

1 A multi-omics digital research object for the genetics of sleep
2 regulation.

3
4 Maxime Jan*¹, Nastassia Gobet*^{1, 2}, Shanaz Diessler¹, Paul Franken¹, Ioannis Xenarios^{3,4}

5 ¹Centre for Integrative Genomics, University of Lausanne, Switzerland

6 ²Vital-IT, Swiss Institute of Bioinformatics, Switzerland

7 ³Ludwig Cancer Research/CHUV-UNIL, Lausanne, Switzerland

8 ⁴Health 2030 Genome Center, Geneva, Switzerland

9 * These authors contributed equally to this work.

10

11

12

13 **Abstract**

14 More and more researchers make use of multi-omics approaches to tackle complex cellular
15 and organismal systems. It has become apparent that the potential for re-use and integrate data
16 generated by different labs can enhance knowledge. However, a meaningful and efficient re-
17 use of data generated by others is difficult to achieve without in depth understanding of how
18 these datasets were assembled. We therefore designed and describe in detail a digital research
19 object embedding data, documentation and analytics on mouse sleep regulation. The aim of
20 this study was to bring together electrophysiological recordings, sleep-wake behavior,
21 metabolomics, genetics, and gene regulatory data in a systems genetics model to investigate
22 sleep regulation in the BXD panel of recombinant inbred lines. We here showcase both the
23 advantages and limitations of providing such multi-modal data and analytics. The
24 reproducibility of the results was tested by a bioinformatician not implicated in the original
25 project and the robustness of results was assessed by re-annotating genetic and transcriptome
26 data from the mm9 to the mm10 mouse genome assembly.

27

28

29 **Background & Summary**

30 A good night's sleep is essential for optimal performance, wellbeing and health. Chronically
31 disturbed or curtailed sleep can have long-lasting adverse effects on health with associated
32 increased risk for obesity and type-2 diabetes¹.

33

34 To gain insight into the molecular signaling pathways regulating undisturbed sleep and the
35 response to sleep restriction in the mouse, we performed a population-based multi-level
36 screening known as *systems genetics*². This approach allows to chart the molecular pathways
37 connecting genetic variants to complex traits through the integration of multiple *omics
38 datasets such as transcriptomics, proteomics, metabolomics or microbiomes³.

39 We built a systems genetics resource based on the BXD panel, a population of recombinant
40 inbred lines of mice⁴, that has been used for a number of complex traits and *omics screening
41 such as brain slow-waves during NREM sleep⁵, glucose regulation⁶, cognitive aging⁷ and
42 mitochondria proteomics⁸.

43

44 We phenotyped 34 BXD/RwwJ inbred lines, 4 BXD/TyJ, 2 parental strains C57BL6/J and
45 DBA/2J and their reciprocal F1 offspring. Mice of these 42 lines were challenged with 6h of
46 sleep deprivation (SD) to evaluate the effects of insufficient sleep on sleep-wake behavior and
47 brain activity (electroencephalogram or EEG; Figure 1, Experiment 1) and, on gene
48 expression and metabolites (Figure 1, Experiment 2). For Experiment 1 we recorded the EEG
49 together with muscle tone (electromyogram or EMG) and locomotor activity (LMA)
50 continuously for 4 days. Based on the EEG/EMG signals we determined sleep-wake state
51 [wakefulness, rapid-eye movement (REM) sleep, and non-REM (NREM) sleep] as well as the
52 spectral composition of the EEG signal as end phenotypes. For Experiment 2 we quantified
53 mRNA levels in cerebral cortex and liver using illumina HiSeq 2500 RNA-sequencing and
54 performed a targeted metabolomics screen on blood using Biocrates p180 liquid
55 chromatography (LC-) and Flow injection analysis (FIA-) coupled with mass spectrometry
56 (MS). These transcriptome and metabolome data are regarded as intermediate phenotypes
57 linking genome information to the sleep-wake related end phenotypes.

58

59 The keystone of systems genetics is data integration. Accordingly, the scientific community
60 can benefit from facilitated dataset sharing to integrate the results of their own experiment with
61 that of others. However, reliable methods for data integration are needed and require a broad

62 range of expertise such as in mathematical and statistical models ⁹, computational methods ¹⁰,
63 visualization strategies ¹¹, and deep understanding of complex phenotypes. Therefore, data
64 sharing should not be limited to the dataset *per se* but also to analytics in the form of analysis
65 workflows, code, interpretation of results, and meta-data ¹². The concept of a Digital Research
66 Object (DRO) was proposed to group dataset and analytics into one united package ¹³. Various
67 guidelines have been suggested to address the challenges of sharing such DRO with the goal
68 to improve and promote the human and computer knowledge sharing, like the FAIR
69 (Findable, Accessible, Interoperable, Reusable) principles proposed by FORCE 11 ¹⁴ or by the
70 DB2K (Big Data to Knowledge) framework. These guidelines concern biomedical workflow,
71 meta-data structures and computer infrastructures facilitating the reusability and
72 interoperability of digital resources ¹⁵. Although such guidelines are often described and
73 applied in the context of single data-type assays, they can be challenging to achieve for trans-
74 disciplinary research projects such as systems genetics, in which multiple data types,
75 computer programs, references and novel methodologies need to be combined ¹⁶. Moreover,
76 applying these principles can also be discouraging because of the time required for new
77 working routines to become fully reproducible ¹⁷ and because only few biomedical journals
78 have standardized and explicit data-sharing ¹⁸ or reproducibility ¹⁹ policies. Nonetheless,
79 DROs are essential for scientific reliability ²⁰, and can save time if a dataset or methods
80 specific to a study need to be reused or improved by different users such as colleagues at other
81 institutes, new comers to the lab, or at long-term yourself.

82
83 We here complement our previous publication ² by improving the raw and processed data
84 availability. We describe in more details the different bioinformatics steps that were applied to
85 analyze this resource and improve the analytical pipeline reproducibility by generating *R*
86 reports and provide code. Finally, we assess the reproducibility of our bioinformatic pipeline
87 from the perspective of a new student in bioinformatics that recently joined the group, and the
88 robustness of the results by changing both the mouse reference genome and the RNA-seq
89 reads alignment to new standards.

90

91 **Methods**

92 These methods are an expanded version of the methods described in our related paper ².
93 Appreciable portions are reproduced verbatim to deliver a complete description of the data
94 and analytics with the aim to enhance reproducibility.

95 Experiment 1 and Experiment 2 (Figure 1) were approved by the veterinary authorities of the
96 state of Vaud, Switzerland (SCAV authorization #2534).

97

98 **Animal, breeding, and housing conditions**

99 34 BXD lines originating from the University of Tennessee Health Science Center (Memphis,
100 TN, United States of America) were selected for Experiment 1 and Experiment 2. These lines
101 were randomly chosen from the newly generated advanced recombinant inbred line (ARIL)
102 RwwJ panel⁴, although lines with documented poor breeding performance were not
103 considered. 4 additional BXD RI strains were chosen from the older *TyJ* panel for
104 reproducibility purposes and were obtained directly from the Jackson Laboratory (JAX, Bar
105 Harbor, Maine). The names used for some of the BXD lines have been modified over time to
106 reflect genetic proximity. Table 1 lists the BXD line names we used in our files alongside the
107 corresponding current JAX names and IDs. In our analyses, we discarded the BXD63/RwwJ
108 line for quality reasons (see Technical Validation) as well as the 4 older BXD strains that were
109 derived from a different DBA/2 sub-strains, i.e. DBA/2Rj instead of DBA/2J for RwwJ lines
110²¹. The methods below describe the remaining 33 BXD lines, F1 and parental strains.

111 Two breeding trios per BXD strain were purchased from a local facility (EPFL-SV, Lausanne,
112 Switzerland) and bred in-house until sufficient offspring was obtained. The parental strains
113 DBA/2J (D2), C57BL6/J (B6) and their reciprocal F1 offspring (B6D2F1 [BD-F1] and
114 D2B6F1 [DB-F1]) were bred and phenotyped alongside. Suitable (age and sex) offspring was
115 transferred to our sleep-recording facility, where they were singly housed, with food and
116 water available ad libitum, at a constant temperature of 25°C and under a 12 h light/12 h dark
117 cycle (LD12:12, fluorescent lights, intensity 6.6 cds/m², with ZT0 and ZT12 designating light
118 and dark onset, respectively). Male mice aged 11–14 week at the time of experiment were
119 used for phenotyping, with a mean of 12 animals per BXD line among all experiments. Note
120 that 3 BXD lines had a lower replicate number (n), with respectively BXD79 (n = 6), BXD85
121 (n = 5), and BXD101 (n = 4) because of poor breeding success. For the remaining 30 BXD
122 lines, replicates were distributed as follows: for EEG/behavioral phenotyping (Experiment 1
123 in Fig 1; mean = 6.2/line; 5 ≤ n ≤ 7) and for molecular phenotyping (Experiment 2 in Fig 1;
124 mean = 6.8/line; 6 ≤ n ≤ 9). Additionally, to control for the reproducibility of the outcome
125 variables over the experiment, parental lines were phenotyped twice—i.e., at the start (labeled
126 in files as B61 and DB1) and end (labeled B62 and DB2) of the breeding and data-collecting
127 phase, which spanned 2 years (March 2012–December 2013). To summarize, distributed over
128 32 experimental cohorts, 227 individual mice were used for behavioral/EEG phenotyping

129 (Experiment 1) and 263 mice for tissue collection for transcriptome and metabolome analyses
130 (Experiment 2), the latter being divided into sleep deprived (SD) and controls (“Ctr”; see
131 Study design section below). We randomized the lines across the experimental cohorts so that
132 biological replicates of 1 line were collected/recorded on more than 1 occasion while also
133 ensuring that an even number of mice per line was included for tissue collection so as to pair
134 SD and “Ctr” individuals within each cohort (for behavioral/EEG phenotyping, each mouse
135 serves as its own control).

