bioRxiv preprint doi: https://doi.org/10.1101/585455; this version posted April 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The Alzheimer’s Disease Metabolome: Effects of Sex and APOE
€4 genotype

Matthias Arnold*?*, Kwangsik Nho**, Alexandra Kueider-Paisley?, Tyler Massaro®, Barbara Brauner?,
Siamak MahmoudianDehkordi?, Gregory Louie!, M. Arthur Moseley®, J. Will Thompson?, Lisa St John
Williams®, Jessica D. Tenenbaum®, Colette Blach’, Rui Chang®, Roberta D. Brinton®%1°, Rebecca Baillie??,
Xianlin Han'?, John Q. Trojanowski?, Leslie M. Shaw®3, Michael W. Weiner!*, Eugenia Trushina>*®, Jon
B. Toledo, Jan Krumsiek?8, P. Murali Doraiswamy®2%, Andrew J. Saykin3, Rima Kaddurah-Daouk®*%2%,

2,21+

and Gabi Kastenmiiller>?** for the Alzheimer’s Disease Neuroimaging Initiative” and the Alzheimer’s

Disease Metabolomics Consortium

! Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA

2 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Miinchen, German Research

Center for Environmental Health, Neuherberg, Germany

3 Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana
University School of Medicine, Indianapolis, IN, USA

4 Duke Clinical Research Institute, Duke University, Durham, NC, USA

> Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational
Biology, Duke University, Durham, NC, USA

® Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA

Duke Molecular Physiology Institute, Duke University, Durham, NC, USA

8 Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA

 Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA

10 Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA

1 Rosa & Co LLC, San Carlos, CA, USA

12 University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

13 Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

14 Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA
Medical Center/University of California San Francisco, San Francisco, CA, USA

15 Department of Neurology, Mayo Clinic, Rochester, MN, USA

16 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN,
USA

17 Department of Neurology, Houston Methodist Hospital, Houston, TX, USA

18 |nstitute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of
Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA

19 Duke Institute of Brain Sciences, Duke University, Durham, NC, USA

20 Department of Medicine, Duke University, Durham, NC, USA

21 German Center for Diabetes Research (DZD), Neuherberg, Germany

* These authors contributed equally

*Corresponding author information:


https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/585455; this version posted April 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Gabi Kastenmdiller, Ph.D.

Helmholtz Zentrum Minchen, Institute of Bioinformatics and Systems Biology
Ingolstadter LandstraRe 1

D-85764 Neuherberg, Germany

Tel: +49-89-3187-3578

Email: g.kastenmueller@helmholtz-muenchen.de

Rima Kaddurah-Daouk, Ph.D.
Duke University Medical Center
Durham, NC, USA

Tel: +1-919-684-2611

Email: kaddu001@mc.duke.edu

t Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


mailto:g.kastenmueller@helmholtz-muenchen.de
mailto:kaddu001@mc.duke.edu
https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/585455; this version posted April 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Significance statement

Research provides substantial evidence that late-onset Alzheimer’s disease (AD), the major cause of
dementia in the elderly, is a metabolic disease. Besides age, female sex and APOEg4 genotype represent
strong risk factors for AD, and at the same time, give rise to large metabolic differences. Our systematic
investigation of sex and APOE €4 genotype differences in the link between metabolism and measures of
pre-symptomatic AD using stratified analysis revealed several group-specific metabolic alterations that
were not observed without sex and genotype stratification of the same cohort. Pathways linked to the
observed metabolic alterations suggest females are more affected by impairment of mitochondrial
energy production in AD than males, highlighting the importance of tailored treatment approaches
towards a precision medicine approach.
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Abstract

Recent studies have provided evidence that late-onset Alzheimer’s disease (AD), the major cause of
dementia in the elderly, can, at least in part, be considered a metabolic disease. Besides age, female sex
and APOE €4 genotype represent strong risk factors for AD. At the same time, they both give rise to large
metabolic differences, suggesting that metabolic aspects of AD pathogenesis may differ between males
and females and APOE €4 carriers and non-carriers, respectively. Here, we systematically investigated
group-specific metabolic alterations by conducting stratified association analyses of 140 metabolites
measured in serum samples of 1,517 individuals from the AD neuroimaging initiative with AD biomarkers
for AB and tau pathology, as well as neurodegeneration. We observed substantial sex differences in
effects of 15 metabolites on AD biomarkers with partially overlapping differences for APOE €4 status
groups. These metabolites highlighted several group-specific alterations that were not observed in
unstratified analyses using sex and APOE €4 as covariates. Combined stratification by both variables
uncovered further subgroup-specific metabolic effects limited to the group with presumably highest AD
risk, i.e. APOE €4+ females. Pathways linked to the observed metabolic alterations suggest that females
experience more expressed impairment of mitochondrial energy production in AD than males. These
findings indicate that dissecting metabolic heterogeneity in AD pathogenesis may allow for grading the
biomedical relevance of specific pathways for specific subgroups. Extending our approach beyond simple
one or two-fold stratification may thus guide the way to personalized medicine.
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1. Introduction

Female sex has long been regarded a major risk factor for Alzheimer’s disease (AD). It is assumed that out
of 5.3 million people in the United States who were diagnosed with AD at age 65 or older, more than 60%
are women. Also, estimates indicate that the lifetime risk of developing AD at age 45 may be almost
double in females than in males (1, 2). However, the exact role and magnitude of sexual dimorphism in
predisposition and progression to AD are controversial (3-6). While age is the strongest risk factor for late-
onset AD (LOAD), the higher life expectancy of women only partially explains the observed sex difference
in frequency and lifetime risk (7). Complexity is added by several genetic studies showing a significant sex
difference in effects of the APOE €4 genotype, the strongest common genetic risk factor for LOAD. These
studies report risk estimates for €4 carriers being higher in females than in males, a finding that seems to
be additionally dependent on age (8-13). APOE €4 has also been described to be associated with AD
biomarkers in a sex-dependent way with again larger risk estimates for women than for men (9, 14-17),
although these findings have not been fully consistent across studies (16, 18). Additionally, studies have
suggested that sex differences in AD may change during the trajectory of disease (19), with overall risk for
mild cognitive impairment (MCI), the prodromal stage of AD, being higher in males (20, 21), while
progression to AD occurs at a faster rate in females, at least partly in APOE €4-dependent ways (3, 8, 10,
19, 22, 23). The mechanisms underlying this sex-linked and partly intertwined APOE €4- and age-
dependent heterogeneity in AD susceptibility and severity are only beginning to unravel, calling for novel
approaches to further elucidate molecular sex differences in AD risk and biomarker profiles.

