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Significance statement 
Research provides substantial evidence that late-onset Alzheimer’s disease (AD), the major cause of 
dementia in the elderly, is a metabolic disease. Besides age, female sex and APOEε4 genotype represent 
strong risk factors for AD, and at the same time, give rise to large metabolic differences. Our systematic 
investigation of sex and APOE ε4 genotype differences in the link between metabolism and measures of 
pre-symptomatic AD using stratified analysis revealed several group-specific metabolic alterations that 
were not observed without sex and genotype stratification of the same cohort. Pathways linked to the 
observed metabolic alterations suggest females are more affected by impairment of mitochondrial 
energy production in AD than males, highlighting the importance of tailored treatment approaches 
towards a precision medicine approach.  
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Abstract  
Recent studies have provided evidence that late-onset Alzheimer’s disease (AD), the major cause of 

dementia in the elderly, can, at least in part, be considered a metabolic disease.  Besides age, female sex 

and APOE ε4 genotype represent strong risk factors for AD. At the same time, they both give rise to large 

metabolic differences, suggesting that metabolic aspects of AD pathogenesis may differ between males 

and females and APOE ε4 carriers and non-carriers, respectively. Here, we systematically investigated 

group-specific metabolic alterations by conducting stratified association analyses of 140 metabolites 

measured in serum samples of 1,517 individuals from the AD neuroimaging initiative with AD biomarkers 

for Aβ and tau pathology, as well as neurodegeneration. We observed substantial sex differences in 

effects of 15 metabolites on AD biomarkers with partially overlapping differences for APOE ε4 status 

groups. These metabolites highlighted several group-specific alterations that were not observed in 

unstratified analyses using sex and APOE ε4 as covariates. Combined stratification by both variables 

uncovered further subgroup-specific metabolic effects limited to the group with presumably highest AD 

risk, i.e. APOE ε4+ females. Pathways linked to the observed metabolic alterations suggest that females 

experience more expressed impairment of mitochondrial energy production in AD than males. These 

findings indicate that dissecting metabolic heterogeneity in AD pathogenesis may allow for grading the 

biomedical relevance of specific pathways for specific subgroups. Extending our approach beyond simple 

one or two-fold stratification may thus guide the way to personalized medicine.  
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1. Introduction 
Female sex has long been regarded a major risk factor for Alzheimer’s disease (AD). It is assumed that out 

of 5.3 million people in the United States who were diagnosed with AD at age 65 or older, more than 60% 

are women. Also, estimates indicate that the lifetime risk of developing AD at age 45 may be almost 

double in females than in males (1, 2). However, the exact role and magnitude of sexual dimorphism in 

predisposition and progression to AD are controversial (3-6). While age is the strongest risk factor for late-

onset AD (LOAD), the higher life expectancy of women only partially explains the observed sex difference 

in frequency and lifetime risk (7). Complexity is added by several genetic studies showing a significant sex 

difference in effects of the APOE ε4 genotype, the strongest common genetic risk factor for LOAD. These 

studies report risk estimates for ε4 carriers being higher in females than in males, a finding that seems to 

be additionally dependent on age (8-13). APOE ε4 has also been described to be associated with AD 

biomarkers in a sex-dependent way with again larger risk estimates for women than for men (9, 14-17), 

although these findings have not been fully consistent across studies (16, 18). Additionally, studies have 

suggested that sex differences in AD may change during the trajectory of disease (19), with overall risk for 

mild cognitive impairment (MCI), the prodromal stage of AD, being higher in males (20, 21), while 

progression to AD occurs at a faster rate in females, at least partly in APOE ε4-dependent ways (3, 8, 10, 

19, 22, 23). The mechanisms underlying this sex-linked and partly intertwined APOE ε4- and age-

dependent heterogeneity in AD susceptibility and severity are only beginning to unravel, calling for novel 

approaches to further elucidate molecular sex differences in AD risk and biomarker profiles.  

Interestingly, all three of the aforementioned major AD risk factors, i.e. age, APOE ε4 genotype, and sex, 

have a profound impact on metabolism (24-30), supporting the view of AD as a metabolic disease (31-33). 

In recent years, availability of high-throughput metabolomics techniques, which can measure hundreds 

of small biochemical molecules (metabolites) simultaneously, allows for the study of metabolic imprints 

of age, genetic variation, and sex very broadly, covering the entire metabolism: (i) Age-dependent 

differences were observed in levels of phosphatidylcholines (PCs), sphingomyelins (SMs), acylcarnitines, 

ceramides, and amino acids (29, 34). A panel of 22 independent metabolites explained 59% of the total 

variance in chronological age in a large twin population cohort.  In addition, one of these metabolites, C-

glycosyltryptophan, was associated with age-related traits including bone mineral density, lung (30) and 

kidney function (35). (ii) As expected from APOE’s known role in cholesterol and lipid metabolism (36, 37), 

common genetic variants in this gene were associated with blood cholesterol levels in genome- and 

metabolome-wide association studies (37, 38). In addition, associations with levels of various SMs were 

identified (39, 40). (iii) Analogous to age, sex also affects blood levels of many metabolites from a broad 

range of biochemical pathways. In a healthy elderly population with mostly post-menopausal women, 

females showed higher levels of most lipids except lyso-PCs, while the levels of most amino acids including 

branched chain amino acids (BCAAs) were higher in males with the exception of glycine and serine, which 

were higher in women (24, 25). In addition to studies investigating the impact of age and sex on 

metabolism separately, Gonzalez-Covarrubias et al. recently reported sex-specific lipid signatures 

associated with longevity in the Leiden Longevity Study (29). In women, higher levels of ether-PC and SM 

species were associated with longevity; no significant differences were observed in men. Thus, based on 

results from large-scale metabolomics studies, aging may influence a wider range of metabolites in 

women than men, highlighting the need for sex-stratified analyses. 
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Many of the metabolites affected by female sex, age, and APOE genotype such as BCAAs, glutamate, and 

various lipids appear to be altered in AD independent of these risk factors (39, 41, 42). In patients with 

MCI, alterations in lipid metabolism, lysine metabolism, and the tricarboxylic acid cycle have been 

observed (43, 44). In one of the largest blood-based metabolomics studies of AD, we identified metabolic 

alterations in various stages across the trajectory of the disease. For instance, higher levels of SMs and 

PCs were observed in early stages of AD as defined by abnormal CSF Aβ1-42 levels, whereas intermediate 

changes, measured by CSF total tau, were correlated with increased levels of SMs and long-chain 

acylcarnitines (45). Changes in brain volume and cognition, usually noted in later stages, were correlated 

with a shift in energy substrate utilization from fatty acids to amino acids, especially BCAAs. Other 

metabolomics studies have reported metabolic alterations in AD which support these findings, including 

alterations in PCs in AD (44, 46-48) and sphingolipid transport and fatty acid metabolism in MCI/AD 

compared to cognitively normal (CN) subjects (49). Higher blood concentrations of sphingolipid species 

were associated with disease progression and pathological severity at autopsy (50). Metabolomics 

analysis of brain and blood tissue further revealed that bile acids, important regulators of lipid metabolism 

and products of human-gut microbiome co-metabolism, were altered in AD (51, 52) and associated with 

brain glucose metabolism and atrophy as well as CSF Aβ1-42 and p-tau (53). In most of these studies, sex 

as well as APOE ε4 genotype, were used as covariates. Thus, sex-specific associations between AD and 

metabolite levels or associations that are modified by sex with opposite effect directions for the two sexes 

might have been missed in these analyses. Similarly, sex-by-APOE genotype interactions would have been 

masked. 

