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Abstract

Information sampling can reduce uncertainty in future decisions but is often costly. To
maximize reward, people need to balance sampling cost and information gain. Here we
aimed to understand how autistic traits influence the optimality of information sampling
and to identify the particularly affected cognitive processes. Healthy human adults with
different levels of autistic traits performed a probabilistic inference task, where they
could sequentially sample information to increase their likelihood of correct inference
and may choose to stop at any moment. We manipulated the cost and evidence
associated with each sample and compared participants’ performance to strategies that
maximize expected gain. We found that participants were overall close to optimal but
also showed autistic-trait-related differences. Participants with higher autistic traits had
a higher efficiency of winning rewards when the sampling cost was zero but a lower
efficiency when the cost was high and the evidence was more ambiguous.
Computational modeling of participants’ sampling choices and decision times revealed a
two-stage decision process, with the second stage being an optional second thought.
Participants may consider cost in the first stage and evidence in the second stage, or in
the reverse order. The probability of choosing stopping at a specific stage increases
with increasing cost or increasing evidence. Surprisingly, autistic traits did not influence
the decision in either stage. However, participants with higher autistic traits inclined to
consider cost first, while those with lower autistic traits considered cost or evidence first
in a more balanced way. This would lead to the observed autistic-trait-related
advantages or disadvantages in sampling optimality, depending on whether the optimal

sampling strategy is determined only by cost or jointly by cost and evidence.
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Author Summary

Children with autism can spend hours practicing lining up toys or learning all about cars
or lighthouses. This kind of behaviors, we think, may reflect suboptimal information
sampling strategies, that is, a failure to balance the gain of information with the cost
(time, energy, or money) of information sampling. We hypothesized that suboptimal
information sampling is a general characteristic of people with autism or high level of
autistic traits. In our experiment, we tested how participants may adjust their sampling
strategies with the change of sampling cost and information gain in the environment.
Though all participants were healthy young adults who had similar 1Qs, higher autistic
traits were associated with higher or lower efficiency of winning rewards under different
conditions. Counterintuitively, participants with different levels of autistic traits did not
differ in the general tendency of oversampling or undersampling, or in the decision they
would reach when a specific set of sampling cost or information gain was considered.
Instead, participants with higher autistic traits consistently considered sampling cost first
and only weighed information gain during a second thought, while those with lower
autistic traits had more diverse sampling strategies that consequently better balanced

sampling cost and information gain.
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Introduction

Information helps to reduce uncertainty in decision making but is often costly to collect.
For example, to confirm whether a specific tumor is benign or malignant may require
highly invasive surgery procedures. In such cases, it can be more beneficial to tolerate
some degree of uncertainty and take actions first. To maximize survival, humans and
animals need to balance the cost and benefit of information sampling and sample the

environment optimally [1,2].

However, autism spectrum disorder (ASD)—a neurodevelopmental disorder
characterized by social impairments and repetitive behaviors [3]—seem to be
accompanied by suboptimal information sampling, though in various guises. For
example, individuals with repetitive behaviors tend to spend time on redundant
information that helps little to reduce uncertainty [4]. Eye-tracking studies reveal that
people with ASD have atypical gaze patterns in ambiguous or social scenes, that is,
they sample the visual environment in an inefficient way [5,6]. According to the recently
developed Bayesian theories of ASD that explain a variety of perceptual, motor, and
cognitive symptoms [7—13], deviation from Bayesian optimality in information processing
is primary to ASD [4,14-17]. In this Bayesian framework, information sampling is
referred as “disambiguatory active inference” [4] and plays an important role in guiding
the subsequent inferences or decisions. We hereby conjectured that ASD symptoms
such as repetitive behaviors and ineffecient gaze patterns reflect general impairments in

information sampling.
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97 The autistic traits of the whole population form a continuum, with ASD diagnosis

98 usually situated on the high end [18—24]. Moreover, autistic traits share genetic and

99  biological etiology with ASD [25]. Thus, quantifying autistic-trait-related differences in
100 healthy people can provide unique perspectives as well as a useful surrogate for

101  understanding the symptoms of ASD [23,26].

102 The present study is aimed to understand how autistic traits in typical people may
103 influence their optimality of information sampling. In particular, we focused on the

104  situation where information can be used to improve future decisions (e.g. [27-29], in
105 contrast to non-instrumental information gathering such as [30-39]) and hypothesized
106 that individuals with high autistic traits may deviate more from optimality in information

107  sampling.

108 Possible suboptimality may arise from a failure of evaluating sampling cost or
109 information gain, or improper trading off the two, or a greater noise [27]. To investigate
110 these possibilities, we tested healthy adults of different levels of autistic traits in an
111 information sampling task adapted from [40,41]: On each trial of the experiment,

112  participants could draw samples sequentially to accumulate evidence for a probabilistic
113 inference and would receive monetary rewards for correct inferences. Each additional
114 sample may increase their probability of correct inference but also incur a fixed

115 monetary cost. In order to maximize expected gain, participants should draw fewer
116  samples when each sample had higher cost or provided higher evidence, and vice
117  versa. We manipulated the cost and evidence per sample and compared participants’
118 performance to optimality. We found that different levels of autistic traits were

119 accompanied by different extents of deviation from optimality. Compared to their peers,
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120 participants with higher level of autistic traits received higher rewards in the zero-cost
121  conditions due to less undersampling, where the optimal strategy was to sample as

122 many as possible, but meanwhile lower rewards in the high-cost, low-evidence condition
123 due to more oversampling, where the optimal strategy would sacrifice accuracy to save

124  cost.

125 What cognitive processes in information sampling are particularly affected by
126  autistic traits? Through computational modeling, we further decomposed participants’
127  sampling choices into multiple sub-processes and found that the influence of autistic
128 traits was surprisingly selective and subtle. In particular, participants’ sampling choices
129  could be well described by a two-stage decision process: When the first decision stage
130 does not reach the choice of stopping sampling, a second decision stage is

131 probabilistically involved to arbitrate, which offers a second chance to consider stopping
132  sampling. The two stages were independently controlled by cost and evidence and

133  neither stage showed autistic-trait-related differences. What varied with levels of autistic
134 traits was the strategic diversity: Participants with higher autistic traits were more likely
135 to always consider cost in the first stage and evidence in the second, while those with
136 lower autistic traits had a larger chance to use the reverse order as well. As a

137  consequence, the former would perform better when the optimal strategy does not

138 depend on evidence, while the latter would do better when the optimal strategy is

139 determined jointly by cost and evidence.

140
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141 Results

142  One hundred and four healthy young adults participated in our experiment, whose

143  autistic traits were measured by the self-reported Autism Spectrum Quotient (AQ)

144  questionnaire [18]. The computerized experimental task is illustrated in Fig 1a. On each
145 trial, participants first saw two jars filled with opposite ratios of pink and blue beads and
146  were told that one jar had been secretly selected by the experimenter. They could

147 sample up to 20 beads sequentially with replacement from the selected jar to infer

148  which jar had been selected. Each key press would randomly sample one bead and
149 participants could decide to stop sampling at any moment. For each correct inference,
150 participants would receive 10 points minus the total sampling cost. Their goal was to
151 earn as many points as possible, which would be redeemed into monetary bonus in the
152  end. The cost of sampling one bead could be 0, 0.1, or 0.4 points, referred below as
153  zero-, low-, and high-cost conditions respectively. The pink-to-blue ratios of the two jars
154  could be 60%:40% vs. 40%:60%, or 80%:20% vs. 20%:80%, which corresponded to
155 lower (60/40) or higher (80/20) evidence per sample favoring one jar against another.
156  The sample size that maximizes expected gain would change with the cost and

157  evidence conditions (Fig 1b, see Methods).
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159 Fig 1. The bead-sampling task.

