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Abstract 
 

 Two key prerequisites for glucose stimulated insulin secretion (GSIS) in Beta cells 
are the proximity of insulin granules to the plasma membrane and their anchoring or 
docking to the plasma membrane (PM). While recent evidence has indicated that both of 
these factors are altered in the context of diabetes, it is unclear what regulates localization 
of insulin and its interactions with the PM within single cells. Here we demonstrate that 
microtubule (MT) motor mediated transport dynamics have a critical role in regulating both 
factors. Super-resolution imaging shows that while the MT cytoskeleton resembles a 
random meshwork in the cells’ interior, MTs near the cells surface are preferentially 
aligned with the PM. Computational modeling demonstrates two consequences of this 
alignment. First, this structured MT network preferentially withdraws granules from the 
PM. Second, the binding and transport of insulin granules by MT motors prevents their 
stable anchoring to the PM. The MT cytoskeleton thus negatively regulates GSIS by both 
limiting the amount of insulin proximal to the PM and preventing/breaking interactions 
between the PM and the remaining nearby insulin. These results predict that altering MT 
structure in beta cells can be used to tune GSIS. Thus, our study points to a potential of an 
alternative therapeutic strategy for diabetes by targeting specific MT regulators. 
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Introduction 
 
Deregulated Glucose Stimulated Insulin Secretion (GSIS) results in diabetes, a disease that 
afflicts ~9% of the population in the USA (DeFronzo et al., 2015; Kahn et al., 2014; Stokes 
and Preston, 2017; Swisa et al., 2017). Thus, elucidating how GSIS is regulated is of 
fundamental importance in understanding glucose homeostasis at both the cellular and 
systemic level. Pancreatic islet beta cells are the insulin factories in the body. Here, insulin 
is produced / sorted through the ER and the Golgi (Fu et al., 2013), secretory insulin 
vesicles are generated at the TGN (Trans Golgi Network), and those vesicles mature into 
hard-core granules that are distributed through the cells cytoplasm for regulated secretion. 

The major stimulant for insulin secretion is high glucose, whose entry into and 
subsequent metabolism in beta cells increases the ATP/ADP ratio, triggering insulin 
secretion (Rorsman and Ashcroft, 2018). The amount of secreted insulin is of a critical 
importance for metabolism and health, because over/under - secretion leads to hypo/hyper-
glycemia in patients. A main determinant of insulin secretion dosage at given stimuli is the 
number of readily releasable insulin vesicles, namely those that are biochemically capable 
of anchoring at the secretion sites and close enough to the plasma membrane to do so 
(Wang et al., 2009). Here we investigate how cells use the cytoskeleton to regulate this 
readily releasable pool (RRP) by controlling the number of granules near the plasma 
membrane as well as their availability for anchoring. 

While numerous intra-cellular factors regulate the localization and availability of 
insulin granules, it has long been thought that the cytoskeleton has a critical role (Arous 
and Halban, 2015; Lacy, 1975; Roux et al., 2016). Cytoskeletal polymers microtubules 
(MTs) and MT-dependent molecular motors are the major transport system in mammalian 
cells (Barlan and Gelfand, 2017; Vale, 2003). In many cell types, MTs extend toward cell 
periphery in radial (mesenchymal cells) or parallel (neurons, columnar epithelia) arrays, 
allowing them to serve as long-distance transport highways, for example for delivery of 
secretory vesicles, among other functions (Baas and Lin, 2011; Kapitein and Hoogenraad, 
2011; Muroyama and Lechler, 2017; Vinogradova et al., 2009). In pancreatic beta cells, 
MTs also serve for intracellular transport (Donelan et al., 2002; McDonald et al., 2009; 
Varadi et al., 2002), but MT function in secretion is complex and incompletely understood. 
In the long-term, MT depletion inhibits new insulin granule formation by interfering with 
insulin transport through the endoplasmic reticulum (ER) and the Golgi ((Malaisse-Lagae 
et al., 1979) and our unpublished data). A number of observations indicate that prolonged 
insulin secretion is attenuated in the absence of MTs (Boyd et al., 1982; Lacy et al., 1972), 
which could be explained by lack of new granule production/delivery (Hoboth et al., 2015). 
Moreover, without MTs, the net movement of existing secretory insulin granule movement, 
although not abolished, is significantly slowed (Zhu et al., 2015). Interestingly, in our 
recent finding short-term depletion of MTs resulted in immediate facilitation of exocytosis 
and, as a result, increased GSIS, which is consistent with earlier findings (Devis et al., 
1974; Somers et al., 1974). Moreover, MT enrichment in beta cells both in taxol-treated 
islets and in diabetic mice (Zhu et al., 2015) was associated with decreased secretion. Thus, 
while all studies agree that MT-dependent transport is needed for new insulin granule 
production, it is not readily apparent how or why MTs regulate secretion of the RRP, or 
how transport of existing granules is linked to GSIS. Here we test the hypothesis that this 
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link between MT transport and secretion is a consequence of the cytoplasmic architecture 
of beta cells.  

One important feature of beta cell cytoplasm is the abundance of premade insulin 
granules in a resting cell. Estimates indicate individual beta cells contain on the order of 
10,000 insulin granules (Dean, 1973), each 100-300 nm in diameter (Rorsman and 
Renstrom, 2003), which are tightly packed in the cytoplasm across a cell. At any 
stimulation, only a small portion of these vesicles was secreted [~1% within an hour of 
high glucose stimulation, (Rorsman and Renstrom, 2003)]. This raises the question, why 
these abundant vesicles should be transported for GSIS. Additionally, granule motions 
analyzed in beta cell culture models (Tabei et al., 2013) and in intact pancreatic islets (Zhu 
et al., 2015) were found to be random and undirected. This is not surprising given that 
super-resolution imaging of the MT cytoskeleton in intact islets has indicated that beta-cell 
MTs form a spaghetti-like random meshwork (Zhu et al., 2015), which is very different 
from directed MT arrays in cells that use MTs for directional long-distance transport. Thus, 
even if transport were important for GSIS, what would random transport on an unstructured 
MT meshwork accomplish and how would it influence GSIS, is unclear.  

Our prior data provide a clue to how MTs influence GSIS. In the absence of MTs, 
high glucose stimulation leads to accumulation of granules at the cell periphery (Zhu et al., 
2015), possibly due to the stimulation of glucose-dependent priming/docking (Gandasi et 
al., 2018). Interestingly, the presence of MTs prevents this excess accumulation, suggesting 
MT transport may regulate granule localization even when motions are random and 
undirected. TIRF microscopy data points to two possible mechanisms for this regulation. 
First, quantification of delivery and withdrawal of granules from the cell periphery 
demonstrates that MT-dependent transport is required to maintain the proper balance 
between delivery and removal (Zhu et al., 2015). Second, the motions of granules near the 
membrane (in the TIRF field, within ~200nm of the plasma membrane) are predominantly 
parallel to it (Varadi et al., 2002), indicating there may be structure to the MT network near 
the membrane and that motions may not be random there. To clarify which mechanism is 
likely supported by the beta cell MT network, we utilize super-resolution microscopy to 
image the structure of the MT meshwork near the plasma membrane and computational 
modeling to assess how the interactions between granules, the that meshwork, and the 
plasma membrane influence GSIS. 