136

137 *Table 1: Names of BXD lines used in our files with the corresponding JAX name and ID. F1 lines (DB*
138 *and BD) were generated in house. BXD line names in our files can also be found without ‘0’ i.e.*
139 *BXD50 instead of BXD050. Further note that the names we used followed an older nomenclature and*
140 *some names therefore differ from the current JAX names listed.*

Name in files	JAX Name	JAX ID
BXD005	BXD5/TyJ	000037
BXD029TL / BXD029t	BXD29- Tlr4 ^{lps-2J} /J	000029
BXD029	BXD29/Ty	010981
BXD032	BXD32/TyJ	000078
BXD043	BXD43/RwwJ	007093
BXD044	BXD44/RwwJ	007094
BXD045	BXD45/RwwJ	007096
BXD048	BXD48/RwwJ	007097
BXD049	BXD49/RwwJ	007098
BXD050	BXD50/RwwJ	007099
BXD051	BXD51/RwwJ	007100
BXD055	BXD55/RwwJ	007103
BXD056	BXD56/RwwJ	007104
BXD061	BXD61/RwwJ	007106
BXD063	BXD63/RwwJ	007108
BXD064	BXD64/RwwJ	007109
BXD065	BXD65/RwwJ	007110
BXD066	BXD66/RwwJ	007111
BXD067	BXD67/RwwJ	007112
BXD070	BXD70/RwwJ	007115
BXD071	BXD71/RwwJ	007116
BXD073	BXD73/RwwJ	007117
BXD075	BXD75/RwwJ	007119

BXD079	BXD79/RwwJ	007123
BXD081	BXD81/RwwJ	007125
BXD083	BXD83/RwwJ	007126
BXD084	BXD84/RwwJ	007127
BXD085	BXD85/RwwJ	007128
BXD087	BXD87/RwwJ	007130
BXD089	BXD89/RwwJ	007132
BXD090	BXD90/RwwJ	007133
BXD095	BXD95/RwwJ	007138
BXD096	BXD48a/RwwJ	007139
BXD097	BXD65a/RwwJ	007140
BXD098	BXD98/RwwJ	007141
BXD100	BXD100/RwwJ	007143
BXD101	BXD101/RwwJ	007144
BXD103	BXD73b/RwwJ	007146
C57BL6 / B61 / B62	C57BL/6J	000664
DBA2 / DB1 / DB2	DBA/2J	000671
DB / DXB F1 / DBA/2J x C57BL6/J F1	-	-
BD / BXD F1 / C57BL6/J x DBA/2J F1	-	-

141

142 **Study design:**

143 The study consisted of 2 experiments, i.e., Experiments 1 and 2 (Figure 1). Animals of both
144 experiments were maintained under the same housing conditions. Animals in Experiment 1
145 underwent surgery and, after a >10 days recovery period, electroencephalography (EEG),
146 electromyography (EMG) and locomotor activity (LMA) were recorded continuously for a 4-
147 day period starting at ZT0. The first 2 days were considered Baseline (B1 and B2). The first 6
148 hours of Day 3 (ZT0–6), animals were sleep deprived (SD) in their home cage by “gentle
149 handling” referring to preventing sleep by changing litter, introducing paper tissue, present a
150 pipet near the animal or gently tapping the cage. Experimenters performing the SD rotated
151 every 1 or 2 hours for the SD duration (for more information, see ²²). The remaining 18 h of
152 Day 3 and the entire Day 4 were considered Recovery (R1 and R2).
153 Half of the animals included in Experiment 2 underwent SD alongside the animals of
154 Experiment 1. The other half was left undisturbed in another room (i.e., control or Ctr, also

155 referred as Non Sleep Deprived or NSD). Both SD and “Ctr” mice of Experiment 2 were
156 killed at ZT6 (i.e., immediately after the end of the SD) for sampling of liver and cerebral
157 cortex tissue as well as trunk blood. All mice were left undisturbed for at least 2 days prior to
158 SD.

159

160 **Experiment 1: EEG/EMG and LMA recording and signal pre-processing**

161 EEG/EMG surgery was performed under deep anesthesia. IP injection of Xylazine/Ketamine
162 mixture (91/14.5 mg/kg, respectively) ensures a deep plane of anesthesia for the duration of
163 the surgery (i.e., around 30 min). Analgesia was provided the evening prior and the 3 day after
164 surgery with Dafalgan in the drinking water (200–300 mg/kg). Six holes were drilled into the
165 cranium, 4 for screws to fix the connector with Adhesive Resin Cement, 2 for electrodes. The
166 caudal electrode was placed over the hippocampal structure and the rostral electrode was
167 placed over the frontal cerebral cortex. Two gold-wire electrode were inserted into the neck
168 muscle for EMG recording (for details, see ²²). Mice were allowed to recover for at least 10
169 days prior to baseline recordings. EEG and EMG signals were amplified, filtered, digitized,
170 and stored using EMBLA (Medcare Flaga, Thornton, CO, USA) hardware (A10 recorder) and
171 software (Somnologica). Digitalization of the signal was performed as followed: the analog to
172 digital conversion of the signal was performed at a rate of 2000 Hz, the signal was down
173 sampled at 200 Hz, high-pass filter at 0.0625 Hz was applied to reject DC signal and a notch
174 filter applied at 50 Hz for interfering signals filtering. Signal was then transformed by
175 Discrete Fourier Transform (DFT) to yield power spectra between 0 and 100 Hz with a 0.25
176 frequency resolution using a 4-seconds time resolution (called an epoch). EEG frequency bins
177 with artefacts of known (line artefacts between 45–55 Hz) and unknown (75–77 Hz) source
178 were removed from the average EEG spectra of all mice. Other specific 0.25 Hz bins
179 containing artefacts (notably the 8.0, 16.0 and 32.0 Hz bins) of unknown source, were
180 removed from individual mice based on the visual inspection of individual EEG spectra in
181 each of the three sleep-wake states (i.e. wakefulness, REM sleep and NREM sleep). Power
182 density in frequency bins deemed artefacted were estimated by linear interpolation. For
183 details, see Pascal scripts in ([Data Citation 4](#), *gitlab Systems_Genetics_of_Sleep_Regulation*).

184

185 LMA was recorded by passive infrared (PIR) sensors (Visonic, Tel Aviv, Israel) at 1 min
186 resolution for the duration of the 4-day experiment, using ClockLab (ActiMetrics, IL, USA).
187 Activity data were made available as *.act* files at Figshare ([Data Citation 1](#): *Figshare*
188 *LinkToCome*).

189
190 Offline, the sleep-wake states wakefulness, REM sleep, and NREM sleep were annotated on
191 consecutive 4-second epochs, based on the EEG and EMG pattern. (see Sleep-wake state
192 annotation section). EEG/EMG power spectra and sleep-wake states annotation were made
193 available as *.smo* files at ([Data Citation 1](#): *Figshare* LinkToCome).

194

195 **Experiment 2: Tissue collection and preparation**

196 Mice were killed by decapitation after being anesthetized with isoflurane, and blood, cerebral
197 cortex, and liver were collected immediately. The whole procedure took no more than 5 min
198 per mouse. Blood was collected at the decapitation site into tubes containing 10 ml heparin (2
199 U/ μ l) and centrifuged at 4,000 rpm during 5 min at 4°C. Plasma was collected by pipetting,
200 flash-frozen in liquid nitrogen, and stored at -80°C until further use. Cortex and liver were
201 flash-frozen in liquid nitrogen immediately after dissection and were stored at -140°C until
202 further use.

203 For RNA extraction, frozen samples were homogenized for 45 seconds in 1 ml of QIAzol
204 Lysis Reagent (Qiagen; Hilden, Germany) in a gentleMACS M tube using the gentleMACS
205 Dissociator (Miltenyi Biotec; Bergisch Gladbach, Germany). Homogenates were stored at
206 -80°C until RNA extraction. Total RNA was isolated and purified from cortex using the
207 automated nucleic acid extraction system QIAcube (Qiagen; Hilden, Germany) with the
208 RNeasy Plus Universal Tissue mini kit (Qiagen; Hilden, Germany) and were treated with
209 DNase. Total RNA from liver was isolated and purified manually using the Qiagen RNeasy
210 Plus mini kit (Qiagen; Hilden, Germany), which includes a step for effective elimination of
211 genomic DNA. RNA quantity, quality, and integrity were assessed utilizing the NanoDrop
212 ND-1000 spectrophotometer (Thermo scientific; Waltham, Massachusetts, USA) and the
213 Fragment Analyzer (Advanced Analytical). The 263 mice initially killed for tissue collection
214 yielded 222 cortex and 222 liver samples of good quality.

215 Equal amounts of RNA from biological replicates (3 samples per strain, tissue, and
216 experimental condition, except for BXD79, BXD85, and BXD101; see above under Animals,
217 breeding, and housing conditions) were pooled, yielding 156 samples for library preparation.
218 RNA-seq libraries were prepared from 500 ng of pooled RNA using the Illumina TruSeq
219 Stranded mRNA reagents (Illumina; San Diego, California, USA) on a Caliper Sciclone liquid
220 handling robot (PerkinElmer; Waltham, Massachusetts, USA). Libraries were sequenced on
221 the Illumina HiSeq 2500 using HiSeq SBS Kit v3 reagents, with cluster generation using the
222 Illumina HiSeq PE Cluster Kit v3 reagents. Fastq files were pre-processed using the Illumina

223 Casava 1.82 pipeline and bad quality reads tagged with 'Y'. A mean of 41 M 100 bp single-
224 end reads were obtained ($29 \text{ M} \leq n \leq 63 \text{ M}$). Quality of sequences were evaluated using
225 FastQC software (version 0.10.1) and reports made available here ([Data Citation 3](#), bxd.vital-
226 it.ch <https://bxd.vital-it.ch/#/dataset/>). Figure 2 (A, B, C and D) shows the Phred quality score
227 distribution per base among all samples reads for 'Cortex Control', 'Cortex SD', 'Liver
228 Control' and 'Liver SD' respectively. Fastq files were made available at NCBI Gene
229 Expression Omnibus ([Data Citation 2](#): *NCBI Gene Expression Omnibus* GSE112352).
230 Targeted metabolomics analysis was performed using flow injection analysis (FIA) and liquid
231 chromatography/mass spectrometry (LC/MS) as described in ^{23,24}. To identify metabolites and
232 measure their concentrations, plasma samples were analyzed using the AbsoluteIDQ p180
233 targeted metabolomics kit (Biocrates Life Sciences AG, Innsbruck, Austria) and a Waters
234 Xevo TQ-S mass spectrometer coupled to an Acquity UPLC liquid chromatography system
235 (Waters Corporation, Milford, MA, USA). The kit provided absolute concentrations for 188
236 endogenous compounds from 6 different classes, namely acyl carnitines, amino acids,
237 biogenic amines, hexoses, glycerophospholipids, and sphingolipids. Plasma samples were
238 prepared according to the manufacturer's instructions. Sample order was randomized, and 3
239 levels of quality controls (QCs) were run on each 96-well plate. Data were normalized
240 between batches, using the results of quality control level 2 (QC2) repeats across the plate
241 ($n = 4$) and between plates ($n = 4$) using Biocrates METIDQ software (QC2 correction).
242 Metabolites below the lower limit of quantification or the limit of detection, as well as above
243 the upper limit of quantification, or with standards out of limits, were discarded from the
244 analysis ²⁴. Out of the 188 metabolites assayed, 124 passed these criteria across samples and
245 were used in subsequent analyses. No hexoses were present among the 124 metabolites. Out
246 of the 256 mice killed for tissue collection, 249 plasma samples were used for this analysis.
247 An average of 3.5 animals ($3 \leq n \leq 6$) per line and experimental condition were used (except
248 for BXD79, BXD85, and BXD101 with respectively 2, 1, and 1 animal/condition used; see
249 above under Animals, breeding, and housing conditions). Note that in contrast to the RNA-seq
250 experiment, samples were not pooled but analyzed individually. Mean metabolite levels per
251 BXD lines were made available at bxd.vital-it.ch ([Data Citation 3](#), bxd.vital-it.ch
252 <https://bxd.vital-it.ch/#/dataset/>), for details see intermediate files ([Data Citation 5](#), figshare
253 <https://figshare.com/s/51916157a22357755de8>).
254 In the same plasma samples, we determined corticosterone levels using an enzyme
255 immunoassay (corticosterone EIA kit; Enzo Life Sciences, Lausanne, Switzerland) according
256 to the manufacturer's instructions. All samples were diluted 40 times in the provided buffer,

257 kept on ice during the manipulation, and tested in duplicate. BXD lines were spread over
258 multiple 96-well plates in an attempt to control for possible batch effects. In addition, a
259 “control” sample was prepared by pooling plasma from 5 C57BL6/J mice. Aliquots of this
260 control were measured along with each plate to assess plate-to-plate variability. The
261 concentration was calculated in pg/ml based on the average net optical density (at $\lambda = 405$
262 nm) for each standard and sample.

263 Corticosterone level were made available on figshare ([Data Citation 5](#), *figshare*
264 <https://figshare.com/s/51916157a22357755de8>)

265

266 **Bioinformatics pipeline**

267 To facilitate the interpretation of the complete bioinformatic workflow that was performed on
268 this dataset, we here describe first our general strategy to construct an analytics pipeline with
269 which we hope to improve reproducibility. We then describe the specific methods used to
270 analyze this dataset.