Interestingly, all three of the aforementioned major AD risk factors, i.e. age, APOE €4 genotype, and sex,
have a profound impact on metabolism (24-30), supporting the view of AD as a metabolic disease (31-33).
In recent years, availability of high-throughput metabolomics techniques, which can measure hundreds
of small biochemical molecules (metabolites) simultaneously, allows for the study of metabolic imprints
of age, genetic variation, and sex very broadly, covering the entire metabolism: (i) Age-dependent
differences were observed in levels of phosphatidylcholines (PCs), sphingomyelins (SMs), acylcarnitines,
ceramides, and amino acids (29, 34). A panel of 22 independent metabolites explained 59% of the total
variance in chronological age in a large twin population cohort. In addition, one of these metabolites, C-
glycosyltryptophan, was associated with age-related traits including bone mineral density, lung (30) and
kidney function (35). (ii) As expected from APOE’s known role in cholesterol and lipid metabolism (36, 37),
common genetic variants in this gene were associated with blood cholesterol levels in genome- and
metabolome-wide association studies (37, 38). In addition, associations with levels of various SMs were
identified (39, 40). (iii) Analogous to age, sex also affects blood levels of many metabolites from a broad
range of biochemical pathways. In a healthy elderly population with mostly post-menopausal women,
females showed higher levels of most lipids except lyso-PCs, while the levels of most amino acids including
branched chain amino acids (BCAAs) were higher in males with the exception of glycine and serine, which
were higher in women (24, 25). In addition to studies investigating the impact of age and sex on
metabolism separately, Gonzalez-Covarrubias et al. recently reported sex-specific lipid signatures
associated with longevity in the Leiden Longevity Study (29). In women, higher levels of ether-PC and SM
species were associated with longevity; no significant differences were observed in men. Thus, based on
results from large-scale metabolomics studies, aging may influence a wider range of metabolites in
women than men, highlighting the need for sex-stratified analyses.
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Many of the metabolites affected by female sex, age, and APOE genotype such as BCAAs, glutamate, and
various lipids appear to be altered in AD independent of these risk factors (39, 41, 42). In patients with
MCI, alterations in lipid metabolism, lysine metabolism, and the tricarboxylic acid cycle have been
observed (43, 44). In one of the largest blood-based metabolomics studies of AD, we identified metabolic
alterations in various stages across the trajectory of the disease. For instance, higher levels of SMs and
PCs were observed in early stages of AD as defined by abnormal CSF ABi.4; levels, whereas intermediate
changes, measured by CSF total tau, were correlated with increased levels of SMs and long-chain
acylcarnitines (45). Changes in brain volume and cognition, usually noted in later stages, were correlated
with a shift in energy substrate utilization from fatty acids to amino acids, especially BCAAs. Other
metabolomics studies have reported metabolic alterations in AD which support these findings, including
alterations in PCs in AD (44, 46-48) and sphingolipid transport and fatty acid metabolism in MCI/AD
compared to cognitively normal (CN) subjects (49). Higher blood concentrations of sphingolipid species
were associated with disease progression and pathological severity at autopsy (50). Metabolomics
analysis of brain and blood tissue further revealed that bile acids, important regulators of lipid metabolism
and products of human-gut microbiome co-metabolism, were altered in AD (51, 52) and associated with
brain glucose metabolism and atrophy as well as CSF AB1.4; and p-tau (53). In most of these studies, sex
as well as APOE €4 genotype, were used as covariates. Thus, sex-specific associations between AD and
metabolite levels or associations that are modified by sex with opposite effect directions for the two sexes
might have been missed in these analyses. Similarly, sex-by-APOE genotype interactions would have been
masked.

Here, we examine the role of sex in the relationship between metabolic alterations and AD, in order to
elucidate possible metabolic underpinnings for the observed sexual dimorphism in AD susceptibility and
severity. Using metabolomics data from 1,517 subjects of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohorts, we specifically investigate how sex modifies the associations of representative A-T-N
biomarkers (54, 55) (A: CSF AP1-42 pathology; T: CSF p-tau; N: region of interest (ROI)-based glucose uptake
measured by FDG-PET) with 140 blood metabolites by stratified analyses and systematic comparison of
effects between men and women. In downstream analyses, we then inspect sex-differences in metabolic
effects on AD biomarkers for dependencies on APOE genotype, both by interaction analysis and sub-
stratification.

2. Methods

2.1. Study subjects
Data used in the preparation of this article were obtained from the ADNI database
(http://adni.loni.usc.edu/). The ADNI was launched in 2003 as a public-private partnership. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCl) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org. Information on data availability and accessibility

is available in the Supplementary Text 1.
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In the current study, we included 1,517 baseline serum samples of fasting participants pooled from ADNI
phases 1, GO, and 2. Demographics, diagnostic groups, and numbers and distributions of key risk factors
are provided in Table 1. AD dementia diagnosis was established based on the NINDS-ADRDA criteria for
probable AD. MCI participants did not meet these AD criteria and had largely intact functional
performance, meeting predetermined criteria for amnestic MCI (56). Of the 1,517 subjects, 689 were
female and 828 male, with 708 APOE €4 carriers and 809 non-carriers. In the combined stratification by
sex and APOE €4 status (APOE €4- = 0 copies of €4, APOE €4+ = 1 or 2 copies of €4), the APOE €4 non-
carriers were separated into 374 females and 435 males, while of APOE €4 carriers 315 were female and
393 male.

2.2. Metabolomics data acquisition

Metabolites were measured with the targeted AbsolutelDQ-p180 metabolomics kit (BIOCRATES Life
Science AG, Innsbruck, Austria), with an ultra-performance liquid chromatography (UPLC)/MS/MS system
[Acquity UPLC (Waters), TQ-S triple quadrupole MS/MS (Waters)] which provides measurements of up to
186 endogenous metabolites. Sample extraction, metabolite measurement, identification, quantification,
and primary quality control (QC) followed standard procedures as described before (45, 57).

2.3. Metabolomics data processing

Metabolomics data processing followed the processing protocol previously described (45, 57) with a few
adjustments. In brief, raw metabolomics data for 182 metabolites was available for 1,681 serum study
samples and, for each plate, 2-3 NIST Standard Reference samples were available. Furthermore, we had
blinded duplicated measurements for 19 samples (ADNI-1) and blinded triplicated measurements for 17
samples (ADNI-GO and -2) distributed across plates. We first excluded 22 metabolites with large numbers
of missing values (> 40%). Then, we removed plate batch effects using cross-plate mean normalization
using NIST metabolite concentrations. Duplicated and triplicated study samples were then used to
calculate the coefficients of variation (exclusion criterion >20%) and intra-class correlation (exclusion
criterion <0.65) for each metabolite. We removed 20 metabolites that violated these thresholds. Next, we
excluded non-fasting samples (n=108), imputed missing metabolite data using half the value of the lower
limit of detection per metabolite and plate, log2-transformed metabolite concentrations, centered and
scaled distributions to a mean of zero and unit variance and winsorized single outlying values to 3 standard
deviations. We then used the Mahalanobis distance for detection of multivariate subject outliers, applying
the critical Chi-square value for P < 0.01 and removing 42 subjects. Finally, metabolites were adjusted for
significant medication effects using stepwise backwards selection (for details see (57)). The final QC-ed
metabolomics dataset was further restricted to individuals having data on all significant covariates (see
Section 2.4. Phenotype data and covariate selection), resulting in the study dataset of 140 metabolites
and 1,517 individuals.

2.4. Phenotype data and covariate selection

We limited association analyses of metabolites with AD to early detectable endophenotypes, more
specifically to the pathological threshold for CSF ABi.42, levels of phosphorylated tau protein in the CSF (p-
tau), and brain glucose metabolism measured by [*®F] fluorodeoxyglucose (FDG)-positron emission
tomography (PET). Baseline data on these biomarkers for ADNI-1, -GO, and -2 participants was


https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/585455; this version posted April 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

downloaded from the LONI online portal at https://ida.loni.usc.edu/. For CSF biomarker data, we used

the dataset generated using the validated and highly automated Roche Elecsys electrochemiluminescence
immunoassays (58, 59). For FDG-PET, we used a ROIl-based measure of average glucose uptake across the
left and right angular, left and right temporal and bilateral posterior cingulate regions derived from
preprocessed scans (co-registered, averaged, standardized image and voxel size, uniform resolution) and
intensity-normalized using a pons ROI to obtain standard uptake value ratio (SUVR) means (60, 61). The
pathological CSF AB1.42 cut-point (1,073 pg/ml) as reported by the ADNI biomarker core for diagnosis-
independent mixture modeling (see http://adni.loni.usc.edu/methods/, accessed Oct 2017) was used for

categorization since CSF AB1.4; concentrations were not normally distributed. Processed FDG-PET values
were scaled and centered to zero mean and unit variance prior to association analysis, p-tau levels were
additionally log2-transformed. Furthermore, we extracted covariates including age, sex, body-mass-index
(BMI; calculated using baseline weight and body height), number of copies of the APOE €4 genotype, and
years of education. Covariates were separated into forced-in (age, sex, ADNI study phase, and number of
copies of APOE €4) and covariates (BMI, education) selectable by backwards selection. ADNI study phase
was included to adjust for remaining metabolic differences between batches (ADNI-1 and ADNI-GO/-2
were processed in separate runs), as well as differences in PET imaging technologies.

