

1

2

3 **Emerging arbovirosis (Dengue, Chikungunya, Zika) in the**
4 **Southeastern Mexico: influence of social and environmental**
5 **determinants on knowledge and practices. A mixed method study.**

6

7 R Causa^{1 2}, MA Luque-Fernandez^{3 4}, H Ochoa Díaz-López^{5 *}, A Dor⁶, F Rodríguez⁵, R Solís⁵, AL
8 Pacheco Soriano⁷

9

10 ¹Andalusian School of Public Health. Granada, Spain.

11 ²University Hospital of Puerto Real, Preventive Medicine and Public Health. Cadiz, Spain.

12 ³Biomedical Research Institute of Granada (ibs.Granada), Noncommunicable Disease and Cancer
13 Epidemiology Group. University of Granada.

14 ⁴ London School of Hygiene and Tropical Medicine. Department of Non-communicable Disease
15 Epidemiology.

16 ⁵ El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, Mexico.

17 ⁶ Consejo Nacional de Ciencia y Tecnología commissioned to El Colegio de la Frontera Sur,
18 Tapachula, Chiapas, Mexico.

19 ⁷ El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico.

20 *Corresponding author. E-mail: hochoa@ecosur.mx (HODL)

21

Abstract

22 **Background:** The incidence and geographical distribution of arboviruses is constantly increasing.
23 The epidemiological patterns of the proliferation of viruses and their vectors (*Aedes aegypti* and
24 *Aedes albopictus*) are associated with socio-environmental determinants, and are closely related to
25 human habits, especially at the household level. The aim of this work is to analyze the influence of
26 socio-environmental determinants on the knowledge and practices related to arboviruses and their
27 transmission, among the residents of three communities on the southern border of Mexico.

28 **Methodology:** Between June 2017 and August 2018, our investigation covered a set of 149
29 households from three communities of Tapachula (Chiapas) and Villahermosa (Tabasco). We first
30 conducted household surveys about knowledge and practices on arbovirosis. Then, we carried out
31 direct observations of risk factors for vector proliferation at the domestic level, before and after
32 exposing a part of the population to a cycle of community engagement prevention activities. Through
33 semi-structured interviews, we also focused on the detection of environmental risk situations for
34 vector breeding at the community level.

35 **Key results:** We found that most dwellings had an adequate knowledge about the origin and
36 transmission of arboviruses, but only a minority of them also implemented appropriate practices.
37 Higher education levels were associated with better prevention scores. The observations made after
38 the cycle of community activities in Chiapas revealed a decrease in the accumulation of unprotected
39 water deposits. A higher percentage of domestic risk practices were detected in association with
40 significant deficiencies in sanitation and water supply services. Furthermore, the perception of greater
41 risk and difficulty in complying with preventive measures was detected among the population.

42 **Discussion:** Knowledge does not necessarily lead to adequate prevention practices. A better
43 understanding of all these dimensions and their interactions is required. In addition to the educational
44 level, intermediate social determinants (such as water supply and environmental sanitation) influence

45 the persistence of behaviors that are risk factors for the proliferation of arbovirosis. The achievement
46 of an effective and sustainable vector management is required to address these related aspects.

47

48 **Author summary**

49 Dengue, Chikungunya and Zika are arboviral diseases, transmitted by *Aedes* mosquitoes. As a result
50 of a continuous increase in the geographical spread and burden of disease, arbovirosis have become
51 a priority issue for global health.

52 The proliferation of viruses and their vectors are influenced by a complex interaction of
53 environmental and social determinants. Thus, the design of effective and sustainable prevention and
54 control measures requires an understanding of all these different aspects.

55 The aim of our work is to explore the effects of social and environmental factors on the knowledge
56 and practices related to Dengue, Chikungunya and Zika and their transmission, among the residents
57 of three communities on the southern border of Mexico, currently an endemic area. Our study draws
58 on the application of a program combining the implementation of new technologies for vector
59 management with a participatory and holistic multidisciplinary approach.

60 Between June 2017 and August 2018, we used different surveys and methodological approaches to
61 explore knowledge and practices on arbovirosis, as well as to identify risk factors for vector
62 proliferation. We found that intermediate social determinants (such as occasional water supply and
63 infrequent waste collections) influence the persistence of behaviors that are risk factors for the
64 proliferation of arbovirosis.

65 Public health interventions for arbovirosis prevention must be accompanied by intersectoral work that
66 includes the improvement of these related aspects, according to the multifactorial etiology of
67 arboviruses.

68

69

Introduction

70 Dengue (DENV), Chikungunya (CHIKV) and Zika (ZIKV) are arthropod-borne viruses (arboviruses).
71 In America, *Aedes aegypti*, is the main vector involved in its transmission. It's a tropical mosquito of
72 urban distribution, widely adapted to domestic environments, and with a worldwide distribution [1,
73 2].

74 In the context of the Region of the Americas, already endemic for DENV [3] and with high infestation
75 levels of *Aedes* [2], the recent spread of CHIKV and ZIKV (with the first cases of autochthonous
76 transmission at the end of 2013 and in the 2014, respectively) represent a threat and an important
77 challenge for public health systems in the Region of the Americas [4-6].

78 The global burden of arboviral disease, and its rapid geographical spread, represents a growing public
79 health problem and needs the formulation of effective strategies for the reduction of proliferation of
80 viruses and their vector. Therefore, it is extremely important to understand the nature and interaction
81 of the risk factors behind the emergence, reemergence and persistence of arboviral disease [1, 2, 7,
82 8].

83 The epidemiological patterns associated with the arboviral infection are the result of deep and
84 complex interactions between biological, ecological, social, cultural and economic factors.
85 Vulnerable contexts, with limited conditions of socio-economic development, weak health care
86 systems and inadequate infrastructures are most disproportionately impacted by the infection, with
87 consequences for the health and the economy that hinder the progress of the communities [7-12].

88 Human habits, especially at the domestic level, play a fundamental role in the spread of the disease,
89 due to its close relationship with domestic and peri-domestic *Aedes* larval infestation indices:
90 entomological indicator of the proliferation of the vector, and therefore, transmission risk of the

91 disease [13,14].

