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Summary 
Background 
Brain atrophy occurs in both normal ageing and in multiple sclerosis (MS), but it occurs at a faster 

rate in MS, where it is the major driver of disability progression. Here, we employed a neuroimaging 

biomarker of structural brain ageing to explore how MS influences the brain ageing process. 

Methods 

In a longitudinal, multi-centre sample of 3,565 MRI scans in 1,204 MS/clinically isolated syndrome 

(CIS) patients and 150 healthy controls (HCs) (mean follow-up time: patients 3·41 years, HCs 1·97 

years) we measured ‘brain-predicted age’ using T1-weighted MRI. Brain-predicted age difference 

(brain-PAD) was calculated as the difference between the brain-predicted age and chronological 

age. Positive brain-PAD indicates a brain appears older than its chronological age. We compared 

brain-PAD between MS/CIS patients and HCs, and between disease subtypes. In patients, the 

relationship between brain-PAD and Expanded Disability Status Scale (EDSS) at study entry and 

over time was explored. 

Findings 

Adjusted for age, sex, intracranial volume, cohort and scanner effects MS/CIS patients had 

markedly older-appearing brains than HCs (mean brain-PAD 11·8 years [95% CI 9·1—14·5] versus 

-0·01 [-3·0—3·0], p<0·0001). All MS subtypes had greater brain-PAD scores than HCs, with the 

oldest-appearing brains in secondary-progressive MS (mean brain-PAD 18·0 years [15·4—20·5], 

p<0·05). At baseline, higher brain-PAD was associated with a higher EDSS, longer time since 

diagnosis and a younger age at diagnosis. Brain-PAD at study entry significantly predicted time-to-

EDSS progression (hazard ratio 1·02 [1·01—1·03], p<0·0001): for every 5 years of additional brain-

PAD, the risk of progression increased by 14·2%.  

Interpretation 

MS increases brain ageing across all MS subtypes. An older-appearing brain at baseline was 

associated with more rapid disability progression, suggesting ‘brain-age’ could be an individualised 

prognostic biomarker from a single, cross-sectional assessment. 

Funding 
UK MS Society; National Institute for Health Research University College London Hospitals 

Biomedical Research Centre. 
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Research in context 
Evidence before this study 
We searched Pubmed and Scopus with the terms “multiple sclerosis” and “brain ageing” or “brain 

age” and “neuroimaging” or “MRI” for studies published before 15th March 2019. This searched 

return no studies of brain ageing in multiple sclerosis. We also searched the pre-print server for 

biology, bioRxiv, and found one manuscript deposited, though this study has yet to appear in a 

peer-reviewed journal. This study found a strong effect of multiple sclerosis on the apparent age of 

the brain, though was only cross-sectional, was from a single centre, did not consider disease 

subtypes and did not consider the relevance of clinical characteristics for brain ageing. Therefore, 

although there is strong prior evidence of the importance of brain atrophy in multiple sclerosis, there 

was no information on how the nature of this atrophy relates to brain ageing. 

Added value of this study 
Here we demonstrate for the first time that the progressive atrophy in multiple sclerosis patients 

results in an acceleration of age-related changes to brain structure. Using a large multi-centre study, 

our data strongly support the idea that brain ageing is increased in multiple sclerosis, and that this is 

apparent across disease subtypes, including those with very early disease - Clinically Isolated 

Syndrome. Of particular value is the demonstration that baseline brain-age can be used to predict 

future worsening of disability, suggesting that a general index of age-related brain health could have 

relevance in clinical practice for predicting which patients will go on to experience a more rapidly 

progressing disease course. 

Implications of all the available evidence 
Combined with the single other available study, this work shows robust evidence for a cross-

sectional influence of multiple sclerosis on the apparent age of the brain, under the brain-age 

paradigm. This paradigm provides a new approach to considering how multiple sclerosis effects the 

structure of the brain during ageing, suggesting that multiple sclerosis may result in both disease-

specific insults (e.g., lesions) alongside changes that are less specific (e.g., atrophy) and seen in 

ageing and other diseases. Potentially, treatments that improve brain health during normal ageing 

could be used to benefit patients with multiple sclerosis. Finally, brain-age may also have prognostic 

clinical value as a sensitive, if non-specific, biomarker of future health outcomes. 
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Introduction 
In multiple sclerosis (MS), age has been implicated as the dominant driver of disease progression.1 

Older age increases the risk of progression,2 irrespective of disease duration, and once progression 

starts, disability accrual is independent of previous evolution of the disease (presence or not 

relapses, or relapse rates.3-5 This raises the possibility that MS interacts with some of the 

neurobiological drivers of brain ageing, leading to acceleration of the process, hastening brain 

atrophy in some individuals and leading to poorer long-term outcomes.6 

That diseases may impact rates of biological ageing has been previously mooted outside of the 

context of MS. Potentially, a disease has both a specific impact but also may trigger a sequence of 

events which result in an acceleration of the biological processes seen in normal ageing, both 

systemically7 and in the brain.8,9 

Recently, methods have been developed for measuring the biological ageing of the brain; the so-

called ‘brain-age’ paradigm.10 Brain-age uses machine-learning analysis to generate a prediction of 

an individual’s age (their brain-predicted age), based solely on neuroimaging data (most commonly 

3D T1-weighted MRI). The comparison of an individual’s brain-predicted age with their chronological 

age thus gives an index of whether their brain structure appears ‘older’ or ‘younger’ than would be 

expected for their age. By subtracting chronological age from brain-predicted age one can derive a 

brain-predicted age difference (brain-PAD); a simple numerical value in the unit years which shows 

promise as a biomarker of brain ageing. For example, brain-age has been shown to predict the 

likelihood of conversion from mild cognitive impairment to Alzheimer’s11,12 as well as the risk of 

mortality.13 Moreover, there is evidence for increased brain ageing in other neurological conditions 

contexts: traumatic brain injury,14 HIV,15 Down’s syndrome,16 and epilepsy.17 

Here we employ brain-age to assess the relationship between MS disease progression and the 

brain ageing process. Using longitudinal neuroimaging and clinical outcomes in a large cohort of MS 

patients and healthy controls (HCs), we tested the following hypotheses: (i) MS patients have older-

appearing brains than HCs; (ii) In MS patients, there is a relationship between brain-predicted age 

difference and disability at study entry; (iii) Brain-predicted age difference increases over time as 

disabilities worsen; and (iv) Brain-predicted age difference at baseline predicts future disability 

progression. 

Methods 
Participants 

This study used data collected from seven European MS centres (MAGNIMS: www.magnims.eu) 

and Imperial College London on n=1,354 participants (table 1), largely overlapping with our previous 

work (detailed in the appendix table S1).18 Patients had all received a diagnosis of MS according to 

2010 McDonald Criteria19 or CIS.20 MS/CIS patients were scored on the Expanded Disability Status 
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Scale (EDSS).21 HCs without history of neurological or psychiatric disorders were also included 

(n=150). For longitudinal imaging analysis, participants were required to have undergone at least 

two high-resolution T1-weighted MRI acquired with the same protocol with an interval of ≥1 month.  

The final protocol for this study was reviewed and approved by the European MAGNIMS 

collaboration for analysis of pseudo-anonymized scans and the Imperial NHS Trust (London 

Riverside Research Ethics Committee: 14/LO/0343). 

EDSS progression 

Time-to-event, where a progression event was an individual’s progression on the EDSS, was 

defined as per our previous work18: when a patient showed a longitudinal change of: a 1·5-point 

increase in EDSS if the baseline EDSS was 0; a 1‐point increase if baseline EDSS was 1 to 6 

inclusive; and a 0·5-point increase if EDSS was greater than 6. 

Neuroimaging acquisition 

Overall, 3,565 T1-weighted MRI scans were used in the study according to local MRI protocols, 

which used similar acquisition parameters. Thirteen different scanners (Siemens, GE, Philips) were 

used in patients recruited from 1998 onwards (see appendix table S1).  

Machine-learning brain-predicted age analysis 

Brain-predicted age calculation followed our previously established protocol.15 In brief, all structural 

images were pre-processed using SPM12 to generate grey matter (GM), white matter (WM) 

segmentations. Visual quality control was then conducted to verify segmentation accuracy; all 

images were included. Segmented GM and WM images were then non-linearly registered to a 

custom template (based on the training dataset). Finally, images were affine registered to MNI152 

space (voxel size = 1·5mm3), modulated and smoothed (4mm). Summary volumetric measures of 

GM, WM, cerebrospinal fluid (CSF) and intracranial volume (ICV) were also generated. 

Brain-predicted ages were generated using Pattern Recognition for Neuroimaging Toolbox 

(PRoNTo v2·0,  www.mlnl.cs.ucl.ac.uk/pronto) software.22 First, a model of healthy brain ageing was 

defined: brain volumetric data (from in a separate training dataset, n=2001 healthy people, aged 18-

90; appendix table S2) were used as the independent variables in a Gaussian Processes 

regression, with age as the dependent variable. This regression model achieved a mean absolute 

error (MAE) of 5·02 years, assessed using ten-fold cross-validation, which explained 88% of the 

variance in chronological age. 

Next, the coefficients from the full historical training model (n=2001) were applied to the current test 

data (i.e., MS/CIS patients and HCs), to generate brain-predicted ages. These values were adjusted 

to remove age-related variance, by subtracting 3·33 and then dividing by 0·91 (the intercept and 

slope of a linear regression of brain-predicted age on chronological age in the training dataset). 
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Finally, brain-PAD scores were calculated by subtracting chronological age from brain-predicted 

age and used for subsequent analysis. A positive brain-PAD score indicates that the individual’s 

brain is predicted to be ‘older’ than their chronological age. 

Statistical analysis 
Using brain-PAD values further statistical analysis was carried out to test our hypotheses, using R 

v3·4·3. A full list of R packages and versions is included in the accompanying R Notebook 

(appendix). We used linear mixed effects models, enabling incorporation of fixed and random 

effects predictors to model each given outcome measure. In these models, brain-PAD was used as 

the outcome variable. Each model included fixed effects of group (e.g., MS/CIS patient versus HCs; 

MS subtype [CIS, RRMS, SPMS, PPMS]), age, sex and ICV and random effects of MRI scanner 

field-strength and original study cohort (modelling intercept). Estimated marginal means and 

confidence intervals from linear models were calculated. This analysis was repeated using data 

from a single cohort from a single centre (UCL, London), where all MS subtypes were present. 

A random effects meta-analysis was conducted to explore the heterogeneity of the group effects on 

brain-PAD across different study cohorts. Only cohorts that included HCs and MS or CIS patients 

were included in this analysis. 

To establish whether brain volume measurements were driving the variability in brain-PAD, we 

performed a linear regression with hierarchical partitioning of variance, with brain-PAD as the 

outcome variable and age, sex, GM, WM and CSF volume as predictors.  

Subsequent analyses were conducted to test for fixed-effect influences of EDSS score (MS and CIS 

patients), and time since clinical diagnosis and age at clinical diagnosis (MS patients only). Model 

fits were considered using F-tests and post-hoc pairwise comparisons using t-tests or Tukey tests 

where appropriate. 

We explored how longitudinal changes in brain-PAD related to changes in disability over time in two 

ways: (i) by correlating annualised change in brain-PAD (i.e., the difference between first measured 

brain-PAD and last brain-PAD, divided by the interval in years) with the annualised change in EDSS 

score; (ii) by using linear mixed effects models to investigate group (MS/CIS vs., HCs; MS subtype) 

by time interactions. These analyses included a random effect of participant (modelling slope and 

intercept), alongside age, sex, ICV scanner and cohort effects. 

Survival analysis, using a Cox proportional hazards regression, was used to test whether baseline 

brain-PAD predicted time-to-EDSS progression, including age at baseline MRI and sex as 

covariates.  

We investigated the impact of MS lesions on brain-PAD in MS. Using cross-sectional data from a 

subset of n=575 MS/CIS patients, for which manually-annotated lesion maps were available, we 
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explored the relationship between MS lesions and measurements of brain-PAD, using the FSL 

lesion-filling algorithm,23 by artificially removing lesions from T1-weighted MRI scans. Both ‘lesion-

filled’ and ‘unfilled’ scans were run through the brain-age prediction procedure, then resulting brain-

PAD scores compared. 

Role of the funding source 
The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding authors had full access to all the data in 

the study and had final responsibility for the decision to submit for publication. 

Results 
Multiple sclerosis is associated with older appearing brains 
The MAGNIMS sample forms part of a well-characterised population (table 1). The combined cohort 

involves patients from six countries with a mean follow-up of 3·41 years in patients. 

Patients with MS/CIS had markedly greater brain-PAD scores at time of initial MRI scan compared 

to HCs (estimated marginal means 11·8 years, [95% CI 9·1–14·5] versus -0·01 [95% CI -3·0–3·0]). 

When adjusted for the age, sex, intracranial volume, cohort and scanner effects, there was a 

statistically significant group mean difference in brain-PAD of 11·8 years (95% CI 9·9–13·8, 

p<0·0001).  

Though there is considerable heterogeneity between the study cohorts, due to clinical 

characteristics and technical factors (e.g., MRI scanner system), the difference between MS/CIS 

and HCs was robust in a random-effects meta-analysis of a subset of the data; six London cohorts 

that included both MS/CIS patients and HCs (figure 1A). The heterogeneity in the group differences 

was substantial (I2 = 59%, [95% CI 3–91%]). 

MS subtype (CIS, RRMS, SPMS, PPMS) significantly influenced brain-PAD (F3,802·25 = 29·9, 

p<0·0001, figure 1B). Estimated marginal mean brain-PAD per subtype were: CIS 6·3 years [95% CI 

3·9–8·8], RRMS 12·4 years [95% CI 10·3–14·5], SPMS 18·0 years [95% CI 15·4–20·5], and PPMS 

12·4 years [95% CI 9·7–15·2]. Post-hoc pairwise group comparison (appendix table S3) showed 

statistically significant differences (p<0·05) in brain-PAD between each subtype and HCs, and 

between CIS patients and each of the three MS groups (RRMS, SPMS, PPMS). SPMS patients 

showed significantly greater brain-PAD compared to both RRMS and PPMS patients. The 

difference in brain-PAD between PPMS and RRMS was not statistically significant (p=0·62). The 

findings of differences in brain-PAD between MS subtypes were replicated in a single cohort from a 

single centre, where all subtypes were present (cohort UCL3, figure 1C). Brain-PAD scores and 

corresponding T1-weighted MRI scans of individual female participants with similar ages, but with 

different subtypes of MS, are illustrated in figure 1D. 
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The relationship between lesions, brain volume and brain-PAD 
We considered the impact of lesions of brain-PAD, by comparing brain-PAD values on a single MRI 

scan from n=575 patients with both a lesion-filled and unfilled version of the same image. The 

correlation between brain-predicted age using filled and unfilled scans was r=0·99, p<0·0001 

(appendix figure S1A) suggesting that the presence of lesions did not overly influence the brain-

PAD values used throughout the study (which were unfilled). A Bland-Altman plot showed a mean 

difference between filled and unfilled scans was -0·28 ±1·29 years with no systemic bias caused by 

lesion filling evident, though there was increased variability between ages 60-70 years (appendix 

figure S1B).  