271 The analytics and input datasets were separated into 3 layers according to increasing level of
272 data abstraction (Figure 3). This hierarchical structure of the workflow was particularly useful
273 to identify steps downstream novel versions of a script or data (e.g. Figure 3, red) and
274 simplify workflow description. The first *low-level* layer contains the procedures needed to
275 reduce and transform the raw-data (i.e. RNA-seq reads, EEG/EMG signals) into an
276 exploitable signal such as sleep phenotypes, genes expression or mice genotypes by further
277 analytical steps. This layer is characterized by long and computationally intensive procedures
278 which required the expertise of different persons, each with their own working environment
279 and preferred informatics language.

280 The *intermediate* layer contains some established analyses that could be performed on the
281 data such as gene expression normalization followed by differential expression or
282 Quantitative Trait Locus (QTL) mapping. With the scripts of this layer we explored the effects
283 of sleep deprivation, genetic variations, as well as their interaction on EEG/behavioral
284 phenotypes and intermediate phenotypes.

285 The *high-level* layer contains the novel integrative methods that we developed to prioritize
286 genes driving sleep regulation and to visually represent the meta-dimensional multi-omics
287 networks underlying sleep phenotypes.

288

289 **Code availability on Git:**

290 The scripts used for analytics were made available on gitlab ([Data Citation 4](#), *gitlab*
291 [Systems Genetics of Sleep Regulation](#)). The master branch contains the scripts used for our
292 publication and mm9 analysis. A second branch was created for analysis performed on a
293 mm10 mouse references (see Technical Validation). The intermediate files required to run
294 these scripts were made available here: ([Data Citation 5](#), *figshare*
295 <https://figshare.com/s/51916157a22357755de8>). Finally, a documentation file was
296 generated to understand the hierarchical relationship between the scripts and datasets in a
297 form of a dynamic html document (see Workflow documentation).

298

299 **Standard and non-standard semantics**

300 To improve the reproducibility and reusability of our workflow, we tried to prioritize standard
301 semantics and well-established pipelines when it was applicable, such as the RNA-seq
302 processing by STAR and htseq-count²⁵. The use of curated symbols for genes nomenclature
303 by RefSeq allowed a better semantic interoperability with other resources such as Uniprot
304 protein ID using solutions like biomaRt²⁶. We provided some of the references files used in
305 these scripts, like the RefSeq .gtf reference file. These annotations can be updated and
306 possibly change the gene quantification with updated version or different genome reference
307 (see References_Files in [Data Citation 5](#), *figshare*
308 <https://figshare.com/s/51916157a22357755de8>).

309 However, some steps could not be performed using standards. The EEG/behavioral
310 phenotyping procedure could not be performed by any standard computational workflow or
311 common semantics as none exist. The nomenclature that was chosen in this case to generate
312 unique phenotypic ID was a combination of the phenotype observed (e.g. EEG power during
313 NREM sleep) and the features observed in this phenotype (e.g. delta band 1-4 Hz). These
314 phenotypes were also present as file name and column name in our dataset ([Data Citation 5](#),
315 *figshare* <https://figshare.com/s/51916157a22357755de8>).

316

317 **Favor *R* and *R*markdown reports for reproducible results**

318 Once the data processed within the *low-level* layer, the effect of sleep deprivation, genetics
319 and their interaction were measured using different statistical models and computational
320 methods. We chose to prioritize the programming language *R* as it was the best suited tool for
321 these statistical analyses and for the generation of figures. Beside the advantages of a license-
322 free and portable language, *R* was already recommended as main tool for systems genetics

323 analysis²⁷. Many available packages were particularly adapted for the systems genetics
324 design, involving phenotype-genotype association (*r/qtl*), network analysis (*WGCNA*, *SANTA*,
325 *igraph*), differential expression (*EdgeR*, *DESeq*, *limma*), bayesian network learning (*bnlearn*),
326 visualization (*ggplot2*, *grid*), enrichment (*topGO*, *topAnat*) and parallel computing (*parallel*).
327 Only a few analyses were performed using other softwares, principally for efficiency reasons
328 in *cis*-/trans-eQTL analysis where the number of models to test was quite large^{28,29}. R is one
329 of the flagships of open science and reproducibility³⁰ with a reviewable source code and the
330 possibility of generating reports known as '*Rmarkdown*' with 2 packages: *knitr*³¹ and
331 *rmarkdown*³². This report format contains combination of code, figures, and comments within
332 a single *markdown* document that can be easily converted into *pdf* or *html* format.
333 Rmarkdown scripts were made available on ([Data Citation 4](#), *gitlab*
334 [Systems Genetics of Sleep Regulation](#)) and the reports in the form of .html document were
335 made available with data on ([Data Citation 5](#), *figshare*
336 <https://figshare.com/s/51916157a22357755de8>). To avoid the need to copy/paste some
337 functions shared between *Rmarkdowns* but still display them in our reports, we used the
338 *readLines()* function within Rmarkdown chunks. Finally, the use of the *sessionInfo()* function
339 at the end of the document allowed to keep track of the packages version and the environment
340 variable used. Some of these Rmarkdown reports were generated on a remote cluster instead
341 of the more traditional Rstudio environment, for more information on how to generate these
342 Rmarkdown, see the Usage Notes.
343

344 **Workflow documentation**

345 This systems genetics approach was an integrative project that implicated multiple
346 collaborators, that each contributed to the final results, with their own working habit related to
347 their area of expertise. For better reproducibility of the generated files, a critical goal was to
348 keep track of the different files created, associated documents or analytical steps that were
349 produced. For example, EEG/behavioral phenotypes could be found within many files and
350 reports, from *low-level* to *high-level* layers, but their nomenclatures were still hard to interpret
351 as mentioned above, for those not directly related to this project. A newcomer in this project
352 should be able to easily recover the metadata document containing all the physiological
353 phenotypes information (i.e. understand that a metadata document was created and where to
354 find it or who to ask for it) and understand which scripts were used to produce these
355 phenotypes. To establish what was exactly performed, we generated a documentation file
356 containing the essential information and relationships between all the files, scripts,

357 Rmarkdown, small workflow or database annotation (referred here simply as
358 Reference_Files) used in this project. This document describes the inputs/outputs needed and
359 where to locate the information distributed among different person or different directories on
360 a digital infrastructure as presented in figure 3 but with more details to improve the
361 reproducibility of the DRO ³³.
362 The markdown format was kept as it was easy to write/read by a human or to generate via a
363 python script. This file was formatted into a simplified RDF-like triples structure, were each
364 files-objects (subject) were linked to information (objects) by a property. This format allowed
365 to use the following properties to describe each file-objects we had: The file-object name or
366 identification, a brief description (i.e. about the software used or the data content), the file-
367 object version, the input(s)/output(s), the associated documents, hyperlink(s) to remote
368 database or citation, the location of the file-object on the project directory or archiving
369 system, and the author(s) to contact for questions. These associations could be viewed as a
370 graph to display the important files and pipelines used. This document was useful to
371 understand how exactly the different files were generated, and to recover the scripts and
372 input/ouput that were used, even after prolonged periods and to use them again, which permit
373 for example to reproduce data with novel or updated annotation files. Furthermore, if an error
374 was detected within a script, the results and figures downstream that needed to be recomputed
375 could be easily found. This documentation file was made available on gitlab ([Data Citation 4](#),
376 [gitlab Systems Genetics of Sleep Regulation](#)).
377

378 **Data Mining Website**
379 The DRO built for this systems genetics resource is constituted of the following collection:
380 raw-data, processed data, Rmarkdown reports, results & interpretation, workflow, scripts, and
381 metadata. To improve the reproducibility of our integrative visualization method (see
382 HivePlots below), we provided some data-mining tools, a server to store some intermediate
383 results, and a web application ³⁴ ([Data Citation 3](#), bxd.vital-it.ch [https://bxd.vital-
384 it.ch/#/dataset/](https://bxd.vital-it.ch/#/dataset/)). The home page of the web application displays the information for the
385 NREM sleep gain during the 24 hours (in four 6-hour intervals) after sleep deprivation. Three
386 data-mining tutorials were described on the website the web interface to: (i) mine a single
387 phenotype, (ii) search for a gene, and (iii) compare hiveplots. Currently, no centralized
388 repository exists containing all types of phenotypic data that were extracted within this
389 project. This web-interface can, however be viewed as a hub for this DRO that became
390 findable and accessible with a web-browser. With this web resource, we provided an advanced

391 interactive interface for EEG/behavioral end-phenotypes and their associated intermediate
392 phenotypes (variants, metabolites, gene expression). Compared to other web-resources for
393 systems genetics like GeneNetwork where the principal focus is QTL mining, this interface
394 provides an integrative view of this one dataset, with also data files and link to code to
395 reproduce some of our analyses in the form of Rmarkdown, like the prioritization strategy.

396

397 **Low-Layer Analyses:**

398

399 *Sleep-wake state annotation*

400 To assist the annotation of this extensive dataset (around 20 million 4 s epochs), we developed
401 a semiautomated scoring system. The 4-day recordings of 43 mice (19% of all recordings),
402 representing animals from 12 strains, were fully annotated visually by an expert according to
403 established criteria ²². Due to large between-line variability in EEG signals, even after
404 normalization, a partial overlap of the different sleep-wake states remained, as evidenced by
405 the absolute position of the center of each state cluster, which differed even among individuals
406 of the same line (precluding the use of 1 “reference” mouse), even per line, to reliably
407 annotate sleep-wake states for the others. To overcome this problem, 1 day out of 4 (i.e., Day
408 3 or R1, which includes the SD) was visually annotated for each mouse. These 4 seconds
409 sleep-wake scores were used to train the semiautomatic scoring algorithm, which took as
410 input 82 numerical variables derived from the analyses of EEG and EMG signals using
411 frequency- (discrete Fourier transform [DFT]) and time-domain analyses performed at 1
412 second resolution. We then used these data to train a series of support vector machines
413 (SVMs)³⁵ specifically tailored for each mouse, using combinations of the 5 or 6 most
414 informative variables out of the 82 input variables. The best-performing SVMs for a given
415 mouse were then selected based on the upper-quartile performance for global classification
416 accuracy and sensitivity for REM sleep (the sleep-wake state with the lowest prevalence) and
417 used to predict sleep-wake states in the remaining 3 days of the recording. The predictions for
418 4 consecutive 1-s epochs were converted into 1 four-second epoch
419 . Next, the results of the distinct SVMs were collapsed into a consensus prediction, using a
420 majority vote. In case of ties, epochs were annotated according to the consensus prediction of
421 their neighboring epochs. To prevent overfitting and assess the expected performance of the
422 predictor, only 50% of the R1 manually annotated data from each mouse were used for
423 training. The classification performance was assessed by comparing the automatic and visual

424 scoring of the fully manually annotated 4 d recordings of 43 mice. The global accuracy was
425 computed using a confusion matrix ³⁶ of the completely predicted days (B1, B2, and R2). For
426 all subsequent analyses, the visually annotated Day 3 (R1) recording and the algorithmically
427 annotated days (B1, B2, and R2) were used for all mice, including those for which these days
428 were visually annotated. The resulting sleep-wake state annotation together with EEG power
429 spectra and EMG levels were saved as binary files (.smo) with their corresponding metadata
430 files (.hdr) and deposited at FigShare ([Data Citation 1](#): Figshare <https://doi.org/10.6089/586206>). For more
431 information on .smo and .hdr files, see Usage Notes.