160 (a) Time course of one trial. “Preview” informed the participant of the pink-to-blue ratios of the
161  two jars (80%:20% vs. 20%:80% in this example, corresponding to the high-evidence condition).
162  Then the participant could sample beads from the unknown pre-selected jar one at a time up to
163 20 beads (“sampling”) or quit sampling at any time. Afterward, the participant judged which jar
164  had been selected (“judgment”). Feedback followed, showing the correctness of judgment and
165  winning of the current trial. Feedback was presented for 1 s, whereas preview, sampling, and
166  judgment were self-paced. During sampling, the remaining bonus points (green bar), as well as
167 the array of bead samples, were visualized and updated after each additional sample. (b)

168  Optimal sampling strategy vs. participants’ performance for each of the six cost-by-evidence
169 conditions. On a specific trial, the expected probability of correctness (dashed lines) and the
170  remaining bonus points (dotted lines) are respectively increasing and decreasing functions of
171  the number of bead samples. The expected gain (solid lines), as their multiplication product, first
172 increases and then decreases with the number of samples. Note that the sample size that

173  maximizes expected gain varies across different cost and evidence conditions. Each circle

174  represents a participant with the color indicating their AQ score.

175
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176 Sampling optimality may increase or decrease with autistic traits in
177 different conditions

178  We computed efficiency—the expected gain for participants’ sample sizes divided by
179  the maximum expected gain—to quantify the optimality of participants’ sampling choices
180  and used linear mixed model analyses to identify the effects of AQ and its interactions
181  with sampling cost and information gain (LMM1 for efficiency, see Methods).

182  Participants’ efficiency (Fig 2a) was on average 94% (i.e. close to optimality) but

183  decreased with increasing cost (F; 19098 = 65.38, p <.001) or decreasing evidence

184  (Fi101.88 = 124.95, p <.001), and decreased more dramatically when high cost and low
185  evidence co-occurred (interaction F, 54,89 = 123.20, p < .001). Though participants with
186 different AQ did not differ in overall efficiency, AQ influenced efficiency through its

187 interaction with cost and evidence (three-way interaction F, ;93 45 = 5.60, p =.004). As
188  post hoc comparisons, we compared the regression slope of AQ—the change in

189 efficiency with one unit of increase in AQ—across conditions (Fig 2d). Under the low-
190 evidence conditions, the slope was more negative under high cost than under zero

191  (ti3782 = —3.16, p =.005) or low cost (t;51 55 = —2.64, p = .023). No significant

192  differences were found among different costs in the high evidence conditions. In almost
193 all conditions the slope was non-negative or even significantly positive (i.e. the zero
194  cost, low evidence condition, t;3605 = 2.11, p = .037), indicating higher efficiency for
195 participants with higher AQ. However, when sampling was both costly and little

196 informative (i.e. the high-cost, low-evidence condition), the efficiency decreased with AQ
197  (ti2132 = —2.51, p = .014). We verified these AQ-related differences in an alternative
198 analysis, where we divided participants evenly into three groups of low, middle, and

199  high AQ scores and found similar results (S1 Fig).
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200 The overall high efficiency was accompanied by adaptive sampling behaviors
201 that were modulated by both sampling cost and information gain: Participants drew
202 fewer samples in costlier or more informative conditions as the optimal strategy would
203 require (Fig 2b). We quantified participants’ sampling behaviors in a particular condition

204  using two measures: sampling bias (the actual number of sampling minus the optimal

205 number of sampling, denoted n, —

n opt

and sampling variability (standard deviation of

206  the actual numbers of sampling, denoted SD(n,)).

207 A linear mixed model analysis on n,—n

opt

(LMM2, see Methods) showed main

208 effeCtS Of COSt (F2'100_93 = 752.65, P < .001) and eV|dence (F1,101.98 = 177.48, 1% < .001),
209 as well as their interactions (F, 54297 = 546.59, p <.001). Similar to its influence on
210 efficiency, AQ did not lead to a general tendency of more oversampling or

211 undersampling but had significant interactions with cost (F; 19113 = 3.99, p =.022). In

212 particular, the slope of AQ for n,—n,, (Fig 2e) was more positive for the zero-cost than

213  for the low-cost condition (t;4190 = 2.61, p = .025). Under zero cost, given that
214  participants tended to undersample (Fig 2b), a positive slope of AQ (t;1992 = 2.67,
215 p =.009 for high evidence and t;,, 5, = 1.68, p = .096 for low evidence) implies less

216  undersampling for participants with higher AQ.

217 According to a similar linear mixed model analysis on SD(n,) (LMM3, see

218  Methods), the main effects of cost (F, 19086 = 57.13, p < .001) and evidence (F; 191.80 =
219 161.78, p <.001) as well as their interactions (F, 59343 = 33.51, p <.001) were

220 significant (Fig 2c). Again, AQ influenced sampling variability through its interaction with

10
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221  cost and evidence (three-way interaction F, 9409 = 5.27, p =.006). Post hoc

222  comparisons showed that the slope of AQ for sampling variability was more negative
223 under zero cost than under low (t;7,54 = —2.43, p = .042) or high cost (t;gg90 = —3.51,
224 p =.002) in the low-evidence conditions but was little influenced by cost in the high-
225 evidence conditions (Fig 2f). In the low-evidence conditions, the observed slopes imply
226 that higher AQ led to lower sampling variability under zero cost (t1495, = —2.22,

227  p =.028) but higher sampling variability under high cost (t;54,3 = 2.50, p = .014).

228 Taken together, participants with different levels of AQ differed in both the mean
229 and SD of sample sizes. Participants with higher AQ had higher efficiency in the zero-

230 cost, low-evidence condition, which was associated with less undersampling and lower
231 sampling variability. Meanwhile, higher AQ corresponded to lower efficiency and higher

232 sampling variability in the high-cost, low-evidence condition.

233
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235  Fig 2. Optimality of sampling performance and the effects of autistic traits.

236 (a) Sampling efficiency varied with cost (abscissa) and evidence (different colors) conditions.
237  Participants’ efficiency was on average 94% (i.e. close to optimality) but decreased with

238 increasing cost or decreasing evidence, and decreased more dramatically when high cost and
239 low evidence co-occurred. (b) The mean number of bead samples participants drew in a

240  condition (solid lines) decreased with increasing cost or increasing evidence. Compared to the
241  optimal number of samples (dashed lines), participants undersampled in the zero- or low-cost
242  conditions while oversampled in the high-cost conditions. (c) Sampling variability (standard
243  deviation of the numbers of samples drawn across trials) varied with cost and evidence

244  conditions. Error bars in (a) — (c) denote between-subject standard errors. (d) — (f) Effects of AQ
245 levels on participants’ sampling performance in different cost (different colors) and evidence
246  (abscissa) conditions. Baq is the unstandardized coefficient of AQ indicating how much the
247  efficiency (d), number of samples (e), and sampling variability (f) would change when AQ

248 increases by one unit. Error bars represent standard errors of the coefficients. Orange asterisk:
249 p<.05, orange plus: p < .1.

250

251 Bimodal decision times suggest two consecutive decision processes

252  Decision time (DT) for a specific sample—the interval between the onset of last bead
253  sample (or, for the first sample, the start of the sampling phase) and the key press to

254  draw the sample—provided further information about the cognitive process underlying

12
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255 sampling choices. Though decision or response times usually have a positively skewed
256  unimodal distribution and are close to Gaussian when log-transformed [42,43], the log-
257  transformed DTs for continuing sampling in our experiment had a bimodal distribution
258 (Hartigan’s dip test for multimodality, D = 0.004, p < .001), well fitted by a mixture of two
259  Gaussian distributions (Fig 3a). Such bimodality was evident in the low-cost and high-
260 cost conditions (low-cost, low-evidence: D = 0.013,p < .001; low-cost, high-evidence:
261 D =0.009,p < .001; high-cost, low-evidence: D = 0.014, p < .001; high-cost, high-

262 evidence: D = 0.015,p < .001), but was barely palpable in the zero-cost conditions

263  (zero-cost, low-evidence: D = 0.002,p = .11; zero-cost, high-evidence: D = 0.001,p =
264 .95), where the first peak was dominant. Similar bimodal distributions were observed for

265 individual participants (S2 Fig) and could not simply be artifacts of data aggregation.
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267  Fig 3. Decision time (DT) for each sampling.

