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Abstract

Promoter-anchored chromatin interactions (PAls) play a pivotal role in transcriptional regulation.
Current high-throughput technologies for detecting PAls, such as promoter capture Hi-C, are not
scalable to large cohorts. Here, we present an analytical approach that uses summary-level data
from cohort-based DNA methylation (DNAm) quantitative trait locus (mQTL) studies to predict
PAls. Using mQTL data from human peripheral blood (n=1,980), we predicted 34,797 PAls which
showed strong overlap with the chromatin contacts identified by previous experimental assays.
The promoter-interacting DNAm sites were enriched in enhancers or near expression QTLs.
Genes whose promoters were involved in PAls were more actively expressed, and gene pairs with
promoter-promoter interactions were enriched for co-expression. Integration of the predicted
PAls with GWAS data highlighted interactions among 601 DNAm sites associated with 15 complex
traits. This study demonstrates the use of mQTL data to predict PAls and provides insights into

the role of PAIs in complex trait variation.
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Introduction

Genome-wide association studies (GWASs) in the past decade have identified tens of thousands
of genetic variants associated with human complex traits (including common diseases) at a
stringent genome-wide significance levell.2. However, most of the trait-associated variants are
located in non-coding regions3+4, and the causal variants as well as their functional roles in trait
etiology are largely unknown. One hypothesis is that the genetic variants affect the trait through
genetic regulation of gene expression4. Promoter-anchored chromatin interaction (PAI)56 is a key
regulatory mechanism whereby non-coding genetic variants alter the activity of cis-regulatory
elements and subsequently regulate the expression levels of the target genes. Therefore, a
genome-wide map of PAls is essential to understand transcriptional regulation and the genetic

regulatory mechanisms underpinning complex trait variation.

High-throughput experiments, such as Hi-C7 and ChIA-PET (chromatin interaction analysis by
paired-end tag sequencing)8, have been developed to detect chromatin interactions by a massively
parallelized assay of ligated DNA fragments. Hi-C is a technique based on chromosome
conformation capture (3C)? to quantify genome-wide interactions between genomic loci that are
close in three-dimensional (3D) space, and ChIA-PET is a method that combines ChIP-based
methods!® and 3C. However, these high-throughput assays are currently not scalable to
population-based cohorts with large sample sizes because of the complexity of generating a DNA
library for each individual (tissue or cell line) and the extremely high sequencing depth needed to
achieve high detection resolution!l. On the other hand, recent technological advances have
facilitated the use of epigenomic marks to infer the chromatin state of a specific genomic locus
and further to predict the transcriptional activity of a particular gene!213. There have been
increasing interests in the use of epigenomic data (e.g., DNA methylation (DNAm) and/or histone
modification) to infer chromatin interactions!417. These analyses, however, rely on individual-
level chromatin accessibility data often only available in small samplest416, and it is not
straightforward to use the predicted chromatin interactions to interpret the variant-trait

associations identified by GWAS.

In this study, we proposed an analytical approach to predict chromatin interaction by detecting
the association between DNAm levels of two CpG sites due to the same set of genetic variants (i.e.,
pleiotropic association between DNAm sites). This can be achieved because if the methylation
levels (unmethylated, partly methylated or fully methylated) of a pair of relatively distal CpG sites
covary across individuals and such covariation is not (or at least not completely) caused by
environmental or experimental factors (evidenced by the sharing of a common set of causal

genetic variants in cis) (Fig. 1b), it is very likely that the two genomic regions interact (having
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72  contacts or functional links because of their close physical proximity in 3D space). Our analytical
73  approach was based on two recently developed methods, i.e., the summary-data-based Mendelian
74  randomization (SMR) test and the test for heterogeneity in dependent instruments (HEIDI)18,
75  which are often used in combination to detect pleiotropic association between a molecular
76  phenotype (e.g. gene expression or DNA methylation) and a complex trait'8 or between two
77  molecular phenotypes?. The SMR & HEIDI approach only requires summary-level data from DNA
78  methylation quantitative trait locus (mQTL) studies, providing the flexibility of using mQTL data
79  from studies with large sample sizes to ensure efficient power. Since the proposed method is
80  based on cohort-based genetic data, it also allows us to integrate the predicted chromatin
81 interactions with GWAS results to understand the genetic regulatory mechanisms for complex
82  traits. In this study, we analyzed mQTL summary data from a meta-analysis of two cohort-based
83  studies on 1,980 individuals with DNAm levels measured by Illumina 450K methylation arrays
84  and SNP data from SNP-array-based genotyping followed by imputation to the 1000 Genome
85  Project (1KGP) reference panels19.20,
86
87  Results
88  Predicting promoter-anchored chromatin interactions using mQTL data
89  Asdescribed above, our underlying hypothesis was that if the variation between people in DNAm
90 levels of two relatively distal CpG sites are associated due to the same set of causal genetic variants
91  (Fig. 1b), then it is very likely that these two chromatin regions have contacts or functional links
92  because of their close physical proximity in 3D space. Hence, we set out to predict promoter-
93  anchored chromatin interactions (PAls) from mQTL data. We applied the SMR & HEIDI approach?8
94  to test for pleiotropic associations of a DNAm site in the promoter region of a gene with all the
95  other DNAm sites within 2 Mb of the focal promoter in either direction (excluding those in the
96  focal promoter) using mQTL summary data from peripheral blood samples (Fig. 1, Fig. S1 and
97  Methods). Therefore, our analysis was a scan for genomic regions that are functionally associated
98  with promoter regions likely because of chromatin contacts or close physical proximity in 3D
99  space. Note that we limited the analysis to a 2 Mb window because chromatin interactions
100  between genomic sites more than 2 Mb apart are rare?!, because summary data from epigenetic
101  QTL studies are often only available for genetic variants in cis-regions, and because it reduces the
102  computational and multiple testing burdens. The mQTL summary data were generated from a
103  meta-analysis of two mQTL data sets from McRae et al. (n = 1,980)19.20, The mQTL effects were in
104  standard deviation (SD) units of DNAm levels. In the SMR analysis, the promoter DNAm site was
105  used as the “exposure” and each of the other DNAm sites in the region was used as the “outcome”
106  (Fig. 1). For exposure probes, we included in the SMR analysis only the DNAm sites with at least
107  one cis-mQTL (SNPs within 2 Mb of the CpG site associated with variation in DNAm level) at PmqrL
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108 <5 x 10-8 We used such a stringent significance level because a basic assumption of Mendelian
109 randomization is that the SNP instrument needs to be strongly associated with the exposure?2:23,
110  There were 90,749 DNAm probes with at least one cis-mQTL at Pmqr. < 5 x 10-8, 28,732 of which
111  were located in promoters annotated based on data from blood samples of the Roadmap
112  Epigenomics Mapping Consortium (REMC)13. We used the 1KGP-imputed Health and Retirement
113  Study (HRS)24 data as a reference sample for linkage disequilibrium (LD) estimation to perform
114  the HEIDI test, which was used to reject SMR associations between DNAm sites not driven by the
115  same set of causal variants (called linkage model in Zhu et al.18). In total, we identified 34,797 PAls
116  between pairwise DNAm sites that passed the SMR test (Pswr < 1.76 x 10-9 based on a Bonferroni
117  correction for multiple tests) and were not rejected by the HEIDI test (Pugini > 0.01; see Wu et al.1?
118  for the justification of the use of this HEIDI threshold P value). The significant PAls comprised of
119 21,787 unique DNAm sites, among which 10,249 were the exposure probes in promoter regions
120  of 4,617 annotated genes. Most of the DNAm sites in promoters showed pleiotropic associations
121  with multiple DNAm sites (mean = 4) (Fig. S2a). The distances between 95% of the pairwise
122  interacting DNAm sites were less than 500 Kb (mean = 79 Kb and median = 23 Kb). Only ~0.7%
123  ofthe predicted PAIs were between DNAm sites greater than 1 Mb apart (Fig. S2b). The summary
124  statistics of the predicted PAls are publicly available through the M2Mdb Shiny online application
125 (URLs).