432

433 *EEG/Behavioral Phenotyping*

434 We quantified 341 phenotypes based on the sleep-wake states, LMA, and the spectral
435 composition of the EEG, constituting 3 broad phenotypic categories. For the first phenotypic
436 category (“State”), the 96 hours sleep-wake sequence of each animal was used to directly
437 assess traits in 3 “state”-related phenotypic subcategories: (i) duration (e.g., time spent in
438 wakefulness, NREM sleep, and REM sleep, both absolute and relative to each other, such as
439 the ratio of time spent in REM versus NREM sleep); (ii) aspects of their distribution over the
440 24 h cycle (e.g., time course of hourly values, midpoint of the 12 h interval with highest time
441 spent awake, and differences between the light and dark periods); and (iii) sleep-wake
442 architecture (e.g., number and duration of sleep-wake bouts, sleep fragmentation, and sleep-
443 wake state transition probabilities). Similarly, for the second phenotypic category (“LMA”)
444 overall activity counts per day, as well as per unit of time spent awake, and the distribution of
445 activity over the 24 h cycle was extracted from the LMA data. As final phenotypic category
446 (“EEG”), EEG signals of the 4 different sleep-wake states (wakefulness, NREM sleep, REM
447 sleep, and theta-dominated waking [TDW], see below) were quantified within the 4-s epochs
448 matching the sleep-wake states using DFT (0.25 Hz resolution, range 0.75–90 Hz, window
449 function Hamming). Signal power was calculated in discrete EEG frequency bands—i.e.,
450 delta (1.0–4.25 Hz, δ), slow delta (1.0–2.25 Hz; $\delta 1$), fast delta (2.5–4.25; $\delta 2$), theta (5.0–9.0
451 Hz; θ), sigma (11–16 Hz; σ), beta (18–30 Hz; β), slow gamma (32–55 Hz; $\gamma 1$), and fast
452 gamma (55–80 Hz; $\gamma 2$). Power in each frequency band was referenced to total EEG power
453 over all frequencies (0.75–90 Hz) and all sleep-wake states in days B1 and B2 to account for
454 interindividual variability in absolute power. The contribution of each sleep-wake state to this
455 reference was weighted such that, e.g., animals spending more time in NREM sleep (during
456 which total EEG power is higher) do not have a higher reference as a result ³⁷. Moreover, the
457 frequency of dominant EEG rhythms was extracted as phenotypes, specifically that of the

458 theta rhythm characteristic of REM sleep and TDW. The latter state, a substate of
459 wakefulness, defined by the prevalence of theta activity (6.0–10.0 Hz) in the EEG during
460 waking^{38,39}, was quantified according to the algorithm described in⁴⁰. We assessed the time
461 spent in this state, the fraction of total wakefulness it represents, and its distribution over 24 h.
462 Finally, discrete, paroxysmal events were counted, such as sporadic spontaneous seizures and
463 neocortical spindling, which are known features of D2 mice⁴¹, which we also found in some
464 BXD lines.

465 All phenotypes were quantified in baseline and recovery separately, and the effect of SD on
466 all variables was computed as recovery versus baseline differences or ratios. The recovery-to-
467 baseline contrasts are the focus of this paper. Obviously, some of the 341 phenotypes are
468 strongly correlated (e.g., the time spent awake and asleep in a given recording interval),
469 resulting in identical QTLs (albeit with different association strengths). Pascal source code
470 used for EEG/behavioral phenotyping was made available on gitlab ([Data Citation 4](#), [gitlab](#)
471 [Systems Genetics of Sleep Regulation](#)). Processed phenotypes and descriptions were made
472 available at bxd.vital-it.ch ([Data Citation 3](#), bxd.vital-it.ch <https://bxd.vital-it.ch/#/dataset/>).

473

474 *Read alignment*

475 For gene expression quantification, we used a standard pipeline that was already applied in a
476 previous study⁶. Bad quality reads tagged by Casava 1.82 were filtered from fastq files and
477 reads were mapped to MGSCv37/mm9 using the STAR splice aligner (v 2.4.0g) with the
478 2pass pipeline⁴².

479

480 *Genotyping*

481 The RNA-seq dataset was also used to complement the publicly available GeneNetwork
482 genetic map (www.genenetwork.org), thus increasing its resolution. RNA-seq variant calling
483 was performed using the Genome Analysis ToolKit (GATK) from the Broad Institute, using
484 the recommended workflow for RNA-seq data⁴³. To improve coverage depth, 2 additional
485 RNA-seq datasets from other projects using the same BXD lines were added⁶. In total, 6
486 BXD datasets from 4 different tissues (cortex, hypothalamus, brainstem, and liver) were used.
487 A hard filtering procedure was applied as suggested by the GATK pipeline⁴³⁻⁴⁵. Furthermore,
488 genotypes with more than 10% missing information, low quality (<5,000), and redundant
489 information were removed. GeneNetwork genotypes, which were discrepant with our RNA-
490 seq experiment, were tagged as “unknown” (mean of 1% of the GeneNetwork

491 genotypes/strain [0.05% \leq n \leq 8%]). Finally, GeneNetwork and our RNA-seq genotypes were
492 merged into a unique set of around 11,000 genotypes, which was used for all subsequent
493 analyses. This set of genotypes was already used successfully in a previous study of BXD
494 lines ⁶ and is available through our “Swiss-BXD” web interface ([Data Citation 3](#), bxd.vital-
495 it.ch <https://bx.d.vital-it.ch/#/dataset/>).

496

497 *Protein damage prediction*

498 Variants detected by our RNA-seq variant calling were annotated using Annovar ⁴⁶ with the
499 RefSeq annotation dataset. Nonsynonymous variations were further investigated for protein
500 disruption using Polyphen-2 version 2.2.2 ⁴⁷, which was adapted for use in the mouse
501 according to recommended configuration. Variant annotation file and polyphen2 scores were
502 made available here ([Data Citation 5](#), [figshare](#)
503 <https://figshare.com/s/51916157a22357755de8>).

504

505 *Gene expression quantification:*

506 Count data was generated using htseq-count from the HTseq package using parameters
507 “stranded = reverse” and “mode = union” ⁴⁸. Gene boundaries were extracted from the
508 mm9/refseq/reflat dataset of the UCSC table browser. Raw counts were made available here
509 ([Data Citation 5](#), [figshare](#) <https://figshare.com/s/51916157a22357755de8>).
510

511

512 **Intermediate-Layer Analyses:**

513 *Gene expression normalization:*

514 EdgeR was then used to normalize read counts by library size. Genes with with low
515 expression value were excluded from the analysis, and the raw read counts were normalized
516 using the TMM normalization ⁴⁹ and converted to log counts per million (CPM). R. Although
517 for both tissues, the RNA-seq samples passed all quality thresholds, and among-strain
518 variability was small, more reads were mapped in cortex than in liver, and we observed a
519 somewhat higher coefficient of variation in the raw gene read count in liver than in cortex.
520 Genes expression as CPM or log2 CPM were made available here: ([Data Citation 5](#), [figshare](#)
521 <https://figshare.com/s/51916157a22357755de8>).

522 *Differential expression*

523 To assess the gene differential expression between the sleep-deprived and control conditions,
524 we used the R package limma⁵⁰ with the voom weighting function followed by the limma
525 empirical Bayes method⁵¹. Differential expression tables were made available here: ([Data](#)
526 [Citation 5](#), [figshare](#) <https://figshare.com/s/51916157a22357755de8>).

527

528 *QTL mapping*

529 The R package qtl/r²⁸ was used for interval mapping of behavioral/EEG phenotypes
530 (phQTLs) and metabolites (mQTLs). Pseudomarkers were imputed every cM, and genome-
531 wide associations were calculated using the Expected-Maximization (EM) algorithm. p-values
532 were corrected for FDR using permutation tests with 1,000 random shuffles. The significance
533 threshold was set to 0.05 FDR, a suggestive threshold to 0.63 FDR, and a highly suggestive
534 threshold to 0.10 FDR according to^{52,53}. QTL boundaries were determined using a 1.5 LOD
535 support interval. To preserve sensitivity in QTL detection, we did not apply further p-value
536 correction for the many phenotypes tested. Effect size of single QTLs was estimated using 2
537 methods. Method 1 does not consider eventual other QTLs present and computes effect size
538 according to $1 - 10^{-(2/n)*\text{LOD}}$. Method 2 does consider multi-QTL effects and computes
539 effect size by each contributing QTL by calculating first the full, additive model for all QTLs
540 identified and, subsequently, estimating the effects of each contributing QTL by computing
541 the variance lost when removing that QTL from the full model (“drop-one-term” analysis).
542 For Method 2, the additive effect of multiple suggestive, highly suggestive, and significant
543 QTLs was calculated using the fitqtl function of the qtl/r package⁵⁴. With this method, the
544 sum of single QTL effect estimation can be lower than the full model because of association
545 between genotypes. In the Results section, Method 1 was used to estimate effect size, unless
546 specified otherwise. It is important to note that the effect size estimated for a QTL represents
547 the variance explained of the genetic portion of the variance (between-strain variability)
548 quantified as heritability and not of the total variance observed for a given phenotype (i.e.,
549 within- plus between-strain variability).

550 For detection of eQTLs, cis-eQTLs were mapped using FastQTL²⁸ within a 2 Mb window for
551 which adjusted p-values were computed with 1,000 permutations and beta distribution fitting.
552 The R package qvalue⁵⁵ was then used for multiple-testing correction as proposed by²⁸. Only
553 the q-values are reported for each cis-eQTL in the text. Trans-eQTL detection was performed
554 using a modified version of FastEpistasis²⁹, on several million associations (approximately
555 15,000 genes \times 11,000 markers), applying a global, hard p-value threshold of 1E-4.

556 List of ph-QTLs, cis-eQTL, trans-eQTL and m-QTLs were made available here: ([Data](#)
557 [Citation 5](#), [figshare](#) <https://figshare.com/s/51916157a22357755de8>).

558

559 **High-layer Analyses:**

560 *Hiveplot visualization*

561 Hiveplots were constructed with the R package HiveR⁵⁶ for each phenotype. Gene expression
562 and metabolite levels represented in the hiveplots come from either the “Ctr” (control) or SD
563 molecular datasets according to the phenotype represented in the hiveplot; i.e., the “Ctr”
564 dataset is represented for phenotypes related to the baseline (“bsl”) condition, while the SD
565 dataset is shown for phenotypes related to recovery (“rec” and “rec-bsl”). For a given
566 hiveplot, only those genes and metabolites were included (depicted as nodes on the axes) for
567 which the Pearson correlation coefficient between the phenotype concerned and the molecule
568 passed a data-driven threshold set to the top 0.5% of all absolute correlations between all
569 phenotypes on the one hand and all molecular (gene expression and metabolites) on the other.
570 This threshold was calculated separately for “Bsl” phenotypes and for “Rec” and “Rec/Bsl”
571 phenotypes and amounted to absolute correlation thresholds of 0.510 and 0.485, respectively.
572 The latter was used for the recovery phenotypes. Associations between gene expressions and
573 metabolites represented by the edges in the hiveplot were filtered using quantile thresholds
574 (top 0.05% gene–gene associations, top 0.5% gene–metabolite associations). We corrected for
575 cis-eQTL confounding effects by computing partial correlations between all possible pairs of
576 genes. Hiveplots figures and Rmarkdowns reports were made available here ([Data Citation 5](#),
577 [figshare](#) <https://figshare.com/s/51916157a22357755de8>).

