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Abstract:

Patients taking oral iron supplementation often suffer from gastrointestinal side effects. We
have previously shown that acute alterations in oral iron exacerbate dextran sodium sulphate
(DSS) induced colitis and are associated with dysbiosis. As patients take iron supplementation
for long periods, we asked whether this too would influence colitis and the microbiome. We
assessed the impact of long-term changes in dietary iron, by feeding chow containing 100ppm,
200ppm and 400ppm (reflecting a deficient, normal or supplemented diet, respectively) for up
to 9 weeks to female wild-type C57BL/6 (WT) mice in presence or absence of chronic colitis,
or acute colitis induced after 8 weeks, induced by DSS. Assessment was made based on (i)
clinical and histological severity of colitis, and (ii) faecal microbial diversity, as assessed by
sequencing the V4 region of 16S rRNA. In mice with long term changes to their dietary iron,
reduced iron intake (100ppm iron diet) was associated with increased weight loss and
histology scoring in the acute colitis model. Chronic colitis was not influenced by altering
dietary iron however there was a clear change in the faecal microbiome in the 100 and 400ppm
iron DSS-treated groups and in controls consuming the 400ppm iron diet. Proteobacteria
levels increased significantly at day-63 compared to baseline and Bacteroidetes levels
decreased in the 400ppm iron DSS group at day-63 compared to baseline; mirroring our
previously published work in acute colitis. Long term dietary iron alterations clearly affects gut
microbiota signatures but do not appear to exacerbate chronic colitis. However, acute colitis
is exacerbated by changes in dietary iron. More work is needed to understand the impact of
iron supplementation of the pathologenesis of IBD and rise that possiblity that the change in
the microbiome, in patients with colitis, is a consequence of the increase in luminal iron and

not simply the presence of colitis.
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Introduction

Inflammatory bowel disease (IBD) is a debilitating, relapsing-remitting long-term condition of
the gastrointestinal tract that affects around 240,000 people in the UK (1) (2, 3). Approximately
one-third of patients develop iron deficiency anaemia because of intestinal bleeding and/or
malabsorption (4-7). Iron deficiency (ID) may be treated effectively by intravenous or oral iron
replacement (8). These therapeutic options have different side effect profiles (9), and may
have other off target effects e.g. iron is a growth factor for some bacteria (10). Unabsorbed
oral iron supplements and gastrointestinal bleeding result in an increase in luminal iron which
may exacerbate IBD and lead to increased proliferation and virulence of some bacteria (11-
13). Intestinal bacterial dysbioses have been associated with relapse of IBD (14, 15). It is not

clear whether relapsing inflammation leads to dysbiosis by modulating luminal iron (16).

Chronic inflammation of the intestinal tract is the main feature of IBD. Intestinal epithelial cells
(IECs) provide a single superficial layer on the intestinal mucosa and act as the first defensive
barrier against the luminal content of the gut and protector of the underlying tissues. IECs
have important roles, secreting antimicrobial substances [defensins] and communicating with
intestinal immune cells using soluble mediators, chemokines and cytokines (17, 18). There is
mounting evidence that alterations in immune regulatory pathways, including inflammasome
activation pathways drive changes in gut microbiotal diversity (19). The mucosal barrier not
only defends against luminal pathogens, but also actively shapes the peri-mucosal niche,

thereby regulating the composition of the mucosa-associated microbiota (20).

Based on this evidence, we hypothesised that iron supplementation (and or bleeding) in IBD
patients could change the composition of the gut microbiota and potentially influence the
natural history of IBD. To investigate this, we assessed the long-term effects of altering dietary
iron consumption on intestinal microbiota in murine models of colitis to eliminate any
confounding factors based on background genetics that would be inevitable in a human

population.
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100 Materials and Methods

101 Animals

102  Wild type C57BL/6 female mice, aged 8-9 weeks old, were purchased from Charles River
103  Laboratories (Margate, UK). Six groups of 8 mice were studied: three control groups and three
104 DSS-treated groups, all of which were maintained for 63-days. Mice received standard chow
105 and water ad libitum, during an acclimatisation period of at least one week. Animals were then
106  individually caged in a room with controlled temperature, humidity and a pre-set dark-light
107 cycle (12 h: 12 h) in a specific pathogen-free animal facility. For each group of experiments,
108  mice were matched for age and body weight. The care of, and experimentation on, mice was
109 carried out in accordance with UK Home Office regulations (project licence no: 70/8457) and
110 the project was reviewed by the University of Liverpool Animal Welfare and Ethical Review
111  Body (AWERB).

