recently joined the group, and the
88  robustness of the results by changing both the mouse reference genome and the RNA-seq

89  reads alignment to new standards.

90

91 Methods

92  These methods are an expanded version of the methods described in our related paper 2.
93  Appreciable portions are reproduced verbatim to deliver a complete description of the data

94  and analytics with the aim to enhance reproducibility.
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95  Experiment 1 and Experiment 2 (Figure 1) were approved by the veterinary authorities of the
96  state of Vaud, Switzerland (SCAV authorization #2534).
97

98 Animal, breeding, and housing conditions

99 34 BXD lines originating from the University of Tennessee Health Science Center (Memphis,
100 TN, United States of America) were selected for Experiment 1 and Experiment 2. These lines
101  were randomly chosen from the newly generated advanced recombinant inbred line (ARIL)
102 RwwiJ panel * although lines with documented poor breeding performance were not
103  considered. 4 additional BXD RI strains were chosen from the older TyJ panel for
104  reproducibility purposes and were obtained directly from the Jackson Laboratory (JAX, Bar
105  Harbor, Maine). The names used for some of the BXD lines have been modified over time to
106  reflect genetic proximity. Table 1 lists the BXD line names we used in our files alongside the
107  corresponding current JAX names and IDs. In our analyses, we discarded the BXD63/RwwJ
108 line for quality reasons (see Technical Validation) as well as the 4 older BXD strains that were
109  derived from a different DBA/2 sub-strains, i.e. DBA/2R] instead of DBA/2J for RwwJ lines
110 *% The methods below describe the remaining 33 BXD lines, F1 and parental strains.
111 Two breeding trios per BXD strain were purchased from a local facility (EPFL-SV, Lausanne,
112 Switzerland) and bred in-house until sufficient offspring was obtained. The parental strains
113 DBA/2J (D2), C57BL6/J (B6) and their reciprocal F1 offspring (B6D2F1 [BD-F1] and
114 D2B6F1 [DB-F1]) were bred and phenotyped alongside. Suitable (age and sex) offspring was
115  transferred to our sleep-recording facility, where they were singly housed, with food and
116  water available ad libitum, at a constant temperature of 25°C and under a 12 h light/12 h dark
117  cycle (LD12:12, fluorescent lights, intensity 6.6 cds/m?, with ZT0 and ZT12 designating light
118 and dark onset, respectively). Male mice aged 11-14 week at the time of experiment were
119  used for phenotyping, with a mean of 12 animals per BXD line among all experiments. Note
120 that 3 BXD lines had a lower replicate number (n), with respectively BXD79 (n = 6), BXD85
121  (n=5), and BXD101 (n = 4) because of poor breeding success. For the remaining 30 BXD
122 lines, replicates were distributed as follows: for EEG/behavioral phenotyping (Experiment 1
123 in Fig 1; mean = 6.2/line; 5 <n <7) and for molecular phenotyping (Experiment 2 in Fig 1;
124 mean = 6.8/line; 6 <n <9). Additionally, to control for the reproducibility of the outcome
125  variables over the experiment, parental lines were phenotyped twice—i.e., at the start (labeled
126  infiles as B61 and DB1) and end (labeled B62 and DB2) of the breeding and data-collecting
127  phase, which spanned 2 years (March 2012—December 2013). To summarize, distributed over

128 32 experimental cohorts, 227 individual mice were used for behavioral/EEG phenotyping

4
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129  (Experiment 1) and 263 mice for tissue collection for transcriptome and metabolome analyses
130  (Experiment 2), the latter being divided into sleep deprived (SD) and controls (“Ctr”; see

131  Study design section below). We randomized the lines across the experimental cohorts so that
132  biological replicates of 1 line were collected/recorded on more than 1 occasion while also
133 ensuring that an even number of mice per line was included for tissue collection so as to pair
134  SD and “Ctr” individuals within each cohort (for behavioral/EEG phenotyping, each mouse
135  serves as its own control).

136

137  Table 1: Names of BXD lines used in our files with the corresponding JAX name and ID. F1 lines (DB
138  and BD) were generated in house. BXD line namesin our files can also be found without ‘0’ i.e.

139  BXD50 instead of BXD050. Further note that the names we used followed an older nomenclature and
140  somenamestherefore differ fromthe current JAX names listed.

Namein files JAX Name JAXID
BXD005 BXD5/TyJ 000037
BXD029TL / BXD029t BXD29- TIr4"%/] 000029
BXD029 BXD29/Ty 010981
BXD032 BXD32/TyJ 000078
BXDO043 BXD43/Rww] 007093
BXD044 BXD44/RwwJ 007094
BXD045 BXD45/RwwJ 007096
BXD048 BXD48/Rww.J 007097
BXD049 BXD49/Rww] 007098
BXDO050 BXD50/Rww] 007099
BXDO051 BXD51/RwwJ] 007100
BXDO055 BXD55/Rww] 007103
BXDO056 BXD56/Rww 007104
BXDO061 BXD61/Rww 007106
BXDO063 BXD63/Rww] 007108
BXD064 BXD64/Rww.J 007109
BXD065 BXD65/Rww. 007110
BXD066 BXD66/Rww.J 007111
BXD067 BXD67/RwwJ 007112
BXDO070 BXD70/Rww] 007115
BXDO071 BXD71/RwwJ 007116
BXDO073 BXD73/Rww] 007117
BXDO075 BXD75/RwwJ 007119
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BXDO079 BXD79/RwwJ 007123
BXD081 BXD81/RwwJ 007125
BXD083 BXD83/RwwJ 007126
BXD084 BXD84/RwwJ 007127
BXD085 BXD85/RwwJ 007128
BXD087 BXD87/RwwJ 007130
BXD089 BXD89/RwwJ 007132
BXD090 BXD90/RwwJ 007133
BXD095 BXD95/RwwJ 007138
BXD096 BXD48a/RwwJ 007139
BXD097 BXD65a/RwwJ 007140
BXD098 BXD98/RwwJ 007141
BXD100 BXD100/RwwJ 007143
BXD101 BXD101/RwwJ 007144
BXD103 BXD73b/RwwJ 007146
C57BL6 / B61 / B62 C57BL/6J 000664
DBA2/DB1/DB2 DBA/2J 000671

DB/ DXB F1/DBA/2J x = =
C57BL6/J F1
BD/BXD F1/C57BL6/J x - -
DBA/2J F1

Study design:

The study consisted of 2 experiments, i.e., Experiments 1 and 2 (Figure 1). Animals of both
experiments were maintained under the same housing conditions. Animals in Experiment 1
underwent surgery and, after a >10 days recovery period, electroencephalography (EEG),
electromyography (EMG) and locomotor activity (LMA) were recorded continuously for a 4-
day period starting at ZTO. The first 2 days were considered Baseline (B1 and B2). The first 6
hours of Day 3 (ZT0-6), animals were sleep deprived (SD) in their home cage by “gentle
handling” referring to preventing sleep by changing litter, introducing paper tissue, present a
pipet near the animal or gently tapping the cage. Experimenters performing the SD rotated
every 1 or 2 hours for the SD duration (for more information, see %). The remaining 18 h of
Day 3 and the entire Day 4 were considered Recovery (R1 and R2).

