
1 

 

CGAT-core: a python framework for building scalable, reproducible 

computational biology workflows 
 

Adam P Cribbs1,2, Sebastian Luna-Valero1, Charlotte George1, Ian M Sudbery3, Antonio J 

Berlanga-Taylor4, Steven N Sansom5, Thomas Smith6, Nicholas E. Ilott5, Jethro Johnson7, Jakub 

Scaber1, Katherine Brown8, David Sims1, Andreas Heger1 

 

1 MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, 

University of Oxford, Oxford, UK. 

 
2 Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and 

Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research 

Unit (BRU), University of Oxford, Oxford, UK 

3 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 

2TN, UK. 

4 MRC-PHE Centre for Environment and Health, Department of Epidemiology & Biostatistics, 

School of Public Health, Faculty of Medicine, Imperial College London, St Mary's Campus, 

Norfolk Place, London, UK. 

5 Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom  

6 Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 

Cambridge, UK 

 
7 The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA. 

 
8 Division of Virology, Department of Pathology, University of Cambridge, UK 
 
 

Abstract 

In the genomics era computational biologists regularly need to process, analyse and integrate 

large and complex biomedical datasets. Analysis inevitably involves multiple dependent steps, 

resulting in complex pipelines or workflows, often with several branches. Large data volumes 

mean that processing needs to be quick and efficient and scientific rigour requires that analysis 

be consistent and fully reproducible. We have developed CGAT-core, a python package for the 

rapid construction of complex computational workflows. CGAT-core seamlessly handles 

parallelisation across high performance computing clusters, integration of Conda 

environments, full parameterisation, database integration and logging. To illustrate our 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581009doi: bioRxiv preprint 

https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/


2 

 

workflow framework, we present a pipeline for the analysis of RNAseq data using pseudo-

alignment. 

 

Availability: CGAT-core is freely available under an MIT licence for installation and use, 

including source code at https://github.com/cgat-developers/cgat-core  

Contact: andreas.heger@imm.ox.ac.uk (AH), david.sims@imm.ox.ac.uk (DS), 

adam.cribbs@imm.ox.ac.uk (AC) 

 

Supplementary information: 

 

1. Introduction 

Genomic technologies have given researchers the ability to produce large amounts of data at 

relatively low cost. Bioinformatic analyses typically involve passing data through a series of 

manipulations and transformations, called a pipeline or workflow. The need for tools to 

manage workflows is well established, with a wide range of options available from graphical 

user interfaces such as Galaxy (Afgan, et al., 2016) and Taverna (Wolstencroft, et al., 2013), 

aimed at non-programmers, to Snakemake, Nextflow, Toil, Ruffus and others (Di Tommaso, et 

al., 2017; Fisch, et al., 2015; Gafni, et al., 2014; Golosova, et al., 2014; Koster and Rahmann, 

2012; Nocq, et al., 2013; Okonechnikov, et al., 2012; Vivian, et al., 2017) developed with 

computational biologists in mind. These tools differ in their portability, scalability, parameter 

handling, extensibility, and ease of use. In a recent survey (Leipzig, 2017), the tool rated 

highest for ease of pipeline development was Ruffus (Goodstadt, 2010), a Python package that 

wraps pipeline steps in discrete Python functions, called ‘tasks’. It uses Python decorators to 

track the dependencies between tasks, ensuring that dependent tasks are completed in the 

correct order and independent tasks can be run in parallel. If a pipeline is interrupted before 

completion, or new input files are added, only data sets that are missing or out-of-date are re-

run. Ruffus implements a wide range of decorators that allow complex operations on input files 

including: conversion of a single input file to a single output file; splitting of a file into multiple 

files (and vice versa) and conditional merging of multiple input files into a smaller number of 

outputs. More advanced options include combining combinations or permutations of input files 

and conditional execution based on input parameters. Use of decorators means that Ruffus 

pipelines are native Python scripts, rather than the domain specific languages (DSLs) used in 

other workflow tools. A key advantage of this, in addition to python being an already widely 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581009doi: bioRxiv preprint 

https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/


3 

 

understood language in computational biology, is that individual steps can use arbitrary 

python code, both in how they are linked together and in the actual processing task.  

