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Abstract

The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created
a large variety of experimental and computational pipelines for which best practices
have not been established, yet. Here, we use simulations based on five scRNA-seq
library protocols in combination with nine realistic differential expression (DE) setups
to systematically evaluate three mapping, four imputation, seven normalisation and four
differential expression testing approaches resulting in ~ 3,000 pipelines, allowing us to
also assess interactions among pipeline steps. We find that choices of normalisation and
library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically,
we find that library preparation determines the ability to detect symmetric expression
differences, while normalisation dominates pipeline performance in asymmetric DE-
setups. Finally, we illustrate the importance of informed choices by showing that a
good scRNA-seq pipeline can have the same impact on detecting a biological signal as

quadrupling the sample size.

Introduction :

Many experimental protocols and computational analysis approaches exist for single -
cell RNA sequencing (scRNA-seq). Furthermore, scRNA-seq analyses can have different 3
goals including differential expression (DE) analysis, clustering of cells, classification
of cells and trajectory reconstruction!. All these goals have the first analysis steps in s
common in that they require expression counts or normalised counts. Here, we focus
on these important first choices made in any scRNA-seq study, using DE-inference as  +
performance read-out. Benchmarking studies exist only separately for each analysis step, s

t459 annotations®, count matrix 9

which are library preparation protocols®<, alignmen
preprocessing “® and normalisation®). However, the impact of the combined choices of 10
the separate analysis steps on overall pipeline performance has not been quantified. In  u

order to achieve a fair and unbiased comparison of computational pipelines, simulations 1
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of realistic data sets are necessary. This is because the ground truth of real data is 13
unknown and alternatives, such as concordance analyses are bound to favour similar and 1
not necessarily better methods. 15

To this end, we integrated popular methods for each analysis step into our simulation 1
framework powsimR1Y, As the basis for simulations, powsimR uses raw count matrices 1
to describe the mean-variance relationship of gene expression measures. This includes s
the variance introduced during the experiment itself as well as extra variance due to the 19
first to computational steps of expression quantification. Adding differential expression 20
then provides us with detailed performance measures based on how faithfully DE-genes =«
can be recovered. 2

One main assumption in traditional DE-analysis is that differences in expression are 2
symmetric. This implies that either a small fraction of genes is DE while the expression 2
of the majority of genes remains constant or similar numbers of genes are up- and 2
down-regulated so that the mean total mRNA content does differ between groups™.
This assumption is no longer true when diverse cell types are considered. For example,
Zeisel et al.t2 found up to 60% DE genes and differing amounts of total mRNA levels 2
between cell types. This issue of asymmetry is conceptually one of the characteristics 2
that distinguishes single cell from bulk RNA-seq and has not been addressed so far. s
Therefore, we simulate varying numbers of DE-genes in conjunction with small to large =
differences in mRNA content including the entire spectrum of possible DE-settings. 2

Realistic simulations in conjunction with a wide array of scRNA-seq methods, allow 33
us not only to quantify the performance of individual pipeline steps, but also to quantify 24
interdependencies among the steps. Moreover, the relative importance of the various s
steps to the overall pipeline can be estimated. Hence, our analysis provides sound s
recommendations regarding the construction of an optimal computational scRNA-seq  »

pipeline for the data at hand. 38

Results %

The starting point for our comprehensive pipeline comparison is a representative selection 4o
of scRNA-seq library preparation protocols (Figure ) Here, we included one full- «
length method (Smart-seq24¥) and four UMI methodst#125288  The UMI strategies — «
encompass two plate-based (SCRB-seq, CEL-seq2) and the most common non-commercial 4
and commercial droplet-based protocols (Drop-seq, 10X Chromium). CEL-seq2 differs 4
from SCRB-seq in that it relies on linear amplification by in vitro transcription, while 4
SCRB-seq relies on PCR amplification using the same strategy as 10X Chromium (see 4
Ziegenhain et al.1®2 for a detailed discussion). We then combine the library preparation

L8920 411d three annotation schemeg21%22123

protocols with three mapping approaches a8
resulting in 45 distinct raw count matrices (Online Methods). We simulated 27 distinct 4

DE-setups per matrix, each with 20 replicates, resulting in a total of 19,980 simulated  so

data sets (Figure [1B). 51
Genome-mapping quantifies genes with high accuracy 5

We first investigated how expression quantification is affected by different alignment s
methods using our selection of scRNA-seq experiments. For each of the three following s

strategies we picked one the most popular methods (Supplementary Figure S2): 1. s