Half of the animals included in Experiment 2 underwent SD alongside the animals of

Experiment 1. The other half was left undisturbed in another room (i.e., control or Ctr, also
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155  referred as Non Sleep Deprived or NSD). Both SD and “Ctr” mice of Experiment 2 were

156  killed at ZT6 (i.e., immediately after the end of the SD) for sampling of liver and cerebral

157  cortex tissue as well as trunk blood. All mice were left undisturbed for at least 2 days prior to
158 SD.

159

160 Experiment 1: EEG/EMG and L MA recording and signal pre-processing

161 EEG/EMG surgery was performed under deep anesthesia. IP injection of Xylazine/Ketamine
162  mixture (91/14.5 mg/kg, respectively) ensures a deep plane of anesthesia for the duration of
163  the surgery (i.e., around 30 min). Analgesia was provided the evening prior and the 3 day after
164  surgery with Dafalgan in the drinking water (200-300 mg/kg). Six holes were drilled into the
165  cranium, 4 for screws to fix the connector with Adhesive Resin Cement, 2 for electrodes. The
166  caudal electrode was placed over the hippocampal structure and the rostral electrode was

167  placed over the frontal cerebral cortex. Two gold-wire electrode were inserted into the neck
168  muscle for EMG recording (for details, see %%). Mice were allowed to recover for at least 10
169  days prior to baseline recordings. EEG and EMG signals were amplified, filtered, digitized,
170  and stored using EMBLA (Medcare Flaga, Thornton, CO, USA) hardware (A10 recorder) and
171  software (Somnologica). Digitalization of the signal was performed as followed: the analog to
172  digital conversion of the signal was performed at a rate of 2000 Hz, the signal was down

173 sampled at 200 Hz, high-pass filter at 0.0625 Hz was applied to reject DC signal and a notch
174  filter applied at 50 Hz for interfering signals filtering. Signal was then transformed by

175  Discrete Fourier Transform (DFT) to yield power spectra between 0 and 100 Hz with a 0.25
176  frequency resolution using a 4-seconds time resolution (called an epoch). EEG frequency bins
177  with artefacts of known (line artefacts between 45-55 Hz) and unknown (75-77 Hz) source
178  were removed from the average EEG spectra of all mice. Other specific 0.25 Hz bins

179  containing artefacts (notably the 8.0, 16.0 and 32.0 Hz bins) of unknown source, were

180  removed from individual mice based on the visual inspection of individual EEG spectra in
181  each of the three sleep-wake states (i.e. wakefulness, REM sleep and NREM sleep). Power
182  density in frequency bins deemed artefacted were estimated by linear interpolation. For

183  details, see Pascal scripts in (Data Citation 4, gitlab Systems_Genetics_of Sleep_Regulation).
184

185 LMA was recorded by passive infrared (PIR) sensors (Visonic, Tel Aviv, Israel) at 1 min

186  resolution for the duration of the 4-day experiment, using ClockLab (ActiMetrics, IL, USA).
187  Activity data were made available as .act files at Figshare (Data Citation 1: Figshare
188  LinkToCome).
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189

190  Offline, the sleep-wake states wakefulness, REM sleep, and NREM sleep were annotated on
191  consecutive 4-second epochs, based on the EEG and EMG pattern. (see Sleep-wake state
192  annotation section). EEG/EMG power spectra and sleep-wake states annotation were made
193  available as .smo files at (Data Citation 1: Figshare LinkToCome).

194

195  Experiment 2: Tissue collection and preparation

196  Mice were killed by decapitation after being anesthetized with isoflurane, and blood, cerebral
197  cortex, and liver were collected immediately. The whole procedure took no more than 5 min
198  per mouse. Blood was collected at the decapitation site into tubes containing 10 ml heparin (2
199  U/ul) and centrifuged at 4,000 rpm during 5 min at 4°C. Plasma was collected by pipetting,
200  flash-frozen in liquid nitrogen, and stored at —80°C until further use. Cortex and liver were
201  flash-frozen in liquid nitrogen immediately after dissection and were stored at —140°C until
202  further use.

203  For RNA extraction, frozen samples were homogenized for 45 seconds in 1 ml of QIAzol
204  Lysis Reagent (Qiagen; Hilden, Germany) in a gentleMACS M tube using the gentleMACS
205 Dissociator (Miltenyi Biotec; Bergisch Gladbach, Germany). Homogenates were stored at
206  —80°C until RNA extraction. Total RNA was isolated and purified from cortex using the

207  automated nucleic acid extraction system QIAcube (Qiagen; Hilden, Germany) with the

208  RNeasy Plus Universal Tissue mini kit (Qiagen; Hilden, Germany) and were treated with
209 DNAse. Total RNA from liver was isolated and purified manually using the Qiagen RNeasy
210  Plus mini kit (Qiagen; Hilden, Germany), which includes a step for effective elimination of
211  genomic DNA. RNA quantity, quality, and integrity were assessed utilizing the NanoDrop
212  ND-1000 spectrophotometer (Thermo scientific; Waltham, Massachusetts, USA) and the

213  Fragment Analyzer (Advanced Analytical). The 263 mice initially killed for tissue collection
214  yielded 222 cortex and 222 liver samples of good quality.

215  Equal amounts of RNA from biological replicates (3 samples per strain, tissue, and

216  experimental condition, except for BXD79, BXD85, and BXD101; see above under Animals,
217  breeding, and housing conditions) were pooled, yielding 156 samples for library preparation.
218 RNA-seq libraries were prepared from 500 ng of pooled RNA using the lllumina TruSeq

219  Stranded mRNA reagents (Illumina; San Diego, California, USA) on a Caliper Sciclone liquid
220  handling robot (PerkinElmer; Waltham, Massachusetts, USA). Libraries were sequenced on
221  the lllumina HiSeq 2500 using HiSeq SBS Kit v3 reagents, with cluster generation using the

222  lllumina HiSeq PE Cluster Kit v3 reagents. Fastq files were pre-processed using the lllumina

8
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Casava 1.82 pipeline and bad quality reads tagged with “Y’. A mean of 41 M 100 bp single-
end reads were obtained (29 M < n <63 M). Quality of sequences were evaluated using
FastQC software (version 0.10.1) and reports made available here (Data Citation 3, bxd.vital-
it.ch https://bxd.vital-it.ch/#/dataset/). Figure 2 (A, B, C and D) shows the Phred quality score

distribution per base among all samples reads for ‘Cortex Control’, ‘Cortex SD’, “Liver

