

1 Knowledge and attitudes among life scientists towards 2 reproducibility within journal articles

3
4 Evanthia Kaimaklioti Samota^{1,2}, Robert P. Davey¹

5 1. Earlham Institute, Norwich, UK; 2. University of East Anglia, Norwich, UK

6 Corresponding author: evanthia.samota@earlham.ac.uk

7

8 Abstract

9 We constructed a survey to understand how authors and scientists view the issues
10 around reproducibility, and how solutions such as interactive figures could enable the
11 reproducibility of experiments from within a research article. This manuscript reports the
12 results of this survey on the views of 251 researchers, including authors who have published
13 in *eLIFE* Sciences, and those who work at the Norwich Biosciences Institutes (NBI). The
14 survey also outlines to what extent researchers are occupied with reproducing experiments
15 themselves and what are their desirable features of an interactive figure. Respondents
16 considered various features for an interactive figure within a research article that would allow
17 for them to better understand and reproduce *in situ* the experiment presented in the figure.
18 Respondents said that the most important element that would enable the better reproducibility
19 of published research would be that authors describe methods and analyses in detail. The
20 respondents believe that having interactive figures in published papers is a beneficial
21 element. Whilst interactive figures are potential solutions for demonstrating technical
22 reproducibility, we find that there are equally pressing cultural demands on researchers that
23 need to be addressed to achieve greater success in reproducibility in the life sciences.

24

25 KEY WORDS: experiments reproducibility; computational experiments; interactive figure;
26 reproducibility metrics; cultural reproducibility

27 Introduction

28 Reproducibility is a defining principle of scientific research, and refers to the ability of
29 researchers to replicate the findings of a study using same or similar methods, materials and
30 data as did the original researchers [1]. However, irreproducible experiments are common
31 across all disciplines of life sciences [2]. A recent study showed that 88% of drug-discovery
32 experiments could not be reproduced or replicated even by the original authors, in some
33 cases forcing retraction of the original work [3]. Irreproducible genetic experiments with weak
34 or wrong evidence can have negative implications on our healthcare [4]. For example, 27% of
35 mutations linked to childhood genetic diseases cited in literature have later been discovered
36 to be common polymorphisms or misannotations [5]. While irreproducibility is not confined to
37 biology and medical sciences [6], irreproducible biomedical experiments pose a strong

38 financial burden on society; an estimated \$28 billion was spent on irreproducible biomedical
39 science in 2015 in the USA alone [7].

40 Reproducibility is an important element of robust science, relating to the way in which
41 conclusions rely on specific analyses or procedures undertaken on experimental systems. It is
42 important to differentiate the definition of reproducibility as a term from repeatability and
43 replicability.

44 1. **Repeatability** The original researchers using the same data, running precisely the
45 same workflow and getting the same results [8].

46 2. **Replicability** Different team performing the same experimental setup (in the same or
47 different location) resulting in achieving the same result as the original researchers
48 [8,9]. The replication of computational experiments is termed as **recomputability**
49 [9,10]

50 3. **Reproducibility** Achieving the same precise result by a different team and
51 experimental setup. This might mean running similar or the same data with the same
52 or different workflow [8-10]. It is argued that in many science disciplines reproducibility
53 is more desirable than replicability, as a result needs to be corroborated
54 independently before it can be generally accepted by the scientific community [9].

55 Computational reproducibility has both technical and cultural aspects. Technical challenges to
56 reproducibility include poorly written, incorrect, or unmaintained software, changes in software
57 libraries on which tools are dependent, or incompatibility between older software and newer
58 operating systems [11]. Cultural challenges include insufficient descriptions of methods,
59 reluctance to publish original data and code under FAIR (Findable, Accessible, Interoperable,
60 and Reusable) principles, and other social factors such as the favouring of high prestige or
61 high impact science publications over performing rigorous and reproducible science.

62 Several projects have attempted to address some of the technical aspects of
63 reproducibility by making it easier for authors to disseminate fully reproducible workflows and
64 data, and for readers to perform computations. For example: F1000 Living Figure [12]; Whole
65 Tale Project [13]; RetroZIP project (reprozip.org); Python compatible tools and widgets
66 (IPython notebook interactive widgets, Jupyter Notebooks); FigShare (figshare.com) as an
67 example of a scientific data repository; Galaxy [14]; CyVerse (formerly iPlant Collaborative)
68 [15]; myExperiment [16]; UTOPIA [17, 18]; GigaScience Database [19]; Taverna [20-22];
69 workflow description efforts such as the Common Workflow Language [23]; and Docker
70 (docker.com), Singularity (singularity.lbl.gov) [24], and other container systems.

71 Even though these tools are widely available, and seem to address many of the issues
72 of technical and cultural reproducibility, they have not yet become a core part of the life
73 sciences experimental and publication lifecycle. There is an apparent disconnection between
74 the development of tools addressing reproducibility and their use by the wider scientific and
75 publishing communities who might benefit from them. However, there have been notable
76 efforts to make this connection. The *Living Figure* by Björn Brembs and Julien Colomb was
77 the first prototype of a dynamic figure that allowed readers to change parameters of a
78 statistical computation underlying a figure [12]. The first eLIFE computationally reproducible
79

82 article, formed by converting manuscripts created in a specific format (using the Stencila
83 Desktop, [stenci.la](#), and saved as a Document Archive file) into interactive documents, offers
84 more interactivity at the publication level, allowing the reader to “play” with the article and its
85 figures when viewed in a web browser [25].

86 While there are few incentives to promote cultural reproducibility [26, 27], efforts in
87 most science domains are being made to establish a culture where an expectation to share
88 data for all publications according to the FAIR principles is prioritised. It is widely accepted
89 that better reproducibility will benefit the scientific community and the general public [28, 29].
90 Although studies have suggested that reproducibility in science is a serious issue [30, 31],
91 with costly repercussions, fewer studies have investigated the attitudes and knowledge of
92 researchers around reproducibility [32] and what would be the most desirable solutions and
93 infrastructures to enable reproducibility. In particular, minimal research has been conducted
94 into the frequency of difficulties experienced with reproducibility, the perception of its
95 importance, and preferences with respect to potential solutions among the general life
96 sciences community. This paper presents a survey that was, in part, designed to inform the
97 design of interactive figures within a journal article by canvassing respondents’ preferred
98 features for these figures. We aimed to address this critical gap in reproducibility knowledge,
99 in order to inform the development of tools that better meet the needs of producers and
100 consumers of life science research. We constructed the survey in order to understand how
101 the following are experienced by the respondents:

- *Computational reproducibility*: issues with accessing data, code and methodology parameters, and how solutions such as interactive figures could promote reproducibility from within an article.
- *Cultural reproducibility*: attitudes towards reproducibility, the social factors hindering reproducibility, and interest in interactive figures and their feature preferences.

107

108 Methods

109 Population and sample

110 Our sample populations were selected to include all life sciences communities across levels
111 of seniority, discipline and level of experience with the issues we wished to survey. The first
112 survey was conducted in November 2016 and sent out to 750 researchers working in the
113 Norwich Biosciences Institutes (NBI) at post-doctoral level or above. The NBI is a partnership
114 of four UK research institutions: the Earlham Institute (formerly known as The Genome
115 Analysis Centre), the John Innes Centre, the Sainsbury Centre, and the Institute of Food
116 Research (now Quadram Institute Bioscience). Invitations to participate were distributed via
117 email, with a link to the survey. The second survey, similar to the first but with amendments
118 and additions, was distributed in February 2017 to a random sample of 1662 active
119 researchers who had published papers in the *eLIFE* journal. Invitations to participate were
120 sent using email by *eLIFE* staff. We achieved an 15% (n = 112) response rate from the NBI
121 researchers, and an 8% response rate from the *eLIFE* survey (n = 139). Table 1 shows the
122 survey questions. Questions were designed to give qualitative and quantitative answers on
123 technical and cultural aspects of reproducibility. Questions assessed the frequency in
124 difficulties encountered in accessing data, the reasons for these difficulties, and how

125 respondents currently obtain data underlying published articles. They measured
126 understanding of what constitutes reproducibility of experiments, interactive figures, and
127 computationally reproducible data. Finally, we evaluated the perceived benefit of interactive
128 figures and of reproducing computational experiments, and which features of interactive
129 figures would be most desirable.

