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Abstract

Two key prerequisites for glucose stimulated insulin secretion (GSIS) in Beta cells
are the proximity of insulin granules to the plasma membrane and their anchoring or
docking to the plasma membrane (PM). While recent evidence has indicated that both of
these factors are altered in the context of diabetes, it is unclear what regulates localization
of insulin and its interactions with the PM within single cells. Here we demonstrate that
microtubule (MT) motor mediated transport dynamics have a critical role in regulating both
factors. Super-resolution imaging shows that while the MT cytoskeleton resembles a
random meshwork in the cells’ interior, MTs near the cells surface are preferentially
aligned with the PM. Computational modeling demonstrates two consequences of this
alignment. First, this structured MT network preferentially withdraws granules from the
PM. Second, the binding and transport of insulin granules by MT motors prevents their
stable anchoring to the PM. The MT cytoskeleton thus negatively regulates GSIS by both
limiting the amount of insulin proximal to the PM and preventing/breaking interactions
between the PM and the remaining nearby insulin. These results predict that altering MT
structure in beta cells can be used to tune GSIS. Thus, our study points to a potential of an
alternative therapeutic strategy for diabetes by targeting specific MT regulators.
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Introduction

Deregulated Glucose Stimulated Insulin Secretion (GSIS) results in diabetes, a disease that
afflicts ~9% of the population in the USA (DeFronzo et al., 2015; Kahn et al., 2014; Stokes
and Preston, 2017; Swisa et al., 2017). Thus, elucidating how GSIS is regulated is of
fundamental importance in understanding glucose homeostasis at both the cellular and
systemic level. Pancreatic islet beta cells are the insulin factories in the body. Here, insulin
is produced / sorted through the ER and the Golgi (Fu et al., 2013), secretory insulin
vesicles are generated at the TGN (Trans Golgi Network), and those vesicles mature into
hard-core granules that are distributed through the cells cytoplasm for regulated secretion.

The major stimulant for insulin secretion is high glucose, whose entry into and
subsequent metabolism in beta cells increases the ATP/ADP ratio, triggering insulin
secretion (Rorsman and Ashcroft, 2018). The amount of secreted insulin is of a critical
importance for metabolism and health, because over/under - secretion leads to hypo/hyper-
glycemia in patients. A main determinant of insulin secretion dosage at given stimuli is the
number of readily releasable insulin vesicles, namely those that are biochemically capable
of anchoring at the secretion sites and close enough to the plasma membrane to do so
(Wang et al., 2009). Here we investigate how cells use the cytoskeleton to regulate this
readily releasable pool (RRP) by controlling the number of granules near the plasma
membrane as well as their availability for anchoring.

While numerous intra-cellular factors regulate the localization and availability of
insulin granules, it has long been thought that the cytoskeleton has a critical role (Arous
and Halban, 2015; Lacy, 1975; Roux et al., 2016). Cytoskeletal polymers microtubules
(MTs) and MT-dependent molecular motors are the major transport system in mammalian
cells (Barlan and Gelfand, 2017; Vale, 2003). In many cell types, MTs extend toward cell
periphery in radial (mesenchymal cells) or parallel (neurons, columnar epithelia) arrays,
allowing them to serve as long-distance transport highways, for example for delivery of
secretory vesicles, among other functions (Baas and Lin, 2011; Kapitein and Hoogenraad,
2011; Muroyama and Lechler, 2017; Vinogradova et al., 2009). In pancreatic beta cells,
MTs also serve for intracellular transport (Donelan et al., 2002; McDonald et al., 2009;
Varadi et al., 2002), but MT function in secretion is complex and incompletely understood.
In the long-term, MT depletion inhibits new insulin granule formation by interfering with
insulin transport through the endoplasmic reticulum (ER) and the Golgi ((Malaisse-Lagae
et al., 1979) and our unpublished data). A number of observations indicate that prolonged
insulin secretion is attenuated in the absence of MTs (Boyd et al., 1982; Lacy et al., 1972),
which could be explained by lack of new granule production/delivery (Hoboth et al., 2015).
Moreover, without MTs, the net movement of existing secretory insulin granule movement,
although not abolished, is significantly slowed (Zhu et al., 2015). Interestingly, in our
recent finding short-term depletion of MTs resulted in immediate facilitation of exocytosis
and, as a result, increased GSIS, which is consistent with earlier findings (Devis et al.,
1974; Somers et al., 1974). Moreover, MT enrichment in beta cells both in taxol-treated
islets and in diabetic mice (Zhu et al., 2015) was associated with decreased secretion. Thus,
while all studies agree that MT-dependent transport is needed for new insulin granule
production, it is not readily apparent how or why MTs regulate secretion of the RRP, or
how transport of existing granules is linked to GSIS. Here we test the hypothesis that this
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link between MT transport and secretion is a consequence of the cytoplasmic architecture
of beta cells.

One important feature of beta cell cytoplasm is the abundance of premade insulin
granules in a resting cell. Estimates indicate individual beta cells contain on the order of
10,000 insulin granules (Dean, 1973), each 100-300 nm in diameter (Rorsman and
Renstrom, 2003), which are tightly packed in the cytoplasm across a cell. At any
stimulation, only a small portion of these vesicles was secreted [~1% within an hour of
high glucose stimulation, (Rorsman and Renstrom, 2003)]. This raises the question, why
these abundant vesicles should be transported for GSIS. Additionally, granule motions
analyzed in beta cell culture models (Tabei et al., 2013) and in intact pancreatic islets (Zhu
et al., 2015) were found to be random and undirected. This is not surprising given that
super-resolution imaging of the MT cytoskeleton in intact islets has indicated that beta-cell
MTs form a spaghetti-like random meshwork (Zhu et al., 2015), which is very different
from directed MT arrays in cells that use MTs for directional long-distance transport. Thus,
even if transport were important for GSIS, what would random transport on an unstructured
MT meshwork accomplish and how would it influence GSIS, is unclear.

Our prior data provide a clue to how MTs influence GSIS. In the absence of MTs,
high glucose stimulation leads to accumulation of granules at the cell periphery (Zhu et al.,
2015), possibly due to the stimulation of glucose-dependent priming/docking (Gandasi et
al., 2018). Interestingly, the presence of MTs prevents this excess accumulation, suggesting
MT transport may regulate granule localization even when motions are random and
undirected. TIRF microscopy data points to two possible mechanisms for this regulation.
First, quantification of delivery and withdrawal of granules from the cell periphery
demonstrates that MT-dependent transport is required to maintain the proper balance
between delivery and removal (Zhu et al., 2015). Second, the motions of granules near the
membrane (in the TIRF field, within ~200nm of the plasma membrane) are predominantly
parallel to it (Varadi et al., 2002), indicating there may be structure to the MT network near
the membrane and that motions may not be random there. To clarify which mechanism is
likely supported by the beta cell MT network, we utilize super-resolution microscopy to
image the structure of the MT meshwork near the plasma membrane and computational
modeling to assess how the interactions between granules, the that meshwork, and the
plasma membrane influence GSIS.

