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   2	
  

Abstract 35	
  

Information sampling can reduce uncertainty in future decisions but is often costly. To 36	
  

maximize reward, people need to balance sampling cost and information gain. Here we 37	
  

aimed to understand how autistic traits influence the optimality of information sampling 38	
  

and to identify the particularly affected cognitive processes. Healthy human adults with 39	
  

different levels of autistic traits performed a probabilistic inference task, where they 40	
  

could sequentially sample information to increase their likelihood of correct inference 41	
  

and may choose to stop at any moment. We manipulated the cost and evidence 42	
  

associated with each sample and compared participants’ performance to strategies that 43	
  

maximize expected gain. We found that participants were overall close to optimal but 44	
  

also showed autistic-trait-related differences. Participants with higher autistic traits had 45	
  

a higher efficiency of winning rewards when the sampling cost was zero but a lower 46	
  

efficiency when the cost was high and the evidence was more ambiguous. 47	
  

Computational modeling of participants’ sampling choices and decision times revealed a 48	
  

two-stage decision process, with the second stage being an optional second thought. 49	
  

Participants may consider cost in the first stage and evidence in the second stage, or in 50	
  

the reverse order. The probability of choosing stopping at a specific stage increases 51	
  

with increasing cost or increasing evidence. Surprisingly, autistic traits did not influence 52	
  

the decision in either stage. However, participants with higher autistic traits inclined to 53	
  

consider cost first, while those with lower autistic traits considered cost or evidence first 54	
  

in a more balanced way. This would lead to the observed autistic-trait-related 55	
  

advantages or disadvantages in sampling optimality, depending on whether the optimal 56	
  

sampling strategy is determined only by cost or jointly by cost and evidence.  57	
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Author Summary 58	
  

Children with autism can spend hours practicing lining up toys or learning all about cars 59	
  

or lighthouses. This kind of behaviors, we think, may reflect suboptimal information 60	
  

sampling strategies, that is, a failure to balance the gain of information with the cost 61	
  

(time, energy, or money) of information sampling. We hypothesized that suboptimal 62	
  

information sampling is a general characteristic of people with autism or high level of 63	
  

autistic traits. In our experiment, we tested how participants may adjust their sampling 64	
  

strategies with the change of sampling cost and information gain in the environment. 65	
  

Though all participants were healthy young adults who had similar IQs, higher autistic 66	
  

traits were associated with higher or lower efficiency of winning rewards under different 67	
  

conditions. Counterintuitively, participants with different levels of autistic traits did not 68	
  

differ in the general tendency of oversampling or undersampling, or in the decision they 69	
  

would reach when a specific set of sampling cost or information gain was considered. 70	
  

Instead, participants with higher autistic traits consistently considered sampling cost first 71	
  

and only weighed information gain during a second thought, while those with lower 72	
  

autistic traits had more diverse sampling strategies that consequently better balanced 73	
  

sampling cost and information gain.      74	
  

  75	
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Introduction 76	
  

Information helps to reduce uncertainty in decision making but is often costly to collect. 77	
  

For example, to confirm whether a specific tumor is benign or malignant may require 78	
  

highly invasive surgery procedures. In such cases, it can be more beneficial to tolerate 79	
  

some degree of uncertainty and take actions first. To maximize survival, humans and 80	
  

animals need to balance the cost and benefit of information sampling and sample the 81	
  

environment optimally [1,2].  82	
  

 However, autism spectrum disorder (ASD)—a neurodevelopmental disorder 83	
  

characterized by social impairments and repetitive behaviors [3]—seem to be 84	
  

accompanied by suboptimal information sampling, though in various guises. For 85	
  

example, individuals with repetitive behaviors tend to spend time on redundant 86	
  

information that helps little to reduce uncertainty [4]. Eye-tracking studies reveal that 87	
  

people with ASD have atypical gaze patterns in ambiguous or social scenes, that is, 88	
  

they sample the visual environment in an inefficient way [5,6]. According to the recently 89	
  

developed Bayesian theories of ASD that explain a variety of perceptual, motor, and 90	
  

cognitive symptoms [7–13], deviation from Bayesian optimality in information processing 91	
  

is primary to ASD [4,14–17]. In this Bayesian framework, information sampling is 92	
  

referred as “disambiguatory active inference” [4] and plays an important role in guiding 93	
  

the subsequent inferences or decisions. We hereby conjectured that ASD symptoms 94	
  

such as repetitive behaviors and ineffecient gaze patterns reflect general impairments in 95	
  

information sampling.    96	
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The autistic traits of the whole population form a continuum, with ASD diagnosis 97	
  

usually situated on the high end [18–24]. Moreover, autistic traits share genetic and 98	
  

biological etiology with ASD [25]. Thus, quantifying autistic-trait-related differences in 99	
  

healthy people can provide unique perspectives as well as a useful surrogate for 100	
  

understanding the symptoms of ASD [23,26].  101	
  

The present study is aimed to understand how autistic traits in typical people may 102	
  

influence their optimality of information sampling. In particular, we focused on the 103	
  

situation where information can be used to improve future decisions (e.g. [27–29], in 104	
  

contrast to non-instrumental information gathering such as [30–39])  and hypothesized 105	
  

that individuals with high autistic traits may deviate more from optimality in information 106	
  

sampling. 107	
  

Possible suboptimality may arise from a failure of evaluating sampling cost or 108	
  

information gain, or improper trading off the two, or a greater noise [27]. To investigate 109	
  

these possibilities, we tested healthy adults of different levels of autistic traits in an 110	
  

information sampling task adapted from [40,41]: On each trial of the experiment, 111	
  

participants could draw samples sequentially to accumulate evidence for a probabilistic 112	
  

inference and would receive monetary rewards for correct inferences. Each additional 113	
  

sample may increase their probability of correct inference but also incur a fixed 114	
  

monetary cost. In order to maximize expected gain, participants should draw fewer 115	
  

samples when each sample had higher cost or provided higher evidence, and vice 116	
  

versa. We manipulated the cost and evidence per sample and compared participants’ 117	
  

performance to optimality. We found that different levels of autistic traits were 118	
  

accompanied by different extents of deviation from optimality. Compared to their peers, 119	
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participants with higher level of autistic traits received higher rewards in the zero-cost 120	
  

conditions due to less undersampling, where the optimal strategy was to sample as 121	
  

many as possible, but meanwhile lower rewards in the high-cost, low-evidence condition 122	
  

due to more oversampling, where the optimal strategy would sacrifice accuracy to save 123	
  

cost.  124	
  

What cognitive processes in information sampling are particularly affected by 125	
  

autistic traits? Through computational modeling, we further decomposed participants’ 126	
  

sampling choices into multiple sub-processes and found that the influence of autistic 127	
  

traits was surprisingly selective and subtle. In particular, participants’ sampling choices 128	
  

could be well described by a two-stage decision process: When the first decision stage 129	
  

does not reach the choice of stopping sampling, a second decision stage is 130	
  

probabilistically involved to arbitrate, which offers a second chance to consider stopping 131	
  

sampling. The two stages were independently controlled by cost and evidence and 132	
  

neither stage showed autistic-trait-related differences. What varied with levels of autistic 133	
  

traits was the strategic diversity: Participants with higher autistic traits were more likely 134	
  

to always consider cost in the first stage and evidence in the second, while those with 135	
  

lower autistic traits had a larger chance to use the reverse order as well. As a 136	
  

consequence, the former would perform better when the optimal strategy does not 137	
  

depend on evidence, while the latter would do better when the optimal strategy is 138	
  

determined jointly by cost and evidence.     139	
  

	
    140	
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Results 141	
  

One hundred and four healthy young adults participated in our experiment, whose 142	
  

autistic traits were measured by the self-reported Autism Spectrum Quotient (AQ) 143	
  

questionnaire [18]. The computerized experimental task is illustrated in Fig 1a. On each 144	
  

trial, participants first saw two jars filled with opposite ratios of pink and blue beads and 145	
  

were told that one jar had been secretly selected by the experimenter. They could 146	
  

sample up to 20 beads sequentially with replacement from the selected jar to infer 147	
  

which jar had been selected. Each key press would randomly sample one bead and 148	
  

participants could decide to stop sampling at any moment. For each correct inference, 149	
  

participants would receive 10 points minus the total sampling cost. Their goal was to 150	
  

earn as many points as possible, which would be redeemed into monetary bonus in the 151	
  

end. The cost of sampling one bead could be 0, 0.1, or 0.4 points, referred below as 152	
  

zero-, low-, and high-cost conditions respectively. The pink-to-blue ratios of the two jars 153	
  

could be 60%:40% vs. 40%:60%, or 80%:20% vs. 20%:80%, which corresponded to 154	
  

lower (60/40) or higher (80/20) evidence per sample favoring one jar against another. 155	
  

The sample size that maximizes expected gain would change with the cost and 156	
  

evidence conditions (Fig 1b, see Methods).  157	
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 158	
  