2.5. Association analyses

Association analyses of the three AD biomarkers with metabolite levels were conducted using standard
linear (p-tau, FDG-PET) and logistic (pathological AB1.42) regression. For pathological CSF AB1.42, only BMI
was additionally selected, while for p-tau and FDG-PET the full set of covariates was used. The
stratification variables sex and copies of APOE €4 were excluded as covariates in the respective group-
specific association analyses (i.e. sex in sex-stratified and copies of APOE €4 in APOE £4+/- status-stratified
analyses, respectively). For identifying metabolic sex-differences, we used linear regression with
metabolite levels as the dependent variable and age, sex, BMI, ADNI study phase, and diagnostic group as
explanatory variables and retrieved statistics for sex. To adjust for multiple testing, we accounted for the
significant correlation structure across the 140 metabolites and determined the number of independent
metabolic features (i.e. tests) using the method of Li and Ji (62) to be 55, leading to a threshold of
Bonferroni significance of 9.09 x 10, To assess significance of heterogeneity between strata, we followed
the methodology of (25, 63) that is similar to the determination of study heterogeneity in inverse-
weighted meta-analysis. We further provide a scaled index of percent heterogeneity that is similar to the
I? statistic (64).

3. Results

In this study, we used CSF biomarkers, FDG-PET imaging, and metabolomics data on 140 metabolites to
investigate metabolic effects in relation to sex and AD and their interaction. Out of 1,517 ADNI
participants, 1,082 had CSF AB1.42 and p-tau levels and 1,143 had FDG-PET data available (Table 1). We
included all individuals with respective data regardless of their diagnostic classification, as we were
interested in these three representatives of the A-T-N AD biomarker schema (54, 55) as our main
readouts. In this data set, there was no significant difference in the number of APOE £4+/- subjects
between females and males (P > 0.3). Of the three AD biomarkers, only p-tau levels were significantly
different between sexes (corrected P = 0.01) with slightly higher levels observed in females.
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Previous studies consistently showed widespread metabolic sex-differences, metabolic imprint of genetic
variance in the APOE locus, as well as significant associations between blood metabolites and AD
biomarkers that are independent of (i.e. adjusted for) sex. In the current study, we add the specific
examination of the following central questions (Supplementary Figure 1): (i) Are metabolic sex-
differences changed due to presence of (probable) AD?, (ii) Are metabolite associations with A-T-N
biomarkers modified by sex?, and (iii) Is there evidence for APOE €4 status influencing metabolite
associations with A-T-N biomarkers that show differences between sexes?

3.1. Metabolic sex-differences are unaffected by MCI and probable AD status

In a first step, we tested whether sex-associated differences in blood metabolite levels differ between
patients with probable AD, subjects with late MCI, and CN subjects in the ADNI cohorts. In the complete
cohort (n=1,517), we found 108 of 140 metabolites to be significantly associated with sex after multiple
testing correction while adjusting for age, BMI, ADNI study phase, and diagnostic group. 70 of these
associations replicate previous findings in a healthy population using a prior version of the same
metabolomics platform (25) that provides measurements on 92 out of the 108 metabolites identified in
ADNI. All SMs and the majority of PCs were more abundant in women. The majority of biogenic amines,
amino acids and acylcarnitines were more abundant in men.

Stratifying subjects by diagnostic group revealed that 53 of the 108 metabolites showing significant sex-
differences were also significant in each of the three groups (AD, MCI, CN) alone, while 14 metabolites
showed no significant difference in any of the groups, probably due to lower statistical power after
stratification (Supplementary Table 1 and Supplementary Figure 2). Significant sex-differences limited to
one diagnostic group were found for 8 metabolites (PC aa C34:1, PC ae C34:3, PC ae C36:3, PC ae C36:4,
PC ae C38:5, PC ae C40:5, Histidine, C6/C4:1-DC) in patients with probable AD, for 7 metabolites (CO, C3,
C9, C18:2, SDMA, Spermidine, t4-OH-Pro) in the MCI group, and for 6 metabolites (PC aa C42:0, PC ae
C32:1, PC ae C42:3, SM(OH) C24:1, Sarcosine, Aspartate) in the CN group, although no significant sex-
differences were found that were not also significant in the full cohort. Comparisons of beta estimates for
sex between AD and CN groups showed no significant effect heterogeneity, indicating reduced power as
source for these observed differences. Only PC aa C34:1 showed significant (P = 0.029) heterogeneity
between AD patients compared to CN subjects. Interestingly, in the larger healthy cohort used as
reference, sex did not significantly affect the blood level of this metabolite when adjusting for the same
covariates as in this study (i.e., age and BMI) (25). In summary, we found that sex differences of blood
metabolite levels are consistent (if we neglect the reduced power due to stratification) across diagnostic
groups and, thus, do not seem to be directly affected by presence of MCl or AD status.

3.2. Sex-stratified analyses reveal substantial differences in the association of AD

biomarkers and blood metabolite concentrations between men and women

To investigate whether sex modifies the association between AD endophenotypes and metabolite
concentrations, we tested for associations of the three representative A-T-N biomarkers, CSF AB1.42
pathology, CSF p-tau levels, and brain glucose uptake measured via FDG-PET imaging, with concentrations
of 140 blood metabolites. We did this in the full data set, as well as in women and men separately using
multivariable linear and logistic regression, followed by analysis of heterogeneity of effects between
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sexes. Table 2 lists the results of these analyses for all metabolite-phenotype combinations, as well as
analyses of sex-by-metabolite interaction effects on A-T-N biomarkers, that fulfilled at least one of the
following criteria: (i) associations that were significant (at a Bonferroni threshold of P <9.09 x 10) in the
full cohort; (ii) associations that were Bonferroni-significant in one of the two sexes; (iii) associations that
showed suggestive significance (P < 0.05) in one sex coupled with significance for effect heterogeneity
between female and male effect estimates. Results for all metabolites, phenotypes and statistical models
are provided in Supplementary Table 2. Systematic comparison of estimated effects in men and women
for all metabolites is shown in Figure 1. Based on this comparison, we classified metabolite — A-T-N
biomarker associations into homogenous effects if metabolites showed very similar effects in their
association to the biomarker for both sexes and heterogeneous effects if effects showed major differences
between the sexes with opposite effect directions of the same metabolite for men and women or
substantially larger effects in one of the sexes. If an effect was heterogeneous and significant in males but
not females or vice versa, we considered it sex-specific.

3.2.1. Homogeneous effects

We refer to homogenous effects where similar alterations in metabolite levels are associated with AD
biomarkers in men and women. Metabolites with homogenous effects lie on or close to the diagonal going
through the first and third quadrant when plotting the effect estimates in women against those in men in
Figure 1. We identified eight significant homogenous metabolite-phenotype associations with A-T-N
biomarkers: CSF AB1.4; pathology was significantly associated with levels of three related ether-containing
PCs (PC ae C44:4, PC ae C44:5, PC ae C44:6). Two of those (PC ae C44:4 and PC ae C44:5) were also
significantly associated with brain glucose uptake (FDG-PET) in addition to three other PCs (PC aa C32:1,
PC aa C32:0 and PC ae C42:4). For p-tau, we did not identify any homogeneous, overall significant
associations. Notably, none of the associations categorized as homogenous showed any indication of
effect heterogeneity between sexes, and only one association reached significance in the sex-stratified
analyses: higher blood levels of the diacyl-PC PC aa C32:1 were associated with lower glucose uptake in
brain in the male stratum alone despite lower power.

3.2.2. Heterogeneous effects

We refer to heterogeneous effects where a metabolite shows opposite effect directions for the same
phenotype in men and women, or substantially larger effects in one sex leading to significant
heterogeneity and/or sex-metabolite interaction. Metabolites showing these types of effects fall mainly
into the second or fourth quadrant (with the exception of sex-specific effects) when contrasting the effect
estimates for men and women in the plots for the three A-T-N phenotypes in Figure 1. In our study, we
identified a total of 15 associations in this category (including three sex-specific effects). For CSF AB1.42,
we identified two heterogeneous effects with threonine showing a sex-specific effect (see paragraph
below) with greater effect size in males and valine with a larger effect in females: while valine was not
significantly associated (P = 0.78) with CSF AB1.4; pathology in males, in females, it showed a nominally
significant negative association with an estimated heterogeneity of /> = 49.3%. CSF p-tau was the
biomarker with the largest number of heterogeneous associations: acylcarnitines C5-DC (C6-OH), C8, C10
(sex-specific), and C2, as well as the amino acid histidine showed stronger associations in females, while
the related ether-containing PCs PC ae C36:1 and PC ae C36:2, the amino acids asparagine and glycine,
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and one hydroxy-SM (SM (OH) C16:1) yielded stronger associations in males (all > > 50%); associations
with FDG-PET revealed three heterogeneous effects, with ether-containing PC ae C40:2, and the
acylcarnitine C16:1 (sex-specific) showing a larger effect in males (/> = 55.3%), and proline having a larger
effect in females (/> = 64.8%). Notable, 9 of the 15 reported heterogeneous associations showed opposite
effect directions between sexes, and in 7 cases, the interaction term (sex * metabolite) was also
significantly (at P < 0.05) associated with the respective biomarker.