130

131 **Table 1: Questions used to survey the knowledge of respondents about research**
132 **reproducibility.**

	Survey questions
1	How often do you encounter difficulties with working with bioinformatic analysis tools (that are not your own)? (Problems such as: installing, configuring, running the software, working with command line software)?
2	How difficult is it to source (or access) the data presented in published papers?
3	What difficulties have you encountered in accessing the data described in published papers?
4	How are you currently sourcing the data (if applicable)? Select all that apply to you.
5*	What is your current understanding of reproducibility of experiments? Please select any that apply. Should you wish to add any additional information, please add it to the “Other” box.
6*	Have you ever tried reproducing any published results? Please select the answer that applies best for you.
7*	In your opinion, what could be done to make published research more reproducible?
8	When thinking about <i>interactive figures</i> , what comes to your mind? (please describe of what you understand of what an interactive figure to be, its features, and where you have seen such a feature before if applicable).
9	An <i>interactive figure</i> is a figure within a paper that is dynamic and becomes “live” when the user interacts with it and where the data displayed changes according to various parameter options. Which of the following features of an interactive figure tool would be good to have? Please rank them in the order of preference, where 1 is the most preferred feature, and 11 the least preferred feature.
10	What other features an <i>interactive figure</i> could have that were not mentioned in the previous question?
11	Do you perceive benefit in being able to publish <i>interactive figures</i> ?
12	Does the provision or option of an <i>interactive figure</i> in the paper affect your decision in choose the publishing journal or publisher?
13	Have you heard of the term <i>computationally reproducible data</i> , and do you understand what the term means? If answered yes or unsure, please explain what you understand from the term.
14	Would you benefit from being able to automatically reproduce computational experiments, or

	other analyses (including statistical tests) described within a paper?
15	How often do you work with <i>bioinformatic analysis tools</i> (e.g. assemblers, aligners, structure modelling)?
16	Have you received any of the following training? Training whether formal or informal (training through a colleague etc.).
17	Which of the following type(s) of data do you work with?

133 *Questions indicated with an asterisk were only available to the eLIFE survey. Answer options to the
134 questions are shown in Supplementary section 1.

135

136 **Statistical analysis**

137 Results are typically presented as proportions of those responding, stratified by the
138 respondent's area of work, training received, and version of the survey as appropriate. Chi-
139 square tests for independence were used to test for relationships between responses to
140 specific questions, or whether responses varied between samples. Analysis was conducted
141 using R (version 3.5.2; R Core Team, 2018) and Microsoft Excel. All supplementary figures
142 and data are available on Figshare (see Data Availability).

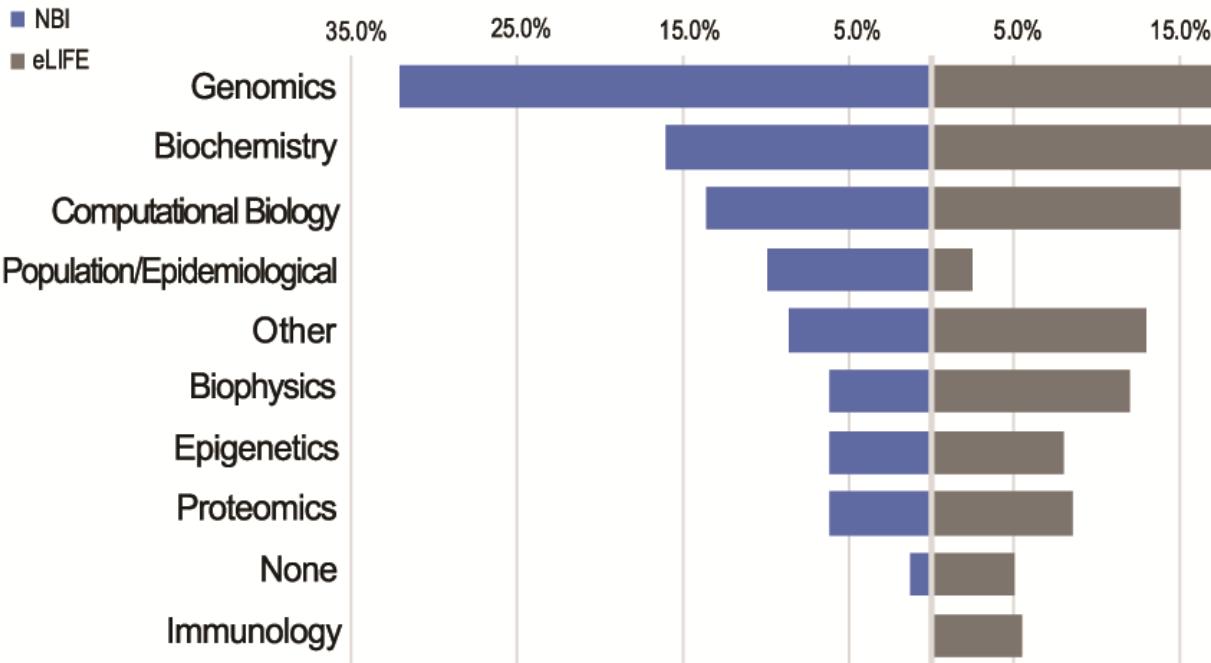
143 We assessed if there was a significant difference in the ability and willingness to
144 reproduce published results between the cohort of eLIFE respondents who understand the
145 term "computationally reproducible data" and those who do not and whether training received,
146 had an effect. We did not include those that replied "unsure" with regards to their
147 understanding of the term "computationally reproducible data". The respondents who chose
148 "yes tried reproducing results, but unsuccessfully", "have not tried to reproduce results" and "it
149 is not important to reproduce results" were grouped together under "unsuccessfully".

150

151 **Results**

152 **Characteristics of the sample**

153 Figure 1 shows the distribution of areas of work of our respondents, stratified by survey
154 sample. Genomics (proportion in whole sample = 22%), biochemistry (17%), and
155 computational biology (15%) were the most common subject areas endorsed in both NBI and
156 eLIFE samples. With regard to how often respondents use bioinformatics tools, 25% replied
157 "never", 39% "rarely", and 36% "often". Many (43%) received statistical training, (31%)
158 bioinformatic training, (20%) computer science training.



