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Abstract 12 

Novel infectious diseases continue to emerge within human populations. Predictive studies 13 

have begun to identify pathogen traits associated with emergence. However, emerging 14 

pathogens vary widely in virulence, a key determinant of their ultimate risk to public health. 15 

Here, we use structured literature searches to review the virulence of each of the 214 known 16 

human-infective RNA virus species. We then use a machine learning framework to determine 17 

whether viral virulence can be predicted by ecological traits including human-to-human 18 

transmissibility, transmission routes, tissue tropisms and host range. Using severity of clinical 19 

disease as a measurement of virulence, we identified potential risk factors using predictive 20 

classification tree and random forest ensemble models. The random forest model predicted 21 

literature-assigned disease severity of test data with 90.3% accuracy, compared to a null 22 

accuracy of 74.2%. In addition to viral taxonomy, the ability to cause systemic infection, 23 

having renal and/or neural tropism, direct contact or respiratory transmission, and limited (0 < 24 

R0 ≤ 1) human-to-human transmissibility were the strongest predictors of severe disease. We 25 

present a novel, comparative perspective on the virulence of all currently known human RNA 26 

virus species. The risk factors identified may provide novel perspectives in understanding the 27 

evolution of virulence and elucidating molecular virulence mechanisms. These risk factors 28 

could also improve planning and preparedness in public health strategies as part of a 29 

predictive framework for novel human infections. 30 

31 
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Introduction  32 

The emergence of novel infectious diseases continues to represent a threat to global public 33 

health. Emerging pathogens have been defined as those newly recognised infections of 34 

humans following zoonotic transmission, or those increasing in incidence and/or geographic 35 

range [1]. High-profile examples of emerging pathogens include the discovery of the novel 36 

MERS coronavirus from cases of respiratory illness in 2012 [2], and the expansion of the 37 

range of Zika virus across the South Pacific and the Americas [3]. The emergence of 38 

previously unseen viruses means that the set of known human viruses continually increases 39 

by around 2 species per year [4,5]. Initial comparative studies identified trends among 40 

emerging human pathogens, for example, increased risk of emergence for pathogens with 41 

broad host ranges, and RNA viruses [6–9]. However, more recent comparative analyses have 42 

focused on risk factors for specific pathogen traits, such as transmissibility [10–12]. Here, we 43 

focus on understanding the ecological determinants of pathogen virulence, using all currently 44 

recognised human RNA viruses as a study system. 45 

 46 

Emerging RNA viruses vary widely in their virulence, with some never having been associated 47 

with human disease at all. For example, Zaire ebolavirus causes severe haemorrhagic fever 48 

with outbreaks, including the 2014 West African outbreak showing case fatality ratios of ~60% 49 

or more [13,14]. In contrast, human infections with Reston ebolavirus have never exhibited 50 

any evidence of disease symptoms [15]. Applying the comparative approach to understand 51 

the ecology of virulence could offer valuable synergy with studies of emergence, towards 52 

prioritisation and preparedness in the detection of potential new human viruses [16].  53 
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 54 

Few comparative analyses have addressed the risk factors driving human pathogen virulence 55 

to date (but see [17–19]), and none have exhaustively investigated virulence across the 56 

breadth of all currently recognised human RNA viruses. Several hypotheses regarding how 57 

pathogen ecology affects virulence have been derived from theoretical models of evolution. 58 

For example, the trade-off hypothesis was developed based on the assumption that rate of 59 

transmission between individuals may increase as a function of virulence, but there will be a 60 

consequential increase in host mortality (or decrease in host recovery as the inverse of 61 

mortality). As a result, pathogen fitness will be subject to trade-off between virulence and 62 

transmissibility over a longer infectious window [20,21]. The trade-off hypothesis is highly 63 

debated as it is difficult to empirically characterise due to dependency on many other aspects 64 

of host-pathogen coevolution [22,23]. However, comparative analysis has been suggested as 65 

one method to assess evidence for a virulence-transmission trade-off [22]. Based on these 66 

core principles, we hypothesised that limited capability to transmit between humans may act 67 

as a predictive risk factor for virulence. We also note that evolutionary trade-offs will only 68 

apply to coevolved host-virus relationships and that many human viruses result from zoonotic 69 

cross-species transmission without onward transmission or adaptation. In these cases, 70 

