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The airways of the lung carry microbiota that contribute to respiratory health!. The
ecology of normal airway microbial communities, their responses to environmental
events, and the mechanisms through which they cause or modify disease are poorly
understood. Cigarette smoking is the dominant malign environmental influence on lung
function, causing 11-5% of deaths globally?. Asthma is the most prevalent chronic
respiratory disease worldwide®*, but was uncommon 100 years ago’. The asthma
pandemic is linked to urbanization, leading to considerations of protective microbiota
loss (the “hygiene hypothesis”)®® and acquisition of strains that may damage the airway
epithelia®. We therefore investigated oropharyngeal airway microbial community
structures in a general population sample of Australian adults. We show here that airway
bacterial communities were strongly organized into distinctive co-abundance networks
(“guilds”), just seven of which contained 99% of all oropharyngeal operational taxonomic
units (OTUs). Smoking was associated with diversity loss, negative effects on abundant
taxa, profound alterations to network structure and marked expansion of Streptococcus
spp.. These perturbations may influence chronic obstructive pulmonary disease!®
(COPD) and lung cancer!!. In contrast to smokers, the loss of diversity in asthmatics
selectively affected low abundance but prevalent OTUs from poorly understood genera
such as Selenomonas, Megasphaera and Capnocytophaga, without coarse scale network
disruption. The results open the possibility that replacement of specific organisms may

mitigate asthma susceptibility.

We examined adults from the population of Busselton in Western Australia who were
participating in a general health survey'?. Direct sampling of the lung microbiota requires
invasive procedures, such as bronchoscopy, that are not yet possible in epidemiological studies.
In healthy individuals, however, the oropharynx and the intra-thoracic airways share similar

13,14

microbiota'>'*. We consequently used oropharyngeal swabs for population sampling,
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accepting that the abundance of pathogens in the lower airways of diseased subjects is

imperfectly reflected in the oropharynx!*15,

We submitted oropharyngeal swabs from 578 subjects to 16S rRNA gene qPCR and
sequencing, the latter yielding 44,290,100 high quality reads (Supplementary Figure 1.1 for
analysis structure). After removal of 173 OTUs with high probability of being contaminants
and 13,472 rare OTUs present in only one sample or with less than 20 reads, there remained
4,218 OTUs derived from 43,775,771 reads. To enable diversity analyses based on proportions,
the samples were rarefied to a minimum of 6,543 reads, retaining 529 samples containing 4,005
OTUs and 3,461,247 reads. For consistency, unrarefied data from these same 529 samples were
used to test differences between subject groups by DeSEQ, and network analyses. No

systematic differences in results were seen if the larger sample was analyzed.

The average age of the 529 subjects was 56 years (Supplementary Table 1). Sixty subjects were
current smokers and 216 were ex-smokers (with a mean 18 years since quitting). The mean
levels of the forced expiratory volume in one second (FEV1) and the forced vital capacity
(FVC) of the subjects were normal. There were 77 doctor-diagnosed asthmatics. There was
only one case with a clinical diagnosis of COPD. The frequency of asthma and current smoking

were not different to the whole Busselton cohort.

Subjects were not included if they were taking antibiotics within six weeks of the time of study.
The annual rate of antibiotic prescription in the Australia population is 254 per 1000, and half
of these will be for respiratory infections'é, so it is likely that many smokers will have
intermittently taken antibiotics. Asthma is not considered an indication for antibiotics in the
Australian healthcare system. Inhaled corticosteroids, used in the maintenance treatment of

asthma, do not seem to affect microbial diversity'’.
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Structure of the normal airway microbiome
An estimate of Bray Curtis beta diversity (B) for the population gave the mean dissimilarity in

microbial diversity (M) between subjects to be 0.51 = SD=0.06 (on a scale of 0-1), indicating

that on average individual airway microbiomes shared about half of their OTUs.