126

127  Overlap of the predicted PAls with chromatin contacts identified from experimental assays
128  We first examined whether the predicted PAls are consistent with chromatin contacts identified
129 by experimental assays, such as Hi-C21 and promoter captured Hi-C (PCHi-C)5. While the majority
130  of experimental assays are measured in primary cell lines, topological associated domains (TADs)
131  annotated from Hi-C are relatively conserved across cell types?5. We therefore tested the overlap
132 of our predicted PAls with the TADs identified from recent Hi-C and PCHi-C studies52126 (see
133  Supplementary Table 1 for a full list of data sets from experimental assays used in this study).
134  We found that 22,024 (63.3%) of the predicted PAls were between DNAm sites located in the
135  TADs identified by Rao et al. using Hi-C in the GM12878 cell lines?1, 27,200 (78.2%) in those by
136  Dixon et al. using Hi-C in embryonic stem cells26, and 27,716 (79.7%) in those by Javierre et al.
137  using PCHi-C in primary hematopoietic cells. These overlaps with Hi-C and PCHi-C data were
138  significantly higher than expected by chance (P < 0.001 for all the three Hi-C/PCHi-C data sets; Fig.
139  2a-c). Note that the P value was computed by comparing the observed number to a null
140  distribution generated by resampling the same number of DNAm pairs at random from distance-
141  matched DNAm pairs included in the SMR analysis (Methods); the P value was truncated at 0.001
142  due to the finite number of resampling. One example was the MAD1L1 locus (a ~450 Kb region)
143  onchromosome 7 (Fig. 2d and Fig. 2e) where there were a large number of predicted PAIs highly
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144  consistent with TADs identified by Hi-C from the Rao et al. study?!. There were also scenarios
145  where the predicted PAls were not aligned well with the TAD data. For example, 107 of the 183
146  predicted PAls at the RPS6KAZ2 gene locus did not overlap with the TADs identified by Hi-C from
147  the Rao et al. study?! (Fig. S3a). These predicted interactions, however, are very likely to be
148  functional as indicated by our subsequent analysis with GWAS and omics data (see below).
149  Additionally, the predicted PAls were slightly enriched for the Hi-C loops identified from Rao et
150  al?1 (1.49-fold, P < 0.001, m = 130; Fig. 3a) and the POLR2A ChIA-PET loops from the ENCODE?”
151  project (1.44-fold, P < 0.001, m = 2,315; Fig. 3b), although the numbers of overlaps were small.
152 One notable example was the GNBI locus where the predicted PAI between the promoter region
153  of GNBI and an enhancer nearby is consistent with the enhancer-promoter interaction identified
154 by both Hi-C from Rao et al.?! and PCHi-C from Jung et al.28 in the GM12878 cell lines (Fig. S4).
155

156 Comparison with other prediction methods

157  To assess the performance of our PAI prediction method, we compared it with two state-of-the-
158  artapproaches of this kind, i.e., the correlation-based method used in Gate et al.2 and the pairwise
159  hierarchical model (PHM) method developed by Kumasaka et all’, using the DNAm data
160  described above or the chromatin accessibility data (measured by Assay for Transposase-
161  Accessible Chromatin using sequencing (ATAC-seq)) from Kumasaka et al.l”. We used a recently
162  released chromatin interaction data (PCHi-C loops) generated by Jung et al.28 in GM12878 cell
163  lines for validation, and quantified the enrichment of the predicted interactions in the PCHi-C
164  loops defined based on a range of PCHi-C P value thresholds. We chose the PCHi-C data from Jung
165  etal because the P values of all the tested loops are available and because compared to other Hi-
166 C data sets, chromatin interactions identified in GM12878 cell lines may be more relevant to the
167  predicted PAls in whole blood. We computed the fold enrichment of the predicted interactions by
168  the three methods in the PCHi-C loops by a 2 X 2 contingency table and used the Fisher’s exact
169 test to assess the statistical significance of the enrichment (Methods). The results showed that
170  our predicted PAls using either DNAm or chromatin accessibility data were highly enriched in the
171  PCHi-C loops and that the fold enrichment increased with the increase of the significance level
172  used to claim the PCHi-C loops (Fig. 3¢), consistent with the observation from previous work that
173  Hi-Cloops with lower P values are more reproducible between biological replicates30. Our SMR &
174  HEIDI method outperformed the correlation-based method using either DNAm or chromatin
175  accessibility data, as evidenced by the larger fold enrichment of our method compared to the
176  correlation-based method at all the PCHi-C significance levels (Fig. 3c). We also compared the
177  predicted PAIs with the interactions identified from the PHM approach!? using the chromatin
178  accessibility data. Of the 15,487 interactions identified by the PHM approach, 10,416 were tested
179  in our SMR & HEIDI analysis; 98.4% were replicated at a nominal significance level (Pswr < 0.05
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180  and Puemi > 0.01), and 36% were significant after multiple testing correction (Psur < 4.8 x 10-6
181  (0.05/10,416) and Pueni> 0.01). While the PHM approach requires individual-level genotype and
182  chromatin accessibility data and is less computationally efficient due to the use of Bayesian
183  hierarchical model, our SMR & HEIDI method that requires only summary-level data is more
184  flexible and can be potentially applied to all epigenetic QTL data.