Here, we examine the role of sex in the relationship between metabolic alterations and AD, in order to 

elucidate possible metabolic underpinnings for the observed sexual dimorphism in AD susceptibility and 

severity. Using metabolomics data from 1,517 subjects of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) cohorts, we specifically investigate how sex modifies the associations of representative A-T-N 

biomarkers (54, 55) (A: CSF Aβ1-42 pathology; T: CSF p-tau; N: region of interest (ROI)-based glucose uptake 

measured by FDG-PET) with 140 blood metabolites by stratified analyses and systematic comparison of 

effects between men and women. In downstream analyses, we then inspect sex-differences in metabolic 

effects on AD biomarkers for dependencies on APOE genotype, both by interaction analysis and sub-

stratification. 

2. Methods 

2.1. Study subjects 
Data used in the preparation of this article were obtained from the ADNI database 

(http://adni.loni.usc.edu/). The ADNI was launched in 2003 as a public-private partnership. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). For up-to-date information, see www.adni-info.org. Information on data availability and accessibility 

is available in the Supplementary Text 1. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2019. ; https://doi.org/10.1101/585455doi: bioRxiv preprint 

http://adni.loni.usc.edu/
http://www.adni-info.org/
https://doi.org/10.1101/585455
http://creativecommons.org/licenses/by-nc-nd/4.0/


In the current study, we included 1,517 baseline serum samples of fasting participants pooled from ADNI 

phases 1, GO, and 2. Demographics, diagnostic groups, and numbers and distributions of key risk factors 

are provided in Table 1. AD dementia diagnosis was established based on the NINDS-ADRDA criteria for 

probable AD. MCI participants did not meet these AD criteria and had largely intact functional 

performance, meeting predetermined criteria for amnestic MCI (56). Of the 1,517 subjects, 689 were 

female and 828 male, with 708 APOE ε4 carriers and 809 non-carriers. In the combined stratification by 

sex and APOE ε4 status (APOE ε4- = 0 copies of ε4, APOE ε4+ = 1 or 2 copies of ε4), the APOE ε4 non-

carriers were separated into 374 females and 435 males, while of APOE ε4 carriers 315 were female and 

393 male. 

2.2. Metabolomics data acquisition 
Metabolites were measured with the targeted AbsoluteIDQ-p180 metabolomics kit (BIOCRATES Life 

Science AG, Innsbruck, Austria), with an ultra-performance liquid chromatography (UPLC)/MS/MS system 

[Acquity UPLC (Waters), TQ-S triple quadrupole MS/MS (Waters)] which provides measurements of up to 

186 endogenous metabolites. Sample extraction, metabolite measurement, identification, quantification, 

and primary quality control (QC) followed standard procedures as described before (45, 57).  

2.3. Metabolomics data processing 
Metabolomics data processing followed the processing protocol previously described (45, 57) with a few 

adjustments. In brief, raw metabolomics data for 182 metabolites was available for 1,681 serum study 

samples and, for each plate, 2-3 NIST Standard Reference samples were available. Furthermore, we had 

blinded duplicated measurements for 19 samples (ADNI-1) and blinded triplicated measurements for 17 

samples (ADNI-GO and -2) distributed across plates. We first excluded 22 metabolites with large numbers 

of missing values (> 40%). Then, we removed plate batch effects using cross-plate mean normalization 

using NIST metabolite concentrations. Duplicated and triplicated study samples were then used to 

calculate the coefficients of variation (exclusion criterion >20%) and intra-class correlation (exclusion 

criterion <0.65) for each metabolite. We removed 20 metabolites that violated these thresholds. Next, we 

excluded non-fasting samples (n=108), imputed missing metabolite data using half the value of the lower 

limit of detection per metabolite and plate, log2-transformed metabolite concentrations, centered and 

scaled distributions to a mean of zero and unit variance and winsorized single outlying values to 3 standard 

deviations. We then used the Mahalanobis distance for detection of multivariate subject outliers, applying 

the critical Chi-square value for P < 0.01 and removing 42 subjects. Finally, metabolites were adjusted for 

significant medication effects using stepwise backwards selection (for details see (57)). The final QC-ed 

metabolomics dataset was further restricted to individuals having data on all significant covariates (see 

Section 2.4. Phenotype data and covariate selection), resulting in the study dataset of 140 metabolites 

and 1,517 individuals.  

2.4. Phenotype data and covariate selection 
We limited association analyses of metabolites with AD to early detectable endophenotypes, more 

specifically to the pathological threshold for CSF Aβ1-42, levels of phosphorylated tau protein in the CSF (p-

tau), and brain glucose metabolism measured by [18F] fluorodeoxyglucose (FDG)-positron emission 

tomography (PET). Baseline data on these biomarkers for ADNI-1, -GO, and -2 participants was 
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downloaded from the LONI online portal at https://ida.loni.usc.edu/. For CSF biomarker data, we used 

the dataset generated using the validated and highly automated Roche Elecsys electrochemiluminescence 

immunoassays (58, 59). For FDG-PET, we used a ROI-based measure of average glucose uptake across the 

left and right angular, left and right temporal and bilateral posterior cingulate regions derived from 

preprocessed scans (co-registered, averaged, standardized image and voxel size, uniform resolution) and 

intensity-normalized using a pons ROI to obtain standard uptake value ratio (SUVR) means (60, 61). The 

pathological CSF Aβ1-42 cut-point (1,073 pg/ml) as reported by the ADNI biomarker core for diagnosis-

independent mixture modeling (see http://adni.loni.usc.edu/methods/, accessed Oct 2017) was used for 

categorization since CSF Aβ1-42 concentrations were not normally distributed. Processed FDG-PET values 

were scaled and centered to zero mean and unit variance prior to association analysis, p-tau levels were 

additionally log2-transformed. Furthermore, we extracted covariates including age, sex, body-mass-index 

(BMI; calculated using baseline weight and body height), number of copies of the APOE ε4 genotype, and 

years of education. Covariates were separated into forced-in (age, sex, ADNI study phase, and number of 

copies of APOE ε4) and covariates (BMI, education) selectable by backwards selection. ADNI study phase 

was included to adjust for remaining metabolic differences between batches (ADNI-1 and ADNI-GO/-2 

were processed in separate runs), as well as differences in PET imaging technologies.  

2.5. Association analyses 
Association analyses of the three AD biomarkers with metabolite levels were conducted using standard 

linear (p-tau, FDG-PET) and logistic (pathological Aβ1-42) regression. For pathological CSF Aβ1-42, only BMI 

was additionally selected, while for p-tau and FDG-PET the full set of covariates was used. The 

stratification variables sex and copies of APOE ε4 were excluded as covariates in the respective group-

specific association analyses (i.e. sex in sex-stratified and copies of APOE ε4 in APOE ε4+/- status-stratified 

analyses, respectively). For identifying metabolic sex-differences, we used linear regression with 

metabolite levels as the dependent variable and age, sex, BMI, ADNI study phase, and diagnostic group as 

explanatory variables and retrieved statistics for sex. To adjust for multiple testing, we accounted for the 

significant correlation structure across the 140 metabolites and determined the number of independent 

metabolic features (i.e. tests) using the method of Li and Ji (62) to be 55, leading to a threshold of 

Bonferroni significance of 9.09 x 10-4. To assess significance of heterogeneity between strata, we followed 

the methodology of (25, 63) that is similar to the determination of study heterogeneity in inverse-

weighted meta-analysis. We further provide a scaled index of percent heterogeneity that is similar to the 

I2 statistic (64). 