There are generally two populations of MTs in cells: dynamic MTs that are
undergoing dynamic disassembly (Brouhard and Rice, 2018; Mitchison and Kirschner,
1984), and stable MTs, characterized by the presence of detyrosinated tubulin (Glu-tubulin)
among other modifications (Garnham and Roll-Mecak, 2012; Hammond et al., 2008; Roll-
Mecak, 2019). Glucose alters the MT network in potentially important ways While glucose
only modestly alters the density of MTs in cells, it does make the network significantly
more dynamic by both destabilizing and depolymerizing stable MTs and increasing the rate
of new MT nucleation (Zhu et al., 2015) and MT growth rates (Heaslip et al., 2014).
Glucose is also well known to activate docking molecules, which are necessary for GSIS.
This body of work thus suggests that glucose stimulation influences granule transport,
which in turn alters GSIS.

We have hypothesized that MTs have a dual role in negatively regulating GSIS:
MTs 1) enhance withdrawal of granules from the periphery to the interior and 2) prevent
anchoring and subsequent secretion of those at the periphery (e.g. by preventing the
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formation of or breaking bonds between granules and the anchoring machinery). While this
is a compelling hypothesis, our understanding of MT control on cytoplasmic distribution
of insulin granules remains fragmented and insufficient. In particular, the abundance of
insulin, the apparently random nature of the MT network, and the seemingly random but
complex nature of granule motions (Tabei et al., 2013) makes it difficult to deduce how
MTs influence GSIS. To test this hypothesis, we will develop a computational model of
intra-cellular insulin dynamics to investigate how MT dynamics influence insulin
localization and availability. The basic elements of this model (e.g. transport rates and MT
binding rates) will be calibrated to data. It will then be tested against independent results,
including TIRF observations of peripheral granule densities along with quantification of
GSIS under different conditions, to determine under what conditions the model matches
observations. In this way, the model and experimental observations will be jointly used to
infer how interactions between MT dynamics, granule dynamics, and membrane anchoring
influence GSIS.

In this study, we investigate two specific questions, both of which are important to
understanding GSIS. How does MT transport influence the density of granules near the
plasma membrane and how does the binding of granules to the MT cytoskeleton influence
their membrane anchoring, both of which are a pre-requisite to exocytosis. Given our focus
on the dynamics of granules near the plasma membrane, we will quantify the structural
characteristics of the MT network near the membrane (directionality in particular) in
pancreatic beta cells. This data is used in conjunction with prior 3D tracking of granule
motions (Zhu et al., 2015) to develop and simulate a discrete, two-dimensional
computational model of insulin granule dynamics within a single cell. Results of this
modeling supports the aforementioned hypothesis that MT transport negatively regulates
GSIS in two important ways: by 1) increasing the rate of transport of granules away from
the plasma membrane and 2) reducing the ability of those that are near the membrane to
stably anchor to it.

Results

Peripheral MTs in islet beta cells are co-aligned with the cell border

Prior imaging of intact islets indicate (Zhu et al., 2015) that MT network in beta cells
appears to lack previously assumed radial directionality characteristic commonly seen in
mesenchymal cells in culture, and instead resembles an undirected random mesh. However,
directionality of MTs in beta cells has not been quantitatively characterized, and functional
consequences of variable directionality have not been computationally assessed. Here we
analyze directionality of MT in beta cells using a custom image-analysis algorithm. In
subsequent sections, we use computational modeling to assess the consequences the type
of MT organization near the plasma membrane.

Intact mouse pancreatic islet were isolated and equilibrated according to a standard
protocol. After a pretreatment in low and high glucose conditions, islets were fixed and
immunostained for insulin to distinguish beta cells, e-cadherin for cell border
identification, and for tubulin for MT network identification. Confocal stacks of whole-
mount islets were deconvolved for increased resolution (Fig. 1 A, B). Single 2D slices of
MT images were subjected to threshold (Fig. A,B, second from the right) and directionality
of MTs was determined in respect to the cell border (Fig. A, B, right). Every pixel of the
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image was analyzed, while inconclusive pixels were disregarded. Subsequently, MT
directionality was quantified as a function of the distance from the cell border (Fig. 1C,D).
Our results indicate that away from the cell border, in the cell interior, the MT
network lacks directionality and resembles a random interlocked mesh (Fig. 1C,D, right).
MTs within a narrow peripheral region however exhibit a significant co-alignment with the
cell border (Fig. 1C,D, left). The fraction of MTs that were border-aligned was similar in
low and high glucose, although the number of detectable pixels was lower in high glucose,
consistent with our previous finding of partial MT destabilization under high glucose
conditions (Zhu et al., 2015). Interestingly, visualization of long-lived (stable) MTs by
detyrosinated (Glu-) tubulin staining detected many Glu-MTs co-aligned with the cell
periphery in low (Fig. 1 E), but not in high (Fig. 1 F) glucose. Since MTs parallel to the
cell border are still observed in high glucose (Fig.1 C), we conclude that stability of this
peripheral bundle is significantly diminished by glucose-triggered MT destabilization.

Microtubules generate counter propagating density gradients that differentially
deliver and remove granules from the cell periphery

In the remainder of this study, we develop and utilize computational modeling to assess
how the MT organization feature described above, along with MT and non-MT-dependent
transport processes influence insulin granule localization. For specific model and
implementation details as well as a discussion of how parameters for the model were
calibrated to data or chosen, see the Methods section. Briefly, the model used here is
comprised of a discrete, 2D network of non-interacting MTs along with a population of
granules that undergo MT dependent and MT independent motion. These granules are
assumed to both bind and unbind to the MT network and to anchor to the plasma membrane
when glucose is present.

Based on the above analysis, we consider a range of assumptions for how MTs
interact with the plasma membrane. Computationally, we generate the MT network by
essentially growing individual MTs from a random seed location. We consider two
assumptions for how MTs interact when the reach the border: they either terminate or bend
and grow parallel to the periphery. By varying the likelihood of each in silico MT doing
one or the other, we can vary the net orientation of the resulting peripheral network from
being highly aligned to having no alignment. As we do not know a priori the significance
of this orientation on insulin granule dynamics, we explore the influence of this and the
other aforementioned factors on peripheral granule density.

Quantification (Figs. 2 a-c) of the steady state number of granules (total, MT bound,
and unbound) near the cell border as a function of both the total number of cellular MTs
and the peripheral alignment of MT’s indicate both influence granule densities. Here,
“peripheral alignment” of MTs refers the fraction of MTs that interact with the boundary
that grow parallel to it.

