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The airways of the lung carry microbiota that contribute to respiratory health1. The 

ecology of normal airway microbial communities, their responses to environmental 

events, and the mechanisms through which they cause or modify disease are poorly 

understood. Cigarette smoking is the dominant malign environmental influence on lung 

function, causing 11·5% of deaths globally2. Asthma is the most prevalent chronic 

respiratory disease worldwide3,4, but was uncommon 100 years ago5. The asthma 

pandemic is linked to urbanization, leading to considerations of protective microbiota 

loss (the “hygiene hypothesis”)6-8 and acquisition of strains that may damage the airway 

epithelia9. We therefore investigated oropharyngeal airway microbial community 

structures in a general population sample of Australian adults. We show here that airway 

bacterial communities were strongly organized into distinctive co-abundance networks 

(“guilds”), just seven of which contained 99% of all oropharyngeal operational taxonomic 

units (OTUs). Smoking was associated with diversity loss, negative effects on abundant 

taxa, profound alterations to network structure and marked expansion of Streptococcus 

spp.. These perturbations may influence chronic obstructive pulmonary disease10 

(COPD) and lung cancer11.  In contrast to smokers, the loss of diversity in asthmatics 

selectively affected low abundance but prevalent OTUs from poorly understood genera 

such as Selenomonas, Megasphaera and Capnocytophaga, without coarse scale network 

disruption. The results open the possibility that replacement of specific organisms may 

mitigate asthma susceptibility.   

We examined adults from the population of Busselton in Western Australia who were 

participating in a general health survey12. Direct sampling of the lung microbiota requires 

invasive procedures, such as bronchoscopy, that are not yet possible in epidemiological studies. 

In healthy individuals, however, the oropharynx and the intra-thoracic airways share similar 

microbiota13,14. We consequently used oropharyngeal swabs for population sampling, 
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accepting that the abundance of pathogens in the lower airways of diseased subjects is 

imperfectly reflected in the oropharynx13,15, 

We submitted oropharyngeal swabs from 578 subjects to 16S rRNA gene qPCR and 

sequencing, the latter yielding 44,290,100 high quality reads (Supplementary Figure 1.1 for 

analysis structure). After removal of 173 OTUs with high probability of being contaminants 

and 13,472 rare OTUs present in only one sample or with less than 20 reads, there remained 

4,218 OTUs derived from 43,775,771 reads. To enable diversity analyses based on proportions, 

the samples were rarefied to a minimum of 6,543 reads, retaining 529 samples containing 4,005 

OTUs and 3,461,247 reads. For consistency, unrarefied data from these same 529 samples were 

used to test differences between subject groups by DeSEQ, and network analyses. No 

systematic differences in results were seen if the larger sample was analyzed. 

The average age of the 529 subjects was 56 years (Supplementary Table 1). Sixty subjects were 

current smokers and 216 were ex-smokers (with a mean 18 years since quitting). The mean 

levels of the forced expiratory volume in one second (FEV1) and the forced vital capacity 

(FVC) of the subjects were normal. There were 77 doctor-diagnosed asthmatics. There was 

only one case with a clinical diagnosis of COPD. The frequency of asthma and current smoking 

were not different to the whole Busselton cohort. 

Subjects were not included if they were taking antibiotics within six weeks of the time of study. 

The annual rate of antibiotic prescription in the Australia population is 254 per 1000, and half 

of these will be for respiratory infections16, so it is likely that many smokers will have 

intermittently taken antibiotics. Asthma is not considered an indication for antibiotics in the 

Australian healthcare system. Inhaled corticosteroids, used in the maintenance treatment of 

asthma, do not seem to affect microbial diversity17. 
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Structure of the normal airway microbiome 
An estimate of Bray Curtis beta diversity (β) for the population gave the mean dissimilarity in 

microbial diversity (M) between subjects to be 0.51 ± SD=0.06 (on a scale of 0-1), indicating 

that on average individual airway microbiomes shared about half of their OTUs. 