There are generally two populations of MTs in cells: dynamic MTs that are 
undergoing dynamic disassembly (Brouhard and Rice, 2018; Mitchison and Kirschner, 
1984), and stable MTs, characterized by the presence of detyrosinated tubulin (Glu-tubulin) 
among other modifications (Garnham and Roll-Mecak, 2012; Hammond et al., 2008; Roll-
Mecak, 2019). Glucose alters the MT network in potentially important ways While glucose 
only modestly alters the density of MTs in cells, it does make the network significantly 
more dynamic by both destabilizing and depolymerizing stable MTs and increasing the rate 
of new MT nucleation (Zhu et al., 2015) and MT growth rates (Heaslip et al., 2014). 
Glucose is also well known to activate docking molecules, which are necessary for GSIS. 
This body of work thus suggests that glucose stimulation influences granule transport, 
which in turn alters GSIS. 

We have hypothesized that MTs have a dual role in negatively regulating GSIS: 
MTs 1) enhance withdrawal of granules from the periphery to the interior and 2) prevent 
anchoring and subsequent secretion of those at the periphery (e.g. by preventing the 
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formation of or breaking bonds between granules and the anchoring machinery). While this 
is a compelling hypothesis, our understanding of MT control on cytoplasmic distribution 
of insulin granules remains fragmented and insufficient. In particular, the abundance of 
insulin, the apparently random nature of the MT network, and the seemingly random but 
complex nature of granule motions (Tabei et al., 2013) makes it difficult to deduce how 
MTs influence GSIS. To test this hypothesis, we will develop a computational model of 
intra-cellular insulin dynamics to investigate how MT dynamics influence insulin 
localization and availability. The basic elements of this model (e.g. transport rates and MT 
binding rates) will be calibrated to data. It will then be tested against independent results, 
including TIRF observations of peripheral granule densities along with quantification of 
GSIS under different conditions, to determine under what conditions the model matches 
observations. In this way, the model and experimental observations will be jointly used to 
infer how interactions between MT dynamics, granule dynamics, and membrane anchoring 
influence GSIS.  

In this study, we investigate two specific questions, both of which are important to 
understanding GSIS. How does MT transport influence the density of granules near the 
plasma membrane and how does the binding of granules to the MT cytoskeleton influence 
their membrane anchoring, both of which are a pre-requisite to exocytosis. Given our focus 
on the dynamics of granules near the plasma membrane, we will quantify the structural 
characteristics of the MT network near the membrane (directionality in particular) in 
pancreatic beta cells. This data is used in conjunction with prior 3D tracking of granule 
motions (Zhu et al., 2015) to develop and simulate a discrete, two-dimensional 
computational model of insulin granule dynamics within a single cell.  Results of this 
modeling supports the aforementioned hypothesis that MT transport negatively regulates 
GSIS in two important ways: by 1) increasing the rate of transport of granules away from 
the plasma membrane and 2) reducing the ability of those that are near the membrane to 
stably anchor to it. 	
 

Results 
 

Peripheral MTs in islet beta cells are co-aligned with the cell border  
Prior imaging of intact islets indicate (Zhu et al., 2015) that MT network in beta cells 
appears to lack previously assumed radial directionality characteristic commonly seen in 
mesenchymal cells in culture, and instead resembles an undirected random mesh. However, 
directionality of MTs in beta cells has not been quantitatively characterized, and functional 
consequences of variable directionality have not been computationally assessed. Here we 
analyze directionality of MT in beta cells using a custom image-analysis algorithm. In 
subsequent sections, we use computational modeling to assess the consequences the type 
of MT organization near the plasma membrane. 

Intact mouse pancreatic islet were isolated and equilibrated according to a standard 
protocol. After a pretreatment in low and high glucose conditions, islets were fixed and 
immunostained for insulin to distinguish beta cells, e-cadherin for cell border 
identification, and for tubulin for MT network identification. Confocal stacks of whole-
mount islets were deconvolved for increased resolution (Fig. 1 A, B). Single 2D slices of 
MT images were subjected to threshold (Fig. A,B, second from the right) and directionality 
of MTs was determined in respect to the cell border (Fig.  A, B, right).  Every pixel of the 
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image was analyzed, while inconclusive pixels were disregarded. Subsequently, MT 
directionality was quantified as a function of the distance from the cell border (Fig. 1C,D).  

Our results indicate that away from the cell border, in the cell interior, the MT 
network lacks directionality and resembles a random interlocked mesh (Fig. 1C,D, right). 
MTs within a narrow peripheral region however exhibit a significant co-alignment with the 
cell border (Fig. 1C,D, left). The fraction of MTs that were border-aligned was similar in 
low and high glucose, although the number of detectable pixels was lower in high glucose, 
consistent with our previous finding of partial MT destabilization under high glucose 
conditions (Zhu et al., 2015).   Interestingly, visualization of long-lived (stable) MTs by 
detyrosinated (Glu-) tubulin staining detected many Glu-MTs co-aligned with the cell 
periphery in low (Fig. 1 E), but not in high (Fig. 1 F) glucose. Since MTs parallel to the 
cell border are still observed in high glucose (Fig.1 C), we conclude that stability of this 
peripheral bundle is significantly diminished by glucose-triggered MT destabilization.  
 
Microtubules generate counter propagating density gradients that differentially 
deliver and remove granules from the cell periphery  
In the remainder of this study, we develop and utilize computational modeling to assess 
how the MT organization feature described above, along with MT and non-MT-dependent 
transport processes influence insulin granule localization. For specific model and 
implementation details as well as a discussion of how parameters for the model were 
calibrated to data or chosen, see the Methods section. Briefly, the model used here is 
comprised of a discrete, 2D network of non-interacting MTs along with a population of 
granules that undergo MT dependent and MT independent motion. These granules are 
assumed to both bind and unbind to the MT network and to anchor to the plasma membrane 
when glucose is present. 

Based on the above analysis, we consider a range of assumptions for how MTs 
interact with the plasma membrane. Computationally, we generate the MT network by 
essentially growing individual MTs from a random seed location. We consider two 
assumptions for how MTs interact when the reach the border: they either terminate or bend 
and grow parallel to the periphery. By varying the likelihood of each in silico MT doing 
one or the other, we can vary the net orientation of the resulting peripheral network from 
being highly aligned to having no alignment. As we do not know a priori the significance 
of this orientation on insulin granule dynamics, we explore the influence of this and the 
other aforementioned factors on peripheral granule density. 

Quantification (Figs. 2 a-c) of the steady state number of granules (total, MT bound, 
and unbound) near the cell border as a function of both the total number of cellular MTs 
and the peripheral alignment of MT’s indicate both influence granule densities. Here, 
“peripheral alignment” of MTs refers the fraction of MTs that interact with the boundary 
that grow parallel to it.  