‘coincidental’ non-adapted virulence may result [24,25], and as above, we hypothesised that 71 

limited human-to-human transmissibility may predict higher virulence. 72 

 73 

Transmission route may also influence the evolution of virulence. Ewald [18] suggested that 74 

vector-borne pathogens should be less constrained by costs of virulence, i.e. morbidity and 75 
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immobilisation of the vertebrate host does not impede transmission if it occurs through an 76 

arthropod vector. We therefore hypothesised a vector-borne transmission route would predict 77 

higher virulence.  78 

 79 

Several studies have also suggested a link between host range and virulence. Assuming an 80 

evolutionary trade-off exists between virulence and transmission rate, higher virulence may 81 

result in pathogens with narrower host ranges following selection pressures to increase 82 

transmission rate within the specialist host(s) [19]. Furthermore, the degree of virulence in 83 

experimental infections with Drosophila C virus was more similar between closely related 84 

hosts [26]. Though similar ideas have not yet been formally tested for human infections, 85 

parasite infectivity correlates with phylogenetic relatedness among primates [27]. We 86 

hypothesised infection of non-human primates as a specific related host taxon would predict 87 

higher virulence. Finally, although yet unexplored via theoretical models, it may be an intuitive 88 

expectation that systemic infections present with more severe disease than local infections. A 89 

broader tissue tropism could therefore also predict higher virulence. 90 

 91 

We aimed to determine patterns of virulence across the breadth of all known human RNA 92 

viruses. We then aimed to use predictive machine learning models to ask whether ecological 93 

traits of viruses can act as predictive risk factors for virulence in humans. Specifically, we 94 

examined hypotheses that viruses would be more highly virulent if they: lacked transmissibility 95 

within humans; had vector-borne transmission routes; had a narrow host range including non-96 

human primates; or had greater breadth of tissue tropisms.   97 
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Results 98 

Virulence of Human RNA Viruses 99 

Following [5], as of 2015 there were 214 RNA virus species containing viruses capable of 100 

infecting humans, spanning 55 genera and 21 families (with one species unassigned to a 101 

family). Using a two-category system, 58 of these were rated as causing ‘severe’ clinical 102 

disease and 154 as ‘nonsevere’ following systematic literature review (Fig 2, see also S1 103 

Table, S2 Table). Two virus species could not be assigned a disease severity rating and were 104 

excluded from all analyses (Hepatitis delta virus, which is reliant on Hepatitis B virus 105 

coinfection; and Primate T-lymphotropic virus 3, which may be associated with chronic 106 

disease like other T-lymphotropic viruses, but has not been known in humans long enough for 107 

cohort observations). Disease severity differed between viral taxonomic families (Fisher’s 108 

exact, 1000 simulations, p < 0.001), with Arenaviridae, Filoviridae and Hantaviridae having 109 

the highest fractions of severe-rated virus species (Fig 2). Fatalities were reported in healthy 110 

adults for 64 viruses and in vulnerable individuals only for an additional 26 viruses, whilst 8 111 

viruses rated ‘nonsevere’ had severe strains, 6 of which belonged to the family 112 

Picornaviridae. 113 

 114 

Classification Tree Risk Factor Analysis 115 

To find predictive risk factors for virulence, we firstly divided the 212 virus species into a 116 

training set (n = 181) and test set (n = 31) based on taxonomy and severity in order to 117 

minimise potential biases from trait imbalances. Using the training set, we then constructed a 118 

single classification tree that aimed to optimally classify viruses in virulence based on their 119 
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ecological traits. The final pruned classification tree included variables relating to 120 

transmissibility, tissue tropism and taxonomy (Fig 2). Severe disease was predicted by the 121 

model for four generalised groups: i) viruses with a neural or systemic primary tropism with 122 

limited human-to-human transmissibility (excluding orthomyxoviruses, phenuiviruses and 123 

reoviruses); ii) viruses known to have a renal tropism (primary or otherwise); iii) hantaviruses; 124 

and iv) retroviruses with sustained human-to-human transmissibility. 125 

 126 

Random Forest Risk Factor Analysis 127 

Although the illustrated classification tree identified several risk factors, this represents one of 128 

many possible trees, as tree structure is dependent on the exact sampling partition between 129 

training and test data. We therefore constructed a random forest model containing 5000 130 

individual trees, each built using a bootstrapped sample of the training data and a randomly 131 

restricted subset of predictors.  132 

 133 

Aggregated over these bootstrapped trees, the most informative predictor variables for 134 

classifying virulence were taxonomic family and primary tissue tropism (Fig 4). However, 135 

transmission route, human-to-human transmissibility level, and having a known neural or 136 

renal tropism were also relatively informative, broadly mirroring the risk factors observed in 137 

the single tree. Host range predictors were generally uninformative. 138 

 139 

To quantify the effects of the most informative risk factors, partial dependences were 140 

extracted from the random forest, describing the marginal predicted probabilities of severe 141 
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virulence associated with each virus trait (Fig 5, S3 Table). Averaging across other predictors, 142 

viruses having tissue tropisms within neural, renal or systemic across multiple organ systems 143 

presented the highest risk of severe virulence, whilst respiratory and gastrointestinal tropisms 144 

presented the lowest risk. An increased probability of severe virulence was also observed for 145 

viruses transmitted by direct contact or respiratory routes, and those with known but limited 146 

human-to-human transmissibility. 147 

 148 

Model Performance in Predicting Viral Virulence 149 

Although the single classification tree model predicted the training set well, it did not appear 150 

generalisable to novel data within the test set. The single tree correctly predicted virulence 151 

ratings from literature-based criteria for 24 of 31 viruses in the test set giving a resulting 152 

accuracy of 77.4% (95% confidence interval [CI]: 58.9% - 90.4%), no evident improvement on 153 

the null model assigning all viruses as nonsevere (null accuracy = 74.2%). The random forest 154 

gave better predictive accuracy, correctly predicting virulence ratings for 28 of 31 test set 155 

viruses (accuracy: 90.3%, 95% CI: 74.3% - 98.0%), significantly greater than the null 156 

accuracy (exact binomial one-tailed test, p = 0.025). The random forest also achieved 157 

superior performance when considering sensitivity, specificity, True Skill Statistic, and the 158 

negative predictive value as a performance measure prioritising correct classification of 159 