Five phyla contained 98.4% of all OTUs (Table 1, Supplementary Table 2.2). Firmicutes
(predominately Streptococcus and Veilonella spp.) was the most common phylum, with 24
OTUs in the top 50, and 57.9% of all OTUs found in the complete dataset. Bacteroidetes
(predominately Prevotella spp.) contained 14.1% of the OTUs, Proteobacteria (predominately
Neisseria and Haemophilus spp.) contained 12.3%, Actinobacterium 9.1% and Fusobacterium
4.9%. Overall, the 50 most abundant OTUs accounted for 92% of the data (Supplementary

Table 2.2).

Streptococcus spp. show high rates of clonal diversity and are poorly differentiated by standard
culture and 168 sequences'®!?. We therefore sequenced the methionine aminopeptidase gene
(map) to further differentiate between Streptococcus taxa'® in 483 subjects. After removal of
map OTUs only present in one sample or with fewer than 20 reads or negative correlations
with qPCR abundance there remained 14,898 map OTUs, suggesting substantial variation in
Streptococcal strains in the population. B diversity estimates in rarefied data (to a level of 7,700
reads) found M = 0.84 + SD=0.06, indicating low similarity of the streptococcal composition
between subjects. The top 9 of the 10 most prevalent map OTUs were identified as S.
salivarius, with S. parasanguinis the next most prevalent. (Supplementary Table 2.6.1). The
potential pathogen S. mitis/pneumoniae was detected in 58% of subjects, although at low

abundance. Tools for further exploration of streptococcal clades are clearly wanted.

Microbial communities are formed through complex ecological interactions that can be

exposed through network analyses?’. On the assumption that correlations in the abundance of
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different taxa would capture co-ordinated growth, we applied weighted correlation network

analyses (WGCNA)?! to the Busselton dataset.

We observed 13 discrete modules in which the abundance of members was strongly correlated.
The WGCNA program labels modules with unique colour identifiers, but we have also named
them according to their most abundant genera (Table 2). Just 13 OTUs remained unassigned to
a network, referred to as the grey module. The 5 largest modules (in terms of abundance of
members) contained contained 97.6% of all OTU sequence reads (Table 2). Individual hubs
were stongly connected to their network vectors (range of P = 7.9E-266 to 1.9E-121)

(Supplementary Table 2.4.1).

The strengths of association suggest that these co-abundance modules may represent “guilds”

of co-operating bacteria that occupy ecological niches on the mucosa.

The largest guild (turquoise module: Prevotella.1) accounted for 42.7% of reads (Table 2,
Supplementary Table 2.4.1). The most common organisms were within the genera Prevotella,
Veillonella, Actinomyces and Atopobium. These organisms resemble common mucosal
commensals at other body sites, and perhaps represent a base microbial carpet. The smaller
guild (cyan) on the same division (B) of the network dendrogram (Supplementary Figure 1.2)

was almost entirely made up of Veillonella spp. and may occupy a related ecological niche.

The blue module (Streptococcus.2) contained 21.6% of reads, predominately from the genera
Streptococcus, Haemophilus and Veillonella. Network hubs included Lactobacillales and
Gemella. The adjacent network (Neisseria: green) (Supplementary Figure 1.2) was dominated
by Neisseria, with Porphyromonas, and Capnocytophagia. This may suggest a normal guild

than can be occupied by Proteobacteria potential pathogens.

The magenta module (Streptococcus.l) (19.4% of reads) was completely dominated by

Streptococcus taxa (40%) and an unidentified Firmicutes (60%) (Supplementary Table 2.4.1)
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which is likely also to be streptococcal (based on phylogenetic clustering, not shown). Network

hubs were also Streptococcus, identifying a streptococcal-specific guild in the mucosa.

Although our results were well powered to map microbial community composition, only
limited functions could be surmised by genus assignments and the relationship of the networks
to each other (Supplementary Figure 1.2). Metagenomic shotgun sequencing remains
problematic for respiratory samples because of high proportions of human DNA, and we accept
that a survey of the airway microbiota that includes systematic culture and genome sequencing

1s desirable.