3. Results 
In this study, we used CSF biomarkers, FDG-PET imaging, and metabolomics data on 140 metabolites to 

investigate metabolic effects in relation to sex and AD and their interaction. Out of 1,517 ADNI 

participants, 1,082 had CSF Aβ1-42 and p-tau levels and 1,143 had FDG-PET data available (Table 1). We 

included all individuals with respective data regardless of their diagnostic classification, as we were 

interested in these three representatives of the A-T-N AD biomarker schema (54, 55) as our main 

readouts. In this data set, there was no significant difference in the number of APOE ε4+/- subjects 

between females and males (P > 0.3). Of the three AD biomarkers, only p-tau levels were significantly 

different between sexes (corrected P = 0.01) with slightly higher levels observed in females.  
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Previous studies consistently showed widespread metabolic sex-differences, metabolic imprint of genetic 

variance in the APOE locus, as well as significant associations between blood metabolites and AD 

biomarkers that are independent of (i.e. adjusted for) sex. In the current study, we add the specific 

examination of the following central questions (Supplementary Figure 1): (i) Are metabolic sex-

differences changed due to presence of (probable) AD?, (ii) Are metabolite associations with A-T-N 

biomarkers modified by sex?, and (iii) Is there evidence for APOE ε4 status influencing metabolite 

associations with A-T-N biomarkers that show differences between sexes?  

3.1. Metabolic sex-differences are unaffected by MCI and probable AD status 
In a first step, we tested whether sex-associated differences in blood metabolite levels differ between 

patients with probable AD, subjects with late MCI, and CN subjects in the ADNI cohorts. In the complete 

cohort (n = 1,517), we found 108 of 140 metabolites to be significantly associated with sex after multiple 

testing correction while adjusting for age, BMI, ADNI study phase, and diagnostic group. 70 of these 

associations replicate previous findings in a healthy population using a prior version of the same 

metabolomics platform (25) that provides measurements on 92 out of the 108 metabolites identified in 

ADNI. All SMs and the majority of PCs were more abundant in women. The majority of biogenic amines, 

amino acids and acylcarnitines were more abundant in men. 

Stratifying subjects by diagnostic group revealed that 53 of the 108 metabolites showing significant sex-

differences were also significant in each of the three groups (AD, MCI, CN) alone, while 14 metabolites 

showed no significant difference in any of the groups, probably due to lower statistical power after 

stratification (Supplementary Table 1 and Supplementary Figure 2). Significant sex-differences limited to 

one diagnostic group were found for 8 metabolites (PC aa C34:1, PC ae C34:3, PC ae C36:3, PC ae C36:4, 

PC ae C38:5, PC ae C40:5, Histidine, C6/C4:1-DC) in patients with probable AD, for 7 metabolites (C0, C3, 

C9, C18:2, SDMA, Spermidine, t4-OH-Pro) in the MCI group, and for 6 metabolites (PC aa C42:0, PC ae 

C32:1, PC ae C42:3, SM(OH) C24:1, Sarcosine, Aspartate) in the CN group, although no significant sex-

differences were found that were not also significant in the full cohort. Comparisons of beta estimates for 

sex between AD and CN groups showed no significant effect heterogeneity, indicating reduced power as 

source for these observed differences. Only PC aa C34:1 showed significant (P = 0.029) heterogeneity 

between AD patients compared to CN subjects. Interestingly, in the larger healthy cohort used as 

reference, sex did not significantly affect the blood level of this metabolite  when adjusting for the same 

covariates as in this study (i.e., age and BMI) (25). In summary, we found that sex differences of blood 

metabolite levels are consistent (if we neglect the reduced power due to stratification) across diagnostic 

groups and, thus, do not seem to be directly affected by presence of MCI or AD status. 

3.2. Sex-stratified analyses reveal substantial differences in the association of AD 

biomarkers and blood metabolite concentrations between men and women 
To investigate whether sex modifies the association between AD endophenotypes and metabolite 

concentrations, we tested for associations of the three representative A-T-N biomarkers, CSF Aβ1-42
 

pathology, CSF p-tau levels, and brain glucose uptake measured via FDG-PET imaging, with concentrations 

of 140 blood metabolites. We did this in the full data set, as well as in women and men separately using 

multivariable linear and logistic regression, followed by analysis of heterogeneity of effects between 
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sexes. Table 2 lists the results of these analyses for all metabolite-phenotype combinations, as well as 

analyses of sex-by-metabolite interaction effects on A-T-N biomarkers, that fulfilled at least one of the 

following criteria: (i) associations that were significant (at a Bonferroni threshold of P < 9.09 x 10-4) in the 

full cohort; (ii) associations that were Bonferroni-significant in one of the two sexes; (iii) associations that 

showed suggestive significance (P < 0.05) in one sex coupled with significance for effect heterogeneity 

between female and male effect estimates. Results for all metabolites, phenotypes and statistical models 

are provided in Supplementary Table 2. Systematic comparison of estimated effects in men and women 

for all metabolites is shown in Figure 1. Based on this comparison, we classified metabolite – A-T-N 

biomarker associations into homogenous effects if metabolites showed very similar effects in their 

association to the biomarker for both sexes and heterogeneous effects if effects showed major differences 

between the sexes with opposite effect directions of the same metabolite for men and women or 

substantially larger effects in one of the sexes. If an effect was heterogeneous and significant in males but 

not females or vice versa, we considered it sex-specific.  

3.2.1. Homogeneous effects 

We refer to homogenous effects where similar alterations in metabolite levels are associated with AD 

biomarkers in men and women. Metabolites with homogenous effects lie on or close to the diagonal going 

through the first and third quadrant when plotting the effect estimates in women against those in men in 

Figure 1. We identified eight significant homogenous metabolite-phenotype associations with A-T-N 

biomarkers: CSF Aβ1-42 pathology was significantly associated with levels of three related ether-containing 

PCs (PC ae C44:4, PC ae C44:5, PC ae C44:6). Two of those (PC ae C44:4 and PC ae C44:5) were also 

significantly associated with brain glucose uptake (FDG-PET) in addition to three other PCs (PC aa C32:1, 

PC aa C32:0 and PC ae C42:4). For p-tau, we did not identify any homogeneous, overall significant 

associations. Notably, none of the associations categorized as homogenous showed any indication of 

effect heterogeneity between sexes, and only one association reached significance in the sex-stratified 

analyses: higher blood levels of the diacyl-PC PC aa C32:1 were associated with lower glucose uptake in 

brain in the male stratum alone despite lower power. 