Results (Fig. 2a) show the presence of MT’s always leads to an enrichment of
granules near the cell periphery relative to densities when the MT network is completely
removed. This is true for all MT densities and peripheral MT alignment conditions tested.
In this study, we assumed that motors carrying granules stall at the tip of MT’s. To ensure
this is not the source of these results, we carried out identical simulations where motors are
assumed to disassociate at the tip (SM Fig. 1) and find similar results. Similar simulations
were also performed where granule motions are purely diffusive rather than sub-diffusive,
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again with similar results (SM Fig. 1). This suggests that the MT network serves as a
sponge of sorts that enriches granule densities near the cell border, which is likely the result
of the increased density of MT tips near the cell periphery.

Interestingly, this enrichment effect appears to be weakened when the MT network
is more aligned at the cell periphery. Specifically, when the MT network at the periphery
is more aligned, fewer granules localize to the boundary. Further, when the network is
highly aligned, peripheral density becomes essentially independent of total MT density.
Further inspection of the peripheral densities of bound and unbound granules as a function
of peripheral alignment (Figs. 2 b, c¢) provides a clue as to the cause of this observation.
Increasing peripheral alignment has little influence on the number of bound peripheral
granules but leads to a substantial reduction in the density of unbound peripheral granules.
On net, this yields the observed inverse relationship between total peripheral granule
density and peripheral MT alignment.

This suggest that an enrichment of peripherally oriented MTs would serve to 1)
increase the total binding of peripheral granules to the MT network (thus reducing unbound
granule numbers) and 2) transport those excess granules toward the cell interior (thus
leaving the fraction of bound granules relatively unchanged). Critically, this transport of
bound granules away from the periphery is not due to directional motions of kinesin or
dynein motors since all granule motions are random and undirected. This raises an
important question. If, at equilibrium, peripherally aligned MT’s serve to soak up and
transport granules away from the periphery, what counter balances that net transport? To
answer this, we quantified (in simulations at steady state) the density of bound and unbound
granules as a function of radial distance from the cell center (Fig. 2d, e) for the two extreme
cases of low and high alignment of peripheral MT’s. In the highly aligned case (Fig. 2e),
bound and unbound granule densities exhibit opposing density gradients with unbound
granules exhibiting a peripheral deficit and bound granules a peripheral enrichment. When
the alignment of peripherally aligned MTs is low (Figure 2d), these opposing gradients are
not present. Thus, when there is a substantial number of peripherally aligned MT’s, bound
and unbound granules form counter-propagating gradients with unbound granules flowing
from the interior to the periphery and bound granules flowing from the periphery to the
interior.

This counter-propagating gradient theory is consistent with our prior observations.
We found, using TIRF microscopy, that the application of NOC and glucose led to an ~25%
reduction in granule delivery but an ~43% reduction in granule withdrawal (Zhu et al.,
2015). Thus removal of granules was more substantially impacted by removal of MT’s
than delivery, consistent with the counter-propagating gradient hypothesis where MT’s
generate a net flow of granules from the periphery to the cell interior. In combination, these
results suggest that the peripherally aligned network of MTs maintains a balance between
delivery and withdrawal of granules and prevents excess accumulation near the plasma
membrane.

Changes in radial diffusion due to MT alignment are the source of these counter-
propagating gradients.

We investigate two potential effects of peripheral MT alignment on insulin localization.
Enrichment of these peripherally aligned MTs could serve to either 1) increase binding of
granules to MTs or 2) restrict the radial motility of bound granules. In the discrete model
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it is impossible to separate these effects; increased peripherally aligned density will
necessarily influence both. To assess the relative importance of these in potentially
generating the aforementioned counter-propagating gradients, we construct a simplified
continuum model of granule dynamics where the two can be separately modulated.

For this continuum model, we consider concentrations of granules rather than
individual granules and use partial differential equations (PDEs) to describe time evolution
of the spatial concentrations. Since the presence of these counter-propagating gradients in
the prior study was not the result of sub-diffusion (Fig. S2), we consider the motions of
both bound and unbound granules to be purely diffusive. This greatly simplifies the model,
allowing it to be described by standard reaction diffusion PDE’s. For simplicity, the cell is
considered to be a radially symmetric circle and we model only the dynamics in the radial
direction since steady state distributions in the discrete model depend on radius but not
angular position in the cell. This reduces the model to a one dimensional, radially
symmetric system that further simplifies calculations while allowing us to assess the
influence of these factors on radial density.

This model encodes three essential components of the discrete model: 1) the ability
of granules to bind and unbind from MT bound to unbound states, 2) diffusion of unbound
granules, and 3) diffusion of bound granules. It does not however explicitly include discrete
MTs. Rather, bound and unbound forms are assumed to move with different rates of
diffusion (faster for bound). To determine how increases in the rate of MT binding and
decreases in the rate of radial diffusion at the cell periphery (due to MT enrichment)
influence distributions of bound and unbound granules, we define a 250nm zone near the
cell border where MT binding rates (kon) and speed of bound granule radial diffusion (Dy)
are selectively modulated. The benefit of this continuum approach is that we can separately
and selectively change these two parameters near the cell border to assess their influence
in isolation.

The model was simulated for a range of different fold increases in the binding rate
and fold decreases in the rate of bound granule radial diffusion (again, these parameters are
modulated only near the periphery). Results (Fig. 3) show that changes in binding and
radial diffusion rates have different roles in setting up these counter-propagating gradients.
An increase in the binding rate is sufficient to induce a depletion of unbound peripheral
granules, but not sufficient to induce a significant gradient in bound granules. A reduction
in the rate of radial diffusion (in combination with the increase in binding rate) does
however lead to a substantial enrichment of bound granules at the periphery. Thus, a
moderate increase in the MT binding rate in combination with a substantial decrease in the
rate of bound granule radial diffusion is required to explain the counter-propagating
gradients seen in the discrete model. Both would be expected to occur if MTs are enriched
at the cell periphery.

The anomalous nature of granule motion alters localization of granules near the cell
membrane in a MT-dependent fashion

It is well established that insulin granule motion (like the motion of many entities within
the cell) is sub-diffusive (Zhu et al., 2015), characterized by mean squared displacement
curves obeying MSD = Dt“ where “D” is the generalized diffusion coefficient and “a” is
the diffusive exponent: a=1 corresponds to regular diffusion while o<l indicates sub-
diffusion. For insulin granules, it has previously been found that a~0.75 (Tabei et al.,
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2013), indicating significant anomalousness of diffusion. It has been further found insulin
granule motions exhibit characteristics of fractional Brownian motion (Tabei et al., 2013),
which is often associated with visco-elastic drag effects arising from the complex and
crowded nature of the cells cytoplasm. While numerous studies have investigated the
anomalous nature of random particle motion in cellular environments (see (Hofling and
Franosch, 2013) for a comprehensive review), to our knowledge, the effect of visco-elastic
sub-diffusion on the spatial distribution of particles at equilibrium (granules in this case)
has not been investigated. Here we assess how this feature of motion, and its changes due
to alterations in the MT cytoskeleton, affects steady state spatial densities of granules
within the cell.