The airway microbiome and clinical traits

A stepwise regression found that microbial diversity in individual airways was independently
related to current cigarette smoking (R?=6%, P<0.001), a current diagnosis of asthma
(additional R?=1.4%, P<0.005) and packyears of smoking (additional R>=0.8%, P=0.04)
(Supplementary Table 2.3), but not to age or sex. We partitioned the data into three subgroups:

smoking + packyears>10 (n=159; asthmatic (n=77); and unaffected (n=233).

Smoking

A DeSEQ analysis to identify changes in specific taxa revealed marked effects of cigarette
smoking. (Figure 1, Supplementary Table 2.5.1 and 2.5.2). The loss of diversity affected many
abundant OTUs, including those in the genera Fusobacterium, Neisseria, Haemophilus,
Veillonella and Gemella. By contrast, the OTUs increased in smokers were in general highly
abundant Streptococci. Examination of map gene OTUs attributed increases in abundance to
S. parasanguinis (Fold change 5.2, Pugjustea=1.75E-07), S. mitis/pneumoniae (3.62, 4.81E-09),
S. salivarius (3.03, 5.59E-15) and S. thermophilus (2.53, 7.38E-05) (Supplementary Table

2.6.2).
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To further explore the impact of smoking and asthma on the higher order structure of the airway
microbiome, co-abundance networks were constructed separately in the asthmatic and current
smoker portions of the cohort and compared with the full dataset (representing the whole

population), limiting the analysis to the 4,207 OTU present in all three datasets.

The network structure of the communities was profoundly altered in current smokers. Whilst
the largest guild (Prevotellla.1: commensal carpet) showed relative preservation, other modules
showed markedly lower levels of conservation and were strongly positively or negatively
associated with smoking status; either in terms of module eigenvectors or hubs (Figure 2, Table
2, Supplementary Table 2.4.1). In smokers, 276 OTUs became disconnected from any module.
These most strongly featured Streptococcus (70 OTUs), unknown genera (41 OTUs) and

Veillonella (35 OTUs).

Cigarette smoking has previously been shown to affect the airway microbiota®?, but the extent,
magnitude and specificity of disruption here suggests an independent capacity to damage
human health. The loss of diversity may predispose smokers to the recurrent infections that
lead to COPD!%?2, Smoking is accompanied by substantial changes in the bowel flora?® that
may mediate smoking influences on inflammatory bowel disease. Bacteria have known roles
in the genesis of cancer in general?* and in lung cancer specifically!'. Streptococcus spp.
produce an array of potent toxins that act against human cells or tissues, and the expansion
of Streptococcus clades in smokers might be carcinogenic. Most patients with lung cancer have
been heavy smokers and smoking often continues after diagnosis. Our results might also
suggest that the local lung microbiota should be considered a factor in lung cancer responses

to immuotherapy?S.

Asthma

Microbial diversity loss in asthmatics compared to non-smoking subjects was qualitatively

different to the effects of smoking. Two genera (Neisseria and Rothia OTUs) were increased
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in numbers (Pagjusea<0.05) (Figure 3, Supplementary Table 2.5.3). Of these, the Neisseria OTU
was abundant (4.7% of reads in the population) and showing a 2-fold increase, consistent with

increases in Protebacteria spp. previously observed in the thoracic airways of asthmatics!>?’,

Eighty-four OTUs were in relatively low abundance amongst asthmatic subjects (Figure 3,
Supplementary Table 2.5.4). In marked contrast to smokers, the affected organisms were often
in poorly characterized or potentially fastidious genera, including Leptotrichia, Selenomonas,
Megasphaera and Capnocytophaga. Some representatives of the more common genera
Actinomyces, Prevotella and Veillonella were also less abundant. This spectrum does not match

organisms shown to be affected by inhaled corticosteroids'’.