92 Reducing the vector population represent, currently, the only effective strategy to control arboviral
93 transmission. Since the epidemiological patterns of the arboviral disease are associated with a set of
94 social and environmental determinants, World Health Organization (WHO) strongly recommends the
95 implementation of Integrated Vector Management as a required model for the control and prevention
96 of arboviral disease [7-9,15].

97 Our study draws on the application of a Multidisciplinary and Transversal (MT) project “Desarrollo
98 de tecnología para el manejo integral de mosquitos vectores de dengue, chikungunya y Zika en
99 Guatemala y México” (“Mosquito-MT project”), a prevention pilot program combining the
100 implementation of the Sterile Insect Technique (SIT) with a participatory and holistic approach [16,
101 17]. Even if the SIT could represent an effective and sustainable alternative to traditional vector
102 control programs, its introduction should be accompanied by an integrated approach including
103 participation of local stakeholders. It has been remarked the importance of taking a community-based
104 approach in vector borne disease interventions, especially when they include the implementation of
105 new technologies for health [11, 18-21].

106 In recent years, the southern border of Mexico has been affected by repeated outbreaks and epidemics,
107 with a high impact on the health and the economy of the area. It is currently a highly endemic area
108 for the three diseases [22, 23].

109 The aim of this work is to analyze the influence of socio-environmental determinants on the
110 knowledge and practices related to ZIKV, DENV and CHIKV and their transmission, among the
111 residents of three communities on the southern border of Mexico, before and after carrying out a cycle
112 of community activities with a part of the target population of the “Mosquito-MT project.”

113

114 **Methods**

115 **Study setting and participants**

116 The study was conducted between June 2017 and August 2018 at three rural villages on the southern
117 border of Mexico, on the outskirts of two large urban centers: *Ejido Hidalgo*, *Ejido Río Florido* (near
118 Tapachula, state of Chiapas) and *Ranchería Guineo Segunda Sección* (near Villahermosa, state of
119 Tabasco).

120 According to the National Institute of Statistics and Geography, in 2010 the estimated population of
121 Guineo Segunda Sección was 1032 inhabitants (298 dwellings), with 24.9% of the population over
122 15 years of age without complete elementary school. Besides, the estimated population of the
123 Tapachula's villages was 789 inhabitants (172 dwellings) in Río Florido and 697 inhabitants (184
124 dwellings) in Hidalgo. The percentage of the population over 15 years of age without complete basic
125 studies was 29.1% in Río Florido and 36.7% in Hidalgo. We gathered the obtained data of both
126 villages because of their proximity (3 km apart), and the similarity of their overall condition [24].

127 Three different surveys were planned and the sample size for each was 149 households, with a total
128 of 643 residents (82 households in Tapachula municipality, 67 households in Villahermosa
129 municipality) and 6 key informants (2 participants from each community). The households were
130 chosen through simple random sampling, while the key informants were chosen through purposive
131 sampling. The key informant respondents were recruited primarily through the local community
132 health center and the local community organization *Asamblea ejidal* [18]. A person from the
133 *Comisariado ejidal* (representation of the *Asamblea ejidal*) of each community accompanied us
134 during the process of the fieldwork, to achieve better understanding and acceptance with the rest of
135 community.

136 In the Tapachula's villages, two of the co-authors (AD and ALP) were conducting a community
137 engagement plan, between November 2017 and July 2018. Through a collective and co-participative
138 work, involving different social actors of the communities, different topics related to vectors and

139 viruses were addressed, in order to improve capacities and informed decision-making about
140 arbovirosis management and prevention. In addition to the active participation in the *Asamblea ejidal*
141 meetings, a cycle of activities (talks, participatory workshops, community theater) for specific groups
142 (women, children, adolescents) was designed.

143 **Study design**

144 We conducted a mixed methods study, structured in two complementary phases. Phase I: in June
145 2017, prior to the start of the community engagement interventions, we visited 149 randomly selected
146 households. We applied one Household Survey about knowledge and practices on arbovirosis and
147 one Risk Observational Assessment about risk practices for vector proliferation at the domestic level,
148 per dwelling unit. Phase II: during July and August 2018, we re-applied the Risk Observational
149 Assessment to the same households of previous phase, after exposing a part of the population to a
150 cycle of community engagement prevention activities. We also applied a Community Background
151 Survey, focused on the detection of environmental risk situations predisposing to vector proliferation
152 at the community level.

153 **Surveys**

154 **Household Survey**

155 In 2017, through a structured, standardized and precoded questionnaire (S1.A File), we first obtained
156 information about the sociodemographic characteristics of the household residents. Then we focused
157 on basic knowledge on arbovirosis and its prevention. We first asked questions related to the origin
158 and transmission of arbovirosis i.e. “how do you think is Dengue/Zika/Chikungunya transmitted?”
159 (categorized as knowledge in the S1.A File).

160 Finally, we asked about the use of preventive measures i.e. “how do you avoid from mosquito bites?”
161 and “how do you keep mosquitoes from breeding in your house?” (categorized as referred practices

162 in the S1.A File). The interviews were conducted using the head of family as the informant.

163 **Risk Observational Assessment**

164 In 2017 and 2018, through the application of a structured, standardized and pre-coded household
165 observational checklist (S1.A File), we collected information about risk factors for vector
166 proliferation at the domestic level i.e., unprotected water deposits (vases, flowerpots, cans, tires,
167 drinking troughs, buckets, tank, water tank, cistern etc.), accumulation of solid organic and inorganic
168 waste and others environmental elements (debris, trash, plants, animals). The observations were made
169 in the exterior space of the household, or *patio* (courtyard), where the kitchen, dinning room and
170 rustic bathroom were generally located. Interior space was generally compounded by 1 to 2 bedrooms
171 and a common space (for the television set). In the villages, the *patio* (courtyard) was then a
172 fundamental extension of the house [30]. (These observations are categorized as observed practices
173 in S1).

174 **Community Background Survey**

175 In 2018, through precoded and semi-structured questions (S1.B File) to household residents and key
176 informants, respectively, we assessed the presence of risk factors for *Aedes* breeding in the
177 community. The questions focused on the sanitation and hygiene services i.e. the existing facilities
178 for waste collection, the source and frequency of water supply.