159

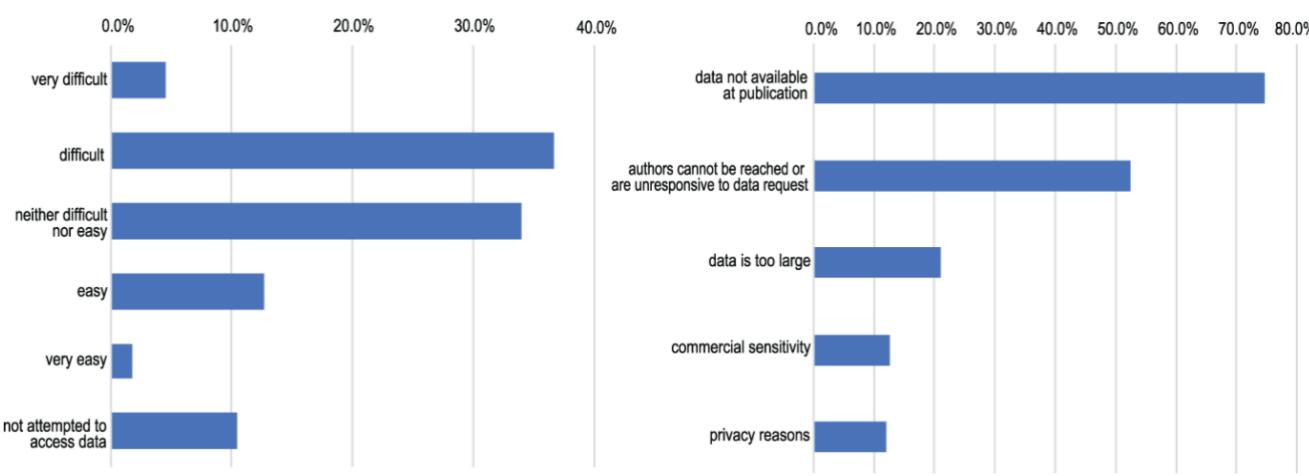
160 **Figure 1: Data types used by NBI and eLIFE respondents.** Responses were not mutually exclusive.
161 Data type choices were the same as the article data types available in the eLIFE article categorisation
162 system.

163

164 **Access to data and bioinformatics tools**

165 In both samples, 90% of those who responded reported having tried to access data
166 underlying a published research article (Fig. 2). Of those who had tried, few had found this
167 “easy” (14%) or “very easy” (2%) with 41% reporting that the process was “difficult” and 5%
168 “very difficult”. Reasons for difficulty were chiefly cultural (Fig. 2), in that the data was not
169 made available alongside the publication (found by 75% of those who had tried to access
170 data), or authors could not be contacted or did not respond to data requests (52%). Relatively
171 few found data unavailable for technical reasons of data size (21%), commercial sensitivity
172 (13%) or confidentiality (12%). With respect to data sources, 57% of the total sample have
173 used open public databases, 48% reported data was available with a link in the paper, and
174 47% had needed to contact authors.

175



176

177 **Figure 2. Left panel: Difficulty encountered accessing data underlying published research.**
178 Whether respondents have attempted to access data underlying previous publications and the level of
179 difficulty typically encountered in doing so. **Right panel: Reasons given for difficulty accessing**
180 **data.** The reasons given by respondents for being unable to access data (restricted to those who have
181 attempted to access data).

182

183 Very few of the respondents either “never” (2%) or “rarely” (8%) had problems with
184 running, installing, configuring bioinformatics software. Problems with software were
185 encountered “often” (29%) or “very often” (15%) suggesting that nearly half of respondents
186 regularly encountered technical barriers to computational reproducibility.

187

188 **Understanding of reproducibility, training and successful replication**

189 The majority of respondents reported that they understood the term “reproducibility of
190 experiments” and selected the correct explanations for the term. However, there is still
191 confusion between the terms: repeatability, replicability and reproducibility. Many (43%) of
192 respondents chose the repeatability and replicability definitions: “the original authors or others
193 running the same data with precisely the same workflow and getting the same results”. In
194 contrast, most (52%) participants did not know what the term “computationally reproducible
195 data” means, while 26% did know and 22% were unsure. We received several explanations
196 (free text responses) of the term “computationally reproducible data”, some of which were
197 more accurate than others (Supplementary section, free responses to question 13).

198

199 Some (18%) reported not attempting to reproduce or revalidate published research.
200 Very few ($n = 5$; 6%) of the sample endorsed the option that “it is not important to reproduce
201 other people’s published results” (Supplementary figure 1). Even though the majority (60%)
202 reported successfully reproducing published results, almost a quarter of the respondents
203 found that their efforts to reproduce any results were unsuccessful (23%). Table 2 shows the
204 ability of respondents in reproducing experiments stratified by the understanding of the term
205 “computationally reproducible data” and the training received (bioinformatics, computer
206 science, statistics). We found significant difference between the ability to reproduce published
207 experiments and knowing the meaning of the term “computationally reproducible data”. 18

208 (72%) had successfully reproduced previous work, compared to only 26 (52%) of the 50 who
209 responded that they did not understand the term (Chi-square test for independence, $p =$
210 0.048). The training variable did not show any significant distribution. However, when testing
211 with the responses “yes tried reproducing results, but unsuccessfully”, “have not tried to
212 reproduce results” and “it is not important to reproduce results” not grouped together under
213 “unsuccessfully” in order to get an indication of how willingness and success together differed
214 between the training groups, we found a significant distribution (see Supplementary Table 1).
215 The distribution of the training variable with those who received computer science training and
216 those without was significantly different (Fisher exact test for independence, $p = 0.018$). It
217 appears that respondents with computer science training are less likely to have tried to
218 reproduce an experiment but be more likely to succeed when they did try.

219 There was no evidence for a difference in the ability and willingness to reproduce
220 published results between the respondents who use bioinformatics tools often, and those who
221 use them rarely or never (data not shown). The majority of the respondents who use
222 bioinformatics tools often were coming from the scientific backgrounds of Biophysics,
223 Biochemistry, Computational Biology and Genomics. Most of the respondents who answered
224 “reproducibility is not important” and “haven’t tried reproducing experiments” were scientists
225 coming from disciplines using computational or bioinformatics tools “rarely” or “never”
226 (Supplementary Table 2).

227

228 **Table 2: Success in reproducing any published results stratified by their knowledge of**
229 **term “computationally reproducible data” and training received.**

Variable	Number (% of total sample)	Success in reproducing any published results		
		Successful (% within variable)	Not Successful* (% within variable)	P-value
Knowledge of term “computationally reproducible data” ($n = 75$)				
Yes	25 (33.3)	18 (72)	7 (28)	0.048**
No	50 (66.7)	24 (48)	26 (33)	
Training ($n = 90$)				
Bioinformatics	42 (46.7)	26 (61.9)	16 (38.1)	0.73
<i>Not trained in Bioinformatics</i>	48 (53.3)	28 (58.3)	20 (41.7)	
Computer Science	33 (36.7)	21 (63.6)	12 (36.4)	0.59
<i>Not trained in Computer Science</i>	57 (63.3)	33 (57.9)	24 (42.1)	
Statistics	71 (78.9)	42 (59.2)	29 (40.8)	0.75
<i>Not trained in Statistics</i>	19 (21.1)	12 (63.2)	7 (36.8)	
No training	10 (11.1)	6 (60)	4 (40)	0.73***
<i>All other training</i>	80 (88.8)	48 (60)	32 (40)	

230 n is different for the two variables as not all participants answered all the questions