Results (Fig. 2a) show the presence of MT’s always leads to an enrichment of 
granules near the cell periphery relative to densities when the MT network is completely 
removed. This is true for all MT densities and peripheral MT alignment conditions tested. 
In this study, we assumed that motors carrying granules stall at the tip of MT’s. To ensure 
this is not the source of these results, we carried out identical simulations where motors are 
assumed to disassociate at the tip (SM Fig. 1) and find similar results. Similar simulations 
were also performed where granule motions are purely diffusive rather than sub-diffusive, 
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again with similar results (SM Fig. 1). This suggests that the MT network serves as a 
sponge of sorts that enriches granule densities near the cell border, which is likely the result 
of the increased density of MT tips near the cell periphery. 

Interestingly, this enrichment effect appears to be weakened when the MT network 
is more aligned at the cell periphery. Specifically, when the MT network at the periphery 
is more aligned, fewer granules localize to the boundary. Further, when the network is 
highly aligned, peripheral density becomes essentially independent of total MT density. 
Further inspection of the peripheral densities of bound and unbound granules as a function 
of peripheral alignment (Figs. 2 b, c) provides a clue as to the cause of this observation. 
Increasing peripheral alignment has little influence on the number of bound peripheral 
granules but leads to a substantial reduction in the density of unbound peripheral granules. 
On net, this yields the observed inverse relationship between total peripheral granule 
density and peripheral MT alignment. 

This suggest that an enrichment of peripherally oriented MTs would serve to 1) 
increase the total binding of peripheral granules to the MT network (thus reducing unbound 
granule numbers) and 2) transport those excess granules toward the cell interior (thus 
leaving the fraction of bound granules relatively unchanged). Critically, this transport of 
bound granules away from the periphery is not due to directional motions of kinesin or 
dynein motors since all granule motions are random and undirected. This raises an 
important question. If, at equilibrium, peripherally aligned MT’s serve to soak up and 
transport granules away from the periphery, what counter balances that net transport? To 
answer this, we quantified (in simulations at steady state) the density of bound and unbound 
granules as a function of radial distance from the cell center (Fig. 2d, e) for the two extreme 
cases of low and high alignment of peripheral MT’s. In the highly aligned case (Fig. 2e), 
bound and unbound granule densities exhibit opposing density gradients with unbound 
granules exhibiting a peripheral deficit and bound granules a peripheral enrichment. When 
the alignment of peripherally aligned MTs is low (Figure 2d), these opposing gradients are 
not present. Thus, when there is a substantial number of peripherally aligned MT’s, bound 
and unbound granules form counter-propagating gradients with unbound granules flowing 
from the interior to the periphery and bound granules flowing from the periphery to the 
interior. 

This counter-propagating gradient theory is consistent with our prior observations. 
We found, using TIRF microscopy, that the application of NOC and glucose led to an ~25% 
reduction in granule delivery but an ~43% reduction in granule withdrawal (Zhu et al., 
2015). Thus removal of granules was more substantially impacted by removal of MT’s 
than delivery, consistent with the counter-propagating gradient hypothesis where MT’s 
generate a net flow of granules from the periphery to the cell interior. In combination, these 
results suggest that the peripherally aligned network of MTs maintains a balance between 
delivery and withdrawal of granules and prevents excess accumulation near the plasma 
membrane. 
 
Changes in radial diffusion due to MT alignment are the source of these counter-
propagating gradients. 
We investigate two potential effects of peripheral MT alignment on insulin localization. 
Enrichment of these peripherally aligned MTs could serve to either 1) increase binding of 
granules to MTs or 2) restrict the radial motility of bound granules. In the discrete model 
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it is impossible to separate these effects; increased peripherally aligned density will 
necessarily influence both. To assess the relative importance of these in potentially 
generating the aforementioned counter-propagating gradients, we construct a simplified 
continuum model of granule dynamics where the two can be separately modulated. 
 For this continuum model, we consider concentrations of granules rather than 
individual granules and use partial differential equations (PDEs) to describe time evolution 
of the spatial concentrations. Since the presence of these counter-propagating gradients in 
the prior study was not the result of sub-diffusion (Fig. S2), we consider the motions of 
both bound and unbound granules to be purely diffusive. This greatly simplifies the model, 
allowing it to be described by standard reaction diffusion PDE’s. For simplicity, the cell is 
considered to be a radially symmetric circle and we model only the dynamics in the radial 
direction since steady state distributions in the discrete model depend on radius but not 
angular position in the cell. This reduces the model to a one dimensional, radially 
symmetric system that further simplifies calculations while allowing us to assess the 
influence of these factors on radial density.  

This model encodes three essential components of the discrete model: 1) the ability 
of granules to bind and unbind from MT bound to unbound states, 2) diffusion of unbound 
granules, and 3) diffusion of bound granules. It does not however explicitly include discrete 
MTs. Rather, bound and unbound forms are assumed to move with different rates of 
diffusion (faster for bound). To determine how increases in the rate of MT binding and 
decreases in the rate of radial diffusion at the cell periphery (due to MT enrichment) 
influence distributions of bound and unbound granules, we define a 250nm zone near the 
cell border where MT binding rates (kon) and speed of bound granule radial diffusion (Dr) 
are selectively modulated. The benefit of this continuum approach is that we can separately 
and selectively change these two parameters near the cell border to assess their influence 
in isolation. 

The model was simulated for a range of different fold increases in the binding rate 
and fold decreases in the rate of bound granule radial diffusion (again, these parameters are 
modulated only near the periphery). Results (Fig. 3) show that changes in binding and 
radial diffusion rates have different roles in setting up these counter-propagating gradients. 
An increase in the binding rate is sufficient to induce a depletion of unbound peripheral 
granules, but not sufficient to induce a significant gradient in bound granules. A reduction 
in the rate of radial diffusion (in combination with the increase in binding rate) does 
however lead to a substantial enrichment of bound granules at the periphery. Thus, a 
moderate increase in the MT binding rate in combination with a substantial decrease in the 
rate of bound granule radial diffusion is required to explain the counter-propagating 
gradients seen in the discrete model. Both would be expected to occur if MTs are enriched 
at the cell periphery. 
 