Fig 1. The bead-sampling task.  159	
  

(a) Time course of one trial. “Preview” informed the participant of the pink-to-blue ratios of the 160	
  
two jars (80%:20% vs. 20%:80% in this example, corresponding to the high-evidence condition). 161	
  
Then the participant could sample beads from the unknown pre-selected jar one at a time up to 162	
  
20 beads (“sampling”) or quit sampling at any time. Afterward, the participant judged which jar 163	
  
had been selected (“judgment”). Feedback followed, showing the correctness of judgment and 164	
  
winning of the current trial. Feedback was presented for 1 s, whereas preview, sampling, and 165	
  
judgment were self-paced. During sampling, the remaining bonus points (green bar), as well as 166	
  
the array of bead samples, were visualized and updated after each additional sample. (b) 167	
  
Optimal sampling strategy vs. participants’ performance for each of the six cost-by-evidence 168	
  
conditions. On a specific trial, the expected probability of correctness (dashed lines) and the 169	
  
remaining bonus points (dotted lines) are respectively increasing and decreasing functions of 170	
  
the number of bead samples. The expected gain (solid lines), as their multiplication product, first 171	
  
increases and then decreases with the number of samples. Note that the sample size that 172	
  
maximizes expected gain varies across different cost and evidence conditions. Each circle 173	
  
represents a participant with the color indicating their AQ score. 174	
  

 175	
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Sampling optimality may increase or decrease with autistic traits in 176	
  
different conditions  177	
  

We computed efficiency—the expected gain for participants’ sample sizes divided by 178	
  

the maximum expected gain—to quantify the optimality of participants’ sampling choices 179	
  

and used linear mixed model analyses to identify the effects of AQ and its interactions 180	
  

with sampling cost and information gain (LMM1 for efficiency, see Methods). 181	
  

Participants’ efficiency (Fig 2a) was on average 94% (i.e. close to optimality) but 182	
  

decreased with increasing cost (𝐹!,!"".!" = 65.38, 𝑝 < .001) or decreasing evidence 183	
  

(𝐹!,!"!.!! = 124.95, 𝑝 < .001), and decreased more dramatically when high cost and low 184	
  

evidence co-occurred (interaction 𝐹!,!"!.!" = 123.20, 𝑝 < .001). Though participants with 185	
  

different AQ did not differ in overall efficiency, AQ influenced efficiency through its 186	
  

interaction with cost and evidence (three-way interaction 𝐹!,!"#.!" = 5.60, 𝑝 = .004). As 187	
  

post hoc comparisons, we compared the regression slope of AQ—the change in 188	
  

efficiency with one unit of increase in AQ—across conditions (Fig 2d). Under the low-189	
  

evidence conditions, the slope was more negative under high cost than under zero 190	
  

(𝑡!"#.!" = −3.16, 𝑝 = .005) or low cost (𝑡!"!.!" = −2.64, 𝑝 = .023). No significant 191	
  

differences were found among different costs in the high evidence conditions. In almost 192	
  

all conditions the slope was non-negative or even significantly positive (i.e. the zero 193	
  

cost, low evidence condition, 𝑡!"#.!" = 2.11, 𝑝 = .037), indicating higher efficiency for 194	
  

participants with higher AQ. However, when sampling was both costly and little 195	
  

informative (i.e. the high-cost, low-evidence condition), the efficiency decreased with AQ 196	
  

(𝑡!"!.!" = −2.51, 𝑝 = .014).  We verified these AQ-related differences in an alternative 197	
  

analysis, where we divided participants evenly into three groups of low, middle, and 198	
  

high AQ scores and found similar results (S1 Fig). 199	
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The overall high efficiency was accompanied by adaptive sampling behaviors 200	
  

that were modulated by both sampling cost and information gain: Participants drew 201	
  

fewer samples in costlier or more informative conditions as the optimal strategy would 202	
  

require (Fig 2b). We quantified participants’ sampling behaviors in a particular condition 203	
  

using two measures: sampling bias (the actual number of sampling minus the optimal 204	
  

number of sampling, denoted ns − nopt ) and sampling variability (standard deviation of 205	
  

the actual numbers of sampling, denoted SD ns( ) ).   206	
  

A linear mixed model analysis on ns − nopt  (LMM2, see Methods) showed main 207	
  

effects of cost (𝐹!,!"".!" = 752.65, 𝑝 < .001) and evidence (𝐹!,!"!.!" = 177.48, 𝑝 < .001), 208	
  

as well as their interactions (𝐹!,!"!.!" = 546.59, 𝑝 < .001). Similar to its influence on 209	
  

efficiency, AQ did not lead to a general tendency of more oversampling or 210	
  

undersampling but had significant interactions with cost (𝐹!,!"!.!" = 3.99, 𝑝 = .022). In 211	
  

particular, the slope of AQ for ns − nopt  (Fig 2e) was more positive for the zero-cost than 212	
  

for the low-cost condition (𝑡!"!.!" = 2.61, 𝑝 = .025).  Under zero cost, given that 213	
  

participants tended to undersample (Fig 2b), a positive slope of AQ (𝑡!!".!" = 2.67, 214	
  

𝑝 = .009 for high evidence and 𝑡!"#.!" = 1.68, 𝑝 = .096 for low evidence) implies less 215	
  

undersampling for participants with higher AQ.    216	
  

According to a similar linear mixed model analysis on SD ns( )  (LMM3, see 217	
  

Methods), the main effects of cost (𝐹!,!"".!" = 57.13, 𝑝 < .001) and evidence (𝐹!,!"!.!" =218	
  

161.78, 𝑝 < .001) as well as their interactions (𝐹!,!"#.!" = 33.51, 𝑝 < .001) were 219	
  

significant (Fig 2c). Again, AQ influenced sampling variability through its interaction with 220	
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cost and evidence (three-way interaction 𝐹!,!"#.!" = 5.27, 𝑝 = .006).  Post hoc 221	
  

comparisons showed that the slope of AQ for sampling variability was more negative 222	
  

under zero cost than under low (𝑡!"#.!" = −2.43, 𝑝 = .042) or high cost (𝑡!"".!" = −3.51, 223	
  

𝑝 = .002) in the low-evidence conditions but was little influenced by cost in the high-224	
  

evidence conditions (Fig 2f).  In the low-evidence conditions, the observed slopes imply 225	
  

that higher AQ led to lower sampling variability under zero cost (𝑡!"#.!" = −2.22, 226	
  

𝑝 = .028) but higher sampling variability under high cost (𝑡!"#.!" = 2.50, 𝑝 = .014).     227	
  

Taken together, participants with different levels of AQ differed in both the mean 228	
  

and SD of sample sizes. Participants with higher AQ had higher efficiency in the zero-229	
  

cost, low-evidence condition, which was associated with less undersampling and lower 230	
  

sampling variability. Meanwhile, higher AQ corresponded to lower efficiency and higher 231	
  

sampling variability in the high-cost, low-evidence condition.  232	
  

 233	
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 234	
  

Fig 2. Optimality of sampling performance and the effects of autistic traits. 235	
  

(a) Sampling efficiency varied with cost (abscissa) and evidence (different colors) conditions. 236	
  
Participants’ efficiency was on average 94% (i.e. close to optimality) but decreased with 237	
  
increasing cost or decreasing evidence, and decreased more dramatically when high cost and 238	
  
low evidence co-occurred. (b) The mean number of bead samples participants drew in a 239	
  
condition (solid lines) decreased with increasing cost or increasing evidence. Compared to the 240	
  
optimal number of samples (dashed lines), participants undersampled in the zero- or low-cost 241	
  
conditions while oversampled in the high-cost conditions. (c) Sampling variability (standard 242	
  
deviation of the numbers of samples drawn across trials) varied with cost and evidence 243	
  
conditions. Error bars in (a) – (c) denote between-subject standard errors. (d) – (f) Effects of AQ 244	
  
levels on participants’ sampling performance in different cost (different colors) and evidence 245	
  
(abscissa) conditions. ΒAQ is the unstandardized coefficient of AQ indicating how much the 246	
  
efficiency (d), number of samples (e), and sampling variability (f) would change when AQ 247	
  
increases by one unit. Error bars represent standard errors of the coefficients. Orange asterisk: 248	
  
p < .05, orange plus: p < .1. 249	
  

   250	
  

Bimodal decision times suggest two consecutive decision processes   251	
  

Decision time (DT) for a specific sample—the interval between the onset of last bead 252	
  

sample (or, for the first sample, the start of the sampling phase) and the key press to 253	
  

draw the sample—provided further information about the cognitive process underlying 254	
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sampling choices. Though decision or response times usually have a positively skewed 255	
  

unimodal distribution and are close to Gaussian when log-transformed [42,43], the log-256	
  

transformed DTs for continuing sampling in our experiment had a bimodal distribution 257	
  

(Hartigan’s dip test for multimodality,  𝐷 = 0.004, 𝑝 < .001), well fitted by a mixture of two 258	
  