It is well established that when particles obey standard random / Brownian motion,
spatial distributions of particles tend to homogenize within a spatial domain. To determine
if this is the case when motions are more complex and governed by visco-elastic sub-
diffusion, we simulated the spatial distribution of 1000 non-interacting granules over time
for different values of the D and « parameters (Figure 4). In order to independently assess
the influence of anomalous motions, we initially consider only the two-dimension motions
of granules independent of MT’s. Results show that when granule motions are sub-
diffusive, there is a significant depletion of granules at both the cellular and nuclear borders
(Fig. 4d). Furthermore, as motions become more sub-diffusive (smaller o) or faster (larger
D), this depletion near the cell border becomes more substantial (Figs. 4 a,d,f).

The explanation for this is subtle but readily explained by the basic assumptions of
generalized Langevin dynamics. The physical mechanism often associated with visco-
elastic sub-diffusion is that as a particle moves in a given direction, resistive forces on that
particle build up due to interactions with the crowded, filamentous cellular environment;
the more a particle moves in a given direction, the larger the resistive force becomes. If a
particle is observed near a cell border, it is more likely that the particle was transported
from more interior regions of the cell rather than more exterior regions. This would lead to
an expected resistive force that would tend to move the particle back to the interior of the
cell, introducing a bias not present in standard diffusion.

To confirm this explanation, we quantified the average radial component of the
visco-elastic force as a function of radius within the simulated cell at steady state to
generate a force (Fig. 4c). This force map quantifies the average, expected resistive force
that a granule would be subject to as a function of radial location within the cell. When
diffusion is close to normal (=0.99), that force is effectively 0 everywhere. However, as
diffusion becomes more anomalous, we begin to see a negative expected radial force near
the cell border, suggesting a particle near the boundary would be expected to move inward
rather than closer to the periphery. This is the source of the peripheral depletion of granules
when motions are governed by visco-elastic sub-diffusion.

While this would be a general phenomenon in any system where visco-elastic sub-
diffusion is present, it is specifically relevant here due to the dependence of this depletion
effect on the speed of motion. The gray bars in Fig. 4f show that when the speed of motion
is reduced by a factor of %, peripheral densities increase by roughly 50%. Interestingly,
when MT’s are completely removed from beta cells via application of glucose + NOC, a
roughly 1/4 - 1/3 reduction in D is observed (Figure 1c with data reproduced from (Zhu et
al., 2015)) along with a roughly 50% increase in peripheral granule density.


https://doi.org/10.1101/581330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581330; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

We are not suggesting that this is the sole or even primary cause of the enrichment
of peripheral granules near the periphery in response to MT removal. Glucose stimulation
of Beta cells influences cells in a number of ways, including activating docking proteins
that bind granules to the membrane. Additionally, the dynamics of MT’s significantly
influence peripheral granule densities in other ways, independent of simply augmenting
transport speed. None-the-less, it is expected based on this analysis that the net slow-down
in motion would contribute to the peripheral enrichment observed experimentally when
glucose and NOC are jointly applied to cells.

Competition between membrane anchoring and MT binding regulates availability of
peripheral granules

Here we consider how the dynamics of MT mediated motions influence granule
localization and availability for membrane anchoring. A set of prior observations will allow
us to assess what factors are important in understanding granule localization and constrain
aspects of the computational model. In (Zhu et al., 2015), Zhu et al. quantified how granule
density at the cell periphery changes when glucose, NOC, and glucose + NOC are applied
to Beta cells. Briefly, they found that the application of either factor alone had relatively
little influence on granule densities. However, when they were jointly applied, peripheral
densities increased by on the order of 50%.

When initially studying peripheral granule accumulation without considering
membrane anchoring, we found the model unable to account for these observations. We
thus consider the joint effects of membrane anchoring and MT mediated transport, both of
which are altered by glucose stimulation. To study how MT motion might influence
membrane anchoring, we consider two possibilities for how granules anchor: 1) that any
granule close enough to the periphery can anchor or 2) that only granules not bound to MTs
can anchor. The latter possibility is motivated by the hypothesis that motions and forces
subjected to granules by MT associated motors either prevent anchoring or substantially
reduce anchoring affinity. Since we do not have anchoring protein affinity data, we
consider the effects of low, medium, and high affinity (high not shown in data) as well as
the absence of anchoring (relevant for NOC only treatment) on granule dynamics.

To understand the effect of MTs on the localization and availability of granules, we
simulated the full model to steady state, performed both partial and complete removal of
MTs (in different anchoring scenarios), and quantified the fold change in peripheral granule
density. Results (Figure 5 b, ¢) show that in the absence of anchoring, neither partial nor
complete removal of MTs alone has a significant effect on granule density and thus
removal of MTs alone is not sufficient to explain granule enrichment when glucose + NOC
is applied. The inclusion of anchoring can lead to the enrichment of peripheral densities,
however those enrichment dynamics are only consistent with observations when MT
unbound granules anchor to the membrane with low affinity. In this scenario, a roughly 40-
50% increase in peripheral granules is found (Figure 5a), consistent with prior experimental
observations (Zhu et al., 2015). When all granules can anchor independently of MT
binding, enrichment occurs in the absence of any MT perturbation, contrary to
observations. Alternatively, when affinity is too high, enrichment becomes extreme and
once again independent of MT dynamics. In short, when anchoring is high affinity or all
granules (MT bound and unbound) can anchor, MT properties have little effect on
peripheral densities.
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We thus conclude anchoring is necessary to account for enrichment of peripheral
granules upon glucose + NOC stimulation, but that only unbound granules should anchor
and with low affinity. These results suggest MT’s may have a role in negatively regulating
the availability of peripheral granules by binding them and making them unavailable for
anchoring.

Discussion

Glucose homeostasis is tightly regulated at the systemic level, in both the amount of insulin
in circulation and the response of peripheral tissues to insulin (including liver, skeletal
muscles, and fat). This study here combines experimental test and modeling to investigate
how beta cells regulate the amount of insulin to secrete at given stimuli. We focus on how
the MTs in beta cells regulate the localization and anchoring of insulin granules to the
plasma membrane, a pre-requisite for insulin secretion. Results here suggest that
cytoskeletal factors contribute to tight regulation of insulin at the level of individual Beta
cells.