22
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Figure 1. Study Overview

A) The data sets yielding raw count matrices. We use scRNA-seq data sets from Ziegenhain
et al.Z and Zheng et al. 18 representing 5 popular library preparation protocols. For each data set,
we obtain multiple gene count matrices that result from various combinations of alignment methods
and annotation schemes (see also Supplementary Figure S1 and S2, and Supplementary Table S1 and
S2). B) The simulation setup. Using powsimR Vieth et al. 0 distribution estimates from real count
matrices, we simulate the expression of 10,000 genes for two groups with 384 vs 384, 96 vs. 96 and 50
vs. 200 cells, where 5%, 20% or 60% of genes are DE between groups. The magnitude of expression
change for each gene is drawn from a narrow gamma distribution (X ~ I'(a = 1,8 = 2)) and the
directions can either be symmetric, asymmetric or completely asymmetric. To introduce slight variation
in expression capture, we draw a different size factor for each cell from a narrow normal distribution. C)
The analysis pipeline. The simulated data sets are then analysed using combinations of four count
matrix preprocessing, seven normalisation and four DE approaches. The evaluation of these pipelines
focuses on the outcome of the confusion matrix and its derivatives (TPR, FDR, pAUC, MCC), deviance
in library size estimates (RMSE) and computational run time.
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alignment of reads to the genome using splice-aware alignment (STAR"®), 2. alignment to s
the transcriptome (BWA™?) and 3. pseudo-alignment of reads guided by a transcriptome s
(kallisto“*). We then combined these with three annotation schemes including two curated — ss
schemes (RefSeq“ and Vega®®) and the more inclusive GENCODE®“# (Supplementary s
Table S2). 60

First, we assessed the performance by the number of reads or UMIs that were aligned &
and assigned to genes (Figure and Supplementary Figure S3). Alignment rates e
of reads are comparable across all scRNA-seq protocols. Assignment rates on the other e
hand show some interaction between mapper and protocol. All mappers, aligned and e
assigned more reads using GENCODE as compared to RefSeq annotation, whereas e
the pseudo-aligner kallisto profited most from the more comprehensive annotation s
and here in particular the 3’'UMI protocols. Generally, STAR in combination with &
GENCODE aligned (82-86%) and assigned (37-63%) the most reads, while kallisto
assigned consistently the fewest reads (20-40%). BWA assigned an intermediate fraction e
of reads (22-44%), but - suspiciously - these were distributed across more UMIs. As
reads with the same UMI are more likely to originate from the same mRNA molecule =«
and thus the same gene, the average number of genes with which one UMI sequence =
is associated, can be seen as a measure of false mapping. Indeed, we find that the
same UMI is associated with more genes when mapped by BWA than when mapped by 7
STAR (Figure ) This indicates a high false mapping rate, that probably inflates the
number of genes that are detected by BWA (Figure and Supplementary Figure
S4). 7

This said, it remains to be seen what impact the differences in read or UMI counts
obtained through the different alignment strategies and annotations have on the power 7
to detect DE-genes. 8

As already indicated from the low fraction of assigned reads, kallisto has the lowest &
mean expression and the highest gene dropout rates (Figure @D and Supplementary e
Figure S7) and, as expected from a high fraction of falsely mapped reads, BWA has e
the largest variance. To estimate the impact that these statistics have on the power s
to detect DE-genes, we use the mean-variance relationship to simulate data sets with s
DE-genes (Figure @D,E) As previously reported?, UMI protocols have a noticeably
higher power than Smart-seq2 (Figure ) Moreover for Smart-seq2, we find that e
kallisto especially with RefSeq annoation performs slightly better than STAR, while for s
UMI-methods STAR performs better (Figure and Supplementary Figure S9). 80

In summary, using BWA to map to the transcriptome introduces noise, thus consid- o
erably reducing the power to detect DE-genes as compared to genome alignment using o
STAR or the pseudo-alignment strategy kallisto, but given the lower mapping rate of o
kallisto STAR with GENCODE is generally preferable. 03

Many asymmetric expression changes pose a problem without .

spike-in data. %

The next step in any RNA-seq analysis is the normalisation of the count matrix. The o
main idea here is that the resulting size factors correct for differing sequencing depths. o
In order to improve normalisation, spike-ins as an added standard can help, but are not
feasible for all scRNA-seq library preparations. Another avenue to improve normalisation o

would be to deal with sparsity by imputing missing data prior to normalisation as 10
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Figure 2. Expression Quantification.