‘severe’-rated viruses (Table 1). The random forest also outperformed the classification tree in 160 

AUROC, area under the receiver operating characteristic curve (Table 1, Fig 3). 161 

All misclassifications from the random forest occurred within the genus Flavivirus (S2 Table). 162 

Within the test set, there were two flaviruses rated as severe from literature protocols that 163 
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were predicted to be nonsevere (Rio Bravo virus, Yellow fever virus), and one nonsevere 164 

flavivirus predicted to be severe (Usutu virus). 165 

 166 

The observed predictor importances and risk factor directions were robust to constructing 167 

random forest models for subsets of viruses, removing those with low-certainty data or data 168 

from serological evidence only (S1 Fig, S2 Fig), and similar performance diagnostics were 169 

obtained (S5 Table). Redefining our virulence measure to integrate information on known 170 

fatalities and differences with subspecies or strains in an ordinal ranking system (S5 Table) 171 

did not improve predictive performance (S6 Table). Using alternative virulence 172 

measurements, the most informative variables and virus traits predicting severity showed 173 

good agreement with that of the main analysis (S3 Fig, S4 Fig) though when definitions of 174 

‘severe’ virulence were widened, hepatic tropism became an informative predictor towards 175 

disease severity.  176 
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Discussion 177 

We present the first comparative analysis of virulence across all known human RNA virus 178 

species to our knowledge. We find that disease severity is non-randomly distributed across 179 

virus families and that beyond taxonomy, severe disease is predicted by risk factors of tissue 180 

tropism, and to a lesser extent, transmission route and level of human-to-human 181 

transmissibility. In both the classification tree and random forest, viruses were more likely to 182 

be predicted to cause severe disease if they caused systemic infections, had neural or renal 183 

tropism, transmitted via direct contact or respiratory routes, or had limited capability to 184 

transmit between humans (0 < R0 ≤ 1). These risk factors were robust to alternative modelling 185 

methods, alternative definitions of virulence, and exclusions of poor quality data. 186 

 187 

Ecology and Evolution of Risk Factor Traits 188 

Primary tissue tropism was the most informative non-taxonomic risk factor (Fig 4) and the first 189 

split criteria in the classification tree (Fig 2), with specific neural tropism and generalised 190 

systemic tropism predicting severe disease (Fig 5). Few evolutionary studies have directly 191 

predicted how tissue tropism should influence virulence. The identified risk factor tropisms 192 

could be explainable as a simple function of pathology occurring in multiple or sensitive 193 

tissues respectively, increasing intensity of clinical disease. However, it has been suggested 194 

that an excessive, non-adapted virulence may result if infections occur within non-target 195 

tissues that do not contribute to transmission [28]. Furthermore, the evolutionary determinants 196 

of tissue tropism themselves are not well understood [29]. Tissue tropism should be a key 197 

consideration for future comparative and evolutionary modelling efforts. 198 
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 199 

We also found viruses primarily transmitted by direct contact and respiratory routes to have a 200 

higher predicted probability of severe virulence than viruses transmitted by more indirect 201 

faecal-oral or vector-borne routes. Contrastingly, Ewald [18] reported a positive association 202 

between virulence and vector-borne transmission in comparative analyses pooling several 203 

microparasite types, including a limited range of viruses, and suggested virulence has fewer 204 

costs to viral evolutionary fitness if vector transmission can occur independent of host health 205 

and mobility. The opposite association we observe may imply that even if transmission occurs 206 

via an indirect route such as through an arthropod vector, virulence could bring ultimate 207 

fitness costs due to host mortality before encountering a vector, fomite, etc..  208 

 209 

The relationship between virulence and transmissibility appears more complex. Firstly, the 210 

random forest model suggested a lower risk of severe virulence for viruses with sustained 211 

human-to-human transmissibility (level 4) (Fig 5). This would lend support towards 212 

hypothesised virulence-transmissibility trade-offs [20–22] and suggests that the adaptation 213 

necessary to develop efficient human-to-human transmissibility could result in attenuation of 214 

virulence in RNA viruses. Sustained transmissibility appeared to positively predict severe 215 

disease for a specific subset of four viruses in the single classification tree (Fig 2), all 216 

retroviruses causing chronic syndromes (HIV 1 and 2, Primate T-lymphotropic virus 1 and 2), 217 

which are likely subject to different evolutionary dynamics – if disease occurs after the 218 

infectious period, virulence brings fewer costs to pathogens from host mortality, essentially 219 