179 The semi-structured questions were used to triangulate the information recorded in the domiciliary
180 visits, undertaking interviews with six key informants from each community (nursing staff of the
181 local health center, *Presidente del Comisariado Ejidal, ejidal* committee of health). During the
182 interview, we also collected qualitative data to explore risk perceptions and community's expectations
183 about arboviral diseases and their prevention.

184 **Data management and analysis**

185 The fieldwork of data collection was realized by trained staff and internal students from ECOSUR,
186 Andalusian School of Public Health and Touro University of California.
187 Information was collected through paper questionnaires. Quantitative data was entered (twice) into a
188 database, using spreadsheets files. All data files were checked and cleaned separately by field
189 supervisors. The data files of all study phases were first analyzed separately. Subsequently, they were
190 merged and analyzed together.

191 Qualitative data from the community background survey were written as field notes, initially by hand,
192 immediately during or directly after the interview process. The information was then organized,
193 through a data collection template, according to the main themes explored (sanitation and water
194 services; perceptions about arboviral disease risk factors and its prevention). Data was described and
195 analyzed in order to identify common or recurrent patterns among the explored themes.

196 **Knowledge, referred and observed practice score system development**

197 In order to evaluate each section of the proposed surveys, we created indices (S1.A File) to score the
198 knowledge and practices in question, as was already designed in several previous studies [26-30].
199 Questions related to knowledge only allowed a correct answer. Each correct answer was rated 1 point.
200 Questions related to practices, allowed several correct answers, so that each interviewee had up to
201 five possible options. Each correct answer was rated with 0.5 points. In any case, the wrong answers,
202 or lack of answer, were rated with 0 points. Direct observations, made in the interior and exterior
203 spaces of dwelling unit, focused on two aspects: presence of unprotected water deposits and detection
204 of organic or inorganic solid waste. 1 point was assigned when these elements were absent (observed
205 practices adequate), 0 points if not. A knowledge or practice was considered appropriate when the
206 “overall score” obtained was equal or greater than 60% of the maximum expected score.

207 **Statistical analysis**

208 With the data collected, we describe the results with mean and proportions for continuous and

209 categorical variables, respectively. Then, we performed univariate and bivariate categorical statistical
210 analysis. Finally, we fitted a logistic regression model to explore social and environmental risk factors
211 associated with the reported arbovirosis knowledge and practices. We derived the odds ratios (OR)
212 and their respective 95% confidence intervals (CI) and assessed goodness of fit using the Hosmer and
213 Lemeshow statistical test. For all the statistical analysis we used R version 3.2.1 (R Foundation for
214 Statistical Computing, Vienna, Austria) and the R Commander package version 2.4-4.

215 **Ethics statement**

216 The research project proposal was approved by the internal review board of the XXXIII Master in
217 Public Health of the Andalusian School of Public Health and the Research Ethics Committee of
218 ECOSUR, with reference number CEI-006-2018. According to article 23 of the General Health Law
219 for Health Research of the Ministry of Health of Mexico [31], due to the nature of the investigation,
220 only verbal informed consent was applied.

221 To conduct the first part of the fieldwork (Household surveys and Risk observation assessment in
222 June 2017), the authors from ECOSUR have received funding by the “Fondo de investigación
223 científica y desarrollo tecnológico de El Colegio de la Frontera Sur (FID 784), in the context of the
224 “Mosquito-MT project”. The second part of the fieldwork was undertaken as part of a Public Health
225 Master's Dissertation [32].

226
227 **Results**

228 **Sociodemographic characteristics**

229 Table 1 shows the study sample sociodemographic characteristics by locality of residence. In the
230 majority of households the average number of inhabitants was of three or more people (82,5%).
231 Overall, the most common type of family was “young”, represented by a mean age for the household

232 composition members of less than 35 years old (55%). There were no significant differences in
 233 education level, sex and age distribution between the localities of the two municipalities.

234 **Table 1. Sociodemographic characteristics** (Households Survey and Community Background Survey)

	Tapachula (n=82)		Villahermosa (n=67)		Global (n=149)		
	N	%	N	%	N	%	p value
Residents per household							
1-2	17	20.7	9	13.4	26	17.4	0.503
3-4	33	40.2	29	43.3	62	41.6	
>4	32	39.0	29	43.3	61	40.9	
Women per household							
0-1	28	34.1	20	29.9	48	32.2	0.843
2-3	41	50.0	35	52.2	76	51.0	
>3	13	15.9	12	17.9	25	16.8	
Average of women per household							
<50%	58	70.7	48	71.6	106	71.1	0.902
≥ 50 %	24	29.3	19	28.4	43	28.9	
Family typology (average age)							
Young (<35 años)	40	48.8	42	62.7	82	55	0.089
Adult and old (>35 años)	42	51.2	25	37.3	67	45	
Average education (≥15 year old)							
Without schooling	11	13.4	4	6.0	15	10.1	0.186
Elementary incomplete	17	20.7	12	17.9	29	19.5	
Elementary	32	39.0	37	55.2	69	46.3	
Advanced (secondary and higher)	22	26.8	14	20.9	36	24.2	
Female average education (≥15 year old)							
Without formal education	12	15.2	8	11.9	20	13.7	0.919
Basic (primary) incomplete	16	20.3	16	23.9	32	21.9	
Basic	32	40.5	27	40.3	59	40.4	
Advanced (secondary and higher)	19	24.1	16	23.9	35	24.0	
Solid waste collection services							
Daily	0	0	0	0	0	0	0.000
Weekly	0	0	65	97	65	43.3	
Monthly	82	100	2	3	84	56.7	
Water supply services							
Regular	0	0	0	0	0	0	0.000
Irregular	0	0	54	80.6	54	36	
Absent	82	100	13	19.4	95	64	
Drainage system							
Present	0	0	0	0	0	0	NA
Partial	0	0	0	0	0	0	
Absent	82	100	67	100	149	100	

235

236 **Community background contextualization**

237 Significant difficulties in community sanitation were detected, since the frequency of solid waste
 238 collection by the municipal services was always monthly in Tapachula and mostly weekly (97%) in
 239 Villahermosa. We also found important problems in the water supply services, completely absent in
 240 Tapachula and mostly irregular (80.6%) in Villahermosa, as well as a complete absence of a public

241 drainage system in both sites.