A Read alignment and assignment rates per library preparation protocol stratified over aligner and
annotation. The lighter shade represents the percentage of the total reads that could be aligned and
the darker shade the percentage that also was uniquely assigned (see also Supplementary Figure S3).
For comparability, cells were downsampled to 1 million reads/cell, with the exception of 10X Genomics
data that were only sequenced to on average 60,000 reads/cell. Hence, these data are farther from
saturation and have a higher UMI/read ratio. B Number of genes per UMI with >1 reads for BWA
and STAR alignment using the SCRB-seq data set and GENCODE annotation. Colours denote number
bins of UMIs. C Number of genes detected per Library Preparation Protocol stratified over Aligner
and Annotation (i.e. at least 10 % nonzero expression values) (see also Supplementary Figure S4). D
Estimated mean expression, dispersion and gene dropout rates for SCRB-seq and Smart-seq2 data
using STAR, BWA or kallisto alignments with GENCODE annotation (see also Supplementary Figure
S7). E Mean-dispersion fitting line applying a cubic smoothing spline with 95% variability bands for
SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto alignments with GENCODE annotation
(see also Supplementary Figure S8). F The effect of quantification choices on the power (TPR) to detect
differential expression stratified over library preparation and aligner. The expression of 10,000 detected
genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation per
protocol. 5% of the simulated genes are differentially expressed following a symmetric narrow gamma
distribution. Unfiltered counts were normalised using scran. Differential expression was tested using
limma-trend (see also Supplementary Figure S9).
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discussed in the next chapter (Figure ) To begin with, we compare how much the 1n
estimated size factors deviate from the truth. As long as there is only a small proportion 10
of DE-genes or if the differences are symmetric, estimated size factors are not too far 1
from the simulated ones and there are no large differences among methods (Figure 104
and Supplementary Figure S12). However with increasing asymmetry, size factors 1o
deviate more and more and the single cell methods scran®® and SCnorm% perform 10
markedly better than the bulk methods TMM2Z, MR8 and Positive Counts as well 107

30 is an outlier in that it has a constant 1o

as the single cell method Linnorm®“?. Census
deviation of 0.1, which is due to filling in 1 when library sizes could not be calculated. 100

To determine the effect of these deviations on downstream analyses, we evaluated the 110
performance of differential expression inference using different normalisation methods 1
(Figure and Supplementary Figure S15). Firstly, the differences in the TPR 1w
across normalisation methods are only minor, only Linnorm performed consistently s
worse (Supplementary Figure S13). In contrast, the ability to control the FDR 1
heavily depends on the normalisation method (Supplementary Figure S14). For us
small numbers of DE-genes or symmetrically distributed changes, the FDR is well 16
controlled for all methods except Linnorm. However, with an increasing number and 17
asymmetry of DE-genes, only SCnorm and scran keep FDR control, provided that cells s
are grouped or clustered prior to normalisation. In our most extreme scenario with 1
60% DE-genes and complete asymmetry, all methods except Census loose FDR control. 12
SCnorm, scran, Positive Counts and MR regain FDR. control with spike-ins for 60% 1
completely asymmetric DE-genes (Supplementary Figure S14). Given similar TPR 1
of the methods, this FDR control determines the pAUC ,C). 123

Since in real data it is usually unknown what proportion of genes is DE and whether 12
cells contain differing levels of mRNA, we recommend a method that is robust under all 1
tested scenarios. Thus, for most experimental setups scran is a good choice, only for 12s

Smart-seq2 data without spike-ins, Census might be a better choice. 127

Imputation has little impact on pipeline performance. 128

If the main reason why normalisation methods perform worse for scRNA-seq than for 1o
bulk data is the sparsity of the count matrix, reducing this sparsity by either more 1
stringent filtering or imputation of missing values should remedy the problem®. Here, 1a
we test the impact of frequency filtering and three imputation approaches (DrImpute®?, 1z
scone®s, SAVER"®%) on normalisation performance. Note, that we use the imputation or 13
filtering only to obtain size factor estimates, that are then used together with the raw 13
count matrix for DE-testing. 135

We find that simple frequency filtering has no effect on normalisation results (Figure 1
). Performance as measured by pAUC is identical to using raw counts. In contrast, 13
imputation can have an effect on performance and there are large differences among 13
methods. Imputation with DrImpute and scone rarely increased the pAUC and occa- 13
sionally as in the case of SCRB-seq with MR normalisation, the pAUC even decreased 10
by 100% and 76%, respectively due to worse FDR. control relative to using raw counts 1a
(Supplementary Figure 18). In contrast, these two imputation methods achieved an 1
appreciable increase in pAUC together with scran normalisation, ~ 28%, 4% and 9% for s
10X Genomics, SCRB-seq and Smart-seq2 data, respectively. SAVER on the other hand 14

never made things worse, irrespective of data set and normalisation method but was s

o2
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Figure 3. Normalisation choices determines DE-analysis performance, not preprocessing
of counts.