112
113 Diets

114  When eating a normal (standard) iron diet, mice were fed Rat and Mouse Breeder and Grower
115  Pelleted CRM (P) chow (Special Diets Services (SDS), Witham, Essex, UK) which contained
116 200 part per million (ppm) iron in 10mm compression pellets. Two modifications of this
117  standard iron diet were also used: the first was CRM (P) 100ppm iron (Fe) diet where the CRM
118 (P) formulation was used with reduced iron content (0.01% Fe), this was called the half
119  standard iron diet (100ppm iron). The second modification was the CRM (P) 400ppm iron diet:
120 again the CRM (P) formulation was used, but the iron content was increased (0.04% Fe), this
121  was called the double standard iron diet (400ppm iron).

122
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123 Controls

124  Mice in the three control groups received the standard, half standard or double standard iron
125  diets respectively for 63 days. After 53-days, each group was divided into two, half carried on
126  as controls and half were treated with 2% DSS as described below (Supplementary Figure 1).

127

128 Induction of chronic colitis using dextran sodium sulphate

129 (DSS)

130 Three groups of 8 mice (taking standard, half standard and double standard iron diets
131  respectively) were given a 1.25% solution of dextran sulfate sodium (M.W. 36,000 — 50,000Da;
132  Catalogue number: 160110; Lot number: 6683K; MP Biomedicals, LLC, UK) in their drinking
133  water for 5-days to induce colitis (Supplementary Figure 1). Mice were allowed to recover for
134 16 days and then the DSS-treatment was repeated for a total of three cycles (21).

135
136 Induction of acute colitis using DSS

137  Three groups of 4 mice which had been on the diets for 53 days (control groups) received 2%
138  DSS for 5-days in drinking water, followed by 5-days of plain drinking water, to induce acute
139  colitis. All mice were euthanised on day-63.

140
141 Histopathological scoring of colonic inflammation

142  The distal colon was removed, fixed in 4% neutral buffered formalin, dehydrated, wax-
143  embedded and then cut into 4um sections. The sections were stained with haematoxylin and
144  eosin (H&E). Inflammation was reported using the inflammatory scoring system described by
145  Bauer et al. (22). Fibrosis was assessed using Masson’s trichrome staining (NovaUltra™
146  Masson’s Trichrome Stain Kit (Fisher Scientific UK Ltd)) (23). A researcher blinded to the
147  treatment group assessed all slides.

148
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149 Assessing the degree of gut inflammation by measuring

150 faecal calprotectin concentrations

151  Faecal calprotectin concentration was measured using the S100A8/S100A9 ELISA kit
152 (Immundiagnostik AG, Stubenwald-Allee 8a, Bensheim, Germany) from faecal samples
153  collected from each mouse, on day-1, 21, 42 and 63 in the chronic colitis study, and on day-1
154  and day-10 of the acute colitis study in control mice.

155

156

157
158 Faecal iron concentration

159  The faecal iron (Fe?* and Fe?®*) concentration was measured using an iron immunoassay kit
160 (MAKO025, Sigma-Aldrich) from the same faecal pellets that were collected for calprotectin
161  assessment.

162
163 Faecal bacterial DNA extraction and sequencing

164  2g of faeces was used for bacterial DNA extraction using Stratec Kit (PSP® Spin Stool DNA
165  Plus Kit, STRATEC Molecular GmbH, D-13125 Berlin) following the supplier’s protocol. The
166  extracted DNA was sent to the Centre for Genomic Research at the University of Liverpool to
167 undertake the rest of amplicon library protocol 16S [Metagenomic Sequencing Library].
168  Primers described by Caporaso et al. (24) were used to amplify the V4 region of 16S rDNA F:
169 S5'ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTGCCAGCMGCCGCGGTAA
170 3 and R: 5'GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGG
171 ACTACHVGGGTWTCTAAT3'".