242 Both in Villahermosa and in Tapachula, the wells (private or communal) were indicated by all the
243 informants as the main solution to solve the lack of piped water. In *Ejido Hidalgo*, the lack of a
244 functioning community well, even forced those families without other resources to store rainwater.

245 Furthermore, a high level of discomfort and preoccupation was detected, especially with the issue of
246 waste management, as reported by a member of the Rio Florido *Comisariado ejidal*: "Before, there
247 were no such problems. Each family consumed what they had. Now everything comes in plastic,
248 packaging, and then we do not know what to do with so many things. There is a payment landfill, but
249 it is only for families that can afford it." Three of the six informants defined the situation as
250 "[institutional] abandonment". In addition, four of them expressed the perception of an increased risk
251 of infection for the community ("There are more and more mosquitoes" / "more and more people get
252 sick" / "this has already become a problem"), as well as the perception of greater difficulty in
253 complying with preventive measures. As one member of health staff expressed: "The most important
254 thing is to keep the *patios* clean. It is a task of the whole community, we all must do it to make it
255 work. This is why it is very difficult."

256 **Knowledge and referred vector control practices**

257 Table 2 describes the scores about knowledge and practices, as determined by the Household survey.
258 Almost all of the respondents had heard of the diseases (99.3%), and knowledge about arboviruses
259 and their transmission was generally good (75.2%), especially in relation with DENV (81.2%).
260 However, only in few cases (30.7%) adequate personal (how to protect themselves from mosquito
261 bites) or home (how to avoid mosquitoes breeding in and around houses) prevention measures were
262 reported.

263 **Table 2. Knowledge and referred practices (Household Survey)**

	Tapachula (n=82)		Villahermosa (n=67)		Global (n=149)		
	N	%	N	%	N	%	p value

Had heard about DENV,ZIKV,CHIKV							
Yes	81	98.8	67	100	148	99.3	0.364
No	1	1.2	0	0	1	0.7	
Where?							
Television	20	24.7	30	44.8	50	33.8	0.000
Neighbors	18	22.2	14	20.9	32	21.6	
Health center	17	21.0	15	22.4	32	21.6	
Disease exposure	22	27.2	0	0.0	22	14.9	
Other	0	0.0	2	3.0	2	1.4	
Perceived prevalence							
Yes	62	75.6	22	32.8	84	56.4	0.000
No	20	24.4	45	67.2	65	43.6	
Knowledge							
Adequate (global)	64	78	48	71.6	112	75.2	0.368
Inadequate (global)	18	22	19	28.4	37	24.8	
<i>Dengue</i>							
Adequate	67	81.7	54	80.6	121	81.2	0.255
Inadequate	15	18.3	13	19.4	28	18.8	
<i>Chikungunya</i>							
Adequate	63	76.8	49	73.1	112	75.2	0.210
Inadequate	19	23.2	18	26.9	37	24.8	
<i>Zika</i>							
Adequate	58	70.7	43	64.2	101	67.8	0.311
Inadequate	24	29.3	24	35.8	48	32.2	
Referred practices							
Adequate (global)	31	38.6	14	20.9	45	30.7	0.019
Inadequate (global)	51	61.4	53	79.1	104	69.3	
<i>Personal protection</i>							
Adequate	13	16.2	9	13.4	22	15.2	0.701
Inadequate	69	84.3	58	86.6	128	84.8	
<i>Home protection</i>							
Adequate	44	53	22	32.8	66	44.4	0.013
Inadequate	38	47	45	67.2	84	55.6	

264

265 **Observed practices**

266 As Table 3 shows, both in 2017 and in 2018, a high proportion of households was found to have some
 267 unprotected water containers in outdoors areas (Tapachula: 73.7% and 42.1%; Villahermosa: 58.2%
 268 and 54.5% respectively), as well as waste accumulation (Tapachula: 60.5% and 65.8%; Villahermosa:
 269 36.4% and 30.3% respectively). In 2017, Villahermosa's village showed a higher percentage of
 270 adequate practices than in Tapachula's villages (56.1% and 18.4%, p-value<0.001). However, in 2018,
 271 observed good practices showed an increase in Tapachula's villages, from 18.4% to 27.6%. Besides,
 272 this change is completely associated with the decrease of unprotected water deposits, since the amount
 273 of organic and inorganic waste recorded in 2018 was even higher than in 2017. In Villahermosa's
 274 village, the adequate observed practices slightly decreased from 56.1% to 42.4%, in relation with an

275 increase of unprotected water deposits and waste in 2018. It is interesting to observe that the
276 percentages of adequate practices in both sites are not significantly different in 2018 (p-value=0.064).

277 **Table 3. Observed practices** (Risk Observational Assessment)

	2017						2018					
	Tapachula, (n=76)		Villahermosa, (n=66)				Tapachula, (n=76)		Villahermosa, (n=66)			
	N	%	N	%	p-value		N	%	N	%	p-value	
Adequate ¹	14	18.4	37	56.1	0.000		21	27.6	28	42.4	0.064	
Inadequate ²	62	81.6	29	43.9			55	72.4	38	57.6		
<i>Unprotected water deposits</i>												
Absent	20	26.3	28	41.8	0.050		44	57.9	30	45.5	0.138	
Present	56	73.7	39	58.2			32	42.1	36	54.5		
<i>Solid waste accumulation</i>												
Absent	30	39.5	42	63.6	0.375		26	34.2	46	69.7	0.000	
Present	46	60.5	24	36.4			50	65.8	20	30.3		

278 ¹Adequate: absence of unprotected water and/or waste.

279 ²Inadequate: presence of water and/or waste accumulation.

280 **Logistic Regression Model**

281 Table 4 shows the results of logistic models for the association between respondent sociodemographic
282 characteristics and reported knowledge and practices. Higher education levels were associated with
283 better knowledge and prevention scores. Household with uncompleted studies had 4-times (OR: 4.13;
284 95% CI: 1.2-13.9) higher probability of inadequate knowledge about arboviruses compared with
285 household with primary or high studies, as well as higher probability of inadequate observed practices,
286 both in 2017 (OR: 38.33; 95% IC: 7.87-186.53) and 2018 (OR: 15.04; 95% IC: 3.89-58.05).

