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Abstract

The so-called “dot-compartment” is conjectured in diffusion MRI to represent small spherical spaces,
such as cell bodies, in which the diffusion is restricted in all directions. Previous investigations inferred
its existence from data acquired with directional diffusion encoding which does not permit a
straightforward separation of signals from ‘sticks’ (axons) and signals from ‘dots’. Here we combine
isotropic diffusion encoding with ultra-strong diffusion gradients (240 mT/m) to achieve high diffusion-
weightings with high signal to noise ratio, while suppressing signal arising from anisotropic water
compartments with significant mobility along at least one axis (e.g., axons). A dot-compartment,
defined to have apparent diffusion coefficient equal to zero and no exchange, would result in a non-
decaying signal at very high b-values (b = 7000 s/mm?). With this unique experimental setup, a residual
yet slowly decaying, signal above the noise floor for b-values as high as 15000 s/mm? was seen clearly
in the cerebellar grey matter (GM), and in several white matter (WM) regions to some extent. Upper
limits of the dot-signal-fraction were estimated to be ~2% in cerebellar GM and ~0.2% in WM. By
relaxing the assumption of zero diffusivity, the signal at high b-values in cerebellar GM could be
represented more accurately by an isotropic water pool with a low apparent diffusivity of 0.11 um?/ms
and a substantial signal fraction of ~7-16%. This remaining signal at high b-values has potential to serve
as a novel and simple marker for isotropically-restricted water compartments in cerebellar GM.
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1. Introduction

Diffusion Magnetic Resonance Imaging (IMRI) (Le Bihan and Breton, 1985) probes structures at much
smaller length-scales than the imaging resolution by sensitising the signal to the random molecular
motion of water. Biophysical modelling of the contributions to this signal aims to characterise tissue
microstructure properties by carefully selecting model compartments (typically multiple non-
exchanging water pools) that have a measurable impact on the signal (Stanisz et al., 1997). In healthy
white matter (WM), biophysical models typically include anisotropic extra- and intra-axonal
compartments (Alexander et al., 2010; Assaf and Basser, 2005; Fieremans et al., 2011; Jespersen et al.,
2007; Kroenke et al., 2004; Lampinen et al., 2019; Novikov et al., 2018; Sotiropoulos et al., 2012;
Stanisz et al., 1997; Zhang et al., 2012). The inclusion of a so-called “dot-compartment” for WM-
modelling is motivated by the observation of an almost constant, non-attenuating signal at very high b-
values (e.g., b = 7000 s/mm?). This has been hypothesised to arise from the ubiquity of small isotropic
spaces (e.g., glial cell-bodies) wherein the diffusion of water molecules is highly restricted in all
directions (Alexander et al., 2010; Stanisz et al., 1997), leading to a near-zero apparent diffusivity. A
method to measure the signal fraction of such isotropically-restricted components accurately in vivo
could thus potentially provide a proxy for the density of cells and enable quantification of cellular
pathology in a wide range of neurological and psychiatric disorders.

Previous work investigating compartmental contributions to the dMRI signal from conventional pulsed-
gradient encoding — also called Stejskal-Tanner encoding (Stejskal and Tanner, 1965) or linear tensor
encoding (LTE (Westin et al., 2016)) — showed that including a dot-compartment provided a more
complete description of the WM dMRI signal, both ex vivo (Panagiotaki et al., 2012) and in vivo (Ferizi
et al., 2014; Zeng et al., 2018). However, a dot-compartment is not generally included in WM
biophysical models, e.g. (Assaf and Basser, 2005; Behrens et al., 2003; Jespersen et al., 2007; Kroenke
et al., 2004; Novikov et al., 2018; Zhang et al., 2012). Moreover, a recent study of the dMRI signal in
WM at b-values up to 10000 s/mm? on a clinical MRI system suggested that the WM dot-signal-fraction
is negligible (Veraart et al., 2019).

Probing the dot-compartment in anisotropic tissue is challenging with conventional LTE, due to the
strong relationship between encoding-direction and orientation-distribution of anisotropic tissue
microenvironments. Even when measuring along the dominant axis of a fibre bundle in which there is
orientation dispersion, a slow diffusing component can be observed (due to the gradient direction not
being perfectly parallel to all of the fibres); it is therefore challenging to disentangle this from the
scenario in which a dot-compartment is present (Fig.1a). Here, we address this problem by the use of
spherical tensor encoding (STE, also called isotropic diffusion encoding) to render signals insensitive
to orientation and anisotropy (Eriksson et al., 2013; Lasi€ et al., 2014; Mori and Van Zijl, 1995; Westin
et al., 2016; Wong et al., 1995). STE at high b-values can suppress the dMRI signal from water pools
that are mobile along at least one axis (Fig.1a). At sufficiently high b-values only the signal from
compartments with extremely low or zero diffusivity in all directions would remain.

Previous work using STE obtained by a series of pulsed gradients on a clinical system concluded that
the dot-signal-fraction is likely lower than 2% in WM, and therefore has a negligible contribution to
the dMRI signal (Dhital et al., 2018). However, the gradient amplitude available on clinical MRI
scanners (40-80 mT/m) limits the maximal b-value per unit signal-to-noise ratio (SNR) — needed for
reliable quantification of the dot-signal-fraction — whereas ultra-strong gradients (e.g., 300 mT/m) allow
much higher b-values per unit SNR (Jones et al., 2018; Setsompop et al., 2013). Furthermore, the
previous implementation of STE used waveforms with exceedingly low efficiency (Sj6lund et al.,
2015). In this work, we leverage the power of ultra-strong gradients and optimised asymmetric STE
gradient waveforms to reduce the echo time (TE) significantly, thereby increasing SNR. This allows
signal decays to be examined in the living human brain over a much larger range of b-values typically
unachievable using clinical MRI scanners, and thus provides a more reliable assessment of signal
fractions which could result from isotropically-restricted compartments. In addition, we extend the
analysis to tissue types beyond cerebral WM, including deep grey matter (GM) and the cerebellum.
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2. Theory

Assuming Gaussian diffusion within a compartment, the signal S; arising from the /" compartment,
represented by diffusion tensor D; and which contributes a relative signal fraction f; to the signal,
probed by b-tensor B can be described by

S;(B) = S(0) f; exp(=B: D). (1]

The total signal is then the sum of the signals from the individual compartments, with f; summing to
one. The b-tensor is a positive semi-definite tensor which we here design to be axially symmetric; it
can then be characterised by its trace b = Tr(B) = (b + 2b,) — better known as the b-value, b, — and
its anisotropy by = (by — by)/(by + 2b,) (Eriksson et al., 2013; Topgaard, 2017; Westin et al., 2016),
where by and b, are the eigenvalues corresponding to the eigenvectors along and perpendicular to the
symmetry axis, respectively. S(0) represents the signal at b = 0 s/mm?, and B: D denotes the inner
product between the tensors.