When we examined whether brain volume measurements were driving the variability in brain-PAD, 

we found that the combination of chronological age, sex, GM, WM and CSF volume explained about 

half of the variation in brain-PAD (adjusted R2=0·48) (appendix table S4). Age (9% variance 

explained), GM (15%) and CSF (20%) volume were major contributors to variance in brain-PAD. 

Brain-PAD at baseline is associated with disability, age at diagnosis, and time 
since clinical diagnosis 
At baseline, a higher brain-PAD was associated with higher disability, as measured by the EDSS, 

when adjusting for age, sex, ICV, scanner and cohort: for every 1·74 years increase in brain-PAD, 

the EDSS increased by one point (95% CI 1·39–2·09], p<0·0001). This effect was consistent across 

the MS subtypes with no statistically significant interaction between subtype and EDSS score 

(F3,1159·6 = 1·12, p=0·34; figure 2A). With the same adjustments, a higher brain-PAD was associated 

with both younger age at diagnosis and longer time since diagnosis: for every year increase in 

brain-PAD, the age at diagnosis was reduced by 0·45 years (95% CI -0·55–-0·36], p<0·0001); for 

every 0·48 year increase in brain-PAD, the time since diagnosis increased by one year (95% CI 

0·40–0·57, p<0·0001). There was an interaction between subtype (RRMS, PPMS and SPMS) and 

age at diagnosis (F2,883·9 = 3·20, p=0·041; figure 2B), driven by the presence of stronger 

relationships between brain-PAD and age at diagnosis in PPMS (slope beta -0·51) and SPMS (beta 

-0·57) compared to RRMS (beta -0·36), though all were significant (p<0·001). For time since 

diagnosis, the interaction was also significant (F2,690·5 = 3·61, p=0·028; figure 2C), driven by the 

presence of relationships in RRMS (beta 0·48, p<0·0001) and SPMS (beta 0·26, p=0·01), not 

observed in PPMS (beta 0·12, p=0·47). 

Brain-PAD increase over time correlates with EDSS worsening 
In patients who had two or more scans (n=1155), there was a significant positive correlation 

between annualised change in brain-PAD and annualised change in EDSS (Pearson’s r=0·26, 

p<0·0001). There was a significant interaction between EDSS change and disease subtype, when 

predicting brain-PAD change in linear model (F4,1092 = 24·5, p=0·009). The slopes were positive in 

CIS (beta 0·84, p=0·0001) and RRMS (beta 1·25, p<0·0001), though flatter in PPMS (beta 0·59, 
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p=0·090) and negative (though not significant) in SPMS (beta -0·70, p=0·29; figure 3). To explore 

the latter finding post-hoc, correlated baseline brain-PAD with the number of follow-up scans 

completed. This showed a significant inverse correlation (n=104, Spearman’s rho=-0·29, p=0·0028). 

Brain-predicted age difference at first scan predicts EDSS worsening 
In patients who had EDSS assessed at ≥2 time-points (n=1147), baseline brain-PAD significantly 

predicted EDSS worsening. Of these patients, 303 (26·5%) experienced EDSS worsening during 

the follow-up period. Using a Cox proportional-hazards regression model, adjusted for age and sex, 

the hazard ratio for brain-PAD was 1·027 (95% CI 1·016–1·038, p<0·0001). In other words, for 

every 5 years of additional brain-PAD, there was a 14·1% increased chance of EDSS progression 

during follow-up. Survival curves grouped by a median split of baseline brain-PAD illustrate the 

differing rates of ‘survival’ prior to EDSS progression (figure 4). 

MS accelerates longitudinal increase in brain-PAD 
A total of 1266 participants had two or more MRI scans (MS/CIS=1155, HCs=111). This included 

573 with three or more scans (MS/CIS=509, HCs=64). When using these data, we found a 

significant interaction between group and time (F1,1325·6 = 5·37, p=0·021) and between MS subtypes 

and time (F4,938·25 = 5·35, p<0·0001), when adjusting for age, gender, ICV, cohort and scanner 

status (figure 5). This indicated that the annual rate of increase in brain-PAD over time was faster in 

MS/CIS than in HCs, and significantly different between MS subtypes. The estimate marginal mean 

annualised rates of increase in brain-PAD per group was as follows: HCs -0·98 [95% CI -2·03–0·07], 

CIS -0·14 [95% CI -1·07–0·78], RRMS 0·93 [95% CI 0·21–1·66], SPMS 0·34 [95% CI -0·69–1·37], 

PPMS 1·21 [95% CI 0·16–2·25], all CIS/MIS 0·70 [95% CI 0·01–1·39].  

Discussion 
By assessing the relationship between MS disease progression and the normal brain ageing 

process, we have found that patients with MS have an older appearing brain (i.e., higher brain-PAD) 

compared to controls. As the disease develops from a clinically isolated episode to relapsing and 

then secondary progressive MS, brain-PAD increases. A single baseline brain-PAD was 

independently associated with higher disability (measured by EDSS), younger age at diagnosis and 

longer time since diagnosis, irrespectively of disease phenotype. Using scans performed at multiple 

sites in different scanners we observed that longitudinal brain-PAD increases correlate with 

worsening disability and that measures of brain-PAD at baseline predict future disability 

accumulation. In the whole cohort, we show that measures of brain-PAD over time increase with 

respect to chronological age, implying an accelerated ageing process, particularly in RRMS and 

PPMS. 

In a life-long disease, the accumulation of neurological disability is the main clinical and societal 

burden,24 estimated to cost $10·6 billion/year in the USA.25 Tracking disease evolution is hampered 
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by the lack of a simple and powerful outcome measure. MRI-assessed brain atrophy is a surrogate 

outcome for this process, but the need for precise longitudinal assessments, usually over at least a 

12-month interval, reduces the feasibility of use. Here, we demonstrate that with a single T1-

weighted MRI, brain-PAD values can index elements of MS disease progression. Firstly, we show 

that a single point estimate can place a patient’s disease and disability in context of their age. This 

has been lacking with current techniques but is achieved because brain-PAD measures change 

relative to a model of the healthy ageing process. Our results suggest that the ‘brain-age’ framework 

can provide informative data without the need for longitudinal scans.26 Secondly, we demonstrate 

that a single measure can give prognostic value for disability accumulation. This can allow us to 

better contextualise the impact of the disease on an individual, measured at a single time point, and 

then chart different pathways of neurodegeneration in MS. Brain atrophy has undoubted utility in 

capturing elements of disease progression, but is currently difficult to utilise in clinical practice.27 

Here we demonstrate that machine learning technique provides a biomarker of structural brain 

ageing that enables prediction of disability worsening. Thus, the ability to make prognostic 

predictions from cross-sectional data could prove highly valuable to facilitate early use of therapy to 

prevent future disability accumulation.28 

The brain-age paradigm has been applied widely in neuropsychiatric diseases,10 though only 

recently in MS.29 Kaufmann and colleague’s analysis (n=254) showed a strong effect of MS on 

brain-age (mean increase 5·6 years), though was only cross-sectional and did not explore subtypes 

separately. Here we go further, utilising serial MRI scans that were carried out over 15 years in a 

wide range of settings – different countries, institutions and scanners. The mean magnitude of the 

apparent brain ageing we observed MS (11.8 years) is greater than has been reported in dementia 

(9 years),11 epilepsy (4·5 years)17 or after a traumatic brain injury (4·7 years).14 We show that brain-

PAD increases faster than chronological age in MS/CIS patients, suggesting an accelerating 

neurodegenerative process. Interestingly, brain-PAD did not increase longitudinally in SPMS 

patients; potentially due to a survivor bias or a floor effect in this group, whereby those patients with 

rapidly deteriorating disease did not return for longitudinal follow-up. Evidence for this comes from 

the inverse correlation between brain-PAD at baseline and the number of follow-up scans acquired 

in SPMS patients. 

We addressed some potential issues with the use of a non-specific ageing biomarker like brain age 

for the assessment of MS. Brain lesions, the overt MRI marker of MS disease activity, had minimal 

impact of the brain-PAD measurement in MS. Brain volumes, perhaps unsurprisingly, were strongly 

correlated with brain-PAD; GM, WM and CSF volume measures combined explained ~49% of the 

variance in brain-PAD. Evidently, a substantial proportion of variation in brain-PAD is not explained 

by demographic and MRI characteristics and might be unique to ‘brain-age’. In particular, ‘brain-age’ 

incorporates voxelwise MRI data in the statistical model, thereby capturing more information than 
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when using summary statistics. This means that more widespread and distributed patterns of 

features (i.e., voxelwise GM and WM volumes) can contribute to the age-prediction model, 

capturing elements of cortical thinning, sulcal widening and ventricular enlargement, alongside more 

macroscopic loss of tissue volume. 

Our study has some strengths and weaknesses. The sample size for both training and test sets is 

relatively large but one potential limitation is the multiple sources of training data, though previous 

work has shown high between-scanner reliability.30 Thus, if it is to be used as a single value this 

would need to be in the context of individual scanner performance. Comprehensive biomedical data 

were not available on all these individuals in the training dataset, meaning some may have had 

undetected health conditions. However, individuals in this sample were screened according to 

various criteria to ensure the absence of manifest neurological, psychiatric or major medical health 

issues. We were not able to determine the impact of therapy in this study as it was not a 

randomised trial and worsening disease drives use of therapy, the effectiveness of which is 

challenging to determine. However, the majority of the current study sample were on not receiving 

therapy at baseline, thus therapeutic effects are unlikely to have confounded our results.  

This work supports the use of the ‘brain-age’ paradigm in MS. We propose that brain-predicted age 

has potential value for: 1) MS disease monitoring; potentially capturing the progressive processes 

that start early on in all disease phenotypes including CIS. 2) Integrating MRI measures of brain 

injury in MS in a wide range of centres and different scanners. 3) Conveying complex 

neuroanatomical information in a conceptually simple and intuitive manner. 4) Assessing both 

current brain health and prognosis. 5) Aiding clinical trial design, by stratifying enrolment based on 

high brain-PAD, or using brain-PAD as a surrogate outcome measure, reflecting age-associated 

neurodegeneration. Further work is needed to determine its utility in larger clinical cohorts, but its 

ease of use makes it an exciting candidate for such cohorts. Further work is needed to improve the 

anatomical interpretability of brain-age, both in general and specifically to MS. Ultimately, this may 

offer insight into an individual’s disease course, in line with the move towards precision medicine in 

the treatment of MS. 
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Tables 
Table 1. Characteristics of MS/CIS patients and healthy controls. 

 MS/CIS patients Healthy controls 

N 1204 150 

N with follow-up data 1155 111 

Female (n, %) 771 (64) 82 (55) 

Number of scans per participant 

mean ± SD [range] 

2·61 ± 1·01 [1-7] 2·82 ± 1·90 [1-10] 

Length of follow-up (years) 

mean ± SD [range] 

3·41 ± 3·15 [0·2-15] 1·97 ± 1·38 [0·5-6·0] 

Age at baseline scan (years) 39·41 ± 10·76 [15-68] 37·29 ± 9·96 [23-66] 

Brain-predicted age at baseline 

(years)  

50·27 ± 14·90 [7·4-92] 38·43 ± 11·12 [14·5-70] 

Baseline subtype (%): 

CIS/RRMS/SPMM/PPMS 

296 (25) / 677 (56) / 111 (9) / 120 

(10) 

- 

Time since clinical diagnosis at 

baseline (years) 

7·26 ± 7·96 [0-48] - 

EDSS at baseline  

mean ± SD [range] 

2·60 ± 1·95 [0-9] - 

Disease-modifying treatment at 

baseline (n, %): yes/no/unknown 

475 (39) / 675 (56) / 54 (5) - 

CIS = clinically isolated syndrome, EDSS = Expanded Disability Status Scale, RRMS = 
relapsing remitting MS, SD = standard deviation, SPMS = secondary progressive MS, PPMS = 
primary progressive MS. 
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Figures 

 

Figure 1. Brain-predicted age difference (Brain-PAD) for MS/CIS patients and healthy 
controls at baseline 
A) A random-effects meta-analysis of the six cohorts that included both MS/CIS patients and HCs 
found the pooled effect of MS/CIS on brain-PAD compared to HCs was 9·45 years (95% CI 13·11–
5·80), across a total of n=200 MS/CIS patients and n=15HC. Heterogeneity was estimated at I2 = 
59% [3–91%]. B) Grouped scatterplot depicting the distributions of brain-PAD at baseline, in years. 
Black lines represent the group median, shaded boxes show the inter-quartile range and whiskers 
1·5 times the inter-quartile range from the median. C) Data from cohort “UCL3”, where all MS 
subtypes were present, confirms a similar result to the total cohort. D) Examples of how brain 
structure relates to brain-PAD, with axial slice from T1-weighted MRI from one healthy control and 
four individuals with CIS or MS, all females of a similar age. A control brain from a 30-year-old 
female with a brain-PAD of -0·8 years can be compared to a 31-year-old female with CIS, EDSS of 
0·0 and a brain-PAD of +0·7 years, and 31-year-old with RRMS, EDSS of 2·0 and a brain-PAD of 
+9·2 years. In addition, we illustrate a 30-year-old with SPMS, EDSS of 4·0 and a brain-PAD of 
+11·7 years and a 28-year-old with PPMS, EDSS of 4·0 and a brain-PAD of +16·7 years. CIS = 
clinically isolated syndrome, RRMS = relapsing remitting MS, SPMS = secondary progressive MS, 
PPMS = primary progressive MS. 
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Figure 2. Scatterplot of brain-predicted age difference by age at diagnosis, time since 
diagnosis and EDSS score. 
A) Baseline EDSS score (x-axis) and concurrent brain-PAD (y-axis). B) Age at clinical diagnosis at 
first scan (x-axis) and concurrent brain-PAD (y-axis). C) Time since diagnosis at baseline (x-axis) 
and concurrent brain-PAD (y-axis). Panels show patients with RRMS, SPMS and PPMS separately. 
Panels show patients with RRMS, SPMS and PPMS separately. Panels show patients with CIS, 
RRMS, SPMS and PPMS separately. Lines represented the linear regression lines calculated per 
group, and shaded areas are the 95% confidence intervals. CIS = clinically isolated syndrome, 
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RRMS = relapsing remitting MS, SPMS = secondary progressive MS, PPMS = primary progressive 
MS. 