578

579 *Candidate-gene prioritization strategy*

580 In order to prioritize genes in identified QTL regions, we chose to combine the results of the
581 following analyses: (i) QTL mapping (phQTL or mQTL), (ii) correlation analysis, (iii)
582 expression QTL (eQTL), (iv) protein damaging–variation prediction, and (v) DE. Each result
583 was transformed into an “analysis score” using a min/max normalization, in which the
584 contribution of extreme values was reduced by a winsorization of the results. These analysis
585 scores were first associated with each gene (see below) and then integrated into a single
586 “integrated score” computed separately for each tissue, yielding 1 integrated score in cortex
587 and 1 in liver. The correlation analysis score, eQTL score, DE score, and protein damaging–
588 variation score are already associated to genes, and these values were therefore attributed to

589 the corresponding gene. To associate a gene with the ph-/m-QTL analysis score (which is
590 associated to markers), we used the central position of the gene to infer the associated ph-/m-
591 QTL analysis score at that position. In case of a cis-eQTL linked to a gene or a damaging
592 variation within the gene, we used the position of the associated marker instead. To emphasize
593 diversity and reduce analysis score information redundancy, we weighted each analysis score
594 using the Henikoff algorithm. The individual scores were discretized before using the
595 Henikoff algorithm, which was applied on all the genes within the ph-/mQTL region
596 associated with each phenotype. The integrated score was calculated separately for cortex and
597 liver. We performed a 10,000-permutation procedure to compute an FDR for the integrated
598 scores. For each permutation procedure, all 5 analysis scores were permuted, and a novel
599 integrated score was computed again. The maximal integrated score for each permutation
600 procedure was kept, and a significance threshold was set at quantile 95. Applying the
601 Henikoff weighting improved the sensitivity of the gene prioritization. E.g., among the 91
602 behavioral/EEG phenotypes quantified with 1 or more suggestive/significant QTL after SD,
603 40 had at least 1 gene significantly prioritized with Henikoff weighting, against 32 without.
604 Gene prioritization figures and Rmarkdown reports were made available here ([Data Citation](#)
605 [5](#), [figshare](#) <https://figshare.com/s/51916157a22357755de8>)
606

607 **Reproducibility of the pipeline**

608 *Technical reproducibility of the pipeline*

609 To assess the reproducibility of our analytical pipeline, we asked a bioinformatician that was
610 not involved in the data collection and analysis to reanalyze some of the results. A relatively
611 short computational time as well as importance in the published results were taken as
612 selection criteria of analyses to be replicated. The TMM normalisation of RNA-seq counts,
613 differential gene expression, cis-eQTL detection, and the ph-/m-QTL mapping for 4 sleep
614 phenotypes (slow delta power gain after SD, fast delta power after SD, theta peak frequency
615 shift after SD and NREM sleep gain in the dark after SD) and 2 metabolites
616 (Phosphatidylcholine ae C38:2 and alpha amino-adipic acid) used as main examples in our
617 previous publication were all re-analyzed. Finally, gene prioritization and hiveplot
618 visualization of these 4 examples were replicated. Originally, ties in the nodes ranking
619 function on the hiveplots axis was solved using the “random” method, but this function was
620 modified in the hiveplot code and set as “first” to remain deterministic (see Technical
621 Validation for results).

622

623 *Reanalysis with mm10*

624 To quantify the effect of new standards and robustness of our end-results and interpretation
625 we changed some analyses within our low layer. The mm10 genome assembly was set as our
626 new reference and the gene expression was reanalysed from the raw fastq files with the
627 BioJupies reproducible pipeline ^{57 58} that use kallisto pseudo-alignement ⁵⁹. The gene positions
628 were retrieved from the headers of the ENSEMBL fasta file used by BioJupies
629 (Mus_musculus.GRCm38.cdna.all.fa.gz). Genotypes were downloaded from GeneNetwork
630 database and our annovar/polyphen2 variations positions based on mm9 were adapted to
631 mm10 using CrossMap version 0.2.4 ⁶⁰. The analyses performed to assess the technical
632 reproducibility of our pipeline (see above) were finally replicated using these new files. (see
633 Technical Validation for results).

634

635 **Data Records**

636 EEG/EMG power spectra and locomotor activity files were submitted to *figshare* [Data](#)
637 [Citation 1](#): *Figshare* LinkWithSubmission). Raw data of RNA-sequencing were submitted to
638 Gene Expression Omnibus ([Data Citation 2](#): NCBI Gene Expression Omnibus GSE112352).
639 Processed phenotypes files as gene expression, metabolites level and mean EEG/behavioral
640 phenotypes per lines, as well as phenotypes descriptions, were submitted to our data-mining
641 web-site ([Data Citation 3](#), bxd.vital-it.ch <https://bxd.vital-it.ch/#/>) on the ‘Downloads’ panel.
642 Scripts and code were submitted to gitlab [Data Citation 4](#), *gitlab*
643 [Systems Genetics of Sleep Regulation](#)). Intermediate files required to run these scripts were
644 submitted to *figshare* ([Data Citation 5](#), *figshare*
645 <https://figshare.com/s/51916157a22357755de8>). BXD genotypes are available on
646 GeneNetwork ([Data Citation 6](#), *GeneNetwork*, GN600).

647

648 **Technical Validation**

649 **Compare genotype RNA-seq vs GeneNetwork**

650 To verify the genetic background of each mice we phenotyped, we analyzed the
651 correspondence between GeneNetwork genotypes and RNA-seq variants detected by GATK.
652 For the 3811 GeneNetwork genotypes, 1289 could be recalled in our RNA-seq variant calling
653 pipeline. Figure 4 shows the similarity proportion between RNA-seq variants and
654 GeneNetwork genotypes, for each pair of BXD lines. Our BXD63 was more similar with the

655 GeneNetwork BXD67 than with the BXD63, probably due to mislabeling. We therefore chose
656 to exclude this line. The matrix also shows the genetic similarity between BXD73 and
657 BXD103 (now renamed as BXD73b), between BXD48 and BXD96 (now BXD48a) and
658 between BXD65 and BXD97 (now BXD65a), which confirmed the renaming of these BXD
659 lines on GeneNetwork.

660 **Reproducibility of the pipeline**

661 *Technical reproducibility of the pipeline*

662 To assess the technical reproducibility of the pipeline, a bioinformatics student (NG) new to
663 the project reproduced chosen steps of the bioinformatic pipeline. The results (Figure 5, upper
664 part) were consistent with previous analyses (PLOS paper figures: 2C, 4C left, 7D, and 7C
665 bottom). The robustness of the pipeline was verified because the same conclusions could be
666 drawn. For examples, the same 3 genes showed the largest differential expression after SD in
667 the cortex (*Arc*, *Plin4*, and *Egr2* in Figure 5B). Moreover, the *Acot11* gene was prioritized by
668 gene prioritization (Figure 5D&E). Nevertheless, the numbers of significant genes of cis
669 eQTL showed variations compared to previous analysis {Diessler, 2018 #495} due to use of
670 significance threshold for visualization. For example, the number of genes with significant
671 QTL unique to Cortex SD changed from 870 (PLOS paper Figure 2C) to 872 (Figure 5A).
672 The genes are considered as significant if their FDR-adjusted p-value is below or equal to
673 0.05, which is obtained by estimating the β -distribution fitting of random permutations tests.
674 Changing the fastqtl version (version 1.165 to version 2.184) seems to change the pseudo-
675 random number generation, even when using the concept of fixed seed. Consequently, the
676 number of genes considered as significant varies because their FDR-adjusted p-value passes
677 just above or below the threshold (FDR in the range of 0.04864 to 0.05054). This confirms
678 that looking at the order of magnitude is important, though the use of significance threshold is
679 convenient.

680

681 Moreover, the reanalysis process helped to improve the code documentation by explicitly
682 writing project-related knowledge, such as common abbreviations. Having another
683 perspective on the code also allowed to improve its structure. Indeed, a retrospective overview
684 helped improve the organisation of files, which was more difficult to do within the
685 implementation of the project because the code was incrementally created and adapted. The
686 process allowed to catch and correct minor mistakes or make improvements improved
687 readability and consistency. For example, it was highlighted that the ranking function used in

688 hiveplot to order nodes in the axes was using the “random” argument for differentiating ties.
689 As a key concept of the hiveplots was to be fully reproducible in the sense of “perpetual
690 uniformity”⁵⁶, we changed the ties.method parameter to “first” so that the same input always
691 gives the same result, without having to fix a seed for the pseudo-random generation. Another
692 example was the ranking of the x-axis in the gene DE volcano plot and the colouring that
693 were based on log-odds values (B statistic according to in limma R package) instead of FDR-
694 adjusted p-values. However, this reproducibility ‘experiment’ was internal to the group, which
695 facilitate communication such as which steps to focus on and whether to run them locally or
696 in a high-performance computing (HPC) structure. An assessment of the computational
697 requirements for each step, such as computing time, memory, software, and libraries used may
698 be interesting to provide to facilitate external reproducibility.

699

700 *Reanalysis with mm10*

701 To assess the influence of the reference genome used in the analyses, we reproduced selected
702 parts of bioinformatic pipeline using the updated version (mm10 instead of mm9). The results
703 (Figure 5, lower part, table 2 and 3) were consistent with previous analyses but presented also
704 some substantial variations. The cis-eQTL detection revealed differences in the number of
705 significant associations found, as showed in Table 2. These differences could be mainly
706 explained by small q-value variation around the significant threshold. Nevertheless, around
707 5% of cis-eQTLs did not reproduce even at a more permissive significant threshold (0.1
708 FDR), which affected some of our end results. For example, *Wrn* was no longer prioritized for
709 the gain of slow EEG delta power ($\delta 1$) after SD compared to previous results on mm9.
710 Although the cis-eQTL for *Wrn* was present in both assemblies for the ‘Cortex Control’
711 samples, it disappeared for ‘Cortex SD’ samples using mm10. A number of factors could have
712 contributed to this discrepancy among which i) the variations between mm9 and mm10 could
713 change the mappability of some transcripts, although this did not seem to be the case for the
714 *Wrn* sequence, ii) pseudo-alignment (Kallisto) was used instead of alignment (STAR), which
715 may have influenced the quantification, iii) bad quality reads were filtered with our STAR
716 pipeline according to Casava 1.82 but not with Kallisto, and iv) variant calling on RNA-seq
717 data to add markers was not done for mm10, so only markers from GeneNetwork were used.
718 Specifically to the latter factor, the marker closest to *Wrn* gene in mm9 merged genotypes
719 (rs51740715) is not present in mm10. The change in the number of genetic markers could
720 have therefore influenced the cis-eQTL detection, which is an important in the gene

721 prioritization that resulted in the identification of *Wrn* as candidate underlying the EEG delta
722 power (δ 1) trait under mm9.