In the case of STE, the b-tensor is isotropic and thus b, = 0. For n non-exchanging Gaussian
compartments, the STE-signal simplifies to

S(b) = S(0) (TiLy fiexp (- 2522)) = 5(0) (Tiy fi exp(—bD))), (2]

3

where D; = Tr(D;)/3 is the mean apparent diffusivity of each compartment.

An isotropically restricted compartment typically exhibits a very low mean apparent diffusivity. If we
index this compartment as i = 1 and assume D; < D;, i = 2, ..., n, then the only remaining signal when
approaching high b-values (beyond a certain b-value, bg) is that arising from the isotropic restricted
compartment:

S(b) = S(0)f, exp(=bDy), b = b [3]

For example, for a two-compartment system with D; = 0.1 um?/ms and D, = 0.8 um?/ms, the signal
from the second compartment is reduced to ~0.1 % for b, = 8500 s/mm?, while the signal from the
first compartment is only reduced to 42 %. This means that the behaviour of S(b) at increasing b-values
is increasingly dominated by compartments with lower apparent diffusivity.

In the case of a dot-compartment with zero mean apparent diffusivity, i.e. Dgo¢ = 0, Eq. [3] simplifies
to

faot = S(b)/5(0), b > b [4]

such that the dot-signal-fraction is equal to the relative signal that remains at high b-values. Fig.1b shows
the simulated signal in the case of non-exchanging compartments of which one is a dot-compartment.
Even if the signal does not yet exhibit a plateau, the relative signal at the highest b-value can serve as
an upper limit of f;,;, because fzor < S(bmax)/S(0). The accuracy of this limit is affected by the

presence of the rectified noise floor, o+/m/2, with ¢ standard deviation of the Gaussian noise added to
each of the real and imaginary channels (Jones and Basser, 2004) (Fig. 1b).
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Fig. 1: a) Simulations of LTE and STE data for two different scenarios (schematically represented in the middle):
dispersed sticks representing axons surrounded by extra-axonal space (top, blue surround), vs dots + dispersed sticks
surrounded by extra-axonal space (bottom, green surround). Here, we used a Watson distribution to simulate a stick
orientation dispersion (OD) of 0.7 and f ;,; = 0 (blue), and OD = 0.5 and f 4, = 0.02 (green). The two scenarios result
in very similar signals for LTE across a wide b-value range, and can be disentangled better at high b-values with STE.
A linear y-scale is chosen here to not make small differences seem disproportionally large. b) STE simulated as in (a)
but with varying f 4., at different SNR levels. The dashed-dotted line represents the rectified noise floor, and the error

bars represent the mean and standard deviation over 5000 noise realisations. A logarithmic y-scale is chosen here to
improve the visualisation for different f;,,. b is given in s/mm"”.
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3. Methods

3.1 Data

Five healthy adult volunteers were included in the study (3 female), which was approved by the Cardiff
University School of Medicine ethics committee. Written informed consent was obtained from all
participants.

Participants were scanned on a 3T Connectom MRI system (Siemens Healthcare, Erlangen, Germany)
with an ultra-strong 300 mT/m gradient set. The acquisition protocol included a structural MPRAGE
(Magnetization Prepared RApid Gradient Echo) (de Lange et al., 1991) and dMRI sequences. The dMRI
data were acquired using a prototype spin-echo sequence with an echo-planar imaging (EPI) readout,
that enables user-defined gradient waveforms to be used for diffusion encoding (Szczepankiewicz et
al., 2019a). For STE we used b = [250, 1500, 3000, 4500, 6000, 7500, 9000, 10500, 12000, 13500,
15000] s/mm?, repeated [6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36] times, respectively. The b-values and
repetitions were interleaved over volumes to reduce the impact of system drift (Hutter et al., 2018; Vos
etal., 2016). For LTE, the b-tensor principal eigenvectors were distributed over the unit sphere for each
b-shell. b = 0 s/mm” (b0) images were acquired every 15" image for monitoring and correction of
subject motion. Additional b0 images with reversed phase-encoding were acquired to correct for
susceptibility distortions (Chang and Fitzpatrick, 1992). No in-plane acceleration was used, and
imaging parameters were: voxel size = 4x4x4 mm’, matrix = 64x64, 34 slices, TR = 4300 ms, partial-
Fourier = 6/8, bandwidth = 1594 Hz/pixel.

The waveforms used for STE and LTE are shown in Fig. 2, and were optimised numerically (Sjolund
et al., 2015) to be Maxwell-compensated (Szczepankiewicz et al., 2019b) and enable a TE as short as
88 ms. These waveforms render superior encoding efficiency due to their optimised asymmetric
trajectory in g-space compared to standard 1-scan-trace imaging (which requires TE = 270 ms for b =
15000 s/mm”).

Waveforms
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Fig. 2: Linear tensor encoding (LTE) and spherical tensor encoding (STE) waveforms for b = 15000 s/mm’, and the
corresponding power spectra of the dephasing vector q. Timings for the first waveform, temporal gap (180° pulse), and
second waveform were [28.6, 6.9, 28.6] ms for LTE and [35.5, 6.9, 25.6] ms for STE. The maximum gradient amplitudes
along a single axis were 131 and 240 mT/m for LTE and STE, respectively.
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3.2 Preprocessing

The dMRI data were corrected for Rician noise bias (Koay et al., 2009a; St-Jean et al., 2016) using
estimates of the Gaussian noise standard deviation (Koay et al., 2009b) and the true underlying Rician
signal (Veraart et al., 2016), to determine whether or not any plateau arising in the signal decay curve
could be attributed to the effects of the noise floor. The data were checked for signal intensity errors
including slice-wise outliers (Sairanen et al., 2018). The STE data were corrected for subject motion by
registering the interleaved b0 images to the first b0 image and applying the corresponding
transformations to the diffusion-weighted images (DWIs). The LTE data were corrected for subject
motion and eddy-current geometrical distortions using FSL EDDY (Andersson and Sotiropoulos,
2016). Susceptibility geometrical distortions were corrected using TOPUP (Andersson et al., 2003) and
for geometrical distortions due to gradient nonlinearities using code kindly provided by colleagues at
the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital (Glasser
etal., 2013; Jones et al., 2018; Rudrapatna et al., 2018; Setsompop et al., 2013).
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The MPRAGE image was segmented into regions using Freesurfer (Fischl et al., 2002) and affinely-
registered to the corrected b0 image using FSL FLIRT (Jenkinson et al., 2012). The resulting WM,
GM, deep GM (dGM), cerebellar WM (cWM) and cerebellar GM (cGM) segmentations were then used
to guide the delineation of regions-of-interest (ROIs) for further analysis. Only voxels in which the
tissue probability derived from the Freesurfer segmentations was larger than 90% were considered, and
the ROIs were drawn manually to avoid including signal artefacts. For WM, two separate regions were
considered: ROIs were drawn on coronal slices in medial WM lateral to the midbody of the corpus
callosum (denoted by mWM), and in the occipital regions (denoted by oWM), see Fig. 4.