 
Figure 3. Scatterplot of annualised changed in EDSS score and brain-predicted age 
difference. 
Panels show patients with CIS, RRMS, SPMS and PPMS separately, with annualised change in 
EDSS score between baseline and final follow-up (x-axis) and annualised change in brain-PAD 
between baseline and final follow-up (y-axis). Lines represented the linear regression lines 
calculated per group, and shaded areas are the 95% confidence intervals. CIS = clinically isolated 
syndrome, RRMS = relapsing remitting MS, SPMS = secondary progressive MS, PPMS = primary 
progressive MS. 
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Figure 4. Time-to-EDSS progression survival curves based on baseline brain-PAD 
Kaplan-Meier plot illustrating the relationship between brain-PAD at first scan and survival prior to
an EDSS progression “event”. Based on a median split of brain-PAD within MS/CIS patients
(median brain-PAD = +9·68 years). 
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Figure 5. Individual trajectories of brain-predicted age difference by time from baseline. 
Lines show individual trajectories of brain-PAD scores over the longitudinal study period, coloured
according to group (HC = green, CIS = orange, RRMS = red, SPMS = blue, PPMS = purple) Time
(from baseline scan) in years (x-axis) and brain-PAD (y-axis). The solid lines represent the average
longitudinal slopes for HCs (blue) and all MS/CIS patients (red). The dashed line shows brain-PAD
= 0 years. 
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Appendix 
Table S1. MRI acquisition protocols 
Centre London Milan Graz Barcelona Amsterdam Rome Siena 

Magnetic field 1.5 Tesla 3 Tesla 1.5 Tesla 3 Tesla 3 Tesla 1.5 Tesla 3 Tesla 1.5 Tesla 1.5 Tesla 1.5 Tesla 

Vendor GE GE GE Philips Siemens Siemens Philips Siemens Siemens Siemens Siemens Siemens Philips 

Model Signa Signa Signa Achieva Verio Avanto Intera Tim Trio Symphony Tim Trio Vision Avanto Gyroscan 

Years of 

recruitment 

1999-

2006 

1998-

2005 

1998-

2010 

2011-

2016 

2014-

2016 

2007-

2014 

2008-2015 2006-2013 2013-2016 2010-2016 2004-2007 2012-2016 1999-2013 

Included studies 1 1 2 2 1 1 1 1 1 1 1 1 1 

Acquisition 

dimensions 

3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 2D 

Voxel 

dimensions 

(mm) 

1.2x1.2x1.

5 

1.2x1.2x1

.2 

1.2x1.2x1

.5 

1x1x1 1x1x1 1x1x1 0.89x0.89x

1 

1x1x1 1x1x1 1x1x1.2 1x1x1 1x1x1 0.97x0.97x

3 

TR (ms) 13.3  14.3  29  6.8  2300 2000  25  1900  1980  2300  4000  9000  35  

TE (ms) 4.2  5.1  15  3.1  2.98 3.93  4.6  2.6  3.1  2.98  20  89  10  

Matrix size 256x256 256x256 256x256 256x256 256x256 256x224 256x256 176x221 256x256 256x240 180x256 192x256 256x256 

Slices 124 156 124 256 160 208 220 256 176 128 256 160 50 

 Numbers of participants 

Controls 44 0 0 98 8 0 0 0 0 0 0 0 0 

CIS 24 4 70 1 0 11 0 95 0 84 4 1 2 

RRMS 33 7 67 52 16 28 38 69 57 6 135 66 107 

SPMS 0 0 0 32 1 8 16 9 5 0 36 4 0 

PPMS 42 0 0 42 0 13 0 1 0 0 22 0 0 

QC exclusions 0 0 0 0 0 0 0 0 0 0 13 0 0 

CIS = clinically isolated syndrome; HC = healthy controls; ms = milliseconds; mm = millimetre; PPMS = primary-progressive multiple sclerosis; QC = quality control; RRMS = 

relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis; TE = echo time; TR = repetition time. 
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Table S2. Data sources for healthy brain age training sample 

Cohort N Age 
mean (SD) 

Age 
range 

Sex 
male/female Repository details  Scanner 

(Field strength) Scan Voxel dimensions 

ABIDE (Autism Brain Imaging 
Data Exchange) 184 25.93 (6.66) 18-48 161/23 INDI Various (all 3T) MPRAGE Various 

Beijing Normal University  179 21.25 (1.92) 18-28 72/107 INDI Siemens (3T) MPRAGE 1.33 x 1.0 x 1.0 

Berlin School of Brain & Mind 49 30.99 (7.08) 20-60 24/25 INDI Siemens Tim Trio (3T) MPRAGE 1.0 x 1.0 x 1.0 

Computer Aided Diagnosis of 
Dementia 12 62.33 (6.26) 55-79 9/3 

http://caddementia.grand-
challenge.org GE Signa (3T) 3D IR-FSPGR 0.9 x 0.9 x 1.0 

Cleveland Clinic 31 43.55 (11.14) 24-60 11/20 INDI Siemens Tim Trio (3T) MPRAGE 2.0 x 1.0 x 1.2 

ICBM (International Consortium 
for Brain Mapping) 322 24.84 (5.14) 24-60 177/145 LONI IDA Siemens Magnetom (1.5T) MPRAGE 1.0 x 1.0 x 1.0 

IXI (Information eXtraction from 
Images) 561 48.62 (16.49) 20-86 250/311 

http://brain-development.org/ixi-
dataset/ 

Philips Intera (3T); Philips 
Gyroscan Intera (1.5T); GE Signa 
(1.5T)  

T1-FFE; 
MPRAGE 

0.9375 x 0.9375 x 
1.2 

MCIC (MIND Clinical Imaging 
Consortium) 93 32.49 (11.95) 18-60 64/29 COINS 

Siemens Sonata/Trio (1.5/3T); GE 
Signa (1.5T) 

MPRAGE; SPGR 0.625 x 0.625 x 1.5 

MIRIAD (Minimal Interval 
Resonance Imaging in 
Alzheimer's Disease) 

23 69.66 (7.18) 58-85 12/11 
https://www.ucl.ac.uk/drc/research/m
ethods/minimal-interval-resonance-
imaging-alzheimers-disease-miriad  

GE Signa (1.5T) 3D IR-FSPGR 
0.9375 x 0.93751 
x1.5 

NEO2012 (Adelstein, 2011) 39 29.59 (8.38) 20-49 18/21 INDI Siemens Allegra (3T) MPRAGE 1.0 x 1.0 x 1.0 

Nathan Kline Institute (NKI) / 
Rockland 160 41.49 (18.08) 18-85 96/64 INDI Siemens Tim Trio (3T) MPRAGE 1.0 x 1.0 x 1.0 

OASIS (Open Access Series of 
Imaging Studies) 

288 44.06 (23.04) 18-90 106/188 http://www.oasis-brains.org/ Siemens Vision (1.5T)* MPRAGE 1.0 x 1.0 x 1.25 

WUSL (Power, 2012) 24 23.04 (1.42) 20-24 4/20 INDI Siemens Tim Trio (3T) MPRAGE 1.0 x 1.0 x 1.0 

TRAIN-39 36 22.67 (2.56) 18-28 11/25 INDI Siemens Allegra (3T) MPRAGE 1.33 x 1.33 x 1.3 

Training set total 2001 36.95 (18.12) 18-90 1016/985 - - - - 

INDI = International Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org) 
COINS = Collaborative Informatics and Neuroimaging Suite (http://coins.mrn.org) 
LONI = Laboratory of Neuro Imaging Image & Data Archive (https://ida.loni.usc.edu/) 
ABIDE consortiums comprising data from various sites with different scanners/parameters 
*OASIS scans were acquired four times and then averaged to increase signal-to-noise ratio. 
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Table S3. Post-hoc comparison of differences in brain-PAD between subtypes 

Group comparison Mean difference 

(brain-PAD years) 

95% Confidence 

intervals 

P-value 

CIS-HC 3.46   0.93, 5.98 0.0018 

RRMS-HC 11.38 9.11, 13.65 <0.0001 

SPMS-HC 16.12 12.96, 19.27 <0.0001 

PPMS-HC 10.09   7.00, 13.17 <0.0001 

RRMS-CIS  7.92   6.17, 9.68 <0.0001 

SPMS-CIS 12.66   9.85, 15.46 <0.0001 

PPMS-CIS  6.63   3.90, 9.36 <0.0001 

SPMS-RRMS 4.74   2.16, 7.32 <0.0001 

PPMS-RRMS -1.29 -3.79, 1.20 0.62 

PPMS-SPMS  -6.03 -9.35, -2.71 <0.0001 

CIS = clinically isolated syndrome; HC = healthy controls; PPMS = primary-

progressive multiple sclerosis; RRMS = relapsing-remitting multiple 

sclerosis; SPMS = secondary-progressive multiple sclerosis. 

 

Table S4. Variance explained in brain-predicted age difference by different 
predictors from hierarchical partitioning of variance. 

Predictor variable Unique R2 Percentage of model variance explained 

Chronological age 0.090 18.4% 

Sex 0.005 1.1% 

GM volume/ICV 0.152 31.2% 

WM volume/ICV 0.046 9.4% 

CSF volume/ICV 0.195 39.9% 

Total 0.488 100% 

CSF = cerebrospinal fluid; GM = grey matter; ICV = Intracranial volume; WM = white 

matter. 
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Figure S1. Impact of lesion filling procedure on brain-PAD. 

A) Scatterplot showing brain-predicted age derived from original, ‘unfilled’ T1-weighted MRI scans (x-axis), plotted against brain-p

generated from T1-weighted MRIs that had undergone the automated lesion ‘filling’ procedure. Points are coloured according to MS su

B) Bland-Altman plot of brain-predicted age from unfilled T1-weighted MRI scans and brain-predicted ages generated from ‘filled’ T1-w

The plot shows the mean value from the two measures for each participant (x-axis) and the difference between the two measures (y-ax

dashed line is the line of equality. The mean difference line is plotted in darkgoldenrod1 (mean difference = -0.28 years), along with

agreement (±1.96 * standard deviation of differences, dashed). Total n = 575, with CIS = 8, RRMS = 382, SPMS = 119, PPMS = 66. 
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MAGNIMS Study Group: Steering Committee Members 
Alex Rovira (co-chair): MR Unit and Section of Neuroradiology, Department of Radiology, Hospital 
Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain 

Christian Enzinger (co-chair): Department of Neurology, Medical University of Graz, Graz, Austria 

Frederik Barkhof: Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University 
College London, London, UK 

Olga Ciccarelli: Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University 
College London, London, UK 

Massimo Filippi: Neuroimaging Research Unit, Institute of Experimental Neurology, Division of 
Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 

Nicola De Stefano: Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, 
Italy 

Ludwig Kappos: Department of Neurology, University Hospital, Kantonsspital, Basel, Switzerland 

Jette Frederiksen: The MS Clinic, Department of Neurology, University of Copenhagen, Glostrup 
Hospital, Denmark 

Jaqueline Palace: Centre for Functional Magnetic Resonance Imaging of the Brain, University of 
Oxford, UK 

Maria A Rocca: Neuroimaging Research Unit, Institute of Experimental Neurology, Division of 
Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 

Jaume Sastre-Garriga: Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of 
Catalonia (CEMCAT), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 
Barcelona, Spain 

Hugo Vrenken: Department of Radiology and Nuclear Medicine, MS Center Amsterdam, 
Amsterdam, The Netherlands 

Tarek Yousry: NMR Research Unit, Institute of Neurology, University College London, London, UK 

Claudio Gasperini: Department of Neurology and Psychiatry, University of Rome Sapienza, Rome, 
Italy. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. ; https://doi.org/10.1101/584888doi: bioRxiv preprint 

https://doi.org/10.1101/584888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix   Cole et al., Accelerated brain ageing and disability in multiple sclerosis 

 27 

R Notebook used for statistical analysis 

James Cole - March 2019. Built with R version 3.5.2 

This is Notebook contains the final brain age analysis of MS patient data and controls from the UCL 
cohort, the MAGNIMS consortium and the Imperial College London PET study (n=25). The analysis 
uses brain-predicted age difference (brain-PAD) to look at brain ageing in the context of MS. The 
brain-PAD values were generated in PRONTO, using an independent healthy (n=2001) training 
dataset, and the values were corrected for proportional bias using the intercept and slope of the age 
by brain-predicted age regression in the training dataset. 

Initial set up of analysis 

Clear workspace, load libraries, set colour palette 

rm(list = ls()) ## clear workspace 
library(car) 
library(data.table) 
library(dplyr) 
library(emmeans) 
library(ggstance) 
library(ggplot2) 
library(grDevices) 
library(gridExtra) 
library(hier.part) 
library(jtools) 
library(knitr) 
library(lmerTest) 
library(MASS) 
library(metafor) 
library(plotrix) 
library(plyr) 
library(pryr) 
library(psych) 
library(qwraps2) 
library(reshape) 
library(reshape2) 
library(RColorBrewer) 
library(scales) 
library(stringr) 
library(survival) 
library(survminer) 
library(tidyr) 
ms.palette <- c("darkgreen", "darkorange", "red", "blue", "purple") # define MS 
colour scheme for groups 
sessionInfo() 

## R version 3.5.2 (2018-12-20) 
## Platform: x86_64-apple-darwin15.6.0 (64-bit) 
## Running under: macOS High Sierra 10.13.4 
##  
## Matrix products: default 
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib 
##  
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## locale: 
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8 
##  
## attached base packages: 
## [1] stats     graphics  grDevices utils     datasets  methods   base      
##  
## other attached packages: 
##  [1] tidyr_0.8.2        survminer_0.4.3    ggpubr_0.2         
##  [4] magrittr_1.5       survival_2.43-3    stringr_1.3.1      
##  [7] scales_1.0.0       RColorBrewer_1.1-2 reshape2_1.4.3     
## [10] reshape_0.8.8      qwraps2_0.3.0      psych_1.8.10       
## [13] pryr_0.1.4         plyr_1.8.4         plotrix_3.7-4      
## [16] metafor_2.0-0      MASS_7.3-51.1      lmerTest_3.0-1     
## [19] lme4_1.1-19        Matrix_1.2-15      knitr_1.21         
## [22] jtools_1.1.1       hier.part_1.0-4    gtools_3.8.1       
## [25] gridExtra_2.3      ggplot2_3.1.0      ggstance_0.3.1     
## [28] emmeans_1.3.1      dplyr_0.7.8        data.table_1.11.8  
## [31] car_3.0-2          carData_3.0-2      
##  
## loaded via a namespace (and not attached): 
##  [1] splines_3.5.2     assertthat_0.2.0  cellranger_1.1.0  
##  [4] yaml_2.2.0        backports_1.1.3   numDeriv_2016.8-1 
##  [7] pillar_1.3.1      lattice_0.20-38   glue_1.3.0        
## [10] digest_0.6.18     minqa_1.2.4       colorspace_1.3-2  
## [13] cmprsk_2.2-7      htmltools_0.3.6   pkgconfig_2.0.2   
## [16] broom_0.5.1       haven_2.0.0       purrr_0.2.5       
## [19] xtable_1.8-3      mvtnorm_1.0-8     km.ci_0.5-2       
## [22] openxlsx_4.1.0    rio_0.5.16        KMsurv_0.1-5      
## [25] tibble_1.4.2      generics_0.0.2    withr_2.1.2       
## [28] lazyeval_0.2.1    cli_1.0.1         mnormt_1.5-5      
## [31] crayon_1.3.4      readxl_1.2.0      estimability_1.3  
## [34] evaluate_0.12     nlme_3.1-137      forcats_0.3.0     
## [37] foreign_0.8-71    tools_3.5.2       hms_0.4.2         
## [40] munsell_0.5.0     zip_1.0.0         bindrcpp_0.2.2    
## [43] compiler_3.5.2    rlang_0.3.0.1     grid_3.5.2        
## [46] nloptr_1.2.1      rmarkdown_1.11    gtable_0.2.0      
## [49] codetools_0.2-16  abind_1.4-5       curl_3.2          
## [52] R6_2.3.0          zoo_1.8-4         survMisc_0.5.5    
## [55] bindr_0.1.1       stringi_1.2.4     parallel_3.5.2    
## [58] Rcpp_1.0.0        tidyselect_0.2.5  xfun_0.4 

Get data from CSV and define longitudinal data.frames 

setwd('/Users/jcole/Work/Brain ageing/Collaborations/MS') 
df <- read.csv("MS_brain_age_final_long.csv") 
df$subtype <- factor(df$subtype, levels = c("control", "CIS", "RRMS", "SPMS", 
"PPMS")) # reorder subtype factor to put controls first 
df$Cohort <- recode(df$Cohort, JR1 = "Imperial", C0 = "UCL0", C1 = "UCL1", C2 = 
"UCL2", C3 = "UCL3", C4 = "UCL4" ,C5 = "UCL5", C6 = "UCL6", C7 = "UCL7", A = 
"Amsterdam", B = "Barcelona", G = "Graz", M = "Milan", R = "Rome", S = "Siena")  

Exclude participants with errors in the database & correct time since diagnosis 
errors 

tmp <- df[df$Cohort == 'Amsterdam',] %>% group_by(PatientID) %>% 
dplyr::summarize(sd = sd(age_at_scan)) %>% arrange(desc(sd)) %>% filter(sd > 2) 
excluded_IDs <- sort(tmp$PatientID) 
# excluded_IDs <- unique(df[which(df$age_at_scan < df$age_at_baseline_scan1),1]) 
excluded_scans <- (df %>% filter(str_detect(PatientID, paste(excluded_IDs, 
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collapse = "|"))))["ScanName"] 
df <- df %>% 
  filter(!str_detect(PatientID, paste(excluded_IDs, collapse = "|"))) 
rm(tmp) 

There were 13 subjects with 38 scans excluded in total. Data entry errors in original spreadsheet; 
age at baseline not consistent within subject. 