268 (a) The distributions of DTs aggregated over all participants (main plot) and for each cost and
269  evidence condition (insets). In the main plot, the distribution of DTs (histogram) was clearly

270  bimodal, well fitted by a Gaussian mixture (gray curve) with two Gaussian components (black
271  curves). Such bimodality was also visible in most inset plots, though the relative weights of the
272  two components varied with experiment conditions. (b) Mean DTs varied with cost (abscissa)
273  and evidence (different colors) conditions. Error bars represent between-subject standard

274  errors. (c) Effects of AQ levels on participants’ DTs in different cost (different colors) and

275  evidence (abscissa) conditions. Baq is the unstandardized coefficient of AQ indicating how much
276  the mean DT in a condition would change when AQ increases by one unit. Error bars represent
277  standard errors of the coefficients.

278

279 Linear mixed model analysis (LMM4) showed that the mean DTs (Fig 3b)

280 increased with cost (F,1o; = 120.62, p <.001) and decreased with evidence (F; 1o, =
281 165.85, p <.001). The difference between different evidence conditions was also larger
282  for higher sampling cost (interaction F, 5o, = 14.65, p <.001). Moreover, there was a
283  significant interaction between cost and AQ (F, 19, = 6.22,p = .003): DTs tended to

284  decrease with AQ under zero cost but increase with AQ under low cost (Fig 3c, slope

285 difference between these two conditions reached significance, t;,, = 3.45,p = .002).

286 The DTs within the same trial changed with sample number (LMM5,

287  Fi91080552521 = 24.5,p <.001). Post hoc contrasts showed significantly negative linear
288  trends (S3 Fig, ty323565 = —12.26, p < .001), indicating that sampling decisions in a trial
289  became faster after more samples were drawn. AQ significantly moderated the effect of
290 sample number (interaction Fig 1149880998 = 1.66,p = .035), with higher AQ associated
291  with a flatter trend (t4425456 = 3.62,p = .002). In other words, participants with higher AQ

292  tended not to speed up their decisions as much as those with lower AQ.

293 A straightforward explanation for the bimodal DT distribution would be a

294  probabilistic mixture of two cognitive processes. Next, we used computational modeling

14
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295 to explore the possibility of two decision stages and showed that it could quantitatively

296 predict the effects of cost and evidence as well as the bimodal distribution of DTs.

297 Sampling is controlled by cost and evidence in two separate stages

298 We considered a variety of models for sampling choices, which fell into two categories:
299 one-stage models and two-stage models (Fig 4a, see Methods). In one-stage models,
300 the choice of whether to take a (j+17)-th sample after j samples is modeled as a Bernoulli
301 random variable, with the probability of stopping controlled by cost- and evidence-

302 related factors, including the expected cost and evidence for the prospective sample
303 and the total cost and evidence of existing samples. To separate the influences of

304 different factors on participants’ sampling choices, we constructed a set of one-stage
305 models that are controlled either by cost-related factors, or by evidence-related factors,
306 or by both. To test the possibility that people of higher autistic traits may overweight
307 recent evidence in evidence integration [4,17], we also considered models with an

308 evidence decay parameter, in which the weight for an earlier sample decays as a

309 function of the number of samples thereafter.

310 In two-stage models of sampling choices, we assumed that deciding whether to
311 stop or continue sampling may involve two consecutive decision stages, where the
312  decision in the first stage can either be final or be re-evaluated in an optional second
313 stage. Whether to enter the second stage is probabilistic, conditional on the decision
314 reached in the first stage. The decisions in the two stages are independent and

315 controlled separately by the cost- and evidence-related factors and are subject to

316 evidence decay. In other words, the decision in each stage is similar to that of a one-

317 stage model. We considered 12 different two-stage models whose assumptions differ in
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318 three dimensions (see Methods): (1) which factors control the first stage and which

319 control the second stage (cost-first or evidence-first), (2) what kind of decision in the first
320 stage (continuing or stopping sampling) has a chance to trigger the second stage, and
321 (3) what determines the probability to enter the second stage (“second-thought

322  probability”) after a qualified first-stage decision. For example, the best-fitting second-

continue

323  stage model described below, denoted Cost ——— Evidence, has the following

324  assumptions: cost-related factors control the first stage and evidence-related factors
325 control the second stage. If stopping sampling is the decision in the first stage, it is

326 finalized and there is no second stage; otherwise, either continuing sampling becomes
327 the final decision, or the decision is re-evaluated in the second stage, with the second-
328 thought probability determined by the cost condition (i.e. three different second-thought

329 probabilities for the zero-, low-, and high-cost conditions).

330 We fit all the models to participants’ sampling choices separately for each

331 participant using maximum likelihood estimates. For each fitted choice model, with

332 some additional assumptions, we were able to model participants’ DTs and fit the

333 additional DT parameters using maximum likelihood estimates as well (see Methods).
334 The sum of the log likelihoods for choices and DTs was used for further model

335 comparisons, which was mathematically equivalent to the log likelihood from modeling
336 the joint distribution of choices and RTs (see Methods for proof). We compared the

337 models in goodness-of-fit using the Akaike Information Criterion corrected for small
338 samples (AICc) [44,45]. The AAICc for a specific model was calculated for each

339 participant with respect to the participant’s best-fitting model (i.e. lowest-AlCc) and then

340 summed across participants. We also used the group-level Bayesian model selection
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341 [46,47] for random effects model comparisons and plot each model’s estimated model
342 frequency—a random effects measure of the proportion of participants best fit by the
343 model. Among the four one-stage models (Fig 4b), the best model (i.e. model with the
344  lowest summed AAICc) was the one that is influenced by cost only (denoted Cost only).
345 However, the two-stage models, all of which were controlled by the same cost- and
346 evidence-related factors as the one-stage models, fit much better to participants’

347 choices and DTs than the best one-stage model. The best two-stage model was

continue

348  Cost———Evidence (described above), which best accounted for 50% of the 104

349 participants (estimated model frequency = 44.6%) and whose probability of
350 outperforming all the other 15 models (protected exceedance probability) approached 1.
351 Model comparisons based on the Bayesian Information Criterion (BIC) [48,49] led to

352  similar results (see S4 Fig for group and individual participants’ AAICc and ABIC).

353 When two-stage models were fit to participants’ DTs, the second-thought

354  probabilities were estimated exclusively from choices and not free parameters

continue

355  adjustable by DTs (see Methods). However, predictions of the Cost ———— Evidence

356 model agreed well not only with participants’ choices but also with their bimodal DTs
357 (Fig 4cd, see S2 & S5 Fig for individual plots) and the decrease of DT with sample
358 number (S3 Fig). This further supports our hypothesis that the observed bimodal DT

359 distribution arises from a two-stage decision process.

360
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362 Fig 4. Computational modeling of sampling choices and decision times.

363 (a) Schematic of one-stage and two-stage models. One-stage models only consist of the steps
364  on the left-hand side: Each time a participant decides whether to stop or continue sampling, the
365  probability of stopping is a sigmoid function of a linear combination of multiple decision

366 variables. Two-stage models assume that participants may probabilistically have a second

367  thought to reconsider the choice (the coral dashed arrow). The second stage (on the right-hand
368 side) works in the same way as the first stage but the two stages are controlled by different sets
369  of decision variables. (b) Results of model comparison based on the joint fitting of choice and
370 DT. The AAICc for a specific model was calculated for each participant with respect to the

371  participant’s best-fitting model (i.e. lowest-AlCc) and then summed across participants. Both
372  fixed-effects (summed AAICc: lower is better) and random-effects (estimated model frequency:
373 higher is better) comparisons revealed that the best-fitting model was a two-stage model with
374  cost-related variables considered in the first stage and evidence-related variables in the second

continue

375 stage (i.e. Cost —>Ev1dence) The best one-stage model was the model involving only

376  cost-related decision variables (i.e. Cost only). See Methods (or S1 Table) for the description of
377  each model. Estimated model frequency (color coded) is a random effects measure of the

378  proportion of participants best fit by the model. (c) Distribution of sample sizes (i.e. number of
379 bead samples) for each condition: data vs. model predictions. (d) Distribution of DTs for each
380 condition: data vs. model predictions. The best-fitted two-stage model (red curves) well

381 predicted the observed distributions (histograms) of sample sizes and DTs for each cost and
382  evidence condition, including the bimodality of the observed DT distributions, while the best-
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fitted one-stage model (blue curves) failed to do so. Both data and model predictions were
aggregated across participants.

