bioRxiv preprint doi: https://doi.org/10.1101/581009; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

CGAT-core: a python framework for building scalable, reproducible
computational biology workflows

Adam P Cribbs!?, Sebastian Luna-Valerol, Charlotte Georgel, lan M Sudbery3, Antonio ]
Berlanga-Taylor?, Steven N Sansom?®, Thomas Smith®, Nicholas E. Ilott5, Jethro Johnson?, Jakub

Scaberl, Katherine Brown8, David Sims!, Andreas Heger!

1 MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine,
University of Oxford, Oxford, UK.

2 Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and
Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research
Unit (BRU), University of Oxford, Oxford, UK

3 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10
2TN, UK.

4+MRC-PHE Centre for Environment and Health, Department of Epidemiology & Biostatistics,
School of Public Health, Faculty of Medicine, Imperial College London, St Mary's Campus,
Norfolk Place, London, UK.

5 Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom

6 Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge,
Cambridge, UK

7 The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA.

8 Division of Virology, Department of Pathology, University of Cambridge, UK

Abstract

In the genomics era computational biologists regularly need to process, analyse and integrate
large and complex biomedical datasets. Analysis inevitably involves multiple dependent steps,
resulting in complex pipelines or workflows, often with several branches. Large data volumes
mean that processing needs to be quick and efficient and scientific rigour requires that analysis
be consistent and fully reproducible. We have developed CGAT-core, a python package for the
rapid construction of complex computational workflows. CGAT-core seamlessly handles
parallelisation across high performance computing clusters, integration of Conda

environments, full parameterisation, database integration and logging. To illustrate our


https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581009; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

workflow framework, we present a pipeline for the analysis of RNAseq data using pseudo-

alignment.

Availability: CGAT-core is freely available under an MIT licence for installation and use,

including source code at https://github.com/cgat-developers/cgat-core

Contact: andreas.heger@imm.ox.ac.uk (AH), david.sims@imm.ox.ac.uk (DS),
adam.cribbs@imm.ox.ac.uk (AC)

Supplementary information:

1. Introduction
Genomic technologies have given researchers the ability to produce large amounts of data at
relatively low cost. Bioinformatic analyses typically involve passing data through a series of
manipulations and transformations, called a pipeline or workflow. The need for tools to
manage workflows is well established, with a wide range of options available from graphical
user interfaces such as Galaxy (Afgan, et al,, 2016) and Taverna (Wolstencroft, et al., 2013),
aimed at non-programmers, to Snakemake, Nextflow, Toil, Ruffus and others (Di Tommaso, et
al,, 2017; Fisch, et al,, 2015; Gafni, et al.,, 2014; Golosova, et al., 2014; Koster and Rahmann,
2012; Nocq, et al.,, 2013; Okonechnikov, et al,, 2012; Vivian, et al,, 2017) developed with
computational biologists in mind. These tools differ in their portability, scalability, parameter
handling, extensibility, and ease of use. In a recent survey (Leipzig, 2017), the tool rated
highest for ease of pipeline development was Ruffus (Goodstadt, 2010), a Python package that
wraps pipeline steps in discrete Python functions, called ‘tasks’. It uses Python decorators to
track the dependencies between tasks, ensuring that dependent tasks are completed in the
correct order and independent tasks can be run in parallel. If a pipeline is interrupted before
completion, or new input files are added, only data sets that are missing or out-of-date are re-
run. Ruffus implements a wide range of decorators that allow complex operations on input files
including: conversion of a single input file to a single output file; splitting of a file into multiple
files (and vice versa) and conditional merging of multiple input files into a smaller number of
outputs. More advanced options include combining combinations or permutations of input files
and conditional execution based on input parameters. Use of decorators means that Ruffus
pipelines are native Python scripts, rather than the domain specific languages (DSLs) used in

other workflow tools. A key advantage of this, in addition to python being an already widely


https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581009; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

understood language in computational biology, is that individual steps can use arbitrary
python code, both in how they are linked together and in the actual processing task.

Here, we introduce Computational Genomics Analysis Toolkit (CGAT)-core, an open-source
python library that extends the functionality of Ruffus by adding cluster interaction,

parameterisation, logging, database interaction and Conda (https://conda.io) environment

switching.

2. Main features
CGAT-core extends the functionality of Ruffus by providing a common interface to control
distributed resource management systems using DRMAA (Distributed Resource Management

Application API, http://www.drmaa.org/). Currently, we support interaction with Sun Grid

Engine, Slurm and PBS-pro/Torque. The execution engine enables tasks to be run locally or on
a high-performance computing cluster and supports cluster distribution of both command line
scripts (cgatcore.run) and python functions (cgatcore.cluster). System resources (number of
cores to use, amount of RAM to allocate) can be set on a per-pipeline, per-task, or per task-
instance basis, even allowing allocation to be based in variables, for example input file size.

The parameter management component encourages the separation of workflow/tool
configuration from implementation to build re-usable workflows. Algorithm parameters are
collected in a single human-readable yaml configuration file. Thus, parameters can be set
specifically for each dataset, without the need to modify the code. For example, sequencing
data can be aligned to a different reference genome, by simply changing the path to the genome
index in the yaml file. Both pipeline-wide and job-local parameters are automagically
substituted into command line statements at execution-time.