Load data for lesion filling analysis 

## read in data 
lesion_df <- read.csv(file = '~/Work/Brain 
ageing/Collaborations/MS/MAGNIMS/MAGNIMS20171224_final.csv') 
lesion_df$subtype <- factor(lesion_df$subtype, levels = c("control", "CIS", 
"RRMS", "SPMS", "PPMS")) 
## create ICV ratio variables 
lesion_df <- lesion_df %>% 
  mutate(ICV = GMV + WMV + CSFV) %>% 
  mutate(gm_icv_ratio = GMV/ICV) %>% 
  mutate(wm_icv_ratio = WMV/ICV) 

Generate baseline only data.frame and show data frame structure 

df.bl <- df[(df$age_at_baseline_scan1 == df$age_at_scan),] # define baseline 
data.frame 
str(df) 

## 'data.frame':    3565 obs. of  32 variables: 
##  $ PatientID                         : Factor w/ 1367 levels "AMSTERDAM_4001",..: 1 1 1 2 2 2 3 3 3 4 ... 
##  $ Cohort                            : Factor w/ 15 levels "Amsterdam","Barcelona",..: 1 1 1 1 1 1 1 1 1 1 ... 
##  $ scanner_status                    : Factor w/ 4 levels "1.5T","1.5T_post_2004",..: 1 1 1 1 1 1 1 1 1 1 ... 
##  $ gender                            : Factor w/ 2 levels "female","male": 2 2 2 1 1 1 1 1 1 1 ... 
##  $ control0ppms1cisoforever2other3   : int  3 3 3 3 3 3 3 3 3 3 ... 
##  $ control0rest1                     : Factor w/ 2 levels "control","MS": 2 2 2 2 2 2 2 2 2 2 ... 
##  $ control0ms1cis2                   : Factor w/ 3 levels "CIS","control",..: 3 3 3 3 3 3 3 3 3 3 ... 
##  $ age_at_baseline_scan1             : num  57.8 57.8 57.8 44.4 44.4 ... 
##  $ disease_duration_at_baseline_scan1: num  6.8 6.8 6.8 6.38 6.38 ... 
##  $ DMT_YesNoNA                       : Factor w/ 2 levels "NO","YES": 1 1 1 1 1 1 2 2 2 2 ... 
##  $ DMTYes1                           : Factor w/ 2 levels "No treatment",..: 1 1 1 1 1 1 2 2 2 2 ... 
##  $ EDSSbaseline                      : num  2.5 2.5 2.5 3 3 3 4 4 4 2.5 ... 
##  $ NoScans                           : int  3 3 3 3 3 3 3 3 3 2 ... 
##  $ FUTimeMax                         : num  2.32 2.32 2.32 2.35 2.35 ... 
##  $ ScanName                          : Factor w/ 3603 levels "AMSTERDAM_4001_baseline_t1",..: 1 2 3 4 5 6 7 8 
9 10 ... 
##  $ age_at_scan                       : num  57.8 59.1 60.1 44.4 45.5 ... 
##  $ EDSSatScan                        : num  2.5 3.5 3 3 2 2.5 4 2.5 4 2.5 ... 
##  $ BrainAge                          : num  69.6 73.4 71 58.1 61.8 ... 
##  $ BrainPAD                          : num  11.8 14.3 10.8 13.7 16.3 ... 
##  $ subtype                           : Factor w/ 5 levels "control","CIS",..: 3 3 3 3 3 3 3 3 3 3 ... 
##  $ disease_onset_age                 : num  51 51 51 38 38 ... 
##  $ disease_duration                  : num  6.8 6.8 6.8 6.38 6.38 ... 
##  $ interval                          : num  0 1.3 2.32 0 1.16 ... 
##  $ scan_number                       : Factor w/ 10 levels "scan1","scan10",..: 1 3 4 1 3 4 1 3 4 1 ... 
##  $ GM_vol                            : num  0.574 0.563 0.573 0.622 0.605 0.59 0.647 0.643 0.633 0.648 ... 
##  $ WM_vol                            : num  0.536 0.532 0.52 0.43 0.423 0.413 0.404 0.399 0.387 0.599 ... 
##  $ CSF_vol                           : num  0.352 0.349 0.367 0.293 0.309 0.333 0.355 0.358 0.386 0.271 ... 
##  $ WBV                               : num  1.11 1.09 1.09 1.05 1.03 ... 
##  $ ICV                               : num  1.46 1.44 1.46 1.34 1.34 ... 
##  $ gm_vol_ratio_icv                  : num  0.393 0.39 0.392 0.462 0.453 ... 
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##  $ wm_vol_ratio_icv                  : num  0.367 0.368 0.356 0.32 0.316 ... 
##  $ csf_vol_ratio_icv                 : num  0.241 0.242 0.251 0.218 0.231 ... 

Basic stats 

Total number of subjects, and by group 

The total number of subjects included was n = 1354 

The total number of MS patients (including CIS) was n = 1204 and healthy controls was n = 150 

Number of scans in total and per group 

Total number of scans = 3565 

Number of people with 2 or more scans 

df.bl %>% 
  filter(NoScans >= 2) %>% 
  group_by(control0rest1) %>% 
  tally() 

## # A tibble: 2 x 2 
##   control0rest1     n 
##   <fct>         <int> 
## 1 control         111 
## 2 MS             1155 

Number of people with 3 or more scans 

df.bl %>% 
  filter(NoScans >= 3) %>% 
  group_by(control0rest1) %>% 
  tally() 

## # A tibble: 2 x 2 
##   control0rest1     n 
##   <fct>         <int> 
## 1 control          64 
## 2 MS              509 

Generate demographics table using qwarps2 

options(qwraps2_markup = "markdown", digits = 2) 
 
table1 <- 
  list("N" = 
         list("Control" = ~ qwraps2::n_perc0(control0rest1 == "control", na_rm = 
T), 
              "MS"  = ~ qwraps2::n_perc0(control0rest1 == "MS", na_rm = T)), 
     "Gender" = 
       list("Female" = ~ qwraps2::n_perc0(gender == "female", show_symbol = T), 
            "Male"  = ~ qwraps2::n_perc0(gender == "male", show_symbol = T)), 
        "Number of scans" = 
       list("min" = ~ min(NoScans), 
            "max" = ~ max(NoScans), 
            "mean (sd)" = ~ qwraps2::mean_sd(NoScans)), 
       "Age at baseline scan (years)" = 
       list("min" = ~ min(age_at_baseline_scan1), 
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            "max" = ~ max(age_at_baseline_scan1), 
            "mean (sd)" = ~ qwraps2::mean_sd(age_at_baseline_scan1)), 
       "Brain-predicted age at baseline scan (years)" = 
       list("min" = ~ min(BrainAge), 
            "max" = ~ max(BrainAge), 
            "mean (sd)" = ~ qwraps2::mean_sd(BrainAge)), 
       "Disease duration at baseline (years)" = 
       list("min" = ~ min(disease_duration, na.rm = T), 
            "max" = ~ max(disease_duration, na.rm = T), 
            "mean (sd)" = ~ qwraps2::mean_sd(disease_duration, na_rm = T, show_n 
= "never")), 
        "EDSS at baseline " = 
       list("min" = ~ min(EDSSbaseline, na.rm = T), 
            "max" = ~ max(EDSSbaseline, na.rm = T), 
            "mean (sd)" = ~ qwraps2::mean_sd(EDSSbaseline, na_rm = T, show_n = 
"never")), 
       "MS subtype" = 
       list("CIS" = ~ qwraps2::n_perc0(subtype == "CIS", show_symbol = T), 
            "RRMS"  = ~ qwraps2::n_perc0(subtype == "RRMS", show_symbol = T), 
            "SPMS"  = ~ qwraps2::n_perc0(subtype == "SPMS", show_symbol = T), 
            "PPMS"  = ~ qwraps2::n_perc0(subtype == "PPMS", show_symbol = T)), 
       "Treatment" = 
         list("Yes" = ~ qwraps2::n_perc0(DMT_YesNoNA == "YES", na_rm = T, 
show_symbol = T), 
              "No"  = ~ qwraps2::n_perc0(DMT_YesNoNA == "NO", na_rm = T, 
show_symbol = T)) 
       ) 
 
print(summary_table(dplyr::group_by(df.bl, control0rest1), table1), 
      rtitle = "Sample Chararcteristics", 
      cnames = c("Controls", "MS patients")) 

##  
##  
## |Sample Chararcteristics                          |Controls             |MS patients          | 
## |:------------------------------------------------|:--------------------|:--------------------| 
## |**N**                                            |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; Control                             |150 (100)            |0 (0)                | 
## |&nbsp;&nbsp; MS                                  |0 (0)                |1,204 (100)          | 
## |**Gender**                                       |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; Female                              |82 (55%)             |771 (64%)            | 
## |&nbsp;&nbsp; Male                                |68 (45%)             |433 (36%)            | 
## |**Number of scans**                              |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; min                                 |1                    |1                    | 
## |&nbsp;&nbsp; max                                 |10                   |7                    | 
## |&nbsp;&nbsp; mean (sd)                           |2.82 &plusmn; 1.90   |2.61 &plusmn; 1.01   | 
## |**Age at baseline scan (years)**                 |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; min                                 |23                   |15                   | 
## |&nbsp;&nbsp; max                                 |66                   |68                   | 
## |&nbsp;&nbsp; mean (sd)                           |37.29 &plusmn; 9.96  |39.41 &plusmn; 10.76 | 
## |**Brain-predicted age at baseline scan (years)** |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; min                                 |14.5                 |7.4                  | 
## |&nbsp;&nbsp; max                                 |70                   |92                   | 
## |&nbsp;&nbsp; mean (sd)                           |38.43 &plusmn; 11.12 |50.27 &plusmn; 14.90 | 
## |**Disease duration at baseline (years)**         |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; min                                 |Inf                  |0                    | 
## |&nbsp;&nbsp; max                                 |-Inf                 |48                   | 
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## |&nbsp;&nbsp; mean (sd)                           |NaN &plusmn;  NA     |7.26 &plusmn; 7.96   | 
## |**EDSS at baseline **                            |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; min                                 |Inf                  |0                    | 
## |&nbsp;&nbsp; max                                 |-Inf                 |9                    | 
## |&nbsp;&nbsp; mean (sd)                           |NaN &plusmn;  NA     |2.60 &plusmn; 1.95   | 
## |**MS subtype**                                   |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; CIS                                 |0 (0%)               |296 (25%)            | 
## |&nbsp;&nbsp; RRMS                                |0 (0%)               |677 (56%)            | 
## |&nbsp;&nbsp; SPMS                                |0 (0%)               |111 (9%)             | 
## |&nbsp;&nbsp; PPMS                                |0 (0%)               |120 (10%)            | 
## |**Treatment**                                    |&nbsp;&nbsp;         |&nbsp;&nbsp;         | 
## |&nbsp;&nbsp; Yes                                 |0 (NaN%)             |475 (41%)            | 
## |&nbsp;&nbsp; No                                  |0 (NaN%)             |675 (59%)            | 

Need to get treatment NAs using table() 

table(df.bl$DMT_YesNoNA, df.bl$control0rest1, useNA = "ifany")[,"MS"] 

##   NO  YES <NA>  
##  675  475   54 

Need to get length of follow-up from longitudinal database 

Length of follow-up 

options(digits = 3) ## return digits option to default 
df %>% 
  filter(NoScans >= 2) %>% 
  group_by(PatientID) %>% 
  slice(which.max(interval)) %>% 
  # top_n(n = 1, wt = interval) %>% 
  group_by(control0rest1) %>% 
  dplyr::summarise(mean(interval), sd(interval), min(interval), max(interval)) 

## # A tibble: 2 x 5 
##   control0rest1 `mean(interval)` `sd(interval)` `min(interval)` 
##   <fct>                    <dbl>          <dbl>           <dbl> 
## 1 control                   1.97           1.38           0.5   
## 2 MS                        3.41           3.15           0.233 
## # ... with 1 more variable: `max(interval)` <dbl> 

options(digits = 7) ## return digits option to default 

Baseline brain-age analysis 
  describeBy(df.bl$BrainPAD, df.bl$control0rest1, mat = T, digits = 3) # brain-
PAD by MS patient vs. controls 

##     item  group1 vars    n   mean     sd median trimmed   mad     min 
## X11    1 control    1  150  1.135  6.738  0.642   1.173 6.510 -16.507 
## X12    2      MS    1 1204 10.875 10.237  9.443  10.246 9.684 -18.181 
##        max  range  skew kurtosis    se 
## X11 22.090 38.597 0.032    0.072 0.550 
## X12 48.666 66.847 0.600    0.315 0.295 

Estimated marginal means 

Generate EMMs for all MS/CIS and healthy controls. LME adjusting for age, gender, ICV, cohort 
and scanner status. 
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fit <- (lmer(BrainPAD ~ control0rest1 + age_at_baseline_scan1 + gender + ICV + 
(1|Cohort/scanner_status), data = df.bl)) 
emmeans(object = fit, specs = c("control0rest1", "age_at_baseline_scan1", 
"ICV")) 

##  control0rest1 age_at_baseline_scan1      ICV   emmean       SE    df 
##  control                    39.17223 1.395055 -0.01176 1.485229 32.69 
##  MS                         39.17223 1.395055 11.81573 1.230551 11.99 
##   lower.CL  upper.CL 
##  -3.034578  3.011058 
##   9.134334 14.497117 
##  
## Results are averaged over the levels of: gender  
## Degrees-of-freedom method: kenward-roger  
## Confidence level used: 0.95 

Effects of cohort and scanner status on brain-PAD. 