Gaussian distributions (Fig 3a). Such bimodality was evident in the low-cost and high-259	
  

cost conditions (low-cost, low-evidence: 𝐷 = 0.013,𝑝 < .001; low-cost, high-evidence: 260	
  

𝐷 = 0.009,𝑝 < .001; high-cost, low-evidence: 𝐷 = 0.014,𝑝 < .001; high-cost, high-261	
  

evidence: 𝐷 = 0.015,𝑝 < .001), but was barely palpable in the zero-cost conditions 262	
  

(zero-cost, low-evidence: 𝐷 = 0.002,𝑝 = .11; zero-cost, high-evidence: 𝐷 = 0.001,𝑝 =263	
  

.95), where the first peak was dominant. Similar bimodal distributions were observed for 264	
  

individual participants (S2 Fig) and could not simply be artifacts of data aggregation.  265	
  

 266	
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Fig 3. Decision time (DT) for each sampling. 267	
  

(a) The distributions of DTs aggregated over all participants (main plot) and for each cost and 268	
  
evidence condition (insets). In the main plot, the distribution of DTs (histogram) was clearly 269	
  
bimodal, well fitted by a Gaussian mixture (gray curve) with two Gaussian components (black 270	
  
curves). Such bimodality was also visible in most inset plots, though the relative weights of the 271	
  
two components varied with experiment conditions. (b) Mean DTs varied with cost (abscissa) 272	
  
and evidence (different colors) conditions. Error bars represent between-subject standard 273	
  
errors. (c) Effects of AQ levels on participants’ DTs in different cost (different colors) and 274	
  
evidence (abscissa) conditions. ΒAQ is the unstandardized coefficient of AQ indicating how much 275	
  
the mean DT in a condition would change when AQ increases by one unit. Error bars represent 276	
  
standard errors of the coefficients. 277	
  

  278	
  

Linear mixed model analysis (LMM4) showed that the mean DTs (Fig 3b) 279	
  

increased with cost (𝐹!,!"! = 120.62, 𝑝 < .001) and decreased with evidence (𝐹!,!"# =280	
  

165.85, 𝑝 < .001). The difference between different evidence conditions was also larger 281	
  

for higher sampling cost (interaction 𝐹!,!"# = 14.65, 𝑝 < .001). Moreover, there was a 282	
  

significant interaction between cost and AQ (𝐹!,!"! = 6.22,𝑝 = .003): DTs tended to 283	
  

decrease with AQ under zero cost but increase with AQ under low cost (Fig 3c, slope 284	
  

difference between these two conditions reached significance, 𝑡!"# = 3.45,𝑝 = .002). 285	
  

The DTs within the same trial changed with sample number (LMM5, 286	
  

𝐹!",!"#"$$%$.!" = 24.5,𝑝 < .001). Post hoc contrasts showed significantly negative linear 287	
  

trends (S3 Fig, 𝑡!"#"$%& = −12.26, 𝑝 < .001), indicating that sampling decisions in a trial 288	
  

became faster after more samples were drawn. AQ significantly moderated the effect of 289	
  

sample number (interaction 𝐹!",!!"#$$%#.!" = 1.66,𝑝 = .035), with higher AQ associated 290	
  

with a flatter trend (𝑡!"#$!%" = 3.62,𝑝 = .002). In other words, participants with higher AQ 291	
  

tended not to speed up their decisions as much as those with lower AQ. 292	
  

A straightforward explanation for the bimodal DT distribution would be a 293	
  

probabilistic mixture of two cognitive processes. Next, we used computational modeling 294	
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to explore the possibility of two decision stages and showed that it could quantitatively 295	
  

predict the effects of cost and evidence as well as the bimodal distribution of DTs. 296	
  

Sampling is controlled by cost and evidence in two separate stages  297	
  

We considered a variety of models for sampling choices, which fell into two categories: 298	
  

one-stage models and two-stage models (Fig 4a, see Methods). In one-stage models, 299	
  

the choice of whether to take a (j+1)-th sample after j samples is modeled as a Bernoulli 300	
  

random variable, with the probability of stopping controlled by cost- and evidence-301	
  

related factors, including the expected cost and evidence for the prospective sample 302	
  

and the total cost and evidence of existing samples. To separate the influences of 303	
  

different factors on participants’ sampling choices, we constructed a set of one-stage 304	
  

models that are controlled either by cost-related factors, or by evidence-related factors, 305	
  

or by both. To test the possibility that people of higher autistic traits may overweight 306	
  

recent evidence in evidence integration [4,17], we also considered models with an 307	
  

evidence decay parameter, in which the weight for an earlier sample decays as a 308	
  

function of the number of samples thereafter.       309	
  

In two-stage models of sampling choices, we assumed that deciding whether to 310	
  

stop or continue sampling may involve two consecutive decision stages, where the 311	
  

decision in the first stage can either be final or be re-evaluated in an optional second 312	
  

stage. Whether to enter the second stage is probabilistic, conditional on the decision 313	
  

reached in the first stage. The decisions in the two stages are independent and 314	
  

controlled separately by the cost- and evidence-related factors and are subject to 315	
  

evidence decay. In other words, the decision in each stage is similar to that of a one-316	
  

stage model. We considered 12 different two-stage models whose assumptions differ in 317	
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three dimensions (see Methods): (1) which factors control the first stage and which 318	
  

control the second stage (cost-first or evidence-first), (2) what kind of decision in the first 319	
  

stage (continuing or stopping sampling) has a chance to trigger the second stage, and 320	
  

(3) what determines the probability to enter the second stage (“second-thought 321	
  

probability”) after a qualified first-stage decision. For example, the best-fitting second-322	
  

stage model described below, denoted , has the following 323	
  

assumptions: cost-related factors control the first stage and evidence-related factors 324	
  

control the second stage. If stopping sampling is the decision in the first stage, it is 325	
  

finalized and there is no second stage; otherwise, either continuing sampling becomes 326	
  

the final decision, or the decision is re-evaluated in the second stage, with the second-327	
  

thought probability determined by the cost condition (i.e. three different second-thought 328	
  

probabilities for the zero-, low-, and high-cost conditions).       329	
  

 We fit all the models to participants’ sampling choices separately for each 330	
  

participant using maximum likelihood estimates. For each fitted choice model, with 331	
  

some additional assumptions, we were able to model participants’ DTs and fit the 332	
  

additional DT parameters using maximum likelihood estimates as well (see Methods). 333	
  

The sum of the log likelihoods for choices and DTs was used for further model 334	
  

comparisons, which was mathematically equivalent to the log likelihood from modeling 335	
  

the joint distribution of choices and RTs (see Methods for proof). We compared the 336	
  

models in goodness-of-fit using the Akaike Information Criterion corrected for small 337	
  

samples (AICc) [44,45]. The ΔAICc for a specific model was calculated for each 338	
  

participant with respect to the participant’s best-fitting model (i.e. lowest-AICc) and then 339	
  

summed across participants.  We also used the group-level Bayesian model selection 340	
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[46,47] for random effects model comparisons and plot each model’s estimated model 341	
  

frequency—a random effects measure of the proportion of participants best fit by the 342	
  

model. Among the four one-stage models (Fig 4b), the best model (i.e. model with the 343	
  

lowest summed ΔAICc) was the one that is influenced by cost only (denoted Cost only). 344	
  

However, the two-stage models, all of which were controlled by the same cost- and 345	
  

evidence-related factors as the one-stage models, fit much better to participants’ 346	
  

choices and DTs than the best one-stage model. The best two-stage model was  347	
  

 (described above), which best accounted for 50% of the 104 348	
  

participants (estimated model frequency = 44.6%) and whose probability of 349	
  

outperforming all the other 15 models (protected exceedance probability) approached 1. 350	
  

Model comparisons based on the Bayesian Information Criterion (BIC) [48,49] led to 351	
  

similar results (see S4 Fig for group and individual participants’ ΔAICc and ΔBIC).  352	
  

 When two-stage models were fit to participants’ DTs, the second-thought 353	
  

probabilities were estimated exclusively from choices and not free parameters 354	
  

adjustable by DTs (see Methods). However, predictions of the  355	
  

model agreed well not only with participants’ choices but also with their bimodal DTs 356	
  

(Fig 4cd, see S2 & S5 Fig for individual plots) and the decrease of DT with sample 357	
  

number (S3 Fig). This further supports our hypothesis that the observed bimodal DT 358	
  

distribution arises from a two-stage decision process.    359	
  

 360	
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 361	
  

Fig 4. Computational modeling of sampling choices and decision times. 362	
  

(a) Schematic of one-stage and two-stage models. One-stage models only consist of the steps 363	
  
on the left-hand side: Each time a participant decides whether to stop or continue sampling, the 364	
  
probability of stopping is a sigmoid function of a linear combination of multiple decision 365	
  
variables. Two-stage models assume that participants may probabilistically have a second 366	
  
thought to reconsider the choice (the coral dashed arrow). The second stage (on the right-hand 367	
  
side) works in the same way as the first stage but the two stages are controlled by different sets 368	
  
of decision variables. (b) Results of model comparison based on the joint fitting of choice and 369	
  