3.2.3. Sex-specific effects

We refer to sex-specific effects where metabolite associations are only significant in one sex with either
significant effect heterogeneity between males and females or significant sex-metabolite interaction. In
Figure 1, metabolites with this effect category fall into the area close to the x- (male-specific) or y- (female-
specific) axes of the three effect plots for the different A-T-N phenotypes. In total, we found three
instances of this effect type. Male-specific effects were seen for threonine with pathological CSF AB1.4;
(positive association) and C16:1 with FDG-PET (negative association). We also identified a single female-
specific effect, where higher levels of the medium-chain acylcarnitine C10 were associated with higher
CSF p-tau. This association was simultaneously the strongest seen for p-tau in the analysis of the full
cohort, yet seems to be driven by female effects only.

3.3. Stratified analyses by APOE €4 status suggest intertwined modulation of

metabolite effects by both sex and APOE genotype

Previous reports suggested that the APOE €4 genotype may exert AD risk predisposition in a sex-
dependent way (8-13). In order to investigate potential relationships between sex and APOE €4 status on
the metabolomic level, we selected the 21 metabolites identified in the previous analyses (Table 2) and
performed association analyses with the three selected A-T-N biomarkers, now stratified by APOE €4
status and adjusted for sex. Using the same effect categories (homogeneous, heterogeneous, and group-
specific) as for the sex-stratified analyses revealed that metabolite effects in APOE €4 carriers vs. non-
carriers also show effects from all three categories (Table 3): homogeneous effects were noted for the
overall significant associations of PC aa C32:1, PC ae C44:4, PC ae C44:5, PC aa C32:0, and PC ae C42:4 with
FDG-PET. Heterogeneous effects again formed the largest group (n = 11), with proline and glycine showing
opposite effect directions on CSF AB1.42 pathology and C8, valine, glycine, and proline having opposite
effect directions on FDG-PET for €4 carriers vs. non-carriers, respectively. 5 metabolites with
heterogeneous effects even showed APOE €4 status-specific effects: (i) the associations of PC ae C44:6,
PC ae C44:4, PC ae C44:5, and PC ae C42:4 with pathological CSF AB1.12 in APOE €4 carriers. In case of PC
ae C44:6, PC ae C44:5, and PC ae C44:4, the group-specific effects were strong enough to drive the signal
to overall significance in the full sample. (ii) the association of acylcarnitine C10 with FDG-PET in APOE €4
non-carriers.

3.4. Combined stratification by sex and APOE €4 status identifies metabolic effects
specific to female carriers of the €4 allele

When we stratified separately by sex and APOE €4 status, we observed several metabolites (C8, C10,
valine, glycine, and proline) that showed heterogeneous effects on AD biomarkers in both stratifications.
To investigate potential additional subgroup-specific effects, we combined the two stratifications and
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investigated the selected metabolite set for sex-by-APOE €4 status effect modulations. Although the group
of APOE e4-carrying women was the smallest among the four strata, all Bonferroni-significant associations
were found in this subgroup (Table 4): higher levels of three ether-containing PCs (PC ae C42:4, PC ae
C44:5, and PC ae C44:6) were associated with pathological CSF ABi.4;, higher acylcarnitine C10 was
associated with increased CSF p-tau, and higher proline levels were associated with decreased FDG-PET
values (Figure 2). The latter association was not observed in any other of the performed analyses. Of note,
except for the association of C10 with p-tau, we found significant (P < 0.05) interaction effects between
the metabolites and APOE €4 status on their associated endophenotypes in females only, while the effects
in males were not significantly (P > 0.1) modulated by APOE €4 status.

4. Discussion

In this study, we investigated the influence of sex and APOE €4 status on metabolic alterations related to
representative A-T-N biomarkers (CSF APi.4; pathology (A), CSF p-tau (T), FDG-PET (N)). By stratified
analyses and systematic comparison of the effects estimated for the two sexes, we revealed substantial
differences between men and women in their associations of blood metabolite levels with these AD
biomarkers, although known sexual dimorphisms of metabolite levels themselves were unaffected by the
disease.

Differences between the sexes were largest for associations of metabolites and CSF p-tau levels. Notably,
this biomarker was not significantly associated with any metabolite when including all subjects and
adjusting for both sex and copies of APOE €4, yet association analysis stratified by sex (but still adjusted
for copies of APOE £4) revealed a significant, female-specific metabolite/CSF p-tau association despite the
smaller sample size. In contrast, for CSF AB1.42 and FDG-PET, in addition to heterogeneous, sex-specific
effects, we also found homogenous effects, where metabolite concentrations showed the same trends of
metabolite levels correlating with CSF AB1.4> pathology and/or lower brain glucose uptake in both sexes.

For many of the metabolites with different effects for the sexes, we additionally observed significant
effect heterogeneity between carriers and non-carriers of the APOE €4 allele, suggesting intertwined
modulation of metabolic effects by sex and APOE genotype. Indeed, two-fold stratification revealed
metabolite associations that were either driven by or even specific to the group with presumably highest
risk, APOE €4 carrying females. Our results, thus, demonstrate the importance of stratified analyses for
getting insights into metabolic underpinnings of AD that are seemingly restricted to a specific group of
patients.

4.1 Metabolic effect heterogeneity suggests sex-specific differences in energy

homeostasis, alternative energy sources, and stress response in AD

The metabolites showing effect heterogeneity across AD biomarkers in this study highlight sex-specific
dysregulations of energy metabolism (acylcarnitines C2, C5-DC/C6-OH, C8, C10 and C16:1 for lipid-based
energy metabolism (65); amino acids valine, glycine, and proline as markers for glucogenic and ketogenic
energy metabolism (66-68)), energy homeostasis (asparagine, glycine, proline, and histidine (67-71)), and
(metabolic/nutrient) stress response (threonine, proline, histidine (68, 70, 72)). While these pathways
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have been linked to AD before, our work presents first evidence and molecular readouts for sex-related
metabolic differences in AD.

For instance, in our previous report, we discussed the implication of failing lipid energy metabolism in the
context of AD biomarker profiles, starting at the stage of pathological changes in CSF tau levels (45). The
current study now provides further insights in this topic, marking this finding to be predominant in
females. More specifically, we observed a significant female-specific association of higher levels of
acylcarnitine C10 with increased levels of CSF p-tau, with two other metabolites of this pathway (C8 and
C5-DC/C6-0H) narrowly falling short of meeting the Bonferroni threshold. This indicates a sex-specific
buildup of medium-chain fatty acids in females, suggesting increased energy demands coupled with
impaired energy production via mitochondrial beta-oxidation (65).

Interestingly, the significant heterogeneity of association results between sexes for CSF p-tau and glycine,
with higher levels of glycine being linked to higher levels of CSF p-tau in men, indicates that energy
demands are equally upregulated in males as in females. In contrast to women, men, however, appear to
compensate this demand by upregulation of glucose energy metabolism as glycine is a positive marker of
active glucose metabolism and insulin sensitivity (67). Findings for acylcarnitines in females are further
contrasted by the observed male-specific association of higher levels of the long-chain acylcarnitine C16:1
with decreased brain glucose uptake, which might indicate that in males there is a switch to provision of
fatty acids as alternative fuel when glucose-based energy metabolism is less effective. As we did not
observe the buildup of medium- and short-chain acylcarnitines as seen in females, we assume that, in
males, energy production via mitochondrial beta-oxidation may be sustained, at least in early disease.