185

186  Enrichment of the predicted PAls in functional annotations

187  Toinvestigate the functional role of the DNAm sites that showed significant interactions with the
188 DNAm sites in promoter regions (called promoter-interacting DNAm sites or PIDSs hereafter), we
189  conducted an enrichment analysis of the PIDSs (m = 14,361) in 14 main functional annotation
190  categories derived from the REMC blood samples (Methods). The fold-enrichment was computed
191  as the proportion of PIDSs in a functional category divided by the mean of a null distribution
192  generated by resampling variance-matched “control” probes at random from all the outcome
193  probes used in the SMR analysis. We found a significant enrichment of PIDSs in enhancers (fold-
194  enrichment=2.17 and Penrichment < 0.001), repressed Polycomb regions (fold-enrichment=1.56 and
195  Penrichment < 0.001), primary DNase (fold-enrichment=1.43 and Penrichment < 0.001) and bivalent
196  promoters (fold-enrichment=1.12 and Penrichment < 0.001) and a significant underrepresentation in
197  transcription starting sites (fold-enrichment=0.21 and Penrichment < 0.001), quiescent regions (fold-
198  enrichment=0.74 and Penrichment < 0.001), promoters around transcription starting sites (fold-
199  enrichment=0.77 and Penrichment < 0.001), and transcribed regions (fold-enrichment=0.90 and
200  Penrichment < 0.001) in comparison with the control probes (Fig. 4a and Fig. 4b). On one hand, the
201  enrichment test is not biased by the fact that the Illumina 450K methylation array probes are
202  preferentially distributed towards certain genomic regions (e.g., promoters; Fig. 4a) because it
203  tests against control probes sampled from probes on the array rather than random genomic
204 positions. On the other hand, however, this test is over conservative because the control probes
205 are enriched in certain functional genomic regions (Fig. S5a) and can possible contain some of
206  the PIDSs, which may explain the relatively small fold enrichments observed above. The depletion
207  of PIDSs in promoters was due to the exclusion of outcome probes from the focal promoters
208 (Methods; Fig. S5b). In addition, a large proportion (~18%) of the predicted PAls were promoter-
209  promoter interactions (PmPml), consistent with the results from previous studies53! that PmPmlI
210  were widespread.

211

212  Relevance of the predicted PAls with gene expression

213  We then turned to test whether pairwise genes with significant PmPmI were enriched for co-
214  expression. We used gene expression data (measured by Transcript Per Kilobase Million mapped

215  reads or TPM) from the blood samples of the Genotype-Tissue Expression (GTEx) project32 and
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216  computed the Pearson correlation of expression levels across individuals between pairwise genes
217  (re). To assess the statistical significance of the enrichment, we compared the observed mean
218  Pearson correlation of all the significant PmPmlI gene pairs (m = 2,236) to a null distribution of
219  mean Pearson correlation values, generated by resampling a set of distance-matched control gene
220  pairs either from the genes whose promoters were involved in the SMR analysis or from all genes.
221  The mean correlation for the significant PmPml gene pairs (7p) was 0.367, significantly (P < 0.001)
222  higher than that for the control gene pairs sampled either from the genes whose promoters were
223  involved in SMR (mean 7 = 0.292; Fig. 4c) or from all genes (mean 7 = 0.156; Fig. 4c), suggesting
224  that pairwise genes with PmPml are more likely to be co-expressed.

225

226  We also tested whether genes whose promoters were involved in significant PAI (called Pm-PAI
227  genes hereafter, Fig. 1) were expressed more actively than the same number of control genes
228 randomly sampled from the genes whose promoters were involved in SMR or from all genes.
229  Similar to the analysis above, we used the gene expression data (measured by TPM) from the
230  blood samples of the GTEx project and tested the enrichment of Pm-PAI genes in different
231  expression level groups (Methods). In comparison to the control sets sampled from the genes
232  whose promoters were involved in SMR, Pm-PAI genes were significantly overrepresented (P <
233 0.001) among the group of genes with the highest expression levels and significantly
234  underrepresented (P < 0.001) among genes that were not actively expressed (median TPM < 0.1)
235  (Fig. 4d). These results implicate the regulatory role of the PIDSs in transcription and their
236  asymmetric effects on gene expression. The enrichment was much stronger if the control sets
237  were sampled from all genes (Fig. S6a). We also performed a similar enrichment analysis (testing
238  against the control sets sampled from all genes) for the predicted target genes from the PCHi-C
239  datafrom Jung et al.28. There was a significant enrichment of the PCHi-C target genes in the active
240  gene groups, but the fold enrichment was slightly smaller than that of the Pm-PAI genes (Fig. S6),
241  suggesting that PAls could be more functionally relevant than PCHi-C loops.

242

243  Enrichment of eQTLs in the PIDS regions

244  We have shown that the PIDSs are located in regions enriched with regulatory elements (e.g.,
245  enhancers) (Fig. 4b) and that the Pm-PAI genes tend to have higher expression levels (Fig. 4d).
246  We next investigated if genomic regions near PIDS are enriched for genetic variants associated
247  with expression levels of the Pm-PAI genes using data from an expression QTL (eQTL) study in
248  blood33. There were 11,204 independent cis-eQTLs at Peqr. < 5 x 10-8 for 9,967 genes, among
249  which 2,019 were Pm-PAI genes (Methods). We mapped cis-eQTLs to a 10 Kb region centered
250 around each PIDS (5 Kb on either side) and counted the number of cis-eQTLs associated with

251  expression levels of the corresponding Pm-PAI gene for each PIDS. There were 548 independent
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252  eQTLs located in the PIDS regions of the Pm-PAI genes, significantly higher than (P < 0.001) the
253  mean of a null distribution (mean = 415) generated by randomly resampling distance-matched
254  pairs of DNAm sites used in the SMR analysis (Fig. 5a). These results again imply the regulatory
255  role of the PIDSs in transcription through eQTLs and provide evidence supporting the functional
256  role of the predicted PAls.