DT. The ΔAICc for a specific model was calculated for each participant with respect to the 370	
  
participant’s best-fitting model (i.e. lowest-AICc) and then summed across participants. Both 371	
  
fixed-effects (summed ΔAICc: lower is better) and random-effects (estimated model frequency: 372	
  
higher is better) comparisons revealed that the best-fitting model was a two-stage model with 373	
  
cost-related variables considered in the first stage and evidence-related variables in the second 374	
  
stage (i.e. ). The best one-stage model was the model involving only 375	
  

cost-related decision variables (i.e. Cost only). See Methods (or S1 Table) for the description of 376	
  
each model. Estimated model frequency (color coded) is a random effects measure of the 377	
  
proportion of participants best fit by the model. (c) Distribution of sample sizes (i.e. number of 378	
  
bead samples) for each condition: data vs. model predictions. (d) Distribution of DTs for each 379	
  
condition: data vs. model predictions. The best-fitted two-stage model (red curves) well 380	
  
predicted the observed distributions (histograms) of sample sizes and DTs for each cost and 381	
  
evidence condition, including the bimodality of the observed DT distributions, while the best-382	
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fitted one-stage model (blue curves) failed to do so. Both data and model predictions were 383	
  
aggregated across participants.  384	
  

	
  385	
  

As additional evidence for the link between two-stage decisions and bimodal 386	
  

RTs, the mean DT—as a proxy for the proportion of slow decisions—increased with the 387	
  

probability of using the second stage (Fig 5; 𝑟! = .60,𝑝 < .001). The positive correlation 388	
  

also held for each separate cost condition (zero cost: 𝑟! = .44,𝑝 < .001; low cost: 389	
  

𝑟! = .35,𝑝 < .001; high cost: 𝑟! = .22,𝑝 = .027). Moreover, the effects of cost on mean 390	
  

DT (LMM4, as we reported earlier) could be partly explained away by the effect of 391	
  

second-thought probability when the latter was added as a predictor (LMM6; second-392	
  

thought probability and its interaction with evidence, 𝐹!,!".!" = 47.74,𝑝 < .001 and 393	
  

𝐹!,!"#.!! = 25.76,𝑝 < .001 respectively; cost and its interaction with evidence, 𝐹!,!".!" =394	
  

2.43,𝑝 = .09 and 𝐹!,!"".!" = 2.59,𝑝 = .08). 395	
  

 396	
  

Fig 5. Positive correlations between mean decision time and second-thought probability.  397	
  

According to two-stage models, mean DT—as a proxy for the proportion of slow decisions—398	
  
should increase with the probability of using the second stage. Indeed, mean DT and second-399	
  
thought probability were positively correlated, separately for each cost condition (the first three 400	
  
panels) and when aggregated across all cost conditions (the last panel), thus providing 401	
  
additional support for the two-stage decision process. Each dot is for one participant in one 402	
  
specific cost condition. Lines and shaded areas respectively represent regression lines and 403	
  
standard errors. The 𝑟! refers to Spearman’s correlation coefficient. 404	
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Autistic traits influence the strategic diversity of sampling decisions 405	
  

What individual differences in the decision process may relate to the autistic-trait-related 406	
  

effects on the optimality of sampling choices? We first examined the estimated 407	
  

parameters of the best model ( ), which allowed us to characterize 408	
  

individual participants’ sampling choices from three aspects: cost- or evidence-related 409	
  

weights (11 parameters), second-thought probabilities (three parameters separately for 410	
  

the three cost conditions), and evidence decay rate (one parameter). We computed the 411	
  

correlation between participants’ AQ score and each parameter, correcting for multiple 412	
  

comparisons separately for each parameter group. Only a negative correlation between 413	
  

AQ and the zero-cost second-thought probability was marginally significant (𝑟! =414	
  

−.22,𝑝 = .07, uncorrected 𝑝 = .023), which suggests that higher AQ participants were 415	
  

less likely to use the second stage to reconsider stopping sampling in the zero-cost 416	
  

conditions, where the optimal strategy was to sample as many as possible. Though 417	
  

intuitive and consistent with the AQ effects on efficiency, we found this correlation would 418	
  

vanish when only the participants who were best fit by the  model 419	
  

were included (𝑟! = −.02,𝑝 = .86) and thus might have been an epi-phenomenon 420	
  

arising from different individuals’ different decision strategies. 421	
  

 Next we tested whether participants’ autistic traits influenced the decision 422	
  

strategies they used. As shown in our results of model comparisons, participants may 423	
  

have used a variety of different two-stage decision processes: Among the 104 424	
  

participants, 52 participants were best fit by the  model and the 425	
  

remaining participants by the other two-stage models. It is also possible that the same 426	
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individual may have used different decision processes in different choices. The 427	
  

assumptions of the 12 two-stage models, as we specified earlier, differed in three 428	
  

dimensions. On each dimension, we could classify the 12 models into different families 429	
  

(e.g. cost-first vs. evidence-first models concerning which factor controls the first stage). 430	
  

We quantified a specific participant’s decision strategies on the dimension by the 431	
  

participant’s mean AICc difference between the different families of models and 432	
  

computed its correlation with AQ (corrected for possible multiple comparisons on the 433	
  

dimension). We found that the AICc difference between cost-first and evidence-first 434	
  

model families ( ) was negatively correlated with AQ 435	
  

(𝑟! = −.23,𝑝 = .018; Fig 6a). An alternative analysis using the tripartite division of 436	
  

participants into AQ groups showed similar results (S1 Fig). Little correlations were 437	
  

found between  and other demographic variables 438	
  

including IQ, age, and gender (S6 Fig). 439	
  

 We assured that such differences in decision process could cause the observed 440	
  

autistic trait-related effects in sampling optimality by computing the correlation between 441	
  

 and efficiency for each cost and evidence condition 442	
  

(corrected for 6 comparisons). The correlation (Fig 6b) was significantly negative for the 443	
  

zero-cost, low-evidence condition (𝑟! = −.66,𝑝 < .001), the zero-cost, high-evidence 444	
  

condition (𝑟! = −.55,𝑝 < .001), and the low-cost, low-evidence condition (𝑟! = −.34,𝑝 <445	
  

.001), and was significantly positive for the high-cost, low-evidence condition (𝑟! =446	
  

.48,𝑝 < .001). All these correlations were consistent with what we would expect if AQ 447	
  

influences sampling efficiency through its influence on the use of cost-first vs. evidence-448	
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first decision processes. For example, given that AQ was negatively correlated with 449	
  

, and  was negatively 450	
  

correlated with the efficiency in the zero-cost, low-evidence condition, we would expect 451	
  

AQ to be positively correlated with the efficiency in the zero-cost, low-evidence 452	
  

condition, and indeed it was. Similar correlations were also found between 453	
  

 and sampling bias (ns − nopt ) or sampling variation (454	
  

SD ns( ) ) (S7 Fig).   455	
  

Given that all participants were either much better modeled by cost-first models 456	
  

(i.e. ) or almost equivalently well by cost-first and 457	
  

evidence-first models (i.e. ) (Fig 6a), the negative 458	
  

correlation between  and AQ implies that participants 459	
  

with higher AQ preferred to consider cost first, while those with lower AQ preferred to 460	
  

have cost-first and evidence-first decisions more balanced (instead of preferring 461	
  

evidence first). If this cost-first vs. balanced-strategy (instead of cost-first vs. evidence-462	
  

first) hypothesis for higher vs. lower AQ is true, we would also expect the correlation 463	
  

between  and AQ to be weak for those whose 464	
  

decisions were almost equally likely to be cost-first or evidence-first (i.e. 465	
  

). In other words, we expect the correlation to be 466	
  

stronger if only the participants whose decisions were more dominated by cost-first (i.e. 467	
  

) is included. To test this, we ranked all 468	
  

participants by  in ascending order and plot the 469	
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Spearman’s correlation coefficient between  and AQ as 470	
  

a function of the number of participants included in the correlation analysis (Fig 6c). The 471	
  

correlation was statistically significant when the number of participants included was 472	
  

large enough (cluster-based permutation test, 𝑝 = .006). In addition, compared to the 473	
  

overall correlation across the 104 participants, the correlation indeed appeared stronger 474	
  

when only the cost-first-dominated participants were included, which reached marginal 475	
  

significance when the number of participants included was between 54 and 60 (cluster-476	
  

based permutation test, 𝑝 = .083) or between 65 and 72 (𝑝 = .081). This provides 477	
  

further evidence for the cost-first vs. balanced-strategy hypothesis and suggests that 478	
  

participants with different levels of autistic traits differ in the diversity of their decision 479	
  

processes: Participants with higher AQ tended to always consider cost first, while those 480	
  

with lower autistic traits considered cost or evidence first in a more balanced way. 481	
  