The anomalous nature of granule motion alters localization of granules near the cell 
membrane in a MT-dependent fashion 
It is well established that insulin granule motion (like the motion of many entities within 
the cell) is sub-diffusive (Zhu et al., 2015), characterized by mean squared displacement 
curves obeying  where “D” is the generalized diffusion coefficient and “a” is 
the diffusive exponent: a=1 corresponds to regular diffusion while a<1 indicates sub-
diffusion. For insulin granules, it has previously been found that a~0.75 (Tabei et al., 

MSD = Dtα
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2013), indicating significant anomalousness of diffusion. It has been further found insulin 
granule motions exhibit characteristics of fractional Brownian motion (Tabei et al., 2013), 
which is often associated with visco-elastic drag effects arising from the complex and 
crowded nature of the cells cytoplasm. While numerous studies have investigated the 
anomalous nature of random particle motion in cellular environments (see (Hofling and 
Franosch, 2013) for a comprehensive review), to our knowledge, the effect of visco-elastic 
sub-diffusion on the spatial distribution of particles at equilibrium (granules in this case) 
has not been investigated. Here we assess how this feature of motion, and its changes due 
to alterations in the MT cytoskeleton, affects steady state spatial densities of granules 
within the cell.	
 It is well established that when particles obey standard random / Brownian motion, 
spatial distributions of particles tend to homogenize within a spatial domain. To determine 
if this is the case when motions are more complex and governed by visco-elastic sub-
diffusion, we simulated the spatial distribution of 1000 non-interacting granules over time 
for different values of the D and a parameters (Figure 4). In order to independently assess 
the influence of anomalous motions, we initially consider only the two-dimension motions 
of granules independent of MT’s. Results show that when granule motions are sub-
diffusive, there is a significant depletion of granules at both the cellular and nuclear borders 
(Fig. 4d). Furthermore, as motions become more sub-diffusive (smaller a) or faster (larger 
D), this depletion near the cell border becomes more substantial (Figs. 4 a,d,f).  
 The explanation for this is subtle but readily explained by the basic assumptions of 
generalized Langevin dynamics. The physical mechanism often associated with visco-
elastic sub-diffusion is that as a particle moves in a given direction, resistive forces on that 
particle build up due to interactions with the crowded, filamentous cellular environment; 
the more a particle moves in a given direction, the larger the resistive force becomes. If a 
particle is observed near a cell border, it is more likely that the particle was transported 
from more interior regions of the cell rather than more exterior regions. This would lead to 
an expected resistive force that would tend to move the particle back to the interior of the 
cell, introducing a bias not present in standard diffusion. 
 To confirm this explanation, we quantified the average radial component of the 
visco-elastic force as a function of radius within the simulated cell at steady state to 
generate a force (Fig. 4c). This force map quantifies the average, expected resistive force 
that a granule would be subject to as a function of radial location within the cell. When 
diffusion is close to normal (a=0.99), that force is effectively 0 everywhere. However, as 
diffusion becomes more anomalous, we begin to see a negative expected radial force near 
the cell border, suggesting a particle near the boundary would be expected to move inward 
rather than closer to the periphery. This is the source of the peripheral depletion of granules 
when motions are governed by visco-elastic sub-diffusion. 
 While this would be a general phenomenon in any system where visco-elastic sub-
diffusion is present, it is specifically relevant here due to the dependence of this depletion 
effect on the speed of motion. The gray bars in Fig. 4f show that when the speed of motion 
is reduced by a factor of ¼, peripheral densities increase by roughly 50%. Interestingly, 
when MT’s are completely removed from beta cells via application of glucose + NOC, a 
roughly 1/4 - 1/3 reduction in D is observed (Figure 1c with data reproduced from (Zhu et 
al., 2015)) along with a roughly 50% increase in peripheral granule density. 
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 We are not suggesting that this is the sole or even primary cause of the enrichment 
of peripheral granules near the periphery in response to MT removal. Glucose stimulation 
of Beta cells influences cells in a number of ways, including activating docking proteins 
that bind granules to the membrane. Additionally, the dynamics of MT’s significantly 
influence peripheral granule densities in other ways, independent of simply augmenting 
transport speed. None-the-less, it is expected based on this analysis that the net slow-down 
in motion would contribute to the peripheral enrichment observed experimentally when 
glucose and NOC are jointly applied to cells. 
 
Competition between membrane anchoring and MT binding regulates availability of 
peripheral granules 
Here we consider how the dynamics of MT mediated motions influence granule 
localization and availability for membrane anchoring. A set of prior observations will allow 
us to assess what factors are important in understanding granule localization and constrain 
aspects of the computational model. In (Zhu et al., 2015), Zhu et al. quantified how granule 
density at the cell periphery changes when glucose, NOC, and glucose + NOC are applied 
to Beta cells. Briefly, they found that the application of either factor alone had relatively 
little influence on granule densities. However, when they were jointly applied, peripheral 
densities increased by on the order of 50%.  
 When initially studying peripheral granule accumulation without considering 
membrane anchoring, we found the model unable to account for these observations. We 
thus consider the joint effects of membrane anchoring and MT mediated transport, both of 
which are altered by glucose stimulation. To study how MT motion might influence 
membrane anchoring, we consider two possibilities for how granules anchor: 1) that any 
granule close enough to the periphery can anchor or 2) that only granules not bound to MTs 
can anchor. The latter possibility is motivated by the hypothesis that motions and forces 
subjected to granules by MT associated motors either prevent anchoring or substantially 
reduce anchoring affinity. Since we do not have anchoring protein affinity data, we 
consider the effects of low, medium, and high affinity (high not shown in data) as well as 
the absence of anchoring (relevant for NOC only treatment) on granule dynamics.  
 To understand the effect of MTs on the localization and availability of granules, we 
simulated the full model to steady state, performed both partial and complete removal of 
MTs (in different anchoring scenarios), and quantified the fold change in peripheral granule 
density. Results (Figure 5 b, c) show that in the absence of anchoring, neither partial nor 
complete removal of MTs alone has a significant effect on granule density and thus 
removal of MTs alone is not sufficient to explain granule enrichment when glucose + NOC 
is applied. The inclusion of anchoring can lead to the enrichment of peripheral densities, 
however those enrichment dynamics are only consistent with observations when MT 
unbound granules anchor to the membrane with low affinity. In this scenario, a roughly 40-
50% increase in peripheral granules is found (Figure 5a), consistent with prior experimental 
observations (Zhu et al., 2015). When all granules can anchor independently of MT 
binding, enrichment occurs in the absence of any MT perturbation, contrary to 
observations. Alternatively, when affinity is too high, enrichment becomes extreme and 
once again independent of MT dynamics. In short, when anchoring is high affinity or all 
granules (MT bound and unbound) can anchor, MT properties have little effect on 
peripheral densities.  
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We thus conclude anchoring is necessary to account for enrichment of peripheral 
granules upon glucose + NOC stimulation, but that only unbound granules should anchor 
and with low affinity. These results suggest MT’s may have a role in negatively regulating 
the availability of peripheral granules by binding them and making them unavailable for 
anchoring.  