3.3 Quantitative characterisation of the STE signal at high b-values

Eq. [3] was fitted to the data with by = 10000 s/mm” using a nonlinear least-squares trust-region-
reflective algorithm implemented in MATLAB (The MathWorks, Natick, USA). The fit was randomly
initialised 10 times, and the solution with the lowest residual norm was selected. In addition, estimates
§(0) and S(b,q,) Were obtained, from which f;, and an upper limit f;,, were derived according to
Egs. [3] and [4], respectively.
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4. Results

4.1 ROI delineation

Fig. 3 shows the Freesurfer segmentation results overlaid on individual diffusion-weighted images of
one participant. Fig. 4 shows results of the manually delineated ROIs visualised for one of the healthy
subjects. The mWM, oWM, cWM, ¢GM, and dGM ROlIs include on average 59, 58, 39, 199, and 52
voxels across participants, respectively. The GM segmentations only include a few voxels that are
classified as > 90% GM, which are sparsely distributed. We therefore only consider data in the mWM,
oWM, cWM, ¢cGM, and dGM ROlIs.

a) Raw STE signal S(b)
b —

b) Relative STE signal change
_ 5(0)=5(b)
O

0.05

Fig. 3: a) STE signal as a function of b-value (in s/mmz), with the Freesurfer tissue segmentations indicated in red =
WM, yellow = GM, cyan = deep GM, green = cerebellar WM and blue = cerebellar GM. b) Relative STE signal change.

4.2 STE signal decay across all b-values

Fig. 3a shows the signal of the image intensity in individual DWIs as a function of b-value in a healthy
brain. The signal intensity in most of the cerebral WM has decayed substantially at b > 10000 s/mm”.
However, the cerebellar GM retained a remarkably high signal at these high b-values, remaining well
above the noise floor even at b = 15000 s/mm>. Fig. 3b shows the signal in a more quantitative fashion;
regions with lower intensity have a higher relative signal change compared to the S(0) signal. The
cerebellar GM persistently has a high intensity compared to other regions and thus the lowest relative
signal change.

Fig. 4 shows the signal decay for each ROI in the five healthy subjects. Both the original and Rician-
bias-corrected signal decay curves are shown, accompanied by an estimate of the noise floor. At b >
10000 s/mm?’, the signals from mWM and dGM clearly approach the noise floor. In contrast, o WM,
cWM, and cGM exhibit a mean-signal that is above the noise floor for all five subjects. After Rician-
noise-bias-correction, the signal is still above zero albeit it can be seen that it continues to decay.
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STE signal in different regions of interest
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Fig. 4: STE signal decay for 5 healthy subjects, in ROIS in the mWM (red), oWM (orange), cWM (green), dGM (cyan),
and ¢cGM (blue); examples of the ROIs are shown for Subject 1. The left column shows the signal before Rician-bias
correction plotted with a logarithmic y-scale, to better visualise deviations from mono-exponential behaviour, with a
close-up at high b-values. The right column shows the signal after Rician-bias correction plotted with a linear y-scale
to be able to visualise negative values. b is given in s/mm”.

4.3 STE signal characterisation at high b-values

Table 1 gives quantitative features related to the STE signal decay at high b-values. For each parameter,
the median and 10™ — 90™ percentiles are given. The third column presents estimates of the relative
rectified noise floor, derived from estimates of the noise standard deviation and b0 signal (i.e. & and
5(0)). An estimate of the relative noise floor of 0.5% indicates that an SNR > 250 on the b0 signal
could be achieved. The fourth column presents estimates for the dot-signal-fraction f;,, (Eq. [3]) and
the last two columns present estimates in the case of an isotropically-restricted compartment with non-
zero diffusivity (Eq. [4], i.e. f;, and D;). All estimates are obtained after Rician bias-correction to reduce
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bias from the least-squares fitting. We will describe characteristics of these features for the different
ROIs in the following paragraphs.

For the mWM and dGM ROI, the mean signal at high b-values converges to the noise floor (Fig. 4).
We estimate an upper limit of f;,; of 0.5% and 0.9% respectively.

For the oWM and cWM ROI, the estimated upper limits of f;,; are 0.3% and 0.5% respectively. The
signal at high b-values is still decaying, and can thus be better explained by the presence of a
compartment with non-zero apparent diffusivity with estimated signal fractions of 2.7% and 5.3%, and
estimated apparent mean diffusivities of 0.17 and 0.22 um?/ms for o WM and ¢ WM, respectively. Fig.
5a shows scatter plots of these estimates, showing that the spread is large (see also the percentiles in
Table 1).

For the cGM ROI, we find an upper limit of f;,; of 1.7%, with a residual signal that is well above the
noise floor. Per Eq. [3], we estimate an average apparent mean diffusivity of 0.11 um?/ms and an
average signal fraction of 9.4%. In some areas, the signal fraction is estimated as high as 16%. These
estimates are consistent across healthy subjects (Fig. 5a). When visualising the estimates in the
cerebellar GM one can observe that they are spatially heterogeneous (Fig. 5b). As a comparison, we
show the spatial variability of f;, in Fig. 5c.

Region Subject &,/m/2 /5(0) - 100% Faoe  100% fi - 100% D,
mwM 1 0.6 0.0 (-0.2-0.2)
2 0.4 0.0 (-0.1-0.2)
3 0.5 0.1 (-0.1-0.2)
4 0.5 -0.1 (-0.1-0.1)
5 0.5 0.0 (-0.2-0.2)
0.5 0.0
dGM 1 0.9 -0.2 (-0.5-0.1)
2 0.8 -0.2 (-0.5-0.0)
3 0.8 -0.2 (-0.5-0.0)
4 0.0 -0.3 (-0.5--0.1)
5 1.1 -0.3 (-0.6-0.0)
0.9 0.2
oWM 1 0.3 0.2 (0.1-0.4) 2.7(0.9-7.2) 0.16 (0.08-0.27)
2 0.3 0.2 (0.1-0.4) 2.7 (1.1-1.7) 0.18 (0.10-0.37)
3 0.3 0.2 (0.1-0.3) 3.2 (1.1-8.1) 0.17 (0.12-0.28)
4 0.3 0.2 (0.1-0.3) 2.5 (1.0-9.1) 0.18 (0.11-0.33)
5 0.3 0.2 (0.1-0.4) 2.2(1.1-9.5) 0.15 (0.09-0.31)
0.3 0.2 0.0267 0.17
cWM 1 0.4 0.4 (0.1-0.8) 5.2 (0.9-12.9) 0.16 (0.01-0.30)
2 0.5 0.1 (-0.2-0.4) 5.8 (0.3-60.4) 0.23 (0.00-0.82)
3 0.6 0.1 (-0.3-0.4) 5.2 (0.4-21.0) 0.23 (0.12-0.72)
4 0.5 0.2 (-0.1-0.5) 4.2 (1.3-21.5) 0.23 (0.08-1.00)
5 0.6 0.1 (-0.1-0.4) 6.1 (0.2-40.0) 0.25 (0.09-0.64)
0.5 0.2 0.0532 0.22
CGM 1 0.2 2.0 (1.5-2.3) 10.6 (8.0-15.7) 0.11 (0.10-0.14)
2 0.3 1.6 (1.2-1.8) 9.4 (7.6-12.0) 0.12 (0.10-0.15)
3 0.3 1.5 (1.2-1.8) 8.9 (6.9-11.1) 0.12 (0.10-0.14)
4 0.3 1.8 (1.3-2.1) 9.5(7.5-11.9) 0.11 (0.10-0.14)
5 0.3 1.7 (1.4-2.0) 8.8 (6.7-11.1) 0.11 (0.09-0.13)
0.3 1.7 0.0942 0.11