The significant interaction motivates nesting in the LME. 

with(df.bl, anova(lm(BrainPAD ~ Cohort * scanner_status))) 

## Analysis of Variance Table 
##  
## Response: BrainPAD 
##                         Df Sum Sq Mean Sq  F value Pr(>F)     
## Cohort                  14  16901  1207.2  13.6521 <2e-16 *** 
## scanner_status           3   1383   461.0   5.2129 0.0014 **  
## Cohort:scanner_status    1   9149  9148.6 103.4597 <2e-16 *** 
## Residuals             1335 118050    88.4                     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Meta-analysis looking at all the separate cohorts with MS/CIS patients and controls 

Check which cohorts contain healthy controls and patients. 

table(df.bl$subtype, df.bl$Cohort) 

##           
##           Amsterdam Barcelona UCL0 UCL1 UCL2 UCL3 UCL4 UCL5 UCL6 UCL7 Graz 
##   control         0         0    0    0    0   82   16   17   17   10    0 
##   CIS             4        84    0   75    0    0    0    0    0   24   95 
##   RRMS          131        63   21   77    0   28    0   33    0    0   69 
##   SPMS           36         5    0    2    7   23    0    0    0    0    9 
##   PPMS           22         0    0    0    9   14   19    0   42    0    1 
##           
##           Imperial Milan Rome Siena 
##   control        8     0    0     0 
##   CIS            0    11    1     2 
##   RRMS          16    66   66   107 
##   SPMS           1    24    4     0 
##   PPMS           0    13    0     0 

Create data.frame with summary data appropriate for meta-analysis. 

tmp0 <- df.bl %>% group_by(Cohort, control0rest1) %>% 
dplyr::summarise(length(control0rest1)) 
meta.cohorts <- as.list(tmp0[tmp0$control0rest1 == "control",1])$Cohort 
tmp <- df.bl %>% 
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  filter(str_detect(Cohort, paste(meta.cohorts, collapse = "|"))) 
tmp1 <- tmp %>% group_by(Cohort, control0rest1) %>% dplyr::summarise(n = n(), 
Mean = mean(BrainPAD), SD  =  sd(BrainPAD)) 
tmp2 <- dcast(tmp1, Cohort ~ control0rest1, value.var = "n") 
tmp3 <- dcast(tmp1, Cohort ~ control0rest1, value.var = "Mean") 
tmp4 <- dcast(tmp1, Cohort ~ control0rest1, value.var = "SD") 
names(tmp2) <- c("Cohort", "control_n", "MS_n") 
names(tmp3) <- c("Cohort", "control_mean", "MS_mean") 
names(tmp4) <- c("Cohort", "control_sd", "MS_sd") 
tmp1x <- tmp %>% group_by(Cohort) %>% dplyr::summarise(pooled.SD  =  
sd(BrainPAD)) 
meta.df <- join_all(list(tmp2,tmp3,tmp4, tmp1x), by = 'Cohort', type = 'left') 
rm(list = ls(pattern = 'tmp*')) # remove temporary data frames 

Run meta-analysis using the metafor package, to fit a random-effects meta-analysis using REML. 

meta.df <- escalc(m1i = control_mean, sd1i = pooled.SD, n1i = control_n, m2i = 
MS_mean, sd2i = pooled.SD, n2i = MS_n, measure = "MD", data = meta.df, digits = 
2) 
meta.results <- rma(yi, vi, data = meta.df, method = "REML") 
print(meta.results) 

##  
## Random-Effects Model (k = 6; tau^2 estimator: REML) 
##  
## tau^2 (estimated amount of total heterogeneity): 11.8177 (SE = 13.0982) 
## tau (square root of estimated tau^2 value):      3.4377 
## I^2 (total heterogeneity / total variability):   59.03% 
## H^2 (total variability / sampling variability):  2.44 
##  
## Test for Heterogeneity:  
## Q(df = 5) = 13.4832, p-val = 0.0192 
##  
## Model Results: 
##  
## estimate      se     zval    pval     ci.lb    ci.ub      
##  -9.4543  1.8649  -5.0695  <.0001  -13.1095  -5.7990  *** 
##  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

confint(meta.results) 

##  
##        estimate  ci.lb   ci.ub 
## tau^2   11.8177 0.2530 84.1148 
## tau      3.4377 0.5030  9.1714 
## I^2(%)  59.0288 2.9923 91.1149 
## H^2      2.4407 1.0308 11.2548 

Forest plot of results 

plot.forest %<a-% { 
forest(meta.results, ilab = cbind(meta.df$MS_n, meta.df$control_n), ilab.xpos = 
c(-30,-23), slab = meta.df$Cohort, digits = 1, xlab = "MS vs. Healthy control 
group mean difference", steps = 6, col = "red", cex = 1.25, pch = 22, bg = 
"blue"); text(c(-40, -30, -23), 7.6, c("Cohort", "MS n", "HC n"), font = 2, cex 
= 1.25) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. ; https://doi.org/10.1101/584888doi: bioRxiv preprint 

https://doi.org/10.1101/584888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix   Cole et al., Accelerated brain ageing and disability in multiple sclerosis 

} 
plot.forest 

 

cairo_pdf("plots/forest_plot.pdf", 6,5) 
plot.forest 
dev.off() 

## quartz_off_screen  
##                 2 

Linear regression analysis restricted to cohort UCL3, includes covariates: age, gender, intracranial 
volume. 

summary(lm(BrainPAD ~ control0rest1 + age_at_baseline_scan1 + gender + ICV, data
= subset(df.bl, df.bl$Cohort == "UCL3"))) 

##  
## Call: 
## lm(formula = BrainPAD ~ control0rest1 + age_at_baseline_scan1 +  
##     gender + ICV, data = subset(df.bl, df.bl$Cohort == "UCL3")) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -19.9408  -5.1153   0.0774   4.7964  18.7904  
##  
## Coefficients: 
##                       Estimate Std. Error t value Pr(>|t|)     
## (Intercept)            3.44230    8.84583   0.389   0.6978     
## control0rest1MS       15.53450    1.52984  10.154   <2e-16 *** 
## age_at_baseline_scan1 -0.12140    0.06299  -1.927   0.0559 .   
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## gendermale             2.15828    1.86769   1.156   0.2498     
## ICV                    0.75463    6.21246   0.121   0.9035     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 8.229 on 142 degrees of freedom 
## Multiple R-squared:  0.4372, Adjusted R-squared:  0.4213  
## F-statistic: 27.57 on 4 and 142 DF,  p-value: < 2.2e-16 

Main result: 

LME model to predict brain-PAD based on group 

# LME model of control vs. MS, including Cohort and scanner status as random 

effects 
m1 <- lmer(BrainPAD ~ control0rest1 + age_at_baseline_scan1 + gender + ICV + 
(1|Cohort/scanner_status), data = df.bl) 
summary(m1) 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula:  
## BrainPAD ~ control0rest1 + age_at_baseline_scan1 + gender + ICV +   
##     (1 | Cohort/scanner_status) 
##    Data: df.bl 
##  
## REML criterion at convergence: 9809.2 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.0598 -0.6584 -0.0873  0.5608  4.3393  
##  
## Random effects: 
##  Groups                Name        Variance Std.Dev. 
##  scanner_status:Cohort (Intercept) 20.3015  4.5057   
##  Cohort                (Intercept)  0.6337  0.7961   
##  Residual                          79.3950  8.9104   
## Number of obs: 1354, groups:  scanner_status:Cohort, 19; Cohort, 15 
##  
## Fixed effects: 
##                         Estimate Std. Error         df t value Pr(>|t|) 
## (Intercept)              0.40070    3.44160  761.33461   0.116 0.907343 
## control0rest1MS         11.82749    0.99351 1322.26885  11.905  < 2e-16 
## age_at_baseline_scan1   -0.09910    0.02558 1348.32958  -3.873 0.000112 
## gendermale               1.65630    0.63972 1338.24863   2.589 0.009727 
## ICV                      1.89331    2.21106 1334.85860   0.856 0.391991 
##                           
## (Intercept)               
## control0rest1MS       *** 
## age_at_baseline_scan1 *** 
## gendermale            **  
## ICV                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##             (Intr) cn01MS ag___1 gndrml 
## cntrl0rs1MS -0.250                      
## ag_t_bsln_1 -0.278 -0.163               

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. ; https://doi.org/10.1101/584888doi: bioRxiv preprint 

https://doi.org/10.1101/584888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix   Cole et al., Accelerated brain ageing and disability in multiple sclerosis 

 37 

## gendermale   0.475 -0.005  0.002        
## ICV         -0.873  0.051  0.021 -0.606 

round(confint(m1),2) 

## Computing profile confidence intervals ... 

##                       2.5 % 97.5 % 
## .sig01                 2.93   6.46 
## .sig02                 0.00   4.06 
## .sigma                 8.57   9.25 
## (Intercept)           -6.33   7.12 
## control0rest1MS        9.88  13.77 
## age_at_baseline_scan1 -0.15  -0.05 
## gendermale             0.41   2.91 
## ICV                   -2.44   6.22 

Lesion filling 

To establish whether using the FSL lesion filling software influences brain-predicted age values. 
This analysis was conducted only in UCL patients. 

with(subset(lesion_df, lesion_df$subtype != "control"), 
describeBy(filled_brain_age, subtype)) 

##  
##  Descriptive statistics by group  
## group: control 
## NULL 
## --------------------------------------------------------  
## group: CIS 
##    vars n mean   sd median trimmed  mad  min   max range  skew kurtosis 
## X1    1 8 42.4 6.18  42.57    42.4 7.87 34.3 49.69 15.39 -0.09    -1.98 
##      se 
## X1 2.18 
## --------------------------------------------------------  
## group: RRMS 
##    vars   n  mean    sd median trimmed   mad   min   max range  skew 
## X1    1 382 54.78 11.46  54.79   54.78 12.12 24.26 87.53 63.27 -0.03 
##    kurtosis   se 
## X1    -0.44 0.59 
## --------------------------------------------------------  
## group: SPMS 
##    vars   n  mean   sd median trimmed  mad   min   max range  skew 
## X1    1 119 64.62 9.24  65.96   65.41 8.45 40.33 81.64 41.31 -0.74 
##    kurtosis   se 
## X1    -0.03 0.85 
## --------------------------------------------------------  
## group: PPMS 
##    vars  n mean    sd median trimmed   mad  min   max range skew kurtosis 
## X1    1 66 62.2 10.13  59.63   61.67 10.57 44.4 84.13 39.72 0.46    -0.61 
##      se 
## X1 1.25 

Correlation between brain-predicted age from filled and unfilled images: Pearson’s r = 0.994. 
Median absolute error (MAE) between brain-predicted age from filled and unfilled images = 0.3717 
years. Mean difference between brain-predicted age from filled and unfilled images = 0.28 years. 

ggplot(data = subset(lesion_df, lesion_df$subtype != "control"), aes(x = 
brain_age, y = filled_brain_age)) + 
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  geom_abline(slope = 1) + 
  geom_point(pch = 21, aes(fill = subtype), size = 2) + 
  labs(x = "Unfilled brain-predicted age (years)", y = "Lesion-filled brain-
predicted age (years)") + 
  xlim(c(20,90)) + 
  scale_fill_manual(values = ms.palette[-1]) + 
  theme_bw() + theme(legend.position = c(0.9, 0.2)) 

## Warning: Removed 1441 rows containing missing values (geom_point). 

 

ggsave("~/Work/Brain 
ageing/Collaborations/MS/plots/lesion_filling_brain_age_plot.pdf", width = 5, 

height = 5, useDingbats = FALSE) 

## Warning: Removed 1441 rows containing missing values (geom_point). 

Bland-Altman plot 

mean.diff <- mean(lesion_df$brain_age - lesion_df$filled_brain_age, na.rm = T) 
sd.diff <- sd(lesion_df$brain_age - lesion_df$filled_brain_age, na.rm = T) 
ggplot(data = subset(lesion_df, lesion_df$subtype != "control"), aes(x = 
((brain_age + filled_brain_age)/2), y = brain_age - filled_brain_age)) + 
  geom_abline(slope = 0, lty = 2) + 
  geom_point(pch = 21, aes(fill = subtype), size = 2) + 
  geom_hline(yintercept = mean.diff, color = "darkgoldenrod1", lwd = 1) + # mean
difference line 
  geom_hline(yintercept = mean.diff + 1.96*sd.diff, color = "darkgoldenrod2", 
lty = 2) + # upper 95% line 
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  geom_hline(yintercept = mean.diff - 1.96*sd.diff, color = "darkgoldenrod2", 
lty = 2) + # lower 95% line 
  # geom_smooth(method = "lm", level = 0.95, color = "black", lwd = 0.3) + 
  labs(x = "Mean of filled/unfilled brain-predicted age (years)", y = "Unfilled 
- Lesion-filled brain-predicted age (years)") + 
  # ylim(c(-20,20)) + 
  scale_fill_manual(values = ms.palette[-1]) + 
  theme_bw() + theme(legend.position = c(0.1, 0.8)) + 
  annotate("text", x = 25, y = mean.diff + 1.96*sd.diff + 0.5, label = 
"+1.96*SD", color = "darkgoldenrod2") + 
  annotate("text", x = 25, y = mean.diff - 1.96*sd.diff - 0.5, label = "-
1.96*SD", color = "darkgoldenrod2") + 
  annotate("text", x = 27.5, y = mean.diff + 0.8, label = "Mean difference", 
color = "darkgoldenrod2") 

## Warning: Removed 1441 rows containing missing values (geom_point). 

 

ggsave("~/Work/Brain 
ageing/Collaborations/MS/plots/lesion_filling_brain_age_BA_plot.pdf", width = 8,

height = 5, useDingbats = FALSE) 

## Warning: Removed 1441 rows containing missing values (geom_point). 

LME model predicted brain-PAD based on subtype 

This analysis excluded controls. 