 
Discussion 

Glucose homeostasis is tightly regulated at the systemic level, in both the amount of insulin 
in circulation and the response of peripheral tissues to insulin (including liver, skeletal 
muscles, and fat).  This study here combines experimental test and modeling to investigate 
how beta cells regulate the amount of insulin to secrete at given stimuli.  We focus on how 
the MTs in beta cells regulate the localization and anchoring of insulin granules to the 
plasma membrane, a pre-requisite for insulin secretion. Results here suggest that 
cytoskeletal factors contribute to tight regulation of insulin at the level of individual Beta 
cells.  
 While individual Beta cells can contain up to 13,000 individual insulin granules, 
only a few are secreted in response to glucose stimulation (Rorsman and Renstrom, 2003). 
Thus at the cellular level, significant negative regulation of GSIS must be present. A well-
established key negative factor is the actin cytoskeleton, which ensures that only a small 
portion of vesicles are available to break the cell cortex and secreted (Wang and Thurmond, 
2009). Here, we have identified two potential, alternative mechanisms by which MT 
dynamics contribute to this negative regulation. First, MTs near the cell periphery actively 
transport insulin granules away from the cell membrane. Second, traction forces generated 
by MT associated molecular motors prevent stable granule anchoring to the membrane, 
which is a precursor to exocytosis. 
 Both of these mechanisms are supported by prior observations. First, prior imaging 
(Zhu et al., 2015) demonstrated that depolymerization of the MT cytoskeleton substantially 
inhibited the removal of insulin granules from the membrane, supporting the conclusion 
here that MTs predominantly serve to remove granules from the cells surface. Secondly, 
recent work (Gandasi et al., 2018) demonstrated that membrane docking of granules is 
substantially inhibited in human type 2 diabetes. This along with the observation that MT 
density is increased in diabetic mouse models (Zhu et al., 2015) supports the conclusion 
that MT mediated transport prevents or inhibits anchoring of granules to the membrane.   
 Interestingly, both of these are consequences of an alteration in the MT structure 
near the cell membrane. Prior imaging has found the MT network in beta cells to be 
unusually unstructured and randomly oriented (Varadi et al., 2002; Zhu et al., 2015). 
However, results here demonstrate that in peripheral regions within ~250nm of the cell 
membrane, MTs are predominantly oriented parallel to the membrane.	The two previously 
mentioned negative regulatory mechanisms are a direct consequence of this alteration in 
structure. As a result, the MT network acts like a sponge near the membrane that soaks up 
granules and transports them away from the periphery while preventing their membrane 
anchoring and stimulated release.  

Co-alignment of MTs at the cell periphery can arise as a result of MT capture at the 
cortex or cell/cell junctions, which prevents MT catastrophe (Fukata et al., 2002; 
Gundersen, 2002; Schmoranzer et al., 2009; Stehbens et al., 2014; Watanabe et al., 2004; 
Zaoui et al., 2010) and thus can promote their turning by the actin retrograde flow (Bicek 
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et al., 2009; Gupton et al., 2002) and polymerization along the cortex. Alternatively, 
subcellular signals localized at the plasma membrane, such as GSK3beta inactivation, can 
locally increase MT coating by MAPs, which, in turn, can promote excessive MT growth 
along the cell periphery (Kumar et al., 2009; Nishimura et al., 2012; Zhu et al., 2016). Such 
mechanisms that promote MT turning must also increase their lifetimes and stability, which 
is consistent with unusually high levels of stabilization that we observe in the peripheral 
MT bundles in beta cells. Thus there are a number of potential regulatory mechanisms 
under the control of cell differentiation and metabolic signals that could produce this 
aligned peripheral mesh and, as a result, tune insulin availability for GSIS. 
 Interestingly, the MT mediated withdrawal of peripheral granules does not require 
directed (i.e. ballistic) motor driven transport. That is, it is the topology of the MT network 
that influences cargo localization, not the specific motor dynamics (similar to (Ando et al., 
2015)). Rather, the random granule motions observed in cells coupled with the structured 
nature of the network near the membrane is sufficient to generate directed motion of MT 
bound granules away from the membrane. It is interesting in this regard that while most 
studies concentrate on kinesin 1 as the main MT-dependent motor that transports insulin 
granules (McDonald et al., 2009; Varadi et al., 2002), the transport is likely driven by 
multiple motor transport involving both kinesin and dynein (Varadi et al., 2003). 
Furthermore, peripherally aligned MT arrays likely lack net polarity: there is no reason to 
anticipate that MTs growing along the cell periphery will be co-aligned. Furthermore, MT 
buckling at the periphery is capable of producing MTs with “reversed” polarity with their 
plus ends directed toward cell periphery (Zhu et al., 2016). In such a complex network, 
even solely plus-end directed molecular motors would promote non-directional transport.  
 The effects of MT configuration on granule distribution are predicted to persist 
under glucose stimulation conditions as well. MTs coaligned with the cell membrane and, 
accordingly, their functional consequences on granule dynamics are observed in both 
steady state (low glucose levels) and stimulated conditions (high glucose levels). Glucose 
stimulation does have two important consequences however. First, it leads to the activation 
of docking and exocytic machinery (Gandasi et al., 2018), which facilitates the secretion 
of those granules not interacting with the MT cytoskeleton. Secondly, it leads to depletion 
of stable long-lived MTs (Fig. 1 and (Zhu et al., 2015)) and replacing them by new, 
dynamic counterparts that are nucleated at the Golgi membrane (Zhu et al., 2015) and are 
characterized by rapid polymerization rates (Heaslip et al., 2014). While this does not lead 
to a gross reduction in MT density or readily detectable restructuring, it does reduce their 
lifetime, which, as our results suggest, lead to increased interaction between granules and 
the membrane and, subsequently, to increased secretion. Another way to interpret the result 
of increased MT dynamics is that it creates a pool of transiently “unbound” granules, which 
we show here to be the ones prone to accumulation at the cell periphery.   

Here we used imaging and modeling to assess the consequences of MT dynamics 
specifically on secretion. However, much work is still needed to investigate how the 
biophysical properties of motors themselves as well as docking proteins influence 
secretion. One central hypothesis stemming from this work is that the motions and / or 
traction forces generated by the action of molecular motors on MTs parallel to the 
membrane inhibits stable membrane anchoring. Does this occur through the prevention of 
bond formation or the force dependent breaking of those bonds? Furthermore, how does 
the nature of the multiple motor transport these granules are likely subject to influence 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581330doi: bioRxiv preprint 

https://doi.org/10.1101/581330
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

interactions with the membrane? Addressing these questions will require further 
experimental investigation of the biophysical interactions between the cytoskeleton, 
molecular motors, membrane docking proteins, and insulin granules. 
 These results do however suggest that there is a potential therapeutic merit in 
targeting the cytoskeleton to modulate Beta cell function. Recent imaging demonstrated 
that increased MT density was found to correlate with decreased secretion in mouse models 
(Zhu et al., 2015). While those results were correlative, our findings here indicate that in 
silico dense peripheral MT network interferes with the proper positioning of insulin 
granules for secretion. This result predicts that in fact the link observed in mouse models 
may be causal, and interference with MTs stability in beta cells might be used as an 
approach to increase insulin secretion efficiency. This idea is tempting because numerous 
MT-targeting small molecule compounds have been already considered or even used for 
cancer therapies. This potential has to be approached very carefully, given high toxicity of 
MT drugs on all cells and likely negative effects of prolonged MT destabilization on insulin 
biogenesis in beta cells specifically. Nevertheless, one can envision that, in the future, 
locally delivered and released in a time-restricted manner MT destabilizers could be 
applied to facilitate insulin secretion and overcome hyperinsulinemia in patients. If 
proposing such an intervention is too bold, it is more realistic that future studies will 
identify specific MT stabilizing MAPs, which are responsible for high MT density in 
diabetes models. Then, potential therapies would become possible that specifically target 
these MT-binding proteins.  
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Materials and Methods 
 
Discrete Model Description 
This discrete model accounts for four essential features that impact the transport of 
granules: 1) transport along MTs, 2) transport independent of MTs, 3) binding and 
unbinding of granules to MTs, and 4) tethering of granules (that are sufficiently close) to 
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the cell membrane, which renders them immobile. We briefly discuss how each of these 
features is encoded into the model and how aspects of it are calibrated to data. 
 