Table 1: Parameter estimates (median and 10-90 percentile) for the standard deviation &, f 4., fl and D, in different
ROIs. D has units of um? /ms.
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a) Fit of Eq. [3] to the STE signal (b > 10000 s/mm?) in different ROIls
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ig. 5: a) Parameter estimates f; and Dy, in the oWM (orange), cWM (green), and ¢cGM (blue) ROIs. b-c) Map of the
fits of Eqs. [3] (not assuming zero apparent diffusivity) and [4] (assuming zero apparent diffusivity) in an axial slice of
the ¢cGM, respectively; the cerebellar WM is masked out. D has units pm?/ms.
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4.4 Comparison of LTE and STE signals

In Fig. 6 one can readily appreciate the difference between b0O-normalised STE and directionally-
averaged LTE signals in the different tissue types. These diffusion weightings also give complementary
information in GM, where the STE encoding at high b-values has suppressed signal arising from
compartments that are mobile along at least one axis (e.g., ‘sticks’ that could represent axons). The
overlap of the signal decay curves is high between the healthy controls.
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LTE vs STE signal in different regions of interest

a) Linear Tensor Encoding (LTE) Spherical Tensor Encoding (STE)
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Fig. 6: a) Signal upon LTE and STE (b = 15000 s/mmz) with the same intensity scale. b) LTE (dashed lines) and STE
(solid lines) signals, with b in s/mm”. Colours correspond to Fig. 4.
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5. Discussion

In this study we report for the first time a clear depiction in vivo from an isotropically-restricted
compartment in dMRI. This compartment is present particularly in the cerebellar GM, but support for
its existence can also be found in the WM. Our observations were enabled by ultra-strong gradient
hardware (Jones et al., 2018; Setsompop et al., 2013) and recent developments for tensor-valued
diffusion encoding (Sjolund et al., 2015; Szczepankiewicz et al., 2019b). STE provides essential
complementary information to LTE, but the waveforms generally take up more time than Stejskal-
Tanner LTE encoding, leading to long TEs and thereby inferior SNR. With the help of ultra-strong
diffusion gradients (240 mT/m along a single axis, Fig. 2), a TE as short as 88 ms could be achieved
even for a b-value of 15000 s/mm?2. As a result, the SNR was above 250 in the b0 images, and we could
clearly observe signal amplitudes well above the noise floor. Before going into the implications, we
will first discuss some general observations.

A plateau of the diffusion-weighted signal (i.e., region of no further signal decay with increasing b-
value), even at high b-values, was not observed in any region of interest. This makes the significant
contribution of water residing in a dot-compartment with zero apparent diffusivity and no exchange
unlikely. This observation is in agreement with previous work (Dhital et al., 2018; Veraart et al., 2019).
Nevertheless, a slowly decaying STE signal was observed in some regions, and this observation can be
supported by two hypotheses: (i) a zero-apparent-diffusivity compartment exists but is not observed as
such because it is in exchange with its surroundings; or (ii) the compartment exhibits a low but non-
zero apparent diffusivity. The first hypothesis is analysed in Supplementary Fig. 1, which shows the
noiseless signal decay for different exchange times using a two-compartment Karger model (Karger,
1971; Nilsson et al., 2010). At infinite exchange times, the estimated dot-signal fraction approaches its
true value. However, at exchange times of e.g. 500 ms the signal does not exhibit a plateau and the
estimated upper limit of f;, is negatively biased.

Regarding the second hypothesis, a slow-diffusing component has not been observed previously in STE
data. Previous work has characterised mean apparent diffusivities derived from STE data up to ~b =
6000 s/mm” by using a regularised inverse Laplace transform (Avram et al., 2019) or by fitting a finite
series of exponentials that could represent different compartments and comparing the fits of the models
through the Akaike Information Criterion (AIC) (Dhital et al., 2018). These works showed little
deviation from mono-exponential behaviour in WM and single-peak diffusivity distributions in brain
parenchyma in the range of b-values used. However, in the logarithmic plots in Fig. 4 one can clearly
observe that the signal decay starts deviating from mono-exponential behaviour for ~b > 5000 s/mm’
in most tissue types, which could explain why this component has not been reported previously.

5.1 Signal representation and implications

Rather than quantifying the signal across the entire range of b-values and comparing the fit of models
with different numbers of compartments, we focus here on quantifying the STE signal at high b-values
using a simple representation based on the often-adopted assumptions of Gaussian diffusion and no
exchange. Under these assumptions, the results provide support for the presence of an isotropic water
pool with low diffusivity in the oWM, cWM, and cGM ROIs. In WM, Dhital et al. (2018) found that
for a hypothetically small, yet finite, diffusivity of D; = 0.1 um?/ms, the estimated dot signal fraction
was 2.7%. In the present study, we found a similarly low signal fraction, but the diffusivity was
estimated to be twice as high (~0.2 um?/ms) in the oWM and ¢cWM ROIs, albeit with a high
uncertainty (Table 1). In the medial WM the signal converged to the noise floor; this could be caused
by the larger distance to the RF receiving coils (and thus lower SNR), or a genuinely lower density of
slow-diffusing components compared with the occipital WM, or both.

In the cGM ROI, the signal fraction of the slowly diffusing isotropic water pool was estimated to be as
large as 16%, and this component thus makes a significant contribution to the signal. Linking this
finding to tissue microstructure derived from histology or realistic numerical simulations of brain cells
(Palombo et al., 2019) is the subject of future work. It has been suggested previously that in cortical
GM, the abundance of cell bodies has a significant impact on the LTE signal at high b-values (Palombo
et al., 2018). In that work, the LTE signal at high b-values was considered to be arising from non-


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584730; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exchanging sticks representing neurites, and spheres with a finite radius representing cell bodies.
Following this picture, STE at high b-values would nullify the stick-signal and only the signal specific
to the cell bodies would remain.