The data in panels A-C are based on Smart-seq2 data, all panels are based on two groups of 384
cells, STAR alignment with GENCODE annotation was used for quantification. A The root mean
squared error (RMSE) of estimated library size factors per normalisation method is plotted for 20%
asymmetric DE-genes (see also Supplementary Figure S12). B The discriminatory ability determined
by the partial area under the curve (pAUC) based on DE testing with limma-trend for normalisation
without spike-ins per DE-pattern. The grey ribbon indicates the pAUC given simulated size factors (see
also Supplementary Figure S13-S15). C Using spike-ins for normalisation for 60% completely asymmetric
DE-genes. D Effect of preprocessing the count matrix for 20% asymmetric DE-genes without spike-ins.
Counts were either left asis ('none’), filtered or imputed prior to normalisation. The derived scaling
factors were then used for normalisation and DE testing was performed on raw counts using limma-trend
(see also Supplementary Figure S16-S18). This procedure was applied to the full count matrix (circle)
and to the count matrix downsampled to 10% of its original sequencing depth (triangular). Missing
data points are due to failing imputation runs with the sparser data.
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able to rescue FDR control for MR normalisation of UMI data, even in a completely 14
asymmetric DE-pattern. 147

These observations suggest that data sets with a high gene dropout rate might s
benefit more from imputation than data sets with a relatively low gene dropout rate 1o
(Supplementary Figure S16-18). In order to further investigate the effect of im- s
putation on sparse data, we downsampled the Smart-seq2 and SCRB-seq data, which 1
were originally based on 1 million reads/cell, to make them more comparable to the 1
10X-HGMM data with on average of 60,000 reads/cell. A radical downsampling to 10% 153
of the original sequencing depth decreases the number of detected genes for SCRB-seq 1
by only 1%, suggesting that the original RNA-seq library was sequenced to saturation. 1ss
In contrast, the Smart-seq2 data were much less saturated at 1 million reads/cell: Down-  1s6
sampling reduced the number of detected genes by 34%. However, the relative effect of s
imputation on performance remains small. This is probably due to the fact that the 1ss
main effect of downsampling is a reduction in the detected genes, which also cannot be 15
imputed. Thus, if a good normalisation method is used to begin with (e.g. scran with 160

clustering), the improvement by imputation remains relatively small. 161

Good normalisation removes the need for specialised single cell
DE-tools. 163

The final step in our pipeline analysis is the detection of DE-genes. Recently, Soneson 1
and Robinson!' benchmarked 36 DE approaches and found that edgeR%0, MASTH 1
limma-trend®% and even the T-Test performed well. Moreover, they found that for s
edgeR, it is important to incorporate an estimate of the dropout rate per cell. Therefore, 1
we combine edgeR here with zingeR"". 168

Both edgeR-zingeR and limma-trend in combination with a good normalisation reach 160
similar pAUCs as using the simulated size factors (Figure . However, in the case of 1o
edgeR-zingeR this performance is achieved by a higher TPR paid while loosing FDR 1
control (see Supplementary Figure S20), even in the case of symmetric DE-settings 1
(Supplementary Figure S22-S24). 173

Nevertheless, we find that DE-analysis performance strongly depends on the nor- 17
malisation method and on the library preparation method. In combination with the s
simulated size factors or scran normalisation, even a T-Test performs well. Conversely, in 176
combination with MR or SCnorm, the T-Test has an increased FDR (Supplementary
Figure S20). SCnorms bad performance with a T-Test was surprising given SCnorms s
good performance with limma-trend (Figure ) One explanation could be the rela- 17
tively large deviation of SCnorm derived size factors (Figure and Supplementary s
Figure S12) which inflate the expression estimates. 181

Furthermore, we find that MAST performs consistently worse than the other DE-tools 1
when applied to UMI-based data, but -except in combination with SCnorm- it is doing  1s3
fine with Smart-seq2 data. Interestingly, Census normalisation in combination with 1ss
edgeR-zingeR outperformed limma-trend with Smart-seq2 (Supplementary Figure S25). 1

In concordance with Soneson and Robinson, we found that limma-trend, a DE-tool  1s
developed for bulk RNA-seq data showed the most robust performance. Moreover, 1
library preparation and normalisation appeared to have a stronger effect on pipeline 1ss

performance than the choice of DE-tool. 189
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Figure 4. Evaluation of DE tools.

