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Abstract

Novel infectious diseases continue to emerge within human populations. Predictive studies
have begun to identify pathogen traits associated with emergence. However, emerging
pathogens vary widely in virulence, a key determinant of their ultimate risk to public health.
Here, we use structured literature searches to review the virulence of each of the 214 known
human-infective RNA virus species. We then use a machine learning framework to determine
whether viral virulence can be predicted by ecological traits including human-to-human
transmissibility, transmission routes, tissue tropisms and host range. Using severity of clinical
disease as a measurement of virulence, we identified potential risk factors using predictive
classification tree and random forest ensemble models. The random forest model predicted
literature-assigned disease severity of test data with 90.3% accuracy, compared to a null
accuracy of 74.2%. In addition to viral taxonomy, the ability to cause systemic infection,

having renal and/or neural tropism, direct contact or respiratory transmission, and limited (0 <

Ro < 1) human-to-human transmissibility were the strongest predictors of severe disease. We

present a novel, comparative perspective on the virulence of all currently known human RNA
virus species. The risk factors identified may provide novel perspectives in understanding the
evolution of virulence and elucidating molecular virulence mechanisms. These risk factors
could also improve planning and preparedness in public health strategies as part of a

predictive framework for novel human infections.


https://doi.org/10.1101/581512
http://creativecommons.org/licenses/by/4.0/

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

bioRxiv preprint doi: https://doi.org/10.1101/581512; this version posted March 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tropism and Transmission Ecology Predict Viral Virulence — Brierley et al. 3

Introduction

The emergence of novel infectious diseases continues to represent a threat to global public
health. Emerging pathogens have been defined as those newly recognised infections of
humans following zoonotic transmission, or those increasing in incidence and/or geographic
range [1]. High-profile examples of emerging pathogens include the discovery of the novel
MERS coronavirus from cases of respiratory illness in 2012 [2], and the expansion of the
range of Zika virus across the South Pacific and the Americas [3]. The emergence of
previously unseen viruses means that the set of known human viruses continually increases
by around 2 species per year [4,5]. Initial comparative studies identified trends among
emerging human pathogens, for example, increased risk of emergence for pathogens with
broad host ranges, and RNA viruses [6—9]. However, more recent comparative analyses have
focused on risk factors for specific pathogen traits, such as transmissibility [10-12]. Here, we
focus on understanding the ecological determinants of pathogen virulence, using all currently

recognised human RNA viruses as a study system.

Emerging RNA viruses vary widely in their virulence, with some never having been associated
with human disease at all. For example, Zaire ebolavirus causes severe haemorrhagic fever
with outbreaks, including the 2014 West African outbreak showing case fatality ratios of ~60%
or more [13,14]. In contrast, human infections with Reston ebolavirus have never exhibited
any evidence of disease symptoms [15]. Applying the comparative approach to understand
the ecology of virulence could offer valuable synergy with studies of emergence, towards

prioritisation and preparedness in the detection of potential new human viruses [16].
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Few comparative analyses have addressed the risk factors driving human pathogen virulence
to date (but see [17-19]), and none have exhaustively investigated virulence across the
breadth of all currently recognised human RNA viruses. Several hypotheses regarding how
pathogen ecology affects virulence have been derived from theoretical models of evolution.
For example, the trade-off hypothesis was developed based on the assumption that rate of
transmission between individuals may increase as a function of virulence, but there will be a
consequential increase in host mortality (or decrease in host recovery as the inverse of
mortality). As a result, pathogen fitness will be subject to trade-off between virulence and
transmissibility over a longer infectious window [20,21]. The trade-off hypothesis is highly
debated as it is difficult to empirically characterise due to dependency on many other aspects
of host-pathogen coevolution [22,23]. However, comparative analysis has been suggested as
one method to assess evidence for a virulence-transmission trade-off [22]. Based on these
core principles, we hypothesised that limited capability to transmit between humans may act
as a predictive risk factor for virulence. We also note that evolutionary trade-offs will only
apply to coevolved host-virus relationships and that many human viruses result from zoonotic
cross-species transmission without onward transmission or adaptation. In these cases,
‘coincidental’ non-adapted virulence may result [24,25], and as above, we hypothesised that

limited human-to-human transmissibility may predict higher virulence.

Transmission route may also influence the evolution of virulence. Ewald [18] suggested that

vector-borne pathogens should be less constrained by costs of virulence, i.e. morbidity and
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immobilisation of the vertebrate host does not impede transmission if it occurs through an
arthropod vector. We therefore hypothesised a vector-borne transmission route would predict

higher virulence.