The cerebellum has an important role in motor coordination, but it is becoming increasingly apparent
that it also has an active role in cognition and emotion (O’Halloran et al., 2012; Tedesco et al., 2011).
The neurons in the cerebellar cortex are highly organised, consisting of densely-packed granule cells
and larger Purkinje cells with a cloud of dendritic spines. One can speculate that the isotropically-
restricted signal comes from within small spaces such as the granule cells or dendritic spines. While
this hypothesis remains to be validated, studying the STE signal provides exciting avenues for gaining
further insight into changes in tissue microstructure in disorders associated with the cerebellum. dMRI
studies have already shown changes in ataxia (Dayan et al., 2016; Salvatore et al., 2014), Parkinson’s
disease, and Alzheimer’s disease (Mormina et al., 2017), where metrics such as mean diffusivity and
diffusion-tensor (DT)-derived fractional anisotropy (FA) were studied. These studies mostly focused
on cerebellar WM (e.g. peduncles). Recently, measures beyond the DT have been derived in cerebellar
WM and GM, with the aim of being more specific to different compartments and the underlying
neurobiology (Savini et al., 2018). Fig. 5b shows spatial variability in the estimated parameter maps. In
future work we aim to look at the variability across and within different lobules, by registration to
atlases (Diedrichsen et al., 2009).

The use of pulsed-gradients allows a more precise definition of the time-scale of diffusion. The STE
waveforms in Fig. 2 have broader frequency spectra, affecting the way time-dependent diffusion is
encoded (Lundell et al., 2018). Under the assumption of Gaussian (and thus time-independent) diffusion
in each compartment (as in Section 2), the net signal becomes non-monoexponential but remains time-
independent; as such the signal decay arising from two sets of waveforms with the same B-tensor, but
different frequency spectra, would look identical. However, the assumption of compartmental Gaussian
diffusion is theoretically only valid for sufficiently short or long diffusion times or low diffusion
weightings; beyond these regimes time-dependent diffusion will be encoded differently by waveforms
with different frequency spectra. The use of different LTE waveforms with different frequency
characteristics and b-values up to 5000 s/mm’ has previously revealed a strong contrast in the
cerebellum (Lundell et al., 2017, 2015). In the specific case of STE as studied here, several works (de
Swiet and Mitra, 1996; Jespersen et al., 2019; Lundell et al., 2018) have shown that non-Gaussian
diffusion within each compartment can lead to anisotropic time-dependence, i.e., probing different
time-dependence in different directions. This means that for anisotropic pores, such as cylinders and
ellipsoids, the signal decay in STE still depends on the orientation and dispersion of the pores (or the
rotation of the waveforms). In the present study, we focused on the high b-value regime to suppress the
signal from anisotropic compartments that have significant mobility along at least one axis. Therefore,
the remaining signal is expected to come from restricted isotropic compartments only, and is as such
expected to be rotationally invariant. Non-Gaussian diffusion within these isotropic compartments
becomes a contributing factor if one for example tries to estimate the variance of the highly restricted
isotropic diffusivities (Jespersen et al., 2019), which is beyond the aim of this study.

5.2 SNR and spatial resolution

The spatial resolution used here to achieve the necessary SNR (i.e. voxel size 4x4x4 mm’) is relatively
coarse, especially if one tries to study highly curved structures such as the cortical grey matter. Super-
resolution and gSlider-SMS (Setsompop et al., 2018) diffusion acquisitions provide exciting future
avenues for increasing the spatial resolution while maintaining sufficient SNR. Compared with LTE
super-resolution reconstruction, which has been extended recently to incorporate the angular relation
between different diffusion measurements (Van Steenkiste et al., 2016), STE super-resolution would
theoretically be more straightforward as the need to vary the orientation of the principal eigenvectors
of the B-tensor is obviated.

5.3 Pre-processing
The low SNR of the STE data at high b-values made the pre-processing of the data challenging. dMRI
pre-processing pipelines typically include motion correction and geometric distortion correction. The
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geometric distortions generally include those resulting from eddy currents and susceptibility
differences, and the use of strong gradients requires an additional step to correct for any possible
geometric distortions arising from gradient nonlinearities. Subject motion and eddy-current geometric
distortions in high b-value data are often corrected for using a prediction-based framework (Andersson
etal., 2017; Ben-Amitay et al., 2012); high b-value images are predicted from the corrected low b-value
images, and the acquired high b-value images are subsequently registered to the predicted images.
Strategies to predict high b-value data with different B-tensors from low b-value data are available
(Nilsson et al., 2015), but the deformations allowed at high b-values have to be fairly constrained
because only a relatively low signal can be observed in only few regions. When applying tools
optimised for LTE images and/or moderate b-value STE images, we observed suspiciously large
deformations in the high b-value STE data that could not be verified. In this study, we therefore opted
for a conservative strategy where we acquired interleaved b0 images (every 15" image) to correct for
subject motion in STE data. This necessarily led to differences in the processing of LTE and STE data;
i.e., the STE data were only corrected with a rigid transformation which cannot account for higher order
deformations e.g., due to eddy currents. While, theoretically, the eddy current deformations between
STE images of the same b-value should be similar, future work should be attributed to optimising the
processing of high b-value STE data. Future work will furthermore focus on collecting complementary
information by means of real-time motion tracking (e.g. optical tracking (Qin et al., 2009)) and dynamic
field measurements (De Zanche et al., 2008) to provide robust correction for subject motion and
geometrical distortions in these data.

In this work we corrected for geometric distortions arising from gradient nonlinearities, but gradient
nonlinearities additionally cause spatiotemporally varying B-tensors. Strategies have been developed
to take this into consideration, which were mostly evaluated on data acquired with Stejskal-Tanner
encoding (Bammer et al., 2003; Glasser et al., 2013; Jones et al., 2018; Rudrapatna et al., 2018). Future
work will be attributed to investigating the effect of gradient nonlinearities on the signal arising from
free waveforms, as used in this study.

Correcting for the Rician noise bias is of importance here to obtain accurate estimates of the parameters
in Egs. [3-4] when using least-squares optimisation. Here we used the approach of Koay et al. (2009a)
which relies only on magnitude data. When phase data are available, this can alternatively be leveraged
to obtain Gaussian-distributed data (Eichner et al., 2015; Pizzolato et al., 2016). The process of Rician
debiasing can yield signal estimates below the noise floor. To evaluate the accuracy and precision of
this approach, we applied the same debiasing step as described in Section 3.2 to the simulated data of
Fig. 1 (using the same acquisition protocol as in the in vivo data). Supplementary Fig. 2 shows estimates
of fyo¢ for different SNR, before and after Rician debiasing. Indeed, estimation before Rician debiasing
results in overestimation of f,;,;. The expectation value of the error term in the case of nonlinear least
squares and Rician-distributed data has been shown to converge to zero relatively slowly as a function
of SNR (Veraart et al., 2013), which means that estimates can still be biased even if the SNR is larger
than 2. After debiasing, our simulations indicate that signal estimates below the noise floor likely have
a negative bias, resulting in a slight underestimation of f;,,. This bias, however, converges to zero
faster than prior to Rician debiasing.
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6. Conclusion