172

173  Approximately 5 ug of extracted DNA was used for first round PCR with conditions of 20 sec
174 at95°C, 15secs at65°C, 30 sec at 70°C for 10 cycles then a 5 min extension at 72°C. Samples

175  were purified using Axygen SPRI Beads. The second-round PCR was performed to
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176  incorporate lllumina sequencing adapter sequences: 15 cycles of PCR were performed using
177  the same conditions. Samples were re-purified then quantified using Qubit and assessed using
178  the Fragment Analyser. Successfully-generated amplicon libraries were sequenced (25).

179

180  The final libraries were pooled in equimolar amounts using the Qubit and Fragment Analyser
181 data and 350-550 bp size-selected on the Pippin Prep. The quantity and quality of each pool
182 were assessed by Bioanalyzer and subsequently by gqPCR using the lllumina Library
183  Quantification Kit from Kapa on a Roche Light Cycler LC480Il according to manufacturer's
184  instructions. The pool of libraries was sequenced on one lane of the MiSeq at 2x250 bp paired-
185 end sequencing. To help balance the complexity of the amplicon library 15%, PhiX was spiked
186  in (25).

187
188 Bioinformatics analysis

189 Initial processing and quality assessment of the sequence data was performed using an in-
190 house pipeline. Base-calling and de-multiplexing of indexed reads were conducted by
191  CASAVA version 1.8.2 (lllumina). The raw fastq files were trimmed to remove lllumina adapter
192  sequences where any reads that matched the adapter sequence over at least three bp was
193  trimmed off. The reads were further trimmed to remove low-quality bases (reads <10 bp were
194 removed). Read pairs were aligned to produce a single sequence for each read pair that would
195 entirely span the amplicon. Sequences with lengths outside the expected range were excluded
196 (25). The sequences passing the above filters for each sample were pooled into a single file.
197 A metadata file was created to describe each sample. These two files were analysed using
198 Qiime, version 1.8.0 (Caporaso et al., 2010) (26). Similar sequences were clustered into
199  groups, to define OTUs of 97% similarity. OTU-picking was performed using USEARCH?7
200 (Edgaretal., 2010) (27). The Greengenes database version 12.8 (McDonald et al., 2012) (28),
201 was used for reference-based chimaera detection (25). OTU tables were repeatedly
202  sub-sampled (rarefied). For each rarefied OTU table, three measures of alpha diversity were

203  estimated: chao1, the observed number of species, and the phylogenetic distance. For
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204  inter-sample comparisons (beta-diversity), all datasets were rarefied, and tables were used to
205 calculate weighted and unweighted pair-wise UniFrac matrices using Qiime. UniFrac matrices
206  were then used to generate UPGMA (Unweighted Pair-Group Method with Arithmetic mean)

207  trees and 2D principal coordinates plots (PCoA).(25)

208

200 Statistics

210 Normally distributed physiological and biochemical data were assessed by analysis of
211 variance followed by multiple comparisons Dunn’s test and non-normally distributed data
212 have been evaluated by Kruskal-Wallis test followed by multiple comparisons Dunn’s test
213  (Stats Direct version 3.0.171). For the bioinformatic analysis of microbiota data, Kruskal-
214  Wallis H-test was used with the false discovery rate (FDR) Storey’s (multiple correction tests).
215  The g-value is the adjusted p-value based on FDR calculation, where statistical significance

216  was declared at p<0.05.
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Results

Chronic DSS-induced colitis induces C57BL/6 weight loss

Colitis was reproducibly induced by 1.25% DSS. All mice lost body weight from day-6 and
maximal weight loss occurred at day-8 of each cycle. Mice receiving the 100ppm iron diet
appeared to lose more weight than other groups, but this difference was not significant (Fig.
1-a). All control mice, irrespective of the iron dosing, showed a steady increase in body weight.
However, mice fed 400ppm iron diet showed a significant weight gain during the whole 63

days this reflect the nutritional factor effect (Supplementary Figure 2).

Figure 1-a: Percentage of weight change in mice (100ppm iron (blue), 200ppm iron (red)
and 400ppm iron (green)) during three cycles of 1.25% dextran sulphate sodium-
induced colitis during the 63-day period. Data are presented as a mean * standard error
of the mean. Statistical differences were assessed by the Kruskal-Wallis test followed

by Dunn’s multiple comparison tests. (n=8 female mice per group).