The expression of 10,000 genes over 768 cells (384 cells per group) were simulated given the observed
mean-variance relation per protocol. 20% of the simulated genes are differentially expressed following an
asymmetric narrow gamma distribution. Unfiltered counts were normalised using simulated library size
factors or applying normalisation methods. Differential expression was tested using T-Test, limma-trend,
MAST or edgeR-zingeR. The discriminatory ability of DE methods is determined by the partial area
under the curve (pAUC) for the TPR-FDR curve (see also Supplementary Figure S19-S21).
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Normalisation is overall the most influential step. 190

Because we tested a nearly exhaustive number of ~3,000 possible scRNA-seq pipelines, 10
starting with the choice of library preparation protocol and ending with DE-testing, 10
we can estimate the contribution of each separate step to pipeline performance for our 1
different DE-settings (Figure [1] B). We used a beta regression model to explain the 10
variance in pipeline performance with the choices made at the seven pipeline steps 1) 19
library preparation protocol, 2) spike-in usage, 3) alignment method, 4) annotation 1
scheme, 5) preprocessing of counts, 6) normalisation and 7) DE-tool as explanatory 1o
variables. We used the difference in pseudo-R? between the full model including all 1
seven pipeline steps and leave-one-out reduced models to measure the contribution of 1
each separate step to overall performance. 200

All pipeline choices together (the full model) explain ~ 50% and ~ 60% of the au
variance in performance, for 20% and 60% DE-genes, respectively (Figure ) Choices 2
of preprocessing the count matrix contribute very little (AR? <= 1%). The same is 23
true for annotation (AR? <= 2%) and aligner choices (AR? <= 5%). For aligner and 20
annotation, it is important to note that these are upper bounds, because our simulations 20
do not include differences in gene detection rates (Figure @C) 206

Surprisingly, the choice of DE-tool only matters for symmetric DE-setups (AR%EZO_2 = 20
15%; AR%5_o.6 = 11%), and the choice of library preparation protocol has an even bigger 2
impact on performance for symmetric DE-setups (Angmmetric =17 —29%) and addi- 20

tionally for 5% asymmetric changes (ARE% = 17%). Normalisation choices 2w

Asymmetric
have overall a large impact in all DE-settings (AR? = 12 — 38%), where the importance on
increases with increasing levels of DE-genes and increasing asymmetry. Spike-ins are 212
only necessary if many asymmetric changes are expected and have little or no impact 213
if only 5% of the genes are DE or the changes are symmetric (Figure ) Moreover, 2
for completely asymmetric DE-patterns, the regression model did not converge without 25
normalisation and spike-ins, because their absence or presence alone pushed the MCCs 26
to the extremes. 217

For the best performing pipeline SCRB-seq + STAR + GENCODE + SAVER s
imputation + scran with clustering + limma-trend, using 384 cells per group instead 219
of 96 improves performance only by 6.5-8%. Sample size is more important if a naive 20
pipeline is used. For SCRB-seq + BWA + GENCODE + no count matriz preprocessing o
+ MR + T-Test the performance gain by increasing sample size is 10-12% and even 2
worse, for many asymmetric DE-genes, lower sample sizes occasionally appear to perform 2z
better (Figure and Supplementary Figure S21). Next, we tested our pipeline 2
on publicly available 10X Genomics data set containing the expression profiles of approx. s
1000 human peripheral mononuclear blood cells (PBMC)4C. First, we classified the cells s
using SingleR™® into the celltypes available in the Blueprint Epigenomics Reference®? 5
distinguishing Monocytes, NK-cells, CD8+T-cells, CD4+T-cells and B-cells (Figure s
,D). We applied the previously defined good (STAR + gencode + SAVER imputation 20
+ scran with clustering + limma-trend) and naive (BWA + gencode + no preprocessing 2w
+ MR + T-Test) pipeline to identify DE-genes between the cell types. Cross-referencing u

3 , We find 23

the identified DE-genes with known differences in marker gene expression
that the good pipeline always identifies a higher fraction of the marker genes as DE 233
than the naive pipeline (Figure [BE). Comparing NK-cells and CD8+ T-cells, the good 2

pipeline identifies 148 known markers as DE, while the naive pipeline finds only 54. The 23
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diminished separation between those two cell-types using the naive pipeline is already 23
visible in the UMAP (Figure [5D). 237

In summary, we identify normalisation and library preparation as the most influential 23
choices and the observation that differences in computational steps alone can significantly 23

lower the required sample size nicely illustrates the importance of bioinformatic choices. 240

Discussion "

Here we evaluate the performance of complete computational pipelines for the analysis of 2
scRNA-seq data under realistic conditions with large numbers of DE-genes and differences 213
in total mRNA contents between groups (Figure . Furthermore, our simulations allow 24
us not only to investigate the influence of choices made at each pipeline step separately, 2
but also to estimate the relative importance and interactions between different steps s
of an entire scRNA-seq analysis pipeline. We implemented all assessed computational 2
methods and more in powsimR, so that users can easily evaluate pipeline performance 2
given their own data and expected DE-settings. 249