Here, we introduce Computational Genomics Analysis Toolkit (CGAT)-core, an open-source 

python library that extends the functionality of Ruffus by adding cluster interaction, 

parameterisation, logging, database interaction and Conda (https://conda.io) environment 

switching.  

 

2. Main features 

CGAT-core extends the functionality of Ruffus by providing a common interface to control 

distributed resource management systems using DRMAA (Distributed Resource Management 

Application API, http://www.drmaa.org/). Currently, we support interaction with Sun Grid 

Engine, Slurm and PBS-pro/Torque. The execution engine enables tasks to be run locally or on 

a high-performance computing cluster and supports cluster distribution of both command line 

scripts (cgatcore.run) and python functions (cgatcore.cluster). System resources (number of 

cores to use, amount of RAM to allocate) can be set on a per-pipeline, per-task, or per task-

instance basis, even allowing allocation to be based in variables, for example input file size.  

The parameter management component encourages the separation of workflow/tool 

configuration from implementation to build re-usable workflows. Algorithm parameters are 

collected in a single human-readable yaml configuration file. Thus, parameters can be set 

specifically for each dataset, without the need to modify the code. For example, sequencing 

data can be aligned to a different reference genome, by simply changing the path to the genome 

index in the yaml file. Both pipeline-wide and job-local parameters are automagically 

substituted into command line statements at execution-time. 

To assist with reproducibility, record keeping and error handling CGAT-core provides multi-

level logging during workflow execution, recording full details of runtime parameters, 

environment configuration and tracking job submissions. Additionally, CGAT-core provides a 

simple, lightweight interface for interacting with relational databases such as SQLite 

(cgatcore.database), facilitating loading of analysis results at any step of the workflow, 

including combining output from parallel steps in single wide- or long-format tables.  

CGAT-core can load a different Conda environment for each step of the analysis, enabling the 

use of tools with conflicting software requirements. Furthermore, providing Conda 

environment files alongside pipeline scripts ensures that analyses can be fully reproduced. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581009doi: bioRxiv preprint 

https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/


4 

 

CGAT-core workflows are Python scripts, and as such are stand-alone command line utilities 

that do not require the installation of a dedicated service. In order to reproducibly execute our 

workflows, we provide utility functions for argument parsing, logging and record keeping 

within scripts (cgatcore.experiment). Workflows are started, inspected and configured through 

the command line interface. Therefore, workflows become just another tool and can be re-used 

within other workflows. Furthermore, workflows can leverage the full power of Python, 

making them completely extensible and flexible.  

 

3. Implementation 

To illustrate a simple use case  of CGAT-core, we have  built an example RNAseq analysis 

pipeline, which performs read counting using Kallisto (Bray, et al., 2016) and differential 

expression using DESeq2 (Love, et al., 2014). This workflow and Conda environment are 

contained within our CGAT-showcase repository (https://github.com/cgat-developers/cgat-

showcase). The workflow highlights how simple pipelines can be constructed using CGAT-core, 

demonstrating how the pipeline can be configured using a yaml file, how third-party tools can 

be executed efficiently across a cluster or on a local machine, and how data can be easily loaded 

into a database. Furthermore, we and others have been extensively using CGAT-core to build 

pipelines for computational genomics (https://github.com/cgat-developers/cgat-flow).  

CGAT-core is implemented in Python 3 and installable via Conda and PyPI (https://pypi.org) 

with minimal dependencies. We have successfully deployed and tested the code on OSX, Red 

Hat and Ubuntu. We have made CGAT-core and associated repositories open-source under the 

MIT licence, allowing full and free use for both commercial and non-commercial purposes. Our 

software is fully documented (http://cgat-core.readthedocs.io/), version controlled and has 

extensive testing using continuous integration (https://travis-ci.org/cgat-developers.) We 

welcome community participation in code development and issue reporting through GitHub. 