Several studies have also suggested a link between host range and virulence. Assuming an
evolutionary trade-off exists between virulence and transmission rate, higher virulence may
result in pathogens with narrower host ranges following selection pressures to increase
transmission rate within the specialist host(s) [19]. Furthermore, the degree of virulence in
experimental infections with Drosophila C virus was more similar between closely related
hosts [26]. Though similar ideas have not yet been formally tested for human infections,
parasite infectivity correlates with phylogenetic relatedness among primates [27]. We
hypothesised infection of non-human primates as a specific related host taxon would predict
higher virulence. Finally, although yet unexplored via theoretical models, it may be an intuitive
expectation that systemic infections present with more severe disease than local infections. A

broader tissue tropism could therefore also predict higher virulence.

We aimed to determine patterns of virulence across the breadth of all known human RNA
viruses. We then aimed to use predictive machine learning models to ask whether ecological
traits of viruses can act as predictive risk factors for virulence in humans. Specifically, we
examined hypotheses that viruses would be more highly virulent if they: lacked transmissibility
within humans; had vector-borne transmission routes; had a narrow host range including non-

human primates; or had greater breadth of tissue tropisms.
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Results

Virulence of Human RNA Viruses

Following [5], as of 2015 there were 214 RNA virus species containing viruses capable of
infecting humans, spanning 55 genera and 21 families (with one species unassigned to a
family). Using a two-category system, 58 of these were rated as causing ‘severe’ clinical
disease and 154 as ‘nonsevere’ following systematic literature review (Fig 2, see also S1
Table, S2 Table). Two virus species could not be assigned a disease severity rating and were
excluded from all analyses (Hepatitis delta virus, which is reliant on Hepatitis B virus
coinfection; and Primate T-lymphotropic virus 3, which may be associated with chronic
disease like other T-lymphotropic viruses, but has not been known in humans long enough for
cohort observations). Disease severity differed between viral taxonomic families (Fisher’s
exact, 1000 simulations, p < 0.001), with Arenaviridae, Filoviridae and Hantaviridae having
the highest fractions of severe-rated virus species (Fig 2). Fatalities were reported in healthy
adults for 64 viruses and in vulnerable individuals only for an additional 26 viruses, whilst 8
viruses rated ‘nonsevere’ had severe strains, 6 of which belonged to the family

Picornaviridae.

Classification Tree Risk Factor Analysis

To find predictive risk factors for virulence, we firstly divided the 212 virus species into a
training set (n = 181) and test set (n = 31) based on taxonomy and severity in order to
minimise potential biases from trait imbalances. Using the training set, we then constructed a

single classification tree that aimed to optimally classify viruses in virulence based on their
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ecological traits. The final pruned classification tree included variables relating to
transmissibility, tissue tropism and taxonomy (Fig 2). Severe disease was predicted by the
model for four generalised groups: i) viruses with a neural or systemic primary tropism with
limited human-to-human transmissibility (excluding orthomyxoviruses, phenuiviruses and
reoviruses); ii) viruses known to have a renal tropism (primary or otherwise); iii) hantaviruses;

and iv) retroviruses with sustained human-to-human transmissibility.

Random Forest Risk Factor Analysis

Although the illustrated classification tree identified several risk factors, this represents one of
many possible trees, as tree structure is dependent on the exact sampling partition between
training and test data. We therefore constructed a random forest model containing 5000
individual trees, each built using a bootstrapped sample of the training data and a randomly

restricted subset of predictors.

Aggregated over these bootstrapped trees, the most informative predictor variables for
classifying virulence were taxonomic family and primary tissue tropism (Fig 4). However,
transmission route, human-to-human transmissibility level, and having a known neural or
renal tropism were also relatively informative, broadly mirroring the risk factors observed in

the single tree. Host range predictors were generally uninformative.

To quantify the effects of the most informative risk factors, partial dependences were

extracted from the random forest, describing the marginal predicted probabilities of severe
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virulence associated with each virus trait (Fig 5, S3 Table). Averaging across other predictors,
viruses having tissue tropisms within neural, renal or systemic across multiple organ systems
presented the highest risk of severe virulence, whilst respiratory and gastrointestinal tropisms
presented the lowest risk. An increased probability of severe virulence was also observed for
viruses transmitted by direct contact or respiratory routes, and those with known but limited

human-to-human transmissibility.