While individual Beta cells can contain up to 13,000 individual insulin granules,
only a few are secreted in response to glucose stimulation (Rorsman and Renstrom, 2003).
Thus at the cellular level, significant negative regulation of GSIS must be present. A well-
established key negative factor is the actin cytoskeleton, which ensures that only a small
portion of vesicles are available to break the cell cortex and secreted (Wang and Thurmond,
2009). Here, we have identified two potential, alternative mechanisms by which MT
dynamics contribute to this negative regulation. First, MTs near the cell periphery actively
transport insulin granules away from the cell membrane. Second, traction forces generated
by MT associated molecular motors prevent stable granule anchoring to the membrane,
which is a precursor to exocytosis.

Both of these mechanisms are supported by prior observations. First, prior imaging
(Zhu et al., 2015) demonstrated that depolymerization of the MT cytoskeleton substantially
inhibited the removal of insulin granules from the membrane, supporting the conclusion
here that MTs predominantly serve to remove granules from the cells surface. Secondly,
recent work (Gandasi et al., 2018) demonstrated that membrane docking of granules is
substantially inhibited in human type 2 diabetes. This along with the observation that MT
density is increased in diabetic mouse models (Zhu et al., 2015) supports the conclusion
that MT mediated transport prevents or inhibits anchoring of granules to the membrane.

Interestingly, both of these are consequences of an alteration in the MT structure
near the cell membrane. Prior imaging has found the MT network in beta cells to be
unusually unstructured and randomly oriented (Varadi et al., 2002; Zhu et al., 2015).
However, results here demonstrate that in peripheral regions within ~250nm of the cell
membrane, MTs are predominantly oriented parallel to the membrane. The two previously
mentioned negative regulatory mechanisms are a direct consequence of this alteration in
structure. As a result, the MT network acts like a sponge near the membrane that soaks up
granules and transports them away from the periphery while preventing their membrane
anchoring and stimulated release.

Co-alignment of MTs at the cell periphery can arise as a result of MT capture at the
cortex or cell/cell junctions, which prevents MT catastrophe (Fukata et al., 2002;
Gundersen, 2002; Schmoranzer et al., 2009; Stehbens et al., 2014; Watanabe et al., 2004;
Zaoui et al., 2010) and thus can promote their turning by the actin retrograde flow (Bicek
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et al., 2009; Gupton et al., 2002) and polymerization along the cortex. Alternatively,
subcellular signals localized at the plasma membrane, such as GSK3beta inactivation, can
locally increase MT coating by MAPs, which, in turn, can promote excessive MT growth
along the cell periphery (Kumar et al., 2009; Nishimura et al., 2012; Zhu et al., 2016). Such
mechanisms that promote MT turning must also increase their lifetimes and stability, which
is consistent with unusually high levels of stabilization that we observe in the peripheral
MT bundles in beta cells. Thus there are a number of potential regulatory mechanisms
under the control of cell differentiation and metabolic signals that could produce this
aligned peripheral mesh and, as a result, tune insulin availability for GSIS.

Interestingly, the MT mediated withdrawal of peripheral granules does not require
directed (i.e. ballistic) motor driven transport. That is, it is the topology of the MT network
that influences cargo localization, not the specific motor dynamics (similar to (Ando et al.,
2015)). Rather, the random granule motions observed in cells coupled with the structured
nature of the network near the membrane is sufficient to generate directed motion of MT
bound granules away from the membrane. It is interesting in this regard that while most
studies concentrate on kinesin 1 as the main MT-dependent motor that transports insulin
granules (McDonald et al., 2009; Varadi et al., 2002), the transport is likely driven by
multiple motor transport involving both kinesin and dynein (Varadi et al., 2003).
Furthermore, peripherally aligned MT arrays likely lack net polarity: there is no reason to
anticipate that MTs growing along the cell periphery will be co-aligned. Furthermore, MT
buckling at the periphery is capable of producing MTs with “reversed” polarity with their
plus ends directed toward cell periphery (Zhu et al., 2016). In such a complex network,
even solely plus-end directed molecular motors would promote non-directional transport.

The effects of MT configuration on granule distribution are predicted to persist
under glucose stimulation conditions as well. MTs coaligned with the cell membrane and,
accordingly, their functional consequences on granule dynamics are observed in both
steady state (low glucose levels) and stimulated conditions (high glucose levels). Glucose
stimulation does have two important consequences however. First, it leads to the activation
of docking and exocytic machinery (Gandasi et al., 2018), which facilitates the secretion
of those granules not interacting with the MT cytoskeleton. Secondly, it leads to depletion
of stable long-lived MTs (Fig. 1 and (Zhu et al., 2015)) and replacing them by new,
dynamic counterparts that are nucleated at the Golgi membrane (Zhu et al., 2015) and are
characterized by rapid polymerization rates (Heaslip et al., 2014). While this does not lead
to a gross reduction in MT density or readily detectable restructuring, it does reduce their
lifetime, which, as our results suggest, lead to increased interaction between granules and
the membrane and, subsequently, to increased secretion. Another way to interpret the result
of increased MT dynamics is that it creates a pool of transiently “unbound” granules, which
we show here to be the ones prone to accumulation at the cell periphery.

Here we used imaging and modeling to assess the consequences of MT dynamics
specifically on secretion. However, much work is still needed to investigate how the
biophysical properties of motors themselves as well as docking proteins influence
secretion. One central hypothesis stemming from this work is that the motions and / or
traction forces generated by the action of molecular motors on MTs parallel to the
membrane inhibits stable membrane anchoring. Does this occur through the prevention of
bond formation or the force dependent breaking of those bonds? Furthermore, how does
the nature of the multiple motor transport these granules are likely subject to influence
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interactions with the membrane? Addressing these questions will require further
experimental investigation of the biophysical interactions between the cytoskeleton,
molecular motors, membrane docking proteins, and insulin granules.

These results do however suggest that there is a potential therapeutic merit in
targeting the cytoskeleton to modulate Beta cell function. Recent imaging demonstrated
that increased MT density was found to correlate with decreased secretion in mouse models
(Zhu et al., 2015). While those results were correlative, our findings here indicate that in
silico dense peripheral MT network interferes with the proper positioning of insulin
granules for secretion. This result predicts that in fact the link observed in mouse models
may be causal, and interference with MTs stability in beta cells might be used as an
approach to increase insulin secretion efficiency. This idea is tempting because numerous
MT-targeting small molecule compounds have been already considered or even used for
cancer therapies. This potential has to be approached very carefully, given high toxicity of
MT drugs on all cells and likely negative effects of prolonged MT destabilization on insulin
biogenesis in beta cells specifically. Nevertheless, one can envision that, in the future,
locally delivered and released in a time-restricted manner MT destabilizers could be
applied to facilitate insulin secretion and overcome hyperinsulinemia in patients. If
proposing such an intervention is too bold, it is more realistic that future studies will
identify specific MT stabilizing MAPs, which are responsible for high MT density in
diabetes models. Then, potential therapies would become possible that specifically target
these MT-binding proteins.
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Materials and Methods

Discrete Model Description

This discrete model accounts for four essential features that impact the transport of
granules: 1) transport along MTs, 2) transport independent of MTs, 3) binding and
unbinding of granules to MTs, and 4) tethering of granules (that are sufficiently close) to
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the cell membrane, which renders them immobile. We briefly discuss how each of these
features is encoded into the model and how aspects of it are calibrated to data.