Beginning with the creation of the raw count matrix, we find that transcriptome 250
mapping with BWAL? appears to recover the largest number of genes. However, many s
of these are probably due to falsely mapped reads, also increase expression variance s
which ultimately results in a lower sensitivity (Figure -F). In contrast, the pseudo- 23
alignment method kallisto“ appears to assign reads precisely, but looses a lot of reads s
leading to a lower mean expression. Finally, a genome mapping approach using the s
splice-aware aligner STAR'® in conjunction with GENCODE annotation recovers the 2
most reads with high accuracy (Figure ) 257

Concerning the preprocessing of the count matrix, we found in concordance with  2s
Andrews and Hemberg? that in particular for sparse data such as 10X, SAVERS34 5,
imputation before normalisation improves performance, while filtering genes has no effect 20
with our data sets and combinations of normalisation and DE-testing methods. 261

The choice that had the largest impact on performance throughout all tested DE-
settings is the choice of normalisation method. Only for symmetric changes, the choice 23
of library preparation protocol had a slightly larger impact than normalisation. In 2

line with Evans et al.}

, we found that normalisation performance of bulk methods s
and also some of the single cell methods declined with asymmetry (Figure ) In 26
particular, for 60% completely asymmetric DE-genes only Census retained FDR control.
Unfortunately, Census is not recommended for the use with UMI-counts. Thus, for s
UMI-counts and 60% completely asymmetric changes, only the use of spike-ins could 2

A7 we Jand on 20

restore test performance. In the debate about the usefulness of spike-ins
the pro side: Our simulations clearly show that spike-ins are useful in DE-testing settings on
with asymmetric changes which is likely to be a common phenomenon in scRNA-seq 2
data. Due to good performance across DE-settings and its speed (Supplementary o
Figure S22) we would recommend scran with prior clustering as the best choice for 2
normalisation (Figure [5F). 275

The choice in DE-testing method, our final pipeline step had relatively little impact s
on overall pipeline performance. A good normalisation prior to DE-testing alleviates the 2
need for more complex and thus vulnerable methods, such as for example MASTs hurdle 2
model which implicitly assumes that the CPM values were generated from zero inflated 27

1. 10

negative binomial count distribution. Indeed, in Vieth et a we showed that also 2
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Figure 5. Evaluation of analysis pipeline.

A, B The expression of 10000 genes over 768 cells were simulated and 5%, 20% or 60% of the genes were
differentially expressed following a symmetric or asymmetric narrow gamma distribution. This simulation
setup was applied to protocols, alignments, annotations, preprocessing of counts, normalisation and
DE tools. For each analysis set, the Matthew Correlation Coefficient was averaged over 20 simulations
and rescaled to [0,1] interval. The MCC was used as a response variable in beta regression models with
log-log link function. A The contribution of each covariate in the full model ( Protocol + Aligner +
Annotation + Preprocessing + Normalisation + DE-Tool). B Performance according to sample size, 1
good and 1 naive pipeline (see also Supplementary Figure S21). C, D, E The expression of ~ 1000
human PBMcs profiled with 10X Genomics were processed using the good and naive pipeline. Cell
types were identified with SingleR classification using the Blueprint Epigenomics Reference. Cell types
are represented in a UMAP, for good C and naive D pipeline, respectively. True marker genes, i.e.
given by the reference, per pairwise comparison of cell types for the good and naive pipeline are given
in E where genes needed to have a adjusted p-value < 0.1, absolute log2 fold change threshold (> 0.1)
and expressed in at least 10% of the cells to be considered. F Pipeline recommendations for UMI and
Smart-seq2 data.
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scRNA-seq data fit a negative binomial distribution rather well and that the previously 2=
reported zero-inflation in scRNA-seq data is mainly due to amplification noise which is 2
removed in UMI-data. Hence, it is not surprising that in concordance with Soneson and 23
Robinson!, we find that relatively straight forward DE-testing methods adapted from s
bulk RNA-seq perform well with scRNA-seq data. 285

Finally, we want to remark that paying attention to the details in a computational 2ss
pipeline and in particular to normalisation pays off. The effect of using a good pipeline as 27
compared to a naively compiled one has a similar or even greater effect on the potential 2ss
to detect a biological signal in scRNA-seq data as an increase in cell numbers from 96 to 2
384 cells per group (Figure ) 290