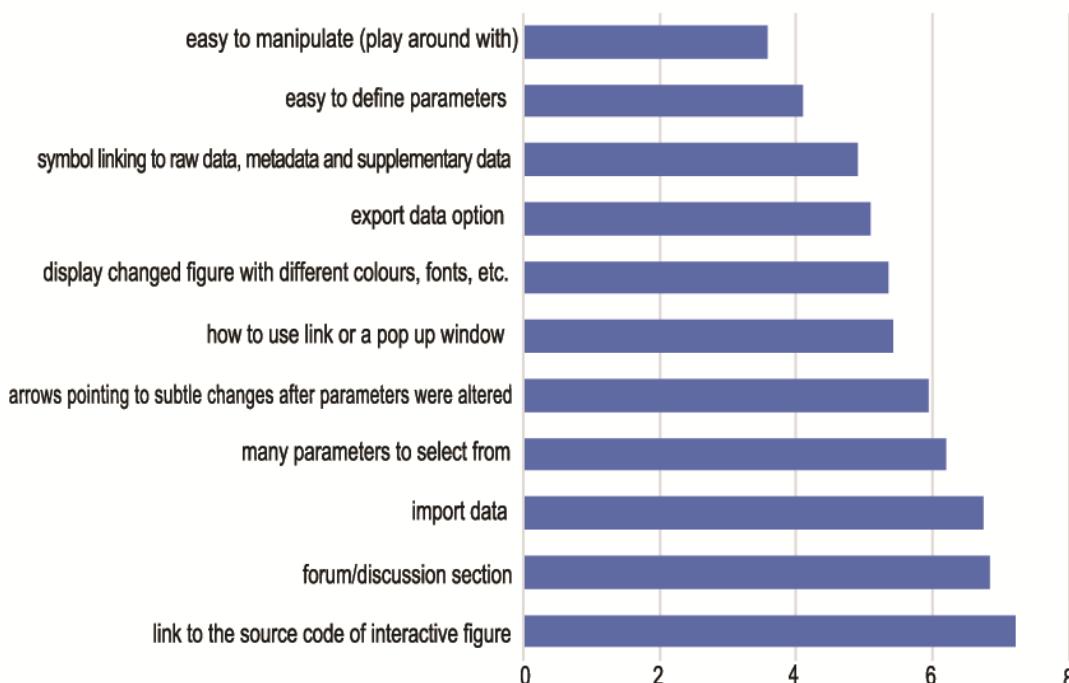
231 *Unsuccessful includes answers: "Yes, I have tried reproducing published results, but I have been
232 unsuccessful in producing any results, or same results", "No, I have never tried reproducing any
233 published results" and "It is not important to reproduce other people's published results"
234 **Statistically significant at the level of $P<0.05$
235 ***Chi-square statistic with Yates correction, applied when expected frequencies were lower than 5
236

237 **Improving Reproducibility of Published Research**

238 The vast majority (91%) of respondents stated that authors describing all methodology steps
239 in detail, including any formulae analysing the data, would be the most effective way to make
240 published science more reproducible. Around half endorsed the view that "authors should
241 provide the source code of any custom software used to analyse the data and that the
242 software code is well documented" (53%), and that authors provide a link to the raw data
243 (49%) (Supplementary figure 2). Two respondents suggested that achieving better science
244 reproducibility would be easier if funding was more readily available for reproducing the
245 results of others and if there were opportunities to publish the reproduced results
246 (Supplementary section, free responses). Within the same context, some respondents
247 recognised the current culture in science that there are not sufficient incentives in publishing
248 reproducible (or indeed negative findings) papers, but rather being rewarded in publishing as
249 many papers as possible in high Impact Factor journals (Supplementary section, free
250 responses).

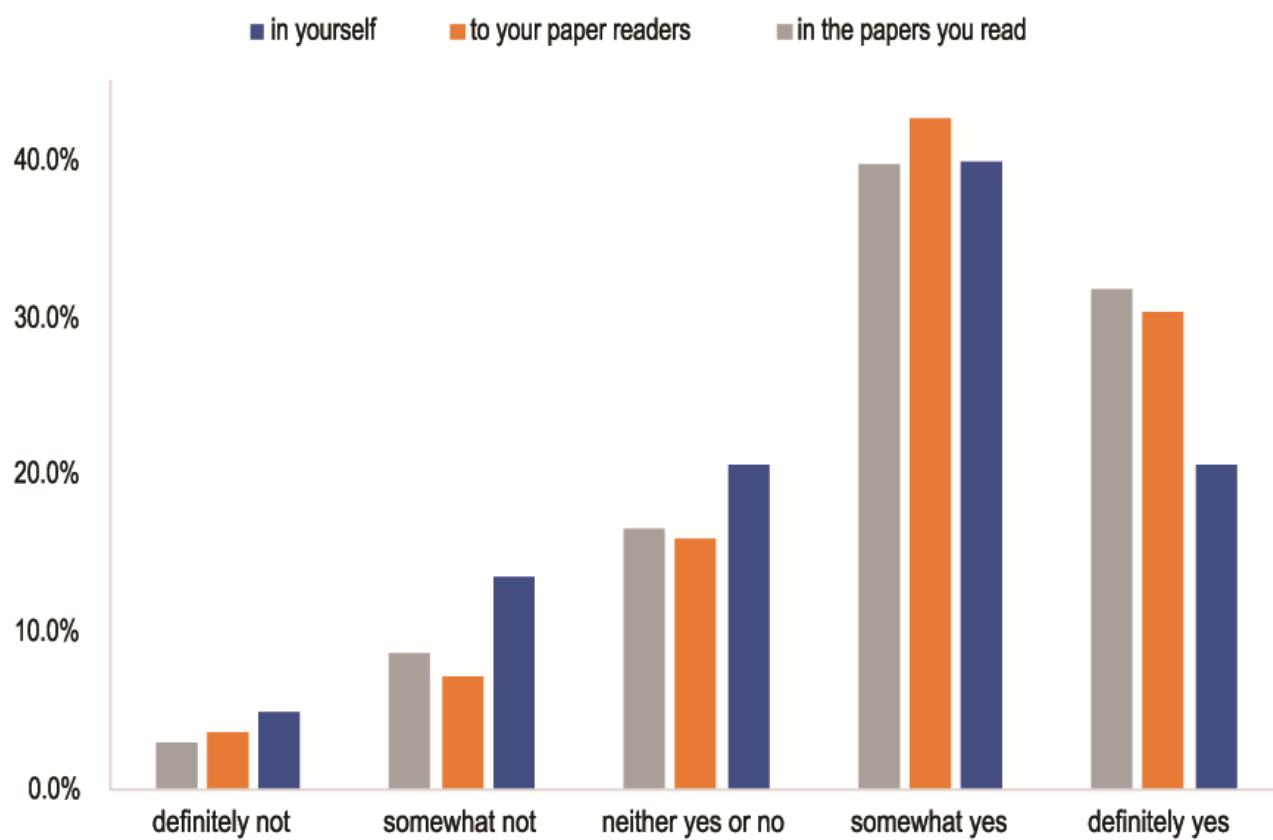
251 **Interactive Figures**

252 Participants ranked in terms of preference potential features for an interactive figure within an
253 article. These included choices such as "easy to manipulate" as the most preferred, and have
254 "easy to define parameters" (Fig. 3). Generally, the answers from both the *eLIFE* and NBI
255 surveys followed similar trends. Furthermore, free text responses were collected, and most
256 respondents stated that having further insights into the data presented in the figure would be
257 beneficial (Supplementary section, free responses).