Five phyla contained 98.4% of all OTUs (Table 1, Supplementary Table 2.2). Firmicutes 

(predominately Streptococcus and Veilonella spp.) was the most common phylum, with 24 

OTUs in the top 50, and 57.9% of all OTUs found in the complete dataset. Bacteroidetes 

(predominately Prevotella spp.) contained 14.1% of the OTUs, Proteobacteria (predominately 

Neisseria and Haemophilus spp.) contained 12.3%, Actinobacterium 9.1% and Fusobacterium 

4.9%. Overall, the 50 most abundant OTUs accounted for 92% of the data (Supplementary 

Table 2.2).  

Streptococcus spp. show high rates of clonal diversity and are poorly differentiated by standard 

culture and 16S sequences18,19. We therefore sequenced the methionine aminopeptidase gene 

(map) to further differentiate between Streptococcus taxa19 in 483 subjects. After removal of 

map_OTUs only present in one sample or with fewer than 20 reads or negative correlations 

with qPCR abundance there remained 14,898 map_OTUs, suggesting substantial variation in 

Streptococcal strains in the population. β diversity estimates in rarefied data (to a level of 7,700 

reads) found M = 0.84 ± SD=0.06, indicating low similarity of the streptococcal composition 

between subjects. The top 9 of the 10 most prevalent map_OTUs were identified as S. 

salivarius, with S. parasanguinis the next most prevalent. (Supplementary Table 2.6.1). The 

potential pathogen S. mitis/pneumoniae was detected in 58% of subjects, although at low 

abundance. Tools for further exploration of streptococcal clades are clearly wanted. 

Microbial communities are formed through complex ecological interactions that can be 

exposed through network analyses20. On the assumption that correlations in the abundance of 
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different taxa would capture co-ordinated growth, we applied weighted correlation network 

analyses (WGCNA)21 to the Busselton dataset.  

We observed 13 discrete modules in which the abundance of members was strongly correlated. 

The WGCNA program labels modules with unique colour identifiers, but we have also named 

them according to their most abundant genera (Table 2). Just 13 OTUs remained unassigned to 

a network, referred to as the grey module. The 5 largest modules (in terms of abundance of 

members) contained contained 97.6% of all OTU sequence reads (Table 2). Individual hubs 

were stongly connected to their network vectors (range of P = 7.9E-266 to 1.9E-121) 

(Supplementary Table 2.4.1).  

The strengths of association suggest that these co-abundance modules may represent “guilds” 

of co-operating bacteria that occupy ecological niches on the mucosa.  

The largest guild (turquoise module: Prevotella.1) accounted for 42.7% of reads (Table 2, 

Supplementary Table 2.4.1). The most common organisms were within the genera Prevotella, 

Veillonella, Actinomyces and Atopobium. These organisms resemble common mucosal 

commensals at other body sites, and perhaps represent a base microbial carpet. The smaller 

guild (cyan) on the same division (B) of the network dendrogram (Supplementary Figure 1.2) 

was almost entirely made up of Veillonella spp. and may occupy a related ecological niche. 

The blue module (Streptococcus.2) contained 21.6% of reads, predominately from the genera 

Streptococcus, Haemophilus and Veillonella. Network hubs included Lactobacillales and 

Gemella. The adjacent network (Neisseria: green) (Supplementary Figure 1.2) was dominated 

by Neisseria, with Porphyromonas, and Capnocytophagia. This may suggest a normal guild 

than can be occupied by Proteobacteria potential pathogens. 

The magenta module (Streptococcus.1) (19.4% of reads) was completely dominated by 

Streptococcus taxa (40%) and an unidentified Firmicutes (60%) (Supplementary Table 2.4.1) 
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which is likely also to be streptococcal (based on phylogenetic clustering, not shown).  Network 

hubs were also Streptococcus, identifying a streptococcal-specific guild in the mucosa. 

Although our results were well powered to map microbial community composition, only 

limited functions could be surmised by genus assignments and the relationship of the networks 

to each other (Supplementary Figure 1.2). Metagenomic shotgun sequencing remains 

problematic for respiratory samples because of high proportions of human DNA, and we accept 

that a survey of the airway microbiota that includes systematic culture and genome sequencing 

is desirable.  