# LME model of subtype, including Cohort and scanner status as random effects 
m2 <- lmer(BrainPAD ~ subtype + age_at_baseline_scan1 + gender + ICV + 
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(1|Cohort/scanner_status), data = subset(df.bl, df.bl$subtype != "control")) 
summary(m2) 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: BrainPAD ~ subtype + age_at_baseline_scan1 + gender + ICV + (1 |   
##     Cohort/scanner_status) 
##    Data: subset(df.bl, df.bl$subtype != "control") 
##  
## REML criterion at convergence: 8694.3 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.4362 -0.6514 -0.0882  0.5618  4.0050  
##  
## Random effects: 
##  Groups                Name        Variance Std.Dev. 
##  scanner_status:Cohort (Intercept)  9.784   3.128    
##  Cohort                (Intercept)  1.227   1.108    
##  Residual                          78.442   8.857    
## Number of obs: 1204, groups:  scanner_status:Cohort, 19; Cohort, 15 
##  
## Fixed effects: 
##                         Estimate Std. Error         df t value Pr(>|t|) 
## (Intercept)              8.00627    3.45908  936.99633   2.315   0.0209 
## subtypeRRMS              6.08757    0.84400  841.57879   7.213 1.22e-12 
## subtypeSPMS             11.63170    1.26777 1054.85471   9.175  < 2e-16 
## subtypePPMS              6.10994    1.45708  455.22834   4.193 3.31e-05 
## age_at_baseline_scan1   -0.16714    0.02866 1195.49837  -5.832 7.03e-09 
## gendermale               1.42605    0.68186 1188.06560   2.091   0.0367 
## ICV                      3.01383    2.33838 1186.29503   1.289   0.1977 
##                           
## (Intercept)           *   
## subtypeRRMS           *** 
## subtypeSPMS           *** 
## subtypePPMS           *** 
## age_at_baseline_scan1 *** 
## gendermale            *   
## ICV                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##             (Intr) sbRRMS sbSPMS sbPPMS ag___1 gndrml 
## subtypeRRMS -0.145                                    
## subtypeSPMS -0.101  0.604                             
## subtypePPMS -0.093  0.516  0.489                      
## ag_t_bsln_1 -0.299 -0.112 -0.285 -0.246               
## gendermale   0.498 -0.021 -0.080 -0.120  0.034        
## ICV         -0.899 -0.005  0.057  0.032  0.001 -0.604 

# round(confint(m2),2) 

Brain-PAD estimated marginal means for subtypes 

Generate EMMs for all MS subtypes. LME adjusting for age, gender, ICV, cohort and scanner 
status. 
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fit <- (lmer(BrainPAD ~ subtype + age_at_baseline_scan1 + gender + ICV + 
(1|Cohort/scanner_status), data = subset(df.bl, df.bl$subtype != "control"))) 
emmeans(object = fit, specs = c("subtype", "age_at_baseline_scan1", "ICV")) 

##  subtype age_at_baseline_scan1      ICV    emmean        SE    df 
##  CIS                   39.4065 1.391797  6.327666 1.1878147 26.34 
##  RRMS                  39.4065 1.391797 12.415240 0.9835451 14.74 
##  SPMS                  39.4065 1.391797 17.959364 1.2869329 49.80 
##  PPMS                  39.4065 1.391797 12.437606 1.3751931 57.92 
##   lower.CL  upper.CL 
##   3.887597  8.767736 
##  10.315633 14.514847 
##  15.374229 20.544500 
##   9.684780 15.190432 
##  
## Results are averaged over the levels of: gender  
## Degrees-of-freedom method: kenward-roger  
## Confidence level used: 0.95 

Brain-PAD boxplot by MS subtype 
# calculate Ns 
control_n <- with(df.bl, table(subtype))["control"] 
cis_n <- with(df.bl, table(subtype))["CIS"] 
rrms_n <- with(df.bl, table(subtype))["RRMS"] 
spms_n <- with(df.bl, table(subtype))["SPMS"] 
ppms_n <- with(df.bl, table(subtype))["PPMS"] 
 
plot.pryr %<a-% { 
with(df.bl, ehplot(BrainPAD, groups = subtype, ylim = c(-20,52), pch = 21, bg = 
ms.palette[as.numeric(subtype)], box = T, offset = 0.1, intervals = 50, xlab = 
"Groups", ylab = "Brain-PAD (years)", main = "Baseline Brain-PAD by study 
group")) +  
  abline(0,0, lty = 2) + 
  text(1,51, paste("N = ", control_n, sep = ""), cex = 0.8) + 
  text(2,51, paste("N = ", cis_n, sep = ""), cex = 0.8) + 
  text(3,51, paste("N = ", rrms_n, sep = ""), cex = 0.8) + 
  text(4,51, paste("N = ", spms_n, sep = ""), cex = 0.8) + 
  text(5,51, paste("N = ", ppms_n, sep = ""), cex = 0.8) 
} 
plot.pryr 
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## integer(0) 

cairo_pdf("plots/MS_UCL_MAGNIMS_combined_group_Brain-PAD.pdf", 8,8) 
plot.pryr 

## integer(0) 

dev.off() 

## quartz_off_screen  
##                 2 

Brain-PAD boxplot by MS subtype in cohort UCL3 only 

# calculate Ns 
C3.bl <- df.bl %>% filter(Cohort == "UCL3")  
C3.bl$subtype <- factor(C3.bl$subtype) 
control_n <- with(C3.bl, table(subtype))["control"] 
rrms_n <- with(C3.bl, table(subtype))["RRMS"] 
spms_n <- with(C3.bl, table(subtype))["SPMS"] 
ppms_n <- with(C3.bl, table(subtype))["PPMS"] 
 
plot.pryr %<a-% { 
  with(C3.bl, ehplot(BrainPAD, groups = subtype, ylim = c(-20,52), pch = 21, bg 
= ms.palette[-2][as.numeric(subtype)], box = T, offset = 0.1, intervals = 50, 
xlab = "Groups", ylab = "Brain-PAD (years)", main = "Baseline Brain-PAD by study

group")) +  
  abline(0,0, lty = 2) + 
  text(1,51, paste("N = ", control_n, sep = ""), cex = 0.8) + 
  text(2,51, paste("N = ", rrms_n, sep = ""), cex = 0.8) + 
  text(3,51, paste("N = ", spms_n, sep = ""), cex = 0.8) + 
  text(4,51, paste("N = ", ppms_n, sep = ""), cex = 0.8) 
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} 
plot.pryr 

 

## integer(0) 

cairo_pdf("plots/MS_cohort_C3_Brain-PAD.pdf", 8,8) 
plot.pryr 

## integer(0) 

dev.off() 

## quartz_off_screen  
##                 2 

Post-hoc pairwise brain-PAD comparison of subtypes 

round(with(df.bl, TukeyHSD(aov(BrainPAD ~ subtype)))$subtype, 4) 

##                 diff     lwr     upr  p adj 
## CIS-control   3.4566  0.9312  5.9820 0.0018 
## RRMS-control 11.3795  9.1056 13.6534 0.0000 
## SPMS-control 16.1159 12.9611 19.2707 0.0000 
## PPMS-control 10.0865  7.0005 13.1725 0.0000 
## RRMS-CIS      7.9229  6.1671  9.6787 0.0000 
## SPMS-CIS     12.6593  9.8548 15.4637 0.0000 
## PPMS-CIS      6.6299  3.9030  9.3568 0.0000 
## SPMS-RRMS     4.7364  2.1561  7.3166 0.0000 
## PPMS-RRMS    -1.2930 -3.7888  1.2027 0.6180 
## PPMS-SPMS    -6.0294 -9.3476 -2.7111 0.0000 
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Brain-PAD by subtype descriptive statistics 
with(df.bl, describeBy(BrainPAD, subtype, mat = T, digits = 1)) # brain-PAD by 
MS patient subtypes and controls 

##     item  group1 vars   n mean   sd median trimmed  mad   min  max range 
## X11    1 control    1 150  1.1  6.7    0.6     1.2  6.5 -16.5 22.1  38.6 
## X12    2     CIS    1 296  4.6  7.2    4.3     4.3  6.5 -13.1 31.5  44.5 
## X13    3    RRMS    1 677 12.5 10.0   11.1    12.0  9.4 -18.2 48.7  66.8 
## X14    4    SPMS    1 111 17.3 10.5   16.9    17.1 11.1  -6.7 43.9  50.6 
## X15    5    PPMS    1 120 11.2 10.3   10.3    10.7 10.6  -5.3 46.4  51.7 
##     skew kurtosis  se 
## X11  0.0      0.1 0.6 
## X12  0.5      0.9 0.4 
## X13  0.5      0.3 0.4 
## X14  0.2     -0.4 1.0 
## X15  0.5      0.1 0.9 

Correlates of brain-PAD at baseline 

EDSS score, an index of disability 

LME accounting for fixed effects of age at baseline, gender, ICV and random effects of Cohort and 
scanner status. 

summary(lmer(BrainPAD ~ EDSSbaseline + age_at_baseline_scan1 + gender + ICV + 
(1|Cohort/scanner_status), data = df.bl)) 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: BrainPAD ~ EDSSbaseline + age_at_baseline_scan1 + gender + ICV +   
##     (1 | Cohort/scanner_status) 
##    Data: df.bl 
##  
## REML criterion at convergence: 8487.2 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.7510 -0.6743 -0.0761  0.5761  3.6001  
##  
## Random effects: 
##  Groups                Name        Variance Std.Dev. 
##  scanner_status:Cohort (Intercept) 18.75    4.331    
##  Cohort                (Intercept)  0.00    0.000    
##  Residual                          78.02    8.833    
## Number of obs: 1174, groups:  scanner_status:Cohort, 18; Cohort, 14 
##  
## Fixed effects: 
##                         Estimate Std. Error         df t value Pr(>|t|) 
## (Intercept)              8.30507    3.52977  774.81179   2.353   0.0189 
## EDSSbaseline             1.74180    0.18056 1133.59491   9.647  < 2e-16 
## age_at_baseline_scan1   -0.20238    0.02916 1165.00045  -6.941 6.43e-12 
## gendermale               1.03221    0.68309 1158.41082   1.511   0.1310 
## ICV                      4.51312    2.35064 1156.85119   1.920   0.0551 
##                           
## (Intercept)           *   
## EDSSbaseline          *** 
## age_at_baseline_scan1 *** 
## gendermale                
## ICV                   .   
## --- 
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## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##             (Intr) EDSSbs ag___1 gndrml 
## EDSSbaselin -0.125                      
## ag_t_bsln_1 -0.279 -0.346               
## gendermale   0.494 -0.107  0.031        
## ICV         -0.894  0.107 -0.012 -0.605 
## convergence code: 0 
## singular fit 

When predicting brain-PAD in a LME model, the effect of EDSS at baseline beta = 1.74, 95% CI = 
1.39, 2.09, p = < 2.22e-16. 

Test for interaction between subtype and EDSS on brain-PAD: 

fit.edss <- lmer(BrainPAD ~ EDSSbaseline * subtype + age_at_baseline_scan1 + 
gender + ICV + (1|Cohort/scanner_status), data = subset(df.bl, df.bl$subtype != 
"control")) 
round(as.matrix(anova(fit.edss)["EDSSbaseline:subtype",]),3) 

##                       Sum Sq Mean Sq NumDF    DenDF F value Pr(>F) 
## EDSSbaseline:subtype 255.011  85.004     3 1159.588   1.125  0.338 

Use simple slopes from jtools to extract adjusted slopes for each subtype. 

sim_slopes(fit.edss, pred = "EDSSbaseline", modx = "subtype", johnson_neyman = 
F) 

## SIMPLE SLOPES ANALYSIS  
##  
## Slope of EDSSbaseline when subtype = CIS:  
##  Est. S.E.   df    p 
##  1.04 0.54 1.93 0.05 
##  
## Slope of EDSSbaseline when subtype = RRMS:  
##  Est. S.E.   df    p 
##  1.99 0.28 7.22 0.00 
##  
## Slope of EDSSbaseline when subtype = SPMS:  
##  Est. S.E.   df    p 
##  1.53 0.70 2.18 0.03 
##  
## Slope of EDSSbaseline when subtype = PPMS:  
##  Est. S.E.   df    p 
##  1.22 0.61 2.00 0.05 

Use interact_plot() from jtools to plot the adjusted slopes per group. 

interact_plot(fit.edss, pred = "EDSSbaseline", modx = "subtype", plot.points = 
T, interval = T, vary.lty = T, facet.modx = T, x.label = "EDSS", y.label = 

"Brain-PAD (years)", point.size = 1, modx.labels = c("CIS", "RRMS", "SPMS", 
"PPMS")) + geom_hline(yintercept = 0, lty = 2) + theme_bw()  + 
  scale_fill_manual(values = ms.palette[2:5], name = "MS subtype") + 
  scale_color_manual(values = ms.palette[2:5], name = "MS subtype") 
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ggsave(filename = "~/Work/Brain ageing/Collaborations/MS/plots/EDSS_brain-
PAD_plot.pdf", height = 5, width = 8, useDingbats = FALSE) 

Age at diagnosis 

LME accounting for fixed effects of age at baseline, gender, ICV and random effects of Cohort and 
scanner status. Exclude CIS patients and healthy controls. 

summary(lmer(BrainPAD ~ disease_onset_age + age_at_baseline_scan1 + gender + ICV
+ (1|Cohort/scanner_status), data = subset(df.bl, df.bl$subtype != "control" & 
df.bl$subtype != "CIS"))) 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: BrainPAD ~ disease_onset_age + age_at_baseline_scan1 + gender +   
##     ICV + (1 | Cohort/scanner_status) 
##    Data:  
## subset(df.bl, df.bl$subtype != "control" & df.bl$subtype != "CIS") 
##  
## REML criterion at convergence: 6556.1 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.2073 -0.6699 -0.0925  0.6307  3.8170  
##  
## Random effects: 
##  Groups                Name        Variance Std.Dev. 
##  scanner_status:Cohort (Intercept)  4.895   2.213    
##  Cohort                (Intercept)  1.797   1.340    
##  Residual                          83.165   9.119    

V 
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## Number of obs: 900, groups:  scanner_status:Cohort, 18; Cohort, 14 
##  
## Fixed effects: 
##                        Estimate Std. Error        df t value Pr(>|t|)     
## (Intercept)            16.73245    3.96818 850.54963   4.217 2.75e-05 *** 
## disease_onset_age      -0.45261    0.04746 784.78256  -9.536  < 2e-16 *** 
## age_at_baseline_scan1   0.16673    0.04480 775.76974   3.721 0.000213 *** 
## gendermale              2.31995    0.78949 891.08283   2.939 0.003382 **  
## ICV                     2.19226    2.72874 887.80921   0.803 0.421961     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##             (Intr) dss_n_ ag___1 gndrml 
## dises_nst_g -0.020                      
## ag_t_bsln_1 -0.235 -0.720               
## gendermale   0.491 -0.001 -0.014        
## ICV         -0.922 -0.037  0.051 -0.585 

When predicting brain-PAD in a LME model, the effect of age at diagnosis at baseline beta = -0.45, 
95% CI = -0.55, -0.36, p = < 2.22e-16. 