Acute DSS-colitis induced weight loss is more severe in

mice fed 100ppm iron diets

Acute DSS colitis was induced after 53 days of dietary manipulation in a subset of mice that
had consumed different amounts of dietary iron during this time: all developed colitis.
Weight loss began earlier (day-3) in the 100ppm iron group than in the 200 and 400ppm
iron DSS-treated groups (Fig. 1-b). During this acute DSS cycle, mice fed 100ppm iron lost

significantly (P<0.001) more weight than the other treated groups.

Figure 1-b: Percentage of weight change in mice (100ppm iron (blue), 200ppm iron (red)
and 400ppm iron (green)) during 2% dextran sulphate sodium-induced colitis. Data are

presented as a mean * standard error of the mean. Statistical differences were assessed
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243 by the Kruskal-Wallis test followed by Dunn’s multiple comparison tests, compared
244  with standard chow group. (n=4 female mice per group). * P<0.05, ** P<0.01, *** P<0.001.

245

226 Histopathological changes caused by acute and chronic

247 DSS treatment

248 At autopsy all mice that had been treated with repeated cycles of 1.25% DSS showed
249  histological evidence of mild chronic colitis (Fig. 2-a; I, Il and lll), and those receiving acute
250 DSS treatment had moderately severe acute colitis (Fig. 2-a; VII, VIl and IX). By contrast the
251  colons of control untreated mice appeared histologically normal (Fig. 2-a; IV, V and VI). The
252 colitis scores were significantly greater (P<0.01) in the mice that had been treated with 2%
253  DSS after consuming either 100 or 400ppm iron, compared with the mice that had received
254  200ppm iron and all the mice that received cycles of 1.25% DSS (Fig. 2-b).

255

256  Figure 2-a: lllustrative H&E-stained segments of distal colon from untreated (n=4),
257  1.25% (n=8) and 2% DSS-treated mice (n=4). Mice received either water (control) (IV, V,
258  VI), 1.25% DSS for 5 days and full recovery period 16 days on normal water (I, Il, lll) or
259 2% DSS for 5 days and followed by another 5 days on plain drinking water before they
260 were euthanised (VII, VI, IX). Arrowheads highlight submucosal oedema; arrows
261  highlight almost complete loss of colonic epithelium. Scale Bar: 100 pm.

262  Figure 2-b: Inflammation (colitis) scores for all groups’ DSS-treated (n=8 (63-days) and
263  n=4 (10-days) mice per group) and untreated (controls) mice on different iron diets n=4
264  per group (63-days). Horizontal lines at the median. Differences tested by One-way
265 ANOVA followed by multiple comparisons Dunn’s test. **P<0.01.

266

267
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268 Analysis of intestinal fibrosis in chronic colitis in mice

269 treated with repeated cycles of dextran sulphate sodium

270  Masson’s trichrome staining was used to assess the degree of fibrosis following chronic DSS
271 treatment (Supplementary Figure 3). Mice in the 100ppm iron DSS-treated group had
272 significantly more fibrosis (P<0.05) than the DSS-treated mice receiving 200ppm iron and
273  400ppm iron diets (Supplementary Figure 4).

274

275 Faecal calprotectin concentration in chronic and acute DSS-

276 treated mice

277  Faecal calprotectin concentrations appeared to increase after each cycle of 1.25% DSS
278  treatmentin mice consuming the 400ppm iron diet; the differences were statistically significant
279  (P<0.01) between day-21 and day-63 (Supplementary Figure 5): this was not seen in other
280 mice. Thus, mice with double standard iron diet appeared to develop more inflammation at
281  molecular level by assessment of faecal calprotectin concentration.

282

283  For the acute DSS experiment, faecal calprotectin concentration increased significantly in
284  each DSS-treated group. The change in faecal calprotectin was greater in the 100ppm iron
285 diet DSS-treated mice than in the other groups (Supplementary Figure 6). Thus, mice
286  consuming half-standard iron diets also appeared to develop more molecular inflammation
287  after acute colitis induced.