Control’ and “Liver SD’ respectively. Fastq files were made available at NCBI Gene
Expression Omnibus (Data Citation 2: NCBI Gene Expression Omnibus GSE112352).
Targeted metabolomics analysis was performed using flow injection analysis (FIA) and liquid
chromatography/mass spectrometry (LC/MS) as described in ?**. To identify metabolites and
measure their concentrations, plasma samples were analyzed using the AbsolutelDQ p180
targeted metabolomics kit (Biocrates Life Sciences AG, Innsbruck, Austria) and a Waters
Xevo TQ-S mass spectrometer coupled to an Acquity UPLC liquid chromatography system
(Waters Corporation, Milford, MA, USA). The kit provided absolute concentrations for 188
endogenous compounds from 6 different classes, namely acyl carnitines, amino acids,
biogenic amines, hexoses, glycerophospholipids, and sphingolipids. Plasma samples were
prepared according to the manufacturer’s instructions. Sample order was randomized, and 3
levels of quality controls (QCs) were run on each 96-well plate. Data were normalized
between batches, using the results of quality control level 2 (QC2) repeats across the plate

(n = 4) and between plates (n = 4) using Biocrates METIDQ software (QC2 correction).
Metabolites below the lower limit of quantification or the limit of detection, as well as above
the upper limit of quantification, or with standards out of limits, were discarded from the
analysis %. Out of the 188 metabolites assayed, 124 passed these criteria across samples and
were used in subsequent analyses. No hexoses were present among the 124 metabolites. Out
of the 256 mice killed for tissue collection, 249 plasma samples were used for this analysis.
An average of 3.5 animals (3 <n <6) per line and experimental condition were used (except
for BXD79, BXD85, and BXD101 with respectively 2, 1, and 1 animal/condition used; see
above under Animals, breeding, and housing conditions). Note that in contrast to the RNA-seq
experiment, samples were not pooled but analyzed individually. Mean metabolite levels per
BXD lines were made available at bxd.vital-it.ch (Data Citation 3, bxd.vital-it.ch
https://bxd.vital-it.ch/#/dataset/), for details see intermediate files (Data Citation 5, figshare
https://figshare.com/s/51916157a22357755de8).

In the same plasma samples, we determined corticosterone levels using an enzyme

immunoassay (corticosterone EIA kit; Enzo Life Sciences, Lausanne, Switzerland) according

to the manufacturer’s instructions. All samples were diluted 40 times in the provided buffer,

9
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257  kepton ice during the manipulation, and tested in duplicate. BXD lines were spread over
258  multiple 96-well plates in an attempt to control for possible batch effects. In addition, a
259  “control” sample was prepared by pooling plasma from 5 C57BL6/J mice. Aliquots of this
260  control were measured along with each plate to assess plate-to-plate variability. The

261  concentration was calculated in pg/ml based on the average net optical density (at A = 405
262  nm) for each standard and sample.

263  Corticosterone level were made available on figshare (Data Citation 5, figshare

264  https://figshare.com/s/51916157a22357755de8)

265

266  Bioinformatics pipeline

267  To facilitate the interpretation of the complete bioinformatic workflow that was performed on
268  this dataset, we here describe first our general strategy to construct an analytics pipeline with
269  which we hope to improve reproducibility. We then describe the specific methods used to
270  analyze this dataset.

271  The analytics and input datasets were separated into 3 layers according to increasing level of
272  data abstraction (Figure 3). This hierarchical structure of the workflow was particularly useful
273  to identify steps downstream novel versions of a script or data (e.g. Figure 3, red) and

274 simplify workflow description. The first low-level layer contains the procedures needed to
275  reduce and transform the raw-data (i.e. RNA-seq reads, EEG/EMG signals) into an

276  exploitable signal such as sleep phenotypes, genes expression or mice genotypes by further
277  analytical steps. This layer is characterized by long and computationally intensive procedures
278  which required the expertise of different persons, each with their own working environment
279  and preferred informatics language.

280  The intermediate layer contains some established analyses that could be performed on the
281  data such as gene expression normalization followed by differential expression or

282  Quantitative Trait Locus (QTL) mapping. With the scripts of this layer we explored the effects
283  of sleep deprivation, genetic variations, as well as their interaction on EEG/behavioral

284  phenotypes and intermediate phenotypes.

285  The high-level layer contains the novel integrative methods that we developed to prioritize
286  genes driving sleep regulation and to visually represent the meta-dimensional multi-omics
287  networks underlying sleep phenotypes.

288

10
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289  Code availability on Git:
290  The scripts used for analytics were made available on gitlab (Data Citation 4, gitlab

291  Systems_Genetics_of Sleep Regulation).The master branch contains the scripts used for our

292  publication and mm9 analysis. A second branch was created for analysis performed on a
293  mm10 mouse references (see Technical Validation). The intermediate files required to run
294  these scripts were made available here: (Data Citation 5, figshare

295  hitps://figshare.com/s/51916157a22357755de8). Finally, a documentation file was

296  generated to understand the hierarchical relationship between the scripts and datasets in a

297  form of a dynamic html document (see Workflow documentation).

298

299  Standard and non-standard semantics

300  To improve the reproducibility and reusability of our workflow, we tried to prioritize standard
301  semantics and well-established pipelines when it was applicable, such as the RNA-seq

302  processing by STAR and htseg-count %. The use of curated symbols for genes nomenclature
303 by RefSeq allowed a better semantic interoperability with other resources such as Uniprot
304 protein ID using solutions like biomaRt ?°. We provided some of the references files used in
305 these scripts, like the RefSeq .gtf reference file. These annotations can be updated and

306  possibly change the gene quantification with updated version or different genome reference
307  (see References_Files in Data Citation 5, figshare

308 https://figshare.com/s/51916157a22357755de8).

309  However, some steps could not be performed using standards. The EEG/behavioral

310  phenotyping procedure could not be performed by any standard computational workflow or
311 common semantics as none exist. The nomenclature that was chosen in this case to generate
312  unique phenotypic ID was a combination of the phenotype observed (e.g. EEG power during
313 NREM sleep) and the features observed in this phenotype (e.g. delta band 1-4 Hz). These
314  phenotypes were also present as file name and column name in our dataset (Data Citation 5,
315  figshare https://figshare.com/s/51916157a22357755de8).

316

317 Favor R and Rmarkdown reportsfor reproducible results

318  Once the data processed within the low-level layer, the effect of sleep deprivation, genetics
319 and their interaction were measured using different statistical models and computational

320  methods. We chose to prioritize the programming language R as it was the best suited tool for
321  these statistical analyses and for the generation of figures. Beside the advantages of a license-

322  free and portable language, R was already recommended as main tool for systems genetics
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323 analysis ?’. Many available packages were particularly adapted for the systems genetics

324 design, involving phenotype-genotype association (r/qtl), network analysis (WGCNA, SANTA,
325 igraph), differential expression (EdgeR, DESeq, limma), bayesian network learning (bnlearn),
326  visualization (ggplot2, grid), enrichment (topGO, topAnat) and parallel computing (paralléel).
327  Only a few analyses were performed using other softwares, principally for efficiency reasons
328 in cis-/trans-eQTL analysis where the number of models to test was quite large 2*?°. R is one
329  of the flagships of open science and reproducibility *° with a reviewable source code and the
330  possibility of generating reports known as ‘Rmarkdown’ with 2 packages: knitr ** and

331  rmarkdown *. This report format contains combination of code, figures, and comments within

332  asingle markdown document that can be easily converted into pdf or html format.