Model Performance in Predicting Viral Virulence

Although the single classification tree model predicted the training set well, it did not appear
generalisable to novel data within the test set. The single tree correctly predicted virulence
ratings from literature-based criteria for 24 of 31 viruses in the test set giving a resulting
accuracy of 77.4% (95% confidence interval [CI]: 58.9% - 90.4%), no evident improvement on
the null model assigning all viruses as nonsevere (null accuracy = 74.2%). The random forest
gave better predictive accuracy, correctly predicting virulence ratings for 28 of 31 test set
viruses (accuracy: 90.3%, 95% CI. 74.3% - 98.0%), significantly greater than the null
accuracy (exact binomial one-tailed test, p = 0.025). The random forest also achieved
superior performance when considering sensitivity, specificity, True Skill Statistic, and the
negative predictive value as a performance measure prioritising correct classification of
‘severe’-rated viruses (Table 1). The random forest also outperformed the classification tree in

AUROC, area under the receiver operating characteristic curve (Table 1, Fig 3).

All misclassifications from the random forest occurred within the genus Flavivirus (S2 Table).

Within the test set, there were two flaviruses rated as severe from literature protocols that
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164 were predicted to be nonsevere (Rio Bravo virus, Yellow fever virus), and one nonsevere
165 flavivirus predicted to be severe (Usutu virus).

166

167 The observed predictor importances and risk factor directions were robust to constructing
168 random forest models for subsets of viruses, removing those with low-certainty data or data
169 from serological evidence only (S1 Fig, S2 Fig), and similar performance diagnostics were
170 obtained (S5 Table). Redefining our virulence measure to integrate information on known
171 fatalities and differences with subspecies or strains in an ordinal ranking system (S5 Table)
172 did not improve predictive performance (S6 Table). Using alternative virulence

173 measurements, the most informative variables and virus traits predicting severity showed
174 good agreement with that of the main analysis (S3 Fig, S4 Fig) though when definitions of
175 ‘severe’ virulence were widened, hepatic tropism became an informative predictor towards

176 disease severity.
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Discussion

We present the first comparative analysis of virulence across all known human RNA virus
species to our knowledge. We find that disease severity is non-randomly distributed across
virus families and that beyond taxonomy, severe disease is predicted by risk factors of tissue
tropism, and to a lesser extent, transmission route and level of human-to-human
transmissibility. In both the classification tree and random forest, viruses were more likely to
be predicted to cause severe disease if they caused systemic infections, had neural or renal

tropism, transmitted via direct contact or respiratory routes, or had limited capability to

transmit between humans (0 < Rp < 1). These risk factors were robust to alternative modelling

methods, alternative definitions of virulence, and exclusions of poor quality data.

Ecology and Evolution of Risk Factor Traits

Primary tissue tropism was the most informative non-taxonomic risk factor (Fig 4) and the first
split criteria in the classification tree (Fig 2), with specific neural tropism and generalised
systemic tropism predicting severe disease (Fig 5). Few evolutionary studies have directly
predicted how tissue tropism should influence virulence. The identified risk factor tropisms
could be explainable as a simple function of pathology occurring in multiple or sensitive
tissues respectively, increasing intensity of clinical disease. However, it has been suggested
that an excessive, non-adapted virulence may result if infections occur within non-target
tissues that do not contribute to transmission [28]. Furthermore, the evolutionary determinants
of tissue tropism themselves are not well understood [29]. Tissue tropism should be a key

consideration for future comparative and evolutionary modelling efforts.
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We also found viruses primarily transmitted by direct contact and respiratory routes to have a
higher predicted probability of severe virulence than viruses transmitted by more indirect
faecal-oral or vector-borne routes. Contrastingly, Ewald [18] reported a positive association
between virulence and vector-borne transmission in comparative analyses pooling several
microparasite types, including a limited range of viruses, and suggested virulence has fewer
costs to viral evolutionary fitness if vector transmission can occur independent of host health
and mobility. The opposite association we observe may imply that even if transmission occurs
via an indirect route such as through an arthropod vector, virulence could bring ultimate

fitness costs due to host mortality before encountering a vector, fomite, etc..

The relationship between virulence and transmissibility appears more complex. Firstly, the
random forest model suggested a lower risk of severe virulence for viruses with sustained
human-to-human transmissibility (level 4) (Fig 5). This would lend support towards
hypothesised virulence-transmissibility trade-offs [20—22] and suggests that the adaptation
necessary to develop efficient human-to-human transmissibility could result in attenuation of
virulence in RNA viruses. Sustained transmissibility appeared to positively predict severe
disease for a specific subset of four viruses in the single classification tree (Fig 2), all
retroviruses causing chronic syndromes (HIV 1 and 2, Primate T-lymphotropic virus 1 and 2),
which are likely subject to different evolutionary dynamics — if disease occurs after the
infectious period, virulence brings fewer costs to pathogens from host mortality, essentially

‘decoupling’ from transmission [24]. We note only three non-chronic level 4 viruses rated
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severe: Severe acute respiratory syndrome-related coronavirus, Yellow fever virus, and Zaire

ebolavirus.