Modeling MT independent transport.

We model the cell as a 5 um radius circle with a 1 um hole cut out (representing the
nucleus). A regular 2D grid is constructed on this cellular domain and motion of granules
on this lattice is modeled as a sub-diffusive random walk. Granule motion is assumed to
obey the equation of motion for over-damped Fractional Langevin Equation (FLE)
representing viscoelastic sub-diffusion

(1.1) ny(r —5)¥(s)ds =F,

where v is the velocity of the granule, yis the drag coefficient for the granule, K is a memory
kernel encoding viscoelastic effects, and Fi is the stochastic forcing obeying the
appropriate fluctuation dissipation theorem (Kubo). Here the drag coefficient satisfies
y=2kpT/(I(1+a)D) where kgT is the standard thermal noise constant and D, « are estimated
from data (see (Lutz, 2001) for further details of the FLE). The kinetic lattice Monte Carlo
method for simulating the over-damped FLE from (Fritsch and Langowski, 2012) is used
to simulate motion.

Constructing the MT network and modeling MT mediated transport

To simulate MT mediated motion, we must first populate the in silico cell with a
microtubule network. We do so by essentially growing a network of five hundred discrete,
independent, and non-interacting microtubules. Of these, 250 are short (mean length 2
microns) and 250 long (mean 5 microns). For each MT, we specify a start point and initial
growth direction. The MT is then grown in a strait line until it interacts with the cell
periphery (if it does so at all). If the growing MT interacts with the cell border, it either
terminates with probability p or bends and grows parallel to the cell periphery with
probability /-p. For most simulations a value of p=0 is chosen, corresponding to a
peripherally aligned population of MTs forming. However in Figure 2, the effect of this
MT structure parameter is considered. For simplicity, we assume the MTs are fixed in place
once grown, and thus do not model the detailed dynamics of remodeling of the MT
cytoskeleton by motors themselves (Hillen et al., 2017; White et al., 2015). The model does
incorporate dynamic instability (Goodson and Jonasson, 2018) of MT’s through removal
and replacement of MT’s with a specified rate. We fix the average MT lifetime at 1000
seconds, though do also consider the effects of short MT lifetimes (10 sec, SM Figure 2).
As removal / replacement of MTs has much the same effect on granule motility as MT
binding / unbinding, which is considered in somewhat more detail, we do not exhaustively
explore the effect of MT catastrophe dynamics.

Motion of granules is strongly sub-diffusive even in the absence of actin, suggesting
that individual MT motors are not moving granules along in a directed fashion along them
(this would be super-diffusion). Furthermore, each granule likely has a number of motors
bound to it at any given time that are constantly competing to be the driver of motility. We
thus do not model the dynamics of individual motors. Rather, MT mediated granule motion
is modeled as a 1D sub-diffusive random walk on the MT to which the granule is bound.
The same FLE equation of motion (Equ. 1.1 above) describes this motion and the same
method of simulation is used.
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Granule binding, unbinding, and tethering

It is highly likely that granules bind and unbind from the MT lattice and thus their aggregate
motion is in some sense an interpolation of motion in those two forms. We assume that an
unbound granule can bind to any MT within 250 nm of its center (assuming a 150nm
granule radius along with an additional ~100nm reach of the motor head) with a per MT
rate of binding kon. Similarly, granules are assumed to unbind from MT’s with a rate of
kott. These two rate constants are not individually accessible as we don’t know what
specific motors are involved or how granules interact with the dense network of MTs. As
discussed shortly however, we can calibrate their ratio based on data to ensure that relative
fraction of time each granule spends undergoing (un)bound motility is appropriate. We
thus fix the rate kos=1/30 to represent a roughly 30 second bound lifetime, which is in the
same range found for the kinesin Kip2 (Hibbel et al., 2015), and calibrate kon accordingly.
Switching of granules from one MT to another is not directly modeled. However when a
granule unbinds from a MT, it can re-bind to any other nearby MT. All simulations were
carried out with kor=1/15, 1/60, yielding similar results.

Anchoring of granules to the cell membrane is modeled similarly with granules
within 250nm of the cell border binding with a rate constant kt and unbinding with a rate
ku. We again do not have estimates for these rate constants or any way to constrain them
directly. In this study however, we vary the affinity by fixing the unbinding rate and
modulating the magnitude of kr to determine how the relative strength of anchoring, or in
other words, the relative fraction of time an unbound granule spends tethered to the
membrane, influences dynamics (see Figure 3). We further consider two possibilities for
which granules can / cannot tether: 1) that all granules can tether or 2) that only unbound
granules can tether.

Calibrating motility and binding / unbinding parameters

While all parameters of this model are not estimable, some are. In particular, using granule
motility data we can extract the values of the sub-diffusive exponent (o), the diffusion
coefficients for bound and unbound granule motion (D for each), and the relative fraction
of time the granule spends in the bound and unbound states.

The data we use for this is derived from (Zhu et al., 2015) where mean squared
displacement (MSD) of granule motion was measured in control cells, cells with the MT
cytoskeleton removed, and cells with the actin cytoskeleton removed. First, from (Tabei et
al., 2013) it was determined that a=0.75. To calibrate the diffusion constants, we will rely
on MSD data. For simplicity, we will assume that in the absence of actin, all motion is MT
mediated, and in the absence of MT’s, all motion is actin mediated. We can thus use the
data where actin is removed to calibrate the diffusion constant for MT motion, and the data
where MT’s are removed to calibrate the diffusion constant for non-MT motion. See Figure
Ic (black and red curves) for calibration results.

We can additionally use the control MSD data to calibrate the relative fraction of
time each granule spends in bound and unbound states. The idea here is that the more time
a granule spends in the MT bound state, the higher its MSD will be and vice versa. We fix
the value of kofr and vary the value of ko, until the MSD data of the amalgamated diffusion
matches that of control data (blue curve in Figure 1c). For a list of all parameters for the
discrete model, see Table 1.
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Simulation protocol

All simulations begin with each of the 1000 granules randomly placed in the cell for a
pseudo-uniform distribution. The time step for simulations granule motions is chosen to be
AT=10ms with simulations running nominally for 300 sec to achieve a steady state. The
kinetic lattice Monte Carlo method requires that the spatial grid size be chosen

appropriately so that Ax=(2DAT“)"’ . Since the diffusion constant for the MT and non-

MT mediated motions are different, this yields spatial step sizes of 18nm for the 2D lattice
motions and 30nm for the 1D motions on MTs. In select simulations, decreasing the time
step to AT=5ms did not alter results. In all results presented, averages of 50 independent
simulations are presented unless otherwise stated.