288

289 Faecal iron concentrations

290 In the chronic colitis experiment, DSS-treated mice consuming 400ppm iron showed a
291  difference in faecal iron concentration between day-1 and day-63 only. Mice in the 100 and
292  200ppm treated groups that received DSS both showed significant differences at day-1 vs

293 day-21, 42 and 63 (Fig. 3-a) consistent with the presence of luminal iron from bleeding
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294  resulting from colitis. Faecal iron concentration increased significantly in control mice (63 days
295 on diet alone) taking 200 and 400ppm diets, but did not change with time in those mice
296  consuming 100ppm iron (Fig. 3-a).

297

298 In the acute DSS experiment, faecal iron concentration increased significantly in all DSS-
299 treated mice. This was more pronounced in the 400ppm iron group (Fig. 3-b).

300

301 Figure 3-a: Faecal iron concentration at four different time points day-1, 21, 42 and 63

302 separately. (I) Faecal iron in 100ppm iron DSS-treated and untreated groups (ll) faecal

303 iron in 200ppm iron DSS-treated and untreated groups (lll) faecal iron in 400ppm iron

304 DSS-treated and untreated groups. Data are presented as a mean * standard error of

305 the mean. Differences were tested by Kruskal- Wallis test followed by multiple

306 comparison Dunn’s test. ** P<0.01.

307 Figure 3-b: Faecal iron concentration at two different time points day-1 and 10
308 separately. (I) Faecal iron in 100ppm iron DSS-treated and untreated groups (ll) faecal
309 iron in 200ppm iron DSS-treated and untreated groups (lll) faecal iron in 400ppm iron
310 DSS-treated and untreated groups. Data are presented as a mean * standard error of
311 the mean. Differences were tested by Kruskal- Wallis test followed by multiple
312 comparison Dunn’s test.

313

314

315 Bacterial diversity data analysis at phylum and family level

316 for chronic experiments

317 Tables of rarefied OTU data were prepared, and three measures of alpha diversity were
318 estimated: chao1, the observed number of species, and the phylogenetic distance. These
319 estimates were plotted as rarefaction curves using Qiime (Supplementary Figure 7). Similarly,
320 for beta-diversity, weighted and unweighted pair-wise UniFrac matrices UPGMA trees were

321  prepared (Supplementary Figure 8).
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322

323  Principal component analysis (PCA) was used to identify linear combinations of gut microbial
324  taxa associated with the duration on a diet (Fig. 4). Our data showed an overlap in the samples
325 of 100 and 200ppm iron DSS-untreated and 200ppm iron DSS-treated mice (Figure 4-a, ¢ and
326  d). There was clustering with little separation of samples pre- and post-DSS treatment for 100
327 and the 400ppm iron DSS-treated groups as well as with control mice fed a 400ppm iron diet
328 (Figure 4-b, e and f). The double standard (400ppm) iron diet disturbed the microbial
329  community significantly in both DSS-treated and untreated mice.

330

331  Figure 4: In chronic DSS, PCA plots of the unweighted UniFrac distances of pre-and

332  post-DSS-intervention stool samples from chronic (3 cycles) DSS-treated mice (b, d,

333 and f) and (a, ¢ and e) untreated mice at Phylum-level, phylogenetic classification of

334 16S rRNA gene sequences. Symbols represent data from individual mice, colour-

335 coded by the indicated metadata. Statistical differences were assessed by Kruskal-

336 Wallis H-test followed by Storey’s FDR multiple test correction.

337

338

339 Post-hoc tests revealed a significant difference in the amount of Profeobacteria in 100ppm
340 iron chronic DSS-treated mice when day-1 and 63 were compared (P<0.017) (Fig. 5-a). In
341  400ppm iron DSS-untreated mice there was a significant increase in two phyla (Proteobacteria
342  and Actinobacteria) comparing day-1, 21, 42 and 63 samples (p<0.011 for both) (Fig. 5-b).
343  The analysis of faecal samples from mice in the 400ppm iron DSS-treated group showed
344  differences in Bacteroidetes and Proteobacteria comparing day-1, 21, 42 and 63:
345  Proteobacteria increased significantly (P<0.016), and Bacteroidetes decreased (P<0.028)
346  (Figure 5-c). Together these data suggest that Proteobacteria are dependent on luminal iron,
347  but Bacteroidetes are suppressed by inflammation and/or luminal iron.