Evidence corroborating sex-specific processes in energy homeostasis linked to changes in CSF p-tau levels
is provided by the significant heterogeneity estimates for histidine with lower levels of histidine being
linked to higher levels of CSF p-tau in women. Depletion of histidine has been shown to be associated with
insulin resistance, inflammatory processes, as well as oxidative stress, especially in women with metabolic
dysregulation (69, 70).

We further identified a heterogeneous association of valine with lower levels in females (P < 0.05), but
not in males, with AP1.4; pathology. Valine, a BCAA and important energy carrying molecule, has been
reported to be associated with cognitive decline and brain atrophy in AD, as well as with risk for incident
dementia (42, 45). The lower levels observed in AD are in contrast to other complex phenotypes such as
type 2 diabetes, insulin resistance, or obesity (66, 73), where higher levels of BCAAs are found, and may
indicate a switch to increased energy consumption via degradation of amino acids in AD. A recent study
highlighted decreasing levels of valine as being significantly associated with all-cause mortality (74).
Besides implications for energy metabolism, results from our study may thus characterize lower levels of
valine also as a marker for increased female vulnerability to pathogenic processes in general and to B-
amyloidosis in AD in particular.

4.2 Complex interplay between sex, APOE €4 status, and metabolism
The higher effect size of genetic risk for AD exerted by the APOE €4 allele in females compared to males
still awaits molecular elucidation. Here, we tried to elaborate on potential interrelated risk predispositions
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from a metabolomic point of view. We therefore investigated if APOE €4 status may also modulate
metabolic readouts of AD-linked A-T-N biomarker profiles identified in sex-centered analyses. We found
that indeed the majority (68.8%) of observed associations between metabolites and AD biomarkers shows
significant heterogeneity between APOE €4 status groups.

Notably, the full set of metabolites yielding significant effect heterogeneity when comparing APOE €4-
carriers vs. non-carriers (C8, C10, glycine, proline, and valine) also showed significant heterogeneity
estimates in the sex-stratified analyses. We therefore applied two-fold stratification by sex and APOE €4
status to identify potential interactions between both variables (Supplementary Figure 3). This analysis
revealed several associations that showed Bonferroni significance in the group with presumably the
highest AD risk, namely APOE €4+ females. One of those, the significant association of higher proline levels
with reduced brain glucose uptake, was not observed in any of the three other strata, in the one-fold
stratifications, or in the full sample, emphasizing the value of more fine-granular stratified analyses as
proposed here.

4.3 Homogeneous effects seem to represent generic metabolic hallmarks in AD

The heterogeneity of metabolite effects identified in our study might, in part, explain inconsistencies (e.g.,
(75) vs. (76)) in associations of metabolites and AD reported in different studies (e.g., if sex and APOE
genotype are distributed differently and sample sizes are small). Besides the heterogeneous, sex-specific
effects observed for metabolite associations with CSF AB1.4; and FDG-PET biomarkers, we also found
associations of these biomarkers with metabolites that showed the same effects in women and men. In
particular, phosphatidylcholines that presumably contain two long-chain fatty acids with, in total, 4 or 5
double bonds (PC ae C44:4, PC ae C44:5) were significant for both AD biomarkers. Such homogeneous
metabolite associations would be expected to replicate well across studies.

To test this assumption in an independent sample, we performed a targeted analysis using the three PCs
associated with CSF APi.4; pathology in 86 serum samples of subjects in the ROS/MAP cohorts
(Supplementary Text 2): all three associations were Bonferroni significant (PC ae C44:4 — P =3.73 x 103,
PC ae C44:5— P =1.15x 10?; PC ae C44:6 — P = 3.28 x 10°®) in ROS/MAP with consistent effect directions.
Of note, in ROS/MAP, we used a different measure of amyloid pathology (total amyloid load in the brain),
which is known to be inversely correlated with CSF AB1.s2levels (77). This inverse relationship was mirrored
by metabolite effect estimates. These results provide evidence for homogeneous associations to be
relevant across cohorts.

4.4 Limitations

Our study has several limitations. First, the reported findings are observational and do not allow for any
direct causal conclusions. Second, the reported heterogeneity estimates still await replication in an
independent cohort with sample sizes appropriate for stratification as well as metabolomics and
endophenotypic data available (ROS/MAP sample sizes available to us were too small to be sufficiently
powered). Third, it is to be noted that stratified analyses in combination with heterogeneity estimates
may identify spurious associations, primarily due to the limited power resulting from group separation.
However, we were able to show that for the majority of the non-homogeneous findings reported (60%),
the interaction term between metabolite levels and sex were also significant in the pooled analysis. When
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stratifying by APOE €4 status, this was true for an even higher fraction of cases (72.7%). This provides an
additional line of support for the conclusions drawn in this work. Finally, we only looked at two risk factors,
but there may be others (e.g., type 2 diabetes, cardiovascular disease, high blood pressure) that also have
metabolic aspects and may reveal even greater molecular heterogeneity.

4.5 Conclusion

Effect heterogeneity between subgroups linked to energy metabolism as reported in this study has several
important implications for AD research. First, this heterogeneity could explain inconsistencies of
metabolomics findings between studies as observed for AD if participants showed different distributions
of variables such as sex and APOE €4 genotype. Second, pooled analysis with model adjustment for such
variables as typically applied for sex can mask substantial effects that are relevant for only a subgroup of
people. This is also true for combinations of stratifying variables as we demonstrated for the association
of proline with brain glucose uptake in female APOE €4 carriers. Consequently, drug trials may be more
successful if acknowledging between-group differences and targeting the subgroup with the presumably
largest benefit in their inclusion criteria. For energy metabolism in particular, group-specific dietary
interventions precisely targeting the respective dysfunctional pathways may pose a promising alternative
to de novo drug development. Extending our approach by selection of additional variables to further
improve stratification may eventually guide the way to personalized medicine.
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Figure captions

Figure 1: Scatter plots showing Z-scores of effect estimates of metabolite associations with A-T-N biomarkers for
males (x-axis) versus those for females (y-axis). Homogeneous effects (i.e. those with same effect direction and
comparable effect size) are located close to the diagonal, heterogeneous effects are located close to the anti-
diagonal, and sex-specific effects are located close to one axis, i.e. x-axis for male-specific and y-axis for female-
specific effects, respectively. Homogeneous, overall significant results are depicted as diamonds, effects with
significant heterogeneity are drawn as rectangles, and effects significant in only one sex are displayed as triangles.
Metabolites additionally marked by an asterisk are significant in one sex only and simultaneously show significant
heterogeneity. Sex-specificity is further illustrated by a color scale (blue: females; green: males). On the upper right
panel, example boxplots of metabolite residuals (obtained by regressing out included covariates) for each effect type
are shown separately for females and males with (in dark red) and without (in light red) CSF AB1.42 pathology,
respectively.

Figure 2: Boxplots showing residuals of proline levels (derived by regressing out covariate effects) for A: the full
sample; B: 1-fold stratifications by sex; C: 1-fold stratification by APOE €4 status; and D: 2-fold stratification by both
sex and APOE €4 status; separately for high (light blue) and low (darker blue; derived by mean-split) FDG-PET values.
The only subgroup showing a significant difference in proline levels are APOE €4+ females with substantially higher
levels in subjects with lower brain glucose uptake.
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Tables

Table 1: Characteristics of the 1,517 ADNI samples included in this study. CN: cognitively normal. SMC: subjective memory complaints; EMCI: early mild cognitive impairment;
MCI: mild cognitive impairment; AD: probably Alzheimer’s disease; BMI: body-mass-index; APOE €4-/+: non-carriers and carriers of the APOE €4 allele, Path.Abeta-/+:
participants who have normal and pathological CSF Abeta levels; respectively.