As additional evidence for the link between two-stage decisions and bimodal
RTs, the mean DT—as a proxy for the proportion of slow decisions—increased with the
probability of using the second stage (Fig 5; 1 = .60,p < .001). The positive correlation
also held for each separate cost condition (zero cost: g = .44,p < .001; low cost:
rs =.35,p <.001; high cost: ry = .22,p = .027). Moreover, the effects of cost on mean
DT (LMM4, as we reported earlier) could be partly explained away by the effect of
second-thought probability when the latter was added as a predictor (LMM6; second-
thought probability and its interaction with evidence, F; ;g0¢ = 47.74,p < .001 and
Fi 28499 = 25.76,p < .001 respectively; cost and its interaction with evidence, F, 7375 =

2.4‘3,p =.09 and F2,233.83 = 2.59,p = .08).

Cost: 0 Cost: 0.1 Cost: 0.4 All

rs =.44, p<.001 rs =.35, p<.001 rs=.22,p=.027

rs =.60, p<.001

0.00 0.25 0.50 0.75 1.00 04 06 0.8 10 06 0.7 0.8 0.9 10 0.00 0.25 0.50 0.75 1.00
Second-thought probability

Cost 0 0.1 == 0.4 === Al

Fig 5. Positive correlations between mean decision time and second-thought probability.

According to two-stage models, mean DT—as a proxy for the proportion of slow decisions—
should increase with the probability of using the second stage. Indeed, mean DT and second-
thought probability were positively correlated, separately for each cost condition (the first three
panels) and when aggregated across all cost conditions (the last panel), thus providing
additional support for the two-stage decision process. Each dot is for one participant in one
specific cost condition. Lines and shaded areas respectively represent regression lines and
standard errors. The 75 refers to Spearman’s correlation coefficient.
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405 Autistic traits influence the strategic diversity of sampling decisions

406  What individual differences in the decision process may relate to the autistic-trait-related

407  effects on the optimality of sampling choices? We first examined the estimated

continue

408  parameters of the best model (Cost ————> Evidence ), which allowed us to characterize

409 individual participants’ sampling choices from three aspects: cost- or evidence-related
410 weights (11 parameters), second-thought probabilities (three parameters separately for
411 the three cost conditions), and evidence decay rate (one parameter). We computed the
412  correlation between participants’ AQ score and each parameter, correcting for multiple
413  comparisons separately for each parameter group. Only a negative correlation between
414  AQ and the zero-cost second-thought probability was marginally significant (rg =

415 —.22,p = .07, uncorrected p = .023), which suggests that higher AQ participants were
416 less likely to use the second stage to reconsider stopping sampling in the zero-cost
417  conditions, where the optimal strategy was to sample as many as possible. Though

418 intuitive and consistent with the AQ effects on efficiency, we found this correlation would

continue

419  vanish when only the participants who were best fit by the Cost o> Evidence model

420 were included (r; = —.02,p = .86) and thus might have been an epi-phenomenon

421  arising from different individuals’ different decision strategies.

422 Next we tested whether participants’ autistic traits influenced the decision
423  strategies they used. As shown in our results of model comparisons, participants may

424  have used a variety of different two-stage decision processes: Among the 104

continue

425  participants, 52 participants were best fit by the Cost o Evidence model and the

426  remaining participants by the other two-stage models. It is also possible that the same
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427 individual may have used different decision processes in different choices. The

428 assumptions of the 12 two-stage models, as we specified earlier, differed in three

429  dimensions. On each dimension, we could classify the 12 models into different families
430 (e.g. cost-first vs. evidence-first models concerning which factor controls the first stage).
431  We quantified a specific participant’s decision strategies on the dimension by the

432  participant’s mean AlCc difference between the different families of models and

433  computed its correlation with AQ (corrected for possible multiple comparisons on the
434  dimension). We found that the AlCc difference between cost-first and evidence-first

435 model families (AICCcost9 evidence ~ AICCevidence9 cost ) was negatively correlated with AQ

436 (rg = —.23,p = .018; Fig 6a). An alternative analysis using the tripartite division of
437  participants into AQ groups showed similar results (S1 Fig). Little correlations were

438 found between AICC .y evidence — AICC yidence cose @Nd 0ther demographic variables

439 including 1Q, age, and gender (S6 Fig).

440 We assured that such differences in decision process could cause the observed
441  autistic trait-related effects in sampling optimality by computing the correlation between
442 AICCqo5> evidonce — AICC ovidence s st @Nd efficiency for each cost and evidence condition
443  (corrected for 6 comparisons). The correlation (Fig 6b) was significantly negative for the
444  zero-cost, low-evidence condition (r; = —.66,p < .001), the zero-cost, high-evidence
445  condition (rg = —.55,p < .001), and the low-cost, low-evidence condition (rg = —.34,p <
446  .001), and was significantly positive for the high-cost, low-evidence condition (rs =

447  48,p < .001). All these correlations were consistent with what we would expect if AQ

448 influences sampling efficiency through its influence on the use of cost-first vs. evidence-
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449  first decision processes. For example, given that AQ was negatively correlated with
450 AICCcost9 evidence ~ AICCevidence9 cost » and AICCcost9 evidence ~ AICCevidence9 cost Was negatiVe|y

451 correlated with the efficiency in the zero-cost, low-evidence condition, we would expect
452  AQ to be positively correlated with the efficiency in the zero-cost, low-evidence

453  condition, and indeed it was. Similar correlations were also found between

454 AICCcost9 evidence AICCevidence9 cost and Samp”ng biaS (I’ls —n

opt

) or sampling variation (

455  SD(n,)) (S7 Fig).

456 Given that all participants were either much better modeled by cost-first models

457  (i.e. AICC o5 evidence — AICC ayidences cost K 0) Or almost equivalently well by cost-first and
458  evidence-first models (i.e. AICC o5 evidence — AICCevidences cost == 0) (Fig 6a), the negative

459  correlation between AICC s evidence — AICCevidence cost @NA AQ implies that participants

460  with higher AQ preferred to consider cost first, while those with lower AQ preferred to
461 have cost-first and evidence-first decisions more balanced (instead of preferring
462  evidence first). If this cost-first vs. balanced-strategy (instead of cost-first vs. evidence-

463 first) hypothesis for higher vs. lower AQ is true, we would also expect the correlation
464  between AICC o evidence — AICCovidences cost @Nd AQ to be weak for those whose

465 decisions were almost equally likely to be cost-first or evidence-first (i.e.

466  AICCq05 evidence — AICC oyidences st =~ 0). In other words, we expect the correlation to be
467  stronger if only the participants whose decisions were more dominated by cost-first (i.e.

468  AICC o5 evidence — AICC oyidences cost K 0) is included. To test this, we ranked all

469  participants by AICCos- evidence — AICCovidences cost IN @scending order and plot the
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470  Spearman’s correlation coefficient between AICC os s evidence — AICCevidences cost @Nd AQ as

471  afunction of the number of participants included in the correlation analysis (Fig 6¢). The
472  correlation was statistically significant when the number of participants included was
473  large enough (cluster-based permutation test, p = .006). In addition, compared to the
474  overall correlation across the 104 participants, the correlation indeed appeared stronger
475  when only the cost-first-dominated participants were included, which reached marginal
476  significance when the number of participants included was between 54 and 60 (cluster-
477  based permutation test, p = .083) or between 65 and 72 (p = .081). This provides

478  further evidence for the cost-first vs. balanced-strategy hypothesis and suggests that
479  participants with different levels of autistic traits differ in the diversity of their decision
480 processes: Participants with higher AQ tended to always consider cost first, while those

481  with lower autistic traits considered cost or evidence first in a more balanced way.

482 In the two-stage decision process we modeled, because the second stage is only
483  probabilistically recruited, factors considered in the first stage would effectively leverage
484  a greater influence on the sampling choice than those of the second stage. In other

485  words, always being cost-first means the sampling choice is mainly determined by cost-
486 related factors, while sometimes cost-first and sometimes evidence-first means the

487  sampling choice is more of a tradeoff between cost- and evidence-related factors.