333 Rmarkdown scripts were made available on (Data Citation 4, gitlab

334  Systems_Genetics_of Sleep_Regulation) and the reports in the form of .html document were

335 made available with data on (Data Citation 5, figshare
336  https://figshare.com/s/51916157a22357755de8). To avoid the need to copy/paste some

337  functions shared between Rmarkdowns but still display them in our reports, we used the

338  readLines() function within Rmarkdown chunks. Finally, the use of the sessioninfo() function
339 atthe end of the document allowed to keep track of the packages version and the environment
340  variable used. Some of these Rmarkdown reports were generated on a remote cluster instead
341  of the more traditional Rstudio environment, for more information on how to generate these
342  Rmarkdown, see the Usage Notes.

343

344  Workflow documentation

345  This systems genetics approach was an integrative project that implicated multiple

346  collaborators, that each contributed to the final results, with their own working habit related to
347  their area of expertise. For better reproducibility of the generated files, a critical goal was to
348  keep track of the different files created, associated documents or analytical steps that were
349  produced. For example, EEG/behavioral phenotypes could be found within many files and
350 reports, from low-level to high-level layers, but their nomenclatures were still hard to interpret
351 as mentioned above, for those not directly related to this project. A newcomer in this project
352  should be able to easily recover the metadata document containing all the physiological

353  phenotypes information (i.e. understand that a metadata document was created and where to
354  find it or who to ask for it) and understand which scripts were used to produce these

355  phenotypes. To establish what was exactly performed, we generated a documentation file

356  containing the essential information and relationships between all the files, scripts,
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357  Rmarkdown, small workflow or database annotation (referred here simply as

358  Reference_Files) used in this project. This document describes the inputs/outputs needed and
359  where to locate the information distributed among different person or different directories on
360 adigital infrastructure as presented in figure 3 but with more details to improve the

361  reproducibility of the DRO *,

362  The markdown format was kept as it was easy to write/read by a human or to generate via a
363  python script. This file was formatted into a simplified RDF-like triples structure, were each
364  files-objects (subject) were linked to information (objects) by a property. This format allowed
365  to use the following properties to describe each file-objects we had: The file-object name or
366 identification, a brief description (i.e. about the software used or the data content), the file-
367  object version, the input(s)/output(s), the associated documents, hyperlink(s) to remote

368  database or citation, the location of the file-object on the project directory or archiving

369  system, and the author(s) to contact for questions. These associations could be viewed as a
370  graph to display the important files and pipelines used. This document was useful to

371 understand how exactly the different files were generated, and to recover the scripts and

372  input/ouput that were used, even after prolonged periods and to use them again, which permit
373  for example to reproduce data with novel or updated annotation files. Furthermore, if an error
374  was detected within a script, the results and figures downstream that needed to be recomputed

375  could be easily found. This documentation file was made available on gitlab (Data Citation 4,

376  gitlab Systems_Genetics_of Sleep_Regulation).
377

378 DataMining Website

379  The DRO built for this systems genetics resource is constituted of the following collection:
380 raw-data, processed data, Rmarkdown reports, results & interpretation, workflow, scripts, and
381  metadata. To improve the reproducibility of our integrative visualization method (see

382  HivePlots below), we provided some data-mining tools, a server to store some intermediate

383  results, and a web application ** (Data Citation 3, bxd.vital-it.ch https:/bxd.vital-

384 it.ch/#/dataset/). The home page of the web application displays the information for the

385 NREM sleep gain during the 24 hours (in four 6-hour intervals) after sleep deprivation. Three
386  data-mining tutorials were described on the website the web interface to: (i) mine a single
387  phenotype, (ii) search for a gene, and (iii) compare hiveplots. Currently, no centralized

388  repository exists containing all types of phenotypic data that were extracted within this

389  project. This web-interface can, however be viewed as a hub for this DRO that became

390 findable and accessible with a web-browser. With this web resource, we provided an advanced
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391 interactive interface for EEG/behavioral end-phenotypes and their associated intermediate
392  phenotypes (variants, metabolites, gene expression). Compared to other web-resources for
393  systems genetics like GeneNetwork where the principal focus is QTL mining, this interface
394  provides an integrative view of this one dataset, with also data files and link to code to

395  reproduce some of our analyses in the form of Rmarkdown, like the prioritization strategy.
396

397 Low-Layer Analyses:

398

399  Seep-wake state annotation

400  To assist the annotation of this extensive dataset (around 20 million 4 s epochs), we developed
401  asemiautomated scoring system. The 4-day recordings of 43 mice (19% of all recordings),
402  representing animals from 12 strains, were fully annotated visually by an expert according to
403  established criteria . Due to large between-line variability in EEG signals, even after

404  normalization, a partial overlap of the different sleep-wake states remained, as evidenced by
405 the absolute position of the center of each state cluster, which differed even among individuals
406  of the same line (precluding the use of 1 “reference” mouse), even per ling, to reliably

407  annotate sleep-wake states for the others. To overcome this problem, 1 day out of 4 (i.e., Day
408 3 or R1, which includes the SD) was visually annotated for each mouse. These 4 seconds

409  sleep-wake scores were used to train the semiautomatic scoring algorithm, which took as

410  input 82 numerical variables derived from the analyses of EEG and EMG signals using

411  frequency- (discrete Fourier transform [DFT]) and time-domain analyses performed at 1

412  second resolution. We then used these data to train a series of support vector machines

413 (SVMs)® specifically tailored for each mouse, using combinations of the 5 or 6 most

414  informative variables out of the 82 input variables. The best-performing SVMs for a given
415  mouse were then selected based on the upper-quartile performance for global classification
416  accuracy and sensitivity for REM sleep (the sleep-wake state with the lowest prevalence) and
417  used to predict sleep-wake states in the remaining 3 days of the recording. The predictions for
418 4 consecutive 1-s epochs were converted into 1 four-second epoch

419 . Next, the results of the distinct SVMs were collapsed into a consensus prediction, using a
420  majority vote. In case of ties, epochs were annotated according to the consensus prediction of
421  their neighboring epochs. To prevent overfitting and assess the expected performance of the
422  predictor, only 50% of the R1 manually annotated data from each mouse were used for

423  training. The classification performance was assessed by comparing the automatic and visual
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424 scoring of the fully manually annotated 4 d recordings of 43 mice. The global accuracy was
425  computed using a confusion matrix *® of the completely predicted days (B1, B2, and R2). For
426  all subsequent analyses, the visually annotated Day 3 (R1) recording and the algorithmically
427  annotated days (B1, B2, and R2) were used for all mice, including those for which these days
428  were visually annotated. The resulting sleep-wake state annotation together with EEG power
429  spectra and EMG levels were saved as binary files (.smo) with their corresponding metadata
430 files (.hdr) and deposited at FigShare (Data Citation 1: Figshare https://...). For more

431 information on .smo and .hdr files, see Usage Notes.