3.2.2. Heterogeneous effects 

We refer to heterogeneous effects where a metabolite shows opposite effect directions for the same 

phenotype in men and women, or substantially larger effects in one sex leading to significant 

heterogeneity and/or sex-metabolite interaction. Metabolites showing these types of effects fall mainly 

into the second or fourth quadrant (with the exception of sex-specific effects) when contrasting the effect 

estimates for men and women in the plots for the three A-T-N phenotypes in Figure 1. In our study, we 

identified a total of 15 associations in this category (including three sex-specific effects). For CSF Aβ1-42, 

we identified two heterogeneous effects with threonine showing a sex-specific effect (see paragraph 

below) with greater effect size in males and valine with a larger effect in females: while valine was not 

significantly associated (P = 0.78) with CSF Aβ1-42 pathology in males, in females, it showed a nominally 

significant negative association with an estimated heterogeneity of I2 = 49.3%. CSF p-tau was the 

biomarker with the largest number of heterogeneous associations: acylcarnitines C5-DC (C6-OH), C8, C10 

(sex-specific), and C2, as well as the amino acid histidine showed stronger associations in females, while 

the related ether-containing PCs PC ae C36:1 and PC ae C36:2, the amino acids asparagine and glycine, 
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and one hydroxy-SM (SM (OH) C16:1) yielded stronger associations in males (all I2 > 50%); associations 

with FDG-PET revealed three heterogeneous effects, with ether-containing PC ae C40:2, and the 

acylcarnitine C16:1 (sex-specific) showing a larger effect in males (I2 = 55.3%), and proline having a larger 

effect in females (I2 = 64.8%). Notable, 9 of the 15 reported heterogeneous associations showed opposite 

effect directions between sexes, and in 7 cases, the interaction term (sex * metabolite) was also 

significantly (at P < 0.05) associated with the respective biomarker. 

3.2.3. Sex-specific effects 

We refer to sex-specific effects where metabolite associations are only significant in one sex with either 

significant effect heterogeneity between males and females or significant sex-metabolite interaction. In 

Figure 1, metabolites with this effect category fall into the area close to the x- (male-specific) or y- (female-

specific) axes of the three effect plots for the different A-T-N phenotypes. In total, we found three 

instances of this effect type. Male-specific effects were seen for threonine with pathological CSF Aβ1-42 

(positive association) and C16:1 with FDG-PET (negative association). We also identified a single female-

specific effect, where higher levels of the medium-chain acylcarnitine C10 were associated with higher 

CSF p-tau. This association was simultaneously the strongest seen for p-tau in the analysis of the full 

cohort, yet seems to be driven by female effects only.  

3.3. Stratified analyses by APOE ε4 status suggest intertwined modulation of 

metabolite effects by both sex and APOE genotype 
Previous reports suggested that the APOE ε4 genotype may exert AD risk predisposition in a sex-

dependent way (8-13). In order to investigate potential relationships between sex and APOE ε4 status on 

the metabolomic level, we selected the 21 metabolites identified in the previous analyses (Table 2) and 

performed association analyses with the three selected A-T-N biomarkers, now stratified by APOE ε4 

status and adjusted for sex. Using the same effect categories (homogeneous, heterogeneous, and group-

specific) as for the sex-stratified analyses revealed that metabolite effects in APOE ε4 carriers vs. non-

carriers also show effects from all three categories (Table 3): homogeneous effects were noted for the 

overall significant associations of PC aa C32:1, PC ae C44:4, PC ae C44:5, PC aa C32:0, and PC ae C42:4 with 

FDG-PET. Heterogeneous effects again formed the largest group (n = 11), with proline and glycine showing 

opposite effect directions on CSF Aβ1-42 pathology and C8, valine, glycine, and proline having opposite 

effect directions on FDG-PET for ε4 carriers vs. non-carriers, respectively. 5 metabolites with 

heterogeneous effects even showed APOE ε4 status-specific effects: (i) the associations of PC ae C44:6, 

PC ae C44:4, PC ae C44:5, and PC ae C42:4 with pathological CSF Aβ1-42 in APOE ε4 carriers. In case of PC 

ae C44:6, PC ae C44:5, and PC ae C44:4, the group-specific effects were strong enough to drive the signal 

to overall significance in the full sample. (ii) the association of acylcarnitine C10 with FDG-PET in APOE ε4 

non-carriers. 

3.4. Combined stratification by sex and APOE ε4 status identifies metabolic effects 

specific to female carriers of the ε4 allele 
When we stratified separately by sex and APOE ε4 status, we observed several metabolites (C8, C10, 

valine, glycine, and proline) that showed heterogeneous effects on AD biomarkers in both stratifications. 

To investigate potential additional subgroup-specific effects, we combined the two stratifications and 
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investigated the selected metabolite set for sex-by-APOE ε4 status effect modulations. Although the group 

of APOE ε4-carrying women was the smallest among the four strata, all Bonferroni-significant associations 

were found in this subgroup (Table 4): higher levels of three ether-containing PCs (PC ae C42:4, PC ae 

C44:5, and PC ae C44:6) were associated with pathological CSF Aβ1-42, higher acylcarnitine C10 was 

associated with increased CSF p-tau, and higher proline levels were associated with decreased FDG-PET 

values (Figure 2). The latter association was not observed in any other of the performed analyses. Of note, 

except for the association of C10 with p-tau, we found significant (P < 0.05) interaction effects between 

the metabolites and APOE ε4 status on their associated endophenotypes in females only, while the effects 

in males were not significantly (P > 0.1) modulated by APOE ε4 status. 

4. Discussion 
In this study, we investigated the influence of sex and APOE ε4 status on metabolic alterations related to 

representative A-T-N biomarkers (CSF Aβ1-42 pathology (A), CSF p-tau (T), FDG-PET (N)). By stratified 

analyses and systematic comparison of the effects estimated for the two sexes, we revealed substantial 

differences between men and women in their associations of blood metabolite levels with these AD 

biomarkers, although known sexual dimorphisms of metabolite levels themselves were unaffected by the 

disease. 

Differences between the sexes were largest for associations of metabolites and CSF p-tau levels. Notably, 

this biomarker was not significantly associated with any metabolite when including all subjects and 

adjusting for both sex and copies of APOE ε4, yet association analysis stratified by sex (but still adjusted 

for copies of APOE ε4) revealed a significant, female-specific metabolite/CSF p-tau association despite the 

smaller sample size. In contrast, for CSF Aβ1-42 and FDG-PET, in addition to heterogeneous, sex-specific 

effects, we also found homogenous effects, where metabolite concentrations showed the same trends of 

metabolite levels correlating with CSF Aβ1-42 pathology and/or lower brain glucose uptake in both sexes. 

For many of the metabolites with different effects for the sexes, we additionally observed significant 

effect heterogeneity between carriers and non-carriers of the APOE ε4 allele, suggesting intertwined 

modulation of metabolic effects by sex and APOE genotype. Indeed, two-fold stratification revealed 

metabolite associations that were either driven by or even specific to the group with presumably highest 

risk, APOE ε4 carrying females. Our results, thus, demonstrate the importance of stratified analyses for 

getting insights into metabolic underpinnings of AD that are seemingly restricted to a specific group of 

patients.   

4.1 Metabolic effect heterogeneity suggests sex-specific differences in energy 

homeostasis, alternative energy sources, and stress response in AD 
The metabolites showing effect heterogeneity across AD biomarkers in this study highlight sex-specific 

dysregulations of energy metabolism (acylcarnitines C2, C5-DC/C6-OH, C8, C10 and C16:1 for lipid-based 

energy metabolism (65); amino acids valine, glycine, and proline as markers for glucogenic and ketogenic 

energy metabolism (66-68)), energy homeostasis (asparagine, glycine, proline, and histidine (67-71)), and 

(metabolic/nutrient) stress response (threonine, proline, histidine (68, 70, 72)). While these pathways 
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have been linked to AD before, our work presents first evidence and molecular readouts for sex-related 

metabolic differences in AD.  