In the two-stage decision process we modeled, because the second stage is only 482	
  

probabilistically recruited, factors considered in the first stage would effectively leverage 483	
  

a greater influence on the sampling choice than those of the second stage. In other 484	
  

words, always being cost-first means the sampling choice is mainly determined by cost-485	
  

related factors, while sometimes cost-first and sometimes evidence-first means the 486	
  

sampling choice is more of a tradeoff between cost- and evidence-related factors. 487	
  

Neither strategy is necessarily optimal but may approximate the optimal strategy in 488	
  

different situations: The former is closer to optimal when the optimal strategy does not 489	
  

depend on evidence, while the latter is closer to optimal when the optimal strategy 490	
  

varies with both cost and evidence. Participants’ differences in strategic diversity thus 491	
  

explain the autistic trait-related differences we observed in efficiency.      492	
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  493	
  

 494	
  
Fig 6. Effects of autistic traits on decision process and how it relates to sampling 495	
  
optimality. 496	
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(a) Correlation between AQ and	
   . More positive 497	
  
 indicates stronger preference for cost-first over evidence-first 498	
  

decision processes, while more negative  indicates the reverse. 499	
  
Each dot is for one participant. The blue line and the shaded area respectively represent 500	
  
regression line and standard error. (b) Correlation coefficients between 501	
  

 and efficiency for each cost and evidence condition. C:0 = 502	
  
zero-cost, C:0.1 = low-cost, C:0.4 = high-cost, E:0.6 = low-evidence, E:0.8 = high-evidence. 503	
  
Error bars represent FDR-corrected 95% confidence intervals. All these correlations were 504	
  
consistent with what we would expect if AQ influences sampling efficiency through its influence 505	
  
on the use of cost-first vs. evidence-first decision processes. For example, given that AQ was 506	
  
negatively correlated with	
   , and 507	
  

	
  was negatively correlated with the efficiency in the zero-cost, 508	
  
low-evidence condition, we would expect AQ to be positively correlated with the efficiency in the 509	
  
zero-cost, low-evidence condition, and indeed it was. (c) Correlation between AQ and 510	
  

 varied with the value of	
   . We 511	
  
ranked all participants by  in ascending order, that is, from the 512	
  
strongest preference for cost-first to the strongest preference for evidence-first, and plot the 513	
  
Spearman’s correlation coefficient between  and AQ as a 514	
  
function of the number of participants included in the correlation analysis. The observed overall 515	
  
negative correlation and the stronger correlation given only the cost-first-dominated participants 516	
  
were included supports the cost-first vs. balanced-strategy hypothesis (see text): Participants 517	
  
with higher AQ tended to always consider cost first, while those with lower autistic traits 518	
  
considered cost or evidence first in a more balanced way. Statistical significance marked on the 519	
  
plot was based on cluster-based permutation tests (see Methods). 520	
  

  521	
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Discussion 522	
  

Humans must sample the environment properly to balance the advantage of gaining 523	
  

additional information against the cost of time, energy, and money [50]. Previous 524	
  

research suggests that suboptimal information sampling may be a fundamental deficit in 525	
  

ASD [4,14–17,51]. In the current study, we tested healthy adults with different levels of 526	
  

autistic traits to investigate how autistic traits influence information sampling decisions. 527	
  

We found that participants adjusted their sample sizes according to both sampling cost 528	
  

and evidence gain and were overall close to optimality. However, there were also 529	
  

systematic deviations from optimality which varied with levels of autistic traits. 530	
  

Computational modeling allowed us to characterize the decision process of sampling 531	
  

choices by two stages. The two-stage model well predicted the bimodality of DT 532	
  

distributions as well as the positive correlation between mean DT and the second-533	
  

thought probability estimated from sampling choices. Autistic traits influenced the 534	
  

strategic diversity concerning whether cost or evidence is considered first.        535	
  

Previous ASD studies that had used similar bead-sampling tasks yielded 536	
  

inconclusive results: One study found that adolescents with ASD sampled more than 537	
  

the control group [52], whereas a second study of adults with ASD found the reverse 538	
  

[40]. As to healthy people with higher autistic traits, we did not find overall oversampling 539	
  

or undersampling but more subtle differences. To ask whether people with ASD or 540	
  

higher autistic traits oversample or undersample information is probably not a proper 541	
  

question. In fact, both oversampling and undersampling may lower one’s expected gain, 542	
  

depending on the rewarding structure of the environment. As we suggested in the 543	
  

Introduction, a more important question is whether autistic traits influence one’s ability to 544	
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sample optimally, that is, to balance sampling cost and information gain. In previous 545	
  

ASD studies [40,52], sampling incurred no explicit cost but implicit cost such as time or 546	
  

cognitive effort whose exact value to a specific individual is hard to measure, therefore 547	
  

we could hardly compare the optimality of different individuals’ performances. By 548	
  

introducing explicit monetary cost for sampling (as Juni et al. did [50]) in our experiment, 549	
  

we were able to evaluate sampling cost as a potential moderator for autistic trait-related 550	
  

differences in information sampling. Indeed, we found that people with higher autistic 551	
  

traits can be more optimal or less optimal than those with lower autistic traits depending 552	
  

on the level of sampling cost.   553	
  

Sevgi, Diaconescu, Tittgemeyer, and Schilbach [53] demonstrated how 554	
  

computational modeling can be a powerful tool in deepening our understanding of 555	
  

autistic-trait-related cognitive processes and separating the affected processes from the 556	
  

intact ones. They found that autistic traits do not, as usually believed, influence 557	
  

individuals’ ability of learning social cues but only influence the weight assigned to 558	
  

social cues in decision making.  559	
  

Similarly, the autistic-trait-related differences in sampling decisions we found 560	
  

through computational modeling are surprisingly selective. Participants with different 561	
  

levels of autistic traits were indistinguishable in their ability to weigh sampling cost or 562	
  

evidence gain in the two decision stages. What distinguished them was the strategic 563	
  

diversity across choices concerning whether to consider cost or evidence in the first 564	
  

stage. Participants with higher autistic traits were less diverse and stuck more to 565	
  

evaluating cost first.  566	
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Studies using autistic traits as a surrogate for studying ASD have revealed 567	
  

congruent and converging autistic-trait-related effects as those of ASD [9,10,53–57]. 568	
  

Although our findings could provide some insights on how autistic traits could influence 569	
  

people’s information sampling, we should also be aware that high autistic traits in typical 570	
  

people are not equivalent to symptoms of ASD [58–60] and autistic-trait-related 571	
  

differences do not necessarily characterize the differences between people with and 572	
  

without ASD. Thus, future research should test people with ASD to see how their 573	
  

information sampling differs from the typical population. 574	
  

In our task, information sampling is instrumental—additional information would 575	
  

increase the probability of correct judgment. There are also situations where information 576	
  

is non-instrumental, for example, the information that is gathered after one’s decision 577	
  

and that would not change the outcome of the decision. Both humans [30–35] and non-578	
  

human primates [36–39] are willing to pay for non-instrumental information, especially 579	
  

when it is good news. Whether autistic traits influence one’s tendency to seek non-580	
  

instrumental information is a question for future research.     581	
  

To summarize, we find that people with different levels of autistic traits differ in 582	
  

the optimality of information sampling and these differences are associated with their 583	
  

strategic diversity in the decision process. Recent studies suggest that autistic traits 584	
  

may influence an individual’s ability of adaptively using her own information processing 585	
  

capability while not influencing the capability itself. For example, autistic traits may only 586	
  

influence the tendency to use social information but not the capability to perceive it [53], 587	
  

or may only influence the flexibility of updating learning rate but not probabilistic learning 588	
  

itself [10]. Our results add to this line of findings that autistic-trait-related differences 589	
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may come from differences in higher-level cognitive functions other than primary 590	
  

information processing.    591	
  

  592	
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Methods 593	
  

Ethics Statement 594	
  

The experiment had been approved by the Institutional Review Board of School of 595	
  

Psychological and Cognitive Sciences at Peking University (#2016-03-03). All 596	
  

participants provided written informed consent and were paid for their time plus 597	
  

performance-based bonus. 598	
  

 599	
  

Experiment 600	
  

Participants. One hundred and fourteen college student volunteers participated in our 601	
  

experiment. Ten participants were excluded. Six of them were IQ outliers, one 602	
  

misunderstood instructions, one had a strong judgment bias towards one type of stimuli, 603	
  

one did not draw any bead in 286/288 of the trials, and one had a poor judgment 604	
  

consistency. This resulted in a final sample size of 104 participants (42 males, aged 18-605	
  

28). 606	
  

 We estimated effect size a priori based on a mini meta-analysis of previous 607	
  

literature [61] on autistic-trait-related perceptual or cognitive differences [9,53–608	
  

55,57,62–65], which was r = .36. To achieve a statistical power of 0.80 under the 609	
  

significance level of .05, we would require 57 participants. However, considering initial 610	
  

effect sizes are often inflated [66], we doubled the estimate and sought to test around 611	
  