257

258  There were examples where a cis-eQTL was located in a PIDS region predicted to interact with
259  the promoters of multiple genes. For instance, a cis-eQTL was located in an enhancer predicted to
260 interact with the promoters of three genes (i.e.,, ABCB9, ARL6IP4, and MPHOSPH9) (Fig. S7), and
261  the predicted interactions were consistent with the TADs identified by Hi-C from Rao et al.2! (Fig.
262  S3b).Furthermore, the predicted interactions between promoters of ARL6IP4 and MPHOSPH9 are
263  consistent with the chromatin contact loops identified by Hi-C in the GM12878 cells?! (Fig. S7).
264  The eQTL association signals were highly consistent for the three genes, and the pattern was also
265  consistent with the SNP association signals for schizophrenia (SCZ) and years of education (EY)
266  as shown in our previous work19, suggesting a plausible mechanism whereby the SNP effects on
267  SCZ and EY are mediated by the expression levels of at least one of the three co-regulated genes
268  through the interactions of the enhancer and three promoters (Fig. S7).

269

270  Wehave shown previously that the functional association between a DNAm site and a gene nearby
271  can be inferred by the pleiotropic association analysis using SMR & HEIDI considering the DNAm
272  level of a CpG site as the exposure and gene expression level as the outcome!9. We further tested
273  if the PIDSs are enriched among the DNAm sites showing pleiotropic associations with the
274  expression levels of the neighboring Pm-PAI genes. We found that approximately 15% of the
275  PIDSs were the gene-associated DNAm sites identified in our previous study?9, significantly higher
276 (P <0.001) than that computed from the distance-matched control probe pairs (1.3%) described
277  above (Fig. 5b).

278

279  Replication of the predicted PAIs across tissues

280  To investigate the robustness of the predicted PAls across tissues, we performed the PAI analysis
281  using brain mQTL data from the Religious Orders Study and Memory and Aging Project
282  (ROSMAP)34 (n = 468). Of the 11,082 PAIs with Pswr < 1.76 x 10-9 and Pggini > 0.01 in blood and
283  available in brain, 2,940 (26.5%) showed significant PAIs in brain after Bonferroni correction for
284  multiple testing (Psur < 4.51 x 10-6 and Puei > 0.01). If we use a less stringent threshold for
285  replication, e.g.,, the nominal P value of 0.05, 66.31% of PAls predicted in blood were replicated in
286  brain. Here, the replication rate is computed based on a P value threshold, which is dependent of

287  thesample size of the replication data. Alternatively, we can estimate the correlation of PAI effects
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288  (i.e, the effect of the exposure DNAm site on the outcome site of a predicted PAI) between brain
289  and blood using the r, method3S. This method does not rely on a P value threshold and accounts
290 for estimation errors in the estimated effects, which is therefore not dependent of the replication
291  sample size. The estimate of r, was 0.527 (SE = 0.0051) for 11,082 PAIs between brain and blood,
292  suggesting a relatively strong overlap in PAI between brain and blood.

293

294  Itis of note that among the 2,940 blood PAls replicated at Pswr < 4.51 x 10-6 and Pygioi > 0.01 in
295  brain, there were 268 PAls for which the PAI effects in blood were in opposite directions to those
296  inbrain (Supplementary Table 2). For example, the estimated PAI effect between the SORTI and
297  SYPLZ2 loci was 0.49 in blood and -0.86 in brain. This tissue-specific effect is supported by the
298  differences in gene expression correlation (correlation of expression levels between SORT1 and
299  SYPL2 was -0.07 in whole blood and -0.37 in brain frontal cortex; Pditerence = 0.0018) and the
300 chromatin state of the promoter of SYPL2 (bivalent promoter in blood and active promoter in
301  brain; Fig. S8) between brain and blood. Taken together, while there are tissue-specific PAls, a
302  substantial proportion of the predicted PAls in blood are consistent with those in brain.

303

304  Putative target genes of the disease-associated PIDSs

305 We have shown above the potential functional roles of the predicted PAls in transcriptional
306  regulation. We then turned to ask how the predicted PAls can be used to infer the genetic and
307  epigenetic regulatory mechanisms at the GWAS loci for complex traits and diseases. We have
308  previously reported 1,203 pleiotropic associations between 1,045 DNAm sites and 15 complex
309 traits and diseases by an integrative analysis of mQTL, eQTL and GWAS data using the SMR &
310  HEIDI approach?9. Of the 1,045 trait-associated DNAm sites, 601 (57.5%) sites were involved in
311  the predicted PAls related to 299 Pm-PAI genes (Supplementary Table 3). We first tested the
312  enrichment of the Pm-PAI genes of the trait-associated PIDSs using FUMAS36, For the 15 complex
313  traits analysed in Wu et al.19, our FUMA analyses identified enrichment in multiple GO and KEGG
314  pathways relevant to the corresponding phenotypes such as the inflammatory response pathway
315 for Crohn’s disease (CD) and steroid metabolic process for body mass index (BMI)
316  (Supplementary Table 4), demonstrating the regulatory role of the trait-associated PIDSs in
317  biological processes and tissues relevant to the trait or disease.

318

319  There were a number of examples where the predicted PAls provided important insights to the
320 functional genes underlying the GWAS loci and the underlying mechanisms by which the DNA
321  variants affect the trait through genetic regulation of gene expression. One notable example was
322  aPIDS (cg00271210) in an enhancer region predicted to interact in 3D space with the promoter
323  regions of two genes (i.e., RNASET2 and RPS6KAZ2), the expression levels of both of which were
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324  associated with ulcerative colitis (UC) and CD as reported in our previous study?? (Fig. 6). The
325  SNP-association signals were consistent across CD GWAS, eQTL, and mQTL studies, suggesting
326  that the genetic effect on CD is likely to be mediated through epigenetic regulation of gene
327  expression. Our predicted PAIs further implicated a plausible mechanism whereby the expression
328  levels of RNASETZ2 and RPS6KAZ are co-regulated through the interactions of their promoters with
329  ashared enhancer (Fig. 6), although only 41.5% of the predicted PAls in this region overlapped
330  with the TADs identified by Hi-C from the Rao et al. study?! (Fig. S3a) as mentioned above.
331  According to the functional annotation data derived from the REMC samples, it appears that this
332  shared enhancer is highly tissue-specific and present only in B cell and digestive system that are
333  closelyrelevant to CD (Fig. 6). The over-expression of RNASETZ in spleen (Fig. $9) is an additional
334  piece of evidence supporting the functional relevance of this gene to CD. Another interesting
335  example is the ATG16L1 locus (Fig. S10). We have shown previously that five DNAm sites are in
336  pleiotropic associations with CD and the expression level of ATG16L11°. Of these five DNAm sites,
337  three were in an enhancer region and predicted to interact in 3D space with two DNAm sites in
338  the promoter region of ATG16L1 (Fig. $10), suggesting a plausible mechanism that the genetic
339  effect on CD at this locus is mediated by genetic and epigenetic regulation of the expression level
340 of ATG16L1 through promoter-enhancer interactions.