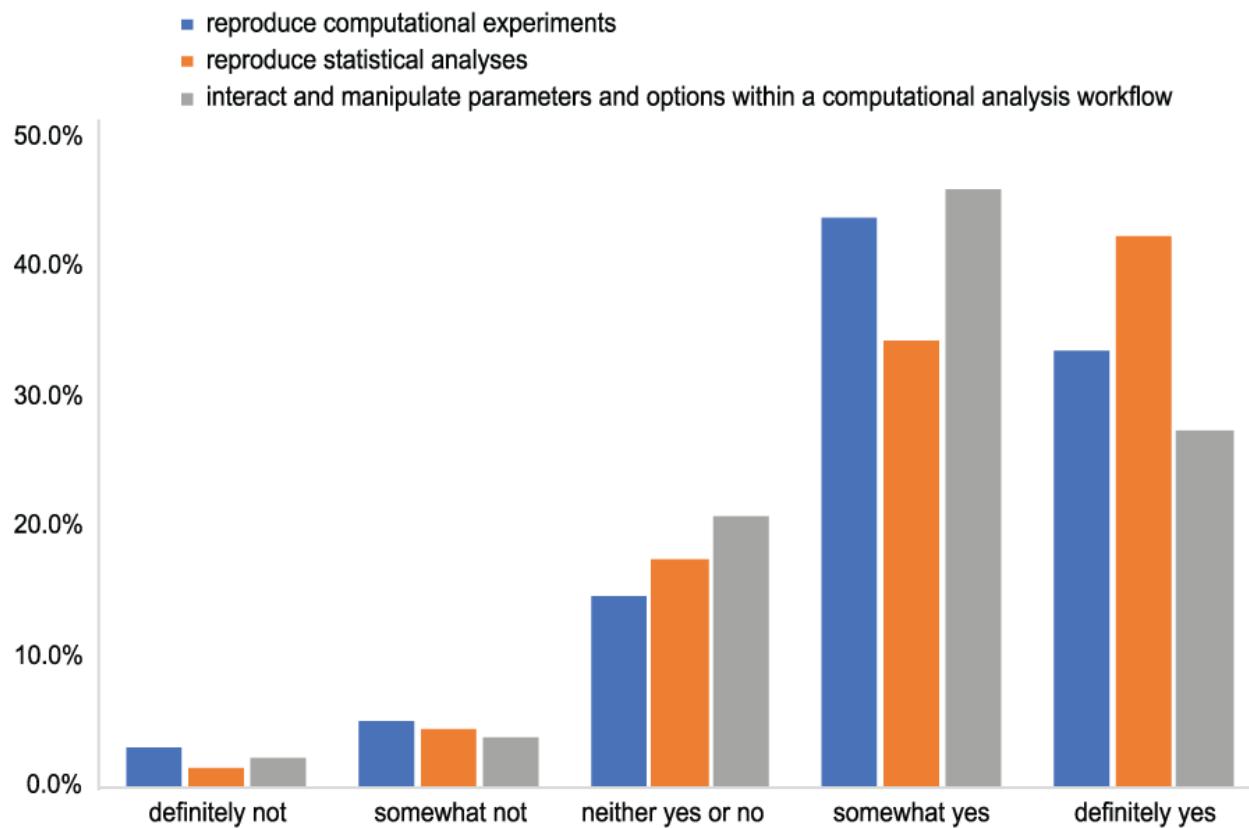
278 **Figure 3. Preferred features for the interactive figure.** Responses to question 9: Respondents were
279 asked to rank in order of preference the above features, with 1 most preferred feature, to 11 the least
280 preferred feature. The average score for each feature was calculated in order of preference as
281 selected by the respondents from both NBI and eLIFE surveys. The lower the average score value (x-
282 axis), the more preferred the feature (y-axis).
283

284 The majority of the respondents perceive a benefit in having interactive figures in published
285 papers for both readers and authors (Fig. 4). Examples of insights included: the interactive
286 figure would allow visualising further points on the plot from data in the supplementary
287 section, as well as be able to alter the data that is presented in the figure; having an
288 interactive figure as a movie, or to display protein 3D structures, would be beneficial to
289 readers. The remaining responses we categorised as software related, which included
290 suggestions of software that could be used to produce a figure that can be interactive, such
291 as R Shiny (shiny.studio.com). A moderate proportion of eLIFE respondents (19%) and NBI
292 (27%) stated that they had no opinion on the utility of interactive figures. Free text answers for
293 this group suggested that they had never seen or interacted with such a figure before, and no
294 indication was given that an interactive figure would help their work.
295



296 **Figure 4 The level of perception of benefit to having the ability to publish papers with**
297 **interactive figures.** The benefit to the author, to the readers of the author's papers and to the papers
298 the author reads. Answers include the responses from both NBI and eLIFE surveys for question 11.
299
300

301 The majority of the respondents also said that they see benefit in automatically reproducing
302 computational experiments, and manipulating and interacting with parameters in
303 computational analysis workflows. Equally favourable was to be able to computationally
304 reproduce statistical analyses (Fig. 5). Despite this perceived benefit, most respondents
305 (61%) indicated that the ability to include an interactive figure would not affect their choice of
306 journal when seeking to publish their research.



307
308 **Figure 5. Assessment of perceived benefit for automatically reproducing computational**
309 **experiments or other analyses (including statistical tests).** Responses from both NBI and eLIFE
310 for question 14.

311 Discussion

312 This study highlights the difficulties currently experienced in reproducing experiments,
313 and expressed positive attitudes of scientists involved in the current publishing system
314 towards enabling and promoting reproducibility of published experiments through interactive
315 elements in online publications. All respondents of the survey were active life sciences
316 researchers and therefore we believe the opinions collected are representative of researchers
317 in life sciences who are routinely reading and publishing research. While progress has been
318 made in publishing standards across all life science disciplines, the opinions of the
319 respondents reflect previously published shortcomings of the publishing procedures [33-35]:
320 lack of data and code provision; storage standards; not including or requiring detailed
321 description of methods and code structure in the published papers. When data is difficult to

322 obtain the reproducibility problem is exacerbated. However, the level of interest and
323 incentives in reproducing published research is at its infancy, or it is not the researchers'
324 priority, something also mentioned extensively in previous literature [36- 37]. Responses to
325 our surveys suggested that most life scientists understand that science becomes implicitly
326 more reproducible if methods (including data, analysis, and code) are well-described and
327 available, and perceive a potential benefit of tools that enable this. Respondents stated they
328 could see the benefit in having interactive figures for their readers and being able as authors
329 to present their data as interactive figures. However, the availability of this facility would not
330 affect their decisions on where to publish. Despite technologies existing to aid reproducibility
331 and authors know they are beneficial, many scientific publications do not meet basic
332 standards of reproducibility. Respondents endorsed articles which include interactive
333 elements, where access to the raw data, code, and detailed analysis steps in the form of an
334 interactive figure would help article readers better understand the paper and the experimental
335 design and methodology, and improve the reproducibility of the experiment presented in the
336 interactive figure, especially computational experiments. This contradiction suggests that
337 cultural factors play an underestimated role in reproducibility.

338 Retraction rates would suggest that the current publishing system is yet to provide a
339 mechanism to reliably check whether a published study is reproducible [38]. There remains a
340 perception that researchers do not get credit for reproducing the work of others or publishing
341 negative results. Whilst some journals explicitly state that they welcome negative results
342 articles (e.g. PLOS One “Missing Pieces” collection), this is by no means the norm in life
343 science publishing as evidenced by low, and dropping, publication rates of negative findings
344 [39, 40]. Ideally the publication system would enable checking of reproducibility by reviewers
345 and editors at the peer-review stage, with authors providing all data (including raw data), a full
346 description of methods including statistical analysis parameters, any negative findings based
347 on previous work and open source software code [41]. Peer reviewers would then be better
348 able to check for anomalies, and editors could perform the final check to ensure that the
349 science paper to be published is presenting true, valid, and reproducible research. Some
350 respondents have suggested that if reviewers and/or editors were monetarily compensated,
351 spending time to reproduce or validate the computational experiments in manuscripts would
352 become more feasible, and would aid the irreproducibility issue. However, paying reviewers
353 does not necessarily ensure that they would be more diligent in checking or trying to
354 reproduce results [42] and there must be optimal ways to ensure effective pressure is placed
355 upon the authors and publishing journals to have better publication standards [43, 44]. The
356 increasing adoption by journals of reporting standards for experimental design and results,
357 provide a framework for harmonising the description of scientific processes to enable
358 reproducibility. However, these standards are not universally enforced [45]. Similarly, concrete
359 funding within research grants for implementing reproducibility itself, manifested as actionable
360 Data Management Plans (dcc.ac.uk, 2019) rather than what is currently a by-product of the
361 publishing process, could give a level of confidence to researchers who would want to
362 reproduce previous work and incorporate that data in their own projects.