Secondly, cross-species infections incapable of onward transmission (sometimes termed
‘dead-end’ infections) have been predicted to result in higher virulence as without any
evolutionary selection, viral phenotypes within that host will be non-adapted, i.e. a
‘coincidental’ by-product [24,25]. However, we did not observe viruses incapable of human-to-
human transmissibility to be more virulent, the highest risk instead being observed for viruses
with self-limited transmissibility. This may suggest that if virulence is entirely unselected in
dead-end infections, ultimate levels of virulence could also feasibly turn out to be

‘coincidentally’ low.

Taxonomic family being a highly informative predictor in the random forest implies that there
Is a broad phylogenetic signal to virulence, but it is also highly likely that the explanatory
power represents a proxy for many other phylogenetically-conserved viral traits that are
challenging to implement in comparative analyses of this scale, such as variation at the
proteomic, transcriptomic or genomic level; or further data beyond simple categorisations, e.g.
specific arthropod vector species. Untangling these sources of variation from different scales

of traits will be a critical next step in predictive modelling of viral virulence.

Analytical Limitations

We acknowledge several limitations to the quality of our data, as with any broad comparative
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243 analysis. Risk factor data was problematic or missing for certain viruses, e.g. natural

244 transmission route for viruses only known to infect humans by accidental occupational

245 exposure, and tissue tropism for viruses only known from serological evidence. However, the
246  consistency of findings between alternative, stricter definitions of virulence and data subsets
247 removing viruses with suspected data quality issues suggests scarcity of data does not bias
248 our analyses.

249

250 Virulence also exhibits substantial variation at the sub-species level, i.e. between strains or
251 variants. For example, severity of Lassa virus disease superficially varies with infection route
252 and geography, though this appears to be driven by variation between genotypes [30].

253 Confirmatory analyses at a finer resolution would validate our identified risk factors, e.g.

254 phylogenetic trait models of individual genera or species. Furthermore, clinical symptoms are
255 also subject to traits of the host individual, e.g., immunocompetence, age, microbiome

256 [31,32]. Our risk factor analysis brings a novel, top-down perspective on virulence at the

257 broadest level, though caution must be exerted in extrapolating the risk factors we find to
258 dynamics of specific infections.

259

260 Implications for Public Health

261 The value of predictive modelling as an inexpensive and rapid tool for risk assessments

262 during early emergence is increasingly recognised [16]. Instances where machine learning
263 model predictions do not match outcomes could indicate likely candidates for outcome class

264 changes, e.g. future reservoir hosts for zoonotic disease [33]. Severe virulence was predicted
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for one virus rated ‘nonsevere’ from literature protocols, Usutu virus, potentially suggesting

the capability for more severe disease to be recognised in future.

However, our models have restricted function in predicting the virulence of a newly identified
virus. Although taxonomy is easily accessible and applicable to give simple virulence
estimates, the most informative non-taxonomic predictor, tissue tropism, is not likely to be
known with confidence before clinical observations of virulence. One way to address this
paucity of data lies in the potential predictability of tissue tropism from cell receptors, and
more challengingly, cell receptors from viral sequence data [34], an increasingly accessible
information source during early emergence following advances in genomic sequencing
methods [35]. However, the exact links between tissue tropism, cell receptors, and sequences
are currently a critical knowledge gap, but a potentially powerful focus for future predictive
efforts. A further key area will be the possibility to directly infer virulence itself from other
aspects of sequence data, e.g. genome composition biases, which have recently
demonstrated the potential to predict reservoir host taxa and arthropod vectors via machine

learning [36].

More widely, our analysis brings a novel focus that complements comparative models
predicting other aspects of the emergence process, such as zoonotic transmission
[8,9,27,33], propagation within humans [10,11] or geographic hotspots [37,38]. After
continued calls for model-informed strategy, predictive studies are now beginning to shape

surveillance and prevention with respect to emerging zoonoses [16,39], with virulence being
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287 been suggested as a factor to direct viral surveillance [40], albeit in non-human hosts. The
288 virulence risk factors we identify suggest that broadly targeting direct contact or respiratory
289 transmission interfaces within ecological systems and/or tailoring detection assays towards
290 certain virus families (e.g. Hantaviridae) or tissues (e.g. neural tissue) could contribute to a
291 viable strategy to detect future virulent zoonoses.