 

4. Discussion 

CGAT-core extends the popular Python workflow engine Ruffus by adding desirable features 

from a variety other workflow systems to form an extremely simple, flexible and scalable 

package. CGAT-core provides seamless high-performance computing cluster interaction and 

adds Conda environment integration for the first time.  In addition, our framework focuses on 

simplifying the pipeline development and testing process by providing convenience functions 

for parameterisation, database interaction, logging and pipeline interaction.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581009doi: bioRxiv preprint 

https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/


5 

 

The ease of pipeline development enables CGAT-core to bridge the gap between exploratory 

data analysis and building production workflows. A guiding principle is that it should be as 

easy (or easier) to complete a series of tasks using a simple pipeline compared to using an 

interactive prompt, especially once cluster submission is considered. CGAT-core enables the 

production of analysis pipelines that can easily be run in multiple environments to facilitate 

sharing of code as part of the publication process. Thus, CGAT-core encourages a best-practice 

reproducible research approach by making it the path of least resistance. For example, 

exploratory analysis in Jupyter Notebooks can be converted to a Python script or used directly 

in the pipeline. Similarly, exploratory data analysis in R, or any other language, can easily be 

converted to a script that can be run by the pipeline. This lightweight wrapping of quickly 

prototyped analysis forms a lab book, enabling rapid reproduction of analyses and reuse of 

code for different data sets.  

 

Availability and requirements 

 

Project Name: CGAT-core 

Project Home Page: http://cgat-core.readthedocs.io/ 

Operating system(s): Linux/Unix 

Programming language: Python 3 

Other requirements:  

Licence: MIT 

Any restrictions to use by non-academics: None  

 

Abbreviations 

DSL - Domain Specific Languages 

API – Application Programming Interface 

DRMAA - Distributed Resource Management Application API 

 

Competing interests 

The authors declare that they have no competing interests. 

 

Afgan, E., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical 

analyses: 2016 update. Nucleic Acids Res 2016;44(W1):W3-W10. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581009doi: bioRxiv preprint 

https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/


6 

 

Bray, N.L., et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 

2016;34(5):525-527. 

Di Tommaso, P., et al. Nextflow enables reproducible computational workflows. Nat Biotechnol 

2017;35(4):316-319. 

Fisch, K.M., et al. Omics Pipe: a community-based framework for reproducible multi-omics data 

analysis. Bioinformatics 2015;31(11):1724-1728. 

Gafni, E., et al. COSMOS: Python library for massively parallel workflows. Bioinformatics 

2014;30(20):2956-2958. 

Golosova, O., et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq 

and ChIP-seq data analyses. PeerJ 2014;2:e644. 

Goodstadt, L. Ruffus: a lightweight Python library for computational pipelines. Bioinformatics 

2010;26(21):2778-2779. 

Koster, J. and Rahmann, S. Snakemake--a scalable bioinformatics workflow engine. 

Bioinformatics 2012;28(19):2520-2522. 

Leipzig, J. A review of bioinformatic pipeline frameworks. Brief Bioinform 2017;18(3):530-536. 

Love, M.I., Huber, W. and Anders, S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol 2014;15(12):550. 

Nocq, J., et al. Harnessing virtual machines to simplify next-generation DNA sequencing 

analysis. Bioinformatics 2013;29(17):2075-2083. 

Okonechnikov, K., et al. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 

2012;28(8):1166-1167. 

Vivian, J., et al. Toil enables reproducible, open source, big biomedical data analyses. Nat 

Biotechnol 2017;35(4):314-316. 

Wolstencroft, K., et al. The Taverna workflow suite: designing and executing workflows of Web 

Services on the desktop, web or in the cloud. Nucleic Acids Res 2013;41(Web Server 

issue):W557-561. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581009doi: bioRxiv preprint 

https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