These taxa were not concentrated in individual networks. The modules did not correlate with
the presence of asthma either in terms of their vectors or their hubs, indicating that the general

structure of oropharyngeal microbial communities in asthmatics was preserved (Figure 2).

Divergent (but potentially complementary) theories are offered on possible mechanisms by
which microbial diversity might prevent asthma. The “immune deviation™ hypothesis suggests
that the adaptive immune system needs exposure to infections in order to avoid inappropriate
reactions®®. An extension of this model is that absence of commensal organisms leads to loss
of local or systematic tonic signals that normally down-regulate immune responses at mucosal

surfaces®.

Our findings, of reduced numbers of distinctive low-abundance organisms, are consistent with
immune modulation by such bacteria. Nevertheless, the lower thoracic airway microbiota in
asthmatics consistently show significant excesses of potentially pathogenic Proteobacteria '**’
(or Streptococcus spp. in severe disease '**%3!), and we detected a significant increase in the

abundance of a common Proteobacterial OTU in the Busselton asthmatic subjects. It is

therefore also possible that a diverse microbial community protects against asthma through
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inhibition of colonization by potential pathogens through effects on growth, adherence or

biofilm formation?2.

In each case, potential benefits appear likely from manipulating the specific airway microbiota
found to be reduced in asthmatics. This provides a strong impetus to isolate and study the

organisms that could provide protection.
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Methods

Five hundred and 78 Caucasian adults were recruited through the Busselton Health Study in
Western Australia. Individuals with a diagnosis of cancer were excluded. Subjects completed
a detailed questionnaire as previously described!?. Subjects were classified as asthmatic if they
answered yes to the question “Has your doctor ever told you that you have asthma”. Other
diagnoses potentially influencing the microbiome were diabetes (n=18 patients) and gastro-
esophageal reflux (GERD, n=36). No associations were found for diabetes or GERD in any

analyses, and we included subjects with these diagnoses in the unaffected group.

Samples for microbial analysis were taken under direct vision, using sterile rayon swabs that
were rubbed gently with an even pressure around the oropharynx five times, strictly avoiding
contact with tonsils, palate or nose. Swabs were immediately frozen and stored at -80°C prior

to transportation on dry ice to Imperial College London, UK.

DNA was extracted from swab heads using the MP Bio FastDNA Spin Kit for Soil
(http://www.mpbio.com). Blank controls with no sample added were taken from each DNA

extraction kit to test for contamination’>

PCR of the 16S rRNA V4 region was performed in quadruplicate using a custom indexed
forward primer S-D-Bact-0564-a-S-15 (5 AYT GGG YDT AAA GNG 3°), reverse primer S-
D-Bact-0785-b-A-18 (5> TAC NVG GGT ATC TAA TCC 3’) and a high fidelity Taq

polymerase master mix (QS5, New England Biolabs, Massachusetts, USA). Primer sequences

1'34 1'35

were based on Klindworth et al.”®, with dual-barcoding as per Kozich et al.”> with adaptors
from Illumina (California, USA). A mock community (Table S1) was included to assess
sequencing quality. PCR cycling conditions were: 95°C for 2 minutes followed by 35 cycles
of 95°C for 20 seconds, 50°C for 20 seconds and 72°C for 5 minutes. Amplicons were purified,

quantified and equi-molar pooled and the library paired-end sequenced (Illumina MiSeq V2

10
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reagent kit) *°as previously described®®. Bacterial load was quantified by qPCR using KAPA

BioSystems SYBR Fast qPCR Kit with the same 16S rRNA V4 primers used for sequencing.

Analysis of data was carried out in the R environment and details can be followed on github:

https:/tinyurl.com/y2onjblt. Sequence processing was performed in QIIME (version 1.9.0)”.