Table 4. Respondent sociodemographic characteristics and reported knowledge and practices

	Knowledge (2017)					Referred practices (2017)					Observed practices (2017)					Observed practices (2018)				
	A, n(%)	Ina, n(%)	p	OR	CI	A, n(%)	Ina, n(%)	p	OR	CI	A, n(%)	Ina, n(%)	p	O R	CI	A, n(%)	Ina, n(%)	p	OR	CI
Residents per household																				
1-2	16 (61.5)	10 (38.5)	0.067	1 (R)		4 (15.4)	22 (84.6)	0.911	1 (R)		3 (11.5)	23 (88.5)	0.009	1 (R)		6 (24.0)	19 (76)	0.418	1 (R)	
3-4	52 (83.9)	10 (16.1)	0.30	0.10-0.87		11 (17.7)	51 (82.3)	0.84	0.24-2.93		22 (36.7)	38 (63.3)	0.22	0.06-0.83		20 (35.1)	37 (64.9)	0.58	0.20-1.69	
>4	44 (72.1)	17 (27.9)	0.62	0.23-1.62		9 (15.0)	51 (85.0)	1.03	0.28-3.70		26 (46.4)	30 (53.6)	0.15	0.04-0.55		23 (39.0)	36 (61.0)	0.49	0.17-1.42	
Women per household																				
0-1	31 (64.6)	17 (35.4)	0.003	1 (R)		9 (18.8)	39 (81.2)	0.463	1 (R)		1 (23.9)	35 (76.1)	0.073	1 (R)		12 (26.1)	34 (73.9)	0.320	1 (R)	
2-3	66 (86.8)	10 (13.2)	0.27	0.11-0.67		13 (17.3)	62 (82.7)	1.10	0.43-2.81		28 (38.9)	44 (61.1)	0.49	0.21-1.12		27 (38.6)	43 (61.4)	0.56	0.25-1.27	
>3	15 (60.0)	10 (40.0)	1.21	0.44-3.29		2 (8.0)	23 (92.0)	2.65	0.52-13.36		12 (50.0)	12 (50.0)	0.31	0.11-0.89		10 (40.0)	15 (60.0)	0.53	0.18-1.49	
Average of women per household																				
<50%	32 (74.4)	11 (25.6)	0.892	1 (R)		9 (20.9)	34 (79.1)	0.319	1 (R)		11 (26.8)	30 (73.2)	0.561	1 (R)		10 (25.0)	30 (75.0)	0.125	1 (R)	
≥ 50 %	80 (75.5)	26 (24.5)	0.94	0.42-2.13		15 (14.3)	90 (85.7)	1.58	0.63-3.96		40 (39.6)	61 (60.4)	0.55	0.25-1.24		39 (38.6)	62 (61.4)	0.53	0.20-1.27	
Family typology (average age)																				
Young ¹	63 (76.8)	19 (23.2)	0.603	1 (R)		14 (17.3)	67 (82.7)	0.698	1 (R)		36 (46.8)	41 (53.2)	0.003	1 (R)		34 (44.2)	43 (55.8)	0.010	1 (R)	
Adult ²	49 (73.1)	18 (26.9)	1.22	0.57-2.56		10 (14.9)	57 (85.1)	1.19	0.49-2.88		15 (23.1)	50 (76.9)	2.90	1.33-6.55		15 (23.4)	49 (76.6)	2.56	1.17- 5.80	
Average education (≥15 year old)																				
Without ³	29 (65.9)	15 (34.1)	0.057	4.13	1.23-13.90	13 (36.1)	23 (63.9)	0.072	0.81	0.90-3.49	3 (4.8)	39 (95.2)	0.000	38.33	7.87-186.53	3 (7.3)	38 (92.7)	0.000	15.0 4	3.89-58.05
Elementary	51 (73.9)	18 (26.1)	2.82	0.87-9.09		15 (21.7)	54 (78.3)	2.03	0.83-4.95		26 (40.0)	39 (60.0)	2.87	1.22-6.76		27 (41.5)	38 (58.5)	1.67	0.73-3.82	
Advanced ⁴	32 (88.9)	4 (11.1)	1 (R)			18 (40.9)	26 (59.1)	1 (R)			23 (65.7)	12 (34.3)	1 (R)			19 (54.3)	16 (45.7)	1 (R)		
Female average education (≥15 year old)																				
Without ³	28 (69.2)	16 (30.8)	0.492	1.77	0.64-4.91	20 (38.5)	32 (61.5)	0.400	1.07	0.42-2.72	5 (10.2)	44 (89.8)	0.000	51.03	13.56-192.06	0	49 (100)		Inf.	
Elementary	45 (76.3)	14 (23.7)	1.24	0.44-3.46		16 (27.1)	43 (72.9)	0.64	0.25-1.60		17 (30.4)	39 (69.6)	13.30	4.40-40.24		22 (40.0)	33 (60)			
Advanced ⁴	28 (80.0)	7 (20.0)	1 (R)			10 (28.6)	25 (71.4)	1 (R)			29 (85.3)	5 (14.7)	1 (R)			26 (76.5)	8 (23.5)	1 (R)		
Solid waste collection services																				
Monthly	64 (78.0)	18 (22.0)	0.367	1.40	0.66-2.96	33 (38.8)	52 (61.2)	0.013	0.40	0.17- 0.87	14 (17.9)	64 (82.1)	0.000	6.17	2.75-14.52	21 (26.9)	57 (73.1)	0.035	2.09	0.99-4.53
Weekly	48 (71.6)	19 (28.4)	1 (R)			13 (20.0)	52 (80.0)	1 (R)			37 (57.8)	27 (42.2)	1 (R)			28 (43.8)	36 (56.2)	1 (R)		
Water supply services																				
Absent	72 (75.8)	23 (24.2)	0.815	0.91	0.40-2.14	34 (35.4)	62 (64.6)	0.092	0.52	0.22-1.18	18 (20.5)	70 (79.5)	0.000	6.02	2.69-13.93	21 (23.6)	68 (76.4)	0.000	3.60	1.64-8.01
Irregular	40 (74.1)	14 (25.9)	1 (R)			12 (22.2)	42 (77.8)	1 (R)			33 (61.1)	21 (38.9)	1 (R)			28 (52.8)	25 (47.2)	1 (R)		
Perceived prevalence																				
Yes	66 (78.6)	18 (21.4)	0.274	1 (R)		13 (15.7)	70 (84.3)	0.836	1 (R)		24 (30.0)	56 (70.0)	0.095	1 (R)		30 (38.5)	48 (61.5)	0.303	1 (R)	
No	46 (70.8)	19 (29.2)	1.51	0.71-3.20		11 (16.9)	54 (83.1)	0.91	0.37-2.19		27 (43.5)	35 (56.5)	0.55	0.26-1.17		19 (30.2)	44 (69.8)	1.44	0.67-3.13	