‘decoupling’ from transmission [24]. We note only three non-chronic level 4 viruses rated 220 
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severe: Severe acute respiratory syndrome-related coronavirus, Yellow fever virus, and Zaire 221 

ebolavirus. 222 

 223 

Secondly, cross-species infections incapable of onward transmission (sometimes termed 224 

‘dead-end’ infections) have been predicted to result in higher virulence as without any 225 

evolutionary selection, viral phenotypes within that host will be non-adapted, i.e. a 226 

‘coincidental’ by-product [24,25]. However, we did not observe viruses incapable of human-to-227 

human transmissibility to be more virulent, the highest risk instead being observed for viruses 228 

with self-limited transmissibility. This may suggest that if virulence is entirely unselected in 229 

dead-end infections, ultimate levels of virulence could also feasibly turn out to be 230 

‘coincidentally’ low.  231 

 232 

Taxonomic family being a highly informative predictor in the random forest implies that there 233 

is a broad phylogenetic signal to virulence, but it is also highly likely that the explanatory 234 

power represents a proxy for many other phylogenetically-conserved viral traits that are 235 

challenging to implement in comparative analyses of this scale, such as variation at the 236 

proteomic, transcriptomic or genomic level; or further data beyond simple categorisations, e.g. 237 

specific arthropod vector species. Untangling these sources of variation from different scales 238 

of traits will be a critical next step in predictive modelling of viral virulence. 239 

 240 

Analytical Limitations 241 

We acknowledge several limitations to the quality of our data, as with any broad comparative 242 
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analysis. Risk factor data was problematic or missing for certain viruses, e.g. natural 243 

transmission route for viruses only known to infect humans by accidental occupational 244 

exposure, and tissue tropism for viruses only known from serological evidence. However, the 245 

consistency of findings between alternative, stricter definitions of virulence and data subsets 246 

removing viruses with suspected data quality issues suggests scarcity of data does not bias 247 

our analyses. 248 

 249 

Virulence also exhibits substantial variation at the sub-species level, i.e. between strains or 250 

variants. For example, severity of Lassa virus disease superficially varies with infection route 251 

and geography, though this appears to be driven by variation between genotypes [30]. 252 

Confirmatory analyses at a finer resolution would validate our identified risk factors, e.g. 253 

phylogenetic trait models of individual genera or species. Furthermore, clinical symptoms are 254 

also subject to traits of the host individual, e.g., immunocompetence, age, microbiome 255 

[31,32]. Our risk factor analysis brings a novel, top-down perspective on virulence at the 256 

broadest level, though caution must be exerted in extrapolating the risk factors we find to 257 

dynamics of specific infections. 258 

 259 

Implications for Public Health 260 

The value of predictive modelling as an inexpensive and rapid tool for risk assessments 261 

during early emergence is increasingly recognised [16]. Instances where machine learning 262 

model predictions do not match outcomes could indicate likely candidates for outcome class 263 

changes, e.g. future reservoir hosts for zoonotic disease [33]. Severe virulence was predicted 264 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2019. ; https://doi.org/10.1101/581512doi: bioRxiv preprint 

https://doi.org/10.1101/581512
http://creativecommons.org/licenses/by/4.0/


Tropism and Transmission Ecology Predict Viral Virulence – Brierley et al.  14 

 

for one virus rated ‘nonsevere’ from literature protocols, Usutu virus, potentially suggesting 265 

the capability for more severe disease to be recognised in future.  266 

 267 

However, our models have restricted function in predicting the virulence of a newly identified 268 

virus. Although taxonomy is easily accessible and applicable to give simple virulence 269 

estimates, the most informative non-taxonomic predictor, tissue tropism, is not likely to be 270 

known with confidence before clinical observations of virulence. One way to address this 271 

paucity of data lies in the potential predictability of tissue tropism from cell receptors, and 272 

more challengingly, cell receptors from viral sequence data [34], an increasingly accessible 273 

information source during early emergence following advances in genomic sequencing 274 

methods [35]. However, the exact links between tissue tropism, cell receptors, and sequences 275 

are currently a critical knowledge gap, but a potentially powerful focus for future predictive 276 

efforts. A further key area will be the possibility to directly infer virulence itself from other 277 

aspects of sequence data, e.g. genome composition biases, which have recently 278 

demonstrated the potential to predict reservoir host taxa and arthropod vectors via machine 279 

learning [36]. 280 

 281 

More widely, our analysis brings a novel focus that complements comparative models 282 

predicting other aspects of the emergence process, such as zoonotic transmission 283 