Online Methods 201

Single Cell RN A-seq Data Sets 202

The starting point for our comprehensive pipeline comparison is the scRNA-seq library 203
preparation (Figure[1| A). In our comparison, we included the gene expression profiles of 2
mouse embryonic stem cells (mESC) as published in Ziegenhain et al.? (Supplementary 2
Figure S1). We selected four data sets for our comparison: Smart-seq2%? a well-based 26
full-length scRNA-seq protocol, CEL-seq2?? a well-based 3’ UMI-protocol using linear 207
amplification, SCRB-seq a well-based 3 UMI-protocol with PCR amplification®22
and Drop-seq!¥ a droplet-based 3’ UMI-protocol. In addition, 92 poly-adenylated 2
synthetic RNA transcripts of known concentration designed by the External RNA 300
Control Consortium (ERCCs)%3 were spiked in for all methods except Drop-seq. All raw 3o
c¢DNA sequencing reads were cut to a length of 45 bases and downsampled to one million 0
c¢DNA reads per cell (Supplementary Table S1 and Supplementary Figure S1). s

Finally, we added a 10X Chromium data set sequencing mouse NIH3T3 cells1® s
yielding ~ 400 good cells with on average ~ 60,000 reads/cell and another 10X data set 305

analysing ~ 1,000 human peripheral blood mononuclear cells (PBMCs). 306

These choices of library preparation protocols cover the diversity in current protocols —sor
without imposing partiality due to biological differences and technical handling. 308
Gene Expression Quantification 309

For genome mapping and quantification of the UMI-data with a splice-aware aligner, s
we used the zUMIs*¥ (v.0.0.3) pipeline with STAR"® (v.2.5.3a) and the mouse genome s
(Mus_musculus.GRm38) together with annotation files (gtf) for GENCODE (vM15), a2
Vega (VEGAG68) and RefSeq (Release 85) (Supplementary Table S2). zUMIs is a a3
fast and flexible pipeline for processing scRNA-seq data where cell barcode or UMI reads s
with low sequence quality reads are filtered out prior to UMI collapsing by sequence s

identity which yields identical count results as UMI-tools®>44,

For Smart-Seq2 we 316
use the same pipeline settings as in zUMIs, simply omitting the UMI collapsing step a7
(Supplementary Table S3). 318

For transcriptome alignment, we downloaded transcriptome fasta files corresponding s
to the annotations listed above. We used BWAY? (v0.7.12) to align the scRNA-seq reads o
to these transcriptomes. We only removed reads that aligned equally well to transcripts sz

of different genes as truly multi-mapped. The remaining reads were tallied up per gene. 32
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For UMI data, the reads were collapsed per gene by identity, similar to the strategy s
recommended in zUMIs. 32

For kallisto“* (v0.43.1), a transcriptome-guided pseudo-alignment method, we followed s
the recommended quantification procedure to yield abundance estimates per equivalence s
class. To be comparable with other alignment methods, the counts per equivalence 3
class were collapsed per gene. The counts of equivalence classes representing multiple 3
genes were filtered out. For SCRB-seq, CEL-seq2, Drop-seq and 10X Genomics libraries, o
we chose the UMI-aware quantification option. The ERCC spike-in sequences were s

appended to the genome or transcriptome sequences for quantification. 331

Simulations 2

We used powsimR to estimate, simulate and evaluate single cell RNA-seq experiments 33
10 PowsimR has been independently validated for benchmarking DE-approaches®! and 3
consistently reproduces the mean-variance relationship and dropout rates of genes of 135
scRNA-seq data (see also Supplementary Figure 28). The gene expression quantification s
using three different aligners in combination with three annotations per library prepara- s
tion protocol produced 45 count matrices. These count matrices are the basis for our s
estimation in powsimR. Genes needed at least one read or UMI count in at least one cell 33

to be considered in the estimation for simulation parameters. Since well? and others#6:47

340
have found previously, we assume that UMI counts follow a negative binomial distribution su
and only Smart-seq2 needs the inclusion of zero-inflation. To simulate spike-in data, e
we added an implementation of the simulation framework for pure technical variation s
of spike-ins described in Kim et al.%8 to powsimR. The parameters required for these s
simulations were estimated from 92 ERCC spike-ins in the SCRB-seq, CEL-seq2 and s
Smart-seq2 data, respectively?. To evaluate the effect of differing sequencing depths, we s
added a new module to powsimR that estimates the degree of PCR, amplification for s«
UMI data. This allows the user to downsample a read count matrix by binomial thinning s
as implemented in edgeR thinCounts()?” and then to reconstruct the corresponding 3o
UMI count matrix base on the estimated PCR amplification rates. 350