A: Adequate, Ina: Inadequate, p: p value, CI: CI95%, R: Reference

¹ < 35 years old ² > 35 years old³ Without schooling or incomplete ⁴ Secondary and higher

292 Likewise, a higher percentage of domestic risk practices were detected in association with significant
293 deficiencies in sanitation and water supply services. When the frequency of solid waste collection
294 was monthly, a higher risk of inappropriate observed practices was detected, compared to the weekly
295 collection (2017: OR: 6.17, 95% CI: 2.75-14.52) (2018: OR: 2.09 95% CI: 0.99-4.53). Similar results
296 were observed in relation to the absence of a water supply network, compared to its presence, even if
297 irregular (2017: OR: 6.02, 95% CI: 2.69-13.93) (2018: OR: 3.60, 95% CI: 1.64-8.01).

298 **Discussion**

299 **Principal findings and comparison with other studies**

300 Reduction of *Aedes* vector population from the domestic environment is essential to control
301 arboviruses transmission. It is basically achieved through the elimination of any larval habitat, since
302 the domestic and peri-domestic *Aedes* infestation depends on their presence and quantity [13, 30].
303 Our findings suggest that social and environmental contexts influence the development of risk
304 behaviors for vector breeding at the household level. In addition to the educational level, intermediate
305 social determinants, such as water supply and environmental sanitation, are related with the
306 persistence of risk factors for the proliferation of arboviruses.

307 Several studies evidenced the high impact of most of the socio-demographics determinants we
308 described on domestic vector breeding risk [33-35]. In the context of Mexico, gaps in coverage of
309 water and waste services was already identified as key factor for arbovirosis endemicity and the
310 persistence of recurrent outbreaks [36, 37]. A study conducted in Cuba identified a significant
311 association between irregularities in water supply and *Aedes* larval infestation indices [33].
312 Furthermore, outdoor water containers have been reported as the most productive vector breeding
313 sites [38].

314 In our study, participants had high levels of knowledge regarding the transmission of DENV, CHIKV,

315 ZIKV, but the overall score about self-reported and observed practices was generally low. Similar
316 findings have been previously described in other localities with recent history of the disease [28, 29,
317 35, 39, 40]. These outcomes suggest that knowledge does not necessarily lead to adequate prevention
318 practices, especially in those contexts where the complex interactions of environmental and social
319 determinants increased human vulnerability to vector borne diseases [11, 12].

320 Community empowerment processes are a fundamental step to enable populations at risk (through
321 behaviors and practices) to lead the eradication of vectors from their environment [15, 25]. There is
322 previous evidence of the effectiveness of community-based approach strategies for the prevention of
323 arboviral disease based on serological and entomological data [41-43]. The household risk
324 observation assessment applied after the community engagement plan in Tapachula revealed a
325 decrease in the accumulation of unprotected water deposits in the dwellings, as well as an increase in
326 the accumulation of solid waste. Although it would be risky and inappropriate to propose a complete
327 evaluation of the community engagement interventions, it seems that its potential impact, in particular
328 on waste accumulation, could have been affected by contextual circumstances. These described
329 circumstances were a high percentage of domestic risk practices detected in association with
330 significant deficiencies in sanitation and water supply services. In Villahermosa's village, where no
331 community engagement plan has been operated, the sanitation services (water and waste collection)
332 are more frequent than in Tapachula; and it is maybe why the residents of Villahermosa showed better
333 practices than Tapachula's residents in 2017.

334 In the semi-structured interviews, was recognized the importance of community involvement
335 (especially at the household level) for the resolution of a problem perceived as growing, similar to
336 the results of previous studies with a qualitative approach to the topic [44, 45].

337 Nevertheless, the difficulties expressed by the key members of the community during the interviews
338 revealed the difficulty of translating preventive measures into everyday actions and behaviors.

339 **Limitations of the study**

340 We are aware that our study instruments, chosen according to the available logistic and material
341 resources, are not exempt from limitations. Surveys about knowledge and practices, due to their
342 extension and quantitative approach, impeded a deep understanding of these dimensions and their
343 interaction. Likewise, the categorization of survey data through a scoring system may not be the most
344 appropriate method to approach such a complex issue, which is difficult to measure and quantify.

345 Furthermore, the reduced size and data sparsity regarding the surveys quantitative information
346 possibly may have influenced a reduced statistical power for the statistical inferential analysis for
347 some of the estimates associations.

348 **Conclusions and implications**

349 We conclude that the endemicity of the arboviral infection in southern Mexico is the result of complex
350 interactions between vector, environment and human behaviors. In order to develop targeted vector
351 control programs to the southern Mexican area, a better understanding of the interactions between
352 environment, vector and host human behaviors is needed. To achieve effective, sustainable, and
353 ethical vector control strategies, a more comprehensive and contextualized approach is required.

354 Community empowerment is more than just information: it is about facilitating and encouraging
355 stakeholders to take control action, through strategies adapted to local conditions and needs.
356 Furthermore, intermediary social determinants of water and sanitation need to be addressed to reduce
357 community vulnerability to the arboviral disease [8-12].

358

359 **Acknowledgments**

360 We would like to thank Alberto Fernandez, as well as the rest of the teaching team of the XXXIII

361 Master in Public Health of the Andalusian School of Public Health, for providing academic and
362 personal support to advance in this work.

363 We also acknowledge the staff of the ECOSUR Health Department of San Cristóbal de Las Casas
364 and Villahermosa; especially, Rosario Garcia Miranda for the logistical support, Itandehui Castro
365 Quezada for the statistical advice, and Cesar Irecta for his help in the field work in Villahermosa.