global dataset CN SMC EMCI McCI AD
Nsubjects 1517 362 93 270 490 302
Sex (m/f) 828/689 177/185 39/54 149/121 298/192 165/137
Age 73.72 (+-7.25) 74.61 (+-5.77) 72.34 (+-5.70) 71.26 (+-7.63) 74.03 (+-7.63) 74.79 (+-7.77)
BMI 26.86(+- 4.82) 26.99 (+-4.53) 28.46 (+-6.23) 27.96 (+-5.36) 26.45 (+-4.27) 25.88 (+-4.69)
Education 15.88 (+-2.87) 16.24 (+-2.79) 16.78 (+-2.55) 15.95 (+-2.67) 15.84 (+-2.91) 15.16 (+-3.01)
APOE £4-[+ 809/708 * 261/101 64/29 155/115 224/266 105/197
CSF available 1082 * 236 84 245 308 209
Path.Abeta-/+ 407/675 134/102 57/27 122/123 75/233 19/190
CSF Abeta 1052.73 (+-601.70)  1324.60 (+-652.13) 1395.01 (+-618.19) 1172.73 (+-569.12) 896.35 (+-501.80) 697.95 (+-431.49)
CSF p-Tau 27.79 (+-14.56) 22.01 (+-9.19) 21.66 (+-9.14) 24.34 (+-14.03) 30.81 (+-14.94) 36.38 (+16.07)
FDG-PET available 1143 * 247 93 268 318 217
FDG-PET 6.17 (+-0.77) 6.53 (+-0.58) 6.60 (+-0.58) 6.44 (+-0.60) 6.08 (+-0.68) 5.36 (+-0.73)

* Numbers for combined stratification:
APOE €4- females

APOE €4- males

APOE €4+ females

APOE €4+ males

total 374 435 315 393
CSF available 267 315 222 278
FDG-PET available 278 337 230 298
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Table 2: Metabolite associations with A-T-N biomarkers that are either Bonferroni significant in the full sample, one sex, or show nominal significance both in one sex and for
effect heterogeneity. Given are regression results for the full sample and both sexes, as well as heterogeneity estimates and the p-value for sex * metabolite interactions.

males females Sex difference interaction

biomarker metabolite effect se p-value effect type effect se p-value | effect se p-value t p-value 12 p-value
PC ae C44:6 0.283 0.078 2.58E-04 homogeneous 0.282 0.102 5.96E-03 | 0.299 0.121 1.33E-02 | -0.1068 9.15E-01 0.000 8.09E-01

R PCae C44:4 0.265 0.076 4.57E-04 homogeneous 0.274 0.100 6.29E-03 | 0.255 0.118 3.07E-02 | 0.11904 9.05E-01 0.000 7.83E-01
Egﬁh:gl’i':a' PC ae C44:5 0260 0075 5236-04 homogeneous | 0.294 0.100 3.26E03 | 0214 0116 638E-02 | 0.52233 601E-01 0000 | 434E01
Threonine 0.207 0.076 6.72E-03 male-specific 0.372 0.112 8.83E-04 | 0.070 0.108 5.17E-01 1.943 5.20E-02 48.545 4.03E-02

Valine -0.134 0.083 1.05E-01 heterogeneous | 0.032 0.114 7.80E-01 | -0.299 0.123 1.50E-02 1.973 4.85E-02 49.322 7.65E-02

C10 0.084 0.030 4.58E-03 female-specific | 0.014 0.042 7.34E-01 | 0.144 0.042 6.07E-04 -2.203 2.76E-02 54.613 2.55E-02

C5-DC (C6-OH) 0.103 0.045 2.35E-02 heterogeneous | 0.012 0.062 8.52E-01 | 0.205 0.067 2.27E-03 -2.116 3.44E-02 52.740 3.38E-01

Cc8 0.064 0.030 3.42E-02 heterogeneous | 0.003 0.041 9.39E-01 | 0.127 0.045 5.11E-03 -2.028 4.26E-02 50.692 5.63E-02

PC ae C36:2 0.056 0.032 8.65E-02 heterogeneous | 0.129 0.046 4.80E-03 | -0.023 0.046 6.18E-01 2.355 1.85E-02 57.535 2.16E-02

CSF p-tau Histidine -0.034 0.031 2.72E-01 heterogeneous | 0.033 0.042 4.39E-01 | -0.105 0.045 1.97E-02 2.237 2.53E-02 55.290 2.42E-02
Asparagine 0.034 0.031 2.84E-01 heterogeneous | 0.107 0.045 1.66E-02 | -0.052 0.044 2.32E-01 2.550 1.08E-02 60.788 2.16E-02

SM (OH) C16:1 0.032 0.031 3.10E-01 heterogeneous | 0.091 0.043 3.36E-02 | -0.039 0.046 3.99E-01 2.066 3.89E-02 51.592 3.75E-02

Glycine 0.030 0.032 3.50E-01 heterogeneous | 0.104 0.051 3.94E-02 | -0.026 0.040 5.23E-01 2.014 4.40E-02 50.346 6.88E-02

PCae C36:1 0.028 0.031 3.68E-01 heterogeneous | 0.088 0.043 4.17E-02 | -0.041 0.044 3.51E-01 2.094 3.62E-02 52.251 3.76E-02

Cc2 0.015 0.028 5.85E-01 heterogeneous | -0.054 0.039 1.67E-01 | 0.089 0.041 3.02E-02 -2.527 1.15E-02 60.430 1.39E-02

PCaa C32:1 -0.127 0.030 2.32E-05 homogeneous | -0.140 0.041 6.31E-04 | -0.110 0.045 1.50E-02 -0.499 6.18E-01  0.000 5.53E-01

PCae C44:4 -0.111 0.030 2.27E-04 homogeneous | -0.097 0.041 1.80E-02 | -0.141 0.045 1.84E-03 | 0.71633 4.74E-01  0.000 2.21E-01

PC ae C44:5 -0.105 0.030 4.07E-04 homogeneous | -0.112 0.040 5.80E-03 | -0.111 0.044 1.30E-02 | -0.0207 9.83E-01 0.000 6.02E-01

FDG-PET PCaa C32:0 -0.107 0.032 6.85E-04 homogeneous | -0.125 0.045 5.67E-03 | -0.091 0.045 4.25E-02 -0.547 5.84E-01 0.000 7.44E-01
PCae C42:4 -0.103 0.031 8.56E-04 homogeneous | -0.103 0.042 1.58E-02 | -0.112 0.045 1.33E-02 | 0.15599 8.76E-01 0.000 4.48E-01

Cl6:1 -0.103 0.031 9.09e-04 male-specific -0.165 0.042 9.64E-05 | -0.029 0.046 5.38E-01 -2.179 2.93E-02 54.107 9.94E-02

PC ae C40:2 -0.053 0.030 7.82E-02 heterogeneous | -0.119 0.042 4.34E-03 | 0.016 0.044 7.15E-01 -2.238 2.52E-02 55.312 5.78E-02

Proline -0.023 0.031 4.51E-01 heterogeneous | 0.059 0.044 1.77E-01 | -0.118 0.044 8.18E-03 2.841 4.50E-03 64.801 7.74E-03
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Table 3: Associations of metabolites identified in the sex-centric analysis with A-T-N biomarkers that are either Bonferroni significant in the full sample, in APOE €4+ or APOE €4-
subjects, or show nominal significance both in one APOE €4 status group and for effect heterogeneity. Given are regression results for the full sample and both APOE €4 status
groups, as well as heterogeneity estimates and the p-value for APOE €4 status * metabolite interactions.