Modeling MT independent transport. 
We model the cell as a 5 µm radius circle with a 1 µm hole cut out (representing the 
nucleus). A regular 2D grid is constructed on this cellular domain and motion of granules 
on this lattice is modeled as a sub-diffusive random walk. Granule motion is assumed to 
obey the equation of motion for over-damped Fractional Langevin Equation (FLE) 
representing viscoelastic sub-diffusion 

(1.1)   

where v is the velocity of the granule, g is the drag coefficient for the granule, K is a memory 
kernel encoding viscoelastic effects, and Fst is the stochastic forcing obeying the 
appropriate fluctuation dissipation theorem (Kubo). Here the drag coefficient satisfies 
g=2kBT/(G(1+a)D) where kBT is the standard thermal noise constant and D, a are estimated 
from data (see (Lutz, 2001) for further details of the FLE).  The kinetic lattice Monte Carlo 
method for simulating the over-damped FLE from (Fritsch and Langowski, 2012) is used 
to simulate motion. 
 
Constructing the MT network and modeling MT mediated transport 
To simulate MT mediated motion, we must first populate the in silico cell with a 
microtubule network. We do so by essentially growing a network of five hundred discrete, 
independent, and non-interacting microtubules. Of these, 250 are short (mean length 2 
microns) and 250 long (mean 5 microns). For each MT, we specify a start point and initial 
growth direction. The MT is then grown in a strait line until it interacts with the cell 
periphery (if it does so at all). If the growing MT interacts with the cell border, it either 
terminates with probability p or bends and grows parallel to the cell periphery with 
probability 1-p. For most simulations a value of p=0 is chosen, corresponding to a 
peripherally aligned population of MTs forming. However in Figure 2, the effect of this 
MT structure parameter is considered. For simplicity, we assume the MTs are fixed in place 
once grown, and thus do not model the detailed dynamics of remodeling of the MT 
cytoskeleton by motors themselves (Hillen et al., 2017; White et al., 2015). The model does 
incorporate dynamic instability (Goodson and Jonasson, 2018) of MT’s through removal 
and replacement of MT’s with a specified rate. We fix the average MT lifetime at 1000 
seconds, though do also consider the effects of short MT lifetimes (10 sec, SM Figure 2). 
As removal / replacement of MTs has much the same effect on granule motility as MT 
binding / unbinding, which is considered in somewhat more detail, we do not exhaustively 
explore the effect of MT catastrophe dynamics.  
 Motion of granules is strongly sub-diffusive even in the absence of actin, suggesting 
that individual MT motors are not moving granules along in a directed fashion along them 
(this would be super-diffusion). Furthermore, each granule likely has a number of motors 
bound to it at any given time that are constantly competing to be the driver of motility. We 
thus do not model the dynamics of individual motors. Rather, MT mediated granule motion 
is modeled as a 1D sub-diffusive random walk on the MT to which the granule is bound. 
The same FLE equation of motion (Equ. 1.1 above) describes this motion and the same 
method of simulation is used. 

 
γ
−∞

t

∫K(t − s)!v(s)ds = Fst
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Granule binding, unbinding, and tethering 
It is highly likely that granules bind and unbind from the MT lattice and thus their aggregate 
motion is in some sense an interpolation of motion in those two forms. We assume that an 
unbound granule can bind to any MT within 250 nm of its center (assuming a 150nm 
granule radius along with an additional ~100nm reach of the motor head) with a per MT 
rate of binding kon. Similarly, granules are assumed to unbind from MT’s with a rate of 
koff. These two rate constants are not individually accessible as we don’t know what 
specific motors are involved or how granules interact with the dense network of MTs. As 
discussed shortly however, we can calibrate their ratio based on data to ensure that relative 
fraction of time each granule spends undergoing (un)bound motility is appropriate. We 
thus fix the rate koff=1/30 to represent a roughly 30 second bound lifetime, which is in the 
same range found for the kinesin Kip2 (Hibbel et al., 2015), and calibrate kon accordingly. 
Switching of granules from one MT to another is not directly modeled. However when a 
granule unbinds from a MT, it can re-bind to any other nearby MT. All simulations were 
carried out with koff=1/15, 1/60, yielding similar results. 
 Anchoring of granules to the cell membrane is modeled similarly with granules 
within 250nm of the cell border binding with a rate constant kT and unbinding with a rate 
kU. We again do not have estimates for these rate constants or any way to constrain them 
directly. In this study however, we vary the affinity by fixing the unbinding rate and 
modulating the magnitude of kT to determine how the relative strength of anchoring, or in 
other words, the relative fraction of time an unbound granule spends tethered to the 
membrane, influences dynamics (see Figure 3). We further consider two possibilities for 
which granules can / cannot tether: 1) that all granules can tether or 2) that only unbound 
granules can tether. 
 
Calibrating motility and binding / unbinding parameters 
While all parameters of this model are not estimable, some are. In particular, using granule 
motility data we can extract the values of the sub-diffusive exponent (a), the diffusion 
coefficients for bound and unbound granule motion (D for each), and the relative fraction 
of time the granule spends in the bound and unbound states. 
 The data we use for this is derived from (Zhu et al., 2015) where mean squared 
displacement (MSD) of granule motion was measured in control cells, cells with the MT 
cytoskeleton removed, and cells with the actin cytoskeleton removed. First, from (Tabei et 
al., 2013) it was determined that a=0.75. To calibrate the diffusion constants, we will rely 
on MSD data. For simplicity, we will assume that in the absence of actin, all motion is MT 
mediated, and in the absence of MT’s, all motion is actin mediated. We can thus use the 
data where actin is removed to calibrate the diffusion constant for MT motion, and the data 
where MT’s are removed to calibrate the diffusion constant for non-MT motion. See Figure 
1c (black and red curves) for calibration results. 
 We can additionally use the control MSD data to calibrate the relative fraction of 
time each granule spends in bound and unbound states. The idea here is that the more time 
a granule spends in the MT bound state, the higher its MSD will be and vice versa. We fix 
the value of koff and vary the value of kon until the MSD data of the amalgamated diffusion 
matches that of control data (blue curve in Figure 1c). For a list of all parameters for the 
discrete model, see Table 1. 
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Simulation protocol 
All simulations begin with each of the 1000 granules randomly placed in the cell for a 
pseudo-uniform distribution. The time step for simulations granule motions is chosen to be 
DT=10ms with simulations running nominally for 300 sec to achieve a steady state. The 
kinetic lattice Monte Carlo method requires that the spatial grid size be chosen 
appropriately so that . Since the diffusion constant for the MT and non-
MT mediated motions are different, this yields spatial step sizes of 18nm for the 2D lattice 
motions and 30nm for the 1D motions on MTs. In select simulations, decreasing the time 
step to DT=5ms did not alter results. In all results presented, averages of 50 independent 
simulations are presented unless otherwise stated. 
 