366 We are very grateful to the residents of Ejido Hidalgo, Rio Florido and Villahermosa, for all the
367 support, contributions and time they have offered us.

368

369 **References**

- 370 1. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global
371 distribution of the arbovirus vectors *Aedes aegypti* and *Ae. Albopictus*. *Elife*. 2015;4:1–18.
- 372 2. Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MU, Revie, CW. Global risk mapping for
373 major diseases transmitted by *Aedes aegypti* and *Aedes albopictus*. *International Journal of
374 Infectious Diseases*. 2018; 67: 25–35.
- 375 3. San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, et al.
376 The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. *The
377 American journal of tropical medicine and hygiene*. 2010; 82(1): 128–135.
- 378 4. PAHO WHO | 29 August 2014: Chikungunya and dengue fever – situation in the Americas. Pan
379 American Health Organization / World Health Organization. 2014. [cited 2019 Feb 12]
380 <https://www.paho.org/hq/dmdocuments/2014/2014-aug-29-cha-epi-alert-chik-dengue-americas.pdf>
- 381 5. PAHO WHO | Timeline of the emergence of Zika virus in the Americas. Pan American Health
382 Organization / World Health Organization. 2016. [cited 2019 Feb 12].
383 https://www.paho.org/hq/index.php?option=com_content&view=article&id=11959:timeline-of-

384 [emergence-of-zika-virus-in-the-americas&Itemid=41711&lang=en](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119365/)

385 6. Patterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: Emerging Arboviruses in the

386 New World. *West J Emerg Med.* 2016;17(6): 671–679.

387 7. PAHO WHO | Tool for the diagnosis and care of patients with suspected arboviral diseases. Pan

388 American Health Organization / World Health Organization. 2017. [cited 2019 Feb 12].

389 http://iris.paho.org/xmlui/bitstream/handle/123456789/33895/9789275119365_eng.pdf?sequence=1&isAllowed=y

390 8. PAHO WHO | Strategy for Arboviral Disease Prevention and Control. Pan American Health

392 Organization / World Health Organization. 2016. [cited 2019 Feb 12].

393 <http://iris.paho.org/xmlui/bitstream/handle/123456789/31430/CD55-16-e.pdf?sequence=1&isAllowed=y>

394 9. WHO | A global brief on vector-borne diseases. World Health Organization. 2014. [cited 2019

395 Feb 12].

397 http://apps.who.int/iris/bitstream/handle/10665/111008/WHO_DCO_WHD_2014.1_eng.pdf?sequence=1

398 10. Gardner LM, Bóta A, Gangavarapu K, Kraemer MUG, Grubaugh ND. Inferring the risk factors

400 behind the geographical spread and transmission of Zika in the Americas. *PLoS Negl Trop Dis.*

401 2018; 12(1): e0006194.

402 11. Bardosh KL, Ryan S, Ebi K, Welburn S, Singer B. Addressing vulnerability, building resilience:

403 Community-based adaptation to vector-borne diseases in the context of global change. *Infect Dis*

404 *Poverty.* 2017;6(1):1–21.

405 12. Aagaard-Hansen J, Chaignat CL. Equity, Social Determinants and public health programmes.

406 WHO -World Health Organization. 2010. Chap. 8, Neglected tropical diseases: equity and social

407 determinants; p. 135–159.

408 13. Focks DA, Alexander N, Villegas E. Multicountry study of Aedes aegypti pupal productivity

409 survey methodology: findings and recommendations. World Health Organization on behalf of the
410 Special Programme for Research and Training in Tropical Diseases.2006. [cited 2019 Feb 12].
411 https://www.who.int/tdr/publications/documents/aedes_aegypti.pdf

412 14. Sanchez L, Vanlerberghe V, Alfonso L, et al. Aedes aegypti larval indices and risk for dengue
413 epidemics. *Emerg Infect Dis.* 2006;12(5):800–6.

414 15. PAHO WHO | Vectors: Integrated Management and Public Health Entomology. World Health
415 Organization. 2016. [cited 2019 Feb 12].
https://www.paho.org/hq/index.php?option=com_content&view=article&id=13315:vectors-public-health-entomology&Itemid=42362&lang=en

416 16. Dor A, Bond Compeán JG, Casas M, Fernández Salas I, Fernández Marina C, Jamboos Toledo
417 JC. Mosquitos transmisores de arbovirosis emergentes de relevancia en salud pública. In: La
418 Frontera Sur de México, ¿una salud en crisis?. Academia Nacional de Medicina de México
419 (ANMM). 2018; 115–129.

420 17. Dor A, Irecta C, Pacheco AL. Zancudos, enfermedades y participación comunitaria. 2018.
421 Ecofronteras. 22: 22–25.

422 18. Ramsey JM, Bond JG, Macotela ME, Facchinelli L, Valerio L, Brown DM, et al. A regulatory
423 structure for working with genetically modified mosquitoes: lessons from Mexico. *PLoS Negl Trop
424 Dis.* 2014; 8 (3): e2623.

425 19. McNaughton D. The importance of long-term social research in enabling participation and
426 developing engagement strategies for new dengue control technologies. *PLoS Negl Trop Dis.* 2012;
427 6 (8): e1785.

428 20. McNaughton D, Duong TTH. Designing a community engagement framework for a new dengue
429 control method: a case study from central vietnam. *PLoS Negl Trop Dis.* 2014; 8 (5): e2794.

430 21. Spiegel J, Bennett S, Hattersley L, Hayden MH, Kittayapong P, Nalim S, et al. Barriers and
431 bridges to prevention and control of dengue: the need for a social-ecological approach. *Ecohealth.*

434 2005; 2(4): 273–90.

435 22. Ochoa H , Rodríguez León F, Estrada J, Pérez de León A. La Frontera Sur de México, ¿una salud
436 en crisis? Academia Nacional de Medicina de México (ANMM); 2018. Chap. 6, Dengue,
437 Chikungunya y Zika: panorama actual en México y la frontera sur; p. 91–114.

438 23. Secretaría de Salud | Gobierno de México. Dirección General de Epidemiología. Información
439 Epidemiológica. [Internet]. [cited 2019 Feb 12].