341

342  Discussion

343  We have presented an analytical approach on the basis of the recently developed SMR & HEIDI
344  method to predict promoter-anchored chromatin interactions using mQTL summary data. The
345  proposed approach uses DNAm level of a CpG site in the promoter region of a gene as the bait to
346  detect its pleiotropic associations with DNAm levels of the other CpG sites (Fig. 1) within 2 Mb
347  distance of the focal promoter in either direction. In contrast to experimental assays, such as Hi-
348 C and PCHi-C, our approach is cost-effective (because of the reuse of data available from
349  experiments not originally designed for this purpose) and scalable to large sample sizes. Our
350 method utilises a genetic model to perform a Mendelian randomization analysis so that the
351  detected associations are not confounded by non-genetic factors, which is also distinct from the
352  methods that predict chromatin interactions from the correlations of chromatin accessibility
353  measures!416,

354

355  Using mQTL summary-level data from human peripheral blood (n = 1,980), we predicted 34,797
356  PAls for the promoter regions of 4,617 genes. We showed that the predicted PAIs were enriched
357  in TADs detected by published Hi-C and PCHi-C assays and that the PIDS regions were enriched
358  with eQTLs of target genes. We also showed that the PIDSs were enriched in enhancers and that

359  the Pm-PAl genes tended to be more actively expressed than matched control genes. These results
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360 demonstrate the functional relevance of the predicted PAls to transcriptional regulation and the
361 feasibility of using data from genetic studies of chromatin status to infer three-dimensional
362  chromatin interactions. The proposed approach is applicable to data from genetic studies of other
363  chromatin features such as histone modification (i.e,, hQTL)37 or chromatin accessibility (caQTL)2°.
364  The flexibility of the method also allowed us to analyse data from different tissues or cell types.
365  Using summary data from a brain mQTL study (n = 468), we replicated 26.5% of blood PAlIs in
366  brain at a very stringent threshold (Pswr < 0.05 / m with m being the number of tests in the
367  replication set and Pugini > 0.01) and 66.31% at a less stringent threshold (Psur < 0.05). Together
368 with an estimate of r, of 0.527 for the correlation of PAI effects between brain and blood, we
369  demonstrated a substantial overlap of the predicted PAls between blood and brain, in line with
370 the finding from a recent study that cis-mQTLs are largely shared between brain and blood3s.
371

372  The use of a genetic model to detect PAls also facilitated the integration of the predicted PAls with
373  GWAS data. In a previous study, Wu et al.1® mapped DNAm sites to genes and then to a trait by
374  checking the consistency of pleiotropicassociation signals across all the three layers. In this study,
375  we have shown examples of how to integrate the predicted PAls with GWAS, eQTL and functional
376  annotation data to better understand the genetic and epigenetic regulatory mechanisms
377  underlying the GWAS loci for complex traits (Figs. 6, S7, and $10). The pleiotropic associations
378  between DNAm sites involved in PAls and a complex trait are also helpful to link genes to the trait
379  at GWAS loci even in the absence of eQTL data. If both DNAm sites of a PAI show pleiotropic
380  association with the trait, the corresponding Pm-PAI gene is likely to be a functionally relevant
381  gene of the trait. Of the 1,045 DNAm sites that showed pleiotropic associations with 15 complex
382  traits as reported in Wu et al19, 601 sites were involved in the PAls for 299 Pm-PAI genes
383 identified in this study. In this case, these Pm-PAI genes are very likely to be the functionally
384  relevant genes at the GWAS loci. In comparison with 66 gene targets identified in Wu et al.19
385 (34/66 overlapped with 299 Pm-PAI genes), integration of PAls with GWAS facilitates the
386  discovery of more putative gene targets for complex traits.

387

388  There are several reasons why the overlaps between the predicted PAls and Hi-C loops were
389 limited. First, Hi-C loops were detected with errors. We observed that the concordances between
390 different Hi-C data sets were very limited (Fig. S11), consistent with the conclusion from Forcato
391 et al that the reproducibility of Hi-C loops is low at all resolutions38. Second, most (65%) of our
392  predicted PAIs are interactions between DNAm sites within 50 Kb (Fig. S2b), which are often not
393  well captured by the 3C-based methods due to its low resolution!’. Third, the chromatin
394 interactions are cell type specifics so that differences between the Hi-C loops identified in cell lines

395  and our PAIs identified in whole blood are expected. For the PAls that were between DNAm sites
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396 notlocated in TADs or Hi-C loops, we have shown specific examples that these predicted PAls are
397  likely to be functionally interacted (Fig. 2d and Fig. $3), suggesting that these PAls are likely to
398  be interactions yet to be identified by experimental assays. On the other hand, compared to the
399  loops identified based on 3C-based methods, our predicted PAls are more likely to be functional
400 interactions due to the use of genetic and regulatory epigenomic data, as evidenced by the
401  observation that our predicted Pm-PAI genes showed stronger enrichment in active gene groups
402  compared to the predicted target genes from the PCHi-C data (Fig. S6).