Mice 
Mouse usage and handling followed the protocol approved by the Vanderbilt Institutional 
Animal Care and Usage Committee for Dr. Gu. Wild type CD-1 (ICR) mice were 
purchased from Charles River Inc. (Wilmington, MA). All mice were bred and handled 
following protocols approved by the Vanderbilt Institutional Animal Care and Use 
Committee (IACUC). All mice used were 8-10 weeks of age.  
 
Islet isolation 
Islets isolation followed the previously described procedure (Brissova et al., 2002). Briefly, 
mouse pancreata were distended by injecting 3 mL 0.8 mg/mL collagenase P (Sigma, St 
Louis, MO) through the bile duct and digested at 37°C for 20 minutes. Islets were hand-
picked and cultured to recover in Gibco™ RPMI 1640 Medium (Thermo Fisher, Waltham, 
MA) containing 11mM glucose, 10% heat inactivated FBS (Atlanta Biologicals, Flowery 
Branch, GA), 100 IU/mL penicillin, and 100 µg/mL streptomycin.  
 
Immunofluorescence 
Isolated mouse Islets were treated with 2.8 mM (low) or 20 mM (high) glucose in RPMI 
media for two hours, and fixed with 4% paraformaldehyde in PBS with 0.1% saponin 
(Sigma, St Louis, MO). Immunofluorescence followed the described procedure (Zhu et al., 
2015). Briefly, fixed islets were stained with primary antibodies at 4 °C for overnight 
followed by another staining with fluorophore-conjugated secondary antibodies. After each 
staining, islets were washed using PBS with 0.1% saponin for three times. After staining, 
islets were mounted with Vectashield mounting media (Vector Labs, Burlingame, CA) for 
microscopy. Primary antibodies used are rabbit anti-β-tubulin (Abcam, Cambridge, MA), 
guinea pig anti-insulin (DAKO, Houston, TX), rabbit anti-detyrosinated tubulin (Millipore, 
Burlington, MA), and mouse anti-E-Cadherin (BD Biosciences, San Jose, CA). Secondary 
antibodies used are goat anti-rabbit IgG-Alexa Fluor 488 (Abcam, Cambridge, MA), goat 
anti-mouse IgG-Alexa Fluor 488 (Invitrogen, Grand Island, NY), and goat anti-guinea pig 
IgG-Alexa Fluor 650 (Thermo Fisher, Waltham, MA) 
 
Microscopy and Image processing: 
All images were captured using Nikon Eclipse A1R laser scanning confocal microscope 
equipped with a CFI Apochromat TIRF 100X/1.45 oil objective. The microscope is driven 
by Nikon Elements software. For directionality analysis, oversampled image stacks (50nm3 

Δx = (2DΔT α )0.5
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voxeles) were acquired and thereafter deconvolved by NIS Elements Software using 
Richardson and Lucy algorithm (15 iterations). All images presented in figures were single-
slice confocal images, where the brightness and contrast were adjusted consistently across 
every image to better present small structural features. 
 
Image Analysis:  
Image analysis algorithm was developed to determine the alignment of neighborhood 
structure at internal point within tubulin images with that at nearest point on the border. 
Beta cells within an islet were selected based on their ability to express insulin. Single 
slices from a deconvoluted confocal stack were used for analysis. Taken into consideration 
that MT width is below the resolution limit of microscopy, neighborhood block size was 
approximated to the pixel size of the oversampled confocal image (50nm2). Analysis was 
applied within a mask based on thresholded tubulin images. The local orientation at each 
pixel of tubulin image was derived using method described in (Feng and Milanfar, 2002). 
Cell outline curve, manually constructed based on the E-cadherin staining, was smoothed 
and used to estimate orientation of cell border. Each pixel in tubulin image was associated 
with a pixel of the boundary curve, nearest to it. Per pixel not excluded by cell and tubulin 
threshold masks, angle difference between local orientation and orientation of boundary at 
nearest pixel was calculated, zero indicating perfect parallel alignment. Results were 
weighed according to variance of local orientation, to avoid data from lumps of tubulin 
bands of excessive density and MT crossings with ambiguous configuration in the results. 
All pixels were manually sorted according to their distance from the cell boarder into bins 
of 0.5 µm. 
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Tables 
 

 
 

Parameter	Name	 Value	 Units	
Number	of	MTs	 500	 Number	
Number	of	Granules	 1000	 Number	
Cell	Radius	 5	 µm	
Nucleus	Radius	 1	 µm	
Granule	Radius	 0.3	 µm 
Sub-diffusion	Exponent	(a)	 0.75	 None	
MT	Bound	Diffusion	Constant	
(D1)	

0.015	 µm2	/	sec	

2D	Grid	Diffusion	Constant	(D2)	 0.005	 µm2	/	sec	
MT	Mean	Length	(short,	long)	 2,	5	 µm	
MT	Length	Standard	Deviation	 2	 µm	
MT	Catastrophe	Rate	 1/1000	 1	/	sec	
Granule	/	MT	binding	rate	(kon)		 1/8	 1	/	(sec*MT)	
Granule	/	MT	unbinding	rate	(koff)	 1/30	 1	/	sec	
Granule	/	MT	binding	radius	 0.25	 µm	
Granule	Tethering	rate	(kT)	 0	 1	/	sec	
Granule	Untethering	rate	 1/30	 1	/	sec	
Granule	Tethering	Radius	 0.25	 µm	
	