APOE €4+ APOE €4- APOE €4 status difference | interaction
biomarker metabolite  effect se p-value effect type effect se p-value | effect se p-value t p-value 12 p-value
PCaeC44:6 0.283 0.078 2.58E-04 specifictoed4+ | 0.630 0.150 2.50E-05 | 0.158 0.090 7.96E-02 | -2.705 6.83E-03 63.030 2.80E-03
PCaeC44:4 0.265 0.076 4.57E-04 specifictoe4+ | 0.565 0.148 1.30E-04 | 0.139 0.088 1.13E-01 | -2.478 1.32E-02 59.645 5.80E-03
Pathological PCaeC44:5 0.260 0.075 5.23E-04 specifictoe4+ | 0.609 0.145 2.64E-05 | 0.129 0.087 1.37E-01 | -2.837 4.56E-03 64.749 3.07E-03
CSF AB1.42 PCaeC42:4 0.242 0.078 1.98E-03 specifictoed4+ | 0.564 0.148 1.32E-04 | 0.114 0.092 2.15E-01 | -2.589 9.61E-03 61.382 5.64E-03
Proline -0.075 0.081 3.52E-01 heterogeneous | 0.176 0.142 2.15E-01 | -0.202 0.100 4.40E-02 | -2.173 2.98E-02 53.982 1.58E-01
Glycine 0.060 0.082 4.60E-01 heterogeneous | 0.363 0.154 1.83E-02 | -0.102 0.100 3.05E-01 | -2.538 1.11E-02 60.604 7.89E-04
PCaa(C32:1 -0.127 0.030 2.32E-05 homogeneous | -0.087 0.045 5.35E-02 | -0.162 0.042 1.34E-04 | -1.210 2.26E-01 17.332 3.58E-01
PCaeC44:4 -0.111 0.030 2.27E-04 homogeneous | -0.115 0.047 1.39E-02 | -0.114 0.041 6.34E-03 | 0.023 9.82E-01 0.000 8.63E-01
PCae C44:5 -0.105 0.030 4.07E-04 homogeneous | -0.122 0.046 8.34E-03 | -0.102 0.041 1.30E-02 | 0.326 7.44E-01 0.000 6.39E-01
PCaaC32:0 -0.107 0.032 6.85E-04 homogeneous | -0.135 0.047 4.39E-03 | -0.082 0.045 6.58E-02 | 0.818 4.14E-01 0.000 3.69E-01
PCae C42:4 -0.103 0.031 8.56E-04 homogeneous | -0.131 0.047 5.79E-03 | -0.086 0.043 4.51E-02 | 0.701 4.83E-01 0.000 3.98E-01

FDG-PET C10 -0.057 0.029 5.14E-02  specifictoe4- | 0.037 0.046 4.17E-01 | -0.135 0.040 7.17E-04 | -2.840 4.51E-03 64.793 4.96E-03
Cc8 -0.051 0.031 9.96E-02 heterogeneous | 0.038 0.046 4.04E-01 | -0.138 0.043 1.58E-03 | -2.794 5.20E-03 64.215 6.37E-03
Valine 0.036 0.032 2.49E-01 heterogeneous | -0.040 0.048 4.08E-01 | 0.106 0.044 1.68E-02 | 2.234 2.55E-02 55.233 9.50E-02
Glycine -0.032 0.031 3.00E-01 heterogeneous | -0.140 0.047 3.05E-03 | 0.059 0.044 1.80E-01 | 3.092 1.99E-03 67.653 3.29E-03

Proline -0.023 0.031 4.51E-01 heterogeneous | -0.100 0.047 3.39E-02 | 0.048 0.043 2.64E-01 | 2.324 2.01E-02 56.977 | 6.35E-02
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Table 4: Significant metabolite effects in the combined stratification (sex by APOE €4 status) on A-T-N biomarkers are driven by or limited to APOE €4+ females. Given are
regression results for the full sample, APOE €4+ males, APOE €4+ females, as well as heterogeneity estimates by sex and APOE €4 status. The only metabolite showing effect
heterogeneity for both stratification variables was proline in its association with FDG-PET values.

Sex difference APOE €4 status difference | APOE €4+ males | APOE €4+ females

biomarker metabolite effect p-value p-value 12 p-value 12 effect p-value | effect p-value
i PCae C44:6 0.283 2.58E-04 | 9.15E-01 0.000 6.83E-03 63.03 0.463 1.68E-02 | 0.922 1.90E-04
Eg;h:é‘:i':a' PCaeC44:5 0.26 5.23E-04 | 6.01E-01 0.000 | 4.56E-03 64749 | 0521 6.17E-03 | 0.761 8.29E-04
PCae C42:4 0.242 1.98E-03 | 7.58E-01  0.000 9.61E-03 61.382 0.42 3.15E-02 | 0.761 8.65E-04

CSF p-tau C10 0.084 4.58E-03 | 2.76E-02 54.613 6.16E-01 0 -0.064 3.24E-01 | 0.264 1.21E-04
FDG-PET Proline -0.023 4.51E-01 | 4.50E-03 64.801 2.01E-02 56.977 0.046 4.76E-01 | -0.272 8.22E-05
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Figure captions

Figure 1: Scatter plots showing Z-scores of effect estimates of metabolite associations with A-T-N biomarkers for
males (x-axis) versus those for females (y-axis). Homogeneous effects (i.e. those with same effect direction and
comparable effect size) are located close to the diagonal, heterogeneous effects are located close to the anti-
diagonal, and sex-specific effects are located close to one axis, i.e. x-axis for male-specific and y-axis for female-
specific effects, respectively. Homogeneous, overall significant results are depicted as diamonds, effects with
significant heterogeneity are drawn as rectangles, and effects significant in only one sex are displayed as
triangles. Metabolites additionally marked by an asterisk are significant in one sex only and simultaneously show
significant heterogeneity. Sex-specificity is further illustrated by a color scale (blue: females; green: males). On
the upper right panel, example boxplots of metabolite residuals (obtained by regressing out included covariates)
for each effect type are shown separately for females and males with (in dark red) and without (in light red) CSF
AB1.42 pathology, respectively.

Figure 2: Boxplots showing residuals of proline levels (derived by regressing out covariate effects) for A: the full
sample; B: 1-fold stratifications by sex; C: 1-fold stratification by APOE €4 status; and D: 2-fold stratification by
both sex and APOE €4 status; separately for high (light blue) and low (darker blue; derived by mean-split) FDG-
PET values. The only subgroup showing a significant difference in proline levels are APOE €4+ females with
substantially higher levels in subjects with lower brain glucose uptake.

20


https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

effect (Z-score) [females]

effect (Z-score) [females]

A: Pathological Abeta,_,,

(1) Homogeneous effect

(2) Heterogeneous effect

'% females males females males
"'f% 1 . . 1 {
% [ . ¢
) . .
V%, 2-
AN PC ae C44:6 D 2-
© <
PC ae.C44:4 3 <
g S 0.l SR B3 S 0.
o 05 - - s 0
< . ©
. PC ae C44:5 S [ ] [ S
. a
[
o . -2- 2
[ ] . 3 .
[ J : L)
. | e ¢ Threonine(® { |
o Male-specific — > % X . .
e o o (@ Female-specific effect  (4) Male-specific effect
o®» 3
° « , %0 females males females males
° O : .‘~. . 3 g
PS ..‘. ) : ° Y .
° 4 : |
o 9 -
o o® :0! ¢ .. Creatinine 2- 2
[ J %
. . o o - o
_ ioRXi int doi: https://doi. : - this Vi@si d Al Themopyright holder for thi int (which s
2= corired by Baer review) (s ihe Autharfunder. who has Gnted bioRy a IEarse b LAV INRrapnt in porperity: 1t/ made avalzblo under 5 0-5) G B
o° aCC—By—NC—ND 4.0 International license. (O]
s Q = [ ]
S ° S| Valine 3@
QQ’..‘ % -2-
<<\°Q?)'" o =
-2 0 2
effect (Z-score) [males]
T: p-Tau N: FDG - PET
£ AC10 4- ¥,
'0@ o e
R B B
%, C5-DC or C6 (OH) %
0\ . N\
cs
. — .
[}
2 C2 . o0 [ ]
C4:1 2-
) o
° . ‘ ° .
S o © —_ .‘.. R °
L B °® 3 o .
©
°, B o® =l ° E, PC ae C40:2 © e
¢ te o °%e0e o = ” - E
o Male-specific < s e g o Male-specific g o .o -
(] ° ° O LX) 3
- e ®PCaeC36:2 ® ® o -
° ° ® N ° .0
\ put A e ¢° °
C . ® GIyCIne‘ 8 C161* ° ..
.. . o ° °
. lysoRC aC17:0ggleM (OF) Ci6:1 5 o —
. SM (OHY C22:1 ﬁ L . y ° o
Asparagine . o
*  dlysoPC a @18:0/% SM (OH) C22:2 - ¢ o
Y %O . .
- PCaaC320 , . []
-o. — e o Serine PC aa C32:1 ° Alanine
?"P.C ae C42:4
! N PC ae C44:5 ! []
K 2 Histidine LI 2 Proline
%.‘.' 6 \)93‘. 6
oe’o?" % & PCaeC44:4 :’%
S © S @
o g S &
R¥ @ —4-X @
L || . w . .
-2 0 2 -4 -2 0 2 4

effect (Z-score) [males]

effect (Z-score) [males]