723

	Liver NSD		Liver SD		Cortex NSD		Cortex SD	
Assembly	mm9	mm10	mm9	mm10	mm9	mm10	mm9	mm10
Total genes	14103	12647	14103	12647	14889	15734	14889	15734
Unique genes	2405	949	2405	949	1043	1888	1043	1888
Genes with significant cis-eQTL	3155	3092	2654	2695	4522	4192	4732	4542
Proportion of genes with significant cis-eQTL	0.22	0.24	0.19	0.21	0.30	0.27	0.32	0.29
Genes with significant cis-eQTL overlapping	2255		1911		3204		3483	
Genes with not significant cis-eQTL overlapping	8375		8857		9062		8801	
Genes with significant cis-eQTL not overlapping	900	837	743	784	1318	988	1249	1059
Genes with significant cis-eQTL almost overlapping	2995	2898	2535	2505	4201	4019	4441	4350

724 *Table 2: Comparison of cis-eQTL summary statistics in mm9 and mm10 reanalyses. ‘Unique’ is*
725 *defined as specific to an assembly (mm9 or mm10). Significance is defined as a q-value below or equal*
726 *to 0.05. ‘Overlapping’ is defined as common between mm9 and mm10 reanalyses. ‘Almost*
727 *overlapping’ is defined as uncommon between mm9 and mm10 that would be common if a threshold of*
728 *0.1 was used instead of 0.05.*

729

	Liver		Cortex	
	mm9	mm10	mm9	mm10
Total genes	12539	13264	14754	16057
DE genes	7573	8754	11534	11980
Proportion of DE genes	0.6040	0.6600	0.7818	0.7461
Suggestive DE genes	8253	9392	12069	12580
Proportion of suggestive DE genes	0.6582	0.7081	0.8180	0.7835

730 *Table 3: Comparison of gene DE in mm9 and mm10 reanalyses. Suggestive is defined as a q-value*
731 *below or equal to 0.1.*

732

733 Usage Notes

734 **SMO files**

735 Binary .smo files were structured as follows: Each file contains a 4-day recording or precisely
736 86'400 consecutive 4s epochs. Each 4s epoch contains the following information: one byte
737 character and 404 single precision floating-points, which represent, respectively: sleep-wake
738 state of the 4s epoch as a character (wake = ‘w’, NREM sleep = ‘n’, REM sleep = ‘r’, wake
739 w/ EEG artifact = ‘1’, NREM sleep w/ EEG artifact = ‘2’, REM sleep w/ EEG artifact = ‘3’,
740 wake w/ spindle-like EEG activity = ‘4’, NREM sleep w/ spindle-like EEG activity = ‘5’,

741 REM sleep w/ spindle-like EEG activity = '6', Paroxysmal EEG activity in wake = '7',
742 Paroxysmal EEG activity in NREM sleep = '8', Paroxysmal EEG activity in REM sleep = '9'
743), EEG power density from the full DFT spectrum of the 4s epoch from 0.00 Hz to 100.00 Hz
744 (401 values at 0.25-Hz resolution), the EEG variance, the EMG variance, and temperature.
745 Temperature was not measured and was set to 0.0.

746

747 **HDR files**

748 Text *.hdr* files are generated alongside their corresponding *.smo* file and contain among other
749 information, the mouse ID (*Patient*) and recording date.

750

751 **Rmarkdown scripts**

752 Some of the Rmarkdown scripts were created for a remote cluster environment on a CentOS
753 distribution which required the use of a second script that generated the document with the
754 *rmarkdown::render()* function and pass the expected function arguments. Therefore some
755 functions that use the parallel package in R are only executable on a linux environment (i.e.
756 *mclapply()*). These functions can be modified with the *doSNOW* R library to be applicable on
757 a windows environment. The author can set many option in the YAML (Yet Another Markup
758 Language) header to: create dynamic and readable table that contains multiple rows,
759 hide/show source code or integrated CSS style and table of contents. The reports can be
760 visualized using any web-browser.

761

762 Acknowledgements

763 We thank Yann Emmenegger, Mathieu Piguet and Josselin Soyer for the help organizing and
764 handling the BXD mice; Benita Middleton and Debra J. Skene at the university of Surrey for
765 metabolomics quantification; the experts at the Lausanne Genomics Technologies Facility
766 (GTF) for their help with RNA-sequencing; Nicolas Guex, Mark Ibberson, Frederic Burdet,
767 Alan Bridge, Lou Götz, Marco Pagni, Martial Sankar and Robin Liechti for their
768 bioinformatics expertise and help.

769 Computations and analyses were performed at Vital-IT (<http://www.vital-it.ch>).

770 PF, SD, and MJ were funded by the University of Lausanne (Etat de Vaud). MJ and NG were
771 funded by the Swiss National Science Foundation grant to PF (31003A_173182). MJ and SD
772 were funded by the Swiss National Science Foundation grant to PF and IX (CRSII3_13620).

773

774 **Author contributions**

775 M.J. Data analysis, data organization, manuscript writing
776 N.G. Pipeline reproduction, data organization, manuscript writing
777 S.D. Data generation and supervision for experiment 1 and 2
778 P.F. Data analysis, design experiments 1 and 2, project supervision, manuscript writing
779 I.X. Conceptualization, methodology, project supervision, manuscript writing

780

781 **Competing interests**

782 The authors declare no competing interests

783

784 **Figures**

785 Figure 1: Data generation. The behavioral/EEG end-phenotypes of the BXD mouse panel
786 were quantified in experiment 1. Mice were recorded for 4 days: 2 days of baseline (B1 &
787 B2), followed by 6h of sleep deprivation (SD) and 2 days of recovery (R1 & R2). EEG
788 spectral composition was written in *.smo* files, activity in *.act* files and meta-data in *.hdr* files.
789 Blood metabolomics, liver transcriptomics and cortical transcriptomics were quantified in
790 experiment 2. ‘Control’ and ‘Sleep deprived’ batches were sampled at a single time point:
791 ZT6 (i.e. directly after sleep deprivation for the ‘sleep deprived’ batch). Transcriptomics was
792 performed on pooled samples per BXD strains. For blood metabolomics, metabolite
793 quantification was performed for each BXD replicates.

794

795 Figure 2: PHRED read quality per base for BXD RNA-sequencing. PHRED quality score
796 based on illumina 1.9. A: Samples from Cortex during control. B: Samples from Cortex after
797 sleep deprivation. C: Samples from Liver during control. D: Samples from Liver after sleep
798 deprivation.

799

800 Figure 3: Summary of the bioinformatic analytical pipeline. Representation of the main
801 bioinformatics methods used. Original analyses were performed using the mm9 mouse
802 assembly (yellow). Results were also reproduced using the mm10 mouse assembly (red) and
803 all downstream analyses. Layers represent the scripts organization on gitlab and available
804 intermediate files.

805

806 Figure 4: Similarity matrix [in %] between RNA-seq variant calling and GeneNetwork
807 genotypes. A similarity of 1 indicates that all common genotypes are similar. We here
808 compare only genotypes that were labeled as ‘B’ or ‘D’ and excluded unknown ‘U’ or
809 heterozygous ‘H’ genotypes.
810
811 Figure 5: Robustness of the analysis pipeline. A to E: Technical reanalysis with mm9
812 reference genome. F to J: Reanalysis with mm10 reference genome. A and F: Venn diagram of
813 significant cis-eQTL. B and G: Volcano plot of differential gene expression in cortex. C and
814 H: Hiveplot NREM sleep gain during recovery of with highlight on Acot11. D, E, I, and J:
815 Gene prioritization for NREM sleep gain during recovery (D and I) or phosphatidylcholine
816 acyl-alkyl C38:2 levels (E and J). recovery=first 6 hours of dark period after sleep deprivation
817 (ZT 12-18), SD=sleep deprivation, NSD=not sleep deprivation (control), FC= fold-change,
818 NREM=non-REM, REM=Rapid eye movement, LOD=logarithm of odds, FDR=false
819 discovery rate.
820

821 References

822 1 Schmid, S. M., Hallschmid, M. & Schultes, B. The metabolic burden of sleep loss. *The
823 lancet. Diabetes & endocrinology* **3**, 52-62, doi:10.1016/S2213-8587(14)70012-9
824 (2015).

825 2 Diessler, S. *et al.* A systems genetics resource and analysis of sleep regulation in the
826 mouse. *PLOS Biology* **16**, doi:10.1371/journal.pbio.2005750 (2018).

827 3 Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits.
828 *Nature reviews. Genetics* **15**, 34-48, doi:10.1038/nrg3575 (2014).

829 4 Peirce, J. L., Lu, L., Gu, J., Silver, L. M. & Williams, R. W. A new set of BXD
830 recombinant inbred lines from advanced intercross populations in mice. *BMC genetics*
831 **5**, 7, doi:10.1186/1471-2156-5-7 (2004).

832 5 Maret, S. *et al.* Homer1a is a core brain molecular correlate of sleep loss. *Proceedings
833 of the National Academy of Sciences of the United States of America* **104**, 20090-
834 20095, doi:10.1073/pnas.0710131104 (2007).

835 6 Picard, A. *et al.* A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of
836 Glucagon Secretion. *Cell reports* **17**, 1795-1806, doi:10.1016/j.celrep.2016.10.041
837 (2016).

838 7 Neuner, S. M. *et al.* Systems genetics identifies Hp1bp3 as a novel modulator of
839 cognitive aging. *Neurobiology of aging* **46**, 58-67,
840 doi:10.1016/j.neurobiolaging.2016.06.008 (2016).

841 8 Andreux, P. A. A. *et al.* Systems genetics of metabolism: the use of the BXD murine
842 reference panel for multiscalar integration of traits. *Cell* **150**, 1287-1299,
843 doi:10.1016/j.cell.2012.08.012 (2012).

844 9 Baliga, N. S. *et al.* The State of Systems Genetics in 2017. *Cell Syst* **4**, 7-15,
845 doi:10.1016/j.cels.2017.01.005 (2017).

846 10 Gligorijević, V. & Pržulj, N. Methods for biological data integration: perspectives and
847 challenges. *Journal of the Royal Society, Interface* **12**, doi:10.1098/rsif.2015.0571
848 (2015).

849 11 Nekrutenko, A. & Taylor, J. Next-generation sequencing data interpretation: enhancing
850 reproducibility and accessibility. *Nature Reviews Genetics*, doi:10.1038/nrg3305
851 (2012).

852 12 Figueiredo, A. S. Data Sharing: Convert Challenges into Opportunities. *Front Public
853 Health* **5**, 327, doi:10.3389/fpubh.2017.00327 (2017).

854 13 Bechhofer, S., Buchan, I., Roure, D. D. & Generation ..., M.-P. Why linked data is not
855 enough for scientists. *Future Generation Computer Systems* (2013).

856 14 Wilkinson, M. D. *et al.* Interoperability and FAIRness through a novel combination of
857 Web technologies. *PeerJ Computer Science* **3**, doi:10.7717/peerj-cs.110 (2017).

858 15 Jagodnik, K. M. *et al.* Developing a framework for digital objects in the Big Data to
859 Knowledge (BD2K) commons: Report from the Commons Framework Pilots
860 workshop. *J Biomed Inform* **71**, 49-57, doi:10.1016/j.jbi.2017.05.006 (2017).

861 16 Sansone, S. A. *et al.* Toward interoperable bioscience data. *Nat Genet* **44**, 121-126,
862 doi:10.1038/ng.1054 (2012).

863 17 Lowndes, J. S. S. *et al.* Our path to better science in less time using open data science
864 tools. *Nat Ecol Evol* **1**, 160, doi:10.1038/s41559-017-0160 (2017).

865 18 Vasilevsky, N. A., Minnier, J., Haendel, M. A. & Champieux, R. E. Reproducible and
866 reusable research: are journal data sharing policies meeting the mark? *PeerJ* **5**, e3208,
867 doi:10.7717/peerj.3208 (2017).

868 19 Wallach, J. D., Boyack, K. W. & Ioannidis, J. P. A. Reproducible research practices,
869 transparency, and open access data in the biomedical literature, 2015-2017. *PLoS Biol*
870 **16**, e2006930, doi:10.1371/journal.pbio.2006930 (2018).

871 20 Munafo, M. R. *et al.* A manifesto for reproducible science. *Nature Human Behaviour*
872 **1**, doi:10.1038/s41562-016-0021 (2017).