The airway microbiome and clinical traits 

A stepwise regression found that microbial diversity in individual airways was independently 

related to current cigarette smoking (R2=6%, P<0.001), a current diagnosis of asthma 

(additional R2=1.4%, P<0.005) and packyears of smoking (additional R2=0.8%, P=0.04) 

(Supplementary Table 2.3), but not to age or sex. We partitioned the data into three subgroups: 

smoking + packyears>10 (n=159; asthmatic (n=77); and unaffected (n=233).  

Smoking 
A DeSEQ analysis to identify changes in specific taxa revealed marked effects of cigarette 

smoking. (Figure 1, Supplementary Table 2.5.1 and 2.5.2). The loss of diversity affected many 

abundant OTUs, including those in the genera Fusobacterium, Neisseria, Haemophilus, 

Veillonella and Gemella. By contrast, the OTUs increased in smokers were in general highly 

abundant Streptococci. Examination of map gene OTUs attributed increases in abundance to 

S. parasanguinis (Fold change 5.2, Padjusted=1.75E-07), S. mitis/pneumoniae (3.62, 4.81E-09), 

S. salivarius (3.03, 5.59E-15) and S. thermophilus (2.53, 7.38E-05) (Supplementary Table 

2.6.2). 
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To further explore the impact of smoking and asthma on the higher order structure of the airway 

microbiome, co-abundance networks were constructed separately in the asthmatic and current 

smoker portions of the cohort and compared with the full dataset (representing the whole 

population), limiting the analysis to the 4,207 OTU present in all three datasets. 

The network structure of the communities was profoundly altered in current smokers. Whilst 

the largest guild (Prevotellla.1: commensal carpet) showed relative preservation, other modules 

showed markedly lower levels of conservation and were strongly positively or negatively 

associated with smoking status; either in terms of module eigenvectors or hubs (Figure 2, Table 

2, Supplementary Table 2.4.1). In smokers, 276 OTUs became disconnected from any module. 

These most strongly featured Streptococcus (70 OTUs), unknown genera (41 OTUs) and 

Veillonella (35 OTUs).  

Cigarette smoking has previously been shown to affect the airway microbiota22, but the extent, 

magnitude and specificity of disruption here suggests an independent capacity to damage 

human health. The loss of diversity may predispose smokers to the recurrent infections that 

lead to COPD10,22. Smoking is accompanied by substantial changes in the bowel flora23 that 

may mediate smoking influences on inflammatory bowel disease. Bacteria have known roles 

in the genesis of cancer in general24 and in lung cancer specifically11. Streptococcus spp. 

produce an array of potent toxins that act against human cells or tissues25, and the expansion 

of Streptococcus clades in smokers might be carcinogenic. Most patients with lung cancer have 

been heavy smokers and smoking often continues after diagnosis. Our results might also 

suggest that the local lung microbiota should be considered a factor in lung cancer responses 

to immuotherapy26. 

Asthma 
Microbial diversity loss in asthmatics compared to non-smoking subjects was qualitatively 

different to the effects of smoking. Two genera (Neisseria and Rothia OTUs) were increased 
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in numbers (Padjusted<0.05) (Figure 3, Supplementary Table 2.5.3). Of these, the Neisseria OTU 

was abundant (4.7% of reads in the population) and showing a 2-fold increase, consistent with 

increases in Protebacteria spp. previously observed in the thoracic airways of asthmatics13,27.  

Eighty-four OTUs were in relatively low abundance amongst asthmatic subjects (Figure 3, 

Supplementary Table 2.5.4). In marked contrast to smokers, the affected organisms were often 

in poorly characterized or potentially fastidious genera, including Leptotrichia, Selenomonas, 

Megasphaera and Capnocytophaga. Some representatives of the more common genera 

Actinomyces, Prevotella and Veillonella were also less abundant. This spectrum does not match 

organisms shown to be affected by inhaled corticosteroids17. 

These taxa were not concentrated in individual networks. The modules did not correlate with 

the presence of asthma either in terms of their vectors or their hubs, indicating that the general 

structure of oropharyngeal microbial communities in asthmatics was preserved (Figure 2).  