114 participants with some attrition expected.   612	
  

IQ test. Combined Raven Test (CRT) was used to measure participants’ IQ for control 613	
  

purpose. Raw CRT scores of all 114 participants averaged 67.69 (s.d., 4.71) and 614	
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ranged from 41 to 72. Six of the participants (scoring from 41 to 58) fell out of two 615	
  

standard deviations of the mean and was excluded from further analyses along with four 616	
  

other participants (as mentioned above). The remaining 104 participants had a mean 617	
  

CRT score of 68.65 (s.d., 2.82; ranging from 61 to 72), corresponding to a mean IQ 618	
  

score of 117.68. 619	
  

AQ test. Autism Spectrum Quotient (AQ) questionnaire [18] was used to quantify 620	
  

participants’ autistic traits. AQ questionnaire is a 4-point self-reported scale with 50 621	
  

items measuring five type of autistic characteristics: social interaction, attentional 622	
  

switch, attention to detail, imagination, and communication. Though the 4-point scale 623	
  

was sometimes reduced to binary coding [18], we adopted the full 4-point scoring 624	
  

system (“definitely disagree”, “slightly disagree”, “slightly agree”, “definitely agree” 625	
  

respectively scored 0–3) to maximize the coverage of latent autistic traits [25,67–69]. 626	
  

 The AQ scores of the 104 participants were normally distributed (Shapiro-Wilk 627	
  

normality test, W = 0.99, p = .32; S8 Fig) with mean 69.97 and standard deviation 10.48, 628	
  

ranging from 49 to 95. There was little correlation between AQ and IQ, 𝑟! = −.01,𝑝 =629	
  

.95, AQ and age, 𝑟! = −.08,𝑝 = .40, or AQ and gender, biserial correlation 𝑟 = .13,𝑝 =630	
  

.31. 631	
  

Apparatus. All stimuli of the bead-sampling task were visually presented on a 21.5-inch 632	
  

computer screen controlled by MATLAB R2016b and PsychToolbox [70–72]. 633	
  

Participants were seated approximately 60 cm to the screen. Responses were recorded 634	
  

via the keyboard. 635	
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Procedure. On each trial of the experiment (Fig 1a), participants saw a pair of jars on 636	
  

the left and right of the screen, each containing 200 pink and blue beads. The pink-to-637	
  

blue ratios of the two jars were either 60%:40% vs. 40%:60%, or 80%:20% vs. 638	
  

20%:80%. Participants were told that one jar had been secretly selected, and their task 639	
  

was to infer which jar was selected. Each time they pressed the space bar, one bead 640	
  

was randomly sampled with replacement from the jar and presented on the screen, 641	
  

appended to the end of the sampled bead sequence. Participants were free to draw 0 to 642	
  

20 bead samples, but each sample might incur a cost. The cost per sample on each trial 643	
  

could be 0, 0.1, or 0.4 points. A green bar on the top of the screen indicated how many 644	
  

bonus points remained (10 points minus the total sampling cost by then). When 645	
  

participants were ready for inference, they pressed the Enter key to quit sampling and 646	
  

judged whether the pre-selected jar was the left or right jar by pressing the 647	
  

corresponding arrow key. Feedback followed immediately. If their judgment was correct, 648	
  

participants would receive the remaining bonus points; otherwise nothing. Bonus points 649	
  

accumulated across trials and would be converted into monetary bonus after the 650	
  

experiment. Participants were encouraged to sample wisely to maximize their winning.  651	
  

 The pink-dominant jar was pre-selected on half of the trials and the blue-652	
  

dominant jar on the other half. Their left/right positions were also counterbalanced 653	
  

across trials. In the formal experiment, the two evidence (i.e. bead ratio) conditions 654	
  

(60/40 and 80/20) were randomly mixed within each block and the three cost conditions 655	
  

(0, 0.1, and 0.4) were blocked. Besides being visualized by the green bar on each trial, 656	
  

cost for each block was also informed at the beginning of the block. The order of cost 657	
  

blocks was counterbalanced across participants. We further confirmed that block order 658	
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(6 permutations) had no significant effects on participants’ sampling choices (efficiency: 659	
  

𝐹!,!".!" = 2.06, 𝑝 = .08,  ns − nopt :  𝐹!,!".!! = 1.51, 𝑝 = .19, SD ns( ) : 𝐹!,!".!" = 1.53, 𝑝 = .19) or 660	
  

decision times (𝐹!,!" = 0.60, 𝑝 = .70). Each of the six conditions was repeated for 48 661	
  

times, resulting in 288 trials. The formal experiment was preceded by 24 practice trials. 662	
  

Participants first performed the experiment, then the Combined Raven Test and last the 663	
  

AQ questionnaire, which took approximately 1.5 hours in total.  664	
  

 665	
  

Statistical Analyses 666	
  

All statistical analyses (except for group-level Bayesian model comparison) were 667	
  

conducted in R 3.5.3 [73].  668	
  

Linear mixed models (LMMs). Linear mixed models were estimated using “afex” 669	
  

package [74], whose F statistics, degrees of freedom of residuals (denominators), and 670	
  

p-values were approximated by Kenward-Roger method [75,76]. Specifications of 671	
  

random effects followed parsimonious modeling [77]. For significant fixed effects, 672	
  

“emmeans” package was used to test post hoc contrasts [78]. Interaction contrasts were 673	
  

performed for significant interactions and, when higher order interactions were not 674	
  

significant, pairwise or consecutive contrasts were performed for significant main effects. 675	
  

Statistical multiplicity of the contrasts was controlled by a single-step adjustment, which 676	
  

used multivariate t distributions to estimate the critical value for conducted contrasts 677	
  

[79,80]. 678	
  

LMM1: decision efficiency is the dependent variable; fixed effects include an intercept, 679	
  

the main and interaction effects of AQ, cost, and ratio (evidence); random effects 680	
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include correlated random slopes of costs and ratios within participants and random 681	
  

participant intercept. 682	
  

LMM2: sampling bias (mean number of actual sampling minus optimal number of 683	
  

sampling;ns − nopt ) is the dependent variable; the fixed and random effects are the same 684	
  

as LMM1. 685	
  

LMM3: standard deviation of the number of sampling (SD ns( ) ) is the dependent variable; 686	
  

the fixed and random effects are the same as LMM1. 687	
  

LMM4: mean decision time (DT) across all sampling choices of a condition is the 688	
  

dependent variable; the fixed and random effects are the same as LMM1. 689	
  

LMM5: DT of each sample number (1 to 20 samples) averaged over all trials is the 690	
  

dependent variable; fixed effects involve an intercept, the main and interaction effects of 691	
  

AQ and sample number, and random effects include a random participant intercept. The 692	
  

model also incorporated weights on the residual variance for each aggregated data 693	
  

point to account for the different number of raw DTs for each sample number of each 694	
  

participant. 695	
  

LMM6: the dependent variable is the same as LMM4; in addition to the fixed and 696	
  

random effects of LMM1, the linear effect of second-thought probability is included in 697	
  

the fixed effects, and a random slope of the second-thought probability that is 698	
  

uncorrelated with the random intercept is included in the random effects. 699	
  

 Following Jones et al. [81], we identified three “likely noncompliant” outlier 700	
  

observations in the number of bead samples for each condition based on nonparametric 701	
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boxplot statistics, that is, those whose values were lower than the 1st quartile or higher 702	
  

than the 3rd quartile of all the observations in the condition by more than 1.5 times of 703	
  

the interquartile range (see S9 Fig). These noncompliant observations (not participants 704	
  

per se) were excluded from LMMs 1–3.  705	
  

 To examine possible non-linear effects of AQ, we constructed LMMs that 706	
  

included AQ2 and its interaction with cost and ratio as additional fixed-effects terms 707	
  

separately for LMM1–6. We found that adding the second order terms of AQ did not 708	
  

significantly improve the goodness-of-fit of any LMM.  709	
  

Decision times (DTs). Because stopping sampling involved a different key press, only 710	
  

DTs for continuing sampling were analyzed. Before any analysis of DTs, outliers of log-711	
  

transformed DTs were excluded based on nonparametric boxplot statistics, with data 712	
  

points lower than the 1st quartile or higher than the 3rd quartile of all the log-713	
  

transformed DTs by more than 1.5 times of the interquartile range defined as outliers.  714	
  

Correlation analyses based on modeling results. Spearman’s rank correlations 715	
  

(denoted 𝑟!) were computed between AQ and model measures (model parameter or 716	
  

model evidence), and between model measures and behavioral measures (efficiency, 717	
  

ns − nopt , or SD ns( ) ). Except for the statistics in Fig 6c, multiple correlation tests were 718	
  

corrected using false discovery rate (FDR) to avoid the inflation of false alarm rates with 719	
  

multiple comparisons.  720	
  

 To test whether the curve of correlation coefficients between 721	
  

 and AQ in Fig 6c was significantly different from 0 or 722	
  

the overall correlation at some points, we performed cluster-based permutation tests 723	
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[82] as follows. For the test against 0, we first identified points that were significantly 724	
  

different from 0 at the uncorrected significance level of .05 using t tests and then 725	
  

grouped adjacent same-signed significant correlations into clusters. For each cluster, 726	
  

the absolute value of the summed Fisher’s z values transformed from 𝑟! was defined as 727	
  

the cluster size. We randomly shuffled the values of  728	
  

across participants to generate virtual data, calculated the correlation curve and 729	
  

recorded the maximum size of its clusters for the virtual data.  This procedure was 730	
  

repeated for 10,000 times to produce a distribution of chance-level maximum cluster 731	
  

sizes, based on which we calculated the p value for each cluster in real data. 732	
  