Community level differences in alpha and beta diversity and Operational Taxonomic Unit
(OTU) level differences, were analysed using Phyloseq in R (version 3.2.0). A phylogenetic
tree was generated from the representative sequences using the default parameters of the
make_phylogeny command?’. Taxonomy of OTUs was assigned by matching representative
sequences against release version 23 August 2013 of the Silva database®® using the default
parameters of the assign_taxonomy command®’. OTUs occurring in only one sample or with
less than 20 reads in the whole dataset were removed. Weighted and unweighted UniFrac beta
diversity measures and subsequent principle co-ordinates analysis of them was carried out
using the beta diversity through plots script’’. For the purposes of alpha diversity

calculations, the raw counts tables were rarefied to a depth of 6,543 reads. Significant

differences in alpha diversity between datasets were assessed using Mann—Whitney U-tests.

Potential kit contaminant OTUs were identified by the presence of negative Spearman’s
correlations between OTU abundance and bacterial burden (logged qPCR copy number),
adjusted using Bonferroni corrected P-values < 0.05. OTUs subsequently of interest were

cross-checked with a listing of potential contaminants™.

We further differentiated Streptococcus spp. by sequencing the methionine aminopeptidase
(map) gene' in 483 samples (constrained to 5 sequencing runs with controls). Of these subjects
234 were never-smoking and 53 were current smokers. We used barcoded primers map-up 5'
GCWGACTCWTGTTGGGCWTATGC 3 and map-down 5'

TTARTAAGTTCYTTCTTCDCCTTG ‘3. As positive controls, DNA from nine strains of

11
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Streptococcus with bacterial identity confirmed through Sanger sequencing was used for
positive controls (S. agalactiae (DSMZ-2134); S. constellatus subsp. Constellatus (DSMZ-
20575); S. infantis (DSMZ-12492); S. parasanguinis (DSMZ-6778); S. pneumoniae (DSMZ-
20566); S. pseudopneumoniae (DSMZ-18670); S. pyogenes (DSMZ-20565); S. sanguinis
(DSMZ-20567); and S. mitis (DSMZ-12643)). Analysis was performed in QIIME?’, using a
clustering level of 95% to define OTUs. We attributed the most common OTU sequences to
Streptococcal  species by  BLAST  searches.  Full details are  online

(http://hdl.handle.net/10044/1/63937).

Co-abundance networks between non-rarefied OTU abundances were analyzed using the
WGCNA package®. Abundances were log transformed with 0.1 added to zeroes*’, and the
topological adjacency matrix was constructed from Spearman’s correlation coefficients with a
[ soft thresholding parameter of 3. Hierarchical clustering of the overlap matrix with dynamic
tree cutting defined the co-abundance modules, with a minimum module size set at 20 OTUs.
The significance of Spearman’s correlation between module eigengenes and clinical variables
was adjusted for multiple testing using the Benjamini and Hochberg method*'. Module

structure was contrasted between cohorts using the R package circlize (0.4.5).
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Tables

Table 1 Principal phyla and genera of airway bacteria in a general population sample

Phylum Genus
Firmicutes (53.4%)
Streptococcus
Veillonella
Unidentified Firmicutes
Selenomonas
Gemella
Granulicatella
Johnsonella
Lachnoanaerobaculum
Megasphaera
Not known
Stomatobaculum
Oribacterium
Solobacterium
Peptostreptococcus
Peptococcus
Parvimonas
Butyrivibrio
Catonella
Filifactor

* Abundance based on total 43,652,299 high-quality sequence reads in 529 subjects

Abundance*

11.79%
1.71%
1.64%
1.45%
0.70%
0.69%
0.66%
0.46%
0.43%
0.43%

Phylum Genus
Bacteroidetes (17.7%)
Prevotella
Porphyromonas
Capnocytophaga
Tannerella
Bergeyella
Fusobacteria (8.5%)
Fusobacterium
Leptotrichia
Proteobacteria (8.5%)
Neisseria
Haemophilus
Not known
Campylobacter
Actinobacteria (7.2%)
Actinomyces
Atopobium
Rothia
Bifidobacterium
Other (0.25%)