292

293 Conclusion

294 This work adds to the comparative and predictive modelling efforts surrounding emerging
295 infectious diseases. Here, we contribute a novel focus in ecological predictors of virulence of
296 human RNA viruses, which can be combined in holistic frameworks with other models such
297 as those predicting emergence dynamics. As a predictive model, the featured random forest
298 offers valuable inference into the evolutionary determinants of virulence in newly emerging
299 infections. We propose that future predictive studies and preparedness initiatives with respect

300 to emerging diseases should carefully consider potential for human virulence.
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Materials and Methods

Data Collection

For each of the 214 recognised human-infective RNA virus species following standardised
data compilation efforts and critical assessment protocols [5], data on virulence and potential
risk factors were collected via a systematic search and review of clinical and epidemiological
literature. The following were consulted in turn: clinical virology textbooks [41-43]; references
from the dataset described by [5]; literature searches using Google Scholar (search terms: 1)
[virus name] AND human, 2) [virus name] AND human AND case, 3) [virus name] AND
human AND [fatal* OR death], 4) [virus name] AND human AND [tropi* or isolat*]. Searches 3
and 4 were carried out only when fatality or tropism data respectively were not already found
from previous sources. Data collection and virus name search terms included the full species
name, any synonyms or subspecies (excluding vaccine strains) and the standard virus

abbreviation as given by ICTV Online Virus Taxonomy [44].

Although many possible measurements of virulence have been proposed [45,46], even simple
metrics like case fatality ratio (CFR) have not been calculated for the majority of human RNA

virus species. Therefore, virulence was rated using a simple two-category measure of severity

of typical disease in humans. We rated viruses as ‘severe’ if they firstly had 25% CFR where

data was available (159/214 viruses including those with zero CFR), otherwise, we rated
viruses as ‘severe’ if they had frequent reports of hospitalisation, were associated with
significant morbidity from certain conditions (haemorrhagic fever, seizures/coma, cirrhosis,

AIDS, hantavirus pulmonary syndrome, HTLV-associated myelopathy) or were explicitly
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described as “severe” or “causing severe disease” (S1 Table, S2 Table). We rated viruses as
‘nonsevere’ if none of these conditions were met. Note that this led to ‘nonsevere’ ratings for
some viruses with clinically severe, but rare syndromes, e.g. Dengue virus can cause
haemorrhagic dengue fever, though this is much rarer than typical acute dengue fever
[41,42]. To address this, data were also collected on whether the virus has caused fatalities in
vulnerable individuals (defined as age 16 and below or 60 and above, immunosuppressed,
having co-morbidities, or otherwise cited as being ‘at-risk’ by sources for specific viruses) and
in healthy adults, and whether any ‘nonsevere’ virus has atypically severe strains (for
example, most infections with viruses within the species Human enterovirus C cause mild
disease; however, poliovirus, which causes severe paralytic disease, is also classified under
this species). These were examined both individually and within a composite six-rank system

(S5 Table).

Data were compiled for four main risk factors: transmission route(s) and tissue tropisms,
sourced from literature search exercises as described; and extent of human-to-human
transmissibility and host range, sourced directly from [5]. Although evolutionary theories also
predict virulence to vary with other traits, e.g. environmental survivability [47], paucity of data
or nestedness within taxonomic family prevented their inclusion in our analysis. Transmission
route was defined as the primary route the virus is transmitted by, classified as either vector-
borne (excluding mechanical transmission), direct contact, faecal-oral or respiratory
transmission. Tissue tropism was specified the primary organ system the virus typically

infects or targets, classified as either neural, gastrointestinal, hepatic, respiratory, circulatory,


https://doi.org/10.1101/581512
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581512; this version posted March 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tropism and Transmission Ecology Predict Viral Virulence — Brierley et al. 18

345 vascular, or ‘systemic’ (primary tropism within multiple organ systems). We accepted isolation
346 of the virus, viral proteins or genetic material, or diagnostic symptoms of the virus (such as
347 characteristic histological damage) as evidence of infection within an organ system but did not
348 accept generalised symptoms such as inflammation. However, many human viruses were

349 isolated from blood with no further evidence of any specific tissue tropisms (n = 69).

350 Therefore, we also included an additional ‘viraemia’ category in this variable to indicate only
351 blood presence was known. Binary variables were also constructed denoting whether viruses
352 were ever known to utilise a) more than one transmission route/tissue tropism, and b) each
353 individual transmission route and tropism, including additional categories that were never

354 among the primary routes/tropisms (food-borne and vertical transmission; renal, cardiac, joint,
355 reproductive, sensory, skin, muscular and endocrine tropism).