432

433 EEG/Behavioral Phenotyping

434 We quantified 341 phenotypes based on the sleep-wake states, LMA, and the spectral

435  composition of the EEG, constituting 3 broad phenotypic categories. For the first phenotypic
436  catergory (“State”), the 96 hours sleep-wake sequence of each animal was used to directly
437  assess traits in 3 “state”-related phenotypic subcategories: (i) duration (e.g., time spent in
438  wakefulness, NREM sleep, and REM sleep, both absolute and relative to each other, such as
439 the ratio of time spent in REM versus NREM sleep); (ii) aspects of their distribution over the
440 24 hcycle (e.g., time course of hourly values, midpoint of the 12 h interval with highest time
441  spent awake, and differences between the light and dark periods); and (iii) sleep-wake

442  architecture (e.g., number and duration of sleep-wake bouts, sleep fragmentation, and sleep-
443  wake state transition probabilities). Similarly, for the second phenotypic category (“LMA”)
444 overall activity counts per day, as well as per unit of time spent awake, and the distribution of
445  activity over the 24 h cycle was extracted from the LMA data. As final phenotypic category
446  (“EEG”), EEG signals of the 4 different sleep-wake states (wakefulness, NREM sleep, REM
447  sleep, and theta-dominated waking [TDW], see below) were quantified within the 4-s epochs
448  matching the sleep-wake states using DFT (0.25 Hz resolution, range 0.75-90 Hz, window
449  function Hamming). Signal power was calculated in discrete EEG frequency bands—i.e.,
450  delta (1.0-4.25 Hz, §), slow delta (1.0-2.25 Hz; 81), fast delta (2.5-4.25; 82), theta (5.0-9.0
451  Hz; 0), sigma (11-16 Hz; o), beta (18-30 Hz; ), slow gamma (32-55 Hz; y1), and fast

452  gamma (55-80 Hz; y2). Power in each frequency band was referenced to total EEG power
453  over all frequencies (0.75-90 Hz) and all sleep-wake states in days B1 and B2 to account for
454 interindividual variability in absolute power. The contribution of each sleep-wake state to this
455  reference was weighted such that, e.g., animals spending more time in NREM sleep (during
456  which total EEG power is higher) do not have a higher reference as a result *’. Moreover, the

457  frequency of dominant EEG rhythms was extracted as phenotypes, specifically that of the
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458  theta rhythm characteristic of REM sleep and TDW. The latter state, a substate of

459  wakefulness, defined by the prevalence of theta activity (6.0-10.0 Hz) in the EEG during
460  waking ***, was quantified according to the algorithm described in “°. We assessed the time
461  spent in this state, the fraction of total wakefulness it represents, and its distribution over 24 h.
462  Finally, discrete, paroxysmal events were counted, such as sporadic spontaneous seizures and
463  neocortical spindling, which are known features of D2 mice **, which we also found in some
464  BXD lines.

465  All phenotypes were quantified in baseline and recovery separately, and the effect of SD on
466  all variables was computed as recovery versus baseline differences or ratios. The recovery-to-
467  baseline contrasts are the focus of this paper. Obviously, some of the 341 phenotypes are

468  strongly correlated (e.g., the time spent awake and asleep in a given recording interval),

469  resulting in identical QTLs (albeit with different association strengths). Pascal source code
470  used for EEG/behavioral phenotyping was made available on gitlab (Data Citation 4, gitlab

471  Systems Genetics_of Sleep Regulation). Processed phenotypes and descriptions were made
472  available at bxd.vital-it.ch (Data Citation 3, bxd.vital-it.ch https://bxd.vital-it.ch/#/dataset/).
473

474  Read alignment

475  For gene expression quantification, we used a standard pipeline that was already applied in a
476  previous study °. Bad quality reads tagged by Casava 1.82 were filtered from fastq files and
477  reads were mapped to MGSCv37/mm9 using the STAR splice aligner (v 2.4.0g) with the
478  2passpipeline *.

479

480 Genotyping

481  The RNA-seq dataset was also used to complement the publicly available GeneNetwork

482  genetic map (www.genenetwork.org), thus increasing its resolution. RNA-seq variant calling
483  was performed using the Genome Analysis ToolKit (GATK) from the Broad Institute, using
484  the recommended workflow for RNA-seq data **. To improve coverage depth, 2 additional
485 RNA-seq datasets from other projects using the same BXD lines were added °. In total, 6
486  BXD datasets from 4 different tissues (cortex, hypothalamus, brainstem, and liver) were used.
487 A hard filtering procedure was applied as suggested by the GATK pipeline “**. Furthermore,
488  genotypes with more than 10% missing information, low quality (<5,000), and redundant
489 information were removed. GeneNetwork genotypes, which were discrepant with our RNA-

490  seq experiment, were tagged as “unknown” (mean of 1% of the GeneNetwork
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491  genotypes/strain [0.05% <n< 8%]). Finally, GeneNetwork and our RNA-seq genotypes were
492  merged into a unique set of around 11,000 genotypes, which was used for all subsequent
493  analyses. This set of genotypes was already used successfully in a previous study of BXD
494 lines ® and is available through our “Swiss-BXD” web interface (Data Citation 3, bxd.vital-
495 it.ch https://bxd.vital-it.ch/#/dataset/).

496

497  Protein damage prediction

498  Variants detected by our RNA-seq variant calling were annotated using Annovar “® with the
499  RefSeq annotation dataset. Nonsynonymous variations were further investigated for protein
500 disruption using Polyphen-2 version 2.2.2 *’, which was adapted for use in the mouse

501 according to recommended configuration. Variant annotation file and polyphen2 scores were
502  made available here (Data Citation 5, figshare

503 https://figshare.com/s/51916157a22357755de8).

504

505  Gene expression quantification:

506  Count data was generated using htseg-count from the HTseq package using parameters

507  “stranded = reverse” and “mode = union” *®. Gene boundaries were extracted from the

508 mm9/refseq/reflat dataset of the UCSC table browser. Raw counts were made available here
509 (Data Citation 5, figshare https://figshare.com/s/51916157a22357755de8).

510

511 Intermediate-Layer Analyses:

512  Gene expression normalization:

513  EdgeR was then used to normalize read counts by library size. Genes with with low

514  expression value were excluded from the analysis, and the raw read counts were normalized
515  using the TMM normalization “*’ and converted to log counts per million (CPM). R. Although
516  for both tissues, the RNA-seq samples passed all quality thresholds, and among-strain

517  variability was small, more reads were mapped in cortex than in liver, and we observed a
518 somewhat higher coefficient of variation in the raw gene read count in liver than in cortex.
519  Genes expression as CPM or log2 CPM were made available here: (Data Citation 5, figshare
520 https://figshare.com/s/51916157a22357755de8).

521
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522  Differential expression

523  To assess the gene differential expression between the sleep-deprived and control conditions,
524  we used the R package limma *° with the voom weighting function followed by the limma
525  empirical Bayes method *'. Differential expression tables were made available here: (Data
526  Citation 5, figshare https://figshare.com/s/51916157a22357755de8).