For the test against the overall correlation of 104 participants, we randomly 733	
  

shuffled the order of inclusion across participants and identified points that were 734	
  

significantly different from the overall correlation at the uncorrected significance level 735	
  

of .05 using Monte Carlo methods. Otherwise the permutation test was identical to that 736	
  

described above. 737	
  

 738	
  

Modeling 739	
  

Expected gain. Given a specific sequence of bead samples, an ideal observer would 740	
  

always judge the preselected jar to be the one whose dominant color is the same as 741	
  

that of the sample sequence. In the case of a tie, the observer would choose the two 742	
  

jars with equal probability. Suppose the sample size is n, the maximal reward is 10 743	
  

points, the unit sampling cost is c, and the percentage of predominated beads in the 744	
  

preselected jar is q. The expected probability of correct judgment is: 745	
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  (1) 746	
  

The expected gain is E 𝐺𝑎𝑖𝑛 𝑛, 𝑞, 𝑐 = 10− 𝑛𝑐 𝑝(𝑛|𝑞). For a specific cost and 747	
  

evidence condition, the optimal sample size is the value of 𝑛 that maximizes 748	
  

E 𝐺𝑎𝑖𝑛 𝑛, 𝑞, 𝑐 . 749	
  

One-stage models. We modeled participants’ each choice of whether to continue or 750	
  

stop sampling (i.e. whether to press the space bar or Enter key) as a Bernoulli random 751	
  

variable, with the probability of stopping sampling determined by cost- or evidence-752	
  

related factors. Pressing the Enter key after 20 samples was not included as a choice of 753	
  

stopping sampling, because participants had no choice but to stop by then.  754	
  

 We considered two families of models: one-stage and two-stage models. The 755	
  

description for each model is summarized in S1 Table. In one-stage models, the 756	
  

probability of stopping sampling on the i-th trial after having drawn j beads is determined 757	
  

by a linear combination of K decision variables (DVs) via a logistic function: 758	
  

  (2) 759	
  

  (3) 760	
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Different one-stage models differed in whether cost-related variables, evidence-related 761	
  

variables, or both served as DVs (S1 Table). 762	
  

Cost-only one-stage model (denoted Cost only): cost-related variables as DVs, 763	
  

including unit cost per bead (categorical: 0, 0.1, or 0.4), number of beads sampled (j), 764	
  

and total sampling cost (product of the former two DVs). 765	
  

Evidence-only without decay one-stage model (denoted Evidence only w/o decay): 766	
  

evidence-related variables as DVs, including unit log evidence per bead (i.e., ln(60/40) 767	
  

or ln(80/20)), absolute value of cumulative information (cumulative information refers to 768	
  

the difference between the numbers of pink and blue bead samples), total log evidence 769	
  

(product of the former two DVs), and the correctness and the number of bead samples 770	
  

in last trial. 771	
  

Cost + evidence without decay one-stage model (denoted Cost + Evidence w/o decay): 772	
  

both cost-related and evidence-related variables as DVs.  773	
  

Cost + evidence with decay one-stage model (denoted Cost + Evidence): both cost-774	
  

related and decayed evidence-related variables as DVs. 775	
  

In models with decayed evidence, cumulative information (CI) is modulated by a 776	
  

decay parameter 𝛼: 777	
  

  (4) 778	
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The DVs of absolute value of cumulative information and total log evidence in the 779	
  

models with decay are modulated by the decay parameter accordingly. 780	
  

Two-stage models. In two-stage models, sampling choices may involve two decision 781	
  

stages, with the probability of reaching the decision of stopping sampling in each stage 782	
  

being  783	
  

  (5) 784	
  

  (6) 785	
  

Whether to enter the second stage is probabilistic, conditional on the decision reached 786	
  

in the first stage. For models where the second stage is triggered by the decision of 787	
  

continuing sampling in the first stage, the overall probability of stopping sampling can be 788	
  

written as: 789	
  

   (7) 790	
  

Here  denotes second-thought probability—the probability of using the second stage 791	
  

given that the first stage concludes with continuing sampling, whose value is defined 792	
  

differently in different models as specified below. Alternatively, for models where the 793	
  

second stage is triggered by the decision of stopping sampling in the first stage, the 794	
  

overall probability of stopping sampling can be written as: 795	
  

   (8) 796	
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 Each stage works in the same way as one-stage models do (Eqs. 2–4) and is 797	
  

influenced by mutually exclusive sets of DVs (S1 Table). We considered two-stage 798	
  

models whose assumptions differ in three dimensions: (1) which factors control the first 799	
  

stage and which control the second stage (cost-first or evidence-first), (2) what kind of 800	
  

decision in the first stage (continuing or stopping sampling) has a chance to trigger the 801	
  

second stage, and (3) what determines the probability to enter the second stage 802	
  

(“second-thought probability”) after a qualified first-stage decision (the cost condition, 803	
  

the evidence condition,  or the probability of stopping in the first-stage decision). A full 804	
  

2×2×3 combinations resulted in 12 different two-stage models. The assumptions for 805	
  

each dimension are specified below. 806	
  

Cost-first two-stage models (models denoted by ): cost-related 807	
  

variables as first-stage DVs and decayed evidence-related variables as second-stage 808	
  

DVs. 809	
  

Evidence-first two-stage models (models denoted by ): decayed 810	
  

evidence-related variables as first-stage DVs and  cost-related variables as second-811	
  

stage DVs. 812	
  

Continue-then-2nd-thought two-stage models (models denoted by 813	
  

 or ): If stopping sampling is the decision in 814	
  

the first stage, it is finalized and there is no second stage; otherwise, either continuing 815	
  

sampling becomes the final decision, or the decision is re-evaluated in the second 816	
  

stage. 817	
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Stop-then-2nd-thought two-stage models (models denoted by  or 818	
  

): If continuing sampling is the decision in the first stage, it is 819	
  

finalized and there is no second stage; otherwise, either stopping sampling becomes 820	
  

the final decision, or the decision is re-evaluated in the second stage. 821	
  

Cost-controls-2nd-thought two-stage models (models denoted by  822	
  

or ): The second-thought probability is controlled by the cost 823	
  

condition, with , , and , respectively for the zero-, 824	
  

low-, and high-cost conditions, where , , and  are free parameters. 825	
  

Evidence-controls-2nd-thought two-stage models (models denoted by 826	
  

 or ): The second-thought probability is 827	
  

controlled by the evidence condition, with  and  respectively for 828	
  

the low- and high-evidence conditions, where  and   are free parameters. 829	
  

Flexible-2nd-thought two-stage models (models denoted by  or 830	
  

): The second-thought probability is a function of the probability of 831	
  

stopping sampling in the first stage, 832	
  

 ln
pij
sec

1− pij
sec = γ ln

pij
Stage1

1− pij
Stage1 +φ  ,  (9) 833	
  

where γ  and φ  are free parameters. 834	
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The intuition behind this form of second-thought probability is that participants 835	
  

should be likely to use the second stage to stop sampling when they are reluctant to 836	
  

continue but end up with choosing continue in the first stage, and likewise for the 837	
  

reverse case. 838	
  

For both one- and two-stage models, given that the probability of stopping 839	
  

sampling on the i-th trial after having drawn j beads is pij  , the likelihood of observing a 840	
  

specific choice cij  (0 for continue and 1 for stop) is  841	
  

L cij( ) = pij , if  cij = 1,

1− pij , if  cij = 0.