356

357 Human-to-human transmissibility was specified using infectivity/transmissibility levels, based
358 on previous conceptual models and a systematic compilation and review of evidence [4,5,12].

359 Level 2 denotes a virus capable of infecting humans but not transmitting between humans (Ro

360 =0), level 3 denotes a virus with limited human-to-human transmissibility (0 < Ry < 1); and

361 level 4 denotes a virus with sustained human-to-human transmissibility (Ro = 1). Host range

362 was specified as either ‘narrow’ (infection known only within humans or humans plus non-
363 human primates) or ‘broad’ (infection known in mammals or animals beyond primates) [5].
364 Binary variables were also sourced as to whether infection was known within a) humans only,

365 b) non-human primates, c¢) other mammals and d) birds. All virulence and risk factor data
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pertained to natural or unintentional artificially-acquired human infection only and data from
intentional human infection, animal infection, and in vitro infection were not considered. Viral
taxonomy was included in analyses by specifying both genome type and taxonomic family as

predictors. All virulence and risk factor data are available via Figshare [48].

Machine Learning Risk Factor Analysis

Firstly, the 212 retained virus species were split into a training set for model fitting and test set
for model evaluation at an approximate 75:25 ratio using stratified random sampling based on
taxonomic family and virulence rating. Fisher’'s exact tests confirmed equal representation of
families (p = 0.991) and virulence ratings (p > 0.999) between training and test data.
Comparative risk factor analyses were firstly carried out by constructing a classification tree
using the R package ‘rpart’ v4.1-11 [49]. Classification trees are a simple form of machine
learning models that aim to optimally classify data points into their correct category of
outcome variable based on a structure of binary predictor splits. Tree-based methods are
well-suited for comparative analyses where confounding often results from taxonomic signal
or suites of otherwise co-occurring traits as their high structure can intuitively fit complex non-

linear interactions and local effects.

A tree model was fitted to the training set to predict virulence ratings by ‘recursive
partitioning’, the repeated splitting of the dataset using every possible binary permutation of
each predictor, and retaining the split that minimises the Gini impurity [50], defined as

1 - Y™, p(x;)* for outcome variable x with n possible ratings and p(x;) denoting proportion of
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388 data with rating i, which is equal to zero for perfectly separated data. To prevent overfitting,
389 the tree was pruned back to the optimal branching size, taken as most common consensus
390 size over 1000 repeats of 10-fold cross-validation. To validate the predictive power of the

391 classification tree, predictions of virulence rating were generated when applied to the test set.
392 Tree accuracy was then calculated comparing the proportion of correct predictions compared
393 to literature-assigned ratings (assuming these to be 100% accurate as the ‘gold standard’ or
394 ‘ground truth’). As virulence ratings were imbalanced (i.e. only a minority of viruses cause
395 severe disease, so correct nonsevere classifications are likely to be achieved by chance),
396 accuracy was directly compared to the null model, i.e. a model with no predictors that

397 predicted ‘nonsevere’ for all viruses. Additional diagnostics of interest (sensitivity, specificity,
398 negative predictive value, and True Skill Statistic [60]) were also obtained.

399

400 Although classification trees have the advantage of presenting an interpretable schematic of
401 risk factor effects and directions, individual tree structures may be sensitive to particular data
402 points and have no intuitive measures of uncertainty. Therefore, we constructed a random
403 forest, an ensemble collection of a large number of bootstrapped classification trees [51].

404 Having many predictor variables compared to the relatively limited and fixed number of

405 human-infective RNA virus species, random forests handle such ‘large p, small n’ data

406 architecture much more easily than traditional regression frameworks [52]. Missing data in all
407 predictors was imputed using the R package ‘missForest’ v1.4 [53]. Then, using the R

408 package ‘randomForest’ v4.6-12 [53], a random forest was created containing 5000 individual

409 trees, each built upon a bootstrapped sample of the training data and restricted to test a


https://doi.org/10.1101/581512
http://creativecommons.org/licenses/by/4.0/

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

bioRxiv preprint doi: https://doi.org/10.1101/581512; this version posted March 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tropism and Transmission Ecology Predict Viral Virulence — Brierley et al. 21

randomly selected subset of predictors (k = 5) at each split during construction and
convergence confirmed by inspection. Predictive power of the random forest model was
evaluated using the test set as for the classification tree and receiver operating characteristic
curves were visualised and area under curves calculated to directly compare the two machine

learning methodologies.