In this work, we combined ultra-strong gradients and efficient spherical tensor encoding to study the
isotropic dMRI signal at ultra-high b-values, targeting the dot-compartment. Ultra-strong gradients
allowed us to significantly reduce the TE, and therefore increase SNR, when acquiring data at high b-
values. We further optimised encoding efficiency and TE by using asymmetric gradient waveforms
instead of pulsed-gradients. A dot-compartment with zero diffusivity and no exchange would result in
the signal plateauing for sufficiently high b-values; however, we found a signal significantly deviating
from zero, yet still decaying across different WM regions and in the cerebellar GM. This observation
is not in line with a completely still and non-exchanging dot-compartment. We further studied the
apparent diffusivity and signal fraction in the cerebellar GM assuming Gaussian diffusion and no
exchange, finding these to be remarkably consistent across healthy controls. Future work will
investigate the link between this hypothesised compartment and tissue microstructure, and investigate
its potential as a biomarker in pathology affecting the cerebellar GM.
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Supplementary Figures
STE signal from dot-compartment for varying exchange rates
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Supplementary Fig. 1: Simulated signal at variable f;,, and exchange times assuming a two compartment Kérger-
model. Here, diffusivities were set to 1 and 0 p.mZ/ms.
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Supplementary Fig. 2: Simulated signal with different dot signal fractions (equidistantly spaced along the x-axis and
connected by a line for improved visualisation, the true simulated dot signal fraction is represented by the black line
and can be read from the y-axis) and different SNRs. Mean and standard deviation of the Rician signal and debiased
signal are plotted in red and green respectively.


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584730; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES

Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B., 2010.
Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage
52,1374-1389. d0i:10.1016/J.NEUROIMAGE.2010.05.043

Andersson, J.L.R., Graham, M.S., Drobnjak, I., Zhang, H., Filippini, N., Bastiani, M., 2017. Towards a
comprehensive framework for movement and distortion correction of diffusion MR images:
Within volume movement. Neuroimage 152, 450—-466.
doi:10.1016/J.NEUROIMAGE.2017.02.085

Andersson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in spin-echo
echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870-888.
doi:10.1016/5S1053-8119(03)00336-7

Andersson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-resonance
effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063—-1078.
doi:10.1016/j.neuroimage.2015.10.019

Assaf, Y., Basser, P.J., 2005. Composite hindered and restricted model of diffusion (CHARMED) MR
imaging of the human brain. Neuroimage 27, 48-58. doi:10.1016/j.neuroimage.2005.03.042

Avram, A. V., Sarlls, J.E., Basser, P.J., 2019. Measuring non-parametric distributions of intravoxel
mean diffusivities using a clinical MRI scanner. Neuroimage 185, 255-262.
doi:10.1016/J.NEUROIMAGE.2018.10.030

Bammer, R., Markl, M., Barnett, A., Acar, B., Alley, M.T., Pelc, N.J., Glover, G.H., Moseley, M.E., 2003.
Analysis and generalized correction of the effect of spatial gradient field distortions in
diffusion-weighted imaging. Magn. Reson. Med. 50, 560-569. doi:10.1002/mrm.10545

Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews,
P.M., Brady, J.M., Smith, S.M., 2003. Characterization and propagation of uncertainty in
diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077-1088. d0i:10.1002/mrm.10609

Ben-Amitay, S., Jones, D.K., Assaf, Y., 2012. Motion correction and registration of high b-value
diffusion weighted images. Magn. Reson. Med. 67, 1694—1702. doi:10.1002/mrm.23186

Bihan, D. Le, Breton, E., 1985. Imagerie de diffusion in-vivo par résonance magnétique nucléaire.
Comptes-Rendus I’Académie des Sci. 93, 27-34.

Chang, H., Fitzpatrick, J.M., 1992. A technique for accurate magnetic resonance imaging in the
presence of field inhomogeneities. IEEE Trans. Med. Imaging 11, 319-329.
doi:10.1109/42.158935

Dayan, M., Olivito, G., Molinari, M., Cercignani, M., Bozzali, M., Leggio, M., 2016. Impact of
cerebellar atrophy on cortical gray matter and cerebellar peduncles as assessed by voxel-based
morphometry and high angular resolution diffusion imaging. Funct. Neurol. 31, 239-248.

de Lange, E.E., Mugler, J.P., Bertolina, J.A., Gay, S.B., Janus, C.L., Brookeman, J.R., 1991.
Magnetization Prepared RApid Gradient-Echo (MP-RAGE) MR imaging of the liver: Comparison
with spin-echo imaging. Magn. Reson. Imaging 9, 469-476. doi:10.1016/0730-725X(91)90031-G

de Swiet, T.M., Mitra, P.P., 1996. Possible Systematic Errors in Single-Shot Measurements of the
Trace of the Diffusion Tensor. J. Magn. Reson. Ser. B 111, 15-22. doi:10.1006/JMRB.1996.0055

De Zanche, N., Barmet, C., Nordmeyer-Massner, J.A., Pruessmann, K.P., 2008. NMR probes for
measuring magnetic fields and field dynamics in MR systems. Magn. Reson. Med. 60, 176—186.
d0i:10.1002/mrm.21624

Dhital, B., Kellner, E., Kiselev, V.G., Reisert, M., 2018. The absence of restricted water pool in brain
white matter. Neuroimage 182, 398—406. doi:10.1016/J.NEUROIMAGE.2017.10.051

Diedrichsen, J., Balsters, J.H., Flavell, J., Cussans, E., Ramnani, N., 2009. A probabilistic MR atlas of
the human cerebellum. Neuroimage 46, 39-46. doi:10.1016/j.neuroimage.2009.01.045

Eichner, C., Cauley, S.F., Cohen-Adad, J., Méller, H.E., Turner, R., Setsompop, K., Wald, L.L., 2015.
Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.
Neuroimage 122, 373-84. doi:10.1016/j.neuroimage.2015.07.074

Eriksson, S., Lasic, S., Topgaard, D., 2013. Isotropic diffusion weighting in PGSE NMR by magic-angle
spinning of the g-vector. J. Magn. Reson. 226, 13-18. doi:10.1016/J.JMR.2012.10.015


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584730; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Ferizi, U., Schneider, T., Panagiotaki, E., Nedjati-Gilani, G., Zhang, H., Wheeler-Kingshott, C.A.M.,
Alexander, D.C., 2014. A ranking of diffusion MRl compartment models with in vivo human
brain data. Magn. Reson. Med. 72, 1785—-1792. do0i:10.1002/mrm.25080

Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White matter characterization with diffusional
kurtosis imaging. Neuroimage 58, 177-188. doi:10.1016/j.neuroimage.2011.06.006

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A,, Killiany,
R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 2002. Whole Brain
Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron
33, 341-355. doi:10.1016/50896-6273(02)00569-X

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi,
S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. The minimal preprocessing
pipelines for the Human Connectome Project. Neuroimage 80, 105-124.
doi:10.1016/J.NEUROIMAGE.2013.04.127

Hutter, J., Nilsson, M., Christiaens, D., Schneider, T., Price, A.N., Hajnal, J. V., Szczepankiewicz, F.,
2018. Highly efficient diffusion MRI by Slice-interleaved Free-waveform Imaging (SIFl), in:
ISMRM. p. 5326.