[8,9,27,33], propagation within humans [10,11] or geographic hotspots [37,38]. After 284 

continued calls for model-informed strategy, predictive studies are now beginning to shape 285 

surveillance and prevention with respect to emerging zoonoses [16,39], with virulence being 286 
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been suggested as a factor to direct viral surveillance [40], albeit in non-human hosts. The 287 

virulence risk factors we identify suggest that broadly targeting direct contact or respiratory 288 

transmission interfaces within ecological systems and/or tailoring detection assays towards 289 

certain virus families (e.g. Hantaviridae) or tissues (e.g. neural tissue) could contribute to a 290 

viable strategy to detect future virulent zoonoses. 291 

 292 

Conclusion 293 

This work adds to the comparative and predictive modelling efforts surrounding emerging 294 

infectious diseases. Here, we contribute a novel focus in ecological predictors of virulence of 295 

human RNA viruses, which can be combined in holistic frameworks with other models such 296 

as those predicting emergence dynamics. As a predictive model, the featured random forest 297 

offers valuable inference into the evolutionary determinants of virulence in newly emerging 298 

infections. We propose that future predictive studies and preparedness initiatives with respect 299 

to emerging diseases should carefully consider potential for human virulence. 300 
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Materials and Methods 301 

Data Collection 302 

For each of the 214 recognised human-infective RNA virus species following standardised 303 

data compilation efforts and critical assessment protocols [5], data on virulence and potential 304 

risk factors were collected via a systematic search and review of clinical and epidemiological 305 

literature. The following were consulted in turn: clinical virology textbooks [41–43]; references 306 

from the dataset described by [5]; literature searches using Google Scholar (search terms: 1) 307 

[virus name] AND human, 2) [virus name] AND human AND case, 3) [virus name] AND 308 

human AND [fatal* OR death], 4) [virus name] AND human AND [tropi* or isolat*]. Searches 3 309 

and 4 were carried out only when fatality or tropism data respectively were not already found 310 

from previous sources. Data collection and virus name search terms included the full species 311 

name, any synonyms or subspecies (excluding vaccine strains) and the standard virus 312 

abbreviation as given by ICTV Online Virus Taxonomy [44]. 313 

 314 

Although many possible measurements of virulence have been proposed [45,46], even simple 315 

metrics like case fatality ratio (CFR) have not been calculated for the majority of human RNA 316 

virus species. Therefore, virulence was rated using a simple two-category measure of severity 317 

of typical disease in humans. We rated viruses as ‘severe’ if they firstly had ≥5% CFR where 318 

data was available (159/214 viruses including those with zero CFR), otherwise, we rated 319 

viruses as ‘severe’ if they had frequent reports of hospitalisation, were associated with 320 

significant morbidity from certain conditions (haemorrhagic fever, seizures/coma, cirrhosis, 321 

AIDS, hantavirus pulmonary syndrome, HTLV-associated myelopathy) or were explicitly 322 
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described as “severe” or “causing severe disease” (S1 Table, S2 Table). We rated viruses as 323 

‘nonsevere’ if none of these conditions were met. Note that this led to ‘nonsevere’ ratings for 324 

some viruses with clinically severe, but rare syndromes, e.g. Dengue virus can cause 325 

haemorrhagic dengue fever, though this is much rarer than typical acute dengue fever 326 

[41,42]. To address this, data were also collected on whether the virus has caused fatalities in 327 

vulnerable individuals (defined as age 16 and below or 60 and above, immunosuppressed, 328 

having co-morbidities, or otherwise cited as being ‘at-risk’ by sources for specific viruses) and 329 

in healthy adults, and whether any ‘nonsevere’ virus has atypically severe strains (for 330 

example, most infections with viruses within the species Human enterovirus C cause mild 331 

disease; however, poliovirus, which causes severe paralytic disease, is also classified under 332 

this species). These were examined both individually and within a composite six-rank system 333 

(S5 Table). 334 

 335 

Data were compiled for four main risk factors: transmission route(s) and tissue tropisms, 336 

sourced from literature search exercises as described; and extent of human-to-human 337 

transmissibility and host range, sourced directly from [5]. Although evolutionary theories also 338 

predict virulence to vary with other traits, e.g. environmental survivability [47], paucity of data 339 

or nestedness within taxonomic family prevented their inclusion in our analysis. Transmission 340 

route was defined as the primary route the virus is transmitted by, classified as either vector-341 

borne (excluding mechanical transmission), direct contact, faecal-oral or respiratory 342 

transmission. Tissue tropism was specified the primary organ system the virus typically 343 

infects or targets, classified as either neural, gastrointestinal, hepatic, respiratory, circulatory, 344 
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vascular, or ‘systemic’ (primary tropism within multiple organ systems). We accepted isolation 345 

of the virus, viral proteins or genetic material, or diagnostic symptoms of the virus (such as 346 

characteristic histological damage) as evidence of infection within an organ system but did not 347 

accept generalised symptoms such as inflammation. However, many human viruses were 348 

isolated from blood with no further evidence of any specific tissue tropisms (n = 69). 349 