Divergent (but potentially complementary) theories are offered on possible mechanisms by 

which microbial diversity might prevent asthma. The “immune deviation” hypothesis suggests 

that the adaptive immune system needs exposure to infections in order to avoid inappropriate 

reactions28. An extension of this model is that absence of commensal organisms leads to loss 

of local or systematic tonic signals that normally down-regulate immune responses at mucosal 

surfaces29.  

Our findings, of reduced numbers of distinctive low-abundance organisms, are consistent with 

immune modulation by such bacteria. Nevertheless, the lower thoracic airway microbiota in 

asthmatics consistently show significant excesses of potentially pathogenic Proteobacteria 13,27 

(or Streptococcus spp. in severe disease 13,30,31), and we detected a significant increase in the 

abundance of a common Proteobacterial OTU in the Busselton asthmatic subjects. It is 

therefore also possible that a diverse microbial community protects against asthma through 
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inhibition of colonization by potential pathogens through effects on growth, adherence or 

biofilm formation32.  

In each case, potential benefits appear likely from manipulating the specific airway microbiota 

found to be reduced in asthmatics. This provides a strong impetus to isolate and study the 

organisms that could provide protection.  
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Methods 

Five hundred and 78 Caucasian adults were recruited through the Busselton Health Study in 

Western Australia. Individuals with a diagnosis of cancer were excluded. Subjects completed 

a detailed questionnaire as previously described12. Subjects were classified as asthmatic if they 

answered yes to the question “Has your doctor ever told you that you have asthma”. Other 

diagnoses potentially influencing the microbiome were diabetes (n=18 patients) and gastro-

esophageal reflux (GERD, n=36). No associations were found for diabetes or GERD in any 

analyses, and we included subjects with these diagnoses in the unaffected group. 

Samples for microbial analysis were taken under direct vision, using sterile rayon swabs that 

were rubbed gently with an even pressure around the oropharynx five times, strictly avoiding 

contact with tonsils, palate or nose. Swabs were immediately frozen and stored at -80°C prior 

to transportation on dry ice to Imperial College London, UK. 

DNA was extracted from swab heads using the MP Bio FastDNA Spin Kit for Soil 

(http://www.mpbio.com).  Blank controls with no sample added were taken from each DNA 

extraction kit to test for contamination33  

PCR of the 16S rRNA V4 region was performed in quadruplicate using a custom indexed 

forward primer S-D-Bact-0564-a-S-15 (5’ AYT GGG YDT AAA GNG 3’), reverse primer S-

D-Bact-0785-b-A-18 (5’ TAC NVG GGT ATC TAA TCC 3’) and a high fidelity Taq 

polymerase master mix (Q5, New England Biolabs, Massachusetts, USA).  Primer sequences 

were based on Klindworth et al.34, with dual-barcoding as per Kozich et al.35 with adaptors 

from Illumina (California, USA). A mock community (Table S1) was included to assess 

sequencing quality.  PCR cycling conditions were: 95oC for 2 minutes followed by 35 cycles 

of 95oC for 20 seconds, 50oC for 20 seconds and 72oC for 5 minutes.  Amplicons were purified, 

quantified and equi-molar pooled and the library paired-end sequenced (Illumina MiSeq V2 
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reagent kit) 35as previously described36. Bacterial load was quantified by qPCR using KAPA 

BioSystems SYBR Fast qPCR Kit with the same 16S rRNA V4 primers used for sequencing.   

Analysis of data was carried out in the R environment and details can be followed on github: 

https://tinyurl.com/y2onjblt. Sequence processing was performed in QIIME (version 1.9.0)37.  