Table	1:	Synopsis	of	the	discrete	model	parameters.		
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Figure1: MTs parallel to the cell edge in beta cells are destabilized in high 
glucose.  Panels A, B: Examples of MT directionality quantification in low (A) and high 
(B) glucose. Tubulin, green. Insulin (beta-cell marker), magenta. Cell outline, as detected 
by e-cadherin staining, is shown as dotted line on tubulin and thresholded images. The 
image on the right shows color-coded MT directions: parallel to the cell edge, blue; 
perpendicular to the cell edge, red. Panels C, D: Histograms of MT directionality within 
two cell regions: periphery (C) and interior (D). Percentage of tubulin-positive pixels in 
the analyzed cell population is shown. MTs at the periphery tend to be parallel to the edge. 
Low and high glucose do not differ. N=12 and 11 cells for low and high glucose, 
respectively. Pixel numbers in the analysis: 71759 (low, periphery); 9622 (low, interior); 
43747 (high, periphery); 5833 (high, interior). Note that a lower number of pixels was 
identified in high glucose, consistent with the fact that MTs are destabilized under this 
condition.  Panels E, F: Stable MT marker detyrosinated (Glu-) tubulin (green) in low (E) 
and high (F) glucose. Cell-cell adhesions are stained for E-cadherin (magenta)  in left-hand 
panels and outlined (dashed line) in right-hand panels. Note multiple Glu-tubulin-positive 
MTs parallel to the cell border (arrows) in low glucose (E). Glu-tubulin content is 
decreased in high glucose (F), indicating MT destabilization both across the cell and at the 
cell border (arrows). 
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Figure 2: Effect	of	microtubules	on	peripheral	localization	of	insulin	granules.	
Panel	A:	Total	number	of	granules	located	within	250	nm	of	the	cell	membrane	as	a	
function	of	the	peripheral	density	of	MTs	as	well	as	the	total	density	of	MTs.	Panel	B:	
Number	of	MT	bound	granules.	Panel	C:	Number	of	unbound	granules.	Panels	D,	E:	
Radial	distribution	of	bound,	unbound,	and	total	granules	in	low	and	high	peripheral	
density	cases.	Panel	F:	Table	depicting	change	in	granule	arrival	delivery	to	the	cell	
periphery	 in	 cells	 from	experiments	 in	our	previous	publication	 (data	 reproduced	
from	(Zhu	et	al.,	2015)).	
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Figure 3: Effect	of	MT	binding	propensity	and	reduction	in	radial	diffusivity	on	
granule	densities.	Simulations	of	radially	symmetric	continuum	model	where	the	
rate	 of	 MT	 binding	 is	 increased	 by	 a	 factor	 (fkon)	 and	 rate	 of	 radial	 diffusivity	 is	
decreased	 by	 a	 factor	 of	 (fDB)	within	 250nm	of	 the	 cell	membrane.	 Top	 (bottom)	
panels	 show	 the	 steady	 state	 insulin	 densities	 as	 a	 function	 of	 radius	 in	 different	
conditions.	The	notation	fDB	=	0.02	and	so	forth	indicates	the	base	value	of	the	relevant	
parameter	is	multiplied	by	the	given	value	in	the	peripheral	region	(DB	à	0.02*DB,	
in	this	case).	
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Figure 4: Influence	of	visco-elastic	sub-diffusive	effects	on	peripheral	granule	
density.	Panel	A:	Granule	density	as	a	function	or	radius	for	different	values	of	the	
sub-diffusion	exponent	alpha.	The	 rate	of	diffusion	D	 is	 set	 to	 its	base	value	here.	
Panel	B:	Radial	granule	density	as	a	 function	of	diffusion	speed	(D)	 for	alpha=0.7.	
Panel	C:	Net	radial	visco-elastic	force	as	a	function	of	radius	for	different	values	of	
alpha,	with	D	fixed	at	its	base	value.	Negative	values	near	the	periphery	indicate	a	net	
inward	 force.	 Panels	 D,	 E:	 Granule	 residency	 map	 showing	 the	 distribution	 of	
granules	over	time	for	two	values	of	alpha	(note	the	depletion	zones	near	the	inner	
and	 outer	 radii).	 Panel	 F:	 Effect	 of	 subdiffusive	 exponent	 (alpha)	 and	 diffusive	
strength	(D)	on	the	peripheral	density	of	MTs.	In	the	“Vary	alpha”	case,	the	D	value	
corresponds	to	1x	(e.g.	the	base	value).	Similarly,	for	the	“Vary	D”	case,	alpha	=	0.7.	
The	highlighted	bars	most	closely	correspond	to	the	calibrated	D	and	“alpha”	values	
used	to	model	MT	based	diffusion	for	all	other	simulations	to	follow.		
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Figure 5: Influence	of	MT	perturbations	on	peripheral	granule	density.	Panel	A:	
Number	 of	 granules	 within	 250nm	 of	 the	 cell	 border	 as	 a	 function	 of	 time	 in	
simulations	where	only	unbound	granules	are	able	to	anchor	to	the	membrane.	This	
simulation	shows	 the	 case	 for	“weak”	anchoring.	The	black	 curve	 indicates	no	MT	
perturbation	is	applied,	red	corresponds	to	removal	of	1/3	of	longer	perturbations,	
and	blue	 indicates	 complete	 removal	of	 all	MT’s	 (corresponding	 to	Glucose	+	NOC	
treatment).	 Panels	 B,	 C:	 Quantification	 of	 the	 fold	 change	 in	 peripheral	 granule	
density	after	MTs	are	perturbed.	Vertical	 axis	shows	the	 fold	change	 in	peripheral	
granule	density	after	the	relevant	perturbation.	The	horizontal	axis	corresponds	to	
different	anchoring	rates	(none	=	0,	weak	=	1/32,	strong	=	1/8).	Slow	MT	dynamics	
are	assumed	so	that	the	average	lifetime	is	1000	sec.	Alternative	simulations	were	
performed	with	short	MT	lifetimes	(10	sec,	see	SM	Figure	2).	In	B,	only	MT	unbound	
granules	are	allowed	to	anchor	to	the	membrane.	In	C,	all	granules	are	assumed	to	be	
capable	of	anchoring.	
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Figure 6: Description of model. Panel	 A:	 Snapshot	 of	 a	 simulation	 with	 500	
microtubules	 and	 200	 insulin	 granules.	 Panel	 B:	 Schematic	 of	 the	 basic	 model	
elements	including	free	diffusion,	binding	of	granules	to	MTs,	diffusion	along	MT’s,	
and	membrane	anchoring.	Panel	C:	Illustration	of	calibrated	diffusion.	Dashed	curves	
are	 data	 and	 solid	 curves	 are	 simulated.	 Cytoplasmic	 and	 MT	 bound	 diffusion	
coefficients	 were	 calibrated	 based	 on	 the	 red	 and	 black	 curves	 and	 the	 relative	
fraction	of	time	a	granule	spends	in	these	two	modes	of	motion	was	calibrated	based	
on	the	blue	curve.	
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SM Figure 1: Role	of	motor	stalling	and	type	of	diffusion	on	peripheral	granule	
density.	 Figure	 2	 A-C	 assessed	 the	 effect	 of	 MT	 dynamics	 on	 the	 peripheral	
localization	of	MT	bound,	unbound,	and	total	insulin	granules.	The	top	row	here	is	a	
reproduction	of	that	data	for	comparison	purposes.	The	second	row	shows	a	similar	
set	of	simulations	where	instead	of	assuming	motors	stall	when	reaching	the	end	of	
MT,	they	walk	off	the	end	and	the	granule	dis-associates	from	that	MT.	The	third	and	
fourth	 rows	 show	 similar	 simulations	 where	 granule	 dynamics	 are	 governed	 by	
standard	 diffusion	 rather	 than	 sub-diffusion.	 These	 results	 show	 that	 the	 type	 of	
motion	(standard	versus	sub	diffusion)	and	the	assumptions	about	the	dynamics	of	
motors	at	the	end	of	MTs	have	little	effect	on	results	of	this	study.	
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SM Figure 2: Impact	 of	 MT	 lifetime	 granule	 density	 after	 MT	 perturbation.	
Quantification	 of	 the	 fold	 change	 in	 peripheral	 granule	 density	 after	 MTs	 are	
perturbed	when	MT	 lifetimes	are	 short	 (10	 sec,	 compared	 to	1000	sec	 in	all	prior	
simulations).	All	plotting	conventions	are	the	same	as	Figure	5B.	The	horizontal	axis	
corresponds	to	different	anchoring	affinities	(none	=	0,	weak	=	1/32,	strong	=	1/8).	
Results	show	that	if	MT	lifetimes	are	short,	MT	removal	has	little	effect	on	peripheral	
granule	density.	
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