Therefore, we also included an additional ‘viraemia’ category in this variable to indicate only 350 

blood presence was known. Binary variables were also constructed denoting whether viruses 351 

were ever known to utilise a) more than one transmission route/tissue tropism, and b) each 352 

individual transmission route and tropism, including additional categories that were never 353 

among the primary routes/tropisms (food-borne and vertical transmission; renal, cardiac, joint, 354 

reproductive, sensory, skin, muscular and endocrine tropism). 355 

 356 

Human-to-human transmissibility was specified using infectivity/transmissibility levels, based 357 

on previous conceptual models and a systematic compilation and review of evidence [4,5,12]. 358 

Level 2 denotes a virus capable of infecting humans but not transmitting between humans (R0 359 

= 0), level 3 denotes a virus with limited human-to-human transmissibility (0 < R0 ≤ 1); and 360 

level 4 denotes a virus with sustained human-to-human transmissibility (R0 ≥ 1). Host range 361 

was specified as either ‘narrow’ (infection known only within humans or humans plus non-362 

human primates) or ‘broad’ (infection known in mammals or animals beyond primates) [5]. 363 

Binary variables were also sourced as to whether infection was known within a) humans only, 364 

b) non-human primates, c) other mammals and d) birds. All virulence and risk factor data 365 
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pertained to natural or unintentional artificially-acquired human infection only and data from 366 

intentional human infection, animal infection, and in vitro infection were not considered. Viral 367 

taxonomy was included in analyses by specifying both genome type and taxonomic family as 368 

predictors. All virulence and risk factor data are available via Figshare [48]. 369 

 370 

Machine Learning Risk Factor Analysis 371 

Firstly, the 212 retained virus species were split into a training set for model fitting and test set 372 

for model evaluation at an approximate 75:25 ratio using stratified random sampling based on 373 

taxonomic family and virulence rating. Fisher’s exact tests confirmed equal representation of 374 

families (p = 0.991) and virulence ratings (p > 0.999) between training and test data. 375 

Comparative risk factor analyses were firstly carried out by constructing a classification tree 376 

using the R package ‘rpart’ v4.1-11 [49]. Classification trees are a simple form of machine 377 

learning models that aim to optimally classify data points into their correct category of 378 

outcome variable based on a structure of binary predictor splits. Tree-based methods are 379 

well-suited for comparative analyses where confounding often results from taxonomic signal 380 

or suites of otherwise co-occurring traits as their high structure can intuitively fit complex non-381 

linear interactions and local effects. 382 

 383 

A tree model was fitted to the training set to predict virulence ratings by ‘recursive 384 

partitioning’, the repeated splitting of the dataset using every possible binary permutation of 385 

each predictor, and retaining the split that minimises the Gini impurity [50], defined as 386 

1 � ∑ �����
��

���
 for outcome variable � with � possible ratings and ����� denoting proportion of 387 
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data with rating 	, which is equal to zero for perfectly separated data. To prevent overfitting, 388 

the tree was pruned back to the optimal branching size, taken as most common consensus 389 

size over 1000 repeats of 10-fold cross-validation. To validate the predictive power of the 390 

classification tree, predictions of virulence rating were generated when applied to the test set. 391 

Tree accuracy was then calculated comparing the proportion of correct predictions compared 392 

to literature-assigned ratings (assuming these to be 100% accurate as the ‘gold standard’ or 393 

‘ground truth’). As virulence ratings were imbalanced (i.e. only a minority of viruses cause 394 

severe disease, so correct nonsevere classifications are likely to be achieved by chance), 395 

accuracy was directly compared to the null model, i.e. a model with no predictors that 396 

predicted ‘nonsevere’ for all viruses. Additional diagnostics of interest (sensitivity, specificity, 397 

negative predictive value, and True Skill Statistic [60]) were also obtained. 398 

 399 

Although classification trees have the advantage of presenting an interpretable schematic of 400 

risk factor effects and directions, individual tree structures may be sensitive to particular data 401 

points and have no intuitive measures of uncertainty. Therefore, we constructed a random 402 

forest, an ensemble collection of a large number of bootstrapped classification trees [51]. 403 

Having many predictor variables compared to the relatively limited and fixed number of 404 

human-infective RNA virus species, random forests handle such ‘large p, small n’ data 405 

architecture much more easily than traditional regression frameworks [52]. Missing data in all 406 

predictors was imputed using the R package ‘missForest’ v1.4 [53]. Then, using the R 407 

package ‘randomForest’ v4.6-12 [53], a random forest was created containing 5000 individual 408 

trees, each built upon a bootstrapped sample of the training data and restricted to test a 409 
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randomly selected subset of predictors (k = 5) at each split during construction and 410 

convergence confirmed by inspection. Predictive power of the random forest model was 411 

evaluated using the test set as for the classification tree and receiver operating characteristic 412 

curves were visualised and area under curves calculated to directly compare the two machine 413 

learning methodologies. 414 

 415 

Due to their high structuring, random forest models cannot give a simple parametric predictor 416 