Test for interaction between subtype and age at diagnosis on brain-PAD: 

fit.age <- lmer(BrainPAD ~ disease_onset_age * subtype + age_at_baseline_scan1 + 
gender + ICV + (1|Cohort/scanner_status), data = subset(df.bl, df.bl$subtype != 
"control" & df.bl$subtype != "CIS")) 
round(as.matrix(anova(fit.age)["disease_onset_age:subtype",]),3) 

##                            Sum Sq Mean Sq NumDF   DenDF F value Pr(>F) 
## disease_onset_age:subtype 524.445 262.222     2 883.928   3.203  0.041 

Use simple slopes from jtools to extract adjusted slopes for each subtype. 

sim_slopes(fit.age, pred = "disease_onset_age", modx = "subtype", johnson_neyman 
= F) 

## SIMPLE SLOPES ANALYSIS  
##  
## Slope of disease_onset_age when subtype = RRMS:  
##   Est. S.E.    df    p 
##  -0.36 0.05 -6.63 0.00 
##  
## Slope of disease_onset_age when subtype = SPMS:  
##   Est. S.E.    df    p 
##  -0.57 0.09 -6.40 0.00 
##  
## Slope of disease_onset_age when subtype = PPMS:  
##   Est. S.E.    df    p 
##  -0.51 0.10 -5.33 0.00 

interact_plot(fit.age, pred = "disease_onset_age", modx = "subtype", plot.points 
= T, interval = T, vary.lty = T, facet.modx = T, x.label = "Age at clincial 

diagnosis (years)", y.label = "Brain-PAD (years)", point.size = 1, modx.labels = 

c("RRMS", "SPMS", "PPMS")) + geom_hline(yintercept = 0, lty = 2) +  theme_bw()  
+ 
  scale_fill_manual(values = ms.palette[3:5], name = "MS subtype") + 
  scale_color_manual(values = ms.palette[3:5], name = "MS subtype") 
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ggsave(filename = "~/Work/Brain 
ageing/Collaborations/MS/plots/diagnosis_age_brain-PAD_plot.pdf", height = 5, 

width = 8, useDingbats = FALSE) 

Time since diagnosis 

LME accounting for fixed effects of age at baseline, gender, ICV and random effects of Cohort and 
scanner status. Exclude controls, CIS patients and anyone with a time since diagnosis = 0. 

summary(lmer(BrainPAD ~ disease_duration_at_baseline_scan1 + 
age_at_baseline_scan1 + gender + ICV + (1|Cohort/scanner_status), data = 
subset(df.bl, df.bl$subtype != "CIS" & df.bl$disease_duration > 0))) 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula:  
## BrainPAD ~ disease_duration_at_baseline_scan1 + age_at_baseline_scan1 +   
##     gender + ICV + (1 | Cohort/scanner_status) 
##    Data: subset(df.bl, df.bl$subtype != "CIS" & df.bl$disease_duration >   
##     0) 
##  
## REML criterion at convergence: 6260.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.1936 -0.6800 -0.0881  0.6373  3.5355  
##  
## Random effects: 
##  Groups                Name        Variance Std.Dev. 
##  scanner_status:Cohort (Intercept)  4.517   2.125    
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##  Cohort                (Intercept)  1.184   1.088    
##  Residual                          85.098   9.225    
## Number of obs: 857, groups:  scanner_status:Cohort, 18; Cohort, 14 
##  
## Fixed effects: 
##                                     Estimate Std. Error        df t value 
## (Intercept)                         17.15073    4.12903 828.28297   4.154 
## disease_duration_at_baseline_scan1   0.44234    0.04813 743.77238   9.190 
## age_at_baseline_scan1               -0.28569    0.03536 812.27062  -8.079 
## gendermale                           2.19444    0.81213 848.75083   2.702 
## ICV                                  2.15264    2.84274 845.63208   0.757 
##                                    Pr(>|t|)     
## (Intercept)                        3.61e-05 *** 
## disease_duration_at_baseline_scan1  < 2e-16 *** 
## age_at_baseline_scan1              2.35e-15 *** 
## gendermale                          0.00703 **  
## ICV                                 0.44912     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##             (Intr) d____1 ag___1 gndrml 
## dss_drt___1  0.018                      
## ag_t_bsln_1 -0.334 -0.439               
## gendermale   0.486  0.003 -0.019        
## ICV         -0.927  0.036  0.023 -0.579 

When predicting brain-PAD in a LME model, the effect of time since diagnosis at baseline beta = 
0.48, 95% CI = 0.4, 0.57, p = < 2.22e-16. 

Test for interaction between subtype and time since diagnosis on brain-PAD 

fit.time <- lmer(BrainPAD ~ disease_duration_at_baseline_scan1 * subtype + 
age_at_baseline_scan1 + gender + ICV + (1|Cohort/scanner_status), data = 
subset(df.bl, df.bl$subtype != "control" & df.bl$subtype != "CIS" & 
df.bl$disease_duration > 0)) 
round(as.matrix(anova(fit.time)["disease_duration_at_baseline_scan1:subtype",]),
3) 

##                                             Sum Sq Mean Sq NumDF  DenDF 
## disease_duration_at_baseline_scan1:subtype 603.971 301.986     2 690.45 
##                                            F value Pr(>F) 
## disease_duration_at_baseline_scan1:subtype   3.607  0.028 

Use simple slopes from jtools to extract adjusted slopes for each subtype. 

sim_slopes(fit.time, pred = "disease_duration_at_baseline_scan1", modx = 
"subtype", johnson_neyman = F) 

## SIMPLE SLOPES ANALYSIS  
##  
## Slope of disease_duration_at_baseline_scan1 when subtype = RRMS:  
##  Est. S.E.   df    p 
##  0.48 0.06 8.37 0.00 
##  
## Slope of disease_duration_at_baseline_scan1 when subtype = SPMS:  
##  Est. S.E.   df    p 
##  0.26 0.10 2.55 0.01 
##  
## Slope of disease_duration_at_baseline_scan1 when subtype = PPMS:  
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##  Est. S.E.   df    p 
##  0.12 0.17 0.73 0.47 

Plot 

interact_plot(fit.time, pred = "disease_duration_at_baseline_scan1", modx = 
"subtype", plot.points = T, interval = T, vary.lty = T, facet.modx = T, x.label 

= "Time since clinical diagnosis (years)", y.label = "Brain-PAD (years)", 

point.size = 1, modx.labels = c("RRMS", "SPMS", "PPMS")) + geom_hline(yintercept
= 0, lty = 2) + theme_bw()  + 
  scale_fill_manual(values = ms.palette[3:5], name = "MS subtype") + 
  scale_color_manual(values = ms.palette[3:5], name = "MS subtype") 

 

ggsave(filename = "~/Work/Brain 
ageing/Collaborations/MS/plots/diagnosis_years_brain-PAD_plot.pdf", height = 5, 

width = 8, useDingbats = FALSE) 

EDSS progression survival analysis 

Based on Arman Eshaghi’s code used in Eshaghi et al., 2018 Annals of Neurology. 

# function for characterising EDSS progression, based on different rates of 

change and different baseline EDSS values 
is_sustained_progression <- function(edssAtStart, change){ 
  sustainedProgression <- FALSE 
  #if start of edss is 0, 1.5 increase is considered sustained progression 
  if ((edssAtStart < 1) & (change >= 1.5)) { 
    sustainedProgression <- TRUE 
  } 
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  #if start of edss is 6 or above, 0.5 increase is considered sustained 
progression 
  else if ((edssAtStart >= 6) & (change >= 0.5 )) { 
    sustainedProgression <- TRUE 
  } 
  #if start of edss is more than zero but less than 6, sustained progression is 
by 1 increase in edss 
  else if ((edssAtStart >= 1 ) & (edssAtStart < 6 )  & (change >= 1  )) { 
    sustainedProgression <- TRUE 
  } 
  return(sustainedProgression) 
} 
 
## determine change in EDSS from baseline to last follow-up   
## select latest EDSS per subject in subjects with 2 or more assessments 
y1 <- df %>% 
  filter(!subtype == "control")  %>% 
  filter(!is.na(EDSSbaseline)) %>% 
  group_by(PatientID) %>% 
  top_n(1, interval) %>% 
  ungroup() %>% 
  dplyr::rename(latest_EDSS = EDSSatScan) %>% 
  dplyr::select(PatientID, interval, EDSSbaseline, latest_EDSS) %>% 
  filter(!is.na(latest_EDSS)) %>% 
  mutate(EDSSchange = latest_EDSS - EDSSbaseline) 
 
y1$EDSS_progression <-  mapply(is_sustained_progression, y1$EDSSbaseline, 
y1$EDSSchange) # apply Arman's function 
## get baseline brain-PAD and brain volumetric measures 
y2 <- df %>% 
  filter(!subtype == "control")  %>% 
  filter(interval == 0) %>% 
  filter(!is.na(EDSSbaseline)) %>% 
  dplyr::rename(BrainPAD_baseline = BrainPAD) %>% 
  dplyr::rename(GM_vol_baseline = GM_vol) %>% 
  dplyr::rename(WM_vol_baseline = WM_vol) %>% 
  dplyr::select(-one_of('interval')) 
 
y3 <- right_join(y1, y2, by = c("PatientID")) %>% 
  filter(!is.na(latest_EDSS)) 

Numbers of EDSS progressors 

The number of MS patients with >= 2 EDSS scores was 1143. 

table(y3$EDSS_progression) # calculate proportion of patients who progress 

##  
## FALSE  TRUE  
##   840   303 

round(prop.table(table(y3$EDSS_progression)),3) # calculate percentage of 
patients who progress 
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##  
## FALSE  TRUE  
## 0.735 0.265 

Run survival analysis 

# creating new response function 
S <- Surv(time = y3$interval, event = y3$EDSS_progression) 
# Brain-PAD, age, sex model 
m1 <- coxph(S ~ BrainPAD_baseline + age_at_baseline_scan1 + gender, data = y3) 
summary(m1) 

## Call: 
## coxph(formula = S ~ BrainPAD_baseline + age_at_baseline_scan1 +  
##     gender, data = y3) 
##  
##   n= 1143, number of events= 303  
##  
##                           coef exp(coef) se(coef)     z Pr(>|z|)     
## BrainPAD_baseline     0.026343  1.026694 0.005534 4.761 1.93e-06 *** 
## age_at_baseline_scan1 0.032452  1.032985 0.005750 5.644 1.66e-08 *** 
## gendermale            0.217213  1.242609 0.119598 1.816   0.0693 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##                       exp(coef) exp(-coef) lower .95 upper .95 
## BrainPAD_baseline         1.027     0.9740     1.016     1.038 
## age_at_baseline_scan1     1.033     0.9681     1.021     1.045 
## gendermale                1.243     0.8048     0.983     1.571 
##  
## Concordance= 0.626  (se = 0.019 ) 
## Rsquare= 0.048   (max possible= 0.953 ) 
## Likelihood ratio test= 56.08  on 3 df,   p=4e-12 
## Wald test            = 56.25  on 3 df,   p=4e-12 
## Score (logrank) test = 57.15  on 3 df,   p=2e-12 

cox.zph(m1) 

##                           rho  chisq      p 
## BrainPAD_baseline      0.0975 2.9164 0.0877 
## age_at_baseline_scan1 -0.0826 2.0307 0.1541 
## gendermale            -0.0122 0.0451 0.8319 
## GLOBAL                     NA 5.3427 0.1484 

The hazard ratio for brain-PAD on time-to-disease-progression was HR (95% CI) = 1.027, 1.016, 
1.038. That means for every additional +1 year of brain-PAD there is a 1.027% increase in the 
likelihood of EDSS progression. Extrapolated over 5 years of brain-PAD, there is a 1.141 increase 
in the likelihood of EDSS progression. 

Time-to-EDSS progression Kaplan-Meier plots 

# Brain-PAD median split 
km.plot.df <- y3 %>% mutate(split_BrainPAD = ntile(BrainPAD_baseline, 2)) 

Based on a median split of brain-PAD. The median value = 9.68 years. 

# Run survplot on survival object 
S <- Surv(time = km.plot.df$interval, event = km.plot.df$EDSS_progression) # 
response function 
survplot <- ggsurvplot(survfit(S ~ split_BrainPAD, data = km.plot.df), 
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surv.plot.height = 0.9, ggtheme = theme_survminer(), risk.table = T, cumcensor =
F, conf.int = F, palette = c("blue", "red"), censor = F , legend.labs = 
c("Brain-PAD < median", "Brain-PAD > median")) 
survplot 

 

ggsave(filename = "~/Work/Brain ageing/Collaborations/MS/plots/KM_brain-
PAD_plot.pdf", height = 8, width = 8, print(survplot), useDingbats = FALSE) 

Longitudinal brain-age analysis 

The total number of people with two or more scans was n = 1266. 

determine change in brain-PAD from baseline to last follow-up 

## select latest brain-PAD per subject in subjects with 2 or more assessments 
z1 <- df %>% 
  filter(NoScans >= 2)  %>% 
  group_by(PatientID) %>% 
  top_n(1, interval) %>% 
  ungroup() %>% 
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  dplyr::rename(latest_BrainPAD = BrainPAD) %>% 
  dplyr::select(PatientID, interval, latest_BrainPAD)  
 
## baseline brain-PAD 
z2 <- df %>% 
  filter(NoScans >= 2)  %>% 
  filter(interval == 0) %>% 
  filter(!is.na(BrainPAD)) %>% 
  dplyr::rename(BrainPAD_baseline = BrainPAD) %>% 
  dplyr::rename(GM_vol_baseline = GM_vol) %>% 
  dplyr::rename(WM_vol_baseline = WM_vol) %>% 
  dplyr::select(-one_of('interval')) 
 
## calculate change in brain-PAD between baseline and latest brain-PAD 
z3 <- right_join(z1, z2, by = c("PatientID")) %>% 
  mutate(BrainPAD_change = latest_BrainPAD - BrainPAD_baseline) 

Mean annualised rates of change in brain-PAD per group 

describeBy(z3$BrainPAD_change/z3$interval, z3$subtype, mat = T, digits = 2) 

##     item  group1 vars   n  mean   sd median trimmed  mad    min   max 
## X11    1 control    1 111  0.03 2.02  -0.09   -0.12 1.14  -4.65  9.86 
## X12    2     CIS    1 279  0.23 2.20   0.12    0.21 1.21 -11.74 11.49 
## X13    3    RRMS    1 652  0.29 1.70   0.17    0.22 1.07 -12.24 16.21 
## X14    4    SPMS    1 104 -0.29 1.60  -0.24   -0.27 0.93  -6.11  7.01 
## X15    5    PPMS    1 119  0.40 1.52   0.30    0.40 1.38  -4.66  4.24 
##     range  skew kurtosis   se 
## X11 14.52  1.75     7.25 0.19 
## X12 23.23  0.08     6.74 0.13 
## X13 28.45  0.98    18.93 0.07 
## X14 13.12  0.31     4.84 0.16 
## X15  8.90 -0.18     0.62 0.14 

determine change in EDSS from baseline to last follow-up 

## select latest EDSS per subject in subjects with 2 or more assessments 
a1 <- df %>% 
  filter(NoScans >= 2)  %>% 
  group_by(PatientID) %>% 
  top_n(1, interval) %>% 
  ungroup() %>% 
  dplyr::rename(latest_EDSSatScan = EDSSatScan) %>% 
  dplyr::select(PatientID, interval, latest_EDSSatScan)  
 