For instance, in our previous report, we discussed the implication of failing lipid energy metabolism in the 

context of AD biomarker profiles, starting at the stage of pathological changes in CSF tau levels (45). The 

current study now provides further insights in this topic, marking this finding to be predominant in 

females. More specifically, we observed a significant female-specific association of higher levels of 

acylcarnitine C10 with increased levels of CSF p-tau, with two other metabolites of this pathway (C8 and 

C5-DC/C6-OH) narrowly falling short of meeting the Bonferroni threshold. This indicates a sex-specific 

buildup of medium-chain fatty acids in females, suggesting increased energy demands coupled with 

impaired energy production via mitochondrial beta-oxidation (65).  

Interestingly, the significant heterogeneity of association results between sexes for CSF p-tau and glycine, 

with higher levels of glycine being linked to higher levels of CSF p-tau in men, indicates that energy 

demands are equally upregulated in males as in females. In contrast to women, men, however, appear to 

compensate this demand by upregulation of glucose energy metabolism as glycine is a positive marker of 

active glucose metabolism and insulin sensitivity (67). Findings for acylcarnitines in females are further 

contrasted by the observed male-specific association of higher levels of the long-chain acylcarnitine C16:1 

with decreased brain glucose uptake, which might indicate that in males there is a switch to provision of 

fatty acids as alternative fuel when glucose-based energy metabolism is less effective. As we did not 

observe the buildup of medium- and short-chain acylcarnitines as seen in females, we assume that, in 

males, energy production via mitochondrial beta-oxidation may be sustained, at least in early disease. 

Evidence corroborating sex-specific processes in energy homeostasis linked to changes in CSF p-tau levels 

is provided by the significant heterogeneity estimates for histidine with lower levels of histidine being 

linked to higher levels of CSF p-tau in women. Depletion of histidine has been shown to be associated with 

insulin resistance, inflammatory processes, as well as oxidative stress, especially in women with metabolic 

dysregulation (69, 70). 

We further identified a heterogeneous association of valine with lower levels in females (P < 0.05), but 

not in males, with Aβ1-42 pathology. Valine, a BCAA and important energy carrying molecule, has been 

reported to be associated with cognitive decline and brain atrophy in AD, as well as with risk for incident 

dementia (42, 45). The lower levels observed in AD are in contrast to other complex phenotypes such as 

type 2 diabetes, insulin resistance, or obesity (66, 73), where higher levels of BCAAs are found, and may 

indicate a switch to increased energy consumption via degradation of amino acids in AD. A recent study 

highlighted decreasing levels of valine as being significantly associated with all-cause mortality (74). 

Besides implications for energy metabolism, results from our study may thus characterize lower levels of 

valine also as a marker for increased female vulnerability to pathogenic processes in general and to β-

amyloidosis in AD in particular. 

4.2 Complex interplay between sex, APOE ε4 status, and metabolism 
The higher effect size of genetic risk for AD exerted by the APOE ε4 allele in females compared to males 

still awaits molecular elucidation. Here, we tried to elaborate on potential interrelated risk predispositions 
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from a metabolomic point of view. We therefore investigated if APOE ε4 status may also modulate 

metabolic readouts of AD-linked A-T-N biomarker profiles identified in sex-centered analyses. We found 

that indeed the majority (68.8%) of observed associations between metabolites and AD biomarkers shows 

significant heterogeneity between APOE ε4 status groups.  

Notably, the full set of metabolites yielding significant effect heterogeneity when comparing APOE ε4-

carriers vs. non-carriers (C8, C10, glycine, proline, and valine) also showed significant heterogeneity 

estimates in the sex-stratified analyses. We therefore applied two-fold stratification by sex and APOE ε4 

status to identify potential interactions between both variables (Supplementary Figure 3). This analysis 

revealed several associations that showed Bonferroni significance in the group with presumably the 

highest AD risk, namely APOE ε4+ females. One of those, the significant association of higher proline levels 

with reduced brain glucose uptake, was not observed in any of the three other strata, in the one-fold 

stratifications, or in the full sample, emphasizing the value of more fine-granular stratified analyses as 

proposed here.  

4.3 Homogeneous effects seem to represent generic metabolic hallmarks in AD 
The heterogeneity of metabolite effects identified in our study might, in part, explain inconsistencies (e.g., 

(75) vs. (76)) in associations of metabolites and AD reported in different studies (e.g., if sex and APOE 

genotype are distributed differently and sample sizes are small).  Besides the heterogeneous, sex-specific 

effects observed for metabolite associations with CSF Aβ1-42 and FDG-PET biomarkers, we also found 

associations of these biomarkers with metabolites that showed the same effects in women and men. In 

particular, phosphatidylcholines that presumably contain two long-chain fatty acids with, in total, 4 or 5 

double bonds (PC ae C44:4, PC ae C44:5) were significant for both AD biomarkers.  Such homogeneous 

metabolite associations would be expected to replicate well across studies.  

To test this assumption in an independent sample, we performed a targeted analysis using the three PCs 

associated with CSF Aβ1-42 pathology in 86 serum samples of subjects in the ROS/MAP cohorts 

(Supplementary Text 2): all three associations were Bonferroni significant (PC ae C44:4 – P = 3.73 x 10-3; 

PC ae C44:5 – P = 1.15 x 10-2; PC ae C44:6 – P = 3.28 x 10-3) in ROS/MAP with consistent effect directions. 

Of note, in ROS/MAP, we used a different measure of amyloid pathology (total amyloid load in the brain), 

which is known to be inversely correlated with CSF Aβ1-42 levels (77). This inverse relationship was mirrored 

by metabolite effect estimates. These results provide evidence for homogeneous associations to be 

relevant across cohorts.  

4.4 Limitations 
Our study has several limitations. First, the reported findings are observational and do not allow for any 

direct causal conclusions. Second, the reported heterogeneity estimates still await replication in an 

independent cohort with sample sizes appropriate for stratification as well as metabolomics and 

endophenotypic data available (ROS/MAP sample sizes available to us were too small to be sufficiently 

powered). Third, it is to be noted that stratified analyses in combination with heterogeneity estimates 

may identify spurious associations, primarily due to the limited power resulting from group separation. 

However, we were able to show that for the majority of the non-homogeneous findings reported (60%), 

the interaction term between metabolite levels and sex were also significant in the pooled analysis. When 
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stratifying by APOE ε4 status, this was true for an even higher fraction of cases (72.7%). This provides an 

additional line of support for the conclusions drawn in this work. Finally, we only looked at two risk factors, 

but there may be others (e.g., type 2 diabetes, cardiovascular disease, high blood pressure) that also have 

metabolic aspects and may reveal even greater molecular heterogeneity. 