Due to their high structuring, random forest models cannot give a simple parametric predictor
effect size and direction (e.g., an odds ratio). Instead, potential virulence risk factors were
evaluated using two metrics: variable importance and partial dependence. Variable
importance is calculated as the mean decrease in Gini impurity following tree splits on the
predictor and can be considered as how informative the risk factor was towards correctly
predicting virulence. Partial dependence is calculated as the mean relative change in log-
odds of predicting severe virulence, which were converted to predicted probabilities of
severity associated with each risk factor. Partial dependences describe marginal effects
averaging across any influence of other predictors and as such, a single estimate may not
reflect any complex risk factor interactions. Therefore, to test hypotheses regarding virulence
risk factors, we present both random forest partial dependences and the less robust but more
accessible single classification tree for its ease of interpretation in risk factor structure, and
directly compare the statistical validity of both methods by plotting receiver operating
characteristic curves. All modelling was carried out in R v 3.4.3 [54], with a supporting R script

available via Figshare [48].
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Figure Captions
Fig 1. Virulence of currently known human RNA viruses with respect to taxonomy.
Number of known human RNA virus species split by ICTV taxonomic family. Shading denotes

disease severity rating.

Fig 2. Final pruned classification tree predicting disease severity for 181 human RNA
viruses.

Final classification tree structure predicting virulence. Viruses begin at the top and are
classified according to split criteria (white boxes) until reaching terminal nodes with the
model’s prediction of disease severity, and the fraction of viruses following that path correctly
classified, based on literature-assigned ratings (shaded boxes). ‘Tp: primary’ denotes primary
tissue tropism, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘Tp: renal.’

denotes having a known renal tissue tropism.

Fig 3. Receiver operating characteristic curve for tree-based machine learning models.

Plotted model predictive performance for the single classification tree (bold black line) and the
random forest (bold red line) models when applied to the test set. Y axis denotes sensitivity
(or true positive rate; proportion of viruses rated ‘severe’ by literature protocol that were
correctly predicted as ‘severe’ by the model), and X axis denotes 1 — specificity (or false
positive rate; proportion of viruses rated ‘nonsevere’ by literature protocol that were incorrectly

predicted as ‘severe’ by the model). Dashed black line indicates null expectation (i.e. a model
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582 with no discriminatory power). Model profiles further toward the top left indicate a better

583 predictive performance.

584

585 Fig 4. Variable importances from the random forest model.

586 Importance of each predictor variable across the 5000 bootstrapped trees within the random
587 forest, calculated as the mean decrease in Gini impurity following a tree split based on that
588 predictor and scaled against the most informative predictor (taxonomic family) to give a

589 relative measure. ‘Tp’ denotes tissue tropism predictor, ‘“Tr’ denotes transmission route

590 predictor, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘H’ denotes host

591 range predictor.

592

593 Fig 5. Partial dependences from the random forest model in predicting severe

594 virulence.

595 Predicted probability of classifying virulence as ‘severe’ for each of the most informative risk
596 factors (primary tissue tropism, any known neural tropism, any known renal tropism, level of
597 human-to-human transmissibility, and primary transmission route). Probabilities given are
598 marginal, i.e. averaging over any effects of other predictors. Dashed line denotes raw

599 prevalence of ‘severe’ virulence rating among the training dataset.

600
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601 Tables

602 Table 1. Predictive performance metrics for classification tree and random forest

603 model.

604  Sensitivity, specificity, NPV (negative predictive value; proportion of ‘nonsevere’ predictions
605 that correctly matched literature rating), TSS (true skill statistic; sensitivity + specificity — 1)
606 and AUROC (area under receiver operating characteristic curve) for predictive model

607 methods applied to predict virulence of 31 viruses within the test set.

608
Model Sensitivity  Specificity NPV TSS AUROC
Classification tree 0.625 0.826 0.864 0.451 0.636
Random forest 0.750 0.957 0.917 0.707 0.957
609

610
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611  Supporting Information Captions

612 S1 Table. Virulence literature rating data for human RNA virus training dataset.

613 Virulence data for the 181 virus species in the training set, ordered by genome type and

614 taxonomy, including disease severity rating and supporting criteria for viruses rated ‘severe’,
615 whether virus is known to have caused fatalities in vulnerable individuals and/or otherwise
616 healthy adults, and whether virus is known to have ‘severe’ strains if species is rated

617 ‘nonsevere’. CFR = Case fatality ratio, HPS = Hantavirus pulmonary syndrome, HFRS =

618 Hantavirus haemorrhagic fever with renal syndrome, HTLV = Human T-lymphotropic virus,

619 AIDS = Acquired immunodeficiency syndrome.

620

621 S2 Table. Virulence literature rating data and predictions for human RNA virus test
622 dataset.

623 Virulence data for 31 virus species in the test set, ordered by genome type and taxonomy,
624 whether virus is known to have caused fatalities in vulnerable individuals and/or otherwise
625 healthy adults, and whether virus is known to have ‘severe’ strains if species is rated

626 ‘nonsevere’. Both disease severity rating/supporting criteria following the literature protocol
627 given in the main text, and predicted probability of severe disease from the random forest
628 model are given. Bold type denotes where predictions do not match literature-based ratings.