16

Abundance*

1.45%
0.73%

4.40%
4.09%

4.59%
3.48%

4.62%
2.11%
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Table 2. WGCNA module summary and eigenvector associations with smoking

Module ID
(Colour)
Prevotella.1
(Turquoise)
Streptococcus.2
(Blue)
Streptococcus.1
(Magenta)
Fusobacteria
(Brown)
Neisseria
(Green)
Prevotella.2
(Black)
Veillonella
(Cyan)
Prevotella.3
(Purple)
Indeterminate
(Tan)
Porphymonas
(Salmon)
Bifidobacteria
(Pink)
Peptococcus
(Midnightblue)
Contaminants
(GreenYellow)
Unconnected

(Grey)

Number
of OTUs
2218

472
126
583
204
136
50
71
55
50
134
44
62

13

Total
Abundance
18,636,985

9,433,313
8,480,289
3,099,110
2,969,651
387,098
173,186
105,630
101,284
89,951
86,562
79,920
8,869

451

Overall
%
42.69
21.61
19.43
7.10
6.80
0.89
0.40
0.24
0.23
0.21
0.20
0.18

0.02

0.00

Cum Smoking Smoking Module description

%
42.69

64.30
83.73
90.83
97.63
98.52
98.92
99.16
99.39
99.60
99.80
99.98

100.00

R

-0.13

0.18

-0.26

-0.35

0.15

0.17

0.15

0.15

0.32

-0.16

-0.12

17

P

2.E-02

8.E-04

4.E-08

1.E-14

4.E-03

1.E-03

4.E-03

6.E-03

8.E-13

2.E-03

3.E-02

Commensal carpet: Veilonella, Prevotella,
Actinomyces. Veillonella and Atopobium hubs
Streptococcus and Haemophilus prevalent.
Lactobacilliae and Gemella hubs

Streptococci dominated

Fusobacteria and Leptotrichia hubs

Neisseria dominated, prevalent Capnocytophagia
Prevotella, Parvimonas, Streptococci, Porphryomonas
Veillonella

Prevotella dominated

Prevotella and Treponema

Porphyromonas and Prevotella

Bifidobacterium hubs

Peptococcus

Herbaspirillum: potential contaminants

Unconnected OTUs: potential contaminants
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Figures
Figure 1. Smoking and the airway microbiome
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a) The volcano plot shows significant differences in the abundance of OTUs between current smokers and the rest of the population. Fold change
is shown on the x axis and -logl0 P (FDR corrected) on the y axis. Relative abundances are reflected in the data point sizes; b) shows differences
in alpha diversity between smokers and never smokers; ¢) shows how the extent and duration of smoking (packyears) progressively reduces
diversity and d) shows progressive increase in the abundance of Streptococcus OTUs with increasing packyears.
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Figure 2. Network structure of the airway microbiome in normal subjects, compared to smokers and asthmatics

The Chord plots show sharing and discordance of 4,207 OTUs common to the three datasets for co-abundance networks. a) Network membership
in the whole population (top half of plot) compared to current smokers (bottom half of plot); and b) compared to asthmatics. Module colours are
arbitrarily assigned by WGCNA, and module bacterial names are derived from Table 2. Modules in smokers and asthmatics are simply named by

size (Smoking.1, Asthma.2, etc.). There is a marked change of structure with fragmentation of major networks in the smokers, but high conservation
of network membership between asthmatics and the whole cohort.
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Figure 3. Asthma and the airway microbiome
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a) The volcano plot shows significant differences in the abundance of OTUs between
asthmatics and non-smoking subjects with less than 10 packyears of lifetime exposure. Fold
change is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances
are reflected in the data point sizes; b) shows differences in alpha diversity between asthmatics
and unaffected non-smoking subjects.
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