348
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349  Figure 5-a: In chronic DSS, box plot showing the distribution in the proportion of
350 Proteobacteria assigned to samples at day-1, 21, 42 and 63 from 100ppm iron DSS-
351 treated mice.

352  Figure 5-b: In chronic DSS, box plot showing the distribution in the proportion of two
353  phyla (Actinobacteria (I) and Proteobacteria (ll)) assigned to samples from 400ppm
354  iron untreated mice.

355  Figure 5-c: In chronic DSS, box plot showing the distribution in the proportion of two
356  phyla (Proteobacteria (1) and Bacteroidetes (1)) assigned to samples from 400ppm iron
357 DSS-treated mice.

358

359  Further bioinformatics analysis identified 4 phyla and 15 taxa (genera) of interest. Of the four
360 phyla (Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria), one (Firmicutes) was
361 highly abundant among all groups while the lowest abundance phylum was Actinobacteria.
362  However, 100ppm iron and 400ppm iron chronic DSS groups showed seven different genera
363 apart from the three genera (Bacteroides, Lactobacillus and Bilophila) that they shared.
364 STAMP encourages the use of effect sizes and confidence intervals (29). The results of the

365 relative abundances of various phyla and identified genera are summarised in Table 1: a-c.

366

367 Table 1-a: Genus-level taxonomic composition of faecal samples from 100ppm iron DSS-

368 treated mice (Day-1 vs 21, 42 and 63 samples)

100ppm iron DSS-treated group
Taxon p-values | p-values (corrected) Effect size
p_Bacteroidetes; g_Bacteroides 0.003 0.047 0.496
p_Bacteroidetes; g_Odoribacter 0.002 0.04 0.620
p_Bacteroidetes; g_Prevotella 0.0002 0.008 0.669
p_Firmicutes; g_Clostridium 0.002 0.04 0.431
p_Firmicutes; g_Dorea 0.003 0.047 0.138
p_Firmicutes; g_Lactobacillus 0.00002 0.002 0.880
p_Proteobacteria; g_Bilophila 0.0002 0.008 0.766
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Table 1-b: Genus-level taxonomic composition of faecal samples from 400ppm iron DSS-

treated mice (Day-1 vs 21, 42 and 63 samples)

400ppm iron DSS-treated group

Taxon

p-values

p-values (corrected)

Effect size

p_Firmicutes; g_Lactobacillus

0.0001

0.01

0.74

Table 1-c: Genus-level taxonomic composition of faecal samples from 400ppm iron untreated

mice (Day-1 vs 21, 42 and 63 samples)

400ppm iron untreated group

(Controls)

Taxon p-values | p-values (corrected) | Effect size
p_Actinobacteria; g_Adlercreutzia 0.002 0.04 0.49
p_Bacteroidetes; g_Bacteroides 0.0005 0.02 0.68
p_Firmicutes; g_Candidatus Arthromitus 0.003 0.04 0.54
p_Firmicutes; g_Lactobacillus 0.0002 0.02 0.77
p_Firmicutes; g_Oscillospira 0.001 0.03 0.61
p_Firmicutes; g_Ruminococcus 0.002 0.04 0.46
p_Proteobacteria; g_Bilophila 0.001 0.03 0.55

16
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Discussion

DSS-induced colitis in mice is a popular model for the study of human ulcerative colitis: its
mechanism of action is unclear but may be toxic to the colonic epithelium, activate
macrophages and/or alter the gut microbiota (30) (31). Most research has used the acute
colitis model, however Okayasu et al described a chronic colitis model in mice, which may be
more appropriate for research of chronic IBD in humans (31) (32) (33). Most studies of the role
of iron in relapse of IBD have focussed on the effect of supplementation, however we have
recently reported the effect of half standard and double standard dietary iron on acute DSS
induced colitis: both changes were associated with more severe colitis than the standard diet
(25). Here, we report the effects of the same dietary modification on a model of (1) chronic

colitis and (2) acute colitis, in the setting of chronic prior modification of the diet.