For a detailed evaluation of the pipelines, we simulated two groups of cells for pairwise 35
comparisons with the following three sample size setups: 96 vs. 96, 384 vs. 384 or 50 vs. 3
200 cells (Figure ) For simplicity, we kept the number of genes that we simulated 33
constant at 10,000. To introduce slight variation in expression capture, we draw a different s
size factor for each cell from a narrow normal distribution (X ~ N(u = 1,0 = 0.1)) 35
(Figure 1B). This distribution fits the considered data sets well, irrespective of the s
applied library preparation method. Furthermore, the two groups of cells can have s
5%, 20% or 60% differentially expressed genes. To capture the asymmetry of observed ss
expression differences, we considered three setups of DE-patterns: symmetric (50% up- 35
and 50% down-regulated), asymmetric (75% up- and 25% down-regulated) or completely 360
asymmetric (100% up-regulated). The magnitude of expression change is drawn from a  3a
narrow gamma distribution (X ~ I'(a = 1, 8 = 2)) defining the log2 fold change, which s
is then added to the sampled mean expression. The combination of these parameters s
results in a total of 27 DE-setups that were then applied to the parameter estimates
from 37 different count matrices to simulate 20 replicates for each setting, producing a s
total of 19,980 simulated data sets. 366

These data sets were then analysed by a nearly exhaustive number of combinations s
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of four imputation strategies (scone, SAVER, Drlmpute),gene dropout filtering (remove s
genes with more than 80% zero expression values) together with seven normalisation 3o
approaches (TMM, MR, Linnorm, Census, Linnorm, scran, SCnorm) with or without s
spike-ins, depending on library preparation protocol and method (Figure ) Nor- sn
malisation factors were then derived as described in Soneson and Robinson! and used s
in conjunction with the raw count matrices for DE-testing using four representative s
approaches (T-Test, limma-trend, edgeR-zingeR, MAST). The resulting p-values were s
corrected for multiple testing with Benjamini-Hochberg FDR and we applied a threshold  s7s
level of 10% to define positive test results. All these steps were seamlessly implemented s
into powsimR (github: https://github.com/bvieth/powsimR). In total we analysed 2,979 s
different RNA-seq pipelines. 378

Evaluation metrics 379

To evaluate the normalisation results, we determined the root mean squared error sso
(RMSE) of a robust linear model using the difference between estimated and simulated e
library size factors as response variable in rlm() implemented in R-package MASS#? s
(v.7.3-51.1) (Supplementary Figure S10)2. 383

All other measures are based on the final results of an entire scRNA-seq pipeline s
ending with DE-testing. Knowing the identity of the genes that were simulated to show s
differing expression levels and the results of the DE-testing, we used a number of metrics 38
related to the confusion matrix tabulating the number of true positives, false positives, s
true negatives and false negatives. We define the power to detect differential expression sss
with the TPR (T PR = TPZ%). The false discovery rate is defined as FDR = %fTP. 389
We combine these two measures in a TPR versus FDR curve to quantify the trade-off 30
between true and false discoveries in a genome-wide multiple testing setup as advocated su
by"!. We then summarise these curves by their partial area under curve (pAUC) of s
TPR versus observed FDR that still ensures FDR control at the nominal level of 10% s
(Supplementary Figure S11). This way of calculating the AUC is ideal for data with 30
relatively high true negative rates as the partial integration does not punish methods s
that are over-conservative, i.e. that stay way below the nominal FDR. 306

To summarise the whole confusion matrix in one representative value we chose 3o

the Matthews Correlation Coefficient (MCC = LE TN _FP+ PN ), s
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

because it is a balanced measure ensuring a reliable comparison of method performance 30
across all DE-settings®®1. As for the pAUC, we calculated the maximal value of MCC a0

where the cutoff still ensured FDR control at the nominal level of 10%. 401

To quantify the relative contribution of each step in the analysis pipeline, we used the 40
MCC as a response variable in a beta regression model implemented in R-package betareg 03
(v.3.1-1)*% with each individual pipeline step. Because the MCC assumes the extremes s
of 0 and 1 in some DE-settings, we applied the recommended transformation, namely s
MCClransformed = w, where n is the sample size®?. The contribution is 40
then given by the difference between the full model pseudo — R? containing all covariates o
versus a model leaving one step out at a time. This is then scaled to the total variance 40

explained to give relative AR? percentages. 409
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Data Availability 410

The scRNA-seq data used in this manuscript are all publicly available, and they are

it

1
summarised in Supplementary Table S1. The SCRB-seq, Smart-seq2, Drop-seq, CEL- a2
seq2 data are available at the Gene Expression Omnibus (GEO) under accession code a3
GSE75790. The HGMM and PBMC data sets are available at 10x Genomics’s official 44

website (https://support.10xgenomics.com/single-cell-gene-expression/datasets). 415

Code Availability 416

The software and code used are summarised in Supplementary Table S3 and S4. a7
A compendium containing processing scripts and detailed instructions to reproduce s
the analysis for this manuscript is available from the following GitHub repository o
(https://github.com/bvieth/scRNA-seq-pipelines). 420
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