Mice

Mouse usage and handling followed the protocol approved by the Vanderbilt Institutional
Animal Care and Usage Committee for Dr. Gu. Wild type CD-1 (ICR) mice were
purchased from Charles River Inc. (Wilmington, MA). All mice were bred and handled
following protocols approved by the Vanderbilt Institutional Animal Care and Use
Committee (IACUC). All mice used were 8-10 weeks of age.

Islet isolation

Islets isolation followed the previously described procedure (Brissova et al., 2002). Briefly,
mouse pancreata were distended by injecting 3 mL 0.8 mg/mL collagenase P (Sigma, St
Louis, MO) through the bile duct and digested at 37°C for 20 minutes. Islets were hand-
picked and cultured to recover in Gibco™ RPMI 1640 Medium (Thermo Fisher, Waltham,
MA) containing 11mM glucose, 10% heat inactivated FBS (Atlanta Biologicals, Flowery
Branch, GA), 100 IU/mL penicillin, and 100 pg/mL streptomycin.

Immunofluorescence

Isolated mouse Islets were treated with 2.8 mM (low) or 20 mM (high) glucose in RPMI
media for two hours, and fixed with 4% paraformaldehyde in PBS with 0.1% saponin
(Sigma, St Louis, MO). Immunofluorescence followed the described procedure (Zhu et al.,
2015). Briefly, fixed islets were stained with primary antibodies at 4 °C for overnight
followed by another staining with fluorophore-conjugated secondary antibodies. After each
staining, islets were washed using PBS with 0.1% saponin for three times. After staining,
islets were mounted with Vectashield mounting media (Vector Labs, Burlingame, CA) for
microscopy. Primary antibodies used are rabbit anti- 3 -tubulin (Abcam, Cambridge, MA),
guinea pig anti-insulin (DAKO, Houston, TX), rabbit anti-detyrosinated tubulin (Millipore,
Burlington, MA), and mouse anti-E-Cadherin (BD Biosciences, San Jose, CA). Secondary
antibodies used are goat anti-rabbit IgG-Alexa Fluor 488 (Abcam, Cambridge, MA), goat
anti-mouse IgG-Alexa Fluor 488 (Invitrogen, Grand Island, NY), and goat anti-guinea pig
IgG-Alexa Fluor 650 (Thermo Fisher, Waltham, MA)

Microscopy and Image processing:

All images were captured using Nikon Eclipse AIR laser scanning confocal microscope
equipped with a CFI Apochromat TIRF 100X/1.45 oil objective. The microscope is driven
by Nikon Elements software. For directionality analysis, oversampled image stacks (50nm?
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voxeles) were acquired and thereafter deconvolved by NIS Elements Software using
Richardson and Lucy algorithm (15 iterations). All images presented in figures were single-
slice confocal images, where the brightness and contrast were adjusted consistently across
every image to better present small structural features.

Image Analysis:

Image analysis algorithm was developed to determine the alignment of neighborhood
structure at internal point within tubulin images with that at nearest point on the border.
Beta cells within an islet were selected based on their ability to express insulin. Single
slices from a deconvoluted confocal stack were used for analysis. Taken into consideration
that MT width is below the resolution limit of microscopy, neighborhood block size was
approximated to the pixel size of the oversampled confocal image (50nm?). Analysis was
applied within a mask based on thresholded tubulin images. The local orientation at each
pixel of tubulin image was derived using method described in (Feng and Milanfar, 2002).
Cell outline curve, manually constructed based on the E-cadherin staining, was smoothed
and used to estimate orientation of cell border. Each pixel in tubulin image was associated
with a pixel of the boundary curve, nearest to it. Per pixel not excluded by cell and tubulin
threshold masks, angle difference between local orientation and orientation of boundary at
nearest pixel was calculated, zero indicating perfect parallel alignment. Results were
weighed according to variance of local orientation, to avoid data from lumps of tubulin
bands of excessive density and MT crossings with ambiguous configuration in the results.
All pixels were manually sorted according to their distance from the cell boarder into bins
of 0.5 um.
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Tables
Parameter Name Value Units
Number of MTs 500 Number
Number of Granules 1000 Number
Cell Radius 5 pum
Nucleus Radius 1 pum
Granule Radius 0.3 pum
Sub-diffusion Exponent (a) 0.75 None
MT Bound Diffusion Constant 0.015 um? / sec
(D1)
2D Grid Diffusion Constant (D) 0.005 um? / sec
MT Mean Length (short, long) 2,5 pm
MT Length Standard Deviation 2 pum
MT Catastrophe Rate 1/1000 1/ sec
Granule / MT binding rate (kon) 1/8 1/ (sec*MT)
Granule / MT unbinding rate (ko) | 1/30 1/ sec
Granule / MT binding radius 0.25 um
Granule Tethering rate (kr) 0 1/ sec
Granule Untethering rate 1/30 1/ sec
Granule Tethering Radius 0.25 pum

Table 1: Synopsis of the discrete model parameters.
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Figurel: MTs parallel to the cell edge in beta cells are destabilized in high
glucose. Panels A, B: Examples of MT directionality quantification in low (A) and high
(B) glucose. Tubulin, green. Insulin (beta-cell marker), magenta. Cell outline, as detected
by e-cadherin staining, is shown as dotted line on tubulin and thresholded images. The
image on the right shows color-coded MT directions: parallel to the cell edge, blue;
perpendicular to the cell edge, red. Panels C, D: Histograms of MT directionality within
two cell regions: periphery (C) and interior (D). Percentage of tubulin-positive pixels in
the analyzed cell population is shown. MTs at the periphery tend to be parallel to the edge.
Low and high glucose do not differ. N=12 and 11 cells for low and high glucose,
respectively. Pixel numbers in the analysis: 71759 (low, periphery); 9622 (low, interior);
43747 (high, periphery); 5833 (high, interior). Note that a lower number of pixels was
identified in high glucose, consistent with the fact that MTs are destabilized under this
condition. Panels E, F: Stable MT marker detyrosinated (Glu-) tubulin (green) in low (E)
and high (F) glucose. Cell-cell adhesions are stained for E-cadherin (magenta) in left-hand
panels and outlined (dashed line) in right-hand panels. Note multiple Glu-tubulin-positive
MTs parallel to the cell border (arrows) in low glucose (E). Glu-tubulin content is
decreased in high glucose (F), indicating MT destabilization both across the cell and at the
cell border (arrows).
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Figure 2: Effect of microtubules on peripheral localization of insulin granules.
Panel A: Total number of granules located within 250 nm of the cell membrane as a
function of the peripheral density of MTs as well as the total density of MTs. Panel B:
Number of MT bound granules. Panel C: Number of unbound granules. Panels D, E:
Radial distribution of bound, unbound, and total granules in low and high peripheral
density cases. Panel F: Table depicting change in granule arrival delivery to the cell