To assist with reproducibility, record keeping and error handling CGAT-core provides multi-
level logging during workflow execution, recording full details of runtime parameters,
environment configuration and tracking job submissions. Additionally, CGAT-core provides a
simple, lightweight interface for interacting with relational databases such as SQLite
(cgatcore.database), facilitating loading of analysis results at any step of the workflow,
including combining output from parallel steps in single wide- or long-format tables.
CGAT-core can load a different Conda environment for each step of the analysis, enabling the
use of tools with conflicting software requirements. Furthermore, providing Conda

environment files alongside pipeline scripts ensures that analyses can be fully reproduced.


https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581009; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

CGAT-core workflows are Python scripts, and as such are stand-alone command line utilities
that do not require the installation of a dedicated service. In order to reproducibly execute our
workflows, we provide utility functions for argument parsing, logging and record keeping
within scripts (cgatcore.experiment). Workflows are started, inspected and configured through
the command line interface. Therefore, workflows become just another tool and can be re-used
within other workflows. Furthermore, workflows can leverage the full power of Python,

making them completely extensible and flexible.

3. Implementation
To illustrate a simple use case of CGAT-core, we have built an example RNAseq analysis
pipeline, which performs read counting using Kallisto (Bray, et al, 2016) and differential
expression using DESeq2 (Love, et al, 2014). This workflow and Conda environment are

contained within our CGAT-showcase repository (https://github.com/cgat-developers/cgat-

showcase). The workflow highlights how simple pipelines can be constructed using CGAT-core,
demonstrating how the pipeline can be configured using a yaml file, how third-party tools can
be executed efficiently across a cluster or on a local machine, and how data can be easily loaded
into a database. Furthermore, we and others have been extensively using CGAT-core to build
pipelines for computational genomics (https://github.com/cgat-developers/cgat-flow).

CGAT-core is implemented in Python 3 and installable via Conda and PyPI (https://pypi.org)
with minimal dependencies. We have successfully deployed and tested the code on 0OSX, Red
Hat and Ubuntu. We have made CGAT-core and associated repositories open-source under the
MIT licence, allowing full and free use for both commercial and non-commercial purposes. Qur
software is fully documented (http://cgat-core.readthedocs.io/), version controlled and has

extensive testing using continuous integration (https://travis-ci.org/cgat-developers.) We

welcome community participation in code development and issue reporting through GitHub.

4. Discussion
CGAT-core extends the popular Python workflow engine Ruffus by adding desirable features
from a variety other workflow systems to form an extremely simple, flexible and scalable
package. CGAT-core provides seamless high-performance computing cluster interaction and
adds Conda environment integration for the first time. In addition, our framework focuses on
simplifying the pipeline development and testing process by providing convenience functions

for parameterisation, database interaction, logging and pipeline interaction.

4


https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581009; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

The ease of pipeline development enables CGAT-core to bridge the gap between exploratory
data analysis and building production workflows. A guiding principle is that it should be as
easy (or easier) to complete a series of tasks using a simple pipeline compared to using an
interactive prompt, especially once cluster submission is considered. CGAT-core enables the
production of analysis pipelines that can easily be run in multiple environments to facilitate
sharing of code as part of the publication process. Thus, CGAT-core encourages a best-practice
reproducible research approach by making it the path of least resistance. For example,
exploratory analysis in Jupyter Notebooks can be converted to a Python script or used directly
in the pipeline. Similarly, exploratory data analysis in R, or any other language, can easily be
converted to a script that can be run by the pipeline. This lightweight wrapping of quickly
prototyped analysis forms a lab book, enabling rapid reproduction of analyses and reuse of

code for different data sets.

Availability and requirements

Project Name: CGAT-core

Project Home Page: http://cgat-core.readthedocs.io/
Operating system(s): Linux/Unix

Programming language: Python 3

Other requirements:

Licence: MIT

Any restrictions to use by non-academics: None

Abbreviations
DSL - Domain Specific Languages
API - Application Programming Interface

DRMAA - Distributed Resource Management Application API

Competing interests

The authors declare that they have no competing interests.

Afgan, E, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Res 2016;44(W1):W3-W10.


https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/581009; this version posted March 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Bray, N.L,, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol
2016;34(5):525-527.

Di Tommaso, P., et al. Nextflow enables reproducible computational workflows. Nat Biotechnol
2017;35(4):316-310.

Fisch, K.M, et al. Omics Pipe: a community-based framework for reproducible multi-omics data
analysis. Bioinformatics 2015;31(11):1724-1728.

Gafni, E,, et al. COSMOS: Python library for massively parallel workflows. Bioinformatics
2014;30(20):2956-2958.

Golosova, 0,, et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq
and ChIP-seq data analyses. Peer] 2014;2:e644.

Goodstadyt, L. Ruffus: a lightweight Python library for computational pipelines. Bioinformatics
2010;26(21):2778-2779.

Koster, J. and Rahmann, S. Snakemake--a scalable bioinformatics workflow engine.
Bioinformatics 2012;28(19):2520-2522.

Leipzig, ]J. A review of bioinformatic pipeline frameworks. Brief Bioinform 2017;18(3):530-536.
Love, M.I,, Huber, W. and Anders, S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeqZ2. Genome Biol 2014;15(12):550.

Nocq, ], et al. Harnessing virtual machines to simplify next-generation DNA sequencing
analysis. Bioinformatics 2013;29(17):2075-2083.

Okonechnikov, K,, et al. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics
2012;28(8):1166-1167.

Vivian, ], et al. Toil enables reproducible, open source, big biomedical data analyses. Nat
Biotechnol 2017;35(4):314-316.

Wolstencroft, K, et al. The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Res 2013;41(Web Server
issue):W557-561.


https://doi.org/10.1101/581009
http://creativecommons.org/licenses/by/4.0/