⎧
⎨
⎪

⎩⎪
 (10)  842	
  

Modeling decision times (DTs). Evidence-accumulation models are the common 843	
  

practice to model the response time (RT) of human decision-making, which can capture 844	
  

the three properties of the observed RT distributions [83]: (1) RT distributions are 845	
  

positively skewed; (2) More difficult choices (i.e. when the two options are more closely 846	
  

matched in the probability of being chosen) lead to longer RTs. (3) Correct choices (i.e. 847	
  

choosing the option with the higher value) can have equal, shorter, or longer RTs than 848	
  

wrong choices (i.e. choosing the option with the lower value).  However, evidence-849	
  

accumulation models would be computationally intractable if applied to the two-stage 850	
  

decision process of our interest, because there have been no analytical form or efficient 851	
  

numerical algorithms to deal with the RT distribution resulting from two evidence-852	
  

accumulation processes, especially when the variables controlling each evidence-853	
  

accumulation process vary from choice to choice, as in our case. 854	
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 Therefore, we modeled participants’ decision time (DT) for each sampling with a 855	
  

simplified form that is able to capture the three properties summarized above. For one-856	
  

stage models or the first stage of two-stage models, we have 857	
  

 Yij
continue1 = exp β0

Stage1 + β1
Stage1 1− pij

Stage1( )+ β2Stage1 pijStage1 1− pij
Stage1( )( ) , (11) 858	
  

 Yij
stop1 = exp β0

Stage1 + β1
Stage1 pij

Stage1 + β2
Stage1 pij

Stage1 1− pij
Stage1( )( ) , (12) 859	
  

DTij
Stage1 = exp lnYij

continue1 + ε ij
Stage1( ) , (13) 860	
  

where Yij
continue1  and Yij

stop1  denote the expected DTs respectively for continuing and 861	
  

stopping sampling, which have the same form expect that the pij
Stage1  in Eq. 11 is 862	
  

replaced by 1− pij
Stage1( )  in Eq. 12. DTij

Stage1  denotes the observed DT if the decision of 863	
  

continuing sampling is made in the first stage. Here ε ijStage1 ~ N 0,σ 1
2( )  is a Gaussian 864	
  

noise term so that DTij
Stage1  is log-normally distributed, satisfying Property (1). The 865	
  

quadratic term, pijStage1 1− pij
Stage1( ) , allows DTij

Stage1  to vary with choice difficulty so as to 866	
  

satisfy Property (2). The inclusion of the 1− pij
Stage1( )  term, would enable the three 867	
  

possibilities of Property (3). The β0
Stage1 , β1

Stage1 , β2
Stage1 , and σ 1

2  are free parameters.    868	
  

 The expected total DT of reaching the decision of continuing sampling in the 869	
  

second stage equals to the time required by the first stage plus that of the second stage 870	
  

and has the forms 871	
  

 Yij
continue 2 = Yij

continue1 + exp β0
Stage 2 + β1

Stage 2 1− pij
Stage 2( )+ β2Stage 2 pijStage 2 1− pij

Stage 2( )( ) , (14) 872	
  

and Yij
continue 2 = Yij

stop1 + exp β0
Stage 2 + β1

Stage 2 1− pij
Stage 2( )+ β2Stage 2 pijStage 2 1− pij

Stage 2( )( ) , (15) 873	
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respectively for continue-then-2nd-thought and stop-then-2nd-thought models. The 874	
  

observed DT of continuing sampling in the second stage is then  875	
  

DTij
Stage 2 = exp lnYij

continue 2 + ε ij
Stage 2( ) , (16) 876	
  

where ε ijStage 2 ~ N 0,σ 2
2( )  is a Gaussian noise term. The β0

Stage 2 , β1
Stage 2 , β2

Stage 2 , and σ 2
2  are 877	
  

free parameters. 878	
  

 Thus, for one-stage models, the likelihood of observing a specific DTij  for 879	
  

drawing the (j+1)-th bead on the i-th trial is 880	
  

 L DTij( ) = L DTij = DTij
Stage1( ) = 1

2πσ 1

exp −
lnDTij − lnYij

continue1( )2
2σ 1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (17) 881	
  

 For two-stage models, where DTij  is a mixture of DTij
Stage1  and DTij

Stage2 , its 882	
  

likelihood follows 883	
  

L DTij( ) = L DTij = DTij
Stage1( )P Stage1 continueij( )+ L DTij = DTij

Stage2( )P Stage2 continueij( )
= 1

2πσ 1

exp −
lnDTij − lnYij

continue1( )2
2σ 1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
P Stage1 continueij( )

+ 1
2πσ 2

exp −
lnDTij − lnYij

continue2( )2
2σ 2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
P Stage2 continueij( )

, (18) 884	
  

where P Stage1 continueij( )  and P Stage2 continueij( )  respectively refer to the probabilities 885	
  

that the choice is finalized at Stage 1 and Stage 2, given that continuing sampling is the 886	
  

choice. These probabilities are computed based on the corresponding choice model, 887	
  

which are 888	
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 P Stage1 continueij( ) = 1− pij
sec

1− pij
sec + pij

sec 1− pij
Stage2( )  (19) 889	
  

and P Stage1 continueij( ) = 1− pij
Stage1

1− pij
Stage1 + pij

Stage1pij
sec 1− pij

Stage2( )  (20) 890	
  

respectively for continue-then-2nd-thought and stop-then-2nd-thought two-stage models, 891	
  

and 892	
  

 P Stage2 continueij( ) = 1− P Stage1 continueij( ) . (21) 893	
  

The pij
Stage1 , pij

Stage2 , and pij
sec  are defined earlier in the choice model and estimated from 894	
  

participants’ choices. 895	
  

      896	
  

Joint log likelihood of choice and DT. For a specific sampling choice modeled by 897	
  

two-stage models, the likelihood of the joint observation of continueij  and DTij  is 898	
  

 

L cij ,DTij( ) = L DTij = DTij
Stage1( )P Stage1,continueij( )+ L DTij = DTij

Stage2( )P Stage2,continueij( )
= L DTij = DTij

Stage1( )P Stage1 continueij( )P continueij( )
+L DTij = DTij

Stage2( )P Stage2 continueij( )P continueij( )
= P continueij( ) L DTij = DTij

Stage1( )P Stage1 continueij( )+ L DTij = DTij
Stage2( )P Stage2 continueij( )⎡

⎣
⎤
⎦

= L cij( )L DTij( )

(22) 899	
  

That is, the joint likelihood is equivalent to the product of the likelihoods of choice (Eq. 900	
  

10) and DT (Eqs. 17-18). The same equivalence holds for one-stage models, whose 901	
  

proof is a special case of that of two-stage models. For the joint log likelihood summed 902	
  

over trials, we have 903	
  

 lnL cij ,DTij( )
j
∑

i
∑ = lnL cij( )L DTij( )

j
∑

i
∑ = lnL cij( )

j
∑

i
∑ + lnL DTij( )

j
∑

i
∑ . (23) 904	
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Therefore, we used the sum of the log likelihoods of the choice and DT models for 905	
  

model comparisons.  906	
  

  907	
  

Model fitting. Each one- or two-stage model consists of two parts: choice and DT. We 908	
  

first fit each choice model separately for each participant to the participant’s actual 909	
  

sampling choices using maximum likelihood estimates. As an example, if the participant 910	
  

samples 5 beads on a trial, she has a sequence of 6 binary choices on the trial (000001, 911	
  

with 0 for continue and 1 for stop). Different models differ in how the likelihood of 912	
  

generating a specific choice (0 or 1) varies with the cost or evidence observed before 913	
  

the choice. For one-stage models, where all decision variables control the choice in one 914	
  

stage, the influence of cost- or evidence-related variables is fixed across experimental 915	
  

conditions. In contrast, for two-stage models, the decision variables that control the 916	
  

second stage exert variable influences on the choice, because the probability for the 917	
  

second stage to be recruited varies with experimental conditions. The observed choice 918	
  

patterns in the experiment thus allowed us to discriminate different models, including 919	
  

one- and two-stage models. 920	
  

 For a specific fitted choice model, we could compute the second-thought 921	
  

probability, whenever applicable, as well as the probabilities of choosing stopping at 922	
  

each stage. With this information, we then fit the corresponding DT model to the 923	
  

participant’s DTs to estimate the DT-unique parameters.  924	
  

 We chose to optimize the parameters of choice and DT models in this way 925	
  

instead of optimizing them simultaneously to avoid the computational intractability of 926	
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fitting a large number of parameters. In addition, choices and DTs can serve as 927	
  

independent tests for the two-stage decision process we proposed.    928	
  

All coefficients βk of decision variables, second-thought probabilities , decay 929	
  

parameter 𝛼, and all β and 𝜎 in DT models were estimated as free parameters using 930	
  

maximum likelihood estimates. All parameters were unbounded, except that  of 931	
  

cost-controlled and evidence-controlled second-thought models and 𝛼 were bounded to 932	
  

[0, 1], and β0
Stage1 , β0

Stage 2 , 𝜎1,  and  𝜎2 of DT models were bounded to (0, Inf). Optimization 933	
  

was implemented by the fmincon function with interior-point algorithm in MATLAB 934	
  

R2017a.  935	
  

 936	
  

Model comparison. The Akaike Information Criterion corrected for small samples 937	
  

(AICc) [44,45] and Bayesian Information Criterion (BIC) were calculated as model 938	
  

evidence for model comparison. In the computation of these information measures, the 939	
  

number of “trials” of a participant’s dataset was defined as the number of DTs modeled 940	
  

for the participant. The ΔAICc (ΔBIC) for a specific model was computed for each 941	
  

participant as the AICc (BIC) difference between the model and the participant’s best-942	
  

fitting model (i.e. the model with the lowest AICc (BIC)).  The summed ΔAICc (ΔBIC)  943	
  

across participants was used for fixed-effects comparisons. Group-level Bayesian 944	
  

model selection [46,47] was used to provide an omnibus measure across individual 945	
  

participants that takes into account random effects.   946	
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