440 <https://www.gob.mx/salud/acciones-y-programas/informacion-epidemiologica>

441 24. Secretaría de Desarrollo Social | Gobierno de México. Unidad de microrregiones. Catálogo de
442 localidades. [Internet]. [cited 2019 Feb 12].

443 <http://www.microrregiones.gob.mx/catloc/Default.aspx>

444 25. Tapia-Conyer R., Méndez-Galván J, Burciaga-Zúñiga P. Community participation in the
445 prevention and control of dengue: the patio limpio strategy in Mexico. Paediatrics and international
446 child health. 2012; 32(1): 10–13.

447 26. Elsinga J, Lizarazo EF, Vincenti MF, Schmidt M, Velasco-Salas ZI, Arias L, et al. Health seeking
448 behaviour and treatment intentions of Dengue and fever: a household survey of children and adults
449 in Venezuela. PLoS Negl Trop Dis. 2015; 9(12): e0004237.

450 27. Dégallier N, Vilarinhos PT, de Carvalho MS, Knox MB, Caetano J. People's knowledge and
451 practice about dengue, its vectors, and control means in Brasilia (DF), Brazil: its relevance with
452 entomological factors. J Am Mosq Control Assoc. 2000;16(2):114–23.

453 28. Haenchen SD, Hayden MH, Dickinson KL, Walker K, Jacobs EE, Brown HE, et al. Mosquito
454 avoidance practices and knowledge of arboviral diseases in cities with differing recent history of
455 disease. Am J Trop Med Hyg. 2016; 95(4): 945–53.

456 29. Shuaib F, Todd D, Campbell-Stennett D, Ehiri J, Jolly PE. Knowledge, attitudes and practices
457 regarding dengue infection in Westmoreland, Jamaica. West Indian Med J. 2010;59 (2): 139–46.

458 30. Castro M, Sanchez L, Perez D, Sebrango C, Shkedy Z, et al. The relationship between economic

459 status, knowledge on dengue, risk perceptions and practices. PLoS ONE. 2013; 8 (12): e81875.

460 31. Secretaria de Salud | Gobierno de México. Ley General de Salud. 2013. [Internet]. [cited 2018

461 Dec 19].

462 32. Causa R. Análisis de los determinantes sociales y ambientales relacionados con conocimientos y

463 prácticas sobre arbovirosis febriles agudas emergentes (Zika, Dengue, Chikungunya) en la frontera

464 sur de México. M.Sc. Thesis, Escuela Andaluza de Salud Pública. 2018.

465 33. Spiegel JM, Bonet M, Ibarra AM, Pagliccia N, Ouellette V, Yassi A. social and environmental

466 determinants of *Aedes aegypti* infestation in Central Havana: results of a case-control study nested in

467 an integrated dengue surveillance programme in Cuba. Tropical Medicine and International Health.

468 2007; 12(4), 503–510.

469 34. Lozano RD, Rodrigues MH, Avilia M. Gender related family and *Aedes aegypti* larval breeding

470 risk in Southern Mexico. Salud Publica De Mexico. 2002;44(3): 237–42.

471 35. Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme W, Wai KT, et al. Eco-bio-

472 social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia.

473 Bull World Health Organ. 2010; 88(3):173–84.

474 36. Cifuentes, E. Factores ambientales que determinan la aparición de brotes y la persistencia del

475 dengue en Morelos. Salud Pública de México. 2007; 49: 114–116.

476 37. Narro J, Gómez H. El dengue en México: un problema prioritario de salud pública. Salud Pública

477 de México. 1995; 37(Su1): 12–20.

478 38. Barrera R, Amador M, Clark GG. Ecological factors influencing *Aedes aegypti* (Diptera:

479 Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Entomol. 2006;43(3):

480 484–92.

481 39. Morales AG, Sala AMI. Level of knowledge, attitudes and practices on the prevention of mosquito

482 *Aedes aegypti* in communities of Diez de Octubre municipality, La Habana. Rev Cubana Hig

483 Epidemiol. 2011; 49(2): 247–59.

484 40. Koenraadt, CJM. Dengue knowledge and practices and their impact on Aedes aegypti populations
485 in Kanphaeng Phet, Thailand. *Am. J. Trop. Med. Hyg.* 2006; 74(4): 8.

486 41. Andersson N, Nava-Aguilera E, Arostegui J, Morales-Perez A, Suazo-Laguna H, Legorreta-
487 Soberanis J, et al. Evidence based community mobilization for dengue prevention in Nicaragua and
488 Mexico (Camino Verde, the Green Way): Cluster randomized controlled trial. *BMJ.* 2015; (Online):
489 351.

490 42. Espinoza-Gomez F, Hernandez-Suarez CM, Coll-Cardenas R. Educational campaign versus
491 malathion spraying for the control of Aedes aegypti in Colima, Mexico. *J Epidemiol Community*
492 *Health.* 2002;56: 148–52.

493 43. Flores R, Rangel M, Eduardo C, Reyes B, Francisco A, Ortega S. Evaluación de la estrategia
494 municipal de prevención y control integral del dengue con participación social en el municipio de
495 Xochitepec, Morelos, México. Convención Internacional de Salud, Cuba Salud 2018. [Internet].
496 [cited 2019 Feb 12].
497 <http://www.convencionsalud2018.sld.cu/index.php/convencionsalud/2018/paper/view/1667/625>

498 44. Weldon CT, Riley-Powell AR, Aguerre IM, Celis Nacimiento RA, Morrison AC, Oberhelman
499 RA, et al. “Zika is everywhere”: a qualitative exploration of knowledge, attitudes and practices
500 towards Zika virus among women of reproductive age in Iquitos, Peru. *PLoS Negl Trop Dis.* 2018;
501 12(8): e0006708.

502 45. Phuanukoonnon S., Brough M., Bryan JH. Folk knowledge about dengue mosquitoes and
503 contributions of health belief model in dengue control promotion in Northeast Thailand. *Acta tropica.*
504 2006; 99(1): 6–14.

505

506 **Supporting information**

507 **S1 File – Surveys**

508 **A. Household survey and Risk observational assessment.** Sections and simplified scoring system.

509 **B. Community background survey.** Adaptation of the pre-coded questions and semi-structured

510 interview guide.