effect size and direction (e.g., an odds ratio). Instead, potential virulence risk factors were 417 

evaluated using two metrics: variable importance and partial dependence. Variable 418 

importance is calculated as the mean decrease in Gini impurity following tree splits on the 419 

predictor and can be considered as how informative the risk factor was towards correctly 420 

predicting virulence. Partial dependence is calculated as the mean relative change in log-421 

odds of predicting severe virulence, which were converted to predicted probabilities of 422 

severity associated with each risk factor. Partial dependences describe marginal effects 423 

averaging across any influence of other predictors and as such, a single estimate may not 424 

reflect any complex risk factor interactions. Therefore, to test hypotheses regarding virulence 425 

risk factors, we present both random forest partial dependences and the less robust but more 426 

accessible single classification tree for its ease of interpretation in risk factor structure, and 427 

directly compare the statistical validity of both methods by plotting receiver operating 428 

characteristic curves. All modelling was carried out in R v 3.4.3 [54], with a supporting R script 429 

available via Figshare [48]. 430 

  431 
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Figure Captions 561 

Fig 1. Virulence of currently known human RNA viruses with respect to taxonomy. 562 

Number of known human RNA virus species split by ICTV taxonomic family. Shading denotes 563 

disease severity rating. 564 

 565 

Fig 2. Final pruned classification tree predicting disease severity for 181 human RNA 566 

viruses. 567 

Final classification tree structure predicting virulence. Viruses begin at the top and are 568 

classified according to split criteria (white boxes) until reaching terminal nodes with the 569 

model’s prediction of disease severity, and the fraction of viruses following that path correctly 570 

classified, based on literature-assigned ratings (shaded boxes). ‘Tp: primary’ denotes primary 571 

tissue tropism, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘Tp: renal.’ 572 

denotes having a known renal tissue tropism.  573 

 574 

Fig 3. Receiver operating characteristic curve for tree-based machine learning models. 575 

Plotted model predictive performance for the single classification tree (bold black line) and the 576 

random forest (bold red line) models when applied to the test set. Y axis denotes sensitivity 577 

(or true positive rate; proportion of viruses rated ‘severe’ by literature protocol that were 578 

correctly predicted as ‘severe’ by the model), and X axis denotes 1 – specificity (or false 579 

positive rate; proportion of viruses rated ‘nonsevere’ by literature protocol that were incorrectly 580 

predicted as ‘severe’ by the model). Dashed black line indicates null expectation (i.e. a model 581 
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with no discriminatory power). Model profiles further toward the top left indicate a better 582 

predictive performance. 583 

 584 

Fig 4. Variable importances from the random forest model. 585 

Importance of each predictor variable across the 5000 bootstrapped trees within the random 586 

forest, calculated as the mean decrease in Gini impurity following a tree split based on that 587 

predictor and scaled against the most informative predictor (taxonomic family) to give a 588 

relative measure. ‘Tp’ denotes tissue tropism predictor, ‘Tr’ denotes transmission route 589 

predictor, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘H’ denotes host 590 

range predictor.  591 

 592 

Fig 5. Partial dependences from the random forest model in predicting severe 593 

virulence. 594 

Predicted probability of classifying virulence as ‘severe’ for each of the most informative risk 595 

factors (primary tissue tropism, any known neural tropism, any known renal tropism, level of 596 

human-to-human transmissibility, and primary transmission route). Probabilities given are 597 

marginal, i.e. averaging over any effects of other predictors. Dashed line denotes raw 598 

prevalence of ‘severe’ virulence rating among the training dataset. 599 

  600 
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Tables 601 

Table 1. Predictive performance metrics for classification tree and random forest 602 

model. 603 

Sensitivity, specificity, NPV (negative predictive value; proportion of ‘nonsevere’ predictions 604 

that correctly matched literature rating), TSS (true skill statistic; sensitivity + specificity – 1) 605 

and AUROC (area under receiver operating characteristic curve) for predictive model 606 

methods applied to predict virulence of 31 viruses within the test set. 607 

 608 

Model Sensitivity Specificity NPV TSS AUROC 

Classification tree 0.625 0.826 0.864 0.451 0.636 

Random forest 0.750 0.957 0.917 0.707 0.957 

 609 

  610 
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Supporting Information Captions  611 

S1 Table. Virulence literature rating data for human RNA virus training dataset. 612 

Virulence data for the 181 virus species in the training set, ordered by genome type and 613 

taxonomy, including disease severity rating and supporting criteria for viruses rated ‘severe’, 614 

whether virus is known to have caused fatalities in vulnerable individuals and/or otherwise 615 

healthy adults, and whether virus is known to have ‘severe’ strains if species is rated 616 

‘nonsevere’. CFR = Case fatality ratio, HPS = Hantavirus pulmonary syndrome, HFRS = 617 

Hantavirus haemorrhagic fever with renal syndrome, HTLV = Human T-lymphotropic virus, 618 