363 Our findings are in accordance with the current literature [30, 46] that highlight that the
364 lack of data access at the publication stage is one of the major reasons leading to the
365 irreproducibility of published studies. Even with current policies mandating data openness [28,
366 29], authors still fail to include their data alongside their publication. This is supported by our

367 findings that the majority of respondents replied that data is either not available upon
368 publication (57%) or authors cannot be reached/are unresponsive to data provision requests
369 (44%). This continues to be a cultural artefact of using a paper's methods section as a
370 description of steps to reproduce analysis, rather than a fully reproducible solution involving
371 public data repositories, open source code, and comprehensive documentation. Pre-print
372 servers such as bioRxiv have been taken up rapidly [47], especially in the genomics and
373 bioinformatics domains, and this has the potential to remove delays in publication whilst
374 simultaneously providing a "line in the sand" with a Digital Object Identifier (DOI) and
375 maintaining the requirements for FAIR data. In some cases, sensitivity of data might
376 discourage authors from data sharing, [48, 49], but this reason was only reported by a small
377 proportion of our respondents. Whilst there are efforts that attempt to apply the FAIR
378 principles to clinical data, such as in the case of the OpenTrials database [50], they are by no
379 means ubiquitous.

380 Reproducibility of experiments could be improved with better storage solutions for large
381 data files and citing them within the publication document, especially those in the order of
382 terabytes, for their proper reusability [51, 52]. Currently, there are several services that allow
383 storing large data files and perform cloud analyses, such as CyVerse, Amazon Web Services
384 [53, 54] and Google Genomics (cloud.google.com/genomics). Despite the potential advantage
385 these services can provide for data *accessibility*, they do not implicitly solve the problem of
386 data *reusability*. This is mostly apparent when data is too large to be stored locally or
387 transferred via slow internet connections or there is no route to attach metadata that
388 describes the datasets sufficiently for reuse or integration with other datasets. There is also
389 the question of data repository *longevity* - who funds the repositories for decades into the
390 future? Data within public repositories with specific deposition requirements (such as the
391 EMBL-EBI European Nucleotide Archive, ebi.ac.uk/ena), might not be associated or
392 annotated with standardised metadata that describes it accurately [55], rather the bare
393 minimum for deposition. In addition, corresponding authors often move on from projects and
394 institutions or the authors themselves can no longer access the data, meaning "data available
395 on request" ceases to be a viable option to source data or explanations of methods.

396 In a 2016 survey of 3987 National Science Foundation Directorate of Biological
397 Sciences principal investigators (BIO PIs), expressed their greatest unmet training needs by
398 their institutions [56]. These were in the areas of integration of multiple data (89%), data
399 management and metadata (78%) and scaling analysis to cloud/high performance computing
400 (71%). The aforementioned data and computing elements are integral to the correct
401 knowledge "how to" for research reproducibility. Our findings indicated that those who stated
402 they had experience in informatics also stated they are better able to attempt and reproduce
403 results. Practical bioinformatics and data management training, rather than in specific tools,
404 may be an effective way of reinforcing the notion that researchers' contributions towards
405 reproducibility are a responsibility that requires active planning and execution. This may be
406 especially effective when considering the training requirements of wet-lab and field scientists,
407 who are becoming increasingly responsible for larger and more complex computational
408 datasets. Further research needs to be undertaken to better understand how researchers'
409 competence in computational reproducibility may be linked to their level of informatics
410 training.

411 Respondents mentioned that there are word count restrictions in papers, and journals
412 often ask authors to shorten methods sections and perhaps move text to supplementary
413 information placed many times in an unorganised fashion or having to remove it altogether.
414 This is a legacy product of the hard-copy publishing era and, readability aside, word limits are
415 not consequential for internet journals. Even so, if the word count limit was only applicable to
416 the introduction, results and discussion sections, then the authors could describe methods in
417 more detail within the paper, without having to move that valuable information in the
418 supplementary section. When methods are citing methodology techniques as described in
419 other papers, where those original references are hard to obtain, typically through closed
420 access practices or by request mechanisms as noted above, then this can be an additional
421 barrier to the reproducibility of the experiment. This suggests that there are benefits to
422 describing the methods in detail and stating that they are similar to certain (cited) references
423 as well as document the laboratory's expertise in a particular method. However, multi-
424 institutional or consortium papers are becoming more common with ever-increasing numbers
425 of authors on papers, which adds complexity to how authors should describe every previous
426 method available that underpins their research [57]. There is no obvious solution to this issue.
427 Highly specialised methods (e.g. electrophysiology expertise, requirements for large
428 computational resources or knowledge of complex bioinformatics algorithms) and specific
429 reagents (e.g. cell lines, antibodies) might not be readily available to other research groups.
430 As stated by some respondents, in certain cases the effective reproducibility of experiments is
431 obstructed by numerical issues with very small or very large matrices or datasets, or differing
432 versions of analysis software used, perhaps to address bugs in analytical code, will cause a
433 variation in the reproduced results.

434 Previous studies have provided strong evidence that there is a need for better technical
435 systems and platforms to enable and promote the reproducibility of experiments. We provide
436 additional evidence that that paper authors and readers perceive a benefit from having an
437 interactive figure that would allow for the reproducibility of the experiment shown in the figure.
438 The figure would give access to the raw data, code and detailed data analysis steps, allow for
439 *in situ* reproducing computational experiments by re-running code including statistical
440 analyses “live” within the paper. The findings of this survey including understanding what is
441 desirable for interactive figures, helped the development of two prototypes of interactive
442 figures (see Data and Code availability) and subsequently the creation of *eLIFE*’s first
443 computationally reproducible document [25]. Despite the benefits that interactive documents
444 and figures can provide to the publishing system, and that those benefits that are in demand
445 by the scientific community, work is needed in order to promote and support their use. Given
446 the diversity of biological datasets and ever-evolving methods for data generation and
447 analysis, it is unlikely that a single interactive figure infrastructure type can support all types of
448 data. More research into how different types of data can be supported and presented in
449 papers with interactivity needs to be undertaken. Yet problems with data availability and data
450 sizes will persist - many studies comprise datasets that are too large to upload and render
451 within web browsers in a reasonable timescale. Even if the data are available through well-
452 funded repositories with fast data transfers, e.g. the INSDC databases ([insdc.org](https://www.insdc.org)), are
453 publishers ready to bear the extra costs of supporting the infrastructure and people required
454 to develop or maintain such interactive systems in the long run? These are questions that

455 need to be further investigated, particularly when considering any form of industry
456 standardisation of such interactivity in the publishing system.

457 We show that providing tools to scientists who are not computationally aware also
458 requires a change in culture, as many aspects of computational reproducibility require a
459 change in publishing behaviour and competence in the informatics domain. Encouraging and
460 incentivising scientists to conduct transparent, reproducible and replicable research should be
461 prioritised to help solve the irreproducibility issue, and implementing hiring practices with open
462 science at the core of research roles [58] will encourage attitudes to change across faculty
463 departments and institutions.

464 Another potential solution to the reproducibility crisis is to identify better (quantifiable)
465 metrics of research reproducibility and its scientific impact. The current assessment of the
466 impact of research articles are a set of quantifiable metrics that do not evaluate research
467 reproducibility, but stakeholders are starting to request that checklists and tools are provided
468 to improve these assessments [59]. It is harder to find a better approach that is based on a
469 thoroughly informed analysis by unbiased experts in the field that would quantify the
470 reproducibility level of the research article [60]. That said, top-down requirements from
471 journals and funders to release reproducible data and code may go some way to improving
472 computational reproducibility within the life sciences, but this will also rely on the availability of
473 technical solutions that are accessible and useful to the majority of scientists.