When acute colitis was induced after 7 weeks of dietary modification, mice consuming the
100ppm or 400ppm diet developed more severe colitis than mice taking the 200ppm iron diet:
clinical and histological data were concordant for 100ppm iron group. In contrast, mice in which
chronic colitis was induced while consuming 100ppm, 200ppm or 400ppm dietary iron showed

only modest, non-significant weight loss and histological colitis.

In this study, increasing dietary iron led to an increase in faecal iron in the 200 and 400ppm
treated mice. After induction of chronic colitis, faecal iron increased in all mice. In the acute
DSS experiment, the 400ppm iron group showed the most significant difference (P<0.0001) in
faecal iron concentration. There is an obvious paradox: reducing dietary iron was associated
with an increase in loss of iron in faeces. The mechanism appears to be by exacerbating DSS-
colitis. We speculate that the low iron diet led to more severe colitis, which secondarily led to

an increase in bleeding and hence faecal iron.
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Changing dietary iron concentration led to a significant difference in the microbiome in both
the 100 and 400ppm iron chronic DSS-treated and 400ppm iron untreated groups of animals.
Previous research has established a reduction in the biodiversity of commensal bacteria in
IBD (34). In mouse experiments, changes in bacterial composition resulted from colonic
inflammation and infection (35). In particular, intestinal pathogens (some types of
Proteobacteria) appeared to take advantage of this. This observation is in agreement with the
‘food hypothesis’ and ‘differential killing’ hypothesis. These two mechanisms are likely to
contribute to the loss of colonisation resistance in the inflamed gut (36). Nonetheless, the post-
hoc analysis of our data revealed that one bacterial phylum (Proteobacteria) was increased
significantly (P<0.01) in the 100ppm iron and 400ppm iron DSS-treated and 400ppm iron
untreated groups. Bacteroidetes decreased significantly (P<0.028) in the 400ppm iron DSS-

treated group.

Haller et al. (37) investigated the effects of dietary iron upon the microbiome. Eight bacterial
families and nine bacterial genera were significantly (P<0.01) affected by luminal iron (ferrous
sulphate) deficiency. The genera Bifidobacterium (P<0.0018), Succinivibrio (P<0.0027),
Turicibacter (P<0.0020) and Clostridium (P<0.0017) were significantly increased in mice fed
an iron depleted diet, whereas the genera Desulfovibrio (P<0.0001), Dorea (P<0.01) and
Bacteroides related were greatly reduced. The authors concluded that all significant
differences in bacterial abundance in wild-type mice appeared as a result of the interaction
between treatment and host-mediated inflammation (37, 38). There are several key
differences between that paper and our own: they investigated caecal contents, not faeces;
they induced ileitis, not colitis and they did not measure faecal iron concentration. Thus, their

paper and our data cannot be directly compared.

Our data analysis showed that seven genera were significantly different. In the half standard
iron diets (100ppm) DSS-treated group, we found reductions in Lactobacillus (P<0.002),

Dorea, Clostridium, Bacteroides and Odoribacter (P<0.04), Bilophila (P<0.008), and an
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increase in (Prevotella P<0.008), all belonging to three phyla [Firmicutes, Bacteroidetes and
Proteobacteria]. In the 400ppm iron DSS group, a significant reduction was shown in
Lactobacillus (P<0.01). The only control group in which significant differences were found was
the 400ppm iron group, where four phyla [Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria] with seven genera showed statistically significant differences. Increases were
shown in Lactobacillus (P<0.02), Oscillospira (P<0.03), Adlercreutzia and Candidatus
Arthromitus (P<0.04), whereas reductions occurred in Bacteroides (P<0.02), Bilophila

(P<0.03) and Ruminococcus (P<0.04) (Table 1-c).

Dietary iron plays a role in modulating the susceptibility to DSS-induced colitis. Lower (half
standard) iron content in the diet significantly worsened acute colitis leading to an increase in
faecal iron. Double standard iron diets caused a dysbiosis. These observations demonstrated
the importance of luminal iron and inflammation. Manipulations in dietary iron administration
for a longer period significantly exacerbated susceptibility towards developing DSS-induced
intestinal inflammation suggesting that the time of iron supplementation may be crucial in
aggravating colitis. We cannot explain why the reduced iron diet exacerbates colitis. Further

studies will be necessary to investigate the relevance of our findings in humans.
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