403

404  There are some limitations of this study. First, chromatin interactions are likely to be tissue- and
405 temporal-specific whereas our PAI analyses were limited to mQTL data from blood and brain
406  owing to data availability and thus were unable to detect PAls in specific tissues or at different
407  developmental stages. Second, although the sample size of our blood mQTL summary data is large
408 (n=~2,000), the PAI analysis could be underpowered if the proportion of variance in exposure
409  or outcome explained by the top associated cis-mQTL is small. Third, the predicted PAls are
410 relatively sparse as illustrated in Fig. 2d because of the sparsity of the DNAm array used, the
411  underlying hypothesis of the SMR method, and the stringent statistical significance level used to
412  claim significant PAls (Supplementary Note 1). Fourth, the functional annotation data derived
413  from the REMC samples could potentially include noise due to the small sample sizes, leading to
414  uncertainty in defining the bait promoter regions. Fifth, if the DNAm levels of two CpG sites are
415  affected by two sets of causal variants in very high LD, these two DNAm sites will appear to be
416  associated in the SMR analysis and the power of the HEIDI test to reject such an SMR association
417  will be limited because of the high LD1819. However, this phenomenon is likely to be rare given
418  that most of the promoter-anchored DNAm sites were predicted to interact with multiple DNAm
419  sites which are very unlikely to be all caused by distinct sets of causal variants in high LD. Sixth,
420  the predicted PAIs including those falling in chromatin loops and TAD regions were not
421  necessarily functional interactions and need to be validated by functional assays in the future.
422  Despite these limitations, our study provides a novel computational paradigm to predict PAls
423  from genetic effects on epigenetic markers with high resolution. Integrating of the predicted PAIs
424  with GWAS, gene expression, and functional annotation data provides novel insights into the
425  regulatory mechanisms underlying GWAS loci for complex traits. The computational framework
426 is general and applicable to other types of chromatin and histone modification data, to further

427  decipher the functional organisation of the genome.

428
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429  Methods

430 Predicting PAIs from mQTL data by the SMR and HEIDI analyses

431  We used summary-level mQTL data to test whether the variation between people in DNAm levels
432  of two CpG sites are associated because of a set of shared causal variants. Mendelian
433  Randomization (MR) is an approach developed to test for the causal effect of an exposure and an
434  outcome using a genetic variant as the instrumental variable?223. Summary-data-based
435 Mendelian Randomization (SMR) is a variant of MR, originally designed to test for association
436  between the expression level of a gene and a complex trait using summary-level data from GWAS
437  and eQTL studies!® and subsequently applied to test for associations between DNAm and gene
438  expression and between DNAm and complex traits!%. Here, we applied the SMR analysis to detect
439 associations between DNAm sites. Let x be an exposure DNAm, y be an outcome DNAm, and z be
440  an instrument SNP associated with exposure DNAm (e.g., Pmor. < 5 x 10-8). The SMR estimate of
441  the effect of exposure DNAm on the outcome DNAm (i.e., Bxy) is the ratio of the estimated effect
442  ofinstrument on exposure (b,,) and that on outcome (Bzy), Bxy = Bzy/Bzx, where b,, and Bzy are
443  available from the summary-level mQTL data. We specified the DNAm level of a probe within the
444  promoter region of a gene as the exposure and tested its associations with the DNAm levels of
445  other probes (outcomes) within 2 Mb of the exposure probe (Fig. 1 and Fig. S1). Probe pairs in
446  the same promoter region were not included in the analysis. For a pair of probes in two different
447  promoter regions, the one with higher variance explained by its top associated cis-mQTL was used
448  asthe exposure and the other one was used as the outcome. The associations passed the SMR test
449  could possibly be due to linkage (i.e., distinct sets of causal variants in LD, one set affecting the
450 exposure and the other set affecting the outcome), which is less of biological interest in
451  comparison with pleiotropy (i.e., the same set of causal variants affecting both the exposure and
452  the outcome). We then applied the HEIDI (heterogeneity in dependent instruments) test to
453  distinguish pleiotropy from linkage. In brief, the HEIDI test was developed to test against the null
454  hypothesis that the two DNAm sites are affected by the same set of causal variants. This is
455  equivalent to testing whether there is a difference between the Bxy estimated from any mQTL i
456 (Bxy(i)) and that estimated from the top associated mQTL (Bxy(mp)). If we define the difference in
457  estimate between Bxy at mQTL i and that at top associated mQTL as d; = Bxy(l-) - Bxy(mp), then
458  for multiple mQTLs (i.e., top 20 associated mQTLs after pruning out SNPs in very strong LD), we
459 have (i~MVN(d, V), where d= {dl, e dzo} and V is the covariance matrix that can be estimated
460  using summary-level mQTL data and LD information from a reference panel® (e.g., the 1KGP-
461  imputed HRS24 data). Therefore, we can test the evidence for heterogeneity through evaluating
462  whether d = 0 using an approximate multivariate approach3?. We rejected the SMR associations

463  with Pugini < 0.01. All these analyses have been implemented in the SMR software tool (URLs).
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464  Because the mQTL data for the exposure and the outcome were obtained from the same sample,
465  weinvestigated whether the SMR and HEIDI test-statistics were biased by the sample overlap. To
466  this end, we computed the phenotypic correlation between each pair of exposure and outcome
467  probes as well as the variance explained by the top associated cis-mQTL of each exposure probe,
468  and performed the simulation based on these observed distributions (Supplementary Note 2).
469  The simulation results showed that P values from both SMR and HEIDI tests were evenly
470  distributed under the null model without inflation or deflation (Fig. S12). We have made all the
471  PAls analysis scripts publicly available at GitHub https://github.com/wuyangf7 /PAl.

472

473  Data used for the PAI analysis

474  The peripheral blood mQTL summary data were from the Brisbane Systems Genetics Study
475  (BSGS)40 (n=614) and Lothian Birth Cohorts (LBC) of 1921 and 193641 (n=1,366). We performed
476  a meta-analysis of the two cohorts and identified 90,749 DNAm probes with at least a cis-mQTL
477  at Pmqr. < 5x10-8 (excluding the probes in the major histocompatibility complex (MHC) region
478  Dbecause of the complexity of this region), of which 28,732 DNAm probes were in the promoter
479  regions defined by the annotation data derived from 23 REMC blood samples (T-cell, B-cell, and
480 Hematopoietic stem cells). The prefrontal cortex mQTL summary data were from the Religious
481  Orders Study and Memory and Aging Project (ROSMAP)34 (n=468), comprising 419,253 probes
482  and approximate 6.5 million genetic variants. In the ROSMAP data, there were 67,995 DNAm
483  probes with at least a cis-mQTL at Pmqr. < 5x10-8 (not including the probes in the MHC region), of
484  which 22,285 DNAm probes were in the promoter regions defined by the annotation data derived
485  from 10 REMC brain samples. For all the DNAm probes, enhanced annotation data from Price et
486  al*2 (URLs) were used to annotate the closest gene of each DNAm probe.