Community level differences in alpha and beta diversity and Operational Taxonomic Unit 

(OTU) level differences, were analysed using Phyloseq in R (version 3.2.0).  A phylogenetic 

tree was generated from the representative sequences using the default parameters of the 

make_phylogeny command37. Taxonomy of OTUs was assigned by matching representative 

sequences against release version 23 August 2013 of the Silva database38 using the default 

parameters of the assign_taxonomy command37. OTUs occurring in only one sample or with 

less than 20 reads in the whole dataset were removed. Weighted and unweighted UniFrac beta 

diversity measures and subsequent principle co-ordinates analysis of them was carried out 

using the beta_diversity_through_plots script37. For the purposes of alpha diversity 

calculations, the raw counts tables were rarefied to a depth of 6,543 reads. Significant 

differences in alpha diversity between datasets were assessed using Mann–Whitney U-tests. 

Potential kit contaminant OTUs were identified by the presence of negative Spearman’s 

correlations between OTU abundance and bacterial burden (logged qPCR copy number), 

adjusted using Bonferroni corrected P-values < 0.05. OTUs subsequently of interest were 

cross-checked with a listing of potential contaminants33.  

We further differentiated Streptococcus spp. by sequencing the methionine aminopeptidase 

(map) gene19 in 483 samples (constrained to 5 sequencing runs with controls). Of these subjects 

234 were never-smoking and 53 were current smokers. We used barcoded primers map-up 5' 

GCWGACTCWTGTTGGGCWTATGC ‘3 and map-down 5' 

TTARTAAGTTCYTTCTTCDCCTTG ‘3. As positive controls, DNA from nine strains of 
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Streptococcus with bacterial identity confirmed through Sanger sequencing was used for 

positive controls (S. agalactiae (DSMZ-2134); S.  constellatus subsp. Constellatus (DSMZ-

20575); S. infantis (DSMZ-12492); S. parasanguinis (DSMZ-6778); S. pneumoniae (DSMZ-

20566); S. pseudopneumoniae (DSMZ-18670); S. pyogenes (DSMZ-20565); S. sanguinis 

(DSMZ-20567); and S. mitis (DSMZ-12643)). Analysis was performed in QIIME37, using a 

clustering level of 95% to define OTUs. We attributed the most common OTU sequences to 

Streptococcal species by BLAST searches. Full details are online 

(http://hdl.handle.net/10044/1/63937).  

Co-abundance networks between non-rarefied OTU abundances were analyzed using the 

WGCNA package39.  Abundances were log transformed with 0.1 added to zeroes40, and the 

topological adjacency matrix was constructed from Spearman’s correlation coefficients with a 

β soft thresholding parameter of 3. Hierarchical clustering of the overlap matrix with dynamic 

tree cutting defined the co-abundance modules, with a minimum module size set at 20 OTUs. 

The significance of Spearman’s correlation between module eigengenes and clinical variables 

was adjusted for multiple testing using the Benjamini and Hochberg method41. Module 

structure was contrasted between cohorts using the R package circlize (0.4.5). 
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Tables 
Table 1 Principal phyla and genera of airway bacteria in a general population sample 

 

Phylum Genus Abundance*  Phylum Genus Abundance* 
Firmicutes (53.4%)   Bacteroidetes (17.7%)  

 Streptococcus 18.92%   Prevotella 15.36% 
 Veillonella 13.74%   Porphyromonas 1.45% 
 Unidentified_Firmicutes 11.79%   Capnocytophaga 0.73% 
 Selenomonas 1.71%   Tannerella 0.09% 
 Gemella 1.64%   Bergeyella 0.08% 
 Granulicatella 1.45%  Fusobacteria (8.5%)  
 Johnsonella 0.70%   Fusobacterium 4.40% 
 Lachnoanaerobaculum 0.69%   Leptotrichia 4.09% 
 Megasphaera 0.66%  Proteobacteria (8.5%)  
 Not known 0.46%   Neisseria 4.59% 
 Stomatobaculum 0.43%   Haemophilus 3.48% 
 Oribacterium 0.43%   Not known 0.33% 
 Solobacterium 0.23%   Campylobacter 0.07% 
 Peptostreptococcus 0.17%  Actinobacteria (7.2%)  
 Peptococcus 0.16%   Actinomyces 4.62% 
 Parvimonas 0.16%   Atopobium 2.11% 
 Butyrivibrio 0.10%   Rothia 0.36% 
 Catonella 0.05%   Bifidobacterium 0.08% 
 Filifactor 0.05%  Other (0.25%)  