488 Neither strategy is necessarily optimal but may approximate the optimal strategy in

489  different situations: The former is closer to optimal when the optimal strategy does not
490 depend on evidence, while the latter is closer to optimal when the optimal strategy

491 varies with both cost and evidence. Participants’ differences in strategic diversity thus

492  explain the autistic trait-related differences we observed in efficiency.
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495  Fig 6. Effects of autistic traits on decision process and how it relates to sampling

496 optimality.
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497  (a) Correlation between AQ and AICc . > evidence — AICC ovidence s cost - MOIe positive

498  AICC. s> evidence — AICCviaence> ot INAicates stronger preference for cost-first over evidence-first
499  decision processes, while more negative AICC os - evidence — ATCCevidence> cost iNAiCates the reverse.
500 Each dot is for one participant. The blue line and the shaded area respectively represent

501 regression line and standard error. (b) Correlation coefficients between

502  AICC.os> evidence — AICCoiqences ot @Nd €efficiency for each cost and evidence condition. C:0 =
503  zero-cost, C:0.1 = low-cost, C:0.4 = high-cost, E:0.6 = low-evidence, E:0.8 = high-evidence.
504  Error bars represent FDR-corrected 95% confidence intervals. All these correlations were

505 consistent with what we would expect if AQ influences sampling efficiency through its influence
506 on the use of cost-first vs. evidence-first decision processes. For example, given that AQ was
507 negatively correlated with AICc .- evidence — AICC evidence s cost » @AND

508  AICC.ost> evidence — ATCCoyiqences ot WAS Negatively correlated with the efficiency in the zero-cost,

509 low-evidence condition, we would expect AQ to be positively correlated with the efficiency in the
510 zero-cost, low-evidence condition, and indeed it was. (c) Correlation between AQ and

511  AICC s> evidence — AICCeyidences cose Varied with the value of AIC¢ oy evidence — AICCeyidence s cost - WE
512  ranked all participants by AICC oy evidence — AICCeviqence s cose IN @SCeNding order, that is, from the
513  strongest preference for cost-first to the strongest preference for evidence-first, and plot the
514  Spearman’s correlation coefficient between AICc oy evidence — AICCovidence= oss @NA AQ as a

515 function of the number of participants included in the correlation analysis. The observed overall
516 negative correlation and the stronger correlation given only the cost-first-dominated participants
517  were included supports the cost-first vs. balanced-strategy hypothesis (see text): Participants
518  with higher AQ tended to always consider cost first, while those with lower autistic traits

519 considered cost or evidence first in a more balanced way. Statistical significance marked on the
520 plot was based on cluster-based permutation tests (see Methods).

521
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s22  Discussion

523 Humans must sample the environment properly to balance the advantage of gaining
524  additional information against the cost of time, energy, and money [50]. Previous

525 research suggests that suboptimal information sampling may be a fundamental deficit in
526 ASD [4,14-17,51]. In the current study, we tested healthy adults with different levels of
527 autistic traits to investigate how autistic traits influence information sampling decisions.
528 We found that participants adjusted their sample sizes according to both sampling cost
529 and evidence gain and were overall close to optimality. However, there were also

530 systematic deviations from optimality which varied with levels of autistic traits.

531 Computational modeling allowed us to characterize the decision process of sampling
532  choices by two stages. The two-stage model well predicted the bimodality of DT

533 distributions as well as the positive correlation between mean DT and the second-

534  thought probability estimated from sampling choices. Autistic traits influenced the

535 strategic diversity concerning whether cost or evidence is considered first.

536 Previous ASD studies that had used similar bead-sampling tasks yielded

537 inconclusive results: One study found that adolescents with ASD sampled more than
538 the control group [52], whereas a second study of adults with ASD found the reverse
539 [40]. As to healthy people with higher autistic traits, we did not find overall oversampling
540 or undersampling but more subtle differences. To ask whether people with ASD or

541 higher autistic traits oversample or undersample information is probably not a proper
542  question. In fact, both oversampling and undersampling may lower one’s expected gain,
543  depending on the rewarding structure of the environment. As we suggested in the

544  Introduction, a more important question is whether autistic traits influence one’s ability to
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545 sample optimally, that is, to balance sampling cost and information gain. In previous
546  ASD studies [40,52], sampling incurred no explicit cost but implicit cost such as time or
547  cognitive effort whose exact value to a specific individual is hard to measure, therefore
548 we could hardly compare the optimality of different individuals’ performances. By

549 introducing explicit monetary cost for sampling (as Juni et al. did [50]) in our experiment,
550 we were able to evaluate sampling cost as a potential moderator for autistic trait-related
551 differences in information sampling. Indeed, we found that people with higher autistic
552 traits can be more optimal or less optimal than those with lower autistic traits depending

553 on the level of sampling cost.

554 Sevgi, Diaconescu, Tittgemeyer, and Schilbach [53] demonstrated how

555 computational modeling can be a powerful tool in deepening our understanding of

556 autistic-trait-related cognitive processes and separating the affected processes from the
557 intact ones. They found that autistic traits do not, as usually believed, influence

558 individuals’ ability of learning social cues but only influence the weight assigned to

559 social cues in decision making.

560 Similarly, the autistic-trait-related differences in sampling decisions we found
561 through computational modeling are surprisingly selective. Participants with different
562 levels of autistic traits were indistinguishable in their ability to weigh sampling cost or
563 evidence gain in the two decision stages. What distinguished them was the strategic
564  diversity across choices concerning whether to consider cost or evidence in the first
565 stage. Participants with higher autistic traits were less diverse and stuck more to

566 evaluating cost first.
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567 Studies using autistic traits as a surrogate for studying ASD have revealed

568 congruent and converging autistic-trait-related effects as those of ASD [9,10,53-57].
569  Although our findings could provide some insights on how autistic traits could influence
570 people’s information sampling, we should also be aware that high autistic traits in typical
571 people are not equivalent to symptoms of ASD [58—60] and autistic-trait-related

572  differences do not necessarily characterize the differences between people with and
573  without ASD. Thus, future research should test people with ASD to see how their

574  information sampling differs from the typical population.

575 In our task, information sampling is instrumental—additional information would
576 increase the probability of correct judgment. There are also situations where information
577 is non-instrumental, for example, the information that is gathered after one’s decision
578 and that would not change the outcome of the decision. Both humans [30-35] and non-
579 human primates [36—39] are willing to pay for non-instrumental information, especially
580 when itis good news. Whether autistic traits influence one’s tendency to seek non-

581 instrumental information is a question for future research.

582 To summarize, we find that people with different levels of autistic traits differ in
583 the optimality of information sampling and these differences are associated with their
584  strategic diversity in the decision process. Recent studies suggest that autistic traits

585 may influence an individual’s ability of adaptively using her own information processing
586 capability while not influencing the capability itself. For example, autistic traits may only
587 influence the tendency to use social information but not the capability to perceive it [53],
588 or may only influence the flexibility of updating learning rate but not probabilistic learning

589 itself [10]. Our results add to this line of findings that autistic-trait-related differences
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590 may come from differences in higher-level cognitive functions other than primary

591 information processing.

592
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593  Methods

594 Ethics Statement

595 The experiment had been approved by the Institutional Review Board of School of
596 Psychological and Cognitive Sciences at Peking University (#2016-03-03). All
597 participants provided written informed consent and were paid for their time plus

598 performance-based bonus.

599

600 Experiment

601 Participants. One hundred and fourteen college student volunteers participated in our
602 experiment. Ten participants were excluded. Six of them were IQ outliers, one

603 misunderstood instructions, one had a strong judgment bias towards one type of stimuli,
604 one did not draw any bead in 286/288 of the trials, and one had a poor judgment

605 consistency. This resulted in a final sample size of 104 participants (42 males, aged 18-

606  28).

607 We estimated effect size a priori based on a mini meta-analysis of previous
608 literature [61] on autistic-trait-related perceptual or cognitive differences [9,53—

609 55,57,62-65], which was r = .36. To achieve a statistical power of 0.80 under the

610 significance level of .05, we would require 57 participants. However, considering initial
611 effect sizes are often inflated [66], we doubled the estimate and sought to test around

612 114 participants with some attrition expected.