873 21 Shin, D.-L. L. *et al.* Segregation of a spontaneous Klr1 (CD94) mutation in DBA/2
874 mouse substrains. *G3 (Bethesda, Md.)* **5**, 235-239, doi:10.1534/g3.114.015164 (2014).

875 22 Mang, G. M. M. & Franken, P. Sleep and EEG Phenotyping in Mice. *Current
876 protocols in mouse biology* **2**, 55-74, doi:10.1002/9780470942390.mo110126 (2012).

877 23 Davies, S. K. *et al.* Effect of sleep deprivation on the human metabolome. *Proceedings
878 of the National Academy of Sciences of the United States of America* **111**, 10761-
879 10766, doi:10.1073/pnas.1402663111 (2014).

880 24 Isherwood, C. M., Van der Veen, D. R., Johnston, J. D. & Skene, D. J. Twenty-four-
881 hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes.
882 *FASEB J* **31**, 5557-5567, doi:10.1096/fj.201700323R (2017).

883 25 Conesa, A. *et al.* A survey of best practices for RNA-seq data analysis. *Genome
884 biology* **17**, 13, doi:10.1186/s13059-016-0881-8 (2016).

885 26 Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the
886 integration of genomic datasets with the R/Bioconductor package biomaRt. *Nature
887 protocols* **4**, 1184-1191, doi:10.1038/nprot.2009.97 (2009).

888 27 Durrant, C. *et al.* Bioinformatics tools and database resources for systems genetics
889 analysis in mice--a short review and an evaluation of future needs. *Briefings in
890 bioinformatics* **13**, 135-142, doi:10.1093/bib/bbr026 (2012).

891 28 H., O., Buil, A., Brown, A. A. & Dermitzakis, E. T. Fast and efficient QTL mapper for
892 thousands of molecular phenotypes. (2015).

893 29 Schupbach, T., Xenarios, I., Bergmann, S. & Kapur, K. FastEpistasis: a high
894 performance computing solution for quantitative trait epistasis. *Bioinformatics* **26**,
895 1468-1469, doi:10.1093/bioinformatics/btq147 (2010).

896 30 Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for
897 reproducible computational research. *PLoS Comput Biol*,
898 doi:10.1371/journal.pcbi.1003285 (2013).

899 31 Xie, Y. knitr: a comprehensive tool for reproducible research in R. *Implement Reprod
900 Res* **1**, 20 (2014).

901 32 Baumer, B., Cetinkaya-Rundel, M., Bray, A. & Loi, L. R Markdown: Integrating a
902 reproducible analysis tool into introductory statistics. *arXiv preprint arXiv*: ... (2014).

903 33 Cohen-Boulakia, S. *et al.* Scientific workflows for computational reproducibility in the
904 life sciences: Status, challenges and opportunities. *Future Generation Computer
905 Systems-the International Journal of Escience* **75**, 284-298,
906 doi:10.1016/j.future.2017.01.012 (2017).

907 34 Neff, E. P. A mouse sleep database for systems genetics. *Lab Anim (NY)* **47**, 272,
908 doi:10.1038/s41684-018-0163-z (2018).

909 35 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc
910 Functions of the Department of Statistics (e1071), TU Wien. [http://CRAN.R-
911 project.org/package=e1071](http://CRAN.R-project.org/package=e1071) (2014).

912 36 Kuhn., M. *et al.* caret: Classification and Regression Training. [http://CRAN.R-
913 project.org/package=caret](http://CRAN.R-project.org/package=caret) (2014).

914 37 Franken, P., Malafosse, A. & Tafti, M. Genetic variation in EEG activity during sleep
915 in inbred mice. *The American journal of physiology* **275**, 37 (1998).

916 38 Buzsáki, G. Theta oscillations in the hippocampus. *Neuron* **33**, 325-340 (2002).

917 39 Welsh, D. K., Richardson, G. S. & Dement, W. C. A circadian rhythm of hippocampal
918 theta activity in the mouse. *Physiology & behavior* **35**, 533-538 (1985).

919 40 Vassalli, A. & Franken, P. Hypocretin (orexin) is critical in sustaining theta/gamma-
920 rich waking behaviors that drive sleep need. *Proceedings of the National Academy of
921 Sciences of the United States of America* **114**, doi:10.1073/pnas.1700983114 (2017).

922 41 Ryan, L. J. Characterization of cortical spindles in DBA/2 and C57BL/6 inbred mice.
923 *Brain research bulletin* **13**, 549-558 (1984).

924 42 Dobin, A. & C., D. STAR: ultrafast universal RNA-seq aligner. (2013).

925 43 McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for
926 analyzing next-generation DNA sequencing data. *Genome Res* **20**, 1297-1303,
927 doi:10.1101/gr.107524.110 (2010).

928 44 DePristo, M. A. *et al.* A framework for variation discovery and genotyping using next-
929 generation DNA sequencing data. *Nat Genet* **43**, 491-498, doi:10.1038/ng.806 (2011).

930 45 Van der Auwera, G. A. *et al.* From FastQ data to high confidence variant calls: the
931 Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* **43**, 11
932 10 11-33, doi:10.1002/0471250953.bi1110s43 (2013).

933 46 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
934 variants from high-throughput sequencing data. *Nucleic Acids Res* **38**, e164,
935 doi:10.1093/nar/gkq603 (2010).

936 47 Adzhubei, I. A. *et al.* A method and server for predicting damaging missense
937 mutations. *Nat Methods* **7**, 248-249, doi:10.1038/nmeth0410-248 (2010).

938 48 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-
939 throughput sequencing data. *Bioinformatics* **31**, 166-169,
940 doi:10.1093/bioinformatics/btu638 (2015).

941 49 Robinson, M. & Oshlack, A. A scaling normalization method for differential
942 expression analysis of RNA-seq data. (2010).

943 50 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-
944 sequencing and microarray studies. *Nucleic Acids Res* **43**, e47,
945 doi:10.1093/nar/gkv007 (2015).

946 51 Law, C. W., Chen, J. C., Shi, W. & Smyth, G. K. voom: precision weights unlock
947 linear model analysis tools for RNA-seq read counts. (2014).

948 52 Burgess-Herbert, S. L., Cox, A., Tsaih, S.-W. W. & Paigen, B. Practical applications of
949 the bioinformatics toolbox for narrowing quantitative trait loci. *Genetics* **180**, 2227-
950 2235, doi:10.1534/genetics.108.090175 (2008).

951 53 Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for
952 interpreting and reporting linkage results. *Nature genetics* **11**, 241-247,
953 doi:10.1038/ng1195-241 (1995).

954 54 Broman, K. W. & Sen, S. *A Guide to QTL Mapping with R/qtl*. Vol. 46 (Springer,
955 2009).

956 55 Bass JDSwcfAJ, D. A., and D, R. . qvalue: Q-value estimation for false discovery rate
957 control. *R package version 2.3.0*. (2015).

958 56 Krzywinski, M., Birol, I., Jones, S. J. & Marra, M. A. Hive plots--rational approach to
959 visualizing networks. *Briefings in bioinformatics* **13**, 627-644, doi:10.1093/bib/bbr069
960 (2012).

961 57 Lachmann, A. *et al.* Massive mining of publicly available RNA-seq data from human
962 and mouse. *Nat Commun* **9**, 1366, doi:10.1038/s41467-018-03751-6 (2018).

963 58 Torre, D., Lachmann, A. & Ma'ayan, A. BioJupies: Automated Generation of
964 Interactive Notebooks for RNA-Seq Data Analysis in the Cloud. *Cell Syst* **7**, 556-561
965 e553, doi:10.1016/j.cels.2018.10.007 (2018).

966 59 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-
967 seq quantification. *Nat Biotechnol* **34**, 525-527, doi:10.1038/nbt.3519 (2016).

968 60 Zhao, H. *et al.* CrossMap: a versatile tool for coordinate conversion between genome
969 assemblies. *Bioinformatics* **30**, 1006-1007, doi:10.1093/bioinformatics/btt730 (2014).

970

971 **Data Citations**

972

973

1. Diessler, S., Jan, M., Emmenegger, Y., Guex, N., Middleton, B., Skene, D. J.,
Ibberson, M., Burdet, F., Götz, L., Pagni, M., Sankar, M., Liechti, R., Hor, C. N.,
Xenarios, I., Franken, P., *Figshare*, [LinkToCome](#) (2019).

976

977 2. Diessler, S., Jan, M., Emmenegger, Y., Guex, N., Middleton, B., Skene, D. J.,
Ibberson, M., Burdet, F., Götz, L., Pagni, M., Sankar, M., Liechti, R., Hor, C. N.,
Xenarios, I., Franken, P., *Gene Expression Omnibus*, [GSE114845](#) (2018).

979

980 3. Diessler, S., Jan, M., Emmenegger, Y., Guex, N., Middleton, B., Skene, D. J.,
Ibberson, M., Burdet, F., Götz, L., Pagni, M., Sankar, M., Liechti, R., Hor, C. N.,
Xenarios, I., Franken, P., *bx.d.vital-it.ch*, <https://bx.d.vital-it.ch/#/> (2018).

982

983 4. Jan, M., Gobet, N., Diessler, S., Franken P., Xenarios I., *gitlab*,

https://gitlab.unil.ch/mjan/Systems_Genetics_of_Sleep_Regulation (2019).

984

985 5. Jan, M. Gobet, N., Diessler, S., Franken P., Xenarios I., *figshare*,

<https://figshare.com/s/51916157a22357755de8>, (2019)

986

987 6. Robert Williams, Jesse Ingels, Lu Lu, Danny Arends, and Karl Broman. *BXD*

Genotype Database. <http://www.genenetwork.org> GN Accession: GN600 (2018).

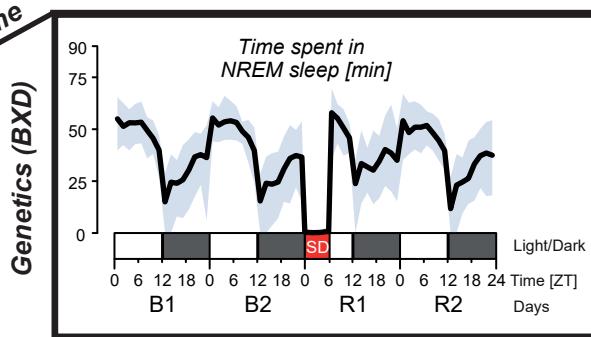
BXD panel

34 BXD/Rwwj + 4 BXD/Tyj + 2 C57BL/6J + 2 DBA/2J + 2 F1

bioRxiv preprint doi: <https://doi.org/10.1101/586206>; this version posted March 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