527

528  QTL mapping

529  The R package qtl/r 2 was used for interval mapping of behavioral/EEG phenotypes

530  (phQTLs) and metabolites (mQTLSs). Pseudomarkers were imputed every cM, and genome-
531  wide associations were calculated using the Expected-Maximization (EM) algorithm. p-values
532  were corrected for FDR using permutation tests with 1,000 random shuffles. The significance
533  threshold was set to 0.05 FDR, a suggestive threshold to 0.63 FDR, and a highly suggestive
534  threshold to 0.10 FDR according to °**. QTL boundaries were determined using a 1.5 LOD
535  support interval. To preserve sensitivity in QTL detection, we did not apply further p-value
536  correction for the many phenotypes tested. Effect size of single QTLs was estimated using 2
537  methods. Method 1 does not consider eventual other QTLs present and computes effect size
538 according to 1 — 107(=(2/n)*LOD). Method 2 does consider multi-QTL effects and computes
539 effect size by each contributing QTL by calculating first the full, additive model for all QTLs
540 identified and, subsequently, estimating the effects of each contributing QTL by computing
541  the variance lost when removing that QTL from the full model (“drop-one-term” analysis).
542  For Method 2, the additive effect of multiple suggestive, highly suggestive, and significant
543  QTLs was calculated using the fitqgtl function of the qtl/r package >*. With this method, the
544  sum of single QTL effect estimation can be lower than the full model because of association
545  between genotypes. In the Results section, Method 1 was used to estimate effect size, unless
546  specified otherwise. It is important to note that the effect size estimated for a QTL represents
547  the variance explained of the genetic portion of the variance (between-strain variability)

548 quantified as heritability and not of the total variance observed for a given phenotype (i.e.,
549  within- plus between-strain variability).

550  For detection of eQTLs, cis-eQTLs were mapped using FastQTL % within a 2 Mb window for
551  which adjusted p-values were computed with 1,000 permutations and beta distribution fitting.
552  The R package qvalue > was then used for multiple-testing correction as proposed by %. Only
553  the g-values are reported for each cis-eQTL in the text. Trans-eQTL detection was performed
554  using a modified version of FastEpistasis %, on several million associations (approximately

555 15,000 genes x 11,000 markers), applying a global, hard p-value threshold of 1E-4.
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556  List of ph-QTLs, cis-eQTL, trans-eQTL and m-QTLs were made available here: (Data
557  Citation 5, figshare https://figshare.com/s/51916157a22357755de8).
558

559  High-layer Analyses:

560  Hiveplot visualization

561  Hiveplots were constructed with the R package HiveR>® for each phenotype. Gene expression
562  and metabolite levels represented in the hiveplots come from either the “Ctr” (control) or SD
563  molecular datasets according to the phenotype represented in the hiveplot; i.e., the “Ctr”

564  dataset is represented for phenotypes related to the baseline (“bsl”) condition, while the SD
565  dataset is shown for phenotypes related to recovery (“rec” and “rec/bsl”). For a given

566  hiveplot, only those genes and metabolites were included (depicted as nodes on the axes) for
567  which the Pearson correlation coefficient between the phenotype concerned and the molecule
568  passed a data-driven threshold set to the top 0.5% of all absolute correlations between all

569  phenotypes on the one hand and all molecular (gene expression and metabolites) on the other.
570  This threshold was calculated separately for “Bsl” phenotypes and for “Rec” and “Rec/Bsl”
571  phenotypes and amounted to absolute correlation thresholds of 0.510 and 0.485, respectively.
572  The latter was used for the recovery phenotypes. Associations between gene expressions and
573  metabolites represented by the edges in the hiveplot were filtered using quantile thresholds
574  (top 0.05% gene—gene associations, top 0.5% gene—metabolite associations). We corrected for
575  cis-eQTL confounding effects by computing partial correlations between all possible pairs of
576  genes. Hiveplots figures and Rmarkdowns reports were made available here (Data Citation 5,
577  figshare hitps://figshare.com/s/51916157a22357755de8).

578

579  Candidate-gene prioritization strategy

580 In order to prioritize genes in identified QTL regions, we chose to combine the results of the
581  following analyses: (i) QTL mapping (phQTL or mQTL), (ii) correlation analysis, (iii)

582  expression QTL (eQTL), (iv) protein damaging—variation prediction, and (v) DE. Each result
583  was transformed into an “analysis score” using a min/max normalization, in which the

584  contribution of extreme values was reduced by a winsorization of the results. These analysis
585  scores were first associated with each gene (see below) and then integrated into a single

586  "integrated score™ computed separately for each tissue, yielding 1 integrated score in cortex
587 and 1in liver. The correlation analysis score, eQTL score, DE score, and protein damaging—

588 variation score are already associated to genes, and these values were therefore attributed to
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589  the corresponding gene. To associate a gene with the ph-/m-QTL analysis score (which is

590 associated to markers), we used the central position of the gene to infer the associated ph-/m-
591  QTL analysis score at that position. In case of a cis-eQTL linked to a gene or a damaging

592  variation within the gene, we used the position of the associated marker instead. To emphasize
593  diversity and reduce analysis score information redundancy, we weighted each analysis score
594  using the Henikoff algorithm. The individual scores were discretized before using the

595  Henikoff algorithm, which was applied on all the genes within the ph-/mQTL region

596  associated with each phenotype. The integrated score was calculated separately for cortex and
597  liver. We performed a 10,000-permutation procedure to compute an FDR for the integrated
598  scores. For each permutation procedure, all 5 analysis scores were permutated, and a novel
599 integrated score was computed again. The maximal integrated score for each permutation

600  procedure was kept, and a significance threshold was set at quantile 95. Applying the

601  Henikoff weighting improved the sensitivity of the gene prioritization. E.g., among the 91
602 behavioral/EEG phenotypes quantified with 1 or more suggestive/significant QTL after SD,
603 40 had at least 1 gene significantly prioritized with Henikoff weighting, against 32 without.
604  Gene prioritization figures and Rmarkdown reports were made available here (Data Citation
605 5, figshare https://figshare.com/s/51916157a22357755de8)

606

607 Reproducibility of the pipeline

608  Technical reproducibility of the pipeline

609  To assess the reproducibility of our analytical pipeline, we asked a bioinformatician that was
610 not involved in the data collection and analysis to reanalyze some of the results. A relatively
611  short computational time as well as importance in the published results were taken as

612  selection criteria of analyses to be replicated. The TMM normalisation of RNA-seq counts,
613  differential gene expression, cis-eQTL detection, and the ph-/m-QTL mapping for 4 sleep
614  phenotypes (slow delta power gain after SD, fast delta power after SD, theta peak frequency
615  shift after SD and NREM sleep gain in the dark after SD) and 2 metabolites

616  (Phosphatidylcholine ae C38:2 and alpha amino-adipic acid) used as main examples in our
617  previous publication were all re-analyzed. Finally, gene prioritization and hiveplot

618  visualization of these 4 examples were replicated. Originally, ties in the nodes ranking

619  function on the hiveplots axis was solved using the “random” method, but this function was
620 modified in the hiveplot code and set as “first” to remain deterministic (see Technical

621  Validation for results).
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622

623  Reanalysiswith mm10

624  To quantify the effect of new standards and robustness of our end-results and interpretation
625  we changed some analyses within our low layer. The mm10 genome assembly was set as our
626  new reference and the gene expression was reanalysed from the raw fastq files with the

> that use kallisto pseudo-alignement *°. The gene positions

627  BioJupies reproducible pipeline
628  were retrieved from the headers of the ENSEMBL fasta file used by BioJupies

629  (Mus_musculus.GRCm38.cdna.all.fa.gz). Genotypes were downloaded from GeneNetwork
630 database and our annovar/polyphen2 variations positions based on mm9 were adapted to
631  mm10 using CrossMap version 0.2.4 ®°. The analyses performed to assess the technical

632  reproducibility of our pipeline (see above) were finally replicated using these new files. (see
633  Technical Validation for results).