474 Opinions are mixed regarding the extent and severity of the reproducibility crisis
475 however our study and previous studies are stressing the need to find effective solutions
476 towards solving the reproducibility issue. Steps towards modernising the publishing system by
477 incorporating interactivity with interactive figures are deemed desirable. This may be a good
478 starting point for improving research reproducibility by reproducing experiments *in situ*. From
479 our findings, and given the ongoing release of tools and platforms for technical reproducibility,
480 future efforts should be spent in tackling the cultural behaviour of scientists, especially when
481 faced with the need to publish for career progression.

482
483

484 Acknowledgements

485 This project is funded by a BBSRC iCASE Studentship (project reference: BB/M017176/1).
486 We would like to thank all the respondents of the surveys for their time. We would also like to
487 thank George Savva from the Quadram Institute (QIB, UK) for comments and suggestions for
488 this manuscript; eLIFE Sciences Publications Ltd, with whom the corresponding author
489 collaborates as an iCASE student; as well as Ian Mulvany, former eLIFE Head of
490 Development, for his help in developing the survey questionnaire.

491

492 Data and Code Availability

493 All data files are available via this url: <https://doi.org/10.6084/m9.figshare.c.4436912.v6>
494 Prototypes of interactives figures developed by the corresponding author are available via
495 these GitHub repositories: <https://github.com/code56/nodeServerSimpleFig> and
496 https://github.com/code56/prototype_article_interactive_figure

497 **References**

1. Goodman S, Fanelli D, Ioannidis J. What does research reproducibility mean?. *Science Translational Medicine*. 2016;8(341):341ps12.
2. Grant B. Science's Reproducibility Problem. *The Scientist*. 18 Dec 2012. Available from: <https://www.the-scientist.com/news-opinion/sciences-reproducibility-problem-40031> Cited 9 April 2016.
3. Begley C, Ellis L. Raise standards for preclinical cancer research. *Nature*. 2012;483(7391):531-533.
4. Yong E. Reproducibility problems in genetics research may be jeopardizing lives. 2015 Dec 17 [cited 12 February 2015]. In: Genetic Literacy Project [Internet]. Pennsylvania: Genetic Literacy Project. [about 1 screen]. Available from: <https://geneticliteracyproject.org/2015/12/17/reproducibility-problems-genetics-research-may-costing-lives/>
5. Bell C, Dinwiddie D, Miller N, Hateley S, Ganusova E, Mudge J et al. Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing. *Science Translational Medicine*. 2011;3(65):65ra4.
6. Ioannidis J, Doucouliagos C. What's to know about the credibility of empirical economics?. *Journal of Economic Surveys*. 2013;27(5):997-1004. doi: 10.1111/joes.12032.
7. Freedman L, Cockburn I, Simcoe T. The Economics of Reproducibility in Preclinical Research. *PLOS Biology*. 2015;13(6):e1002165. doi: 10.1371/journal.pbio.1002165.
8. Plessner H. Reproducibility vs. Replicability: A brief History of a Confused Terminology. *Frontiers in Neuroinformatics*. 2018;11. doi: 10.3389/fninf.2017.00076.
9. Drummond C. Replicability is not Reproducibility: Nor is it Good Science. *Proceedings of the Evaluation Methods for Machine Learning Workshop at the 26th ICML*, 2009. Available from: <http://cogprints.org/7691/7/ICMLws09.pdf>.
10. Gent I. The recomputation manifesto; 2013. Preprint. Available from: arXiv: 1304.3674v1. Cited 22 April 2016.
11. Cataldo M, Mockus A, Roberts J, Herbsleb J. Software Dependencies, Work Dependencies, and Their Impact on Failures. *IEEE Transactions on Software Engineering*. 2009;35(6):864-878. doi: 10.1109/tse.2009.42.
12. Colomb J, Brembs B. Sub-strains of *Drosophila* Canton-S differ markedly in their locomotor behavior. *F1000Research*. 2015;3:176. doi: 10.12688/f1000research.4263.2.
13. Brinckman A, Chard K, Gaffney N, Hategan M, Jones M, Kowalik K et al. Computing environments for reproducibility: Capturing the "Whole Tale". *Future Generation Computer Systems*. 2018;94:854-867. doi: 10.1016/j.future.2017.12.029.
14. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. *Nucleic Acids Research*. 2018;46(W1):W537-W544. doi: 10.1093/nar/gky379.
15. Goff SA, Vaughn M, Mckay S, Lyons E, Stapleton AE, Gessler D, et al. The iPlant Collaborative: Cyberinfrastructure for Plant Biology. *Frontiers in Plant Science*. 2011;2. doi: 10.3389/fpls.2011.00034.

540 16. Goble C, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman D et al.
541 myExperiment: a repository and social network for the sharing of bioinformatics
542 workflows. *Nucleic Acids Research*. 2010;38(suppl_2):W677-W682. doi:
543 10.1093/nar/gkq429.

544 17. Pettifer S, Sinnott J, Attwood T. UTOPIA—User-Friendly Tools for Operating
545 Informatics Applications. *Comparative and Functional Genomics*. 2004;5(1):56-60. doi:
546 10.1002/cfg.359.

547 18. Pettifer S, Thorne D, McDermott P, Marsh J, Villéger A, Kell D et al. Visualising
548 biological data: a semantic approach to tool and database integration. *BMC
549 Bioinformatics*. 2009;10(S6). doi: 10.1186/1471-2105-10-s6-s19.

550 19. Sneddon T, Li P, Edmunds S. GigaDB: announcing the GigaScience database.
551 *GigaScience*. 2012;1(1). doi: 10.1186/2047-217x-1-11.

552 20. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S et al. The
553 Taverna workflow suite: designing and executing workflows of Web Services on the
554 desktop, web or in the cloud. *Nucleic Acids Research*. 2013;41(W1):W557-W561. doi:
555 10.1093/nar/gkt328.

556 21. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M et al. Taverna: a tool for
557 the composition and enactment of bioinformatics workflows. *Bioinformatics*.
558 2004;20(17):3045-3054. doi: 10.1093/bioinformatics/bth361.

559 22. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P et al. Taverna: a tool for
560 building and running workflows of services. *Nucleic Acids Research*. 2006;34(Web
561 Server):W729-W732. doi: 10.1093/nar/gkl320.

562 23. Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić (editors), Brad Chapman, John
563 Chilton, Michael Heuer et al. Common Workflow Language, v1.0.
564 Specification, *Common Workflow Language working group*. 2016. Available
565 from: <https://w3id.org/cwl/v1.0/> doi:10.6084/m9.figshare.3115156.v2.

566 24. Kurtzer G, Sochat V, Bauer M. Singularity: Scientific containers for mobility of compute.
567 PLOS ONE. 2017;12(5):e0177459. doi: 10.1371/journal.pone.0177459.

568 25. Maciocci G, Aufreiter M, Bentley N. Introducing *eLife*'s first computationally
569 reproducible article. 2019 Feb 20 [cited 20 February 2019]. In: *eLife* Labs Blog
570 [Internet]. Cambridge – [about 5 screens]. Available from:
571 <https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article>.

572 26. Higginson A, Munafò M. Current Incentives for Scientists Lead to Underpowered
573 Studies with Erroneous Conclusions. *PLOS Biology*. 2016;14(11):e2000995. doi:
574 10.1371/journal.pbio.2000995.

575 27. Pusztai L, Hatzis C, Andre F. Reproducibility of research and preclinical validation:
576 problems and solutions. *Nat Rev Clin Oncol* [Internet]. Nature Publishing Group; 2013;
577 10(12):720–4. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24080600>

578 28. National Institutes of Health Plan for increasing access to scientific publications and
579 digital scientific data from NIH funded scientific research, [Internet]. NIH. 2015 [cited 5
580 May 2017]. Available from: <https://grants.nih.gov/grants/NIH-Public-Access-Plan.pdf>.