487

488  Weincluded in the analysis 15 complex traits (including disease) as analysed in Wu et al.1%. They
489  are height#3, body mass index (BMI)#4, waist-hip-ratio adjusted by BMI (WHRadjBMI)45, high-
490  density lipoprotein (HDL)#6, low-density lipoprotein (LDL)46, thyroglobulin (TG)46, educational
491  years (EY)#’, rheumatoid arthritis (RA)48, schizophrenia (SCZ)*%, coronary artery disease (CAD)50,
492  type 2 diabetes (T2D)51, Crohn's disease (CD)52, ulcerative colitis (UC)52, Alzheimer's disease
493  (AD)53 and inflammatory bowel disease (IBD)52. The GWAS summary data were from the large
494  GWAS meta-analyses (predominantly in samples of European ancestry) with sample sizes of up
495 to 339,224. The number of SNPs varied from 2.5 to 9.4 million across traits.

496

497  Annotations of the chromatin state

498  The epigenomic annotation data used in this study were from the Roadmap Epigenomics Mapping

499  Consortium (REMC), publicly available at http://compbio.mit.edu/roadmap/. We used these data
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500 toannotate the functional relevance of the DNAm sites and their cell type or tissue specificity. The
501 chromatin state annotations from the Roadmap Epigenomics Project'3 were predicted by
502 ChromHMM!2 based on the imputed data of 12 histone-modification marks. It contains 25
503 functional categories for 127 epigenomes in a wide range of primary tissue and cell types (URLSs).
504  The 25 chromatin states were further combined into 14 main functional annotations (as shown
505 inFig. 4b and Wu et al.1?).

506

507  Overlap of the predicted PAIs with Hi-C, PCHi-C and ChIA-PET data

508 To test the overlap between our predicted PAls and chromatin contacts detected by Hi-C, PCHi-C
509  or ChIA-PET, we used chromatin contact loops and topological associated domains (TADs) data
510 from the Rao et al study called in the GM12812 cells?! and the Dixon et al. study in embryonic
511  stem cells26, PCHi-C interaction data generated from human primary hematopoietic cells$, and the
512  POLR2A ChIA-PET chromatin loops from the ENCODE project?” (Supplementary Table 1). To
513  assess the statistical significance of the enrichment, we generated a null distribution by randomly
514  sampling 1,000 sets of control probe pairs (with the same number as that of the predicted PAls)
515  from the distance-matched probe pairs tested in the SMR analysis. We mapped both the predicted
516  PAIs and the control probe pairs to the TAD regions or chromatin contact loops detected by
517  previous experimental assays and quantified the number of overlapping pairs. We estimated the
518 fold enrichment by the ratio of the overlapping number for the predicted PAIs to the mean of the
519  null distribution and computed the empirical P value by comparing the overlapping number for
520 the predicted PAIs with the null distribution.

521

522  We used the chromatin interaction data generated by Jung et al.28 in GM12878 cell lines as a
523  validation set to evaluate the performance of different interaction prediction methods. We
524  quantified the enrichment of the predicted interactions by different methods in the significant
525  PCHi-C loops defined based on a range of PCHi-C P value thresholds and used the Fisher’s exact
526  testto assess the statistical significance of the enrichment.

527

528  Enrichment of the PIDSs in functional annotations

529  To conduct an enrichment test of the promoter interacting DNAm sites (PIDSs) in different
530 functional annotation categories, we first extracted chromatin state data of 23 blood samples from
531 the REMC samples. We then mapped the PIDSs to 14 main functional categories based on the
532  physical positions, and counted the number of PIDSs in each functional category. Again, we
533  generated a null distribution by randomly sampling the same number of control probes (with
534  variance in DNAm level matched with the PIDSs) from all the probes tested in the PAI analysis and

535  repeated the random sampling 1,000 times. The fold enrichment was calculated by the ratio of the
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536  observed value to the mean of the null distribution, and an empirical P value was computed by
537  comparing the observed value with the null distribution.

538

539  Quantifying the expression levels of Pm-PAI genes

540  To quantify the expression levels of genes whose promoters were involved in the predicted PAls
541  (Pm-PAI genes), we used gene expression data (measured by Transcript Per Kilobase Million
542  mapped reads (TPM)) from blood samples of the Genotype-Tissue Expression (GTEx) project32.
543  We classified all the genes into two groups based on their expression levels in GTEx blood, i.e.,
544  active and inactive (TPM < 0.1). For the active genes, we further divided them into four quartiles
545  based on their expression levels in GTEx blood, and counted the number of Pm-PAI genes in each
546  of the five groups. To generate the null distribution, we randomly sampled the same number of
547  control genes whose promoter DNAm sites were included in the SMR analysis, and repeated the
548 random sampling 1,000 times. We computed the number of Pm-PAI genes and control genes in
549  each group and assessed the significance by comparing the number of Pm-PAI genes with the null
550 distribution in each group. We further tested the enrichment of the Pm-PAI genes against a null
551  distribution sampled from all genes.

552

553  Enrichment of eQTLs and gene-associated DNAm in the PIDS regions

554  The eQTL enrichment analysis was conducted using all the independent cis-eQTLs (m=11,204)
555  from the CAGE33 study. The independent cis-eQTLs were from SNP-probe associations (P < 5x10-8)
556  after clumping analysis in PLINK54 followed by a conditional and joint (COJO) analysis in GCTA5S.
557  We only retained the cis-eQTLs whose target genes had at least a PIDS and mapped the cis-eQTL
558 to a 10 Kb region centred around each corresponding PIDS of a Pm-PAI gene. To assess the
559  significance of the enrichment, we generated a null distribution by mapping the cis-eQTLs to the
560 same number of control gene-DNAm pairs (strictly speaking, it is the bait DNAm probe in the
561  promoter of a gene together with another non-promoter DNAm probe) randomly sampled (with
562 1,000 repeats) from those included in the PAI analysis with the distance between a control pair
563  matched with that between a Pm-PAI gene and the corresponding PIDS. In addition, we have
564 identified a set of DNAm sites that showed pleiotropic associations with gene expressions in a
565  previous study!. We used the same approach as described above to test the significance of
566  enrichment of the gene-associated DNAm sites in the PIDSs.