634

635 Data Records

636 EEG/EMG power spectra and locomotor activity files were submitted to figshare Data

637  Citation 1: Figshare LinkWithSubmission). Raw data of RNA-sequencing were submitted to
638  Gene Expression Omnibus (Data Citation 2: NCBI Gene Expression Omnibus GSE112352).
639  Processed phenotypes files as gene expression, metabolites level and mean EEG/behavioral
640  phenotypes per lines, as well as phenotypes descriptions, were submitted to our data-mining
641  web-site (Data Citation 3, bxd.vital-it.ch https://bxd.vital-it.ch/#/) on the ‘Downloads’ panel.
642  Scripts and code were submitted to gitlab Data Citation 4, gitlab

643  Systems_Genetics of Sleep Regulation). Intermediate files required to run these scripts were
644  submitted to figshare (Data Citation 5, figshare

645  https://figshare.com/s/51916157a22357755de8). BXD genotypes are available on

646  GeneNetwork (Data Citation 6, GeneNetwork, GN600).

647

648 Technical Validation

649  Compare genotype RNA-seq vs GeneNetwor k

650  To verify the genetic background of each mice we phenotyped, we analyzed the

651  correspondence between GeneNetwork genotypes and RNA-seq variants detected by GATK.
652  For the 3811 GeneNetwork genotypes, 1289 could be recalled in our RNA-seq variant calling
653  pipeline. Figure 4 shows the similarity proportion between RNA-seq variants and

654  GeneNetwork genotypes, for each pair of BXD lines. Our BXD63 was more similar with the
21
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655  GeneNetwork BXD67 than with the BXD63, probably due to mislabeling. We therefore chose
656  to exclude this line. The matrix also shows the genetic similarity between BXD73 and

657 BXD103 (now renamed as BXD73b), between BXD48 and BXD96 (now BXD48a) and

658  between BXD65 and BXD97 (now BXD65a), which confirmed the renaming of these BXD
659 lines on GeneNetwork.

660 Reproducibility of the pipeline

661  Technical reproducibility of the pipeline

662  To assess the technical reproducibility of the pipeline, a bioinformatics student (NG) new to
663  the project reproduced chosen steps of the bioinformatic pipeline. The results (Figure 5, upper
664  part) were consistent with previous analyses (PLOS paper figures: 2C, 4C left, 7D, and 7C
665  bottom). The robustness of the pipeline was verified because the same conclusions could be
666  drawn. For examples, the same 3 genes showed the largest differential expression after SD in
667  the cortex (Arc, Plind, and Egr2 in Figure 5B). Moreover, the Acot11 gene was prioritized by
668  gene prioritization (Figure 5D&E). Nevertheless, the numbers of significant genes of cis

669  eQTL showed variations compared to previous analysis {Diessler, 2018 #495} due to use of
670  significance threshold for visualization. For example, the number of genes with significant
671  QTL unique to Cortex SD changed from 870 (PLOS paper Figure 2C) to 872 (Figure 5A).
672  The genes are considered as significant if their FDR-adjusted p-value is below or equal to
673  0.05, which is obtained by estimating the B-distribution fitting of random permutations tests.
674  Changing the fastqtl version (version 1.165 to version 2.184) seems to change the pseudo-
675 random number generation, even when using the concept of fixed seed. Consequently, the
676  number of genes considered as significant varies because their FDR-adjusted p-value passes
677  just above or below the threshold (FDR in the range of 0.04864 to 0.05054). This confirms
678  that looking at the order of magnitude is important, though the use of significance threshold is
679  convenient.

680

681  Moreover, the reanalysis process helped to improve the code documentation by explicitly

682  writing project-related knowledge, such as common abbreviations. Having another

683  perspective on the code also allowed to improve its structure. Indeed, a retrospective overview
684  helped improve the organisation of files, which was more difficult to do within the

685  implementation of the project because the code was incrementally created and adapted. The
686  process allowed to catch and correct minor mistakes or make improvements improved

687  readability and consistency. For example, it was highlighted that the ranking function used in
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hiveplot to order nodes in the axes was using the “random” argument for differentiating ties.
As a key concept of the hiveplots was to be fully reproducible in the sense of “perpetual

uniformity” >

, We changed the ties.method parameter to “first” so that the same input always
gives the same result, without having to fix a seed for the pseudo-random generation. Another
example was the ranking of the x-axis in the gene DE volcano plot and the colouring that
were based on log-odds values (B statistic according to in limma R package) instead of FDR-
adjusted p-values. However, this reproducibility ‘experiment’ was internal to the group, which
facilitate communication such as which steps to focus on and whether to run them locally or
in a high-performance computing (HPC) structure. An assessment of the computational
requirements for each step, such as computing time, memory, software, and libraries used may

be interesting to provide to facilitate external reproducibility.

Reanalysis with mm10

To assess the influence of the reference genome used in the analyses, we reproduced selected
parts of bioinformatic pipeline using the updated version (mmZ10 instead of mm9). The results
(Figure 5, lower part, table 2 and 3) were consistent with previous analyses but presented also
some substantial variations. The cis-eQTL detection revealed differences in the number of
significant associations found, as showed in Table 2. These differences could be mainly
explained by small g-value variation around the significant threshold. Nevertheless, around
5% of cis-eQTLs did not reproduce even at a more permissive significant threshold (0.1
FDR), which affected some of our end results. For example, Wkn was no longer prioritized for
the gain of slow EEG delta power (81) after SD compared to previous results on mmo9.
Although the cis-eQTL for Wkn was present in both assemblies for the ‘Cortex Control’
samples, it disappeared for ‘Cortex SD’ samples using mm10. A number of factors could have
contributed to this discrepancy among which i) the variations between mm9 and mm210 could
change the mappability of some transcripts, although this did not seem to be the case for the
W n sequence, ii) pseudo-alignment (Kallisto) was used instead of alignment (STAR), which
may have influenced the quantification, iii) bad quality reads were filtered with our STAR
pipeline according to Casava 1.82 but not with Kallisto, and iv) variant calling on RNA-seq
data to add markers was not done for mm10, so only markers from GeneNetwork were used.
Specifically to the latter factor, the marker closest to Wrn gene in mm9 merged genotypes
(rs51740715) is not present in mm10. The change in the number of genetic markers could

have therefore influenced the cis-eQTL detection, which is an important in the gene
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prioritization that resulted in the identification of Wkn as candidate underlying the EEG delta

power (61) trait under mm9.