581 29. Wilkinson M, Dumontier M, Aalbersberg I, Appleton G, Axton M, Baak A et al. The
582 FAIR Guiding Principles for scientific data management and stewardship. *Scientific
583 Data*. 2016; 3:160018. doi: 10.1038/sdata.2016.18.

584

585 30. Pulverer B. Reproducibility blues. *The EMBO Journal*. 2015;34(22):2721-2724. doi:
586 10.15252/embj.201570090.

587 31. Stodden V, Guo P, Ma Z. Toward Reproducible Computational Research: An Empirical
588 Analysis of Data and Code Policy Adoption by Journals. *PLOS ONE*.
589 2013;8(6):e67111. doi: 10.1371/journal.pone.0067111.

590 32. Baker, M. 1,500 scientists lift the lid on reproducibility. *Nature*. 2016;533(7604), 452–
591 454.doi:10.1038/533452a

592 33. Müller H, Naumann F, Freytag J. Data Quality in Genome Databases. *Proc Conf Inf
593 Qual (IQ 03)*. 2003;269–284. Available from:
594 <https://www.semanticscholar.org/paper/Data-Quality-in-Genome-Databases-Müller-Naumann/9dc6c5f4fe99caab9b4ba0b1eedc56f747c17194>

596 34. Marx V. The big challenges of big data. *Nature*. 2013;498(7453):255-260. doi:
597 10.1038/498255a.

598 35. Stodden V. Reproducing Statistical Results. *Annual Review of Statistics and Its
599 Application*. 2015;2(1):1-19. doi: 10.1146/annurev-statistics-010814-020127.

600 36. B. A. Nosek et al., Promoting an open research culture. *Science*. 2015; 348, 1422–
601 1425. doi: 10.1126/science.aab2374.

602 37. Collins F, Tabak L. Policy: NIH plans to enhance reproducibility. *Nature*.
603 2014;505(7485):612-613. doi: 10.1038/505612a.

604 38. Cokol M, Ozbay F, Rodriguez-Esteban R. Retraction rates are on the rise. *EMBO
605 reports*. 2008;9(1):2-2. doi: 10.1038/sj.embo.7401143.

606 39. Franco A, Malhotra N, Simonovits G. Publication bias in the social sciences: Unlocking
607 the file drawer. *Science*. 2014;345(6203):1502-1505. doi: 10.1126/science.1255484.

608 40. Fanelli D. Negative results are disappearing from most disciplines and countries.
609 *Scientometrics*. 2011;90(3):891-904. doi: 10.1007/s11192-011-0494-7.

610 41. Iqbal S, Wallach J, Khoury M, Schully S, Ioannidis J. Reproducible Research Practices
611 and Transparency across the Biomedical Literature. *PLOS Biology*.
612 2016;14(1):e1002333. doi: 10.1371/journal.pbio.1002333.

613 42. Hershey N. Compensation and Accountability: The Way to Improve Peer Review.
614 Quality Assurance and Utilization Review. 1992;7(1):23-29. doi:
615 10.1177/106286069200700104.

616 43. Announcement: Reducing our irreproducibility. *Nature*. 2013;496(7446):398-398. doi:
617 10.1038/496398a.

618 44. Pusztai L, Hatzis C, Andre F. Reproducibility of research and preclinical validation:
619 problems and solutions. *Nature Reviews Clinical Oncology*. 2013;10(12):720-724. doi:
620 10.1038/nrclinonc.2013.171.

621 45. Moher D. Reporting guidelines: doing better for readers. *BMC Medicine*. 2018;16(1).
622 doi: 10.1186/s12916-018-1226-0.

623 46. Berg J. Progress on reproducibility. *Science*. 2018;359(6371):9-9. doi:
624 10.1126/science.aar8654.

625 47. Abdill R, Blekhman R. Tracking the popularity and outcomes of all bioRxiv preprints;
626 2019. Preprint. Available from BioRxiv: 10.1101/515643. Cited 3 April 2019.

627 48. Figueiredo AS. Data Sharing: Convert Challenges into Opportunities. *Front Public
628 Health*. Frontiers Media SA; 2017; 5:327.doi:10.3389/fpubh.2017.00327.

629 49. Hollis KF. To Share or Not to Share: Ethical Acquisition and Use of Medical Data.

630 AMIA Jt Summits Transl Sci proceedings AMIA Jt Summits Transl Sci [Internet].
631 2016;2016:420–7.

632 50. Philip Chen CL, Zhang CY. Data-intensive applications, challenges, techniques and
633 technologies: A survey on Big Data. *Inf Sci (Ny)*. Elsevier Inc.; 2014 Aug 10;275:314.
634 doi: 10.1016/j.ins.2014.01.015

635 51. Poldrack RA, Gorgolewski KJ. Making big data open: Data sharing in neuroimaging.
636 *Nat Neurosci*. 2014;17(11):1510–7. doi: 10.1038/nn.3818.

637 52. Faniel IM, Zimmerman A. Beyond the Data Deluge: A Research Agenda for Large-
638 Scale Data Sharing and Reuse. *Int J Digit Curation*. 2011;6(1):58–69. doi:
639 10.2218/ijdc.v6i1.172.

640 53. Amazon Web Services (AWS) - Cloud Computing Services [Internet]. Amazon Web
641 Services, Inc. 2019 [cited 11 April 2019]. Available from: <https://aws.amazon.com/>

642 54. Hazelhurst S. Scientific computing using virtual high-performance computing: a case
643 study using the Amazon elastic computing cloud. *Proceedings of the 2008 annual*
644 *research conference of the South African Institute of Computer Scientists and*
645 *Information Technologists on IT research in developing countries riding the wave of*
646 *technology - SAICSIT '08.*; 2008 Jan 1:94–103. doi: 10.1145/1456659.1456671

647 55. Attwood TK, Kell DB, McDermott P, Marsh J, Pettifer SR, Thorne D. Calling
648 International Rescue: knowledge lost in literature and data landslide! *Biochem J*.
649 2009;424:317–33. doi: 10.1042/BJ20091474.

650 56. Barone L, Williams J, Micklos D. Unmet needs for analyzing biological big data: A
651 survey of 704 NSF principal investigators. *PLOS Comput Biol*. 2017;13(10). doi:
652 10.1371/journal.pcbi.1005755.

653 57. Gonsalves, A. Lessons learned on consortium-based research in climate change and
654 development. CARIAA Working Paper no. 1. 2014 [cited 2019 Jan 1]. In: International
655 Development Research Centre [Internet]. Ottawa, Canada and UK Aid, London, United
656 Kingdom. Available from: www.idrc.ca/cariaa

657 58. Schönbrodt F. Changing hiring practices towards research transparency: The first open
658 science statement in a professorship advertisement. 2016 Jan 6 [cited 2016 Mar 16].
659 In: Felix Schönbrodt's blog [Internet] [about 1 screen]. Available from:
660 <https://www.nicebread.de/open-science-hiring-practices/>.

661 59. Wellcome Trust. Request for Information (RFI) A software tool to assess the FAIRness
662 of research outputs against a structured checklist of requirements [FAIRWare]
663 [Internet]. Wellcome Trust; 2018 [cited 5 March 2019]. Available from:
664 <https://wellcome.ac.uk/sites/default/files/FAIR-checking-software-request-for-information.pdf>.

665 60. Flier JS. Irreproducibility of published bioscience research: Diagnosis, pathogenesis
666 and therapy. *Mol Metab*. 2017 Nov 21;6(1):2–9. doi: 10.1016/j.molmet.2016.11.006.