629 CFR = Case fatality ratio, HPS = Hantavirus pulmonary syndrome.

630
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S3 Table. Partial dependence from the random forest model for all predictor variables.
Partial dependence given as marginal relative change in log-odds and predicted probability of

classifying virulence as ‘severe’ from the random forest for all predictor variables.

S4 Table. Diagnostics of random forest models using stringent data subsets.

Predictive performance metrics of random forest models applied to datasets excluding viruses
with low-certainty data (n denotes number of viruses excluded). In each case, data were
randomly resampled using stratification upon taxonomic family and virulence rating, resulting
in differing training and test sets from the main analysis. Otherwise, random forest

methodology follows that of Materials & Methods.

S5 Table. Six-rank system of classifying virulence for human RNA viruses.

Six-rank system of classifying human RNA virus virulence with available data (specifically,
severity rating from main text, fatalities in vulnerable individuals and healthy adults, and
severe strains), along with example viruses and number of viruses fitting each exclusive

rank’s criteria.

S6 Table. Diagnostics of random forest models predicting alternative metrics of
virulence.

Predictive performance metrics of random forest models predicting alternative virulence
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651 measures using different two-category definitions of ‘severe’ (n denotes number of viruses
652 considered ‘severe’ using that definition). Vulnerable individuals are defined as those age 16
653 and below, age 60 and above, immunosuppressed, having co-morbidities, or otherwise cited
654 as being ‘at-risk’. Ranks follow those given in Table S5. Otherwise, random forest

655 methodology follows that of Materials & Methods.
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656 S1 Fig. Variable importances from random forest models using stringent data subsets.
657 Variable importance for virulence risk factors from random forest models applied to datasets
658 excluding a) viruses only known to infect humans from serological evidence (n = 36), b)

659 viruses with < 20 recognised human infections (n = 55), and c) viruses with poor data quality
660 in at least one predictor (n = 71). Variable importance is calculated as the relative mean

661 decrease in Gini impurity scaled against the most informative predictor within each model,
662 alongside importances from the main analysis for comparison. ‘Tp’ denotes tissue tropism
663 predictor, ‘Tr’ denotes transmission route predictor, ‘Tr level’ denotes level of human-to-

664 human transmissibility, and ‘H’ denotes host range predictor.

665

666 S2 Fig. Partial dependences from random forest models using stringent data subsets.

667 Predicted probability of classifying virulence as ‘severe’ for each of the most informative risk
668 factors from random forest models applied to datasets excluding a) viruses only known to

669 infect humans from serological evidence (n = 36), b) viruses with < 20 recognised human

670 infections (n = 55), and c) viruses with poor data quality in at least one predictor (n = 71),

671 alongside predicted probabilities from the main analysis for comparison. Probabilities given
672 are marginal, i.e. averaging over any effects of other predictors. As each data subset required
673 random resampling of the training and test data, note that the raw prevalence of ‘severe’

674 virulence differed between each model (see S4 Table).

675
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676 S3 Fig. Variable importances from random forest models using stringent data subsets.
677 Variable importance for virulence risk factors from random forest models predicting alternative
678 virulence measures using different two-category definitions of ‘severe’, calculated as the

679 relative mean decrease in Gini impurity scaled against the most informative predictor within
680 each model, alongside importances from the main analysis for comparison. ‘Tp’ denotes

681 tissue tropism predictor, ‘Tr’ denotes transmission route predictor, ‘Tr level’ denotes level of

682 human-to-human transmissibility, and ‘H’ denotes host range predictor.

683

684 S4 Fig. Partial dependences from random forest models using stringent data subsets.

685 Predicted probability of classifying virulence as ‘severe’ in alternative virulence measures for
686 each of the most informative risk factors from random forest models, alongside predicted
687 probabilities from the main analysis for comparison. Probabilities given are marginal, i.e.

688 averaging over any effects of other predictors. As each measurement used a different two-
689 category definition of ‘severe’, note that the raw prevalence of ‘severe’ virulence differed

690 between each model (see S6 Table).
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