Liver NSD Liver SD Cortex NSD Cortex SD
Assembly mm9 | mm10 | mm9 | mm10 | mm9 | mm10 | mm9 | mml10
Total genes 14103 | 12647 | 14103 | 12647 | 14889 | 15734 | 14889 | 15734
Unique genes 2405 | 949 | 2405 | 949 | 1043 | 1888 | 1043 | 1888
Genes with significant cis-eQTL 3155 | 3092 | 2654 | 2695 | 4522 | 4192 | 4732 | 4542
Proportion of genes with 022 | 024 | 019 021 | 030 | 027 032 | 0.29
significant cis-eQTL
Genes with significant cis-eQTL
overlapping 2255 1911 3204 3483
Genes with not significant
cis-eQTL overlapping 8375 8857 9062 8801
Genes with significant cis-eQTL
not overlapping 900 837 743 784 | 1318 | 988 | 1249 | 1059
Genes with significant cis-eQTL
almost overlapping 2995 | 2898 | 2535 | 2505 | 4201 | 4019 | 4441 | 4350

Table 2: Comparison of cis-eQTL summary statistics in mm9 and mm10 reanalyses. *Unique’ is
defined as specific to an assembly (mm9 or mm10). Sgnificance is defined as a g-value below or equal
to 0.05. ‘Overlapping’ is defined as common between mm9 and mm10 reanalyses. * Almost
overlapping’ is defined as uncommon between mm9 and mmZ10 that would be common if a threshold of

0.1 was used instead of 0.05.

Liver Cortex
mm9 mm210 mm9 mm210
Total genes 12539 13264 14754 16057
DE genes 7573 8754 11534 11980
Proportion of DE genes 0.6040 0.6600 0.7818 0.7461
Suggestive DE genes 8253 9392 12069 12580
Eagzzgt'i‘\’ll (E;E genes 0.6582 0.7081 0.8180 0.7835

Table 3: Comparison of gene DE in mm9 and mm10 reanalyses. Suggestive is defined as a g-value

below or equal to 0.1.

Usage Notes

SMO files

Binary .smo files were structured as follows: Each file contains a 4-day recording or precisely

86’400 consecutive 4s epochs. Each 4s epoch contains the following information: one byte

character and 404 single precision floating-points, which represent, respectively: sleep-wake

state of the 4s epoch as a character (wake = ‘w’, NREM sleep = ‘n’, REM sleep = ‘r’, wake
w/ EEG artifact = *1’, NREM sleep w/ EEG artifact = ‘2°, REM sleep w/ EEG artifact = *3’,
wake w/ spindle-like EEG activity = ‘4’, NREM sleep w/ spindle-like EEG activity = ‘5’,
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741  REM sleep w/ spindle-like EEG activity = ‘6°, Paroxysmal EEG activity in wake = “7’,

742  Paroxysmal EEG activity in NREM sleep = “8’, Paroxysmal EEG activity in REM sleep = ‘9’
743 ), EEG power density from the full DFT spectrum of the 4s epoch from 0.00 Hz to 100.00 Hz
744 (401 values at 0.25-Hz resolution), the EEG variance, the EMG variance, and temperature.
745  Temperature was not measured and was set to 0.0.

746

747 HDR files

748  Text .hdr files are generated alongside their corresponding .smo file and contain among other
749  information, the mouse ID (Patient) and recording date.

750

751  Rmarkdown scripts

752 Some of the Rmarkdown scripts were created for a remote cluster environment on a CentOS
753  distribution which required the use of a second script that generated the document with the
754 rmarkdown::render () function and pass the expected function arguments. Therefore some
755  functions that use the parallel package in R are only executable on a linux environment (i.e.
756 mclapply() ). These functions can be modified with the doSNOWR library to be applicable on
757  a windows environment. The author can set many option in the YAML (Yet Another Markup
758  Language) header to: create dynamic and readable table that contains multiple rows,

759  hide/show source code or integrated CSS style and table of contents. The reports can be

760  visualized using any web-browser.

761
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784  Figures

785  Figure 1: Data generation. The behavioral/EEG end-phenotypes of the BXD mouse panel
786  were quantified in experiment 1. Mice were recorded for 4 days: 2 days of baseline (B1 &
787  B2), followed by 6h of sleep deprivation (SD) and 2 days of recovery (R1 & R2). EEG

788  spectral composition was written in .smo files, activity in .act files and meta-data in .hdr files.
789  Blood metabolomics, liver transcriptomics and cortical transcriptomics were quantified in
790  experiment 2. “‘Control’ and “Sleep deprived’ batches were sampled at a single time point:
791  ZT6 (i.e. directly after sleep deprivation for the ‘sleep deprived’ batch). Transcriptomics was
792  performed on pooled sampled per BXD strains. For blood metabolomics, metabolite

793  quantification was performed for each BXD replicates.

794

795  Figure 2: PHRED read quality per base for BXD RNA-sequencing. PHRED quality score
796  based on illumina 1.9. A: Samples from Cortex during control. B: Samples from Cortex after
797  sleep deprivation. C: Samples from Liver during control. D: Samples from Liver after sleep
798  deprivation.

799

800  Figure 3: Summary of the bioinformatic analytical pipeline. Representation of the main

801  bioinformatics methods used. Original analyses were performed using the mm9 mouse

802  assembly (yellow). Results were also reproduced using the mm10 mouse assembly (red) and
803  all downstream analyses. Layers represent the scripts organization on gitlab and available
804  intermediate files.

805
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806  Figure 4: Similarity matrix [in %] between RNA-seq variant calling and GeneNetwork

807  genotypes. A similarity of 1 indicates that all common genotypes are similar. We here

808 compare only genotypes that were labeled as ‘B’ or ‘D’ and excluded unknown ‘U’ or

809  heterozygous ‘H’ genotypes.

810

811  Figure 5: Robustness of the analysis pipeline. A to E: Technical reanalysis with mm9

812  reference genome. F to J: Reanalysis with mm10 reference genome. A and F: Venn diagram of
813  significant cis-eQTL. B and G: Wolcano plot of differential gene expression in cortex. C and
814  H: Hiveplot NREM sleep gain during recovery of with highlight on Acotl1. D, E, I, and J:
815  Gene prioritization for NREM sleep gain during recovery (D and I) or phosphatidylcholine
816  acyl-alkyl C38:2 levels (E and J). recovery=first 6 hours of dark period after sleep deprivation
817  (ZT 12-18), SD=sleep deprivation, NSD=not sleep deprivation (control), FC= fold-change,
818 NREM=non-REM, REM=Rapid eye movement, LOD=logarithm of odds, FDR=false

819  discovery rate.
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