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL. Neuroimage
62, 782-790. doi:10.1016/J.NEUROIMAGE.2011.09.015

Jespersen, S.N., Kroenke, C.D., @stergaard, L., Ackerman, J.J.H., Yablonskiy, D.A., 2007. Modeling
dendrite density from magnetic resonance diffusion measurements. Neuroimage 34, 1473—
1486. doi:10.1016/J.NEUROIMAGE.2006.10.037

Jespersen, S.N., Olesen, J.L., lanus, A., Shemesh, N., 2019. Effects of nongaussian diffusion on
“isotropic diffusion” measurements: An ex-vivo microimaging and simulation study. J. Magn.
Reson. 300, 84-94. doi:10.1016/J.JMR.2019.01.007

Jones, D.K., Alexander, D.C., Bowtell, R., Cercignani, M., Dell’Acqua, F., McHugh, D.J., Miller, K.L.,
Palombo, M., Parker, G.J.M., Rudrapatna, U.S., Tax, C.M.W., 2018. Microstructural imaging of
the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for
diffusion MRI. Neuroimage. doi:10.1016/J.NEUROIMAGE.2018.05.047

Jones, D.K., Basser, P.J., 2004. “Squashing peanuts and smashing pumpkins”: How noise distorts
diffusion-weighted MR data. Magn. Reson. Med. 52, 979—993. d0i:10.1002/mrm.20283

Karger, J., 1971. Der EinfluB der Zweibereichdiffusion auf die Spinechodampfung unter
Bericksichtigung der Relaxation bei Messungen mit der Methode der gepulsten
Feldgradienten. Ann. Phys. 482, 107-109. doi:10.1002/andp.19714820113

Koay, C.G., Ozarslan, E., Basser, P.J., 2009a. A signal transformational framework for breaking the
noise floor and its applications in MRI. J. Magn. Reson. 197, 108-19.
d0i:10.1016/j.jmr.2008.11.015

Koay, C.G., Ozarslan, E., Pierpaoli, C., 2009b. Probabilistic Identification and Estimation of Noise
(PIESNO): A self-consistent approach and its applications in MRI. J. Magn. Reson. 199, 94-103.
doi:10.1016/J.JMR.2009.03.005

Kroenke, C.D., Ackerman, J.J.H., Yablonskiy, D.A., 2004. On the nature of the NAA diffusion
attenuated MR signal in the central nervous system. Magn. Reson. Med. 52, 1052-1059.
d0i:10.1002/mrm.20260

Lampinen, B., Szczepankiewicz, F., Novén, M., van Westen, D., Hansson, O., Englund, E., Martensson,
J., Westin, C.-F., Nilsson, M., 2019. Searching for the neurite density with diffusion MRI:
Challenges for biophysical modeling. Hum. Brain Mapp. doi:10.1002/hbm.24542

Lasi¢, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D., 2014. Microanisotropy imaging:
guantification of microscopic diffusion anisotropy and orientational order parameter by
diffusion MRI with magic-angle spinning of the g-vector. Front. Phys. 2, 11.
doi:10.3389/fphy.2014.00011

Lundell, H., Nilsson, M., Dyrby, T.B., Parker, G.J., Hubbard Cristinacce, P.L., Zhou, F., Topgaard, D.,
Lasic, S., 2017. Microscopic anisotropy with spectrally modulated g-space trajectory encoding,


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584730; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in: ISMRM. p. 1086.

Lundell, H., Nilsson, M., Westin, C.-F., Topgaard, D., Lasic, S., 2018. Spectral anisotropy in
multidimensional diffusion encoding, in: ISMRM. p. 0887.

Lundell, H., Sgnderby, C.K., Dyrby, T.B., 2015. Diffusion weighted imaging with circularly polarized
oscillating gradients. Magn. Reson. Med. 73, 1171-1176. d0i:10.1002/mrm.25211

Mori, S., Van Zijl, P.C.M., 1995. Diffusion Weighting by the Trace of the Diffusion Tensor within a
Single Scan. Magn. Reson. Med. 33, 41-52. do0i:10.1002/mrm.1910330107

Mormina, E., Petracca, M., Bommarito, G., Piaggio, N., Cocozza, S., Inglese, M., 2017. Cerebellum
and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World J.
Radiol. 9, 371-388. d0i:10.4329/wjr.v9.i10.371

Nilsson, M., Alerstam, E., Wirestam, R., Sta’hlberg, F., Brockstedt, S., Latt, J., 2010. Evaluating the
accuracy and precision of a two-compartment Karger model using Monte Carlo simulations. J.
Magn. Reson. 206, 59-67. doi:10.1016/J.JMR.2010.06.002

Nilsson, M., Szczepankiewicz, F., van Westen, D., Hansson, O., 2015. Extrapolation-Based References
Improve Motion and Eddy-Current Correction of High B-Value DWI Data: Application in
Parkinson’s Disease Dementia. PLoS One 10, e0141825. doi:10.1371/journal.pone.0141825

Novikov, D.S., Veraart, J., Jelescu, I.0., Fieremans, E., 2018. Rotationally-invariant mapping of scalar
and orientational metrics of neuronal microstructure with diffusion MRI. Neuroimage 174,
518-538. d0i:10.1016/J.NEUROIMAGE.2018.03.006

O’Halloran, C.J., Kinsella, G.J., Storey, E., 2012. The cerebellum and neuropsychological functioning:
A critical review. J. Clin. Exp. Neuropsychol. 34, 35-56. doi:10.1080/13803395.2011.614599

Palombo, M., Alexander, D.C., Zhang, H., 2019. A generative model of realistic brain cells with
application to numerical simulation of the diffusion-weighted MR signal. Neuroimage 188,
391-402. doi:10.1016/J.NEUROIMAGE.2018.12.025

Palombo, M., Shemesh, N., lanus, A., Alexander, D.C., Zhang, H., 2018. A compartment based model
for non-invasive cell body imaging by diffusion MRI, in: ISMRM. p. 1096.

Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C., 2012.
Compartment models of the diffusion MR signal in brain white matter: A taxonomy and
comparison. Neuroimage 59, 2241-2254. doi:10.1016/j.neuroimage.2011.09.081

Pizzolato, M., Fick, R.R., Boutelier, T.T., Deriche, R., 2016. Noise Floor Removal via Phase Correction
of Complex Diffusion-Weighted Images: Influence on DTl and g-space Metrics, in:
Computational Diffusion MRI (MICCAI). pp. 127-140.