Larger group effect

Men Women

Shape
@ not significant

€@ overall significant

significant in one sex

significantly different

Boxplot legend
E Normal Abeta levels
- Pathological Abeta levels



https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

None 1-fold stratification 2-fold stratification

A B Sex C APOE ¢4 status D Sex * APOE €4 status
FDG-PET females males APOE €4~ APOE €4+ females males
4- 4 APOE €¢4- . APOE g4+ APOE ¢4— - APOE €4+
s ]
i - i
2 .,
2- 2

FDG-PET2'y <y FDG-PET > < >y < FDG-PET2p  <p >y <y FDG-PET> <p 2 < > <y =y <\



https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

1
bioRxiv preprint doi: https://doi.org/10.1101/585455; this version posted April 12, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Information for:
The Alzheimer’s Disease Metabolome: Effects of Sexand APOE
€4 Genotype

Matthias Arnold, Kwangsik Nho, Alexandra Kueider-Paisley, Tyler Massaro, Barbara Brauner,

Siamak MahmoudianDehkordi, Gregory Louie, M. Arthur Moseley, J. Will Thompson, Lisa St John
Williams, Jessica D. Tenenbaum, Colette Blach, Rui Chang, Roberta D. Brinton, Rebecca Baillie, Xianlin
Han, John Q. Trojanowski, Leslie M. Shaw, Michael W. Weiner, Eugenia Trushina, Jon B. Toledo, Jan
Krumsiek, P. Murali Doraiswamy, Andrew J. Saykin, Rima Kaddurah-Daouk, and Gabi Kastenmdiller for
the Alzheimer’s Disease Neuroimaging Initiative’ and the Alzheimer’s Disease Metabolomics
Consortium


https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

bioRxiv preprint doi: https://doi.org/10.1101/585455; this version posted April 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Contents

Supplementary Information for: The Alzheimer’s Disease Metabolome: Effects of Sex and APOE €4
LCT=] aTo ) 1Y/ o PPN 1
Supplementary Text 1 — Data Availability .......cccoeiiiiiiii e e e 3
Supplementary Text 2 - Replication Analysis in ROS/MAP ........ccoecieciieiienieniecee e ere e esteesreesaeesaneens 4
Supplementary Figure 1: Study rationale and WOrkflow ..........ccccoveiieiiiiiiiici e, 5
Supplementary Figure 2: Metabolic sex differences in the ADNI cohorts .......ccccceeeeieeeecciee e, 6

Supplementary Figure 3: Boxplots for all 21 metabolites identified in this study in relation to A-T-N
biomarkers in 2-fold stratified @NAlYSES .......cccuuiiiiiiiieeccee e e e e 7


https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/

3
bioRR; i 1 tpsHagh /58 HAisAarst iARFl 12, 2019. The copyright holder for this preprint (which was not
certifﬁsgamm @m&gm Wrmgam@mMSe to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Data use restrictions prohibit the distribution of any ADNI clinical or demographic data outside of
LONI. Researchers can apply for access to the ADNI data at http://adni.loni.usc.edu/data-
samples/access-data/. Data use restrictions prohibit the distribution of any ROSMAP data. Researchers
can apply for access to the ROSMAP data at https://www.radc.rush.edu/ . Data for the ADNI-1 cohort
is accessible via http://dx.doi.org/10.7303/syn5592519 . ADNI GO/2 data is accessible via
http://dx.doi.org/10.7303/syn9705278 and ROSMAP data is accessible via
http://dx.doi.org/10.7303/syn10235592
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To replicate a subset of the findingdTeportédNR 4Ri¥RiEHGs2H e #-an independent cohort, we used
metabolomics data obtained from pre-mortem serum samples of 86 deceased participants of the
Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP), who had agreed to post-
mortem neuropathological examinations, using the same metabolomics kit (AbsolutelDQ-p180). Of
the 86 total participants, 24 were females / 62 males; 52 CN / 24 MCI / 7 AD; mean age was 87.77 (t
6.01) years. Metabolomics data processing was performed very similar as for the ADNI, except that
we used a pool of study samples randomly injected across plates instead of NIST standard plasma,
and median- instead of mean-based quotient batch removal. We then did a targeted analysis to
replicate associations of PC ae C44:4, PC ae C44:5, and PC ae C44:6 with AB1.42 pathology using post-
mortem, neuropathology-derived measures of total amyloid load in the brain. This phenotype was
transformed to square root values to get values closer to a normal distribution. Linear regression
models were adjusted for age at blood draw, sex, study cohort (ROS vs. MAP), race, number of copies
of APOE €4, as well as years of education. All three p-values were Bonferroni significant when
adjusting for three test (p-value threshold of P < 1.667), complete result statistics were:

biomarker metabolite effect se p-value
total PCae C44:4 | 0.30741 0.10277 0.00373
amyloid in PC ae C44:5 0.2656 0.10257 0.01149

the brain  PCae C44:6 | 0.30992 0.10212 0.00328
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Supplementary Figure 1: Study rationale and workflow
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Supplementary Figure 1: Study rationale and workflow. A) This study aims to investigate the
relationship between AD, sex, and metabolic readouts in a systematic fashion. The background of
this work is: firstly, it has been reported that AD risk may be increased in females; secondly, there are
strongly pronounced, highly significant, and often replicated sex differences in metabolite
concentrations in the general, healthy population; and, thirdly, we and others have shown that there
are significant associations of metabolite levels with AD and its biomarkers. In the current study, we
examined: (i) if clinical diagnosis of MCI or AD influences metabolic sex differences as seen in healthy
controls, (ii) if sex modulates associations of metabolite levels with three AD biomarkers across the
A-T-N spectrum, and, (iii), if effects of metabolites showing sex-based effect heterogeneity in their
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associations with AD are also moddategNE)APOIteprtignisensB) To address the three research
questions of this study, we first performed analyses of sex-metabolite associations for 140
metabolites in the ADNI cohort stratified by diagnostic group (question i). Subsequently, we
performed phenotype (A/T/N)-metabolite associations for 140 metabolites in the ADNI cohort
stratified by sex (question ii) and stratified by APOE €4 status; additionally, we performed phenotype
(A/T/N)-metabolite associations for the 21 significantly associated metabolites after stratification by
sex plus APOE €4 status (question iii).

Supplementary Figure 2: Metabolic sex differences in the ADNI
cohorts
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Supplementary Figure 2: Metabolic sex differences in the ADNI cohorts. We tested whether sex-
associated differences in blood metabolite levels differ between patients with probable AD, subjects
with MCI, and CN subjects in the ADNI cohorts. We found 108 of 140 metabolites to be significantly
associated with sex after multiple testing correction while adjusting for age, BMI, ADNI study phase,
and diagnostic group. 70 of these associations replicate previous findings in a healthy population
using. All SMs and the majority of PCs were more abundant in women. The majority of biogenic
amines, amino acids, and acylcarnitines were more abundant in men. Stratifying subjects by
diagnostic group revealed that 53 of the 108 metabolites showing significant sex-differences were
also significant in each of the three groups (AD, MCI, CN) alone, while 14 metabolites showed no
significant difference in any of the groups, probably due to lower statistical power after stratification.
No significant sex-differences were found that were not also significant in the unstratified analysis.
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Supplementary Figure 3*BoXp16ts f6F°4IF' X1 thetabolites identified
in this study in relation to A-T-N biomarkers in 2-fold stratified

analyses

In a separate file, we provide boxplots for all 21 metabolites identified in this study to show their
relation to A-T-N biomarkers (A: pathological CSF AB1.42; T: mean-split CSF p-tau levels; N: mean-split
FDG-PET values) for 2-fold stratified analyses by both sex and APOE €4 status. APOE &4 status groups
are plotted in separate panels, females and males are distinguished by color (f: blue, m: green), and
binarized biomarker groups are emphasized by lighter (lower-risk biomarker profile) and deeper
(higher-risk biomarker profile) colors.
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