 

4.5 Conclusion  
Effect heterogeneity between subgroups linked to energy metabolism as reported in this study has several 

important implications for AD research. First, this heterogeneity could explain inconsistencies of 

metabolomics findings between studies as observed for AD if participants showed different distributions 

of variables such as sex and APOE ε4 genotype. Second, pooled analysis with model adjustment for such 

variables as typically applied for sex can mask substantial effects that are relevant for only a subgroup of 

people. This is also true for combinations of stratifying variables as we demonstrated for the association 

of proline with brain glucose uptake in female APOE ε4 carriers. Consequently, drug trials may be more 

successful if acknowledging between-group differences and targeting the subgroup with the presumably 

largest benefit in their inclusion criteria. For energy metabolism in particular, group-specific dietary 

interventions precisely targeting the respective dysfunctional pathways may pose a promising alternative 

to de novo drug development. Extending our approach by selection of additional variables to further 

improve stratification may eventually guide the way to personalized medicine. 
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Figure captions 
Figure 1: Scatter plots showing Z-scores of effect estimates of metabolite associations with A-T-N biomarkers for 

males (x-axis) versus those for females (y-axis). Homogeneous effects (i.e. those with same effect direction and 

comparable effect size) are located close to the diagonal, heterogeneous effects are located close to the anti-

diagonal, and sex-specific effects are located close to one axis, i.e. x-axis for male-specific and y-axis for female-

specific effects, respectively. Homogeneous, overall significant results are depicted as diamonds, effects with 

significant heterogeneity are drawn as rectangles, and effects significant in only one sex are displayed as triangles. 

Metabolites additionally marked by an asterisk are significant in one sex only and simultaneously show significant 

heterogeneity. Sex-specificity is further illustrated by a color scale (blue: females; green: males). On the upper right 

panel, example boxplots of metabolite residuals (obtained by regressing out included covariates) for each effect type 

are shown separately for females and males with (in dark red) and without (in light red) CSF Aβ1-42 pathology, 

respectively. 

Figure 2: Boxplots showing residuals of proline levels (derived by regressing out covariate effects) for A: the full 

sample; B: 1-fold stratifications by sex; C: 1-fold stratification by APOE ε4 status; and D: 2-fold stratification by both 

sex and APOE ε4 status; separately for high (light blue) and low (darker blue; derived by mean-split) FDG-PET values. 

The only subgroup showing a significant difference in proline levels are APOE ε4+ females with substantially higher 

levels in subjects with lower brain glucose uptake. 
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Tables 
Table 1: Characteristics of the 1,517 ADNI samples included in this study. CN: cognitively normal. SMC: subjective memory complaints; EMCI: early mild cognitive impairment; 

MCI: mild cognitive impairment; AD: probably Alzheimer’s disease; BMI: body-mass-index; APOE ε4-/+: non-carriers and carriers of the APOE ε4 allele, Path.Abeta-/+: 

participants who have normal and pathological CSF Abeta levels; respectively. 

  global dataset CN SMC EMCI MCI AD 

Nsubjects 1517 362 93 270 490 302 
Sex (m/f) 828/689 177/185 39/54 149/121 298/192 165/137 
Age 73.72 (+-7.25) 74.61 (+-5.77) 72.34 (+-5.70) 71.26 (+-7.63) 74.03 (+-7.63) 74.79 (+-7.77) 
BMI 26.86(+- 4.82) 26.99 (+-4.53) 28.46 (+-6.23) 27.96 (+-5.36) 26.45 (+-4.27) 25.88 (+-4.69) 
Education 15.88 (+-2.87) 16.24 (+-2.79) 16.78 (+-2.55) 15.95 (+-2.67) 15.84 (+-2.91) 15.16 (+-3.01) 
APOE ε4-/+ 809/708 * 261/101 64/29 155/115 224/266 105/197 

CSF available 1082 * 236 84 245 308 209 
Path.Abeta-/+ 407/675 134/102 57/27 122/123 75/233 19/190 
CSF Abeta 1052.73 (+-601.70) 1324.60 (+-652.13) 1395.01 (+-618.19) 1172.73 (+-569.12) 896.35 (+-501.80) 697.95 (+-431.49) 
CSF p-Tau 27.79 (+-14.56 ) 22.01 (+-9.19) 21.66 (+-9.14) 24.34 (+-14.03) 30.81 (+-14.94) 36.38 (+-16.07) 

FDG-PET available 1143 * 247 93 268 318 217 
FDG-PET 6.17 (+-0.77) 6.53 (+-0.58) 6.60 (+-0.58) 6.44 (+-0.60) 6.08 (+-0.68) 5.36 (+-0.73) 

       
* Numbers for combined stratification:     
  APOE ε4- females APOE ε4- males APOE ε4+ females APOE ε4+ males   
total 374 435 315 393   
CSF available 267 315 222 278   
FDG-PET available 278 337 230 298   
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Table 2: Metabolite associations with A-T-N biomarkers that are either Bonferroni significant in the full sample, one sex, or show nominal significance both in one sex and for 

effect heterogeneity. Given are regression results for the full sample and both sexes, as well as heterogeneity estimates and the p-value for sex * metabolite interactions.  

    males females Sex difference interaction 

biomarker metabolite effect se p-value effect type effect se p-value effect se p-value t p-value I2 p-value 

Pathological 
CSF Aβ1-42 

PC ae C44:6 0.283 0.078 2.58E-04 homogeneous 0.282 0.102 5.96E-03 0.299 0.121 1.33E-02 -0.1068 9.15E-01 0.000 8.09E-01 

PC ae C44:4 0.265 0.076 4.57E-04 homogeneous 0.274 0.100 6.29E-03 0.255 0.118 3.07E-02 0.11904 9.05E-01 0.000 7.83E-01 

PC ae C44:5 0.260 0.075 5.23E-04 homogeneous 0.294 0.100 3.26E-03 0.214 0.116 6.38E-02 0.52233 6.01E-01 0.000 4.34E-01 

Threonine 0.207 0.076 6.72E-03 male-specific 0.372 0.112 8.83E-04 0.070 0.108 5.17E-01 1.943 5.20E-02 48.545 4.03E-02 

Valine -0.134 0.083 1.05E-01 heterogeneous 0.032 0.114 7.80E-01 -0.299 0.123 1.50E-02 1.973 4.85E-02 49.322 7.65E-02 

CSF p-tau 

C10 0.084 0.030 4.58E-03 female-specific 0.014 0.042 7.34E-01 0.144 0.042 6.07E-04 -2.203 2.76E-02 54.613 2.55E-02 

C5−DC (C6−OH) 0.103 0.045 2.35E-02 heterogeneous 0.012 0.062 8.52E-01 0.205 0.067 2.27E-03 -2.116 3.44E-02 52.740 3.38E-01 

C8 0.064 0.030 3.42E-02 heterogeneous 0.003 0.041 9.39E-01 0.127 0.045 5.11E-03 -2.028 4.26E-02 50.692 5.63E-02 

PC ae C36:2 0.056 0.032 8.65E-02 heterogeneous 0.129 0.046 4.80E-03 -0.023 0.046 6.18E-01 2.355 1.85E-02 57.535 2.16E-02 

Histidine -0.034 0.031 2.72E-01 heterogeneous 0.033 0.042 4.39E-01 -0.105 0.045 1.97E-02 2.237 2.53E-02 55.290 2.42E-02 

Asparagine 0.034 0.031 2.84E-01 heterogeneous 0.107 0.045 1.66E-02 -0.052 0.044 2.32E-01 2.550 1.08E-02 60.788 2.16E-02 

SM (OH) C16:1 0.032 0.031 3.10E-01 heterogeneous 0.091 0.043 3.36E-02 -0.039 0.046 3.99E-01 2.066 3.89E-02 51.592 3.75E-02 