## baseline EDSS 
a2 <- df %>% 
  filter(NoScans >= 2)  %>% 
  filter(interval == 0) %>% 
  filter(!is.na(EDSSatScan)) %>% 
  dplyr::rename(EDSSatScan_baseline = EDSSatScan) %>% 
  dplyr::rename(BrainPAD_baseline = BrainPAD) %>% 
  dplyr::rename(GM_vol_baseline = GM_vol) %>% 
  dplyr::rename(WM_vol_baseline = WM_vol) %>% 
  dplyr::select(-one_of('interval')) 
 
## calculate change in brain-PAD between baseline and latest brain-PAD 
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a3 <- right_join(a1, a2, by = c("PatientID")) %>% 
  mutate(EDSS_change = latest_EDSSatScan - EDSSatScan_baseline) 

Mean annualised rates of change in EDSS per group 

with(subset(a3, a3$control0rest1 != "control"), describeBy(EDSS_change/interval, 
subtype, mat = F, digits = 2)) 

##  
##  Descriptive statistics by group  
## group: control 
## NULL 
## --------------------------------------------------------  
## group: CIS 
##    vars   n  mean   sd median trimmed mad   min max range  skew kurtosis 
## X1    1 242 -0.26 1.05      0   -0.14 0.3 -6.86   3  9.86 -1.96     8.47 
##      se 
## X1 0.07 
## --------------------------------------------------------  
## group: RRMS 
##    vars   n mean   sd median trimmed  mad   min  max range skew kurtosis 
## X1    1 635 0.12 0.45      0     0.1 0.19 -2.24 3.29  5.53 1.09    10.49 
##      se 
## X1 0.02 
## --------------------------------------------------------  
## group: SPMS 
##    vars   n mean   sd median trimmed  mad   min  max range skew kurtosis 
## X1    1 104 0.14 0.29      0    0.11 0.07 -0.64 1.26   1.9 0.92     2.25 
##      se 
## X1 0.03 
## --------------------------------------------------------  
## group: PPMS 
##    vars   n mean   sd median trimmed  mad   min max range skew kurtosis 
## X1    1 117 0.36 0.63   0.17    0.27 0.25 -1.01   3  4.01 1.92     5.35 
##      se 
## X1 0.06 

Correlation between annualised EDSS change and brain-PAD change 

delta.df <- join(a3, z3) 
cor.test(delta.df$EDSS_change, delta.df$BrainPAD_change, method = "pearson") 

##  
##  Pearson's product-moment correlation 
##  
## data:  delta.df$EDSS_change and delta.df$BrainPAD_change 
## t = 9.0089, df = 1095, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.2067138 0.3169474 
## sample estimates: 
##       cor  
## 0.2626875 

Interaction between subtype and EDSS change 

fit.change <- lm(BrainPAD_change ~ EDSS_change * subtype, data = delta.df) 
anova(fit.change) 

## Analysis of Variance Table 
##  
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## Response: BrainPAD_change 
##                       Df  Sum Sq Mean Sq F value    Pr(>F)     
## EDSS_change            1  1452.1 1452.13 82.4760 < 2.2e-16 *** 
## subtype                3   212.1   70.68  4.0146  0.007441 **  
## EDSS_change:subtype    3   206.0   68.68  3.9008  0.008702 **  
## Residuals           1089 19173.7   17.61                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Use jtools package to get slopes from the model, per subtype. 

sim_slopes(fit.change, pred = "EDSS_change", modx = "subtype", johnson_neyman = 
F, digits = 4) 

## SIMPLE SLOPES ANALYSIS  
##  
## Slope of EDSS_change when subtype = CIS:  
##    Est.   S.E. t val.      p 
##  0.8434 0.2189 3.8524 0.0001 
##  
## Slope of EDSS_change when subtype = RRMS:  
##    Est.   S.E. t val.      p 
##  1.2534 0.1459 8.5883 0.0000 
##  
## Slope of EDSS_change when subtype = SPMS:  
##     Est.   S.E.  t val.      p 
##  -0.6953 0.6510 -1.0680 0.2857 
##  
## Slope of EDSS_change when subtype = PPMS:  
##    Est.   S.E. t val.      p 
##  0.5882 0.3464 1.6983 0.0897 

Plot 

interact_plot(fit.change, pred = "EDSS_change", modx = "subtype", plot.points = 
T, interval = T, facet.modx = T, x.label = "EDSS annualised change", y.label = 

"Brain-PAD annualised change", modx.labels = c("CIS", "RRMS", "SPMS", "PPMS")) + 
geom_hline(yintercept = 0, lty = 2) + theme_bw()  + 
  scale_fill_manual(values = ms.palette[-1], name = "MS subtype") + 
  scale_color_manual(values = ms.palette[-1], name = "MS subtype") 
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ggsave(filename = "~/Work/Brain 
ageing/Collaborations/MS/plots/change_EDSS_brain-PAD_plot.pdf", height = 5, 

width = 8, useDingbats = FALSE) 

Correlate baseline brain-PAD with the number of follow-up scans completed in the n=104 with >1 
scan. 

with(subset(df.bl, df.bl$NoScans > 1 & df.bl$subtype == "SPMS"), 
cor.test(BrainPAD, NoScans, method = "spearman")) 

## Warning in cor.test.default(BrainPAD, NoScans, method = "spearman"): Cannot 
## compute exact p-value with ties 

##  
##  Spearman's rank correlation rho 
##  
## data:  BrainPAD and NoScans 
## S = 241780, p-value = 0.002848 
## alternative hypothesis: true rho is not equal to 0 
## sample estimates: 
##       rho  
## -0.289771 

Longitudinal brain-predicted age trajectories 

Interaction between group and time 

## conditional growth model - random effects of participant, cohort and scanner 
status 
model_int.group <- lmer(BrainPAD ~ control0rest1 * interval + gender + 
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age_at_baseline_scan1 + ICV + (interval| PatientID) + (1|Cohort/scanner_status), 
data = df)  
round(anova(model_int.group)["control0rest1:interval",],3) 

## Type III Analysis of Variance Table with Satterthwaite's method 
##                        Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)   
## control0rest1:interval 25.488  25.488     1 1325.6   5.374  0.021 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Brain-PAD change EMMs, using annualised difference between baseline and final 
follow-up. 

Generate EMMs for all groups and MS subtypes. LME adjusting for age, gender, ICV, cohort and 
scanner status. 

fit <- (lmer(BrainPAD_change ~ subtype + age_at_baseline_scan1 + gender + ICV + 
(1|Cohort/scanner_status), data = z3)) 

## singular fit 

emmeans(object = fit, specs = c("subtype")) 

##  subtype     emmean        SE     df   lower.CL  upper.CL 
##  control -0.9807015 0.5308630 102.29 -2.0336305 0.0722274 
##  CIS     -0.1438444 0.4574657  34.93 -1.0726189 0.7849301 
##  RRMS     0.9347867 0.3421557  16.77  0.2121440 1.6574293 
##  SPMS     0.3405131 0.5200587 102.29 -0.6909864 1.3720125 
##  PPMS     1.2072129 0.5259459  90.74  0.1624462 2.2519795 
##  
## Results are averaged over the levels of: gender  
## Degrees-of-freedom method: kenward-roger  
## Confidence level used: 0.95 

Generate EMMs for HCs and MS/CIS combined. LME adjusting for age, gender, ICV, cohort and 
scanner status. 

fit <- (lmer(BrainPAD_change ~ control0rest1 + age_at_baseline_scan1 + gender + 
ICV + (1|Cohort/scanner_status), data = z3)) 
emmeans(object = fit, specs = c("control0rest1")) 

##  control0rest1     emmean        SE     df   lower.CL   upper.CL 
##  control       -1.0983087 0.5298190 108.79 -2.1484159 -0.0482016 
##  MS             0.6999868 0.3188504  12.36  0.0075069  1.3924667 
##  
## Results are averaged over the levels of: gender  
## Degrees-of-freedom method: kenward-roger  
## Confidence level used: 0.95 

Slopes per group 

Controls 

control.slope <- summary(lmer(BrainPAD ~ interval + gender + 
age_at_baseline_scan1 + ICV + (interval| PatientID) + (1|Cohort/scanner_status), 
data = subset(df, df$control0rest1 == "control")))$coef["interval","Estimate"] 
control.intercept <- summary(lmer(BrainPAD ~ interval + gender + 
age_at_baseline_scan1 + ICV + (interval| PatientID) + (1|Cohort/scanner_status), 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. ; https://doi.org/10.1101/584888doi: bioRxiv preprint 

https://doi.org/10.1101/584888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix   Cole et al., Accelerated brain ageing and disability in multiple sclerosis 

 59 

data = subset(df, df$control0rest1 == 
"control")))$coef["(Intercept)","Estimate"] 

MS patients 

ms.slope <- summary(lmer(BrainPAD ~ interval + gender + age_at_baseline_scan1 + 
ICV + (interval| PatientID) + (1|Cohort/scanner_status), data = subset(df, 
df$control0rest1 == "MS")))$coef["interval","Estimate"] 
ms.intercept <- summary(lmer(BrainPAD ~ interval + gender + 
age_at_baseline_scan1 + ICV + (interval| PatientID) + (1|Cohort/scanner_status), 
data = subset(df, df$control0rest1 == "MS")))$coef["(Intercept)","Estimate"] 

Longitudinal brain-PAD by interval plots 

## subtype longindtual slopes 
# intercept <- summary(model_int)$coefficients["(Intercept)","Estimate"] 
# cis.slope <- summary(model_int)$coefficients["subtypeCIS:interval","Estimate"] 
# rrms.slope <- 

summary(model_int)$coefficients["subtypeRRMS:interval","Estimate"] 
# spms.slope <- 
summary(model_int)$coefficients["subtypeSPMS:interval","Estimate"] 
# ppms.slope <- 
summary(model_int)$coefficients["subtypePPMS:interval","Estimate"] 
# plot.df <- data.frame(intercept = intercept, slope = c(cis.slope, rrms.slope, 
spms.slope, ppms.slope), subtype = c("CIS", "RRMS", "SPMS", "PPMS")) 
 
ggplot(data = df, aes(x = interval, y = BrainPAD, fill = subtype)) + 
  geom_hline(yintercept = 0, lty = 2) + 
  geom_line(aes(group = PatientID, colour = subtype), alpha = 0.3, linetype = 1, 
size = 0.25) + 
  # geom_point(aes(fill = subtype), pch = 21, size = 0.5, alpha = 0.2) + 
  geom_abline(slope = control.slope, intercept = control.intercept, col = 
"blue") + 
  geom_abline(slope = ms.slope, intercept = ms.intercept, col = "red") + 
  labs(x = "Time (years)", y = "Brain-predicted age difference (years)") + 
  scale_fill_manual(values = ms.palette) + 
  scale_color_manual(values = ms.palette) + 
  # facet_wrap(~ subtype, scales = "free_x") + 
  theme_bw() + theme(legend.position = "none") 

## Warning: Removed 1 rows containing missing values (geom_path). 
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ggsave(filename = "~/Work/Brain 
ageing/Collaborations/MS/plots/longitudinal_brain-PAD_time_plot.pdf", height = 

6, width = 6, useDingbats = FALSE) 

## Warning: Removed 1 rows containing missing values (geom_path). 

Supplementary analysis 

Hierarchical partitioning of brain-PAD 
a <- summary(lm(BrainPAD ~ age_at_baseline_scan1 + gender + gm_vol_ratio_icv + 
wm_vol_ratio_icv + csf_vol_ratio_icv, data = df.bl)) 
print(a) 

##  
## Call: 
## lm(formula = BrainPAD ~ age_at_baseline_scan1 + gender + gm_vol_ratio_icv +  
##     wm_vol_ratio_icv + csf_vol_ratio_icv, data = df.bl) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -39.527  -4.842   0.190   4.790  29.445  
##  
## Coefficients: (1 not defined because of singularities) 
##                         Estimate Std. Error t value Pr(>|t|)     
## (Intercept)            156.78460    4.26998   36.72  < 2e-16 *** 
## age_at_baseline_scan1   -0.46373    0.02408  -19.26  < 2e-16 *** 
## gendermale              -2.01799    0.43216   -4.67 3.32e-06 *** 
## gm_vol_ratio_icv      -196.06829    6.02802  -32.53  < 2e-16 *** 
## wm_vol_ratio_icv      -111.19551    6.98622  -15.92  < 2e-16 *** 
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## csf_vol_ratio_icv             NA         NA      NA       NA     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 7.433 on 1349 degrees of freedom 
## Multiple R-squared:  0.4877, Adjusted R-squared:  0.4862  
## F-statistic:   321 on 4 and 1349 DF,  p-value: < 2.2e-16 

h.p <- hier.part(y = df.bl$BrainPAD, xcan = 
df.bl[c("age_at_baseline_scan1","gender","gm_vol_ratio_icv", "wm_vol_ratio_icv",
"csf_vol_ratio_icv")], gof = "Rsqu") 

 

print(h.p) 

## $gfs 
##  [1] 0.0000000000 0.0001847944 0.0054708411 0.2503255424 0.0805476003 
##  [6] 0.3448462682 0.0056460035 0.3845513168 0.0810550023 0.4499544177 
## [11] 0.2510562177 0.0854193771 0.3458685152 0.3456355219 0.3456355219 
## [16] 0.3456355219 0.3914809503 0.0859101977 0.4541394054 0.4794083693 
## [21] 0.4794083693 0.4794083693 0.3468458772 0.3468458772 0.3468458772 
## [26] 0.3456355219 0.4876890065 0.4876890065 0.4876890065 0.4794083693 
## [31] 0.3468458772 0.4876890065 
##  
## $IJ 
##                                 I             J        Total 
## age_at_baseline_scan1 0.089705020 -0.0895202260 0.0001847944 
## gender                0.005310567  0.0001602739 0.0054708411 
## gm_vol_ratio_icv      0.152491187  0.0978343555 0.2503255424 
## wm_vol_ratio_icv      0.045488042  0.0350595578 0.0805476003 
## csf_vol_ratio_icv     0.194694190  0.1501520787 0.3448462682 
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##  
## $I.perc 
##                               I 
## age_at_baseline_scan1 18.393898 
## gender                 1.088925 
## gm_vol_ratio_icv      31.268121 
## wm_vol_ratio_icv       9.327264 
## csf_vol_ratio_icv     39.921792 

sum(h.p$IJ["I"]) - a$adj.r.squared 

## [1] 0.001519084 

sum(h.p$IJ["I"]) 

## [1] 0.487689 

sum(h.p$IJ["J"]) 

## [1] 0.193686 

round(h.p$IJ, 3) 

##                           I      J Total 
## age_at_baseline_scan1 0.090 -0.090 0.000 
## gender                0.005  0.000 0.005 
## gm_vol_ratio_icv      0.152  0.098 0.250 
## wm_vol_ratio_icv      0.045  0.035 0.081 
## csf_vol_ratio_icv     0.195  0.150 0.345 

round(h.p$I.perc, 1) 

##                          I 
## age_at_baseline_scan1 18.4 
## gender                 1.1 
## gm_vol_ratio_icv      31.3 
## wm_vol_ratio_icv       9.3 
## csf_vol_ratio_icv     39.9 
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