613 1Q test. Combined Raven Test (CRT) was used to measure participants’ IQ for control

614 purpose. Raw CRT scores of all 114 participants averaged 67.69 (s.d., 4.71) and
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615 ranged from 41 to 72. Six of the participants (scoring from 41 to 58) fell out of two

616 standard deviations of the mean and was excluded from further analyses along with four
617  other participants (as mentioned above). The remaining 104 participants had a mean
618 CRT score of 68.65 (s.d., 2.82; ranging from 61 to 72), corresponding to a mean I1Q

619 score of 117.68.

620 AQ test. Autism Spectrum Quotient (AQ) questionnaire [18] was used to quantify
621 participants’ autistic traits. AQ questionnaire is a 4-point self-reported scale with 50
622 items measuring five type of autistic characteristics: social interaction, attentional
623  switch, attention to detail, imagination, and communication. Though the 4-point scale
624  was sometimes reduced to binary coding [18], we adopted the full 4-point scoring

625 system (“definitely disagree”, “slightly disagree”, “slightly agree”, “definitely agree”

626 respectively scored 0—3) to maximize the coverage of latent autistic traits [25,67—69].

627 The AQ scores of the 104 participants were normally distributed (Shapiro-Wilk
628 normality test, W= 0.99, p = .32; S8 Fig) with mean 69.97 and standard deviation 10.48,
629 ranging from 49 to 95. There was little correlation between AQ and IQ, r; = —.01,p =
630 .95, AQ and age, r; = —.08,p = .40, or AQ and gender, biserial correlation r = .13,p =

631 .31.

632  Apparatus. All stimuli of the bead-sampling task were visually presented on a 21.5-inch
633 computer screen controlled by MATLAB R2016b and PsychToolbox [70-72].
634 Participants were seated approximately 60 cm to the screen. Responses were recorded

635 via the keyboard.
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636 Procedure. On each trial of the experiment (Fig 1a), participants saw a pair of jars on
637 the left and right of the screen, each containing 200 pink and blue beads. The pink-to-
638  blue ratios of the two jars were either 60%:40% vs. 40%:60%, or 80%:20% vs.

639 20%:80%. Participants were told that one jar had been secretly selected, and their task
640 was to infer which jar was selected. Each time they pressed the space bar, one bead
641 was randomly sampled with replacement from the jar and presented on the screen,

642 appended to the end of the sampled bead sequence. Participants were free to draw 0 to
643 20 bead samples, but each sample might incur a cost. The cost per sample on each trial
644 could be 0, 0.1, or 0.4 points. A green bar on the top of the screen indicated how many
645  bonus points remained (10 points minus the total sampling cost by then). When

646  participants were ready for inference, they pressed the Enter key to quit sampling and
647  judged whether the pre-selected jar was the left or right jar by pressing the

648 corresponding arrow key. Feedback followed immediately. If their judgment was correct,
649  participants would receive the remaining bonus points; otherwise nothing. Bonus points
650 accumulated across trials and would be converted into monetary bonus after the

651 experiment. Participants were encouraged to sample wisely to maximize their winning.

652 The pink-dominant jar was pre-selected on half of the trials and the blue-

653 dominant jar on the other half. Their left/right positions were also counterbalanced

654 across trials. In the formal experiment, the two evidence (i.e. bead ratio) conditions

655 (60/40 and 80/20) were randomly mixed within each block and the three cost conditions
656 (0, 0.1, and 0.4) were blocked. Besides being visualized by the green bar on each trial,
657  cost for each block was also informed at the beginning of the block. The order of cost

658 blocks was counterbalanced across participants. We further confirmed that block order
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659 (6 permutations) had no significant effects on participants’ sampling choices (efficiency:

660  Fso700 =2.06,p =.08, n,—n, . Fsg799=151,p=.19, SD(n,): F5e707, = 1.53,p = .19) Or

K opt
661 decision times (F5q95 = 0.60,p = .70). Each of the six conditions was repeated for 48
662 times, resulting in 288 trials. The formal experiment was preceded by 24 practice trials.
663 Participants first performed the experiment, then the Combined Raven Test and last the

664 AQ questionnaire, which took approximately 1.5 hours in total.

665

666 Statistical Analyses

667  All statistical analyses (except for group-level Bayesian model comparison) were

668 conducted in R 3.5.3 [73].

669 Linear mixed models (LMMs). Linear mixed models were estimated using “afex”

670 package [74], whose F statistics, degrees of freedom of residuals (denominators), and
671 p-values were approximated by Kenward-Roger method [75,76]. Specifications of

672 random effects followed parsimonious modeling [77]. For significant fixed effects,

673 “emmeans” package was used to test post hoc contrasts [78]. Interaction contrasts were
674 performed for significant interactions and, when higher order interactions were not

675  significant, pairwise or consecutive contrasts were performed for significant main effects.
676  Statistical multiplicity of the contrasts was controlled by a single-step adjustment, which
677  used multivariate t distributions to estimate the critical value for conducted contrasts

678  [79,80].

679 LMM1: decision efficiency is the dependent variable; fixed effects include an intercept,

680 the main and interaction effects of AQ, cost, and ratio (evidence); random effects
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681 include correlated random slopes of costs and ratios within participants and random

682  participant intercept.

683 LMM2: sampling bias (mean number of actual sampling minus optimal number of

684 sampling;n, —n

. ) 18 the dependent variable; the fixed and random effects are the same

685 as LMM1.

686 LMM3: standard deviation of the number of sampling (SD(n,)) is the dependent variable;

687 the fixed and random effects are the same as LMM1.

688 LMM4: mean decision time (DT) across all sampling choices of a condition is the

689 dependent variable; the fixed and random effects are the same as LMM1.

690 LMMS5: DT of each sample number (1 to 20 samples) averaged over all trials is the

691 dependent variable; fixed effects involve an intercept, the main and interaction effects of
692 AQ and sample number, and random effects include a random participant intercept. The
693 model also incorporated weights on the residual variance for each aggregated data

694  point to account for the different number of raw DTs for each sample number of each

695  participant.

696 LMMG6: the dependent variable is the same as LMM4; in addition to the fixed and
697 random effects of LMM1, the linear effect of second-thought probability is included in
698 the fixed effects, and a random slope of the second-thought probability that is

699 uncorrelated with the random intercept is included in the random effects.

700 Following Jones et al. [81], we identified three “likely noncompliant” outlier

701 observations in the number of bead samples for each condition based on nonparametric
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702  boxplot statistics, that is, those whose values were lower than the 1st quartile or higher
703  than the 3rd quartile of all the observations in the condition by more than 1.5 times of
704 the interquartile range (see S9 Fig). These noncompliant observations (not participants

705  per se) were excluded from LMMs 1-3.

706 To examine possible non-linear effects of AQ, we constructed LMMs that
707  included AQ? and its interaction with cost and ratio as additional fixed-effects terms
708 separately for LMM1-6. We found that adding the second order terms of AQ did not

709  significantly improve the goodness-of-fit of any LMM.

710 Decision times (DTs). Because stopping sampling involved a different key press, only
711  DTs for continuing sampling were analyzed. Before any analysis of DTs, outliers of log-
712  transformed DTs were excluded based on nonparametric boxplot statistics, with data
713  points lower than the 1st quartile or higher than the 3rd quartile of all the log-

714 transformed DTs by more than 1.5 times of the interquartile range defined as outliers.

715 Correlation analyses based on modeling results. Spearman’s rank correlations
716  (denoted ry) were computed between AQ and model measures (model parameter or

717 model evidence), and between model measures and behavioral measures (efficiency,
718  n,—n,, ,or SD(n,)). Except for the statistics in Fig 6¢, multiple correlation tests were

719  corrected using false discovery rate (FDR) to avoid the inflation of false alarm rates with

720  multiple comparisons.

721 To test whether the curve of correlation coefficients between
722 AICC 55 evidence — AICC yiqence> cose @Nd AQ in Fig 6¢ was significantly different from 0 or

723  the overall correlation at some points, we performed cluster-based permutation tests
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724  [82] as follows. For the test against 0, we first identified points that were significantly
725 different from O at the uncorrected significance level of .05 using t tests and then
726  grouped adjacent same-signed significant correlations into clusters. For each cluster,

727  the absolute value of the summed Fisher’s z values transformed from r, was defined as
728  the cluster size. We randomly shuffled the values of AICC - evidence — AICCevidence- cost

729  across participants to generate virtual data, calculated the correlation curve and
730 recorded the maximum size of its clusters for the virtual data. This procedure was
731 repeated for 10,000 times to produce a distribution of chance-level maximum cluster

732  sizes, based on which we calculated the p value for each cluster in real data.