AIDS = Acquired immunodeficiency syndrome. 619 

 620 

S2 Table. Virulence literature rating data and predictions for human RNA virus test 621 

dataset. 622 

Virulence data for 31 virus species in the test set, ordered by genome type and taxonomy, 623 

whether virus is known to have caused fatalities in vulnerable individuals and/or otherwise 624 

healthy adults, and whether virus is known to have ‘severe’ strains if species is rated 625 

‘nonsevere’. Both disease severity rating/supporting criteria following the literature protocol 626 

given in the main text, and predicted probability of severe disease from the random forest 627 

model are given. Bold type denotes where predictions do not match literature-based ratings. 628 

CFR = Case fatality ratio, HPS = Hantavirus pulmonary syndrome. 629 

 630 
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S3 Table. Partial dependence from the random forest model for all predictor variables. 631 

Partial dependence given as marginal relative change in log-odds and predicted probability of 632 

classifying virulence as ‘severe’ from the random forest for all predictor variables. 633 

 634 

S4 Table. Diagnostics of random forest models using stringent data subsets.  635 

Predictive performance metrics of random forest models applied to datasets excluding viruses 636 

with low-certainty data (n denotes number of viruses excluded). In each case, data were 637 

randomly resampled using stratification upon taxonomic family and virulence rating, resulting 638 

in differing training and test sets from the main analysis. Otherwise, random forest 639 

methodology follows that of Materials & Methods. 640 

 641 

S5 Table. Six-rank system of classifying virulence for human RNA viruses. 642 

Six-rank system of classifying human RNA virus virulence with available data (specifically, 643 

severity rating from main text, fatalities in vulnerable individuals and healthy adults, and 644 

severe strains), along with example viruses and number of viruses fitting each exclusive 645 

rank’s criteria. 646 

 647 

S6 Table. Diagnostics of random forest models predicting alternative metrics of 648 

virulence. 649 

Predictive performance metrics of random forest models predicting alternative virulence 650 
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measures using different two-category definitions of ‘severe’ (n denotes number of viruses 651 

considered ‘severe’ using that definition). Vulnerable individuals are defined as those age 16 652 

and below, age 60 and above, immunosuppressed, having co-morbidities, or otherwise cited 653 

as being ‘at-risk’. Ranks follow those given in Table S5. Otherwise, random forest 654 

methodology follows that of Materials & Methods.  655 
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S1 Fig. Variable importances from random forest models using stringent data subsets. 656 

Variable importance for virulence risk factors from random forest models applied to datasets 657 

excluding a) viruses only known to infect humans from serological evidence (n = 36), b) 658 

viruses with < 20 recognised human infections (n = 55), and c) viruses with poor data quality 659 

in at least one predictor (n = 71). Variable importance is calculated as the relative mean 660 

decrease in Gini impurity scaled against the most informative predictor within each model, 661 

alongside importances from the main analysis for comparison. ‘Tp’ denotes tissue tropism 662 

predictor, ‘Tr’ denotes transmission route predictor, ‘Tr level’ denotes level of human-to-663 

human transmissibility, and ‘H’ denotes host range predictor. 664 

 665 

S2 Fig. Partial dependences from random forest models using stringent data subsets. 666 

Predicted probability of classifying virulence as ‘severe’ for each of the most informative risk 667 

factors from random forest models applied to datasets excluding a) viruses only known to 668 

infect humans from serological evidence (n = 36), b) viruses with < 20 recognised human 669 

infections (n = 55), and c) viruses with poor data quality in at least one predictor (n = 71), 670 

alongside predicted probabilities from the main analysis for comparison. Probabilities given 671 

are marginal, i.e. averaging over any effects of other predictors. As each data subset required 672 

random resampling of the training and test data, note that the raw prevalence of ‘severe’ 673 

virulence differed between each model (see S4 Table). 674 

 675 
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S3 Fig. Variable importances from random forest models using stringent data subsets.  676 

Variable importance for virulence risk factors from random forest models predicting alternative 677 

virulence measures using different two-category definitions of ‘severe’, calculated as the 678 

relative mean decrease in Gini impurity scaled against the most informative predictor within 679 

each model, alongside importances from the main analysis for comparison. ‘Tp’ denotes 680 

tissue tropism predictor, ‘Tr’ denotes transmission route predictor, ‘Tr level’ denotes level of 681 

human-to-human transmissibility, and ‘H’ denotes host range predictor. 682 

 683 

S4 Fig. Partial dependences from random forest models using stringent data subsets. 684 

Predicted probability of classifying virulence as ‘severe’ in alternative virulence measures for 685 

each of the most informative risk factors from random forest models, alongside predicted 686 

probabilities from the main analysis for comparison. Probabilities given are marginal, i.e. 687 

averaging over any effects of other predictors. As each measurement used a different two-688 

category definition of ‘severe’, note that the raw prevalence of ‘severe’ virulence differed 689 

between each model (see S6 Table). 690 
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