Glycine 0.030 0.032 3.50E-01 heterogeneous 0.104 0.051 3.94E-02 -0.026 0.040 5.23E-01 2.014 4.40E-02 50.346 6.88E-02 

PC ae C36:1 0.028 0.031 3.68E-01 heterogeneous 0.088 0.043 4.17E-02 -0.041 0.044 3.51E-01 2.094 3.62E-02 52.251 3.76E-02 

C2 0.015 0.028 5.85E-01 heterogeneous -0.054 0.039 1.67E-01 0.089 0.041 3.02E-02 -2.527 1.15E-02 60.430 1.39E-02 

FDG-PET 

PC aa C32:1 -0.127 0.030 2.32E-05 homogeneous -0.140 0.041 6.31E-04 -0.110 0.045 1.50E-02 -0.499 6.18E-01 0.000 5.53E-01 

PC ae C44:4 -0.111 0.030 2.27E-04 homogeneous -0.097 0.041 1.80E-02 -0.141 0.045 1.84E-03 0.71633 4.74E-01 0.000 2.21E-01 

PC ae C44:5 -0.105 0.030 4.07E-04 homogeneous -0.112 0.040 5.80E-03 -0.111 0.044 1.30E-02 -0.0207 9.83E-01 0.000 6.02E-01 

PC aa C32:0 -0.107 0.032 6.85E-04 homogeneous -0.125 0.045 5.67E-03 -0.091 0.045 4.25E-02 -0.547 5.84E-01 0.000 7.44E-01 

PC ae C42:4 -0.103 0.031 8.56E-04 homogeneous -0.103 0.042 1.58E-02 -0.112 0.045 1.33E-02 0.15599 8.76E-01 0.000 4.48E-01 

C16:1 -0.103 0.031 9.09E-04 male-specific -0.165 0.042 9.64E-05 -0.029 0.046 5.38E-01 -2.179 2.93E-02 54.107 9.94E-02 

PC ae C40:2 -0.053 0.030 7.82E-02 heterogeneous -0.119 0.042 4.34E-03 0.016 0.044 7.15E-01 -2.238 2.52E-02 55.312 5.78E-02 

Proline -0.023 0.031 4.51E-01 heterogeneous 0.059 0.044 1.77E-01 -0.118 0.044 8.18E-03 2.841 4.50E-03 64.801 7.74E-03 
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Table 3: Associations of metabolites identified in the sex-centric analysis with A-T-N biomarkers that are either Bonferroni significant in the full sample, in APOE ε4+ or APOE ε4- 

subjects, or show nominal significance both in one APOE ε4 status group and for effect heterogeneity. Given are regression results for the full sample and both APOE ε4 status 

groups, as well as heterogeneity estimates and the p-value for APOE ε4 status * metabolite interactions.  

      APOE ε4+ APOE ε4- APOE ε4 status difference interaction 

biomarker metabolite effect se p-value effect type effect se p-value effect se p-value t p-value I2 p-value 

Pathological 
CSF Aβ1-42 

PC ae C44:6 0.283 0.078 2.58E-04 specific to ε4+ 0.630 0.150 2.50E-05 0.158 0.090 7.96E-02 -2.705 6.83E-03 63.030 2.80E-03 
PC ae C44:4 0.265 0.076 4.57E-04 specific to ε4+ 0.565 0.148 1.30E-04 0.139 0.088 1.13E-01 -2.478 1.32E-02 59.645 5.80E-03 
PC ae C44:5 0.260 0.075 5.23E-04 specific to ε4+ 0.609 0.145 2.64E-05 0.129 0.087 1.37E-01 -2.837 4.56E-03 64.749 3.07E-03 
PC ae C42:4 0.242 0.078 1.98E-03 specific to ε4+ 0.564 0.148 1.32E-04 0.114 0.092 2.15E-01 -2.589 9.61E-03 61.382 5.64E-03 
Proline -0.075 0.081 3.52E-01 heterogeneous 0.176 0.142 2.15E-01 -0.202 0.100 4.40E-02 -2.173 2.98E-02 53.982 1.58E-01 
Glycine 0.060 0.082 4.60E-01 heterogeneous 0.363 0.154 1.83E-02 -0.102 0.100 3.05E-01 -2.538 1.11E-02 60.604 7.89E-04 

FDG-PET 

PC aa C32:1 -0.127 0.030 2.32E-05 homogeneous -0.087 0.045 5.35E-02 -0.162 0.042 1.34E-04 -1.210 2.26E-01 17.332 3.58E-01 

PC ae C44:4 -0.111 0.030 2.27E-04 homogeneous -0.115 0.047 1.39E-02 -0.114 0.041 6.34E-03 0.023 9.82E-01 0.000 8.63E-01 

PC ae C44:5 -0.105 0.030 4.07E-04 homogeneous -0.122 0.046 8.34E-03 -0.102 0.041 1.30E-02 0.326 7.44E-01 0.000 6.39E-01 

PC aa C32:0 -0.107 0.032 6.85E-04 homogeneous -0.135 0.047 4.39E-03 -0.082 0.045 6.58E-02 0.818 4.14E-01 0.000 3.69E-01 

PC ae C42:4 -0.103 0.031 8.56E-04 homogeneous -0.131 0.047 5.79E-03 -0.086 0.043 4.51E-02 0.701 4.83E-01 0.000 3.98E-01 

C10 -0.057 0.029 5.14E-02 specific to ε4- 0.037 0.046 4.17E-01 -0.135 0.040 7.17E-04 -2.840 4.51E-03 64.793 4.96E-03 

C8 -0.051 0.031 9.96E-02 heterogeneous 0.038 0.046 4.04E-01 -0.138 0.043 1.58E-03 -2.794 5.20E-03 64.215 6.37E-03 

Valine 0.036 0.032 2.49E-01 heterogeneous -0.040 0.048 4.08E-01 0.106 0.044 1.68E-02 2.234 2.55E-02 55.233 9.50E-02 

Glycine -0.032 0.031 3.00E-01 heterogeneous -0.140 0.047 3.05E-03 0.059 0.044 1.80E-01 3.092 1.99E-03 67.653 3.29E-03 

Proline -0.023 0.031 4.51E-01 heterogeneous -0.100 0.047 3.39E-02 0.048 0.043 2.64E-01 2.324 2.01E-02 56.977 6.35E-02 
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Table 4: Significant metabolite effects in the combined stratification (sex by APOE ε4 status) on A-T-N biomarkers are driven by or limited to APOE ε4+ females. Given are 

regression results for the full sample, APOE ε4+ males, APOE ε4+ females, as well as heterogeneity estimates by sex and APOE ε4 status. The only metabolite showing effect 

heterogeneity for both stratification variables was proline in its association with FDG-PET values.  