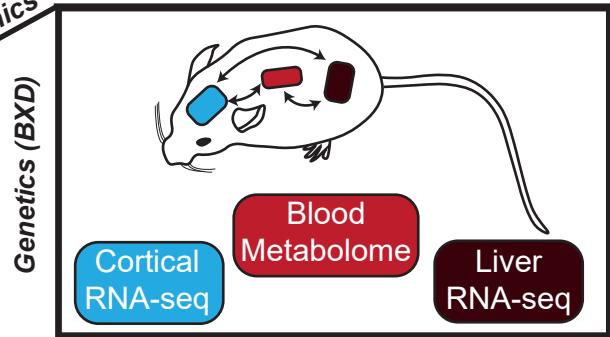
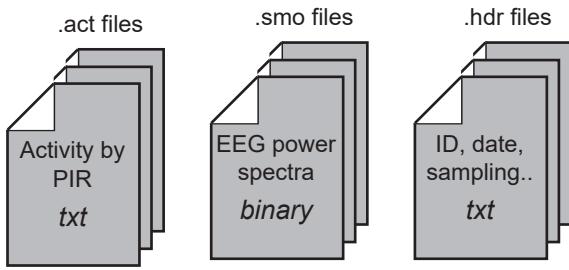
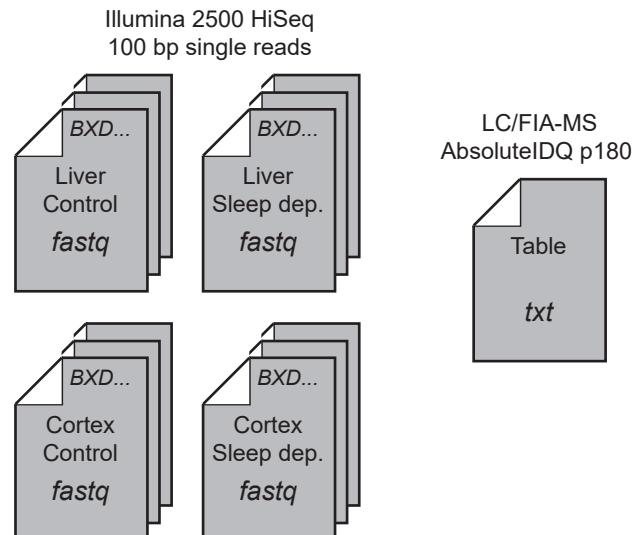
Experiment 1

Baseline (B), Sleep Deprivation (SD), Recovery (R)



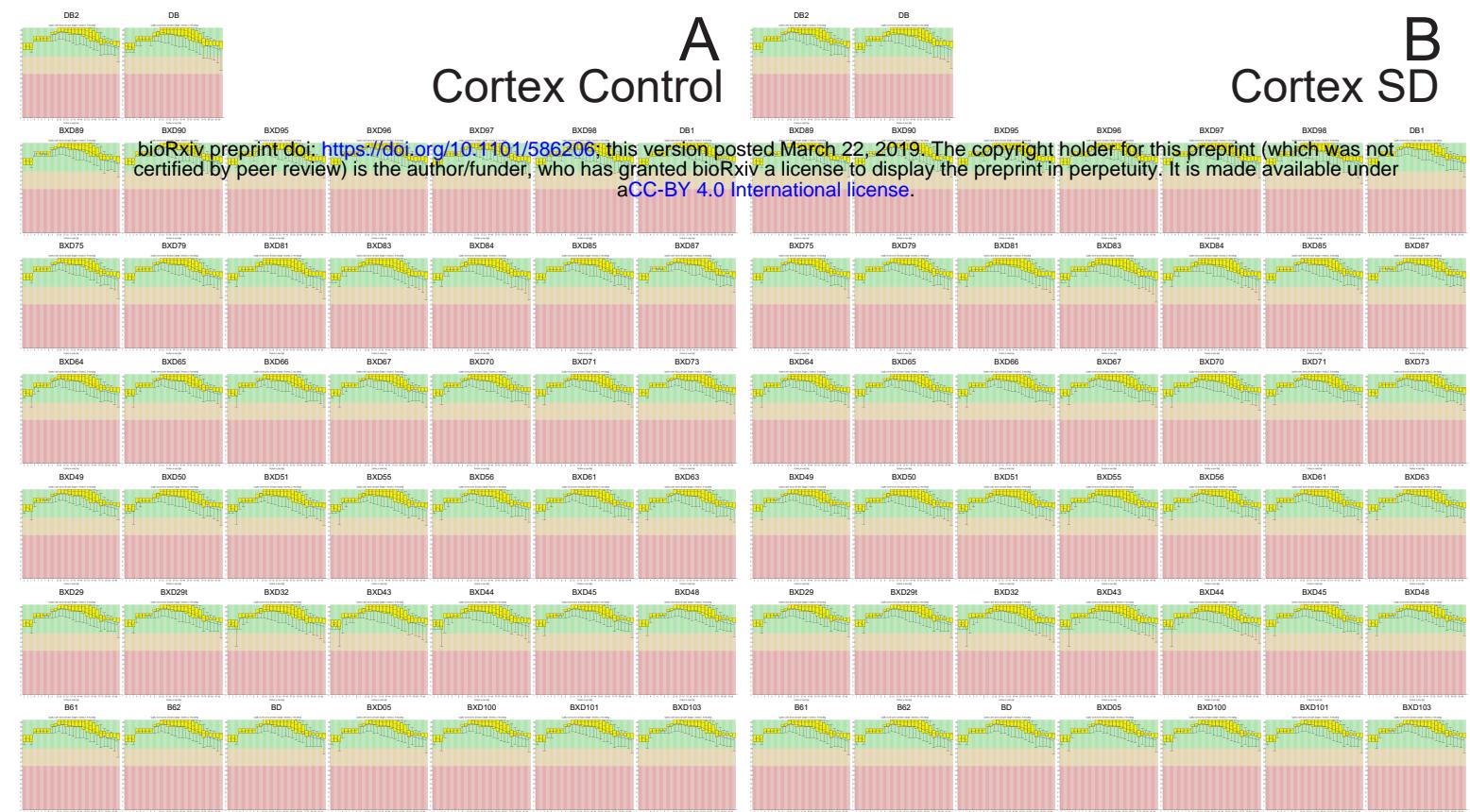
Experiment 2

Control [ZT-6] and Sleep Deprived [ZT-6]



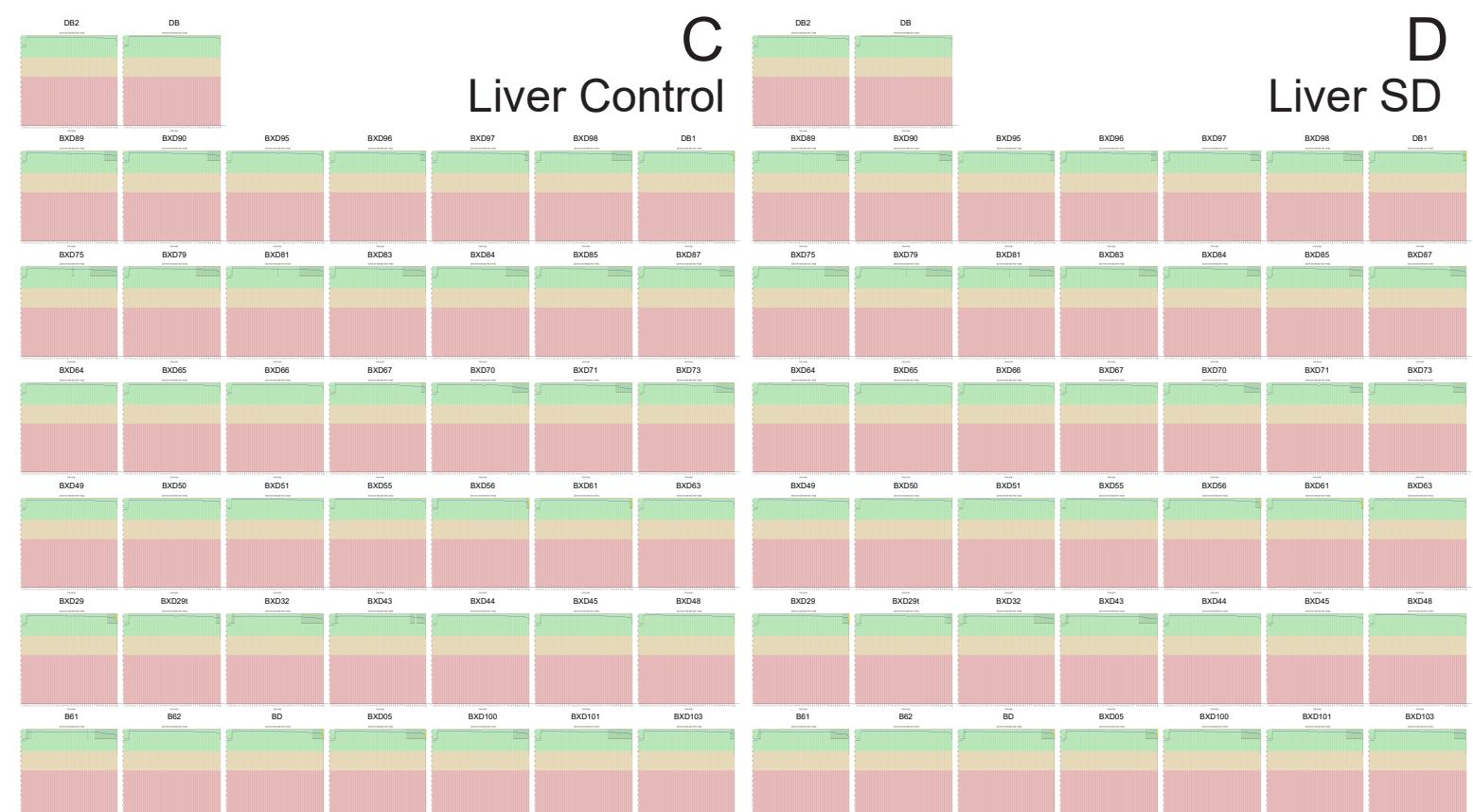
A Cortex Control

B Cortex SD



C Liver Control

D Liver SD



Metabolites

GeneNetwork
genotypes

RNA-seq

EEG spectrum
& annotation

.Txt
bioRxiv preprint doi: <https://doi.org/10.1101/586206>; this version posted March 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Data

Genotyping
mm10

Genotyping
mm9

Alignment
mm10

Alignment
mm9

phenotyping

Expression
Normalization

Phenotypes
QTL mapping

Differential
Expression

Metabolite
QTL mapping

Expression
QTL mapping

Gene
Prioritization

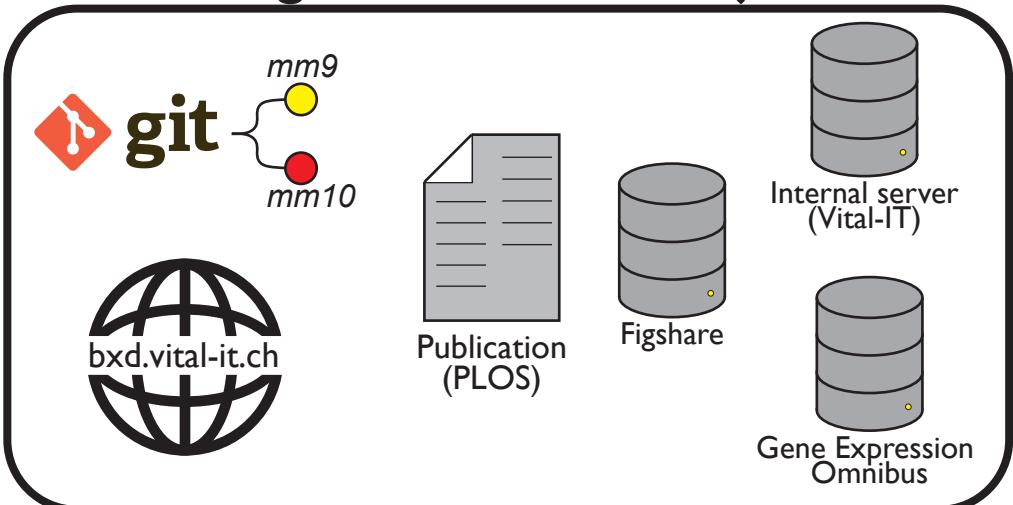
Hiveplot
Visualization

Low
layer

Intermediate
layer

High
layer

Digital Research Object



Data Sharing