733 For the test against the overall correlation of 104 participants, we randomly

734  shuffled the order of inclusion across participants and identified points that were

735  significantly different from the overall correlation at the uncorrected significance level
736  of .05 using Monte Carlo methods. Otherwise the permutation test was identical to that

737 described above.

738

739 Modeling

740 Expected gain. Given a specific sequence of bead samples, an ideal observer would
741 always judge the preselected jar to be the one whose dominant color is the same as
742  that of the sample sequence. In the case of a tie, the observer would choose the two
743  jars with equal probability. Suppose the sample size is n, the maximal reward is 10
744  points, the unit sampling cost is ¢, and the percentage of predominated beads in the

745  preselected jar is q. The expected probability of correct judgment is:
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747 The expected gain is E[Gain|n, q,c] = (10 — nc)p(n|q). For a specific cost and

748  evidence condition, the optimal sample size is the value of n that maximizes

749  E[Gain|n,q,c].

750 One-stage models. We modeled participants’ each choice of whether to continue or
751  stop sampling (i.e. whether to press the space bar or Enter key) as a Bernoulli random
752  variable, with the probability of stopping sampling determined by cost- or evidence-

753 related factors. Pressing the Enter key after 20 samples was not included as a choice of

754  stopping sampling, because participants had no choice but to stop by then.

755 We considered two families of models: one-stage and two-stage models. The
756  description for each model is summarized in S1 Table. In one-stage models, the
757  probability of stopping sampling on the i-th trial after having drawn j beads is determined

758 by a linear combination of K decision variables (DVs) via a logistic function:

1

759 Pi= 1 g% (2)
K

760 X;=>  BiDVy. 3)
k=1
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761 Different one-stage models differed in whether cost-related variables, evidence-related

762  variables, or both served as DVs (S1 Table).

763  Cost-only one-stage model (denoted Cost only): cost-related variables as DVs,
764  including unit cost per bead (categorical: 0, 0.1, or 0.4), number of beads sampled (j),

765 and total sampling cost (product of the former two DVs).

766  Evidence-only without decay one-stage model (denoted Evidence only w/o decay):

767  evidence-related variables as DVs, including unit log evidence per bead (i.e., In(60/40)
768  orIn(80/20)), absolute value of cumulative information (cumulative information refers to
769 the difference between the numbers of pink and blue bead samples), total log evidence
770  (product of the former two DVs), and the correctness and the number of bead samples

771  in last trial.

772  Cost + evidence without decay one-stage model (denoted Cost + Evidence w/o decay):

773  both cost-related and evidence-related variables as DVs.

774  Cost + evidence with decay one-stage model (denoted Cost + Evidence): both cost-

775 related and decayed evidence-related variables as DVs.

776 In models with decayed evidence, cumulative information (CI) is modulated by a

777  decay parameter a:

0 7=0;
778 Cl,;,=< aCI,; .1 +1 j>0, after a pink bead,; 4)
aCl;;_1—1 j>0, after a blue bead.
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779  The DVs of absolute value of cumulative information and total log evidence in the

780 models with decay are modulated by the decay parameter accordingly.

781 Two-stage models. In two-stage models, sampling choices may involve two decision

782  stages, with the probability of reaching the decision of stopping sampling in each stage

783  being
1
784 Py = (5)
age 1
785 Py T (6)

786  Whether to enter the second stage is probabilistic, conditional on the decision reached
787 in the first stage. For models where the second stage is triggered by the decision of
788  continuing sampling in the first stage, the overall probability of stopping sampling can be

789  written as:
790 Py =Py + (L= pi) pirpi™ )

791  Here p;* denotes second-thought probability—the probability of using the second stage

792  given that the first stage concludes with continuing sampling, whose value is defined
793 differently in different models as specified below. Alternatively, for models where the
794  second stage is triggered by the decision of stopping sampling in the first stage, the

795  overall probability of stopping sampling can be written as:

796 pij — pgtagel (1 _ p;jec) _|_ pgtagelp%ec pgtageQ (8)
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797 Each stage works in the same way as one-stage models do (Egs. 2—-4) and is
798 influenced by mutually exclusive sets of DVs (S1 Table). We considered two-stage

799 models whose assumptions differ in three dimensions: (1) which factors control the first
800 stage and which control the second stage (cost-first or evidence-first), (2) what kind of
801 decision in the first stage (continuing or stopping sampling) has a chance to trigger the
802 second stage, and (3) what determines the probability to enter the second stage

803 (“second-thought probability”) after a qualified first-stage decision (the cost condition,
804 the evidence condition, or the probability of stopping in the first-stage decision). A full
805 2x2x3 combinations resulted in 12 different two-stage models. The assumptions for

806 each dimension are specified below.

807  Cost-first two-stage models (models denoted by Cost—}Evidence ): cost-related

808 variables as first-stage DVs and decayed evidence-related variables as second-stage
809 DVs.

810 Evidence-first two-stage models (models denoted by Evidence—}Cost ): decayed

811 evidence-related variables as first-stage DVs and cost-related variables as second-

812 stage DVs.

813  Continue-then-2nd-thought two-stage models (models denoted by

continue continue

814  Cost ——— Evidence or Evidence——— Cost ): If stopping sampling is the decision in

815 the first stage, it is finalized and there is no second stage; otherwise, either continuing
816 sampling becomes the final decision, or the decision is re-evaluated in the second

817  stage.
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818  Stop-then-2nd-thought two-stage models (models denoted by Costh’p>Evidence or

819 EvidenceL:’p>Cost): If continuing sampling is the decision in the first stage, it is
820 finalized and there is no second stage; otherwise, either stopping sampling becomes

821 the final decision, or the decision is re-evaluated in the second stage.

822  Cost-controls-2nd-thought two-stage models (models denoted by Costm)Evidence

823 or Evidenceﬁcost ): The second-thought probability is controlled by the cost

sec sec

824  condition, with ;™ = Pc_sero, Dij. = Po-tow » aNA D7 = De_nign , respectively for the zero-,

825  low-, and high-cost conditions, where pc_,ero, Pc-low » @Nd Do-nign are free parameters.

826  Evidence-controls-2nd-thought two-stage models (models denoted by

827  Cost———>Evidence or Evidence——>Cost ): The second-thought probability is

E-cond

sec sec

828  controlled by the evidence condition, with p;;° = pg_1ow and p;;° = Pr-nien respectively for
829  the low- and high-evidence conditions, where pg_i,,, and pg i are free parameters.
830  Flexible-2nd-thought two-stage models (models denoted by Cost—>Evidence or

831  Evidence—>Cost ): The second-thought probability is a function of the probability of

832  stopping sampling in the first stage,

sec Stagel
P p;
833 1n1_J sec :}/lnl_J Stagel +¢ > (9)
P P

834 where ¥ and ¢ are free parameters.
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835 The intuition behind this form of second-thought probability is that participants
836  should be likely to use the second stage to stop sampling when they are reluctant to
837  continue but end up with choosing continue in the first stage, and likewise for the

838 reverse case.