Qin, L., van Gelderen, P., Derbyshire, J.A,, Jin, F., Lee, J., de Zwart, J.A., Tao, Y., Duyn, J.H., 2009.
Prospective head-movement correction for high-resolution MRI using an in-bore optical
tracking system. Magn. Reson. Med. 62, 924-934. doi:10.1002/mrm.22076

Rudrapatna, S.U., Parker, G.D., Roberts, J., Jones, D.K., 2018. Can we correct for interactions
between subject motion and gradient-nonlinearity in diffusion MRI?, in: ISMRM. p. 1206.

Sairanen, V., Leemans, A., Tax, C.M.W., 2018. Fast and accurate Slicewise OutLler Detection (SOLID)
with informed model estimation for diffusion MRI data. Neuroimage 181, 331-346.
doi:10.1016/J.NEUROIMAGE.2018.07.003

Salvatore, E., Tedeschi, E., Mollica, C., Vicidomini, C., Varrone, A., Coda, A.R.D., Brunetti, A.,
Salvatore, M., De Michele, G., Filla, A., Pappata, S., 2014. Supratentorial and infratentorial
damage in spinocerebellar ataxia 2: A diffusion-weighted MRI study. Mov. Disord. 29, 780-786.
d0i:10.1002/mds.25757

Savini, G., Paleisi, F., Castellazzi, G., Casiraghi, L., Grussu, F., Lascialfari, A., D’Angelo, E., Wheeler-
Kingshott, C.A.M.G., 2018. Charaterisation of cerebellar microstructure with two-compartment
Spherical Mean Technique, in: ISMRM. p. 0715.

Setsompop, K., Fan, Q., Stockmann, J., Bilgic, B., Huang, S., Cauley, S.F., Nummenmaa, A., Wang, F.,
Rathi, Y., Witzel, T., Wald, L.L., 2018. High-resolution in vivo diffusion imaging of the human
brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider-
SMS). Magn. Reson. Med. 79, 141-151. doi:10.1002/mrm.26653


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584730; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J.A., Keil, B., Tisdall,
M.D., Hoecht, P., Dietz, P., Cauley, S.F., Tountcheva, V., Matschl, V., Lenz, V.H., Heberlein, K.,
Potthast, A., Thein, H., Van Horn, J., Toga, A., Schmitt, F., Lehne, D., Rosen, B.R., Wedeen, V.,
Wald, L.L., 2013. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.
Neuroimage 80, 220-233. doi:10.1016/j.neuroimage.2013.05.078

Sjélund, J., Szczepankiewicz, F., Nilsson, M., Topgaard, D., Westin, C.-F., Knutsson, H., 2015.
Constrained optimization of gradient waveforms for generalized diffusion encoding. J. Magn.
Reson. 261, 157-168. doi:10.1016/J.JMR.2015.10.012

Sotiropoulos, S.N., Behrens, T.E.J., Jbabdi, S., 2012. Ball and rackets: Inferring fiber fanning from
diffusion-weighted MRI. Neuroimage 60, 1412—1425. doi:10.1016/J.NEUROIMAGE.2012.01.056

St-Jean, S., Coupé, P., Descoteaux, M., 2016. Non Local Spatial and Angular Matching: Enabling
higher spatial resolution diffusion MRI datasets through adaptive denoising. Med. Image Anal.
32,115-30. doi:10.1016/j.media.2016.02.010

Stanisz, G.J., Wright, G.A., Henkelman, R.M., Szafer, A., 1997. An analytical model of restricted
diffusion in bovine optic nerve. Magn. Reson. Med. 37, 103-111.
doi:10.1002/mrm.1910370115

Stejskal, E.O., Tanner, J.E., 1965. Spin Diffusion Measurements: Spin Echoes in the Presence of a
Time-Dependent Field Gradient. J. Chem. Phys. 42, 288—292. d0i:10.1063/1.1695690

Szczepankiewicz, F., Sjélund, J., Stahlberg, F., Latt, J., Nilsson, M., 2019a. Tensor-valued diffusion
encoding for diffusional variance decomposition (DIVIDE): Technical feasibility in clinical MRI
systems. PLoS One. doi:In Press

Szczepankiewicz, F., Westin, C.-F., Nilsson, M., 2019b. Maxwell-compensated design of asymmetric
gradient waveforms for tensor-valued diffusion encoding. http://arxiv.org/abs/1903.03357

Tedesco, A.M., Chiricozzi, F.R., Clausi, S., Lupo, M., Molinari, M., Leggio, M.G., 2011. The cerebellar
cognitive profile. Brain 134, 3672-3686. doi:10.1093/brain/awr266

Topgaard, D., 2017. Multidimensional diffusion MRI. J. Magn. Reson. 275, 98-113.
doi:10.1016/J.JMR.2016.12.007

Van Steenkiste, G., Jeurissen, B., Veraart, J., den Dekker, A.J., Parizel, P.M., Poot, D.H.J., Sijbers, J.,
2016. Super-resolution reconstruction of diffusion parameters from diffusion-weighted images
with different slice orientations. Magn. Reson. Med. 75, 181-195. doi:10.1002/mrm.25597

Veraart, J., Fieremans, E., Novikov, D.S., 2019. On the scaling behavior of water diffusion in human
brain white matter. Neuroimage 185, 379-387. doi:10.1016/J.NEUROIMAGE.2018.09.075

Veraart, J., Novikov, D.S., Christiaens, D., Ades-aron, B., Sijbers, J., Fieremans, E., 2016. Denoising of
diffusion MRI using random matrix theory. Neuroimage 142, 394—-406.
doi:10.1016/J.NEUROIMAGE.2016.08.016

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B., 2013. Weighted linear least squares
estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls. Neuroimage 81,
335-346. doi:10.1016/J.NEUROIMAGE.2013.05.028

Vos, S.B., Tax, C.M.W,, Luijten, P.R., Ourselin, S., Leemans, A., Froeling, M., 2016. The importance of
correcting for signal drift in diffusion MRI. Magn. Reson. Med. do0i:10.1002/mrm.26124

Westin, C.-F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., Ozarslan, E., van Westen, D.,
Mattisson, C., Bogren, M., O’Donnell, L.J., Kubicki, M., Topgaard, D., Nilsson, M., 2016. Q-space
trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135,
345-62. doi:10.1016/j.neuroimage.2016.02.039

Wong, E.C., Cox, R.W., Song, A.W., 1995. Optimized isotropic diffusion weighting. Magn. Reson.
Med. 34, 139-143. doi:10.1002/mrm.1910340202

Zeng, Q., Shi, F., Zhang, J., Ling, C., Dong, F., Jiang, B., 2018. A Modified Tri-Exponential Model for
Multi-b-value Diffusion-Weighted Imaging: A Method to Detect the Strictly Diffusion-Limited
Compartment in Brain. Front. Neurosci. 12, 102. doi:10.3389/fnins.2018.00102

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: Practical in vivo
neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000-


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584730; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1016. doi:10.1016/j.neuroimage.2012.03.072


https://doi.org/10.1101/584730
http://creativecommons.org/licenses/by-nc-nd/4.0/