periphery in cells from experiments in our previous publication (data reproduced
from (Zhu et al,, 2015)).
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Figure 3: Effect of MT binding propensity and reduction in radial diffusivity on
granule densities. Simulations of radially symmetric continuum model where the
rate of MT binding is increased by a factor (fwon) and rate of radial diffusivity is
decreased by a factor of (fpg) within 250nm of the cell membrane. Top (bottom)
panels show the steady state insulin densities as a function of radius in different
conditions. The notation fpg = 0.02 and so forth indicates the base value of the relevant

parameter is multiplied by the given value in the peripheral region (DB = 0.02*DB,
in this case).
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Figure 4: Influence of visco-elastic sub-diffusive effects on peripheral granule
density. Panel A: Granule density as a function or radius for different values of the
sub-diffusion exponent alpha. The rate of diffusion D is set to its base value here.
Panel B: Radial granule density as a function of diffusion speed (D) for alpha=0.7.
Panel C: Net radial visco-elastic force as a function of radius for different values of
alpha, with D fixed at its base value. Negative values near the periphery indicate a net
inward force. Panels D, E: Granule residency map showing the distribution of
granules over time for two values of alpha (note the depletion zones near the inner
and outer radii). Panel F: Effect of subdiffusive exponent (alpha) and diffusive
strength (D) on the peripheral density of MTs. In the “Vary alpha” case, the D value
corresponds to 1x (e.g. the base value). Similarly, for the “Vary D” case, alpha = 0.7.
The highlighted bars most closely correspond to the calibrated D and “alpha” values
used to model MT based diffusion for all other simulations to follow.
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Figure 5: Influence of MT perturbations on peripheral granule density. Panel A:
Number of granules within 250nm of the cell border as a function of time in
simulations where only unbound granules are able to anchor to the membrane. This
simulation shows the case for “weak” anchoring. The black curve indicates no MT
perturbation is applied, red corresponds to removal of 1/3 of longer perturbations,
and blue indicates complete removal of all MT’s (corresponding to Glucose + NOC
treatment). Panels B, C: Quantification of the fold change in peripheral granule
density after MTs are perturbed. Vertical axis shows the fold change in peripheral
granule density after the relevant perturbation. The horizontal axis corresponds to
different anchoring rates (none = 0, weak = 1/32, strong = 1/8). Slow MT dynamics
are assumed so that the average lifetime is 1000 sec. Alternative simulations were
performed with short MT lifetimes (10 sec, see SM Figure 2). In B, only MT unbound
granules are allowed to anchor to the membrane. In C, all granules are assumed to be
capable of anchoring.
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Figure 6: Description of model. Panel A: Snapshot of a simulation with 500
microtubules and 200 insulin granules. Panel B: Schematic of the basic model
elements including free diffusion, binding of granules to MTs, diffusion along MT'’s,
and membrane anchoring. Panel C: [llustration of calibrated diffusion. Dashed curves
are data and solid curves are simulated. Cytoplasmic and MT bound diffusion
coefficients were calibrated based on the red and black curves and the relative
fraction of time a granule spends in these two modes of motion was calibrated based

on the blue curve.

28


https://doi.org/10.1101/581330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581330; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Sub-Diffusion - Stall End

250 150

Half MT #

Base MT # 00
200 Double MT #

v

Total Peripheral Number
o
o
MT Bound Peripheral Number

Sub-Diffusion - Stall End

W

I Number MT Unbound Peripheral Number
N N A O N}
o O O O

0 Sub-Diffusion - Stall End

50
100
50 0 0
= Sub-Diffusion - Fall Off End E Sub-Diffusion - Fall Off End Sub-Diffusion - Fall Off End
2 300 € 200 40
£ z
S = 120
E 250 g 150 /\ g
g 200 _5_ é 100
5 /‘_\ 5100 & 80
5150 = o a
o e 2 60
5 S 50 3
S100fF o~ — o 2 40
o m o
[t — c
50 - s O - > -
Low High Low High E Low High
Peripheral Density Peripheral Density Peripheral Density
[0}
Pure-Diffusion - Stall End I} Pure-Diffusion - Stall End 2 Pure-Diffusion - Stall End
. 200 ©140 £120
3 Half MT # £ z
g 180 Base MT # =120 < 100
Double MT # o @
z
3 100 80
5 £ g
2160 s 80 & 60
= o i}
5 <5 60 € 40
=}
o 140 c o
T 3 40 S 20
S \/\/\/\/\ m )
= 120 = 20 ~ 0
= =
Pure-Diffusion - Fall Off End 5 __ Pure-Diffusion - Fall Off End 3  Pure-Diffusion - Fall Off End
5 240 .g 00 -g 140
§ 220 2, . 2120
— 15 —
= 200 g /\ £ 100
o < 5
2 180 2100 = 80
e Dﬂj ,_-GL’ 60
o 160
T 140 3 3 40
P @ S
= -
Low High S  Low High 2 Low High
= Peripheral Density

Peripheral Density

Peripheral Density

SM Figure 1: Role of motor stalling and type of diffusion on peripheral granule
density. Figure 2 A-C assessed the effect of MT dynamics on the peripheral
localization of MT bound, unbound, and total insulin granules. The top row here is a
reproduction of that data for comparison purposes. The second row shows a similar
set of simulations where instead of assuming motors stall when reaching the end of
MT, they walk off the end and the granule dis-associates from that MT. The third and
fourth rows show similar simulations where granule dynamics are governed by
standard diffusion rather than sub-diffusion. These results show that the type of
motion (standard versus sub diffusion) and the assumptions about the dynamics of
motors at the end of MTs have little effect on results of this study.

29


https://doi.org/10.1101/581330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581330; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Unbound Granule
5 A_\nch_orirlq

Complete Removal

No MT Pert

Fold Change
b

o
&)

Anchoring Propensity

SM Figure 2: Impact of MT lifetime granule density after MT perturbation.
Quantification of the fold change in peripheral granule density after MTs are
perturbed when MT lifetimes are short (10 sec, compared to 1000 sec in all prior
simulations). All plotting conventions are the same as Figure 5B. The horizontal axis
corresponds to different anchoring affinities (none = 0, weak = 1/32, strong = 1/8).
Results show that if MT lifetimes are short, MT removal has little effect on peripheral
granule density.
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