     Sex difference APOE ε4 status difference APOE ε4+ males APOE ε4+ females 

biomarker metabolite effect p-value p-value I2 p-value I2 effect p-value effect p-value 

Pathological 
CSF Aβ1-42 

PC ae C44:6 0.283 2.58E-04 9.15E-01 0.000 6.83E-03 63.03 0.463 1.68E-02 0.922 1.90E-04 

PC ae C44:5 0.26 5.23E-04 6.01E-01 0.000 4.56E-03 64.749 0.521 6.17E-03 0.761 8.29E-04 

PC ae C42:4 0.242 1.98E-03 7.58E-01 0.000 9.61E-03 61.382 0.42 3.15E-02 0.761 8.65E-04 

CSF p-tau C10 0.084 4.58E-03 2.76E-02 54.613 6.16E-01 0 -0.064 3.24E-01 0.264 1.21E-04 

FDG-PET Proline -0.023 4.51E-01 4.50E-03 64.801 2.01E-02 56.977 0.046 4.76E-01 -0.272 8.22E-05 
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Figure	captions	
Figure 1: Scatter plots showing Z‐scores of effect estimates of metabolite associations with A‐T‐N biomarkers for 

males (x‐axis) versus those for females (y‐axis). Homogeneous effects (i.e. those with same effect direction and 

comparable effect size) are located close to the diagonal, heterogeneous effects are located close to the anti‐

diagonal, and sex‐specific effects are located close to one axis, i.e. x‐axis for male‐specific and y‐axis for female‐

specific effects, respectively. Homogeneous, overall significant results are depicted as diamonds, effects with 

significant  heterogeneity  are  drawn  as  rectangles,  and  effects  significant  in  only  one  sex  are  displayed  as 

triangles. Metabolites additionally marked by an asterisk are significant in one sex only and simultaneously show 

significant heterogeneity. Sex‐specificity is further illustrated by a color scale (blue: females; green: males). On 

the upper right panel, example boxplots of metabolite residuals (obtained by regressing out included covariates) 

for each effect type are shown separately for females and males with (in dark red) and without (in light red) CSF 

Aβ1‐42 pathology, respectively. 

Figure 2: Boxplots showing residuals of proline levels (derived by regressing out covariate effects) for A: the full 

sample; B: 1‐fold stratifications by sex; C: 1‐fold stratification by APOE ε4 status; and D: 2‐fold stratification by 

both sex and APOE ε4 status; separately for high (light blue) and low (darker blue; derived by mean‐split) FDG‐

PET  values. The only  subgroup  showing a  significant difference  in proline  levels are APOE  ε4+  females with 

substantially higher levels in subjects with lower brain glucose uptake. 
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Supplementary Text – Data Availability 

 
Data use restrictions prohibit the distribution of any ADNI clinical or demographic data outside of 
LONI. Researchers can apply for access to the ADNI data at http://adni.loni.usc.edu/data-
samples/access-data/. Data use restrictions prohibit the distribution of any ROSMAP data. Researchers 
can apply for access to the ROSMAP data at https://www.radc.rush.edu/ . Data for the ADNI-1 cohort 
is accessible via http://dx.doi.org/10.7303/syn5592519 .  ADNI GO/2 data is accessible via 
http://dx.doi.org/10.7303/syn9705278 and ROSMAP data is accessible via  
http://dx.doi.org/10.7303/syn10235592   
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Supplementary Text - Replication Analysis in ROS/MAP 
To replicate a subset of the findings reported in this manuscript in an independent cohort, we used 

metabolomics data obtained from pre-mortem serum samples of 86 deceased participants of the 

Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP), who had agreed to post- 

mortem neuropathological examinations, using the same metabolomics kit (AbsoluteIDQ-p180). Of 

the 86 total participants, 24 were females / 62 males; 52 CN / 24 MCI / 7 AD; mean age was 87.77 (± 

6.01) years. Metabolomics data processing was performed very similar as for the ADNI, except that 

we used a pool of study samples randomly injected across plates instead of NIST standard plasma, 

and median- instead of mean-based quotient batch removal. We then did a targeted analysis to 

replicate associations of PC ae C44:4, PC ae C44:5, and PC ae C44:6 with Aβ1-42 pathology using post- 

mortem, neuropathology-derived measures of total amyloid load in the brain. This phenotype was 

transformed to square root values to get values closer to a normal distribution. Linear regression 

models were adjusted for age at blood draw, sex, study cohort (ROS vs. MAP), race, number of copies 

of APOE ε4, as well as years of education. All three p-values were Bonferroni significant when 

adjusting for three test (p-value threshold of P < 1.667), complete result statistics were: 
 

biomarker metabolite effect se p-value 

total 
amyloid in 

PC ae C44:4 

PC ae C44:5 

0.30741 

0.2656 

0.10277 

0.10257 

0.00373 

0.01149 

     

the brain PC ae C44:6 0.30992 0.10212 0.00328 
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Supplementary Figure 1: Study rationale and workflow 
 
 
 

 
 

 
 
 

 
 

Supplementary Figure 1: Study rationale and workflow. A) This study aims to investigate the 

relationship between AD, sex, and metabolic readouts in a systematic fashion. The background of 

this work is: firstly, it has been reported that AD risk may be increased in females; secondly, there are 

strongly pronounced, highly significant, and often replicated sex differences in metabolite 

concentrations in the general, healthy population; and, thirdly, we and others have shown that there 

are significant associations of metabolite levels with AD and its biomarkers. In the current study, we 

examined: (i) if clinical diagnosis of MCI or AD influences metabolic sex differences as seen in healthy 

controls, (ii) if sex modulates associations of metabolite levels with three AD biomarkers across the 

A-T-N spectrum, and, (iii), if effects of metabolites showing sex-based effect heterogeneity in their 
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associations with AD are also modulated  by APOE ε4 status. B) To address the three research 

questions of this study, we first performed analyses of sex-metabolite associations for 140 

metabolites in the ADNI cohort stratified by diagnostic group (question i). Subsequently, we 

performed phenotype (A/T/N)-metabolite associations for 140 metabolites in the ADNI cohort 

stratified by sex (question ii) and stratified by APOE ε4 status; additionally, we performed phenotype 

(A/T/N)-metabolite associations for the 21 significantly associated metabolites after stratification by 

sex plus APOE ε4 status (question iii). 
 
 

 

Supplementary Figure 2: Metabolic sex differences in the ADNI 

cohorts 
 

 
 

 
 

Supplementary Figure 2: Metabolic sex differences in the ADNI cohorts. We tested whether sex- 

associated differences in blood metabolite levels differ between patients with probable AD, subjects 

with MCI, and CN subjects in the ADNI cohorts. We found 108 of 140 metabolites to be significantly 

associated with sex after multiple testing correction while adjusting for age, BMI, ADNI study phase, 

and diagnostic group. 70 of these associations replicate previous findings in a healthy population 

using. All SMs and the majority of PCs were more abundant in women. The majority of biogenic 

amines, amino acids, and acylcarnitines were more abundant in men. Stratifying subjects by 

diagnostic group revealed that 53 of the 108 metabolites showing significant sex-differences were 

also significant in each of the three groups (AD, MCI, CN) alone, while 14 metabolites showed no 

significant difference in any of the groups, probably due to lower statistical power after stratification. 

No significant sex-differences were found that were not also significant in the unstratified analysis. 
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Supplementary Figure 3: Boxplots for all 21 metabolites identified 

in this study in relation to A-T-N biomarkers in 2-fold stratified 

analyses 
In a separate file, we provide boxplots for all 21 metabolites identified in this study to show their 

relation to A-T-N biomarkers (A: pathological CSF Aβ1-42; T: mean-split CSF p-tau levels; N: mean-split 

FDG-PET values) for 2-fold stratified analyses by both sex and APOE ε4 status. APOE ε4 status groups 

are plotted in separate panels, females and males are distinguished by color (f: blue, m: green), and 

binarized biomarker groups are emphasized by lighter (lower-risk biomarker profile) and deeper 

(higher-risk biomarker profile) colors. 
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