 

*Abundance based on total 43,652,299 high-quality sequence reads in 529 subjects 
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Table 2. WGCNA module summary and eigenvector associations with smoking 

Module ID 
(Colour) 

Number 
of OTUs 

Total 
Abundance 

Overall 
% 

Cum 
% 

Smoking 
R 

Smoking 
P 

Module description 

Prevotella.1 
(Turquoise) 

2218 18,636,985 42.69 42.69 
  

Commensal carpet: Veilonella, Prevotella, 
Actinomyces. Veillonella and Atopobium hubs 

Streptococcus.2 
(Blue) 

472 9,433,313 21.61 64.30 -0.13 2.E-02 Streptococcus and Haemophilus prevalent. 
Lactobacilliae and Gemella hubs 

Streptococcus.1 
(Magenta) 

126 8,480,289 19.43 83.73 0.18 8.E-04 Streptococci dominated 

Fusobacteria 
(Brown) 

583 3,099,110 7.10 90.83 -0.26 4.E-08 Fusobacteria and Leptotrichia hubs 

Neisseria 
(Green) 

204 2,969,651 6.80 97.63 -0.35 1.E-14 Neisseria dominated, prevalent Capnocytophagia 

Prevotella.2 
(Black) 

136 387,098 0.89 98.52 0.15 4.E-03 Prevotella, Parvimonas, Streptococci, Porphryomonas  

Veillonella 
(Cyan) 

50 173,186 0.40 98.92 0.17 1.E-03 Veillonella 

Prevotella.3 
(Purple) 

71 105,630 0.24 99.16 
  

Prevotella dominated 

Indeterminate 
(Tan) 

55 101,284 0.23 99.39 0.15 4.E-03 Prevotella and Treponema 

Porphymonas 
(Salmon) 

50 89,951 0.21 99.60 0.15 6.E-03 Porphyromonas and Prevotella  

Bifidobacteria 
(Pink) 

134 86,562 0.20 99.80 0.32 8.E-13 Bifidobacterium hubs 

Peptococcus 
(Midnightblue) 

44 79,920 0.18 99.98 -0.16 2.E-03 Peptococcus 

Contaminants 
(GreenYellow) 

62 8,869 0.02 100.00 -0.12 3.E-02 Herbaspirillum: potential contaminants 

Unconnected 
(Grey) 

13 451 0.00 
   

Unconnected OTUs: potential contaminants 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2019. ; https://doi.org/10.1101/583559doi: bioRxiv preprint 

https://doi.org/10.1101/583559
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

Figures 
Figure 1. Smoking and the airway microbiome 

 

a) The volcano plot shows significant differences in the abundance of OTUs between current smokers and the rest of the population. Fold change 
is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances are reflected in the data point sizes; b) shows differences 
in alpha diversity between smokers and never smokers; c) shows how the extent and duration of smoking (packyears) progressively reduces 
diversity and d) shows progressive increase in the abundance of Streptococcus OTUs with increasing packyears. 
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 Figure 2. Network structure of the airway microbiome in normal subjects, compared to smokers and asthmatics  

 

The Chord plots show sharing and discordance of 4,207 OTUs common to the three datasets for co-abundance networks. a) Network membership 
in the whole population (top half of plot) compared to current smokers (bottom half of plot); and b) compared to asthmatics. Module colours are 
arbitrarily assigned by WGCNA, and module bacterial names are derived from Table 2.  Modules in smokers and asthmatics are simply named by 
size (Smoking.1, Asthma.2, etc.). There is a marked change of structure with fragmentation of major networks in the smokers, but high conservation 
of network membership between asthmatics and the whole cohort. 
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Figure 3. Asthma and the airway microbiome 

 

 

a) The volcano plot shows significant differences in the abundance of OTUs between 
asthmatics and non-smoking subjects with less than 10 packyears of lifetime exposure. Fold 
change is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances 
are reflected in the data point sizes; b) shows differences in alpha diversity between asthmatics 
and unaffected non-smoking subjects.  
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