839 For both one- and two-stage models, given that the probability of stopping

840  sampling on the i-th trial after having drawn j beads is p; , the likelihood of observing a

841  specific choice c; (0 for continue and 1 for stop) is

p., if ¢, =1,
842 = v v
L(c;)= o p . e -0 (10)
ij? ij :

843 Modeling decision times (DTs). Evidence-accumulation models are the common

844  practice to model the response time (RT) of human decision-making, which can capture
845 the three properties of the observed RT distributions [83]: (1) RT distributions are

846 positively skewed; (2) More difficult choices (i.e. when the two options are more closely
847 matched in the probability of being chosen) lead to longer RTs. (3) Correct choices (i.e.
848 choosing the option with the higher value) can have equal, shorter, or longer RTs than
849  wrong choices (i.e. choosing the option with the lower value). However, evidence-

850 accumulation models would be computationally intractable if applied to the two-stage
851 decision process of our interest, because there have been no analytical form or efficient
852  numerical algorithms to deal with the RT distribution resulting from two evidence-

853 accumulation processes, especially when the variables controlling each evidence-

854 accumulation process vary from choice to choice, as in our case.
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855 Therefore, we modeled participants’ decision time (DT) for each sampling with a
856  simplified form that is able to capture the three properties summarized above. For one-

857  stage models or the first stage of two-stage models, we have

858 },;jm///////tel — exp( Stagel + ﬂj’/ﬂgﬁl ( S/{lg@l ) S/agelp;/ﬂgfel (1 pS/agel )) (1 1)
859 Yﬂopl — exp( Sragel + S/dgflp;ldgel + Sl(l(;’z lpSfﬂc’el (1 pSfﬂgel )) (12)
860 07:];/{1‘5)?1 — exp (ln }//]C/ml[/mel + g};/ﬂgel ) , (1 3)

861 where Y{;"’””"’”“ and Y{;"””l denote the expected DTs respectively for continuing and
862  stopping sampling, which have the same form expect that the ' in Eq. 11 is

863  replaced by ( 5’”5’“) in Eq. 12. p7;*' denotes the observed DT if the decision of
864  continuing sampling is made in the first stage. Here "' ~ /V(O,of) is a Gaussian
865 noise term so that 7' is log-normally distributed, satisfying Property (1). The
866  quadratic term, p ! (1 p,f’”g‘”‘) allows p77*!' to vary with choice difficulty so as to

867  satisfy Property (2). The inclusion of the ( 5’”5’“) term, would enable the three

868  possibilities of Property (3). The B, 7', By, and o are free parameters.

869 The expected total DT of reaching the decision of continuing sampling in the
870 second stage equals to the time required by the first stage plus that of the second stage

871 and has the forms

872 7 , 2:),1; ; +eXP( slaggz+ﬂ5/aggz( S/ag62)+ Sldg(ZpS/ageZ (1 pS/ageZ))’ (14)
873 and }/;]com/mmZ Yﬂopl_i_exp( J'/ageZ+ S/dg(Z(l_p;'/agKZ)_i_ S/ﬂgeZpSldg(Z(l pS/ageZ))’ (15)
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874  respectively for continue-then-2nd-thought and stop-then-2nd-thought models. The

875 observed DT of continuing sampling in the second stage is then

876 DzjtflageZ — eXp(]n )//jrﬂ/zl[mmZ + Slj'lﬂgeZ) , (16)
877  where &> ~ &#(0,02) is a Gaussian noise term. The f;**, §"**, B, and o, are

878 free parameters.

879 Thus, for one-stage models, the likelihood of observing a specific DT}, for

880 drawing the (j+17)-th bead on the /-th trial is

; 2
1 (ln DT —_ ln Y"C'Olltmue] )
881 LIDT. \=L|DT. = DT.jglagel =———— X . ij i 17
( U) ( U ! ) ﬂo—l P 20'12 . ( )
882 For two-stage models, where DT} is a mixture of p7"“' and D7, its

883 likelihood follows

L(DTU ) = L(DTU. = DTl.jS"‘ge1 )P (Stagel‘ continue; ) + L(DTU = DT,:;W”‘?2 )P (Stage2‘ continue; )

_ 1 (ln DT” —1In Yijcontinugl )2 s 1 |
884 - \/EO'1 eXp| — 26|2 ( tage ‘contmuel.j) »
1 (ln D Tij —In K,jcontinueZ )2 |
* oo, P T 26" P(Stage2|continue,
2

885 where P(Sfagel|contlhﬂelj) and P(S/dg€2|c‘0ﬂllhﬂ€ij) respectively refer to the probabilities

886 that the choice is finalized at Stage 1 and Stage 2, given that continuing sampling is the
887  choice. These probabilities are computed based on the corresponding choice model,

888 which are
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889 P(Sfagel‘mmz’/m@j ) = - +1p_:€;° » S,agez) (19)
ij ij
890  4ng P Stagel|continue, )= L-p (20)

1 pStagel + p;jtagelp;ec (1 pStageZ)

891 respectively for continue-then-2nd-thought and stop-then-2nd-thought two-stage models,

892 and

893 P(Sldg€2|60ﬂflhﬂ€ij) =1- P(Stage] |c’0/m'/weij ) (21)
894 The p“', pi““, and p;* are defined earlier in the choice model and estimated from
895  participants’ choices.

896

897 Joint log likelihood of choice and DT. For a specific sampling choice modeled by

898  two-stage models, the likelihood of the joint observation of continue; and DT is

(c DT, ) L(DT = DT} 1) (Stagel continue, )+L(DTU = DTI.J.S’“""’z)P(StageZ,continueij)
= L(D Ts"’g"]) (Stagel’contmueﬁ)P(continueﬁ)
899 +L(D TS"’M) (StageZ’continue[j)P(continueﬁ) (22)
= (contlnue )[ (DT DTS‘“’”I) (Stagel‘continueé/.)—kL(DTU. = DT,.J,S’“"’”)P(Stage2‘continue”)}
=L(e,)L(pT;)

900 That is, the joint likelihood is equivalent to the product of the likelihoods of choice (Eq.
901 10) and DT (Egs. 17-18). The same equivalence holds for one-stage models, whose
902 proof is a special case of that of two-stage models. For the joint log likelihood summed

903 over trials, we have
904 Z;lnL(cy,DT) Z;lnL(cy) (07,)= ZZmL( S )+ ZZlnL( 7). (23)
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905 Therefore, we used the sum of the log likelihoods of the choice and DT models for

906 model comparisons.

907

908 Model fitting. Each one- or two-stage model consists of two parts: choice and DT. We
909 first fit each choice model separately for each participant to the participant’s actual

910 sampling choices using maximum likelihood estimates. As an example, if the participant
911 samples 5 beads on a trial, she has a sequence of 6 binary choices on the trial (000001,
912  with O for continue and 1 for stop). Different models differ in how the likelihood of

913 generating a specific choice (0 or 1) varies with the cost or evidence observed before
914 the choice. For one-stage models, where all decision variables control the choice in one
915 stage, the influence of cost- or evidence-related variables is fixed across experimental
916 conditions. In contrast, for two-stage models, the decision variables that control the

917 second stage exert variable influences on the choice, because the probability for the
918 second stage to be recruited varies with experimental conditions. The observed choice
919 patterns in the experiment thus allowed us to discriminate different models, including

920 one- and two-stage models.

921 For a specific fitted choice model, we could compute the second-thought
922  probability, whenever applicable, as well as the probabilities of choosing stopping at
923 each stage. With this information, we then fit the corresponding DT model to the

924  participant’s DTs to estimate the DT-unique parameters.

925 We chose to optimize the parameters of choice and DT models in this way

926 instead of optimizing them simultaneously to avoid the computational intractability of
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927 fitting a large number of parameters. In addition, choices and DTs can serve as

928 independent tests for the two-stage decision process we proposed.

e

929 All coefficients s of decision variables, second-thought probabilities p;, decay

930 parameter a, and all gand o in DT models were estimated as free parameters using
931 maximum likelihood estimates. All parameters were unbounded, except that p;; of
932  cost-controlled and evidence-controlled second-thought models and a were bounded to
933 [0, 1], and B, B, o1, and o of DT models were bounded to (0, Inf). Optimization

934  was implemented by the fmincon function with interior-point algorithm in MATLAB

935 R2017a.
936

937 Model comparison. The Akaike Information Criterion corrected for small samples

938 (AICc) [44,45] and Bayesian Information Criterion (BIC) were calculated as model

939 evidence for model comparison. In the computation of these information measures, the
940 number of “trials” of a participant’s dataset was defined as the number of DTs modeled
941 for the participant. The AAICc (ABIC) for a specific model was computed for each

942  participant as the AICc (BIC) difference between the model and the participant’s best-
943 fitting model (i.e. the model with the lowest AICc (BIC)). The summed AAICc (ABIC)
944  across participants was used for fixed-effects comparisons. Group-level Bayesian

945 model selection [46,47] was used to provide an omnibus measure across individual

946 participants that takes into account random effects.
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