567

568  Supplemental information

569  Supplemental data include 12 supplemental figures and 4 supplemental tables.

570

571 URLs

17


https://doi.org/10.1101/580993
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580993; this version posted December 17, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

572  M2Mdb, http://cnsgenomics.com/shiny/M2Mdb/

573  SMR, http://cnsgenomics.com/software/smr

574  GTEx, http://www.gtexportal.org/home/

575  Annotation file for the [llumina HumanMethylation450 BeadChip,
576  https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304
577
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Figure 1 Schematic of the promoter-anchored interaction (PAI) analysis. Panel a): a schematic of
the PAI analysis. The blue rectangles represent genes with their promoter regions color coded in
red. The small yellow bars represent other functional regions (e.g., enhancers). In this toy example,
the promoter region of Gene A is used as the bait for the PAI analysis. Genes (e.g., genes A and B)
whose promoters are involved in significant PAls are defined as Pm-PAI genes. DNAm sites (e.g.,
DNAm probe 2) that showed significant interactions with the DNAm sites in promoter regions are
defined as promoter-interacting DNAm sites or PIDS. Panel b): variation between people in DNAm

levels of two CpG sites are associated because of a shared causal variant. The DNAm level ranges
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731  from 0 to 1 (with 0 being unmethylated and 1 being fully methylated). It is the ratio of the
732  methylated probe intensity to the overall intensity (sum of methylated and unmethylated probe
733  intensities).

734
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736  Figure 2 Overlap of the predicted PAls with TADs identified by Hi-C and PCHi-C. Panels a), b) and
737  c): overlaps of the predicted PAls with TADs identified by a) Rao et al.2t and b) Dixon et al.26 using
738  Hi-Cand by c) Javierre et al.5 using PCHi-C. The red dash lines represent the observed number and
739  histograms represent the distribution of control sets. Panel d): a heatmap of the predicted PAls
740  (red asterisks) and chromatin interactions with correlation scores > 0.4 (blue dots) identified by
741  Grubert et al56 using Hi-C in a 2 Mb region on chromosome 7. Black squares represent the TADs
742  identified by Rao et al?l. The heatmap is asymmetric for the PAIs (red asterisks) with the x- and
743  y-axes representing the physical positions of outcome and exposure DNAm probes, respectively.
744  Panel e): the predicted PAls at the MAD1L1 locus, a 450-Kb sub-region of that shown between two
745  orange dashed lines in panel d). The orange curved lines on the top represent the significant PAls
746  between 14 DNAm sites in the promoter regions of MAD1L1 (multiple transcripts) and other
747  DNAm sites nearby. The panel on the bottom represents 14 chromatin state annotations
748  (indicated by different colours) inferred from data of 127 REMC samples (one row per sample).
749  Note that the predicted PAls appear to be much sparser than the Hi-C loops largely because the
750  PAIs were predicted from analyses with very stringent significance levels (Supplementary Note
751 1).
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Figure 3 Enrichment of the predicted interactions in chromatin loops identified by experimental
assays. Panels a) and b): overlaps of the predicted PAls with the chromatin loops identified by a)
Hi-C from Rao et al?! and b) POLR2A ChIA-PET from the ENCODE project?’. The red dash lines
represent the observed number and histograms represent the distribution of control sets. Panel
c): enrichment of the predicted interactions in the significant PCHi-C loops defined based on a
range of P value thresholds. We used the PCHi-C loops identified from Jung et al. in GM12878 cell
lines28. PHM: the pairwise hierarchical model developed by Kumasaka et all?. The error bar
around each estimate represents the 95% confidence interval. The horizontal red dashed line

indicates no enrichment.
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767
768  Figure 4 Enrichment of PIDSs and Pm-PAI genes. Panels a) and b): enrichment of PIDSs in 14 main

769  functional annotation categories inferred from the 127 REMC samples. Fold enrichment: a ratio
770  ofthe proportion of PIDSs in an annotation category to the mean of the control sets. The error bar
771  inpanel b) represents standard deviation of the estimate under the null obtained from the control
772 sets. The 14 functional categories are: TssA, active transcription start site; Prom,
773 upstream/downstream TSS promoter; Tx, actively transcribed state; TxWk, weak transcription;
774 TxEn, transcribed and regulatory Prom/Enh; EnhA, active enhancer; EnhW, weak enhancer;
775 DNase, primary DNase; ZNF/Rpts, state associated with zinc finger protein genes; Het,

776 constitutive heterochromatin; PromP, Poised promoter; PromBiv, bivalent regulatory states;
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ReprPC, repressed Polycomb states; and Quies, a quiescent state. Panel c): mean Pearson
correlation of expression levels for gene pairs whose promoters were involved in PmPmI. The red
dash line represents the observed mean Pearson correlation value of the significant PmPmlI gene
pairs and the histograms represent the null distributions of mean Pearson correlation values
generated by repeated resampling of a set of distance-matched control gene pairs either from the
genes whose promoters were involved in the SMR analysis (green) or from all genes (black). Panel
d): proportion of Pm-PAI genes in five gene activity groups with the first group being the inactive
group (TPM <0.1) together with four quartiles defined based on the expression levels of all genes
in the GTEx blood samples. The error bar represents the standard deviation estimated from the

1,000 control sets.
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Figure 5 Enrichment of eQTLs or transcription-associated DNAm sites in PIDS regions of the Pm-
PAI genes. Panel a): the number of independent cis-eQTLs (Peqr. < 5x10-8) located in PIDS regions
of the Pm-PAI genes. The red dash line represents the observed number and the blue histogram
represents the distribution of 1000 control sets. Panel b): the number of transcription-associated
DNAm sites located in PIDS regions of the Pm-PAI genes. The blue bar represents the observed
number and the green bar represents the mean of 1000 control sets. The error bar represents the

standard deviation estimated from the control sets.
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Figure 6 Prioritizing genes and functional regions at the RPS6KAZ locus for Crohn’s disease (CD).
The top plot shows -logio(P values) of SNPs from the GWAS meta-analysis (grey dots) for CD8.
Red diamonds and blue circles represent -logio(P values) from SMR tests for associations of gene
expression and DNAm probes with CD, respectively. Solid diamonds and circles are the probes not
rejected by the HEIDI test (Purini>0.01). The second and third plots show -logio(P values) of SNP
associations for the expression levels of probe ILMN_1671565 (tagging RNASETZ2) and
ILMN_1702501 (tagging RPS6KAZ), respectively, from the CAGE data. The fourth, fifth and sixth
plots shows -logio(P values) of SNP associations for the DNAm levels of probes cg00271210,
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804  cg25258033, and cg15706657, respectively, from the mQTL meta-analysis. The panel on the
805  bottom shows 14 chromatin state annotations (indicated by colours) inferred from 127 REMC
806  samples (one sample per row) with the predicted PAls annotated by orange curved lines on the

807  top (see Fig. S3a for the overlap of the predicted PAIs with Hi-C data).

32


https://doi.org/10.1101/580993
http://creativecommons.org/licenses/by-nc-nd/4.0/

